
NAT'LINST. of STAND & TECH

AlllOt. 74b445 publications REFERENCE

NISTIR 7059

ISBN 1-886843-34-1

1
st Annual PKI Research Workshop

Proceedings

Sean W. Smith

William T. Polk

Nelson E. Hastings

QC
100
US<?

0r?o5^
7.o02>

nist
National Institute of Standards and Technology

Technology Administration, U.S. Department of Commerce

NISTIR 7059

ISBN 1-886843-34-1

1
ST Annual PKI Research Workshop

Proceedings

Sean W. Smith
Department ofComputer Science

Dartmouth College

William T. Polk

Nelson E. Hastings
Computer Security Division

Information Technology Laboratory

National Institute ofStandards and Technology

October 2003

U.S. DEPARTMENT OF COMMERCE
Donald L. Evans, Secretary

TECHNOLOGY ADMINISTRATION
Phillip J. Bond, Under Secretary ofCommercefor Technology

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
Arden L. Bement, Jr., Director

Certain commercial entities, equipment, or materials may be identified in this document in order to

describe an experimental procedure or concept adequately. Such identification is not intended to imply

recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended

to imply that the entities, materials, or equipment are necessarily the best available for the purpose

1st Annual PKI Research Workshop—Proceedings

Organizers

General Chair: Ken Klingenstein, University of Colorado.

Program Chair: Sean Smith, Dartmouth College.

Stipends Chair: Neal McBumett, Intemet2.

WIP Chair: Peter Honeyman, University of Michigan.

Local Arrangements Chair: Nelson Hastings, NIST.

Scribe: Ben Chinowsky, Intemet2.

Program Committee:

Peter Alterman, NIH.

Steve Bellovin, AT&T Labs Research.

Stefan Brands, McGill University.

Bill Burr, NIST.

Carl Ellison, Intel.

Stephen Farrell, Baltimore Technologies.

Richard Guida, Johnson and Johnson.

Peter Honeyman, University of Michigan.

Ken Klingenstein, University of Colorado.

Larry Landweber, University of Wisconsin.

Neal McBumett, Intemet2.

Clifford Neuman, USC.

Sean Smith, Dartmouth College.

Steve Tuecke, Argonne National Laboratory.

Additional thanks to: Renee Frost, Tim Polk, Jim Rees, Ellen Vaughan, and Jiaying Zhang.

Date

April 24-25, 2002. Gaithersburg, Maryland USA.

Archival Web Site

http : / /www . cs . dartmouth . edu/ ~pki 02

/

1st Annual PKI Research Workshop—Proceedings

Contents

Preface. ix

Foreword. xi

Summaries

Workshop Summary’. 3

Dueling Theologies. 7

XKMS Panel. 9

Work-in-Progress Session. 1

1

Refereed Papers

NOVOMODO:Scalable Certificate Validation and Simplified PKI Management. 1

5

Silvio Micali.

Validity’ Management in SPKI. 27

Yki Kortesniemi.

Extended Validation Models in PKI: Alternatives and Implications. 37

Marc Branchaud, John Linn.

Trust Assertion XML Infrastructure. 45

Phillip Hallam-Baker.

Making Certificates Programmable. 57

John DeTreville.

A Distributed Credential Management System for SPKl-based Delegation Systems. 65

Oscar Canovas, Antonio F. Gomez.

Scalability Issues in PMI Delegation. 77

Scott Knight, Chris Grandy.

Password-Enabled PKI: Virtual Smartcards versus Virtual Soft Tokens. 89

Ravi Sandhu. Mihir Bellare, Ravi Ganesan.

Delegated Cryptography. Online Trusted Third Parties, and PKI 97

Trevor Perrin, Logan Bruns, Jahan Moreh, Terry Olkin.

Security Characteristics ofCryptographic Mobility Solutions. 1 1

7

Sarbari Gupta.

A Note on SPKI 's Authorization Syntax. 127

Olav Bandmann, Mads Dam.

Public-key Supportfor Collaborative Groups. 1 39

Steve Dohrmann,.Carl Ellison.

vii

1st Annual PKI Research Workshop—Proceedings

Authorization Policy in a PKI Environment. 149

Mary Thompson, Srilekha Mudumbai, Abdelilah Essiari, Willie Chin.

Invited Talks and Experience Reports

Improvements on Conventional PKI Wisdom. 165

Carl Ellison.

Report: EDUCA USE - NIH PKI Interoperability Pilot Project. 1 77

Peter Alterman, RusselWeiser, Michael Gettes, Kenneth Stillson, Deborah Blanchard, James Fisher, Robert Brentrup,

Eric Norman

Experiences Establishing an Experimental International Coalition Public Key > Infrastructure. 193

Glenn Fink, Shawn Raiszadeh, Timothy Dean.

Position Papers

PKI Trust Models. 209

Yassir Elley.

How Things Look from the Trenches. 2 1

1

William F. Flanigan, Jr., Deborah M. Mitchell.

Novel Schemes for Certificate Management in Public-Key Infrastructure. 2 1

5

Ravi Mukkamala.

viii

1st Annual PKI Research Workshop—Proceedings

Preface

Since its discovery three decades ago, public-key cryptography has excited computer scientists and practitioners alike,

because of its potential to enable trusted information services between parties who do not share secrets a priori.

Public-key infrastructure—the technology to make this cryptography work in practice—would appear to be critical in

the emerging information infrastructure, which replete with boundaries—organizational, temporal, and many others

—

that separate parties and make sharing difficult or impossible.

However, public-key cryptography has not fully achieved this vision. Some would assert that “PKI has not happened

yet”; others believe it is happening, but more slowly than anticipated. Researchers also exist with more extreme

viewpoints.

We convened this workshop to address the gap between this vision and the current state of PKI, and attracted a critical

mass of participants from government, industry, and academia, and representing a full spectrum of approaches and

opinions.

This volume contains a written record of the result: the formal refereed papers and experience reports of the confer-

ence, as well as summaries of the panels and discussions, and position papers submitted by some attendees. On behalf

of the entire organizing team, I thank all the participants. We hope that this is the first in a series of conferences that

helps our community achieve the long-term vision of PKI.

Sean Smith , Program Chair

Dartmouth College

Hanover, New Hampshire USA

sws@cs . dartmouth . edu

IX

1st Annual PKI Research Workshop—Proceedings

'

1
st Annual PKI Research Workshop—Proceedings

Foreward

The U.S. Federal Government and academia have a long history of collaborative research and development

in the area of Public Key Infrastructure (PKI). This collaboration arose from a shared vision: secure

electronic communications based on widely available PKIs. Both government and academia are actively

deploying PKIs to link the different members of their own communities. To leverage that investment, each

envisions the formation of PKIs that encompass government, academia, and the private sector.

These shared interests have motivated a number of collaborative projects. For example, Georgia Institute

of Technology participated in the first demonstration of bridge CA concept at the EMA challenge in 1999.

University of Georgetown and University of Washington, among others, have actively participated in the

Federal PKI Technical Working Group since 2000. More recently, the National Institutes of Health and

EduCause have worked collaboratively on a pilot program for grant application filing.

These collaborative projects are just one piece of the mosaic of PKI research. Research is also underway in

a number of independent academic and government projects, as well as numerous private sector efforts. In

total, the breadth and quality of PKI-related research is impressive. This research has previously been

presented at a variety of general security conferences. A PKI-specific venue is needed to increase

opportunities for PKI researchers to share their progress and experiences.

Late in 2001, Intemet2 proposed a research and development workshop devoted entirely to the area of PKI.

The proposal was enthusiastically received and a core group from government, academia, and private

industry emerged to organize and support the workshop. The National Institutes of Health provided

funding to support the workshop; NIST volunteered to host the workshop; and Intemet2 recruited PKI

experts from academia, government, and the private sector for the program committee.

NIST hosted the first annual Public Key Infrastructure (PKI) Research Workshop on April 24-25, 2002.

The two-day event brought together PKI experts from academia, industry, and government to explore the

remaining challenges in deploying public key authentication and authorization technologies, and to develop

a research agenda to address those outstanding issues.

The workshop consisted of the presentation of 14 referred papers, four panel discussions, and a work-in-

progress session. About 100 participants from the United States, United Kingdom, Canada, Spain, Sweden,

Ireland, Taiwan, and South Korea made the workshop an international event. Based on participant

feedback, the workshop provided the most up-to-date information on PKI research and deployment. This

proceedings includes the refereed papers, and captures the essence of the panels and interaction at the

workshop.

William T. Polk and Nelson Hastings

National Institute ofStandards and Technology

Gaithersburg, MD USA

XI

1st Annual PKI Research Workshop—Proceedings

Summaries

i

1st Annual PKI Research Workshop—Proceedings

Workshop Summary

Ben Chinowsky

Internet2

This report summarizes current issues in PKI as dis-

cussed at the 1 st Annual PKI Research Workshop, held

April 24-25, 2002 and sponsored by NIST, NIH and

Intemet2.

Sense of the Meeting

While reaching consensus was not among the goals of

the workshop, there appeared to be something close to

general agreement on the following points.

PKI trust relationships must be built on real-

world trust relationships. In the workshop s XKMS
panel discussion, Phillip Hallam-Baker described PKI

as “the interface between the Internet and the Real

World,” and it was evident throughout the workshop

that PKI practitioners are increasingly taking this as

a starting point. At the coarsest level of generaliza-

tion, hierarchical (aka traditional) PKIs are usually more

appropriate for hierarchical organizations—such as the

military, as discussed by Green, Winnenberg, Henry,

and Fink. Non-hierarchical PKIs (aka trust networks,

webs of trust, or anarchy) are usually more appropri-

ate for non-hierarchical organizations—such as the col-

laborative groups discussed by Dohrmann and Ellison.

Hallam-Baker illustrated the idea of building PKIs on

existing trust relationships in his overview of the Trust

Assertion XML Infrastructure (TAXI), the direct an-

cestor of SAML and XKMS. Even in the “Dueling

Theologies” session that opened the workshop, there

was little of the my-model-is-better-than-your-model

style of argument common to many discussions of PKI.

Instead, there is a growing awareness that we have a

wide variety of tools and a wide variety of circumstances

in which they can be applied, and growing agreement

that starting from existing real-world trust relationships,

whether those relationships be hierarchies or networks,

is the central principle that should guide how we apply

these tools.

At the same time, there is also broad agreement that

the closer you look at these top-level categorizations

—

hierarchical vs. non-hierarchical, real-world vs. not

—

the more questions arise. Does “traditional PKI” re-

fer only to X.509 with a strict X.500-style naming hi-

erarchy, or is it broader than that? When members of

a purchasing department operating under instructions

to honor any purchase order coming from some spec-

ified class of individuals nonetheless insist on making

some kind of personal contact before placing an order

for someone they’re not familiar with, what are the real-

world trust relationships that PKI should follow? Clearly

the top-level categories, while necessary, are not suffi-

cient for describing either real-world or PKI trust rela-

tionships. It was also noted that in some cases—-such as

the use of PKI to ensure privacy or anonymity—it can be

important to make sure that PKI trust relationships don ’t

follow real-world trust relationships.

Because the real-world trust relationships of many
large organizations are “heterarchical”—consisting of

a diverse set of hierarchies, anarchies, and combina-

tions of the two—heterarchical PKIs appear to have

a bright future. Such hybrid PKIs are created by

means of bridge CAs. Federal PKI Steering Committee

Chair Spencer briefly discussed progress on the Federal

Bridge Certification Authority (FBCA). Alterman pre-

sented a progress report on the NIH-EDUCAUSE PKI

Interoperability Project, which centers on communi-

cation between the FBCA and the Higher Education

Bridge Certification Authority (HEBCA); Alterman

summed up by saying that “there are NO show-

stoppers.” The workshop's work-in-progress session in-

cluded a discussion by Alterman of possible topologies

for a multiple-bridge infrastructure.

Directory functionality is a central concern for

both traditionally- and non-traditionally-minded

PKI practitioners. For example, Marc Branchaud of

RSA noted that “the directory is the main thing that

makes X.509 work,” and Peter Alterman observed that

“solving directory issues is the key to interoperability.”

On the other hand, in his critique of “conventional PKI

wisdom,” Carl Ellison puts the problem of naming enti-

ties front and center. Ellison sees the gap between the

ways computers use names (precisely) and the way hu-

mans use names (imprecisely) as a big obstacle to hu-

3

1st Annual PKI Research Workshop—Proceedings

mans being able to trust that they have chosen the right

cert from a directory and are dealing with the person they

think they are dealing with. At Intel this has become

known as “the John Wilson problem.” Ellison advocates

using personal directories or naming services that can

use “local names” (e.g., “my mom”) to retrieve keys.

Users want security, but they’re not willing to

tolerate much additional system complexity in

order to get it. If security adds significant complexity,

users will either use it incorrectly—which can provide a

false sense of security, leaving the user worse off than

before—or not use it at all. Carl Ellison argued that the

main successful deployment of certificates so far, SSL,

is in effect mostly used to grant this false sense of secu-

rity. Ellison suggested an experiment comparing the fre-

quency of stolen credit card numbers in encrypted and

unencrypted transactions; he was was sufficiently confi-

dent in his pessimism about SSL to offer to include his

own credit card in the non-encrypted sample.

Legal issues, in particular certificate policy is-

sues, are very hard. Fink, discussing his work with

the Naval Surface Warfare Center, observed that PKI can

also stand for “Policy Keeps Interfering.” Green laid

heavy stress on the DoD’s work in this area: “we have

a major activity in the certificate policy world.. .if you’re

not paying attention to this you’re not taking PKI seri-

ously.” Klingenstein described a trust continuum run-

ning from collaborative trust (handshakes) to legal trust

(contracts). While collaborative trust tends to go with

the federated models of security (like Shibboleth, which

resembles a bridge CA in some respects), and legal trust

tends to go with traditional PKI, there are a wide range

of intermediate cases, and each user community needs

to decide what mix works best for it.

Issues and Approaches

Key management and mobility. Much discussion

was devoted to various schemes for ensuring that peo-

ple can access their keys as needed, both at the time of

issuance and thereafter. In the session on key manage-

ment, Gupta provided a survey of current approaches.

She emphasized the wide variety of solutions available

and noted three contraindications for attempting to im-

plement mobility: a need for strong non-repudiation, a

need to be able to recover encryption keys, and zero

tolerance for DoS attacks. Perrin presented a system

for sharing a single private key among many users; he

noted that his system is intended to interoperate with

conventional PKI rather than replace it. Perrin’s sys-

tem uses an online trusted third party; Peter Honeyman
pointed out that if you remove the asymmetric cryptog-

raphy from this system, it looks a lot like Kerberos, and

asked why he didn’t just use that. Perrin replied that his

system makes path validation possible and can be im-

plemented without a central server for the shared pri-

vate key (though the prototype does indeed use such

a server). Also on the theme of incorporating secret-

key cryptography, Sandhu pointed out that “it is com-

pletely possible to design a sufficiently secure password

system. ..security is always about adequacy.” Absolute

security doesn’t exist anyway, and users don’t inher-

ently hate passwords, they just don’t want so many of

them. With respect to the question of what’s holding

back physical smartcards; Sandhu observed that “it’s the

readers, stupid;” he described the principal motivation

of his work on virtual smartcards as to provide a “phased

migration path” from weak passwords to strong PKI.

Smartcards are a major focus of effort for the military,

and the DoD and International Coalitions presentations

included two striking cautionary tales drawn from their

experience. One speaker noted that smartcard readers

present more of a challenge than smartcards themselves,

and recounted an episode in which users were issued

smartcards and PINs, but then six months elapsed before

the card readers were installed and working, so that the

PINs were mostly forgotten. Henry noted that the DoD
currently combines smartcards with Geneva Convention

cards; as the Geneva Convention card is to be surren-

dered upon capture by the enemy, this clearly needs to

be fixed.

Also closely related to key management were the pre-

sentations of Boneh and Levy on their respective devel-

opments of identity-based encryption (IBE). IBE uses

information about the user, such as an email address, to

create a public key, making it possible to send some-

one encrypted mail without them having to first set up a

keypair and publish their public key. The recipient then

visits a server to obtain the corresponding private key.

Boneh emphasized the “viral” deployment properties of

this system, seeing its potential to encourage broader use

of PKI as its principal advantage. Levy emphasized the

control that IBE gives the sender over what information

the receiver needs to provide the server in order to get

their private key; the sender thus gains precise control

over how secure the encryption will be.

Authorization. Underscoring the importance of au-

thorization for PKI as a whole, in addition to the main

session on authorization, three of the four presentations

in the workshop’s “Scale” session were also devoted to

authorization. DeTreville set out his thinking on how

4

1st Annual PKI Research Workshop—Proceedings

to do scalable distributed authorization by building re-

lational algebra into certificates. Canovas discussed his

work on delegation of authorization in SPKI, which has

been deployed in a production smartcard system at his

university. Knight discussed the role-based X.509 privi-

lege management infrastructure he is developing for the

Canadian Department of National Defence.

In the authorization session proper, Dam discussed a

streamlined version of the SPKI authorization syntax

which is adequate for almost all real-world uses but

which executes in linear rather than exponential time.

Dohrmann outlined a PKI that he and Carl Ellison de-

veloped with the overarching goal of improving ease of

use, thereby improving the likelihood that the system

will be used correctly. One of the ways they do this is

by having lines of authority to grant authorizations fol-

low existing lines of authority within an organization;

for example, long authorization chains that go up one

side of the org chart and down the other are preferred

to short ones that cut across from one leaf node to an-

other. Thompson provided an overview of approaches

to authorization and an in-depth look at Akenti. Akenti

is a Grid-oriented authorization system which has been

implemented as an Apache module and which has been

used by the Diesel Combustion Collaboratory and the

National Fusion Collaboratory.

The workshop’s emphasis on ensuring ease of use was

especially strong in the discussions of authorization, re-

flecting a general awareness of the conceptual complex-

ity of relationships in this area.

Validation and revocation. In the validation ses-

sion, Micali introduced NOVOMODO, a scheme for

ultra-lightweight certificate validation via 20-byte to-

kens. Micali developed an extended analogy between

these tokens and the validity stickers affixed to student

ID cards at the start of each term. Tero Hasu, present-

ing work by his colleague Kortesniemi discussed a range

of options for validity management of SPKI authoriza-

tion certificates, and set out a very simple (only two

messages) validity management protocol. Branchaud

noted that while X.509 was built on the assumption that

CAs aren't online, that assumption no longer necessar-

ily holds. He provided an overview of resulting options

for distributed and delegated validation, looking beyond

OCSP to, “in the limit,” possibly getting rid of certifi-

cates altogether.

Agenda

In order to work out both the social and the mechani-

cal issues, we need more deployment experience.

While the deployments discussed at the workshop have

provided many useful lessons, the user base of these de-

ployments is tiny in relation to the user base PKI will

need to support. In addition to the hundreds of techni-

cal details that can only be fully resolved in the course

of a full-scale deployment, there are a lot of “Why
Johnny Can’t Encrypt”-type questions that can’t be an-

swered until there is more experience with PKIs support-

ing thousands rather than dozens of users. In addition

to removing obstacles to deployment, we must also en-

sure that there is sufficient positive motivation for PKI;

as Phillip Hallam-Baker noted, “you don’t want to de-

ploy PKI starting with problems that have already been

solved better.”

We need to do a better job of working with

social scientists, lawyers, and other “non-

technical” experts. It seems clear that these experts

are available and willing to help, but the initiative and

direction in applying their skills have to come from the

technical community.

We need to keep cross-pollinating. There was

near-unanimous opinion in favor of immediately be-

ginning planning for a 2nd Annual PKI Research

Workshop, and that planning is now underway.

5

6

1st Annual PKI Research Workshop—Proceedings

Dueling Theologies

Ben Chinowsky

Internet

2

In this panel session. Rich Guida gave his view of what’s

holding back the traditional X.509 model that he fa-

vors, and Carl Ellison summarized his criticisms of this

model.

Guida listed several factors holding back wider deploy-

ment of PKI, including: too many legacy applications

and too few PKI-enabled applications; a widespread de-

sire on the part of decision-makers to be on the leading

rather than the bleeding edge; lack of common seman-

tics; organizational politics, including the “not invented

here” syndrome; and (least importantly) technical is-

sues. Guida also pointed out that, as with network tech-

nologies more generally, it is very hard to calculate ROI
for PKI, and suggested that those pushing PKI deploy-

ment not get “wrapped around the ROI axle.” Guida sees

PKI becoming widespread first within enterprises, then

between them, and lastly with consumers. Guida also

outlined the PKI he’s currently working on for Johnson

& Johnson.

Ellison sees fundamental problems with conventional

PKI. In his view, there are four pieces of PKI “conven-

tional wisdom” which need to be rejected.

• 1. Conventional wisdom: Everyone needs to have

an identity cert for digital signatures.

Objection: Each person has multiple identities (as a

driver, as a bank account holder, as an employee...);

therefore each person would need many identity

certs.

• 2. Conventional wisdom: Certs should come from

a CA with strong private-key security.

Objection: It’s too expensive to have more than

a few such CAs, making it necessary for users to

travel to the CA in order to get a cert. Using RAs
can improve this situation; Ellison advocates going

this solution one better by putting the CA on the

RA’s desk.

• 3. Conventional wisdom: Once you’ve done 1) and

2), you know who you’re talking to...

Objection: “Human beings do not use names the

way we computer scientists would like them to.”

Ellison noted that when he tells stories of the con-

fusion created by the multiple John Wilsons at Intel,

people tend to respond along the lines of “that’s

nothing, listen to this.” When using names, peo-

ple have a strongly ingrained tendency to go with

the first apparent match they see, leading to (in the

stories Ellison related) misdirected email messages,

airline boarding pass mixups, and (almost) un-

wanted botox injections.

• 4. Conventional wisdom: ...and you also have non-

repudiation.

Objection: The costs of strong private-key secu-

rity and the need for tamper-proof cameras to wit-

ness digital signing make nonrepudiation impracti-

cal. The usefulness of providing nonrepudiation is

in any case limited to situations in which a victim

can be made whole, thus excluding cases where, for

example, secrecy or human life is at stake.

Ellison’s solution is to dispense with identity certs and

CAs, replacing them with authorization certs issued by

whoever has the authority to grant the authorization un-

der existing business practices.

Much of the Q&A was devoted to rebuttals to Ellison’s

objections to traditional PKI. Several people pointed out

that traditional PKI need not lean so heavily on names

as Ellison assumes it does: naming is often backed up

by established business relationships and larger sets of

information about the named entities. While Ellison

agreed that the use of these backups can help, his re-

sponse centered on stressing just how little rigor can be

expected from users. He also cited an episode in which

he used SSL to make an apparently secure transaction

with a vendor, then checked the cert and found that it had

been issued to another entity entirely. While presum-

ably the vendor had contracted with this entity for web

services, nowhere in the process was there any proof of

this.

There was also a short discussion of nonrepudiation;

Ellison argued that online credit card transactions are

safe for the purchaser, and therefore widespread, pre-

cisely because they can be repudiated, and not because

SSL protects the transaction from eavesdropping.

7

1st Annual PKI Research Workshop—Proceedings

8

1st Annual PKI Research Workshop—Proceedings

XKMS Panel

Ben Chinowsky

Internet

2

Phillip Hallam-Baker, one of the architects of XKMS,
opened the discussion by describing the central idea of

XKMS as to remove complexity—especially the com-

plexity of path discovery—from the client, so that it

doesn’t have to be concerned with anything more than

“I want to talk to Alice.” While agreeing that XKMS
could prove useful in hiding complexity from the user,

and that offloading path validation might be useful in

enabling PKI on computationally weak devices such as

cell phones, Tim Polk countered that most desktop ma-

chines can handle path validation just fine. Polk is

also suspicious of “unified field theories” in general,

and XKMS’s aspiration to be the unified field theory

for PKI in particular. He’s also skeptical about the

claim that XML is superior to ASN.l as a format for

PKI—while ASN.l is complex, so is XML, and ASN.l

is “the devil we know,” as well as being better at de-

scribing “bit-for-bit identity.” Blair Dillaway, another

coauthor of the XKMS technical note, cited Microsoft’s

interest in using XKMS to develop its digital rights

management and delegation system, which is based on

XRML, in a more open and flexible direction. MIT’s

Dan Greenwood argued that XKMS fails to address key

business and legal issues. Wflile “public key technolo-

gies are best tailored to support and reflect existing busi-

ness and legal infrastructures—that is where trust is cre-

ated,” XKMS appears to be centrally concerned with

“stranger to stranger” authentication. Greenwood cited

LegalXML and his own actuarinet.mit.edu as

exemplifying a better approach.

Eric Norman opened the questions by asking, “what is

trust?” Hallam-Baker replied that trust is quantification

of risk. Greenwood objected that, while it would be

nice if a workable definition of trust could be so sim-

ple, the concepts of a trusted third party and nonrepudi-

ation are also necessary. Tim Polk concurred that there

is an irreducibly subjective and unquantifiable aspect to

trust—we just have to live with it. Hallam-Baker noted

that XKMS tools are now available in VeriSign’s Trust

Services Integration Kit, and stressed the importance of

SOAP as the key to interoperability among SAML, GXA
and other standards for security information.

9

'

10

1st Annual PKl Research Workshop—Proceedings

Work-in-Progress Session

Ben Chinowsky

Internet2

Peter Honeyman, of the Center for Information

Technology Integration at the University of Michigan,

hosted a work-in-progress session on the evening of

April 24.

Carl Ellison and Peter Alterman focused on details of

work presented more fully in the conference proper.

• Ellison discussed Brewer’s CAP postulate and its

applications to cert validation. The CAP postu-

late states that a digital system design can achieve

any two of {Consistency, Availability, tolerance of

network Partitions}, but not all three.

• Alterman discussed the need for a bridge-to-bridge

protocol for the emerging multiple-bridge infras-

tructure. Among other things, such a protocol must

be able to cope with naming conflicts and transitive

trust. A variety of topologies are possible: peer-

to-peer, mesh, a forest of hierarchies, or a single

rooted hierarchy.

Workshop chair Sean Smith gave an overview of projects

currently underway at the Dartmouth PKI Lab; see

www. cs . dartmouth . edu/~pkilab/ for more in-

formation.

Burt Covnot, Mark Earnest, and Allison Mankin pre-

sented work not covered in the workshop plenary ses-

sions.

• Covnot, of Bank of America, explored “the care

and feeding of identity certificates and attribute cer-

tificates.” Should customers be issued multiple

identity certificates, or should their already-issued

identity certificates be extended into broader ser-

vices? Similarly, do multiple attribute certificates

help or hinder deployment of security technolo-

gies? When certificates expire, should new keys

be generated, or should an existing private key be

recertified?

• Earnest recounted Penn State’s experiences with

DCE, drawing parallels with the challenges of PKI.

Penn State plans to make use of both KX.509 and

Shibboleth in its PKI migration.

• Mankin gave an update on work on DNS security.

The IETF DNSSEC working group has determined

that narrowly restricting the use of keys among

services minimizes problems with trust transitiv-

ity. Other protocol designs being engineered at-

tempt to reduce the complexity of client implemen-

tations. After years of technical and political work,

the major players appear close to actually deploy-

ing DNSSEC.

11

12

1st Annual PKI Research Workshop—Proceedings

Refereed Papers

13

1st Annual PKI Research Workshop—Proceedings

NOVOMODO
Scalable Certificate Validation And Simplified PKI Management

by

Silvio Micali

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

(On Sabbatical Leave)

silviom@rcn.com

Conference’s Areas of Inquiry: Scalability ofPKI; new approach to attribute certificates; and

how the required PKI may differfrom the PKI traditionally defined.

Abstract

In [1], a scalable and small-bandwidth certificate validation scheme was presented. We call this system

NOVOMODO, to emphasize the new way in which it approaches the field.

In this paper, we recall the NOVOMODO technology and

• Compare the efficiency and security ofNOVOMODO and OCSP: and

• Discuss how NOVOMODO may simplify PKI management in several applications (e.g., attribute certs).

1. Traditional Certificate Validation And
NOVOMODO

In essence, a digital certificate C consists of a CA's

digital signature securely binding together several

quantities: SN, a serial number unique to the

certificate, PK, the public key of the user, U, the

user's identifier, D|, the issue date, D2 ,
the expiration

date, and additional fields. In symbols, C=SIGCa(SN,

PK, U, Dj, D2,...).

It is widely recognized that digital certificates

provide the best form of Internet authentication. On
the other hand, they are also difficult to manage.

Certificates may expire after one year (i.e., D2 - D2 =

1 year). However, they may be revoked prior to their

expiration; for instance, because their holders leave

their companies or assume different duties within

them. Thus, each transaction enabled by a given

digital certificate needs a suitable proof of the current

validity of that certificate, and that proof often needs

to be archived as protection against future claims.

Unfortunately, the technologies used today for

proving the validity of issued certificates do not scale

well. At tomorrow's volume of digital certificates,

today's validity proofs will be either too hard to

obtain in a secure way, or too long and thus too

costly to transmit (especially in a wireless setting).

Certificate validation is universally recognized as a

crucial problem. Unless efficiently solved, it will

severely limit the growth and the usefulness of our

PKIs.

1.1 T raditional Certificate Validation

Today, there are two main approaches to proving

certificates' validity: Certificate Revocation Lists

(CRLs) and the Online Certificate Status Protocol

(OCSP).

CRLs

CRLs are issued periodically. A CRL essentially

consists of a CA-signed list containing all the serial

numbers of the revoked certificates. The digital

certificate presented with an electronic transaction is

15

1st Annual PKI Research Workshop—Proceedings

then compared to the most recent CRL. If the given

certificate is not expired but is on the list, then

everyone knows from the CRL that the certificate is

not valid and the certificate holder is no longer

authorized to conduct the transaction. Else, if the

certificate does not appear in the CRL, then the

certificate is deduced to be valid (a double negative).

CRLs have not found much favor; for fear that they

may become unmanageably long. (A fear that has

been only marginally lessened by more recent CRL-
partition techniques.) A few years ago, the National

Institute of Standards and Technology tasked the

MITRE Corporation [3] to study the organization and

cost of a Public Key Infrastructure (PKI) for the

federal government. This study concluded that CRLs
constitute by far the largest entry in the Federal PKI's

cost list.

OCSP

In the OCSP, a CA answers a query about a

certificate C by returning its own digital signature of

C's validity status at the current time. The OCSP is

problematic in the following areas.

Bandwidth Each validity proof generated by the

OCSP has a non-trivial length. If RSA or other

factoring based signature schemes are used, such a

proof in fact requires at a minimum 2,048 bits for the

CA's signature.

Computation. A digital signature is a computationally

complex operation. In certain large applications, at

peak traffic, the OCSP may require computing

millions of signatures in a short time, which is

computationally very expensive to do.

Communication (if centralized). Assume a single

validation server implements the OCSP in a

centralized manner. Then, all certificate-validity

queries would have, eventually, to be routed to it, and

the server will be a major "network bottleneck"

causing considerable congestion and delays. If huge

numbers of honest users suddenly query the server, a

disrupting "denial of service" will probably ensue.

Security (if distributed). In general, distributing the

load of a single server across several (e.g., 100)

servers, strategically located around the world,

alleviates network congestion. In the OCSP case,

however, load distribution introduces worse problems

than those it solves. In order to sign its responses to

the certificate queries it receives, each of the 100

servers should have its own secret signing key. Thus,

compromising any of the 100 servers is

compromising the entire system. Secure vaults could

protect such distributed servers, but at great cost.

1.2 NOVOMODO

NOVOMODO works with standard certificate

formats (e.g., X.509v3) and enables a CA to prove

the validity status of each certificate C at any time

interval (e.g., every day, hour, or minute) starting

with C's issue date, D|. C's time granularity may be

specified within the certificate itself, unless it is the

same for all certificates. To be concrete, below we
assume a one-day granularity for all certificates, and

that each certificate expires 365 days after issuance.

One-way hashing. NOVOMODO uses a one-way

hash function H (such as SHA [4]) enjoying the

following properties:

1 . H is at least 1 0,000 times faster to compute than

a digital signature;

2. H produces 20-byte outputs, no matter how long

its inputs; and

3. H is hard to invert: given Y, finding X such that

H(X)=Y is practically impossible.

The Basic NOVOMODO System

Making a certificate C. In addition to traditional

quantities such as a serial number SN, a public key

PK, a user name U, an issue date D,, an expiration

date D 2 (=D|+365), a certificate C also includes two

20-byte values unique to it. Specifically, before

issuing a certificate C, a CA randomly selects two

different 20-byte values, Y0 and X0, and from them

computes two corresponding 20-byte values, Y, and

X365 , as follows. Value Yj is computed by hashing Y0

once: Y^HfYo); and X365 by hashing X0 365 times:

X,=H(X 0), X2=H(X,), ..., X365 = H(X364). Because H
always produces 20-byte outputs, Yj, X365 ,

and all

intermediate values Xj are 20-byte long. The values

Y0 ,Xo,X|,...,X364 are kept secret, while Y, and X365

are included in the certificate:

C=SIGca(SN,PK,U,D i
,D2,...,Y 1

,X365). We shall call

Y
,
the revocation target and X365 the validity target.

Revoking and validating a not-yet-expired certificate

C. On the i-th day after C's issuance (i.e., on day

D|+i), the CA computes and releases a 20-byte proof

of status for C as follows. IfC is revoked, then, as a

proof of C's revocation, the CA releases Y0 ,
that is,

the H-inverse of the revocation target Y,. Else, as a

proof of C's validity on that day, the CA releases

X365_„ that is, the i-th H-inverse of the validity target

X365 . (E.g., the proof that C is valid 100 days after

issuance consists of X 265 .) The CA may release Y0 or

16

1st Annual PKI Research Workshop—Proceedings

X365-i by providing the value in response to a query or

by posting it on the World Wide Web.

Verifying the status ofa not-yet-expired certificate C.

On any day, C's revocation proof, Y0 , is verified by

hashing Y0 once and checking that the result equals

C's revocation target, Y x . (I.e., the verifier tests for

himself that Y0 really is the H-inverse of Y x .) Note

that Yj is guaranteed to be C's revocation target,

because Y
x
is certified within C. On the i-th day after

C's issuance, C's validity proof on that day, X365_„ is

verified by hashing i times the value X365 ., and

checking that the result equals C's validity target,

X365 - (I.e., the verifier tests for himself that X365 _,

really is the i-th H-inverse ofX365 .) Note that a

verifier knows the current day D as well as C's

issuance date D, (because D| is certified within C),

and thus immediately computes i=D-D,.

NOVOMODO Security (Sketch)

• A proofofrevocation cannot beforged.

The proof of revocation of a certificate C
consists of the H-inverse of C's revocation target

Yj. Because H is essentially impossible to invert,

once a verifier checks that a given 20-byte value

Y0 is indeed C's proof of revocation, it knows

that Y 0 must have been released by the CA. In

fact, only the CA can compute the H-inverse of

Y x : not because the CA can invert H better than

anyone else, but because it computed Y
x
by

starting with Y0 and hashing it! Because the CA
never releases C's revocation proof as long as C
remains valid, an enemy cannot fake a

revocation proof.

• A proofofvalidity cannot beforged.

On day i, the proof of validity of a certificate C
consists of the i-th H-inverse of C's validity

target X365 . Because H is essentially impossible

to invert, once a verifier checks that a given 20-

byte value X365 ., is indeed C's proof of validity

on day i, it knows that the CA must have

released X365-i. In fact, only the CA can

compute the i-th H-inverse of X365 : not because

the CA can invert H better than anyone else, but

because it computed X365 by starting with X0 and

hashing it 365 times, thus computing along the

way all the first 365 inverses ofX365 ! If

certificate C become revoked on day i+1, the CA
has already released the values X3 6 5-1,...,X365 _,

in the preceding i days (when C was still valid)

but has not released and will never release the

value X 365.,_i (or any other value X, for j <365-i)

in the future. Consequently, to forge C's validity

proof on day i+1, an enemy should compute on

his own the i+lst H-inverse ofX365 (i.e., the H-

inverse ofX365.,), which is very hard to do!

Similarly, an enemy cannot compute a validity

proof for C on any day after i+1. To do so, it

should again be able to invert H on input X365 .,.

For instance, if it could compute C’s validity

proof on day i+2, X362-,-2 , then by hashing it once

it would easily obtain X365 .,.i, the H-inverse of

X365-i-

NOVQMODO Efficiency

• A certificate C includes only two additional 20-

byte values
,
Yj and X365 .

This is a negligible cost. Recall that C already

consists of a CA signature (at least 2048-bit

long) of data that includes a public key PK (at

least 1024-bit long), and that C may include

comments and plenty of other data in addition to

SN, PK, U, D1 and D2 .

• Generating Y
x
and X365 requires only 366

hashings total.

This too is a negligible cost. Recall that issuing a

certificate already requires computing a

signature.

• Proofs of revocation and proofs of validity are

only 20-bytes long.

Our 20-byte proofs are trivial to transmit and

trivial to store, making the 20-byte technology

ideal for wireless applications (because here

bandwidth is still limited, and so is the storage

capacity of many cellular phones and other

wireless devices).

NOVOMODO proofs can be so short because

they derive their security' from elementary

cryptographic components, such as one-way

functions, which should exhibit an exponential

amount of security. (Quite differently, digital

signature schemes have complex security

requirements. Their typical number-theoretic

implementations offer at best a sub-exponential

amount of security, and thus necessitate much

longer keys.)

NOVOMODO proofs remain 20-bytes long

whether the total number of certificates is a few

hundred or a few billion. In fact there are 2
160

possible 20-byte strings, and the probability that

two certificates may happen to have a common
proof of revocation or validity is negligible.

Note too that the length of our 20-byte proofs

does not increase due to encryption or

17

1st Annual PKI Research Workshop—Proceedings

authentication. Our 20-byte proofs are intended

to be public and thus need not be encrypted.

Similarly, our 20-byte proofs are self-

authenticating: by hashing them the proper

number of times they yield either the validity

target or the revocation target specified within

the certificate. They will not work if faked or

altered, and thus need not be signed or

authenticated in any manner.

Finally, a 20-byte proof of validity on day i, X365 .

i ,
need not additionally include the value i: in a

sense, it already includes its own time stamp!

Indeed, as discussed before, i is the difference

between the current day and the certificate's

issue day, and if hashing X 365 _, i times yields the

validity target of certificate C, then this proves

that X365 ., is C's proof of validity on day i.

• The 20-byte proofs are computed instantly.

A proof of revocation Y0 or a proof of validity

X365 _, is just retrieved from memory.
(Alternatively, each X365 ., could be recomputed

on the fly on day i; for instance by at most 364

hashings, if just X0 is stored during certificate

issuance. Surprisingly more efficient strategies

are discussed in the next section.)

NOVOMODO and Wireless

NOVOMODO is ideal for wireless implementations.

Its scalability is enormous: it could accommodate

billions of certs with great ease. The bandwidth it

requires is negligible, essentially a 30-bit serial

number for the query and 20-byte for the response.

The computation it requires is negligible, because a

certificate-status query is answered by a single table

look-up and is immediately verified. Of course, great

scalability, minimum bandwidth and trivial

computation make NOVOMODO the technology of

choice in a wireless environment.

But there is another use of NOVOMODO that

provides an additional advantage in wireless

applications. Namely, every morning —e.g., at

midnight-- a wireless user may receive a 20-byte

proof of the validity of his certificate for the

remainder of the day. (This 20-byte value can be

obtained upon request of the user, or pushed to the

user's cellular device automatically -e.g., by means

of a SMS message or other control message..) Due to

its trivial length, this proof can be easily stored in

most cellular telephones and PDAs. Then, whenever

the user wants to transact on that day, the user simply

sends its own certificate together with the cert’s 20-

byte proof of validity for that day. Because the proof

of validity is universally verifiable, the verifier of the

cert and proof need not call any CA or any responder.

The verifier can work totally off-line. In the cellular

environment, in which any call translates into money
and time costs, this off-line capability is of great

value.

2. NOVOMODO vs. OCSP

NOVOMODO and OCSP are both on-demand

systems: namely, a user sends a query about the

current validity of a certificate and gets back an

unforgeable and universally verifiable proof as a

response. But there are differences in

1) Time accuracy;

2) Bandwidth;

3) CA efficiency;

4) Security; and

5) Operating costs.

TIME ACCURACY
In principle, an OCSP response may specify time

with unbounded accuracy, while a NOVOMODO
response specifies time with a predetermined

accuracy: one day, one hour, one minute, etc. In low-

value applications, one-day validity is plenty

acceptable. For most financial applications, Digital

Signature Trust considers a 4-hour accuracy

sufficient. (Perhaps this is less surprising than it

seems: for most financial transactions, orders

received in the morning are executed in the afternoon

and orders received in the afternoon are executed the

next business day.) In any event, time is not specified

by a real number with infinitely many digits. In an

on-demand validation system, a time accuracy of less

than one minute is seldom meaningful, because the

clocks of the querying and answering parties may not

be that synchronized. Indeed, in such a system, a time

accuracy of 15 seconds is defacto real time.

To handle such an extreme accuracy, NOVOMODO
needs to compute hash chains that are roughly 1M
long (i.e., needs to compute validity fields of the type

X1M), because there are at most 527,040 minutes in a

year. If chains so long could be handled efficiently,

NOVOMODO would de facto be real time.

Computing 1M hashings is not problematic at

certificate issuance: 1M hashings can be performed in

less than 1 second even using very reasonable

platforms, and a certificate is typically issued only

once a year, and not under tremendous time pressure.

Similarly, 1 second of computation is not problematic

for the verifier of a cert validity proof (e.g., a

merchant relying on the certificate) considering that

he generally focuses just on an individual transaction.

18

1st Annual PKI Research Workshop—Proceedings

and has more time at hand. Computing 1M hashings

per certificate-status request would, however, affect

the performance of the server producing validity

proofs, because it typically handles many transactions

at a time. Fortunately, this server needs not to

compute all these hashings on-line starting with X0 ,

but by table look up -capitalizing on having in

storage the full hash-chain of every certificate.

Nonetheless, storing lM-long hash-chains may be a

problem in applications with huge numbers of

certificates. But, fortunately, as we shall mention

later on, even ordinary servers can, using better

algorithms, re-compute lM-long hash chains with

surprising efficiency.

BANDWIDTH
NOVOMODO has an obvious bandwidth advantage

over OCSP. The former uses 20-byte answers, while

the latter typically uses 256 bytes.

CA EFFICIENCY
A validity query is answered by a (complex) digital

signature in the OCSP case, and by a (trivial) table

look-up in the NOVOMODO case, as long as the CA
stores the entire X-chain for each certificate.

Note that, with a population of 1 million certificates,

the CA can afford to store the entire X-chain for each

certificate when the time accuracy is one day or one

hour. (In the first case, the CA would have to store

365 20-bytes values; that is, 7.3K bytes per cert, and

thus 7.3B bytes overall. In the second case, 175.2B

bytes overall.) If the time accuracy were 15 seconds,

then each hash chain would consist of 1M 20-byte

values, and for the entire system the overall storage

requirement would be around 10.5 tera-bytes: a

sizable storage.

To dramatically decrease this storage requirement,

the CA may store just a single 20-byte value (i.e., X0)

for each cert, and re-compute from it each X; value

by at most 1M hashings. Alternatively, Jacobsson [5]

has found a surprising time/storage tradeoff. Namely,

the CA may re-compute all n X* values, in the right

order, by storing log (n) hash values and performing

log(n) hashings each time. If n were 1M, this implies

just storing 20 hash values per cert and performing

only 20 hashings each time the cert needs validation.

Other non-trivial tradeoffs are possible. In particular,

for our lM-chain case, Reyzin [R] has shown that a

CA can compute all X; values (i=lM down to 1) by

storing only 3 hash values and performing at most

100 hashings each time.

In sum, even in a de facto real-time application (i.e.,

using a 15-second time accuracy) NOVOMODO can.

by just storing 60 bytes per cert, replace a complex

digital signature operation with a trivial 100-hash

operation.

SECURITY AND OPERATING COSTS
The last two differences are better discussed after

specifying the type of implementation of

NOVOMODO and OCSP under consideration.

Centralized NOVOMODO vs. Centralized OCSP:
Security Analysis

Whenever proving certificate validity relies on the

secrecy of a given key, a secure vault ought to protect

that key, so as to guarantee the integrity of the entire

system. By a centralized implementation of

NOVOMODO or OCSP, we mean one in which a

single vault answers all validity queries. Centralized

implementations are preferable if the number of

deployed certificates is small (e.g., no more than

100K), so that the vault could handle the query

volumes generated even if almost all certificates are

used in a small time interval, triggering almost

simultaneous validity queries. In such

implementations, NOVOMODO is preferable to

OCSP in the following respects.

CENTRALIZED NOVOMODO OFFERS BETTER
DOOMSDAY PROTECTION
In the traditional OCSP, if (despite vaults and

armored guards) an enemy succeeds in penetrating

the vault and compromises the secret signing key,

then he can both "resurrect" a previously revoked

certificate and "revoke" a still valid one. (Similarly, if

the CRL signing key is compromised in a CRL
system.) By contrast, in NOVOMODO penetrating

the secure vault does not help an adversary to forge

the validity of any previously revoked certificate. In

fact, when a certificate becomes revoked at day i, not

only is its revocation proof Y0 made public, but,

simultaneously, all its X, values (or at least the values

X0 through X365_,) are deleted. Therefore, after a

successful compromise, an enemy finds nothing that

enables him to "extend the validity" of a revoked

certificate. To do so, he should succeed in inverting

the one-way hash H on X365 _, without any help, which

he is welcome to try (and can indeed try without

entering any secure vault). The worst an enemy can

do in a NOVOMODO system after a successful

compromise is to fake the revocation of valid

certificates, thus preventing honest users from

authenticating legitimate transactions. Of course, this

would be bad, but not as bad as enabling dishonest

users to authenticate illegitimate transactions.

19

1st Annual PKI Research Workshop—Proceedings

Distributed NOVOMODO vs. Distributed OCSP:
Security and Operating-Cost Analysis

Centralized implementations of NOVOMODO and

OCSP require all queries about certificate validity to

be routed to the same vault. This easily results in long

delays and denial of service in applications with

millions of active certificates. To protect against such

congestion, delays, and denial of service, one might

spread the load of answering validity queries across

several, geographically dispersed, responder servers.

However, in the case of the OCSP each additional

responder needs to have a secret signing key, and

thus needs to be hosted in a vault, making the cost of

ownership of an OCSP system very onerous. A high-

grade vault meeting the requirements of financial

institutions costs at least $1M to build and $1M to

run. (A good vault would involve armored concrete,

steel doors, back-up power generators, protected fuel

depot to run the generator for potentially a long time,

etc. Operating it would involve a minimum of 4

different teams for 24X7X365 operations, plus

managerial supervision, etc.) In an application

requiring 10 such vaults to guarantee reasonably fast

response at peak traffic, the cost of ownership of the

OCSP system would be $10M of initial investment

and an ongoing budget of $10M/year. Even if less

secure vaults and operations were used, millions of

dollars in initial and ongoing costs would still be

necessary.

In the NOVOMODO case, however, a distributed

implementation can be achieved with a single vault

(which a CA would have anyway) and an arbitrary

number of
U
un-trusted responders” (i.e., ordinary

servers). Let us see the exact details of a distributed

NOVOMODO system assuming, to be concrete, that

(a) there are 10M certs; (b) there are 1,000 servers,

strategically located around the globe so as to

minimize response time; and (3) the time granularity

is one-day.

Distributed NOVOMODO: CA Operations

(Initialization Cost)

Every morning: Starting with the smallest serial

number, compile a lOM-entry array F as follows: For

each certificate C having serial number j, store C’s

20-byte validity/revocation proof in location j. Then,

date and sign F and send it to each of the 1,000

servers.

Distributed NOVOMODO: User Operations (Query

Cost)

To learn the status of a certificate C, send C's serial

number, j, (and CA ID if necessary) to a server S.

Distributed NOVOMODO: Server Operations

(Answer Cost)

Every morning: If a properly dated and signed array

F is received, replace the old array with the new one.

At any time: answer a query about serial number j by

returning the 20-byte value in location j of the current

F.

Distributed NOVOMODO Works:

1 . Preparing Array F is instantaneous.

If the whole hash chain is stored for each cert,

then each entry is computed by a mere table

look-up operation. (Else, it can be computed on

the spot by using Reyzin’s method.)

2. F contains no secrets.

It consists of the accurate and full account of

which certificates are still valid and which

revoked. (The CA’s goal is indeed making this

non-secret information as public as possible in

the most efficient manner)

3. Transferring F to the servers is

straightforward.

This is so because F contains no secrets, requires

no encryption, and poses no security risks.

Though 10M certs are a lot, sending a 200M-
byte file to 1000 servers at regular intervals is

very doable.

4. Each server answer is 20-byte long.

Again, each answer requires no encryption,

signature or time stamp.

5. No honest denial ofservice.

Because each value sent is just 20-byte long,

because each such a value is immediately

computed (by a table look up), and because the

traffic can be spread across 1000 servers, no

denial of service should occur, at least during

legitimate use of the system.

6. Servers need not be trusted.

They only forward 20-byte proofs received by

the CA. Being self-authenticating, these proofs

cannot be altered and still hash to the relevant

targets.

DISTRIBUTED NOVOMODO OFFERS BETTER
CA SECURITY
Distributed NOVOMODO continues to enjoy the

same doomsday protection of its centralized

counterpart: namely, an enemy successfully entering

the vault cannot revive a revoked certificate.

Sophisticated adversaries, however, refrain from

drilling holes in a vault, and prefer software attacks

whenever possible. Fortunately, software attacks,

though possible against the distributed/centralized

OCSP, cannot be mounted against Distributed

NOVOMODO.

20

1st Annual PKI Research Workshop—Proceedings

In the OCSP, in fact, the CA is required to receive

outside queries from untrusted parties, and to answer

them by a digital signature, and thus by means of its

precious secret key. Therefore, the possibility exists

that OCSP’s required "window on the outside world"

may be maliciously exploited for exposing the secret

signing key.

By contrast, in distributed NOVOMODO there are no

such "windows:" the CA is in the vault and never

receives or answers any queries from the outside; it

only outputs non-secret data at periodic intervals.

Indeed, every day (or hour) it outputs a file F

consisting of public information. (The CA may
receive revocations requests from its RAs, but these

come from fewer trusted entities via authenticated

channels —e.g., using secure smart cards.) The

untrusted responders do receive queries from

untrusted parties, but they answer those queries by

means of their file F, and thus by public data.

Therefore, a software attack against NOVOMODO
ordinary responders may only “expose” public

information.

3. NOVOMODO and Simplified PKI
Management

PKI management (e.g., [7] [8]) is not trivial.

NOVOMODO may improve PKI management in

many applications by

• Reducing the number of issued certs;

• Enabling privilege management on the cert;

and

• Sharing the registration function with

multiple independent CAs.

Let us informally explain these improvements in PKI

management in a series of specific examples. (Note

that features and techniques used in one example can

be easily embedded in another. We do not explicitly

do this to avoid discussing an endless number of

possible variations.)

3.1 Turning a Certificate ON/OFF (and

Suspending It)

EXAMPLE 1: MUSIC DOWNLOADING
Assume an Internet music vendor wishes to let users

download any songs they want, from any of its 1000

servers, for a $l/day fee. This can be effectively

accomplished with digital certificates. However, in

this example, U may be quite sure that he will

download music a few days of the year, yet he cannot

predict which or how many these days will be. Thus

the Music Center will need to issue for U a different

one-day certificate whenever U so requests: U
requests such a certificate and, after payment or

promise of payment, he receives it and then uses with

any of the 1000 music servers on that day. Issuing a

one-day cert, however, has non-trivial management

costs both for the vendor and the user. And these

costs must be duplicated each time the user wishes to

enjoy another “music day.”

NOVOMODO technology can alleviate these costs as

follows. The first time that U contacts the vendor, he

may be issued a certificate C with issue date D)=0,

expiration date D2
= 365, and a validity field X365 ,

a

revocation target Y,, and a suspension field Z365 .

(The vendor’s CA builds the suspension field very

much as a validity field: by starting with a random

20-byte value Z0 and then hashing it 365 times, in

case of one-day granularity. It then stores the entire

hash chain, or just Z0 , or uses a proper time/storage

method to be able to generate any desired Z,.) At day

i= 1 ,...,365, ifU requests "a day of music” for that

day, then the vendor simply releases the 20-byte

value X365 ., to indicate that the certificate is valid.

Else, it releases Z365 ., to indicate that the certificate is

“suspended.” Else, it releases Y0 to indicate that the

certificate is revoked.
1

That is, rather than giving U a new single-day

certificate whenever U wishes to download music,

the vendor gives U a single
,
yearly certificate. At any

time, this single certificate can be turned ON for a

day, by just releasing the proper 20-byte value. Thus,

for instance, NOVOMODO replaces issuing (and

embedding in the user’s browser) 10 single-day

certificates by issuing a single yearly cert that, as it

may happen, will be turned ON for 10 out of the 365

days of the year.
2

3.2 Turning ON/OFF Many Certificates For

The Same User

1

Optionally, ifU and the music vendor agree to —say— a

"week of music starting at day i," then either the 20-byte

values for those 7 days are released at the proper time, or

the single 20-byte value X365 _i_7 is released at day i.

' The vendor could also use the method above to issue a

cert that specifies a priori the number of days for which it

can be turned ON (e.g.. a 10-day-out-of 365 cert). Because

it has a more predictable cost, such certs are more suitable

for a gift.

21

1st Annual PKI Research Workshop—Proceedings

EXAMPLE 2: SECURITY-CLEARANCE
MANAGEMENT

Digital certificates work really well in guaranteeing

that only proper users access certain resources. In

principle, privileges could be specified on the cert

itself. For instance, the State Department may have

10 different security-clearance levels, LI, L 1 0, and

signify that it has granted security level 5 to a user U
by issuing a certificate C like

C=SIGsd(SN,PK,U, L5, D,,D2 ,...)

Where again D^nd D2 ,
represent the issue and

expiration dates.

However, specifying privileges on the cert itself may
cause a certificate-management nightmare: whenever

its privileges change, the cert needs to be revoked.

Indeed, the security level of an employee may vary

with his/her assignment, which often changes within

the same year. For instance, should U’s security-

clearance level be temporarily upgraded to 3, then the

State Department should revoke the original C and

issue a new cert C\ This task could be simplified

somewhat by having U and thus C’ retain the same

public key (and expiration date) as before; for

instance, by having

C’=SIGsd(SN’,PK,U, L3, D,\D2 ,...).

However, U still faces the task of “inserting” the new
C’ into his browser in a variety of places: his desk-

top PC, his lat-top, his cell phone, his PDA, etc.

Now, having the CA take an action to re-issue a

certificate in a slightly different form is one thing, but

counting on users to take action is a totally different

thing!

This management problem is only exacerbated if

short-lived certificates (e.g. certificates expiring one

day after issuance) are used. In the context of the

present example, single-day certs may enable a State

Department employee or user U to attend a meeting

where a higher security level is needed. (If U had

such a cert in a proper cellular device, smart card or

even mag stripe card, he could, for instance, use it to

open the door leading to the meeting that day.) The

use of short-lived certificates is much broader, and

has been advocated because it dispenses with the

difficulty of revocation to a large extent (no point

revoking a cert that will expire in 24hours, at least in

most applications). However, issuing short-lived certs

so that they reside in all pertinent users’ browsers still

is a management cost.

These management costs can be alleviated with use

ofNOVOMODO as follows. Assuming that one-day

time accuracy is enough, the State Department issues

to a user U a certificate containing 10 validity fields

and 1 revocation field: e.g.,

C=SIGsd(SN,PK,U,D i,D2, A365 , B365 , C36s, d365 , e365,

E365> G 365, H365, I365‘> ^365? Y j,)

where the first validity field, A365, corresponds to

security-clearance level 1 ... and the 10th validity

field, J365 ,
corresponds to security-clearance level 10,

while, as usual, Y, is C’s revocation field. Cert C is

used as follows. If, on day n, U is in good standing

(i.e., cert C is still valid), and U’s security-clearance

level is 5, then the State Department publicizes (e.g.,

sends to all its responders in a distributed

NOVOMODO implementation) the 20-byte validity

proof E365_n . If, on day m, U’s security-clearance

level becomes 2, then the State Department

publicizes B365_m . And so on. As soon as C becomes

invalid (e.g., because U is terminated as an employee

or because U’s secret key is compromised), then the

State Department publicizes Y0 (and erases “future”

A, B, C, D, E, F, G, H, I, and J values from its

storage).

This way, cert C, though internally specifying its own
privileges, needs not be revoked when these

privileges change in a normal way, and users need

not load new certs in their browsers. In essence,

NOVOMODO has such minimal footprint, that a CA
(rather than issuing, revoking, and re-issuing many
related certs) can issue with great simplicity a single

cert, having a much higher probability of not being

revoked (because changes of security-clearance level

do not translate into revocation). As a result, fewer

certs will end up been issued or revoked in this

application, resulting in simpler PKI management.

In sum,

NOVOMODO replaces the complex

certificate management relative to a set of

dynamically changing properties or

attributes by a single certificate (with

minimum extra length) and a single 20-byte

valuefor attribute.

Telecom companies may use a method similar to that

of Example 2 to switch a given wireless device from

one rate plan to another, or for roaming purposes.

3.3 Landlord CAs and Tenant CAs

A main PKI cost is associated to the RA function.

Indeed, identifying a user U may require an

expensive personal interview and verifying that

indeed U knows the right secret key (corresponding

to the to-be-certified public key PK). It would be nice

if this RA function could be shared across many CAs,

22

1st Annual PKI Research Workshop—Proceedings

while enabling them to retain total independent

control over their own certs.

EXAMPLE 3: ORGANIZATION CERTIFICATES

The Government and big organizations consist of

both parallel and hierarchical sub-organizations:

departments, business units, etc. An employee may
be affiliated with two or more sub-organizations. For

instance, in the U.S. Government, he may work for

NIST and the Department of Commerce. Issuing a

digital certificate for each such affiliation results in a

high total number of certificates and a complex PKI

management: every time an employee drops/adds one

of his/her affiliations, it is best to revoke the

corresponding cert/issue a new one. Ideally, two

opposites should be reconciled: (1) The Organization

issues only one cert per employee, and (2) Each Sub-

Organization issues and controls a separate cert for

each of its affiliates.

These two opposites can be reconciled by

NOVOMODO as follows. To begin with, notice that

NOVOMODO is compatible with de-coupling the

process of certification from that of validation, the

first process being controlled by a CA and the second

by a validation authority (VA). For instance,

assuming a one-day time accuracy, once a CA is

ready to issue a certificate C with serial number SN,

it sends SN to a VA, who selects Y0 and X0 ,
secretly

stores the triplet (SN, Y0,X0), computes as usual Yi

and X365 , and then returns Yi and X365 to the CA, who
includes them within C. This way, the CA need not

bother validating C: the CA is solely responsible for

identifying the user and properly issuing C, while the

VA is the only one who can prove C valid or

revoked. This de-coupling may be exploited in a

variety of ways in order to have organization

certificates that flexibly reflect internal sub-

organization dynamics. The following is just one of

these ways, and uses Government and Departments

as running examples. The Government as a whole

will have its own CA, and so will each Department.

Envisaging k different Departments with

corresponding CAs, CA 1

...CA
k

, and one-day time

accuracy, a Government certificate C has the

following form:

C=SIGoov(SN,PK,U, D,, D,, X}65 , Y,, [X365 ',

Z36s' [X365
k

,
Z365

k

])

where, as usual, SN is the cert's serial number, PK
the public key of the user, U the user’s identity, D,

the issue date, D2 the expiration date, X365 the validity

field, Y! the revocation field, and where

X365
J
is the validation field ofCAJ

;
and

Z365
J

is the suspension field ofCAJ
.

Such a certificate is generated by the Government

CA with input from the Department CAs. After

identifying the user U and choosing a unique serial

number SN, the issue date Dj, and the expiration date

D2 ,
the Government CA sends SN, PK, U, D,, D2

(preferably in authenticated form) to each of the

Department CAs. The jth such CA then

• chooses two secret 20-byte values X0
J and

Z0
J

,

• locally stores (SN,PK,U, D,, D2 , X0
J

, Z0
J

) or,

more simply, (SN, X0
J

, Z0
J

); and

• returns [X365
J

, Z365
J

] for incorporation in the

Government certificate in position
j
(or with

‘Mabel” j).

This certificate C is managed with Distributed

NOVOMODO as follows, so as to work as a 1-cert, a

2-cert,..., a k-cert; that is, as k independent certs, one

per Department. On day n, envisaging 100

responders,

• the Government CA sends all 100

responders the 20-byte value X365_n ifC is

still valid, and Y0 otherwise.

• the jth Department CA sends all 100

responders the 20-byte value X365.n
J to

signify that C can be relied upon as a j-cert

and Z365_n
J otherwise.

Therefore, the Government CA is solely responsible

for identifying the user and issuing the certificate, but

each of the Department CAs can independently

manage what de facto is its own certificate. (This is

absolutely crucial. IfCA 1

were the Justice

Department and CA :
the DOD, then, despite some

overlapping interests, it is best that each acts

independently of the other.) The resulting certificate

system is very economical to run. First, the number

of certs is greatly reduced (in principle , there may be

just one cert for employee). Second, a given

employee can leave and join different Departments

without the need of revoking old certs or issuing new

ones. Third, different Department CAs may share the

same responders. (In fact, whenever the mere fact

that a given user is affiliated with a given Department

is not a secret -something that will be true for most

departments— the servers essentially contain only

“publishable information”.) Thus a query about the

status of C as a j-certificate is answered with two 20-

byte values: one as a Government cert and one as a j-

cert. This enables one to more nimbly revoke C at a

“central level” (e.g., should U lose the secret key

corresponding to PK).

23

1st Annual PKI Research Workshop—Proceedings

POSSIBLE ALTERNATIVES
In the above example, certificate C was only

revocable in a central way, but it could easily be

arranged that the responsibility of revocation is push

down to individual Departments. For instance, to

enable the jth Department CA, in full autonomy, to

revoke as well as suspend C as a j-certificate, C may
take the following form:

C=SIGGOv(SN,PK,U D„ D,,
[
XN1 ', Y,\ Zm [

Yi', Zm,

1

j),

Also, different departments may have different time

accuracies for their own certs. This too can be easily

accomplished by having C of the following format,

C=S1Ggov(SN,PK,U, D„ D,, [TA
1

, xN1 ', y,',

Zn, [TA k

,
XNk

k
,Y,',ZNk

k

])

where

TAJ
is the time accuracy of the jth CA; and

Nj is the number of time units between D,and D2 .

(E.g., if TAJ
is one day and D, - D2 = 1 year, then XNj

J

= X365
J

.)

LANDLORD CAs, TENANT CAs, AND LEASED
CERTS
Within a single organization, one major advantage of

issuing certs structured and managed as above

consists in enabling the cert to stay alive though the

user moves from one sub-organization to another. It

should be realized, however, that the above

NOVOMODO techniques are also applicable outside

a single-organization domain. Indeed, the

Government CA can be viewed as a landlord CA , the

k Department CAs as tenant CAs servicing unrelated

organizations (rather than sub-organizations), and the

certificate can be viewed as a leased cert. This

terminology is borrowed from a more familiar

example where the advantages of “joint construction

and independent control” apply. Leased certs are in

fact analogous to spec buildings having the identical

floor footprints. Rather than building just his own
apartment, a builder is better off constructing a 20-

floor building, setting himself up in the penthouse

apartment and renting or selling out right the other

floors. Each of the 20 tenants then acts as a single

owner. He decides in full autonomy and with no

liability to the builder whom to let into his flat, and

whom to give the keys. A 20-story building is of

course less expensive than 20 times a single-story

one: it may very well cost 10 times that. This

economy of scale is even more pronounced in a

leased cert. Indeed, the cost of issuing a regular cert

and that of issuing a leased one is pretty much the

same. Thus issuing leased certs could be very

profitable to a landlord CA, or at least repay it

completely of the costs incurred for its own certs. On
the other hand, tenant CAs have their advantage too,

in fact

1 . they save on issuance costs : they share the

cost of issuing a cert k ways; and

2. they save on infrastructure costs : they share

the same responders (since they contain only

public data).

Natural candidates to act as landlord CAs for external

tenant CAs are:

• credit card companies;

• large financial institutions, and

again

• the Government (e.g., via the USPS
or the IRS).

In many cases, in fact, they have long and close

relationships with millions of “users” and may more

easily issue them a digital cert without investing too

many resources for user identification (e.g., a credit

card company has been sending bills for years to its

customers, and can leverage this knowledge). A
credit card company may like the idea of issuing

certificates as a landlord CA in order to run more

effectively its own affinity program (having hotel

chains, airlines etc. as their tenants). The IRS may
have already decided to use digital certificates, and

leased certs may later on provide them with a revenue

stream that will repay of the costs incurred for setting

up a faster and better service.

FURTHER ALTERNATIVES
So far, the way we have described landlord and

tenant CAs requires that the landlord CA cooperates

with its own tenant CAs during the issuance process,

and thus that it has already identified its tenant CAs
beforehand. It is actually possible, however, for a

landlord CA to issue rental certs envisioning -say

—

20 tenant CAs, without having identified all or any of

these tenants. Rather, future tenant CAs will be able

to rent space in already issued certs. This capability is

ideal for new cert-enabled applications. Rather than

undergoing the expenses necessary to issue certs to

millions of customers, a company offering a new

certificate-enabled product may approach a landlord

CA having issued millions of certs, rent space in

them after thefacs, and then sign on as customers a

large portion of the landlord-CA users by turning ON
all their corresponding certs overnight (without any

customer identification and other issuing costs) and

then starting managing them according to its own

24

1st Annual PKI Research Workshop—Proceedings

criteria. We shall describe various techniques for

enabling this functionality in a forthcoming paper.

References

[1] Efficient Certificate Revocation.;
by Silvio

Micali; Proceedings 1997 RSA Data Security

Conference.

[2] Online Certificate Status Protocol
,
version

2. Working document of the Internet

Engineering Task Force (IETF) RPC 2560.

[3] Public Key Infrastructure, Final Report;

MITRE Corporation; National Institute of

Standard and Technology, 1994.

[4] Secure Hash Standard
;

FIPS PUB 180,

Revised July 11, 94 (Federal Register, Vol.

59, No. 131, pp. 35211-34460); revised

August 5, 1994 (Federal Register Vol. 59,

No. 150, pp. 39937-40204).

[5] Low-Cost Hash Sequence Traversal
;

by

Markus Jakobsson; To appear in Financial

Cryptography 2002.

[6] General Time/Storage Tradeoffs for Hash-

Chain Re-computation, by Leo Reyzin;

unpublished manuscript.

[7] Internet Public Key Infrastructure, Part III

:

Certificate Management Protocols
; by

S. Farrell, A. Adams, and W. Ford; Internet

Draft, 1996

[8] Privacy Enhancement for Internet

Electronic Mail - Part II: Certificate-Based

Key Management
; by S. Kent and J. Linn;

1989.

25

1st Annual PKI Research Workshop—Proceedings

26

1st Annual PKI Research Workshop—Proceedings

Validity Management in SPKI

Yki Kortesniemi

Helsinki University of Technology

Yki.Kortesniem i@hut.fi

ABSTRACT

In a distributed system, using authorisation certificate based access control tends to facilitate the granting of rights.

On the other hand, the problems of limiting usage or revoking the rights become more difficult, as the issuer of the

right is no longer in control ofthe issued certificate.

In this paper we take a look at the role of certificates in access control, evaluate the technical merits of different

validity’ management mechanisms an SPKI authorisation certificate supports, discuss the problems related to man-

aging the validity andfinally introduce a protocolfor validity management.

1. Introduction

Access control becomes an interesting question when-

ever an entity controls some resource that others would

like to use. In the absence of control, a resource likely

ends up being exploited without any benefit to the

owner. A computer related example is the protection of

a database system. Traditionally, this has been imple-

mented using an ACL (Access Control List), which lists

the authorised usernames and their associated rights.

This solution has many good qualities in mainframe-

type systems, but in a distributed environment with

multiple instances of the database, problems arise be-

cause we are relying on a central list. Solutions like

replication can be used to lessen the impact, but essen-

tially an ACL is a centralised solution.

Authorisation certificates, on the other hand, yield

themselves quite naturally to a distributed environment.

SPKJ certificates, for instance, can successfully be used

to implement systems that support anonymity, delega-

tion and dynamic distributed policy management - all

qualities not traditionally associated with ACLs. The

key idea in authorisation certificates is to give the user

an unforgeable ticket, which states the user's rights,

thus making ACLs unnecessary. The verifier monitor-

ing the resource simply has to make sure that the cer-

tificate is valid, originates from the verifier and has

been granted to the user in question, before giving the

user access to the resource. It is interesting to note that

Kerberos combines elements from both ends: it main-

tains the long term access information in the server’s

database (ACL), but the actual access control decisions

are based on short-lived tickets not unlike certificates.

However, actual authorisation certificates tend to be

much longer-lived and do not normally rely on a back-

ing ACL.

The self-containment is a strong point of authorisation

certificates, but also the source of one of their weak-

nesses: the difficulty of revoking them. With ACLs,

revocation is easy: just erase the unwanted entries. With

certificates, the problem is more complicated, because

instead of the issuer, the user is in control of the certifi-

cate. Therefore, all the revocation solutions for SPKI

certificates rely on additional online checks. By using

online servers, we lose the self-containment, but this

loss is often acceptable. Nevertheless, using these revo-

cation mechanisms always has a performance impact on

the system, and they should therefore be used with con-

sideration.

The immutability of certificates, unfortunately, also

makes it difficult to keep track of the amount of usage -

we cannot just cross out a part of the certificate as a

sign of usage, we need other methods. One solution

proposed in
[

1 0] is to use online servers to keep track of

usage, thus enabling the use of tickets that are valid 10

times or credit cards that have monthly limits. How-

ever, managing this limit presents some problems.

In this paper, we take a look at the validity management

options of one particular authorisation certificate,

namely Simple Public Key Infrastructure (SPKI) cer-

tificate[7][8], study the problems of managing them and

finally offer a solution in the form of a revocation man-

agement protocol.

27

1st Annual PKI Research Workshop—Proceedings

The intended application domains could include things

like organisations, which want to control their internal

access rights - in these cases the users identity is usu-

ally known by the administrators granting the rights and

the user might have several rights assigned to the same

public key. At the other end we have global applica-

tions, where consumers buy some access rights with

cash (e.g. the right to read the current issue of a particu-

lar magazine) and want to stay anonymous. In this case,

the user might create a new public key for every right

bought just to enhance privacy.

The rest of the paper is organised as follows: we first

look at access control and how certificates can be used

for it. Then, we look at SPKJ certificates and their va-

lidity management methods, discuss their suitability for

different situations and finally present a protocol for

managing the online servers.

2. Access Control and certificates

The goal of access control is to make sure that only

authorised users (be they humans or computers) get

access to the protected resources. The access control

process therefore can be said to consist of the following

phase (depicted in Figure 1):

2 Enforcing the

decision

0 Making the 1. Expressing f A ^ Changing or

^
decision

^
the decision revoking the d^sion

4. The right

expires

Figure 1 . Phases of access control.

0. Making the decision

In this phase, the issuer (someone either owning

the resource or having the right to control access

to it) makes the decision to grant a subject the

right to access the resource. This decision could be

based on things like the issuer knowing the subject

(a friend), the subject holding some position in is-

suer’s organisation or the subject being a paying

customer to issuer’s service.

1 . Expressing the decision

For the decision to be automatically enforced, it

has to be expressed in a precise format. This could

be e.g. an ACL entry or an authorisation certifi-

cate.

2. Enforcing the decision

Whenever the subject tries to use the resources,

the validator makes sure that the right still exists.

This could entail checking the subject’s creden-

tials or the ACL and verifying that the subject is

indeed the same as mentioned in the credentials or

in the ACL.

3 . Changing or revoking the decision

Should the access right become insufficient, un-

necessary or should there be risk of misuse, the

right can be changed or even revoked.

4. The right expires

Eventually, the right expires, either intentionally,

or implicitly.

2.1. Different types of certificates

There exist three major types of certificates: identity

certificates (e.g. X.509 and PGP), authorisation certifi-

cates (e.g. SPKJ) and attribute certificates as shown in

Figure 2.

Figure 2. Three major types of certificates.

An identity certificate binds a public key to a name so

that outside parties can be convinced that a particular

person uses a particular key. Of course, this entails that

the issuer (typically an organization called Certification

Authority, CA) actually makes sure that the key is con-

trolled by said person. Hence, CAs must be trusted by

all users and they tend to be large organisations.

An authorisation certificate, on the other hand, binds a

right to a public key. Authorisation certificates can be

issued by anyone owning a resource or having the right

to grant access to someone else’s resource. This means

that potentially every human, computer, or even a soft-

ware agent could be issuing certificates. This difference

in the number and resources of issuers between the two

certificate types has significant implications on the

revocation systems used, as we’ll later discuss.

28

1st Annual PKI Research Workshop—Proceedings

The third, a less common type, an attribute certificate,

is used to bind an authorisation to a name. Essentially,

it is a distributed version of an ACL.

To better appreciate the differences between identity

and authorisation certificates, let us briefly look at how

they are utilised in phases 1 and 2 of the access control

process. In phase 0, certificates play no role, and the

role of authorisation certificates in phases 3 and 4 is the

subject for the rest of the paper. In this discussion, we

assume the usage of public key based authentication.

2.2. Using certificates in phase 2: Enforcing
the decision

To fulfil phase 2 in the access control process, we have

to prove the binding between the subject requesting

access and the required right. As we can see from

Figure 2, there are several ways of doing this. In all of

these, the binding between the subject and the key is

assumed much tighter than the binding with password.

This assumption however does not always hold, as the

subject can either lose the control or just give the re-

quired private key away. In both these situation, revoca-

tion of that key and the associated rights is normally

required.

The most common way of using certificates is to use

identity certificates to establish a mapping from the key

to a name and then use ACLs or attribute certificates to

map the name to an authorisation. This approach nicely

extends existing solutions, but it also has many prob-

lems:

• By design, it makes anonymous usage impossible.

In some system, it is a requirement to prevent

anonymous usage, but in other cases knowing the

user’s identity is not a necessity: it merely pro-

motes unnecessary monitoring of users.

• Making a tight binding through the name is not

easy, as it requires names that unique within the

application domain - otherwise namesakes can

share their rights. If we have a small organisation,

this might be quite feasible, but even in a moder-

ately sized organisation there can be more than one

John Smith and we have to be very careful never to

mix them up. And if we make global consumer ap-

plications, we need globally unique names, which

are difficult for humans and impractical for com-

puters. The local names can be complemented with

additional information to make them global, but for

global applications it is more straightforward to use

global identifiers like public keys from the begin-

ning.

• The binding from a key to an authorisation is un-

necessarily long - it consists of two steps: key to

name and name to authorisation. This is an impor-

tant aspect, as the verification of this binding will

be performed many times - in fact, every time the

subject uses the resource.

However, this two step binding does present an advan-

tage: by revoking the identity certificate we can auto-

matically revoke all the associated rights (naturally, this

is an advantage only if there are several rights associ-

ated to a single certificate). Further, we can create a

similar construct with authorisation certificates, if nec-

essary, so this is not a unique advantage of identity cer-

tificates.

An authorisation certificate, on the other hand, makes a

direct binding from the key to the authorisation. This

makes the binding simpler, but also practically anony-

mous. In reality, the key is a pseudonym, but since

these pseudonyms do not have to be registered any-

where, it can be very difficult to trace them back to the

user’s identity. And, should the anonymity become a

problem, it can be circumvented by verifying the sub-

ject’s identity already in phase 1 (but if this is omitted,

we cannot perform it retroactively).

Based on the above, we can conclude that authorisation

certificates offer a simpler solution to phase 2 than so-

lutions based on identity certificates.

2.3. Using certificates in phase 1: Express-
ing the decision

This phase is a more natural application area for iden-

tity certificates. They are often used to get the unique

name of the subject, which is then used in the ACL or

in an attribute certificate. But as we saw, this approach

presents some problems.

Another way of using identity certificates is to acquire

the known user’s public key to issue them an authorisa-

tion certificate. This applies to situations such as issu-

ing rights to members of an organisation. It should be

noted, however, that identity certificates are not always

necessary for issuing authorisation certificates. For in-

stance, we could receive the public key directly from

the subject in a face-to-face meeting, in which case an

identity certificate is unnecessary.

29

1st Annual PKI Research Workshop—Proceedings

2.4. Additional advantage of authorisation

certificates - delegation

If the certificate does not expressly forbid it, it is possi-

ble to delegate the rights listed in the certificate to other

users without any help from the owner of the resource -

a feature, which makes distributed management easier

to organise than in centralised solutions. In fact, regular

users can delegate their own rights. For example, this

means that we can implement a scheme, where a parent

can issue a copy of her credit card to a child and limit

the amount the child can charge from the card, while

still keeping her own credit card [9].

The downside of this flexibility is that the certificate

chains can become very long and evaluating them is no

longer trivial. The solution is to view the chains as a

means of implementing the granting of rights and then

let the verifier automatically create a reduction certifi-

cate that replaces the chain with a single certificate,

thus making the usage of the right efficient.

3. The SPKI Certificates

The Internet Engineering Task Force (IETF) has been

developing SPKI as a more flexible alternative to

X.509. The key idea is that anyone (or anything) with

access to a resource can authorise others to use the re-

source by issuing them an authorisation certificate. So,

compared to X.509, where only CAs issue certificates,

in SPKI any person, computer, etc. can issue certifi-

cates - and also has to be able to manage their validity.

Altogether there are six validity options in SPKI certifi-

cates. The simplest and the only locally evaluateable is

the validity period. In addition, the current SPKI struc-

ture includes three online validity checks: CRLs, re-

validations and one-time checks. Furthermore, [10]

proposes formats for two additional online validity

checks: limit and renew. As we shall later see, the dif-

ferent methods can be ordered by increasing capability.

Therefore, using more than one online method in the

same certificate is usually redundant since the most

capable suffices (although the selected method can be

used several times).

The author’s model for the lifecycle of an SPKI certifi-

cate is depicted in Figure 3. Each new certificate begins

its life in the suspended state (transition 1), but the cer-

tificate moves to the available state when its validity

period, crl and reval permit, possibly even immediately

(transition 2). In the available state, the certificate can

be used, provided that one-time and limit agree (transi-

tion 3). Should the crl or reval methods be used to re-

voke the certificate, it moves to the suspend state if it

can later become available again (transition 4), or to the

expired state if it no longer can be made available (tran-

sition 5 and 6). Finally, the certificate should naturally

expire as dictated by the validity period (transitions 7

and 8). The renew method (transition 9) complements

the model by forming a chain of shorter lived certifi-

cates - once a short-lived certificate expires, the subse-

quent one is ready to take its place (though it could be

argued that the validity periods of consecutive certifi-

cates might be allowed to overlap).

3. Used if not denied by

one-time or limit

Figure 3. The lifecycle of an SPKI certificate.

3.1. Validity periods

In SPKI, the validity period definition consists of two

parts:

<not-before> : :

"(" "not-before" <date> ")"
;

<not-af ter> :

:

"(" "not-after" <date> ")"
;

Both parts are optional, and if either one is missing, the

certificate is assumed to be valid for all time in that

direction.

<valid-basic> : :

<valid-date>
|

<valid-dates> ;

<valid-date> :

:

<not-before>
|

<not-after> ;

<val id-dates> :

:

<not-before> <not-after> ;

30

1st Annual PKI Research Workshop—Proceedings

There is an additional type of validity period called

"now", which has a length of 0, and can only be the

result of an online check. It is interpreted to mean that

the certificate is valid the moment the validation request

was made, but it states nothing about the future. If the

same certificate is used repeatedly, the online check has

to be repeated, as well.

To facilitate the decision of whether or not a certificate

is valid at a particular instance of time, all the different

validity conditions end up being converted to validity

periods as specified above. So, validating a certificate is

relatively straightforward: check that the validity period

stated in the certificate, as well as the online checks

(converted to validity periods), are all valid at the time

of use, and the certificate as a whole is then valid, and,

therefore, grants the included permission.

3.2. Online checks

All the online checks are defined using the following

format:

coniine- test> :
:

"
(

"

"online"
<online-type> <uris> <principal>
<s-part>* ")

"

;

where <online-type> can be crl, reval, one-
time or limit. The <uris> specify one or more

URIs (Uniform Resource Identifier [6]) that can be used

to request revalidation; e.g. in the case of crl, the URI

points to the crl file. <principal> specifies the pub-

lic key used for verifying the signature on the online

reply. The <s-part> is optional, and may contain

parameters to be used in the online check.

Next, we’ll go over the individual methods and their

reply formats.

3.3. CRL

CRL (Certificate Revocation List) is based on the idea

that a certificate is valid unless it appears on the speci-

fied CRL. SPKJ includes both traditional and delta

CRLs in its specification. These must also be signed by

the aforementioned principal. The CRL formats

are specified below.

<crl>::"(" "crl" <version>?
"(" "canceled" <hash>* ")"

<valid-basic> "
)

" ;

<del ta-crl> :

:

"
(" "delta-crl" <ver-

sion>? <hash-of -crl>

"(" "canceled" <hash>* ")"

<valid-basic> ")

" ;

3.4. Reval

Reval is based on an opposite idea: the certificate is

invalid unless the prover can provide a current "bill of

health", which testifies that the certificate can be con-

sidered valid for the stated period. [10] specifies the

reply format:

<reval-reply> :
:

"
(" "reval"

<version>? "(" "cert" <hash> ")"

"invalid"? <valid-basic> ")"
;

The reply identifies the original certificate in the hash

and gives a confirmed (in)validity period for that cer-

tificate. The reply must be signed with the key given as

<principal> in the original certificate.

3.5. One-time

One-time is based on the idea that it is impossible for

the issuer to predict anything about the future validity

of a certificate and, therefore, the user has to check the

validity with every use of the certificate. The certificate

contains a URI to the server, and the reply is "yes" or

"no" with a time period of "now".

cone- time-reply> :
: " "one-time"

<version>? "(" "cert" <hash> ")"

"invalid"? "(" "one-time" <nonce>

Again, the hash must correspond to the original certifi-

cate, and the reply message must be signed by the prin-

cipal given in the certificate.

3.6. Limit

Limit is meant to enable quotas, i.e. it can be used to

limit the usage based on suitable properties, like the

number or length of usage. It is otherwise similar to

one-time except that the server will not reply to queries,

unless the user is able to prove that she is authorised to

use the resource in question by presenting a suitable

certificate chain. The limit query sent to the online

server is of the form:

climi t-query> :

:

"
(" "test" <version>?

"limit" <cert> <request>? <chain>
"

)
"

;

31

1st Annual PKl Research Workshop—Proceedings

<reguest>: :
"(" "request" <s-part>

"
)

"
;

<chain> :

:

"
(" "chain" <cert>+ ")"

;

Above, <cert> is the certificate whose online test(s)

are to be made, <request> specifies the amount of

resources requested, and <chain> proves that the

verifier is entitled to ask about the validity of the cer-

tificate. The last certificate of the chain must be the

validation certificate, which contains the <nonce> that

is to be included in the reply to the query.

<limit-reply> : :
"(" "limit"

<version>? "(" "cert" <hash> ")"

"invalid"? "(" "one-time" <nonce>
"

)
" <context> "

)
"

;

<context>: :
"(" "context" <hash> ")"

where <hash> is a hash of the concatenation of the

canonical forms of <request> and <chain>.

3.7. Renew

Renew offers an alternative approach to revocation.

Instead of issuing long-lived certificates and then wor-

rying about their validity, we issue a string of short-

lived certificates, which together cover the lifetime of a

long-lived certificate. This simplifies matters, as the

short-lived certificates can often operate offline and the

network connection is required only to automatically

fetch the subsequent certificate.

If everything is in order, the reply contains the next

certificate:

<renew-reply> : :
"(" "renew" <ver-

sion>? <cert> "
)

"
;

If, however, the right has been cancelled, the reply is of

the form:

<renew-reply> : :
"(" "renew" <ver-

sion>? "(" "cert" <hash> ")"

<valid-basic>? ")

" ;

Again, the hash must correspond to the original certifi-

cate and the validity period states a period of time dur-

ing which renewal requests will be denied (i.e. the con-

ceptual long-lived certificate is not valid during this

period).

4. Related work

The majority of work done in the field of certificate

revocation has so far concentrated on identity certifi-

cates, in particular X.509 identity certificates. There

exist several RFCs and Internet drafts that deal with

X.509 certificate management and validation

[5][1][2][3][4][14][12]. As to revocation methods, most

of them concentrate on the CRL concept, and on how to

effectively use it, but lately the trend has been to intro-

duce other methods including online methods.

As to research, the majority of work has concentrated

on evaluating the efficiency of CRLs and implementing

improved, yet similar solutions. Further, some different

solutions have been proposed [13]. Some work has also

concentrated on the risk models and on the evaluation

of different mechanisms in light of these risks
[

1 5][1
1].

Unfortunately, compared to SPK.I authorisation certifi-

cates, there are a few significant differences in the

X.509 model, which prevent us from directly applying

the same solutions:

The number of certificate issuers. In X.509,

the number of CAs that issue certificates is or-

ders of magnitude smaller (in SPKJ, every

human, computer etc. can issue certificates).

This makes CRLs, which aggregate revocation

information, much more feasible.

Risk model. In X.509, the issuer and verifier

are normally separate entities. The risk is taken

by the verifier, yet the revocation decisions are

made by the issuer. In SPK.I, the risk takers

are also issuing the certificates and can there-

fore control the revocation decisions to bal-

ance the risk.

These issues have been discussed in more detail in [10]

5. Choosing the validation and revocation

methods

The phases of access control were presented in Figure

1 . In [10] we have discussed the revocation problems at

the time the certificates are used (phase 2 in Figure 1).

These include the problems of authenticating the par-

ticipants and providing undeniable evidence, also for

liability reasons. In this paper, we focus on phases 1, 3

and 4. In phase 1, the essential problems include choos-

ing the right validation methods, choosing the servers to

implement them, informing the servers about the valid-

ity rules, and possibly paying the server's owner, if the

servers are operated by a third party. In phase 4, the

32

1st Annual PKI Research Workshop—Proceedings

Table 1 : A summary of the online methods

Method Typical use Processing overhead Revocation speed

Limit Quota High Immediate

One-time Limit usage on non-user specific factors Moderate Immediate

Reval Revocation Low After current reval validity period

CRL Revocation Low After current crl validity period

Renew Revocation Low After current certificate expires

problems include things like informing the server about

the revocation decision and providing undeniable proof,

again for liability reasons.

5.1. Validity period

Phase 4 is simply a mechanism for making sure that

certificates do not remain valid indefinitely, but instead

automatically expire after a reasonable time. As a rule,

it is a good practice to always include an expiration date

in a certificate (only in very rare situation are there

good reasons to make it a permanent certificate). In

most of the cases, the matters themselves tend to

change over time, so it makes sense to periodically reis-

sue the certificates, if the rights are still required. Oth-

erwise, the issuer is stuck with a growing number of

certificates, which cannot be purged from the systems,

as they are still officially valid.

5.2. Choosing the online method

This section discusses some of the main criteria in

choosing the most suitable revocation method for a

particular situation. Most, if not all, of these choices

should be made by the designer of the system - they

should not be left to the end users. [9] provides further

examples of cases for each method and how they affect

the end user. The results of this discussion have been

summarised in Table 1.

An authorisation certificate is essentially a ticket grant-

ing the specified right to the indicated recipient. Now,
the certificate is always valid unless its validity is

somehow limited by listing conditions in the validity

field of the certificate. Once the certificate has been

issued, there is no practical method of getting it back

from, say, a misbehaving user. The only recourse the

issuer has is to include some limiting conditions in the

validity field when the certificate is created. Here lies

the difficulty: all possible future problems have to be

anticipated and suitable countermeasures devised at the

creation time. This is almost a mission impossible, be-

cause delegation will take place - the final user cannot

be known until the time the certificate is used.

The choice of the most suitable validation/revocation

method depends on what we want to achieve with it.

We typically have two different goals: to control the

amount of usage either discriminately (limit) or non-

discriminately (one-time), or just to enable the revoca-

tion of the right in case the circumstances change, there

is misuse of the right, etc. With the proposed changes to

SPK.1, any of the online methods can be used for the

latter.

In the latter use, one important aspect is how fast we
want our revocation command to take effect. CRLs and

reval are both issued with a validity period, which is

then the worst case time the issuer has to wait for her

command to take effect. On the other hand, making the

period very short does have performance implications,

as the users are then forced to be online more often and

fetch the latest validity statement. The issuer can natu-

rally vary the validity period depending on the rate of

problems or some other factor, but essentially both

methods are best suited for situations, where the valid-

ity period does not have to be very short. This is par-

ticularly true about CRLs, where the validity period has

to be the same for all certificates on the list, thus mak-

ing it less practical to shorten the period if one of the

certificates is showing signs of misuse. Processing

overhead for the online server is fairly low with both of

these methods, as the same reply can be used through-

out the validity period.

On the other hand, a typical end user, e.g. someone

using a certificate-based credit card, is less interested in

the performance problems and more interested in the

system behaving in an intuitive manner: when the par-

ent presses the button to revoke the child’s credit card,

the revocation should take effect immediately, not after

some arbitrary time. Even if security-wise this time

might not be that important, compared to the time it

might have taken for the parent to realise that security

has been breached and that the certificate should be

revoked, the delay is still a source of anxiety to the par-

ent and should whence be minimised. For that reason, a

method like CRL or reval is not good: they sacrifice the

sense of control for the benefit of reduced overhead.

33

1st Annual PKI Research Workshop—Proceedings

The only additional advantage they offer is support for

offline operation, which is not necessary in all situa-

tions. On the other hand, the delay does not have to

matter to the end user - the possible misuse and its

costs can be included in the business model of the sys-

tem, similarly to the existing credit card systems [9],

One-time is more suitable in a situation where we es-

sentially want our revocation decision to take effect

immediately or at least with a very short delay. On the

other hand, we pay a price in performance for this con-

venience - every instance of usage requires network

connection, as well as an individual reply from the

server. So, if the certificate is used very often and per-

formance really becomes a problem, we might consider

using a lighter method and taking care of the misuse

with the business model as mentioned above.

The other use for one-time, namely, controlling the

amount of use, is another matter. In this case, we con-

sider the certificate to be a recommendation, but the

actual right depends on the circumstances, like the time

of day or current load on the system. In this case, we
are most likely more than willing to accept the per-

formance penalty in exchange for the additional func-

tionality.

Finally, limit is most likely used for controlling a quota;

the possibility of revocation is just a fringe benefit. In

this case, we pay an even higher price in performance,

as its usage requires a two-phase negotiation with indi-

vidual replies, but the new possibilities should more

than outweigh that.

6. Background for the validity management
protocol

In this section, we go over some of the key questions in

designing the protocol.

6.1.

Who can issue commands?

One of the basic things is naming the principal(s) that

are allowed to issue revocation commands. The most

obvious solution would be to state that the principal,

who issued the certificate, is implicitly assumed to have

the right to revoke it. However sometimes it would

make sense to authorise others to revoke a particular

certificate, for instance in a situation, where it is im-

perative that the certificate is revoked as fast as possible

after a breach but the original issuer is not available to

perform the revocation.

6.2. Requesting status information

The issuer might be interested in following how the

certificate is used, particularly if it contains one-time or

limit conditions, or if there are several individuals with

the ability to revoke the certificate.

6.3. Auditability

The commands and their replies have to be auditable in

case there is dispute as to the correct replies given by

the server.

6.4. Support pre-evaluated answers and
dynamic answers

In some cases, the answers are known in advance, e.g.

when we revoke a certificate. In other situation, like

with one-time and limit, we want to evaluate the answer

at the time of usage.

7. SPKI Validity Management protocol

The protocol has been defined in XML and correspond-

ing DTD can be found in appendix A. It defines the

structure and contents of the messages between the is-

suer and online server. All messages are signed, which

guarantees message integrity and authentication. Fur-

ther, to protect against replay attacks and to guarantee

confidentiality, a secure transport layer is used to carry

the messages.

The protocol consists of just two messages: a command
and a corresponding reply.

7.1. The Command

The command has the following structure:

Server_update cert, chain?,
online_test_hash, de-
lete_request*, test_def ini tion* ,

status_query* , signature

Cert is the certificate, whose online condition is being

managed. Chain is an optional field containing a list

of certificates that proves that the current command

issuer is authorised to send the command (this is re-

quired only if the command is sent by someone other

than the certificate issuer). Online_test_hash
identifies, which one of the possibly multiple validity

conditions in the certificate is being managed.

34

1st Annual PKI Research Workshop—Proceedings

The following three fields form the main part of the

message. Even though they all are optional, at least one

of them must be included in the command for it to be

valid. The first, delete_request, defines which

already defined rules are to be deleted. Each de-

lete_request contains a validity period; all rules

applying to that validity period are to be deleted.

The next part, test_def inition, issues the new

validity rules. There are two types of rules: pre-

evaluated answer to be distributed at the specified time,

and dynamic code that is to be evaluated by the server

when a request is made. The pre-evaluated answer is

further divided in three classes: a yes_no_answer is

used for reval and crl, i.e. methods that reply with a

validity period, Now_answer is used for one_time and

new_cert_answer is used with renew. Limit always

requires a dynamic_condition.

The final part, status_query, requests information

on the validity status. It defines validity period for

which we want the status information. Further, with the

verbose flag the server is instructed to include in the

reply the rule used to deduce the status.

The command ends with a signature.

7.2. The Reply

The reply follows a similar structure:

server_reply cert_hash,
online_test_hash, delete_reply*

,

tes t_def ini tion_reply*

,

status_reply* , service_status

,

signature

Cert_hash is a hash of the certificate in question.

Delete_reply and test_def ini tion_reply
contain status codes about the success of the corre-

sponding commands. Finally, status_reply con-

tains status information for the requested periods and

optionally the rules for deducing those.

8. Conclusions

In this paper, we have discussed the problems of man-

aging the online validation and revocation of SPKI au-

thorisation certificates. Due to their nature, authorisa-

tion certificates are well suited for granting rights, but

limiting or revoking them presents a bigger challenge.

All the existing solutions to these problems are based

on online servers that give authoritative statements

about the validity of a certificate. We have discussed

the advantages and drawbacks of the various solutions.

Finally, we have presented a protocol for managing the

online servers.

9. References

[1] C. Adams, P. Sylvester, M. Zolotarev, R. Zuc-

cherato: Internet X.509 Public Key Infrastruc-

ture Data Validation and Certification Server

Protocols. Request for Comments: 3029, Feb-

ruary 2001

.

[2] C. Adams, S. Farrell: Internet X.509 Public

Key Infrastructure Certificate Management

Protocols. Request for Comments: 2510,

March 1999.

[3] C. Adams, S. Farrell: Internet X.509 Public

Key Infrastructure Certificate Management

Protocols. Internet Draft, December 2001.

[4] Ambarish Malpani, Russ Housley, Trevor

Freeman: Simple Certificate Validation Proto-

col (SCVP). Internet Draft, March 2002.

[5] A. Aresenault, S. Turner: Internet X.509 Pub-

lic Key Infrastructure: Roadmap. Internet

Draft, January 2002.

[6] Tim Berners-Lee, Roy T. Fielding, and Larry

Masinter. Uniform Resource Identi_ers (URI):

Generic syntax. Request for Comments: 2396,

August 1998.

[7] Carl M. Ellison, Bill Franz, Butler Lampson,

Ronald L. Rivest, Brian M. Thomas, and Tatu

Ylonen. Simple public key certificate. Internet

draft (expired), IETF SPKI Working Group,

March 1998.

[8] Carl M. Ellison, Bill Franz, Butler Lampson,

Ronald L. Rivest, Brian M. Thomas, and Tatu

Ylonen. SPKI certificate theory. Request for

Comments: 2693, September 1999.

[9] Kristiina Karvonen, Yki Kortesniemi, Antti

Latva-Koivisto. Evaluating Revocation Man-

agement in SPKI from a User’s Point of

View, Proceedings of Human Factors in Tele-

communication 2001, November 2001, Ber-

gen, Norway

35

1st Annual PKI Research Workshop—Proceedings

[10]Yki Kortesniemi, Tero Hasu, Jonna Sars: A
Revocation, Validation and Authentication

Protocol for SPK1 Based Delegation Systems,

Proceedings of Network and Distributed Sys-

tem Security Symposium (NDSS 2000), 2-4

February 2000, San Diego, California

[1 l]Patric McDaniel and Aviel Rubin. A Response

to "Can We Eliminate Certificate Revocation

lists". In Proceedins on the Financial Cryptog-

raphy '00. The International Financial Cryp-

tography Association (IFCA)., February 2000.

[12] M. Myers, R. Ankney, A. Malpani, S.

Galperin, C. Adams: X.509 Internet Public

Key Infrastructure Online Certificate Status

Protocol - OCSP. Request for Comments:

2560, June 1999.

[13]

Moni Naor and Kobbi Nissim. Certificate

revocation and certificate update. In Proceed-

ings of the 7th USENIX Security Symposium,

San Antonio, Texas, January 1998. Usenix As-

sociation.

[14]

Denis Pinkas, Russ Housley: Delegated Path

Validation and Delegated Path Discovery Pro-

tocol Requirements (DPV&DPD-REQ). Inter-

net Draft, April 2002.

[15]

Ronald L. Rivest. Can we eliminate certificate

revocation lists? In Proceedings of the Second

International Conference on Financial Cryp-

tography, Anguilla, British West Indies, Feb-

ruary 1998.

Appendix A: The DTD of SPKI Validity

Management Protocol

<!—

DTD for a SPKI online test management messages.

—>

<!ELEMENT hash

<!ATTLIST hash

<!ELEMENT cert_hash

<!ELEMENT cert

<!ATTLIST cert

<!ELEMENT chain

<!ELEMENT online_test.

EMPTY>

data CDATA #REQUIRED>

hash>

EMPTY>

data CDATA #REQUIRED>

(cert+)>

hash hash>

<!ELEMENT reason (#PCDATA)>

<!ELEMENT no EMPTY>

<!ELEMENT notbefore

<!ELEMENT notafter

<!ELEMENT date

<!ELEMENT valid

(#PCDATA)>

(#PCDATA)>

(#PCDATA)>

(notbefore?, notafter?)>

<!ELEMENT yes_no_answer no?, valid>

<!ELEMENT now_answer no?, valid>

<!ELEMENT new_cert_answer cert, notbefore>

<!ELEMENT currently_in_use EMPTY>

<!ELEMENT dynamic_condition valid?>

<!ATTLIST dynamic_condition

type PCDATA #REQUIRED

data CDATA #REQUIRED>

<!ELEMENT crl_test yes_no_answer
|
dynamic_condition>

<!ELEMENT revaLtest yes_no_answer
|
dynamic_condition>

<!ELEMENT one_time_test now_answer
|

dynamic_condition>

<!ELEMENT renew_test new_cert_answer
|

dynamic_condition>

<!ELEMENT limit_test dynamic_condition>

<!ELEMENT limit_status (#PCDATA)>

<!ELEMENT service_status (#PCDATA)>

<!ELEMENT test_definition (crl_test
|
reval_test

|

one_time_test
|

renew_test
|

limit_test)>

<!ELEMENT test_definition_reply reason>

<!ELEMENT status_query verbose?, valid?>

<!ELEMENT status_reply (yes_no_answer, currently_in_use?)
|

now_answer
|

(new_cert_answer, currently_in_use?)
|
limit_status, dy-

namic_condition?>

<!ELEMENT delete_request valid>

<!ELEMENT delete_reply reason>

<!ELEMENT signature EMPTY>

<!ATTLIST signature data CDATA #REQUIRED>

<!ELEMENT server_update cert, chain?, online_test_hash, de-

lete_request*, test_definition*, status_query*, signature>

<!ELEMENT server_reply cert_hash, online_test_hash, de-

lete_reply*, test_definition_reply*,

status_reply*,service_status, signature

36

1st Annual PKI Research Workshop—Proceedings

Extended Validation Models in PKI:

Alternatives and Implications

Marc Branchaud

RSA Security

Vancouver, BC, Canada
marcnarc@rsasecurity . com

John Linn

RSA Laboratories

Bedford, MA, USA
j linn@rsasecurity . com

1. Introduction

The fundamental goal of PKIs is to provide a

means for participating entities to establish and manage

trust in other entities, either within or across domain

boundaries. As PKIs have evolved, so has the set of

alternate methods supporting validation of entities, their

certificates, and their keys. Validation processing de-

termines whether or not the acceptance of a certificate

or key represents a suitable risk to a relying party. As

such, it is a central and necessary basis to support reli-

ance on PKI-based authentication.

Increasingly, PKI designers seek to distribute vali-

dation-related information and processing among coop-

erating components, reducing the complexity at indi-

vidual relying parties. These techniques afford the po-

tential for great power, but also imply fundamental

shifts in the trust relationships among the entities in-

volved within a PKI. In this paper, we examine tradi-

tional technology practice in the field, consider newly

emerging alternatives and their characteristics, and look

ahead to candidate future directions and their implica-

tions.

2. Existing PKI Practice

Early work in PKI definition culminated in Version

1 of CCITT Recommendation X.509 [CCIT88], This

work, initially instigated as a supporting mechanism to

authenticate directory queries and responses, assumed

the availability and use of a directory as a repository for

certificates and Certificate Revocation Lists (CRLs).

Use of certificates and CRLs, signed by responsible

Certification Authorities (CAs), made it unnecessary

for the directory to be strongly trusted for security pur-

poses; no compromised directory could forge an entry

that a verifier would accept. As a central premise, no

CA or other security-relevant component operating as a

CA's agent needed to be accessible on-line in order to

support authentication with certificates once issued.

In the late 1980s and early 1990s, related work in

the Internet community concerned usage of X.509 cer-

tificates to support e-mail protection, a project known
as Privacy-Enhanced Mail (PEM) [Linn93] [Kent93],

PEM was designed to operate in environments common
at that time, where communications facilities were often

costly and confined to store-and-forward messaging.

For these reasons, even fixed-site users often accessed

their messages in an off-line mode. As a result of these

factors, the PEM design placed a high priority on mak-

ing messages self-contained for processing purposes.

Facilities were designed so that certificate chains could

be attached to messages and so that CRLs could be ob-

tained via e-mail. Further, PEM contemplated a hierar-

chic certification model, within which it was straight-

forward for a sender to predetermine the path elements

that would be acceptable to message recipients.

CRLs are the “traditional” and most widely stan-

dardized revocation facility for certificate-based infra-

structures, and have an existing and growing installed

base. Their evolution has continued as additional exten-

sions have been defined, particularly to allow partition-

ing of CRL data across multiple objects in large-scale

environments. They provide a means for propagating

revocation information in a signed fashion, allowing its

storage in directories and other stores that need not be

trusted for security purposes. Nonetheless, CRLs have

long been one of the most controversial components of

PKI systems. Their disadvantages include limited time-

liness, the need for widespread propagation of poten-

tially large objects (within which most individual veri-

fiers are interested in only a small portion of the con-

tent), and the fact that concise proofs of validity are not

directly available for presentation along with certifi-

cates.

The IETF PKIX (Public Key Infrastructure using

X.509) working group was established in 1995 and be-

came the central forum for defining PKI facilities for

use by Internet applications. In addition to profiling

X.509 certificate and CRL constructs for Internet usage

[Hous99], it also undertook the definition of the Online

37

1st Annual PKI Research Workshop—Proceedings

Certificate Status Protocol (OCSP) [Myer99] as an al-

ternative to CRLs, enabling responder servers to pro-

vide revocation information for certificates in the form

of signed responses to per-certificate queries. CAs can

explicitly delegate their revocation reporting to separate

responders acting as their agents, representing this

delegation with an extension in the certificates that they

issue to the responders. Through this delegation, the CA
private keys used for certificate signing can remain in

off-line systems, though the responders’ private keys

must be accessible to sign responses to on-line queries.

The OCSP semantics were designed to enable mi-

gration from CRLs; OCSP responders can use CRLs as

a source of revocation information or can be more di-

rectly coupled into CA databases. Like CRLs, OCSP
responses are signed and can be saved along with vali-

dated messages to enable revalidation at a future point

in time. OCSP queries determine whether one or more

individual certificates have been revoked or are in sus-

pension. It explicitly excludes validation of the certifi-

cate’s signature, timeliness, or path-level validation,

though extensibility for additional validation services is

possible within the protocol framework. OCSP request-

ors must perform path-level processing, as the public

key of a certificate issuer is required in order to con-

struct a status query for a certificate. Variant and alter-

native protocols have been proposed with broader func-

tionality, and will be discussed next.

3. Delegated Validation

The IETF PKIX working group is currently devel-

oping requirements and examining proposals for dele-

gating certification path construction and validation

from a relying party’s client to a server. This work is at

least partially motivated by the success of OCSP, which

has seen wide adoption because it allows applications to

offload the task of determining a certificate’s status.

Similarly, delegated path processing is seen as a way to

offload the tricky and onerous work of discovering and

validating certification paths.

PKIX is exploring two aspects of server-side path

processing. In the first. Delegated Path Discovery

(DPD), a server is given a target end-entity certificate

and one or more trust anchors. The server then sets

about discovering candidate paths between the trust

anchor(s) and the target certificate. These certification

paths are returned to the client, which will then set

about validating the chains using the regular

X.509/PKIX rules, including checking the status of

each certificate, using CRLs or OCSP. In this model,

the client need not trust the DPD server, as the client

performs all cryptographic, status and path validation

itself.

The second aspect. Delegated Path Validation

(DPV), is more interesting from a trust management

perspective. With DPV, the client expects the server to

not only discover candidate certification paths but to

also completely validate and status-check these paths.

The client is essentially looking for a Boolean response

as to whether or not it can accept the target end-entity

certificate. The client must completely trust its DPV
server, as it abdicates to the server all responsibility for

determining acceptable paths. Even where the client

provides the server with its own policy inputs or trust

anchors, such data are primarily advisory as the client

can neither control nor examine the server’s internal

processing.

It is this complete delegation of responsibility that

fundamentally distinguishes DPV from DPD and

OCSP. The delegation model of the latter two protocols

expects their clients to intelligently participate in the

PKI, and so their servers can only return copies of CA-
sourced information. OCSP and DPD servers must op-

erate within the confines of that information, and are

essentially mechanistic publishing and data-gathering

tools. The clients will verify that their results come
from an authoritative source. On the other hand, DPV
servers are free to draw on other sources of information

in order to synthesize appropriate responses. DPV serv-

ers can act with much more autonomy, as their clients

have no way to verify the “correctness” of their behav-

ior.

A number of advantages are gained when clients

are willing to abdicate their responsibility and control to

follow the DPV model. Not the least of these is a radi-

cal simplification of the client applications. Clients can

do away with path validation and discovery code,

which may include support for multiple protocols and

algorithms. In the limit, clients need not even be able to

parse a certificate’s contents in order to use some DPV
services.

Another advantage of the DPV delegation model is

that it provides domain administrators with a conven-

ient central point to manage inter-organizational trust

on behalf of the domain’s relying parties. Trust rela-

tionships can be switched off and on for all or part of a

domain according to whatever criteria the domain’s

policies dictate, and without the need for any reconfigu-

ration or even notification of the domain’s clients. This

property alone may motivate enough organizations to

deploy DPV, enabling rapid, widespread adoption.

It is necessary to recognize, however, that reliance

on DPV implies a dependency on on-line service avail-

ability in order to perform validation. Further, aggrega-

tion of queries within a DPV server may present a con-

venient point for privacy-relevant data about client re-

quests to be collected. Nonetheless, DPV’s operational

38

1st Annual PKI Research Workshop—Proceedings

characteristics relative to off-line validation are moti-

vating growing interest, and broad adoption appears

likely.

The DPV delegation model turns each DPV server

into a trust anchor for its clients. This distributes the

trust anchors throughout the PKI, which in turn reduces

the number of clients that must be reconfigured follow-

ing the compromise of any particular trust anchor. This

effect can also be achieved without DPV, through the

deployment of general CA hierarchies where (as op-

posed to top-down hierarchies), each CA certifies its

parent as well as its children. In a general hierarchy any

CA can act as a trust anchor that provides connectivity

with the entire PKI, and the compromise of any CA will

only require reconfiguration of its trusting clients as

well as its parent and child CAs. We note, however,

that such general CA hierarchies have proven to be rare

in practice, whereas the DPV model expresses this

property naturally.

Two candidate protocols have so far emerged to

support DPV-style services. These are the Simple Cer-

tificate Validation Protocol (SCVP) [MalpOl] and the

XML Key Management Specification (XKMS)
[W3C01].

1 XKMS in fact provides more than just dele-

gated validation services; however, this section will

focus on the DPV-style services defined in “Tier 2” of

the XKMS XML Key Information Service Specifica-

tion (X-KISS). We note in passing that extensions to

OCSP to support a DPV service have been proposed.

As these are not materially different from the services

proposed in SCVP, we do not include the OCSP exten-

sions in our analysis.

SCVP and Tier 2 of XKMS (hereafter referred to

simply as XKMS) have significant syntactical differ-

ences, both in terms of each protocol’s messages and in

terms of how a client specifies the “certificate” to be

validated. SCVP is an ASN.l protocol that exclusively

supports X.509 certificates, while XKMS is an XML
protocol that supports X.509, PGP and SPKI certifi-

cates. XKMS can also identify keys by reference (URI)

or even a simple name. (The relative merits of ASN.l
or XML are beyond the scope of this paper, and are

irrelevant to delegated validation.)

Fundamentally, both protocols enable a client to

delegate validation operations to a server. Each allows

the client to request various types of assertions from the

server regarding the certificate in the query. SCVP’s
focus on X.509 limits these to certification paths and

assertions of certificate revocation status, while XKMS

1 The specifications for both SCVP and XKMS are still in draft

form and subject to change The analysis presented here considers the

protocols as specified in January 2002

allows clients to also request raw public key values (on

the assumption that the server has validated the keys

according to the appropriate criteria). Both protocols

allow the client to also request various forms of evi-

dence to support the assertion in the response, including

certification paths and revocation status information.

In delegating validation operations, the client in ei-

ther protocol trusts that the server will act appropriately

on its behalf. Neither protocol explicitly defines server

behavior, although both imply that the server should

perform the operations that a non-DPV client would in

order to validate the certificate (e.g. perform PKIX-

style certificate path discovery and validation when

queried about an X.509 certificate). As with client-

based validation, extensions such as nameConstraints

can be incorporated in cross-certified paths in order to

limit the transitivity of trust. SCVP allows the client to

provide some input into the server’s processing, such as

policy identifiers, trusted CAs and certificate revocation

information. SCVP clients can also specify a “configu-

ration identifier” to, for example, inform the server of

the context of the client’s query.

XKMS does not allow its client to provide similar

information. This omission may not be as glaring as it

appears, for we note that in a delegated validation sys-

tem clients will not themselves validate the evidence

included in a response (though they will authenticate

the response itself). Thus the server is free to ignore the

client’s ancillary inputs, or it can tailor the evidence in

its response to match those inputs, and the client is not

in any position to detect such manipulation. (If the cli-

ent were able or willing to verify the evidence itself, it

would not really need a delegated validation service.)

This is what we mean when we say that a DPV client

must trust its server. Any ancillary input in a request

can be ignored, and any evidence in a response is

mainly useful to third parties auditing the response.

XKMS, as it lacks facilities for clients to provide ancil-

lary input, merely makes these facts more explicit.

This need to completely trust DPV servers does not

mean that delegated validation cannot be a good and

useful technology. It does, however, change the nature

of PKIs in ways that will be explored in the rest of this

paper. For now, we close this section with the notion

that some ancillary input can still play an important role

in a DPV system. Although information such as trusted

CAs and revocation information might help a server,

we expect that servers will typically have their own

resources for obtaining such information, and will be

configured with the trusted authorities of the clients

they serve. What will be truly useful is an indication of

the client context. This would allow the server to per-

form different levels of validation depending on

whether, for example, the client is merely reading e-

39

1st Annual PKI Research Workshop—Proceedings

mail or is performing an expensive purchase. Such a

context indicator could in fact instruct the server to em-

ploy different trusted authorities and/or different path

discovery and processing rules. All this could be trig-

gered by a single identifier communicated from the

client to the server, the values of which could be stan-

dardized or determined by private agreement.

4. Recursive and Chained Validation

Current standardization initiatives [PinkO 1] empha-

size use of DPV between clients and their associated

DPV servers, but it is possible to envision extending the

paradigm so that DPV servers themselves consult other

DPV servers to perform validation. A generalized PKI

structure could incorporate four tiers of elements gener-

ating or processing validation data: issuing CAs, their

OCSP responders, DPV servers trusted by relying par-

ties (RPs), and the RPs themselves. If and as use of

DPV becomes common, DPV-based queries might even

be extended back to DPV services associated with CAs.

In this fashion, DPV could be applied as a means to

publish CA status information, eventually eliminating

the OCSP tier. Potentially, use of CA-provided DPV
could make non-DPV status checking facilities moot

and could reduce the number of protocols required

within an overall PKI. It remains likely, however, for

DPV to remain under RPs’ jurisdiction, querying OCSP
responders maintained on behalf of issuing CAs. Inde-

pendent of whether CAs export their status information

via CRLs, OCSP, or DPV, it is possible for multiple

layers of DPV interaction to be interposed between an

RP and the information that an issuing CA provides for

one of its certificates. This section discusses alterna-

tives and issues arising in such inter-server delegated

models.

When large-scale PKIs combine OCSP and DPV,
trust may be delegated in two directions: from CAs, via

their OCSP responders, and from relying parties, via

hierarchies of DPV servers, each invoking the other’s

services. Borrowing the metaphor of a weather chart, a

path extending from a relying party to a remote issuer

CA can be thought of as crossing a “trust front”, delim-

iting zones of responsibility affiliated with the relying

party from zones affiliated with the issuer. In the gen-

eral case, path validation requires information provided

both from the issuing CA domain (i.e., certificates and

their associated revocation information) and from the

RP domain (to reflect its trust relationships and poli-

cies). When delegations to responders or validation

servers extend from either domain, the delegating do-

main must trust its delegates to represent its interests,

accurately process data obtained from other domains,

and reflect the data that it’s authoritative to provide.

In a DPV environment, each RP will normally fo-

cus its validation requests on a single trusted DPV
server (although it may be replicated to ensure avail-

ability), which will be responsible for validating any

and all certificates that its RPs receive. A given DPV
server may select to delegate among a set of other DPV
servers, depending on the particular certificate being

queried and on the policies under which validation is

being performed. If different clients use different DPV
server paths to validate a particular certificate, it is pos-

sible that the information they receive via different

sources (and their associated paths) may yield different

results. This prospect arises whenever an RP obtains

status information indirectly via active intermediaries,

rather than by accessing the information directly from

its source.

We distinguish three forms of interaction that can

take place among delegated validation servers:

• Chained queries, within which a specific

server is recognized as authoritative to respond

to a query about a particular certificate. All

queries about that certificate that are received

by other servers are forwarded to the authorita-

tive server, and the information obtained by a

requesting server can remain in a form that is

traceable to the authoritative domain.

• Referred queries, which resemble chained que-

ries except that the requesting server is redi-

rected to the authoritative server rather than

having the query mediated on the requestor’s

behalf by the server that initially received it.

As with chained queries, the information ob-

tained by a requesting server can remain in a

form that is traceable to the authoritative do-

main.

• Recursive queries, where each server aggre-

gates information obtained from other servers

in order to respond to the queries it receives,

but where a requestor must directly and fully

trust the delegated validation server that it con-

tacts as the provider for information about a

set of domains. In this form of interaction, in-

termediaries distill the information issued by

authoritative sources and actively integrate it

with data maintained in their own databases,

rather than transferring and processing it in a

fashion that keeps it independently verifiable

by relying parties.

Different DPV servers may employ different query

models, satisfying different goals and constraints; fur-

ther, a given DPV server may employ different models

depending on the domain associated with a particular

certificate that is to be validated. Of the models, recur-

40

1st Annual PKI Research Workshop—Proceedings

sive queries imply the greatest level of trust delegation

from the requesting server to the target, as they move

the critical operations of aggregation and synthesis of

validation data to the target. This reduces the amount of

data that needs to be propagated to requestors, typically

making protocol exchanges simpler and more compact.

Analogous to end-entity client use of DPV, recursive

inter-server DPV interactions imply that requesting

DPV servers place fundamental trust in the target DPV
servers to which they direct their queries. In a recursive

DPV environment, multiple DPV services, operated by

different domains, may be involved in determining the

validity of a certificate. The domains responsible for

operating DPV services may not directly correspond to

the domains responsible for individual certification path

elements, though validation policies could be applied to

enforce such a constraint.

Referred and chained queries, in contrast, collect

validation data for integration and processing by the

requesting entity, whether an RP or a DPV server; as

such, they transfer a larger volume of information for

requestor processing. These approaches can enable in-

dependent auditability, can contribute to post-facto re-

validation for non-repudiation purposes, and can help

DPV servers to partition the impact of compromised

data originating from particular sources. If signatures

are applied and retained on the received data, requestors

can preserve records of the validation data they obtain

in a form that is provably traceable to authoritative is-

suers. It appears unlikely that many RPs will commonly
revalidate determinations made by their DPV servers,

unless on an exception or post-facto basis, as RPs pre-

pared to perform this processing would gain relatively

little benefit from using DPV. They would need to ob-

tain (either through DPV itself or via out-of-band

means) trusted keys with which to verify the signatures

of remote servers, and to validate that those servers

were authoritative to report status on behalf of specific

domains. Even within a model where individual RPs
elect to delegate trust to DPV servers, it may still be

desired for those DPV servers to maintain validation

data records on behalf of their domains.

One fundamental design choice for PKI designs

and deployments is as follows:

• Is the set of certificates that a relying party can

validate intentionally confined to those do-

mains with which it (and/or its DPV server)

has established direct working relationships; or

• Is broader validation sought as a goal?

If the scope of certificates to be validated can be

constrained in advance, directly established relation-

ships between individual DPV servers may suffice to

support the RP community of interest. If universal vali-

dation is desired, however, DPV servers must be able to

take recourse to a general certification hierarchy or

mesh as a means to obtain trust connectivity among one

another.

Recursive DPV distributes knowledge of suitable

paths and sources for validation data among the set of

DPV servers rather than collecting it within each do-

main that requests that certificates be validated. In a

recursive model, individual entities need not perform

end-to-end path discovery. This decentralization may
prove valuable in enabling interconnected PKIs to scale

to very large sizes. The distributed nature of recursive

DPV echoes and accentuates a basic DPV characteris-

tic; not only are its RPs unable to independently revali-

date processing performed within their own DPV serv-

ers, they also lack independent assurance of the quality

of information on which their servers depend. Overall,

recursive DPV offers significant power and flexibility,

but also implies significant growth in the set of on-line

components comprising a distributed trusted computing

base for certificate validation. Chained and referred

DPV models distribute more data and processing com-

plexity among participating components, but allow the

participants to operate with a higher level of mutual

suspicion among one another.

5. Implications and Future Directions

There are profound implications that arise when us-

ing inter-server delegated validation models such as

those described in the previous section. Ostensibly,

DPV services perform two distinct functions: certifica-

tion path discovery and verification, and certificate

status confirmation. The latter is necessary because of

the nature of certificates. Specifically, a certificate con-

veys a binding that its CA believed to be true when the

certificate was issued. However, typical certificate users

often need to know if the CA still believes the binding

to be appropriate when the certificate is used, rather

then it was issued. Hence the desire to check a certifi-

cate’s status.

An obvious effect of inter-server delegated DPV is

that it eliminates the need for CRLs. This is because

such a system constructs paths between domains online,

through the involvement of each intermediate domain's

servers. Since each domain is making an active asser-

tion about which pathways are valid, and each includes

certificate status as one of its validity criteria, separate

mechanisms for obtaining certificate status are no

longer necessary.

Active domain participation can be leveraged even

further. For example, it can change the way that inter-

domain trust is established and managed. This is cur-

rently achieved with cross-certification, but if a domain

41

1st Annual PK! Research Workshop—Proceedings

is going to make an active statement about the status of

its cross-certificates, it may as well instead make a

statement about the relationships the cross-certificates

represent. With active participation, domains need no

longer rely on cross-certificates as a source of policy

information, but can instead manage this data locally

within their DPV servers. This allows for much finer

control of the inter-domain relationship. At the coarsest

level, the relationship can be present for some clients

but not for others, or only at particular times. A more

sophisticated application would enable the relationship

under certain contexts, but not others. This would be

the equivalent of having multiple cross-certificates be-

tween two domains that are issued under different poli-

cies, something that is theoretically possible but has yet

to be seen in practice. The central administration bene-

fits of DPV servers make practical the application of

multiple policies to a relationship with another domain.

The effects of active domain participation can be

felt even further. Consider that in a fully delegated DPV
environment queries about a particular certificate even-

tually reach the issuer of that certificate, or an entity

designated by that issuer to speak authoritatively on its

behalf. This is necessary to obtain the status of the cer-

tificate. However, if the issuer of the certificate (or its

designate) is making an active statement about the cer-

tificate’s status, it could just as easily take advantage of

the situation to make statements about the certificate’s

actual contents. In the limit, the certificate’s issuer

could, in response to a query, return certificate contents

as separate elements rather than in the form of a certifi-

cate. So, for example, if the name of the certificate’s

subject has changed since the certificate was issued, the

issuer could return the new name in its DPV response.

The issuer could also return the subject's current public

key, which would altogether eliminate the need to pub-

lish revocation information.

Taking this notion to its extreme conclusion leads

us to consider the elimination of certificates entirely.

Rather than obtaining a certificate, entities enrolling in

a PKI could register their public key with an authority,

which would give them an identifier of some sort. This

identifier could then be presented, as is possible in

XKMS, instead of a certificate in any challenge-

response, key establishment, or digital signature verifi-

cation protocol. The receiving party would submit the

identifier to its local DPV server, which would resolve

it (by eventually querying the authority that issued the

identifier) into the registered public key that could be

used to complete the protocol.

It is the online, active nature of inter-server dele-

gated DPV that makes this possible. The ultimate sce-

nario described above may or may not be practical, or

even desirable, but it does highlight the fundamental

shift that DPV services create in PKI. The original

framers of X.509 did not contemplate domains making
active statements about their certificates. Indeed, any

online components (i.e. the X.500 directory) were spe-

cifically not trusted. DPV heralds a departure from that

philosophy, and it will have profound effects on the

very infrastructure itself.

6. Conclusions

On-line validation methods for PKI certificates are

attracting increasing interest and adoption. Current

standards directions emphasize the simplification of

client-side processing. Two aspects are fundamental:

• Reduced volume of validation support data

propagated to clients; and

• Reduced complexity of validation processing

within clients.

In order to satisfy these goals, clients must delegate

their trust to new services, relying on those services to

perform validation for them. Rather than being elimi-

nated, validation complexity will move to a new set of

distributed components, operating as active intermedi-

aries. When this delegation is performed, many “tradi-

tional” PKI assumptions will no longer hold, as new
trusted points become active peer participants within

distributed PKI-based architectures.

All on-line validation strategies can improve upon

CRLs’ schedule-driven revocation responsiveness, if

their underlying information sources permit; DPV in-

troduces the possibility of a different sort of latency as

data is aggregated at intermediaries. Approaches differ

significantly, however, in the scope of active compo-

nents that must be trusted for validation purposes, and

in the trusted properties that they must provide. As
adoption of delegated validation proceeds, facilities to

constrain these trust characteristics, preserving appro-

priate levels of mutual suspicion, are likely to be impor-

tant.

Finally, delegated validation services represent a

fundamental change in the assumptions that underlie a

PKI. Most significantly, domain authorities can become

active participants in the PKI, interacting dynamically

with relying parties rather than merely making asser-

tions at particular points in time. This has profound

effects on the nature of PKI technology, leading to

questions about the explicit need for revocation, and

even about the nature of certification itself.

42

1st Annual PKI Research Workshop—Proceedings

Acknowledgments

The authors thank the workshop’s anonymous re-

viewers and Russ Housley of RSA Laboratories for

their comments on this paper.

References

[CCIT88] CCITT Recommendation X.509 (1988),

[Hous99]

"The Directory - Authentication Frame-

work".

R. Housley, W. Ford, W. Polk, and D.

Solo, “Internet X.509 Public Key
Infrastructure: Certificate and CRL
Profile”, Internet RFC-2459, January

1 999, http://www. ietf.org/rfc/rfc2459.txt.

[Kent93] S. Kent, “Privacy Enhancement for Inter-

net Electronic Mail: Part II: Certificate-

Based Key Management”, Internet RFC-

1422, February 1993,

http://www.ietf.org/rfc/rfc1422.txt.

[Linn93] J. Linn, “Privacy Enhancement for Inter-

net Electronic Mail: Part I: Message En-

cryption and Authentication Procedures”,

Internet RFC- 1421, February 1993,

http://www.ietf.org/rfc/rfc1421 .txt.

[MalpOl] A. Malpani, P. Hoffman, R. Housley, T.

Freeman, “Simple Certificate Validation

Protocol (SCVP)”, Internet draft work in

progress, IETF PKIX working group, July

2001.

[Myer99] M. Myers, R. Ankney, A. Malpani, S.

Galperin, C. Adams, “X.509 Public Key
Infrastructure: Online Certificate Status

Protocol - OCSP”, Internet RFC-2560,

June 1999,

http://www.ietf.org/rfc/rfc2560.txt.

[PinkO 1] D. Pinkas, “Delegated Path Validation and

Delegated Path Discovery Protocol Re-

quirements”, Internet draft work in pro-

gress, IETF PKIX working group, No-

vember 2001

.

[W3C01] P. Hallam-Baker, editor, “XML Key

Management Specification (XKMS)”,
W3C Note, March 2001,

http://www.w3.org/TR/xkms/.

43

1st Annual PKI Research Workshop—Proceedings

44

1st Annual PKI Research Workshop—Proceedings

Trust Assertion XML Infrastructure

Phillip Hallam-Baker

VeriSign Inc.

Abstract

The Trust Assertion XML Infrastructure (TAXI) is described. TAXI is a PKI research project that had the

objective of developing technology that would assist the deployment of PKI. Parts of the TAXI architecture

have since been realized in open standards, notably the XKMS [XKMS] and SAML [SAML]
specifications, other parts of the TAXI architecture such as XTAML [XTAML] and XKASS [XKASS]
have been published as research notes for public review and possible standardization at a later date. The

paper describes the architectural principles underlying the design decisions taken in these specifications.

1 Cryptography and Trust

Public Key cryptography permits secure

communication to be established between any

parties provided only that each has trustworthy

knowledge of the public key of the other. The

means by which that trustworthy knowledge is

obtained is known as Public Key Infrastructure

(PKI).

PKI secures the interface between the abstract

world of electronic communications and the

concrete offline world. PKI is complex and

subtle because the world is complex and subtle.

The deployment of PKI in the real world has

been subject to numerous disputes about

architecture, factional schisms and political

intrigues. While some of these disputes have

technical merit few have advanced the cause for

PKI. The quest for the perfect PKI has too often

been the enemy of deployment of a good PKI.

This paper describes the Trust Assertion XML
Infrastructure (TAXI), a research project that

was undertaken in the summer of 2000 with the

objective of developing technology that would

assist the deployment of PKI. Parts of the TAXI
architecture have since been realized in open

standards, notably the XKMS [XKMS] and

SAML [SAML] specifications, other parts of the

TAXI architecture such as XTAML [XTAML]
and XKASS [XKASS] have been published as

research notes for public review and possible

standardization at a later date.

Standards documents intended to describe a

normative specification should not provide any

discussion of the architectural principles. This

paper is intended to make good this omission and

to explain how the different components of the

TAXI architecture were intended to fit together.

In view of the developments since the original

TAXI architecture was developed this paper

makes use of the terminology and concepts used

in the XKMS and SAML specifications rather

than those of the original documents.

1.1 Certificates

The traditional model of Public Key
Infrastructure is based on the model proposed by

Lauren Kohnfelder’s in 1978 [Kohn78]. An
email user A may obtain the public key of email

user B by consulting a directory. The need for

online access to the directory could be avoided

by signing individual directory entries to form a

‘certificate’.

The PKI most closely associated with certificates

is X.509 [X.509], which realizes the Kohnfelder

model in the context of the X.500 directory

[X.500]. The influence of the Kohnfelder model

is also seen in PKI proposals that attempt to

escape from the certificate model including PGP
[PGP], SPKI [SPKI] and even DNSSEC
[DNSSEC]. All share the basic principle of using

signed data to bind the public key of a user to a

sign that identifies them. Regardless of whether

the signed data is called a ‘certificate’, a ‘key

signing’ or a ‘signed record’, the differences in

how the signed data is generated and used are

considerably less important than the similarities.

The X.509 specification was originally

developed as a part of the OSI network standard

developed as a joint standard of ISO/IEC and the

ITU. As increasing use was made of the X.509

standard by Internet protocols an IETF working

group was formed to describe the use of X.509 in

45

1st Annual PKI Research Workshop—Proceedings

that context. Over time the IETF Public Key
Infrastructure X.509 (PKIX) [PKIX] group has

specified additional protocols that extend the use

of X.509 so that the terms X.509 and PKIX are

often used interchangeably.

1.1.1 Trust Topology and Names

For many years the PKI debate centered on the

topology of trust. Certificate hierarchies,

heterarchies and Webs of Trust were advanced

each with merits and demerits. In the authors

view this debate obscured rather than clarified

the issues that should have been at the center of

the debate, namely:

• The ability of relying parties to locate a

public key for a particular purpose

• The ability of relying parties to locate a

trust path that validates a public key

• The ability of relying parties to control

the trust criteria that are applied

A highly constrained trust topology such as a

strict hierarchy makes the process of locating

keys and trust paths easier to implement and

manage than a less constrained topology. An
unconstrained topology in which all participants

are peers appeals to the spirit of egalitarianism

by obviating the need (but not precluding the

existence) of centralized control.

While the trust topology debate has continued,

real world deployment of PKI has largely

converged on a single model in which multiple

trust providers issue certificates and relying

parties decide which trust providers to rely on.

1.1.2 Naming

A certificate binds a public key to a name; the

question of naming has thus been at the center of

many PKI debates. In the DNSSEC and the

original X.509 architecture the certificate

hierarchy precisely matches that of a hierarchical

naming scheme.

A name is a signifier that bears only a

conventional relationship to the signified

[Sebok]. It follows therefore that if the trust

providers are to be true peers they must have

equal capacity to define naming conventions.

This principle is embodied in the Rivest and

Lampson SDSI paper [SDSI] that introduces a

naming scheme in which all names are relative

and “Alice” becomes “The person who Doug
calls Alice”.

This relativist naming scheme proposed appears

unlikely to provide much value in practice.

While all names are ultimately subjective the

ability to communicate depends on the parties

having established a vocabulary of shared terms.

While names are defined in many ways and there

is ultimately no single authority that is

responsible for assigning names there is in

practice little ambiguity. Names are chosen to

facilitate communication. If Bob, Doug and

Carol are in regular communication and each use

the name ‘Alice’ to refer to a different individual

a means of resolving the ambiguity will be

found. It is more likely that the convention

chosen will involve a property of the people

called Alice that distinguishes them from each

other than the speaker.

1.1.3

Beyond Email

The certificate-based model of PKI was

developed to address the problem of sending

secure email messages within the specific

constraints of the early ARPANET. The X.509

specification was originally designed to support

secure email in the context of the X.500

directory and X.400 mail. X.509 has since been

extended to meet many requirements that were

originally out of scope. In the process the

X.509/PKIX specifications have grown larger

and more complex.

Despite their complexity, the X.509/PKIX

specifications are in several ways incomplete. In

a commercial environment it is far more likely

that Alice would issue a check in error than lose

her safe key. PKIX provides no fewer than four

methods of determining the validity status of a

certificate. No mechanism is provided to

determine the validity status of a signed

document.

1.2 Client Complexity

One of the principal objections made to the

deployment of traditional PKI is the complexity

of the specification. Full support for the industry

standard X.509/PKIX specification requires a

very large and complex client implementation

46

1st Annual PKI Research Workshop—Proceedings

that very few applications support directly

(figure 1).

Figure 1 Client Complexity in Traditional PKI is

High.

While PKI is ubiquitously supported in

mainstream email, browser and operating

systems software, ‘sophisticated’ PKI features

such as cross-certification, OCSP etc. are not.

Such features are typically only supported by

PKI ‘plug-ins’ provided by third party PKI

vendors. Plug-ins of this type have proved

expensive to deploy and maintain, particularly

since each PKI client must be configured with

the location of the local PKI repository. A new
plug in deployment is required each time there is

a change to the PKI configuration, support for

new PKI features is required or the base

application is upgraded.

1.2.1

Historical Complexity and

Necessary Complexity

Part of the complexity of PKIX is due to the

process by which the specification developed.

The CRL specification was developed as a

certificate blacklist mechanism. As the number

of certificates grew, CRLs grew to unacceptable

size leading to various extensions to mitigate the

problem. At the same time the Online Certificate

Status Protocol (OCSP) was developed to

provide real-time reporting of certificate status.

Despite the close relationship between CRLs and

OCSP the data formats and protocols associated

with each are separate.

Although much of the complexity of PKIX could

be reduced through a thorough re-design process,

the main reason that the PKIX specification is

complex is that it attempts to address a complex

problem. In many instances it has been the

attempt to address a complex problem with a

too-simple solution that has led to complexity.

PKI is complex because trust relations in the real

world are complex and cannot necessarily be

reduced to a series of standardized machine-

readable data formats. The choice for a PKI
architect therefore is not whether there is

complexity but how it is managed and where it is

placed.

1.2.2 Directory as Certificate

Repository

The close relationship between the X.500 and

X.509 specifications led many to assume that

digital certificates ‘should’ be stored an X.500 or

LDAP directory. This assumption leads to the

conclusion that the deployment of a PKI at either

a local or global level is dependent on the

deployment of a directory.

While many companies have deployed local

directories these are almost without exception

considered internal resources whose contents are

company confidential.

While the X.500 or LDAP protocols might form

a basis for a certificate retrieval protocol, the

directory data model is not. The underlying

principle of the directory data model is that the

directory server supports a generic query

mechanism to a hierarchical data structure. This

model is ill suited to the needs of a certificate

repository that is servicing highly specific

queries against a heterachical PKI topology.

1 .2.3 The Client Deployment Trap

The problem that appears to have brought

deployment of new PKIX features to a halt is the

client deployment trap. For a PKI feature to be

useful every client must first support it. For

mainstream application vendors to support a

feature it must first be useful. None of the

mainstream PKI enabled applications (Netscape

Communicator, Microsoft Outlook, Lotus Notes)

provide native support for cross-certification.

The feature would have little value until it was

widely supported and will not be supported in

any degree until it provides value.

1.2.4 The End to End Principle

The end-to-end principle is one of the key

architectural principles of the design of the

Internet. Under the end-to-end principle the

network core is as simple as possible, a packet

switching network that provides no guarantees as

to the reliability or order of packet delivery.

47

1st Annual PKI Research Workshop—Proceedings

Sophistication is achieved at the ends of the

communication where acknowledgement of

received packets is made and packets are

reassembled into order.

The end-to-end principle has been applied to

security to establish the doctrine that security

enhancements should be applied at the ‘ends’ of

the communication. For example an email

message should ideally be secured from the

sender to the recipient.

The difficulty raised by this interpretation of the

end-to-end principle is that the ends of the

communication are devices while the ends of the

trust relationship are people and/or

organizations. The sophisticated management of

trust relationships is complex and subtle and has

proved to be beyond the level of complexity that

developers of client applications will tolerate.

Properly understood, the end-to-end principle

argues that complexity must be eliminated where

possible and where it cannot be eliminated must

be confined to those parts of the network

infrastructure that are capable of supporting it.

1.2.5 Trust Management

The use of cryptography and PKI typically

appeals to individuals of independent character.

As a consequence PKI architectures have

emphasized the role of individual choice in the

configuration of their trust relationships. This

approach is a poor match to enterprise needs

where trust relationships between enterprises are

by definition established at an enterprise level.

The PKI approach that requires PKI

configuration to take place at the client end does

not meet the needs of enterprises attempting to

manage their trust relationships at the enterprise

level. The client centric model of PKI requires

that all trust relationships be expressible in a data

format supported by the client and that the client

support all the necessary location and retrieval

protocols.

As the number of PKI enabled devices increases

the trust management problem increases. Even

highly motivated individuals managing their

personal devices are unlikely to want to maintain

their trust configuration separately on the laptop,

desktop, handheld, mobile phone etc.

1.3 New Challenges

Despite the numerous objections made against it,

the deployment of PKI has been a success by

most ordinary measures. Millions of people use

PKI each day, in most cases without being aware

that they have been using it. PKI is already

established that provides to anyone with a need

secure email, a secure means to make payments

over the Internet, a Virtual Private Network.

Although PKI has succeeded by most ordinary

measures it has failed against its perceived

potential. Security remains an optional extra used

in cases of need, PKI enabled cryptography has

not yet become the ubiquitous default.

This qualified success poses a considerable

challenge to the deployment of alternative

approaches. Attempts to replace X.509

completely have largely failed completely or

been confined to a single narrow area of

application. New PKI infrastructure can only be

justified if it enables new applications of

cryptography that were impossible or impractical

with the existing infrastructure.

1.3.1 Constrained Devices

As the cost of processing power has decreased

the number of devices with embedded CPUs has

increased dramatically. Far from eliminating the

constraints of CPU power on PKI, improvements

in processor performance have increased them as

manufacturers attempt to embed PKI into mobile

phones, personal organizers and all manner of

network devices.

In addition to lacking the processing capability

to support sophisticated a sophisticated PKI

client implementation, constrained devices often

lack user interface capabilities that are

appropriate to the task. The task of adding a root

certificate into a PC web browser is supported by

a rich user interface that presents the user with

all the necessary information. While it is possible

to add a root certificate into a mobile phone with

a 20-button keypad and a 20-character display, it

is unlikely that the process can be made

acceptable to many consumers.

X.509 has been adapted to meet the constraints

of wireless use in the WAP specification [WAP].

The modifications include the use of compressed

‘WAP Certificates’ and a messaging protocol

48

1st Annual PKI Research Workshop—Proceedings

that uses a certificate identifier in place of the

certificate itself to save bandwidth on

constrained links.

1.3.2 Financial Transactions

Financial services applications operate under

requirements that are quite distinct from the

email application that has traditionally formed

the PKI paradigm. Unlike email applications,

financial services applications can depend upon

the availability of network connectivity at all

times. Financial services have a well-defined

trust model that is backed by regulation,

insurance and contracts that define the liabilities

of the parties and operate in an environment in

which the precise timing of operations can

transfer liability from one party to another.

As a result of these different constraints financial

services applications have traditionally been at

the cutting edge of PKI, leading to developments

such as the Online Certificate Status Protocol

(OCSP) [OCSP],

The Identrus architecture [Identrus] applies

PKIX and OCSP to provide real time validation

of public keys in the context of the ‘four-comers’

model common to many financial transactions.

This architecture demonstrates a significant

limitation of the use of the certificate model

designed to support offline messaging to an

online application. Relying applications must

support OCSP processing in addition to

certificate processing, the PKIX architecture

does not support the use of an online protocol

instead of certificate processing.

1.3.3 Web Services

Web Services [SOAP] are a set of industry

standards based on XML that allow applications

running on different machines to exchange data.

The goal of Web Services is to reduce or

eliminate interface costs, the cost of exchanging

data between computer systems. Interface costs

represent two of the largest costs of running

information systems:

• Computers generate messages that are

sent to the customer by letter post or fax

and entered manually into another

computer system

• The largest cost in the deployment of a

new software system is often interfacing

the new system to the legacy systems

already deployed.

Web Services offer the promise of enabling a

new and more cost effective IT strategy in which

communications that currently require human
intervention are automated. Web Services have

the potential to change the way that Enterprises

communicate both internally and externally.

While X.509 certificate meet some of the PKI

requirements of Web Services the use of an

ASN.l based PKI to support an XML based

messaging infrastructure is unsatisfactory. While

the overhead required to support ASN.l and

X.509 on a server platform is quite reasonable,

the same overhead is unreasonable for many of

the intended clients.

2 Trust Assertion XML Infrastructure

The TAXI architecture is based on the following

principles:

• Minimize the complexity of client

deployment, configuration and

management.

• Separate the client implementation from

the structure of the underlying PKI.

The TAXI architecture makes extensive use of

the XML Signature [XML-SIG] <KeyInfo>
element that allows a public key to be identified

using practically any means including:

• The Public Key parameters (e.g. RSA
modulus and exponent)

• Any naming scheme (e.g. URI, X.500

Common Name)
• X509 Certificate, CRL, OCSP token

• SPKI, PGP key signing.

• A URL for the retrieval of any of the

above

2.1 Architecture

The TAXI architecture is divided into four tiers

that represent increasing complexity from the

first to the fourth as follows:

Tier 1 Location

The location service is a Web service

that allows a client to locate information

concerning a public key analogous to

49

1st Annual PKI Research Workshop—Proceedings

the directory function in the PKIX
model

Tier 2 Validation

The validation service is a Web service

that allows a client to delegate both the

retrieval and processing of public key

information. The validation service is

analogous to a highly extended form of

the PKIX OCSP protocol.

Tier 3 Trust Assertion

A trust assertion contains a unique

identifier, one or more statements,

conditions and advice. Trust assertions

combine the roles of PKIX certificates,

attribute certificates and in some
instances signed documents themselves.

Tier 4 Status Assertion

A Status Assertion is an assertion that

makes a statement about the validity of

one or more other assertions. Status

Assertions combine the roles of CRLs
and OCSP in the PKIX model.

2.2 Specifications

2.2.1 XKMS

The XKMS specification consists of a

registration protocol and an enquiry protocol.

These protocols may be used independently.

The XKMS enquiry protocol is the XML Key
Information Service Specification (X-KISS)

which supports two service tiers:

Tier 1: Locate

The client sends one <KeyInfo> element

to the service and requests that the trust

service provide a <KeyInfo> element that

identifies the same key but is in a different

format (e.g. X.509 certificate converted to

key parameters).

2.2.1. 1 Tier 1 Location

A client receives a signed XML document. The

cKeylnfo> element in the signature specifies a

retrieval method for an X.509 certificate. The
client lacking the means to either resolve the

URL or parse the X.509 certificate to obtain the

public key parameters delegates these tasks to

the trust service (Figure 2).

Figure 2: Key Location Service

2.2.1.2 Tier 2 Validation

The Validate service allows a client to delegate

all trust processing functions to a trust service.

As with the Locate service the client creates a

query that specifies the information the

validation service is to locate. Unlike the

location service however the validation service is

responsible for ensuring the trustworthiness of

the data returned before relying upon it.

A client receives a signed XML document and

queries the trust service to determine whether the

signing key is trustworthy. In this case an X.509

certificate authenticates the signing key. The

Trust Service builds a certificate trust path, then

validates each certificate in the path against the

relevant Certification Revocation List. The client

is shielded from this complexity however and the

trust service returns only the information of

specific interest to the client; the key parameters,

the data bound to the key and the validity of the

binding (Figure 3).

Tier 2: Validate

The trust service validates the trustworthiness of

the information returned according to service

specific criteria.

50

1st Annual PKI Research Workshop—Proceedings

Figure 3 Key Validation Service

Delegation of trust processing functions to a trust

service makes enterprise-wide control and

oversight of PKI configuration possible. This is

essential in Business-to-Business applications

where the important trust relationships are

between enterprises and not between individuals

or the applications they use.

2.2.2 X-KRSS

XML Key Registration Service Specification

(X-KRSS) defines a protocol for a trust service

that accepts registration of public key

information. Once registered, the public key may
be used in conjunction with other web services

including X-KISS.

X-KRSS is designed to support all of the

functions associated with the public key

lifecycle:

compromised or because information contained

in the key binding is incorrect.

Recovery. Private key recovery is essential when

an end user has lost their private key and requires

access to their encrypted data. The X-KRSS
recovery function provides an authenticated

means of re-issuing a private key to a user.

X-KRSS may be configured hierarchically in the

manner of a Local Registration Authority. This

allows a registration request to be authenticated

by a local trust service then passed on to another

trust service where actual processing is

performed.

2.2.3 SAML

The Security Assertion Markup Language

[SAML] specifies both the TAXI Tier 3 trust

assertion framework and specific assertion

statements to support federated authentication

and authorization applications.

Each trust assertion is encoded in a common
XML package, which at a minimum consists of:

Basic Information.

Each assertion must specify the version of

the SAML assertion syntax, a unique

identifier that serves as a name for the

assertion, a unique identifier for the issuer

and the time instant of issue.

Registration. The registration function supports

registration of an association of a public key and

additional data (such as a name) to create a ‘key

binding’. Private keys may be generated either

locally by the client (desirable for signing keys)

or by a central key generation service (desirable

in cases where key recovery is supported).

Requests may be authenticated with either a

limited use shared secret or a digital signature.

Renewal. XKMS allows a PKI to be operated

without digital certificates ever being issued,

eliminating the need for certificate renewal. In

cases where certificates are issued by the

underlying PKI renewal processing may be

performed automatically without the need for

client interaction.

Revocation. An authorized party may request

that the trust service revoke a key binding. This

may be necessary because the key has been

The Asserted Statement(s)

The statement(s) that are asserted by the

issuer of the assertion.

In addition an assertion may contain the

following additional elements:

Conditions.

The assertion status may be subject to

conditions. The status of the assertion might

be dependent on additional information from

a validation service. The assertion may be

dependent on other assertions being valid.

The assertion may only be valid if the

relying party is a member of a particular

audience.

Advice.

Assertions may contain additional

information as advice. The advice element

51

1st Annual PKI Research Workshop—Proceedings

MAY be used to specify the assertions that

were used to make a policy decision.

Relying applications may ignore advice elements

but are required to understand all the conditions

elements in an assertion if they are to rely on it.

SAML defines three Assertion Statements as

follows:

Authentication Assertion

An authentication assertion contains a

statement made by the issuer that asserts the

subject was authenticated by a particular

means at a particular time.

Authorization Decision Assertion

An authorization decision assertion contains

a statement made by the issuer that asserts

the request for access by the specified

subject to the specified object has resulted in

the specified decision on the basis of some

optionally specified evidence.

Attribute Assertion

An attribute assertion contains a statement

made by the issuer that asserts the specified

subject is associated with the specified

attribute(s).

2.2.4 XTAML

One of the most common objections made to the

XKMS trust service model is that it does not

provide a means of establishing and maintaining

the trust relationship between the client and the

trust service. XKMS cannot eliminate the need to

implement X.509 if a certificate is still required

to secure this trust relationship. XTAML is

designed to meet this need in the context of a

large scale PKI deployment in which a root of

trust might be embedded in a large number of

devices and consequently there is a need to be

able to manage the private keys associated with

the root of trust itself in a highly controlled

offline environment that is independent of the

online private keys used to authenticate actual

Web Services transactions.

By design XTAML supports only the most

limited delegation model. In the X.509 model a

certificate signing certificate may be used to

delegate a signing authority that is restricted to

particular domains and/or certification policy. In

contrast the XTAML delegation model provides

only ‘all or nothing’ delegation required to

support the requirements of online/offline key

management.

The XML Trust Axiom Markup Language

(XTAML) defines SAML Trust Assertions that

support the management of trust axioms. A trust

axiom is a ‘root of trust’ analogous to a root

certificate in a certificate based PKI. An
important application of trust axioms is

managing the trust relationship between a client

and a trust service.

XTAML defines SAML statement elements for

specifying axiomatic and delegate keys and for

asserting the validity status of another assertion.

A new condition element is defined that makes

the validity status of an assertion dependent on

online verification. Two new advice elements are

defined to allow an assertion to provide advice

on the reissue of the assertion and for issue of

related assertions.

2.2.5 XKASS

Another objections made to the use of XML
Signature to authenticate Web Service requests

and responses such as XKMS is the processing

overhead required to create and verify digital

signatures.

XKASS provides a means of using a lightweight

Message Authentication Code (MAC) to

authenticate Web Service messages by means of

a shared secret established through a key

agreement mechanism. The design of the

XKASS is similar to the Just fast Keying [JFK]

proposal made to the IETF IPSEC working

group but requires only one round trip in the

typical case instead of two made possible by a

different approach to the handling of Denial of

Service attacks.

2.3 Assertion Calculus

The SAML specification defines a framework

for encoding Trust Assertions but does not

provide a general framework for defining the

semantics of assertion statements. One means of

attaching specific semantics to an assertion

statement is by means of an assertion calculus

that sets out the rules by which a set of assertions

are reduced to specific actions in response to a

query.

52

1st Annual PKI Research Workshop—Proceedings

Each assertion calculus is specific to an

application such as access control or

management of financial instruments. The laws

of the assertion calculus comprise a formal

specification

For example in an access control application an

attempt to access a resource would generate a

query of the form:

[Q 1] Is Alice granted Read access to the

Accounts file?

Given the assertions:

[A 1]
Alice is a member of the Finance group

[A2] The Finance Group is granted Read

access to the Accounts file

The query may be answered by applying the rule

[R1
]

IF (P is a member of the O group) AND
(The Q group is granted X access to Y)

THEN
P is granted X access to Y.

[PI] Applying R1 to A1 and A2, substituting

Alice for P, Finance for Q , Read forX and

Accounts file for Y we obtain:

[A3] Alice is granted Read access to the

Accountsfile

If the rules of the assertion calculus are labeled

and specified in a suitable form the proof might

be encoded in XML and attached to assertion A3
encoding the conclusion as advice.

While an application might employ a general

purpose theorem

One of the principal advantages of the assertion

calculus approach is that it allows an assertion

generator to incorporate an integral verification

step that independently verifies the correctness

of the assertion by verifying the proof. Such a

process is well within the capabilities of current

formal methods tools, which cannot currently be

said for the process of generating a proof in an

arbitrary calculus.

3 Applications

The TAXI architecture reduces the complexity of

a large number of PKI applications of which we
present a representative sample only.

3.1 Facilitating Deployment of

Traditional PKI

The principal design goal for TAXI was to

facilitate the deployment of traditional PKI by

eliminating the need for a ‘fat client’ to support

sophisticated PKI functionality. This goal is

realized in the XKMS specification that allows a

simple client to access a sophisticated PKI by

means of the XKMS Web Service interface.

XKMS enables deployment of sophisticated PKI

topologies such as the Federal Government

Bridge CA [FBCA] without the need to deploy

PKI plug-in applications to support the specific

topology.

3.2 Wireless LAN Configuration

A wireless LAN protocol such as 802.1 lb allows

a user within range of an access point access to a

LAN without the need for a physical connection.

By eliminating the need for physical access a

wireless LAN protocol removes a control that

mitigates two significant security risks, first

anyone within range might intercept network

traffic, second unauthorized use of the network.

Recent analysis [BorisovOl] of the 802.1 lb WEP
cryptographic protocol [WEP] has demonstrated

that the WEP protocol provides inadequate

protection against the interception risk and little

protection against the unauthorized use risk.

The risk of unauthorized use arises from the fact

that every user of the network shares the same

authentication key. The risk of unauthorized use

could have been controlled if a sufficiently

lightweight PKI had been available to the

developers. For example XKMS might be used

to permit network interface cards to be granted

or denied access to the network on the basis of a

private key embedded in the card.

3.3 Negotiable Financial Documents

Many financial transactions are represented by

the exchange of negotiable documents. In many

cases these documents are bearer instruments.

53

1st Annual PKI Research Workshop—Proceedings

For example a ship has fulfilled its obligations to

the dispatcher when it discharges its cargo to the

first person to present a valid bill of lading at the

destination port.

Replacing paper documents with electronic

representations offers many advantages

including lower costs for the carrier and its

customers. In addition an electronic instrument is

more readily traded than one restricted to

physical form.

A tier 3 trust assertion may be used to create an

electronic bill of lading that tracks the current

ownership of a specific asset (e.g. a cargo) and

manages transfer of that asset from one owner to

another by means of tier 4 status assertions. A
potential purchaser of a cargo may determine if

the seller is currently the owner of the cargo by

validating the assertion stating ownership.

3.4 Commercial Registry

Many business applications involve some form

of registry. For example in the US it is possible

to gam security for a debt by registering a charge

against assets of the debtor in a commercial

registry.

A commercial registry does not normally require

exceptional levels of availability, it is however

essential that the registry ensure an exceptional

level of data authenticity and persistence.

Although the human interface to such a registry

is likely to require customization to the

applicable law, the type of assets registered,

language, etc. the functions requiring exceptional

levels of data authenticity and persistence are

common to all registries.

Entries in the commercial registry may be

represented by tier 3 trust assertions. Discharge

or voiding of entries may be represented by

means of tier 4 status assertions.

4 Acknowledgements

Thanks are due to Warwick Ford, Barbara Fox,

Brian LaMachia, Jeremy Epstein, David Solo

and Mack Hicks for their many helpful

comments on the original TAXI research project.

Thanks are also due to the members of the

SAML and XKMS working groups who have

helped to turn theory into practice, in particular

Stephen Farrell, Shivram Mysore, Eve Maler,

Joe Pato, Jeff Hodges, Prateek Mishra, David

Orchard, Hal Lockhart, Carlisle Adams, Tim
Moses, Bob Blakely, Marlena- Erdos, Scott

Cantor, Chris McLaren, Krishna Sankar, Irving

Reid, Daniel Ash, Joseph Reagle and Blair

Dillaway.

5 References

[DNSSEC] Eastlake, D. and C. Kaufman,

Proposed Standardfor DNS Security , RFC
2065, January 1997.

[FBCA] W. T. Polk and N. E. Hastings, Bridge

Certification Authorities: Conecting B2B
Public Key Infrastructures. NIST 2001

http://csrc.nist.gov/pki/documents/B2B-

article.pdf

[Identrus] Identrus, web site

http://www. identrus.com/

[JFK] W. Aiello, S.M. Bellovin, M. Blaze, R.

Canetti, J. Ioannidis, A.D. Keromytis, O.

Reingold Just Fast Keying (JFK), Internet

draft http://www.ietf.org/internet-

drafts/draft-ietf-ipsec-jfk-OO.txt

[Kohn78] Kohnfelder, L. M. (1978). Towards

a Practical Public-Key Cryptosystem.

Laboratory for Computer Science .

Cambridge, Massachusetts Institute of

Technology.

[LDAP] T. Howes, M. Smith, The LDAP
Application Program Interface. RFC 1823

August 1995.

[OCSP] M. Myers, R. Ankney, A. Malpani, S.

Galperin, C. Adams, X.509 Internet Public

Key Infrastructure Online Certificate Status

Protocol - OCSP. RFC 2560 June 1999.

[PGP] Atkins, D., Stallings, W. and P.

Zimmermann, PGP Message Exchange

Formats , RFC 1991, August 1996.

[PKIX] Public Key Infrastructure X.509,

Internet Engineering Taskforce.

[SAML] P. Hallam-Baker and Eve Maler,

Assertions and Protocolfor the OASIS

Security Assertion Markup Language

(SAML) http://www.oasis-

1st Annual PKI Research Workshop—Proceedings

open.org/committees/security/docs/dratt-

sstc-core-25.pdf

[SDSI] Ron Rivest and Butler Lampson, SDSI -

A Simple Distributed Security Infrastructure

[SDSI],

http://theory.lcs.mit.edu/-cis/sdsi.html

[Sebiok] T. Sebiok, Signs: An Introduction to

Semiotics. Toronto: University of Toronto

Press, 1994

[SOAP] D. Box, D Ehnebuske, G. Kakivaya, A.

Layman, N. Mendelsohn, H. Frystyk

Nielsen. S Thatte, D. Winer. Simple Object

Access Protocol (SOAP) 1.1, W3C Note 08

May 2000, http://www.w3 .org/TR/SOAP/

[SPKI] C. Ellison, B. Frantz, B. Lampson, R.

Rivest, B. Thomas, T. Ylonen. SPKI
Certificate Theory, RFC 2693, September

1999.

[BorisovOl] Nikita Borisov, Ian Goldberg, and

David Wagner. Intercepting mobile

communications: The insecurity of 802. 1 1

.

In Proceedings ofMOBICOM 2001, 2001.

http://vvww.isaac.cs.berkeley.edu/isaac/mobi

com.pdf

[WAP] WAP Certificate profile Specification,

http://wwwl.wapforum.org/tech/terms.asp7d

oc=WAP-2 1 1 -WAPCert-200 1 0522-a.pdf

[WEP] LANMAN Standards ofthe IEEE
Computer Society. Wireless LAN medium
access control (MAC) and physical layer

(PHY) specification. IEEE Standard 802.1 1,

1977 Edition, 1977

[X.500] ITU-T Recommendation X.501:

Information Technology - Open Systems

Interconnection - The Directory: Models,

1993.

[X.509] R. Housley, W. Ford, W. Polk, D. Solo.

Internet X. 509 Public Key Infrastructure

Certificate and CRT Profile. RFC 2459,

January 1999.

[XKASS] P. Hallam-Baker, XML Key
Agreement Service Specification (XKASS).

May 2001, XML Trust Center Research

note.

http://www.xmltrustcenter.org/research/docs

ZX-KASS-31.pdf

[XKMS]W. Ford, P. Hallam-Baker, B. Fox, B.

Dillaway, B. LaMacchia, J. Epstein, J. Lapp,

XML Key Management Specification

(XKMS), W3C Note 30 March 2001,

http://www.w3.org/TR/xkms/

[XTAML] P. Hallam-Baker, AML Trust Axiom

Markup Language 1.0, VeriSign Inc.

September 2001.

http://www.xmltrustcenter.org/

[XML-SIG] D. Eastlake, J. R., D. Solo, M.

Bartel, J. Boyer , B. Fox
,
E. Simon. XML-

Signature Syntax and Processing, World

Wide Web Consortium.

http://\vww.w3.org/TR/xmldsig-core/

55

1st Annual PKI Research Workshop—Proceedings

56

1st Annual PKI Research Workshop—Proceedings

Making certificates programmable

John DeTreville

Microsoft Research

johndetr@microsoft.com

Abstract

Certificates carry signed statements within a Public-

Key Infrastructure (PKI). As we begin to build more com-

plex and more open PKIs, the limited expressiveness of

current certificate languages becomes a concern. While

certificates are traditionally treated as simple data struc-

tures conforming to a given schema, we show an alterna-

tive derivation of the concept of a certificate in which

certificates can contain control information in theform of

program code. One example is program code written in

declarative statements in a variant ofthe relational alge-

bra, which can work together in rich ways.

1. Introduction

in a Public-Key Infrastructure (PKI)—such as X.509

[10] or SDSI/SPKI [13, 7]—distributed parties can com-

municate using persistent signed data structures called

certificates. Certificates can carry authorizations that con-

trol access to distributed resources (saying, for example,

that John Smith can access a particular Web site at his

workplace) as well as more abstract data and rules that

can provide support for authorization decisions (e.g., John

Smith is a full-time programmer: programmers are em-

ployees; full-time employees can access the Web site).

Certificates conform to an established syntax—such as

ASN.l for X.509 certificates [11] and encoded S-

expressions or XML for SDSI/SPKI certificates [12]

—

and an established semantics.

As our ambitions for PKIs become greater, the ex-

pressiveness of their certificates can become a cause for

concern. We might wonder whether our certificates

—

their syntax and their semantics—are expressive enough.

Can they convey the necessary sorts of information to

support the operation of the PKI? For example, if our

certificates are very simple data structures that can work

together only in a few restricted ways, it might be impos-

sible to support a rich variety of authorization structures.

While this may be seen as an advantage in some contexts

(for example, if we might wish to constrain the uses of a

PKI). it is certainly a potential shortcoming in a more

open environment.

We might also wonder if our certificates and our cer-

tificate language are suitably well-defined. Ensuring the

wide interoperability of certificates in an open PKI can be

difficult or impossible in practice [9]. We note for exam-

ple that certificates are often extended for new uses by

simply adding new fields in a manner that can change the

meaning of existing fields in subtle and perhaps unfore-

seen ways, breaking existing uses. Conversely, we might

expect that a more regular design, based on fewer base

concepts that can be used together in more ways, might

improve interoperability while at the same time increasing

expressiveness.

In this paper we rederive the concept of a certificate

in a novel way. in which a certificate can contain program

code, written in a simple declarative language, as well as

data. The use of program code can increase the expres-

siveness of certificates while eliminating a number of

special cases present in existing certificate languages, and

resource

operation

request

operation

response

auth.

request

auth.

response

client

Figure 1: A hypothetical central authorization service

57

1st Annual PKI Research Workshop—Proceedings

is one path toward deriving more powerful certificate

languages that will allow us to build richer and more

flexible PKds.

2.

A hypothetical central authorization

service

The principal purpose of certificates—let us say—is

to support authorization in an open distributed environ-

ment. Certificates therefore combine two distinct kinds of

information. First, they include information directly re-

lated to authorization. For example, they may state that a

certain group of people is authorized to access a shared

resource, or that a certain person belongs to that group.

They also include information required by their use in an

open distributed environment. For example, they may
include a validity interval, or an address to check for

revocation, or information that supports the proper chain-

ing of certificates.

To help separate these concerns, let us first consider a

hypothetical environment where all authorization deci-

sions have been centralized, as shown in Figure 1. When-

ever a client requests an operation from a service

controlling a resource, the service must determine

whether this client is authorized to perform this operation;

in this centralized model, the service simply passes an

authorization request to the central authorization service,

identifying the client, the resource, and the requested op-

eration. Based on its encapsulated state and logic, the

central authorization service authorizes or rejects the op-

eration: if the operation is authorized, the service per-

forms the requested operation and returns the result to the

client. The central authorization service encapsulates the

system’s authorization information (its “state") and the

authorization rules (its "logic”) for all resources and for

all clients, and it is used only as a “black box’’ that can

only answer specific questions.

Such a centralized authorization service is of course

impractical in many ways. Its performance and availabil-

ity would be limited and it certainly could not scale to the

size of the Internet. Worse yet. such a large-scale service

would be impossible to administer, since it would com-

bine information from thousands or millions of autono-

mous administrative domains and would hard-code the

rules on how these domains operate and how they inter-

operate. It would be closed because third parties could not

readily extend its state and logic.

Let us imagine, though, that our centralized distribu-

tion service is otherwise powerful enough to perform the

needed authorization tasks, and that its only problems are

those due to its centralized nature. How can we solve

these problems, or at least ameliorate them? In other

words, how can we decentralize (i.e., distribute) the au-

thorization service?

3. Mobile code

One approach to decentralizing the authorization

service is to make its state and logic mobile—that is. to

encapsulate some piece of its state and logic in a

certificate that can travel across the network to the service

controlling the resource and execute there. There have

been various proposals that support this sort of mobile

code [4] and this approach is greatly simplified when the

authorization process is purely functional—without side-

effects—as is usually the case. We assume some

mechanism for executing the code in the certificate safely

at the receiving service.

Simply adding mobile code to our centralized design

is not enough. It improves performance, and it improves

availability, but it does not address the remaining problem

of administering the system's global authorization state

and logic. We can simply partition the state and logic, of

course—and such a partition is clearly the solution—but

the various partitioned administrative domains must still

be able to interoperate. Below, we derive a architecture

for partitioning that allows multiple administrative

domains to interact in flexible ways. Our language for

state and logic is purely' applicative, thus allowing its safe

execution at the recipient.

4. Certificates as cache entries

One way to improve performance and availability in

any system is through the use of caching. Once a service

sends a request to our hypothetical central authorization

service and receives a response, it can cache the request-

response pair to avoid requerying the central service for

the same request in the future. Of course, the response

must not depend on state that can change.

In their simplest form, certificates are an extension of

the caching idea. As showu in Figure 2, a service can hold

a certificate, signed by the central authorization service,

encapsulating the request-response pair. It can use this

certificate exactly as it would use the corresponding cache

entry, but the certificate has several additional advantages.

• Cache entries are implicitly authenticated be-

cause the service (presumably) knows that the

information in the cache came from the central

authentication service, over an authenticated

connection. In contrast, a certificate is explicitly

authenticated because it carries a signature from

the central authentication service. A service can

trust a certificate received from another service,

or even from a client. This feature further im-

proves the performance and flexibility of the PKT

58

1st Annual PKI Research Workshop—Proceedings

certificate

“auth. request >

auih. response”

(signed, central

authorization service)

operation

service request

operation

resource response

client

Figure 2: Certificate issued by a central authorization service

client

Figure 3: A hypothetical central authorization database

Full-time
Employees (table)

in the central authorization database

59

1st Annual PKI Research Workshop—Proceedings

• A certificate can potentially be obtained at a

convenient time before it is needed. While a

cache operates transparently, meaning that any

request might need to contact the central authori-

zation service, certificates allow us to explicitly

collect—ahead of time—all of the information

needed to authorize an operation, eliminating the

need for the central authorization service to be

available at the same time as each operation.

This feature improves the availability of the PKI.

• Instead of supplying the response for one par-

ticular request, a certificate can contain wild

cards, supplying the responses for a family of re-

quests. For example, a certificate can say that a

certain set of individuals—defined in some
way— is authorized to perform a certain set of

operations on a certain set of resources. This fea-

ture improves the performance and flexibility of

the PKI. We will return to the idea of wild cards

later in this paper.

In the simple use of certificates shown, the central

authorization service remains a black box and does not

expose or export its internal state and logic to its callers

except in the form of request-response pairs. In the fol-

lowing sections we will make the black box more trans-

parent by extending and regularizing the statements that

certificates can carry.

5. Using a relational database to represent

state and logic

To expose the internal structure of the central au-

thorization service, it is necessary first to specify what

forms the state and rules can take. In this section, we
demonstrate how its state and logic can be modeled by a

relational database [5. 8].

As shown in Figure 3, the central authorization data-

base contains tables and views. Tables store data, while

views are defined in terms of data that appear in tables

and other views. The service receiving an operation re-

quest sends an authorization query to the database, and

receives an authorization response.

Figure 4 shows the internal organization of one ex-

ample database in further detail. Here, full-time employ-

ees are authorized to connect to an Internet gateway. .An

Employees table holds the names of the employees and

their employment status. A Full-time Employees view is

derived from the Employees table, and the final Authori-

zations view is further derived from the Full-time Em-
ployees view. In this simple example, the Employees

table holds the raw data while the Full-time Employees

view and the Authorizations view serve to encode the

authorization logic.

When this example database is used, a service que-

ries the Authorizations view at the authorization database,

giving the client name (“John Smith,” or more generally a

public key), resource name (“Internet gateway”), and op-

eration name (“connect”) as keys. The database responds

to the query by returning all matching rows. In this exam-
ple, the database returns one row in case of authorization

success, and zero rows in case of failure.

We can define the database views and queries in a

number of forms, including relational algebra, which op-

erates on tables and queries using operators like select,

project, and join. In this paper. w;e extend the relational

algebra with two additional operators.

• We add a union operator that combines tables or

views with the same schema. Although the Au-

thorizations view is shown here as a simple view

on the Full-time Employees view, it would more
generally be the union of a number of views,

each of which might define authorizations on a

particular resource, set of resources, etc.

• We also add recursion, to allow for the computa-

tion of transitive closures. This is useful for

modeling authorization chains, as discussed be-

low.

Because nonmonotonicity can be unsafe in a distrib-

uted environment, we additionally restrict our relational

algebra to be monotonic by eliminating negation. It is a

topic for future work to characterize those uses of non-

monotonicity and negation that nevertheless can be safely

allow'ed.

While the schema of the Authorizations view must be

partly standardized—and known to the services querying

the authorization database—the schemas of the other

views and tables need not be standardized at all. This can

be seen as a significant advance over older PKI schemes

like X.509 and even SDSl/SPKI. The tables can include

arbitrary data with arbitrary structure, and the Authoriza-

tions view can be the result of arbitrary computations on

these tables. (Of course, these computations must be ex-

pressible in our extended relational algebra; this is true for

the classes of authorization problems that we have stud-

ied.)

Traditional security languages include special-case

syntax and semantics for encoding extra conditions and

information needed for authorization. Because of the use

of arbitrary schemas and the power of the extended rela-

tional algebra, though, the authorization database can

represent these conditions and information directly. For

example, while SDSI/SPK1 includes a mechanism for

group membership, we note that our authorization data-

base can model groups directly in the relational algebra,

as in the example above. We can also represent different

kinds of groups, such as groups of resources or groups of

operations: this is impossible or limited in traditional lan-

guages. Similarly, we can model the idea of certification

60

1st Annual PKI Research Workshop—Proceedings

certificate

(from emuioyees table)

(signed, centra!

authorization database)

certificate

full-time employees =

project{select(. . .), ...}

(signed, central

authorization database)

service

resource

operation^

request
"

client
operation

response"^

Figure 5: Certificates issued by a central authorization database

authorities and certificate chains, as in X.509 and

SDSI/SPKi, directly in the extended relational algebra

instead of building it into our language. (This requires the

addition of recursion to the relational algebra, as dis-

cussed above.) Different administrative domains can be

programmed to have different properties, and we can also

generalize the use of one-dimensional chains to allow

more complex and more general trust relations.

(We note that the relational algebra is closely related

to the logic-programming language datalog [1]. The cen-

tral authorization database can therefore be replaced by a

program written in datalog or another logic-programming

language, as in the Binder security language [6].)

Choosing to represent our authorization information

and rules in a relational database system might seem as

merely shifting our problems from one domain to another.

However, there is a wealth of experience in designing

good relational database schemas [2]—such as the use of

normal forms—as well as formalizing the semantics of

schemas. We believe that many of the problems of au-

thorization are simplified by restatement in the context of

databases, relational algebra, and logic programming.

Furthermore, the greater generality of the database con-

text can lead to a more general solution to the authoriza-

tion problem.

6. Certificates as signed database excerpts

Certificates served to encapsulate request-reply pairs

with our original central authorization service, and they

play much the same role in conjunction with the central

authorization database. However, since we can now ex-

pose some of the internal structure of the central authori-

zation database—we can name its tables and its views and

give their schemas and definitions—we can now store

much richer information in our certificates.

As shown in Figure 5. services still use the certifi-

cates issued by the central authorization database in lieu

of an on-line request and reply. Unlike the earlier use of

certificates, though—in which certificates simply cached

signed request-reply pairs—these certificates can store

additional information which the services can use to de-

rive future authorizations. Figure 5 outlines the two types

of certificates that the central authorization database can

now issue.

• The first type of certificate includes an excerpt

—

one or more rows—from a table or view. Flere,

the first certificate includes row's from the Em-
ployees table. This type of certificate states that

the excerpted rows were found in the named ta-

ble or view.

• The second type of certificate defines a view in

terms of a relational algebra expression involv-

ing other tables and other views. Flere. the sec-

ond certificate includes the definition of the Full-

time Employees view in terms of the Employees

table.

These certificates are. of course, still signed by the

central authorization database, and can be received from

the central authorization database or from a client or other

service. These database certificates name the table or

view that their information comes from, and also include

enough schema information to allow their interpretation at

the service.

The database certificates can include enough infor-

mation to derive the replies for many different requests.

(This is an example of the wild-card feature described

earlier.) Just as we do not require these certificates to in-

clude all of the rows of a table or view, they also need not

61

1st Annual PKI Research Workshop—Proceedings

intermediate
HR
service

service at

resource

Figure 6: Tables and views
in the distributed authorization database

contain the complete definition of a view. For example, a

database certificate encapsulating the Authorizations

view—which might be the union of a large number of

view's—can simply say that it includes one particular

view. Database certificates therefore contain only partial

information; they can say only that a given authorization

does exist, and cannot say that it does not. (Extensions to

partially eliminate this restriction are possible but are out-

side the scope of this paper.)

Constraining the structure of the central authorization

service to be a relational database thus allows our certifi-

cates to include richer, more general forms of information.

Our central authorization database can issue certificates

whose meaning cannot be represented in X.509 or in

SDSI/SPK.1—as illustrated below—and it regularizes the

treatment of existing features.

7. Distributing the database

Our central authorization database is still centralized,

and while the use of certificates has reduced the problems

of performance and availability, they still exist. Worse,

we have not attacked the administrative problems inherent

in a centralized architecture. To eliminate these problems,

we now show how to partition the central authorization

database into a distributed authorization database.

Figure 6 illustrates the operation of the distributed

authorization database. The database stilt contains tables

and views, but they are stored in multiple services on the

network. In this example, for instance, a Human Re-

sources (HR) service holds the Employees table, but the

service controlling the resource itself can define the por-

tion of the Authorizations view that it interprets. Yet an-

other intermediate service can define the Full-time

Employees view referenced by the Authorizations view.

Although most tables and views can be stored any-

where on the network, we require that the Authorizations

view be distributed among the services that control the

various network resources. The distributed authorization

database thus follows the lead of the Pol icyMaker lan-

guage [3], in which the root of all authorization decisions

is local by convention and is established administratively.

Distributed certificates are still used in the same way as

our earlier certificates. As shown earlier in Figure 5, a

service controlling a resource can use multiple certificates

to make authorization decisions. When these are distrib-

uted authorization certificates, they may come from mul-

tiple services.

As shown in Figure 7, certificates are signed by the

services that issue them. Here, Employee certificates are

signed by the HR service, w'hile Full-time Employee cer-

tificates are signed by the intermediate service. The ser-

vice at the resource need not sign its definition of the

Authorizations view to use it, since it originates locally.

Each definition of a view identifies the public key used by

the tables or views it uses an inputs.

We have thus eliminated the need for the central da-

tabase service to issue and sign certificates. Since multi-

ple autonomous services can now issue certificates, we

62

1st Annual PKI Research Workshop—Proceedings

(from “employees”)
1 g

1 -l

1 f- f— | CJ

(signed, HR service

)

certificate

full-time employees =

project(select(...}
; ...)

(signed, intermediate

service)

operation
service request

client
operation

resource response

Figure 7:

Certificates issued by a distributed authorization database

can directly accommodate multiple administrative do-

mains. Administrative domains can interoperate because

they can explicitly refer to one another by the public keys

of the issuing services. The resulting system is similar in

many ways to traditional uses of certificates but it has

some notable differences. In particular, references to pub-

lic keys need not be constant, but can themselves be

drawn from tables and views, as shown in Figure 8. Here,

the policy expressed is that full-time employees can ac-

cess the Internet gateway if authorized by their bosses.

We combine our earlier Full-time Employees view with a

Bosses view, as well as an Approvals view local to each

boss.

Allowing views in one service to refer to tables or

views in another allows the PKI designer to use an arbi-

trary number of levels of indirection. Since it is a folk

theorem in Computer Science that any problem in com-

puting can be solved by adding another level of indirec-

tion, we can expect that this will be a powerful technique,

and that it will serve to make explicit and to extend some

number of security assumptions that might otherwise be

wired into the system architecture.

In particular, this distributed certificate structure pro-

vides a concrete interpretation of the abstract notion of

"trust." One serv ice trusts another if its views depend on

tables or views from that other service. Because the data-

base can hold the names of services (e.g., their public

keys), we can organize services into groups or other more
complex relations. For example, we might have a table of

which services "trust" which others. Certification Au-

thorities are no longer special entities in our PKI; we can

choose to implement them in the same form as in tradi-

tional PKIs—that is, their certificates can continue to bind

names to identities, or to delegate the power to issue fur-

ther certificates—or we can choose different schemas that

take advantage of our greater flexibility and generality.

9. Conclusions and future work

We have shown how certificates can be made more

expressive and more precise by allowing them to include

program code written in a language such as an enhanced

relational algebra. While we have outlined the operation

of such a system, much future work is clearly needed.

We have not touched on certificate revocation in this

paper. While the standard techniques for revocation con-

tinue to apply, we would still like to understand how to

make revocation programmable, as well as checking for

revocation. More generally; we have assumed that the

statements in our system has no side effects, which is

clearly a poor assumption in many cases.

While making certificates programmable increases

their expressiveness, greater expressiveness can always be

misused and can in fact keep us from saying the right

things by making it too easy to say the wrong things, or to

understand the implications of our statements. Thus, the

choice of a security language ultimately involves an engi-

neering tradeoff between increasing generality and main-

taining usability. Understanding this tradeoff again

requires further experience.

63

1st Annual PKI Research Workshop—Proceedings

HR
service

Figure 8: Adding another level of indirection

References

[1] M. Ajtai and Y. Gurevich. “Datalog vs. first-order

logic.” In Proc. 30th IEEE Syrup, on Foundations of

Computer Science, pages 142-146, 1989.

[2] J. Biskup. “Achievements of relational database

schema design theory revisited.” In B. Thaiheim and L.

Libkin, eds., Semantics in Databases, Lecture Notes in

Computer Science, Vol. 1358. pages 29-54. Springer-

Verlag, 1998.

[3] M. Blaze, J. Feigenbaum, and J. Lacy. “Decentralized

trust management,” in Proc. 1996 IEEE Svmp. on

Security and Privacy. May 1996.

[4] L. Cardelli. “Abstractions for mobile computation.”

In J. Vitek and C. Jensen, eds.. Secure Internet Program-

ming: Security Issuesfor Mobile and Distributed Objects,

vol. 1603 of LNCS. pp. 51-94. Springer-Verlag, 1999.

[5] E. F. Codd. “A relational model for large shared data

banks.” Comm, ofthe ACM, 1 3(6):377—387, June 1970

[6] DeTreville, J. 2002. “Binder: a logic-based security

language.” To appear, Proc. 2002 IEEE Symp. on Secu-

rity and Privacy, May 2002.

[7] C. Ellison. B. Frantz. B. Lampson, R. Rivest. B. Tho-

mas, and T. Ylonen. “SPK1 certificate theory.” IETF RFC
3 693, September 1999.

[8] J. Gray, et al. “System R: Relational approach to da-

tabase management.” ACM Trans, on Database Systems

1(2), pages 97-137, June 1976.

[9] P. Gutmann. “X.509 style guide,” available at

http: //wvvAv.cs.auckland.ac.nzy-pgutOOl pubs/\509guide.t

xt. October 2000.

[10] ITU-T Recommendation X.509, “The directory:

public-key and attribute certificate frameworks.” March

2000.

[11] ITU-T Recommendation X.680. “Abstract Notation

One (ASN. 1): Specification of basic notation.” December

1997.

[12] X. Orri & Mas. J.M. 2001. “SPKI-XML certificate

structure.” IETF Internet Draft. November 2001.

[13] R. Rivest and B. Lampson. “SDSI—a simple

distributed security infrastructure," available at

http:. . theorv . 1 cs .m i t .edu'-c i s/ sd s i . it tm I .

64

1st Annual PKI Research Workshop—Proceedings

A Distributed Credential Management System for SPKI-based
Delegation Systems

Oscar Canovas*, Antonio F. Gomez*
* Department of Computer Engineering

* Department of Information and Communications Engineering

University of Murcia

30071 Murcia (Spain)

ocanovas@um.es, skarmeta@dif.um.es

Abstract

Traditionally, certificates have been used to link a

public key to a particular name identifying that key.

However, public key certificates are digitally-signed

statements which can be used in order to assert

many other types of information. SPKI has become

one of the most outstanding proposals referring to

authorization, and several applications have been

based on SPKI certificates in order to provide au-

thorization services to well-known scenarios in dis-

tributed systems. Most of these scenarios are based

on delegation, where resource guards have an ACL
with few entries granting keys belonging to some au-

thorization or naming authorities the right to dele-

gate all access to the controlled resources. These au-

thorities can issue certificates delegating these per-

missions to other subordinates authorities, or to spe-

cific users. In this way, the structure generated re-

flects the system, management process. However,

generation of these certificates usually is system-

dependent. In this paper, we present a management
system that can be used in all SPKI scenarios based

on delegation. This system addresses some problems

related to scalability
,
certificate distribution, and in-

teroperability. We define how certification requests

can be expressed, how different security policies can

be enforced using this system, which are the entities

involved in a certification scenario, and we propose

a mechanism able to exchange authorization-related

information among these entities.

1 Introduction

identity certificate are still used as synonyms. How-
ever, a certificate is a record stating some infor-

mation about the entity the certificate was issued

to, and this information may be a role membership
statement, or an authorization. Authorization cer-

tificates bind a capability to a key, and this capabil-

ity can be used to determine what the entities are

allowed to do.

One of the most outstanding proposals related to

this type of certificates has been the SPKI/SDSI in-

frastructure [8]. SPKI/SDSI provides three types

of digital certificates (ID, attribute, and authoriza-

tion) that can be used in several security scenarios.

In fact, there are several proposals which make use

of SPKI certificates in order to provide authoriza-

tion services to many different application environ-

ments, such as WLAN networks [10], CORBA dis-

tributed objects [12], or web servers [4], Most of

these scenarios are based on delegation, where re-

source guards have an ACL with few entries grant-

ing keys belonging to some authorization or nam-
ing authorities the right to delegate all access to

the controlled resources. However, some of these

proposals do not explain how certificates are issued

by the authorities, and this usually is application-

dependent. Although simple and not distributed ap-

proaches can constitute a good alternative for small

scenarios, some problems derived from scalability

or interoperability might arise in more complex en-

vironments [3]. Generation or revocation of these

certificates should not be implemented using sim-

ple command-line applications. A structured and

distributed system must be provided.

Loren Kohnfelder defined ’’certificate” in 1978 as

a digitally-signed statement holding a name and a

public key, and nowadays the words certificate and

65

A system is necessary which addresses the prob-

lems related to scalability, certificate distribution,

and interoperability. In this paper, we present

1st Annual PKI Research Workshop—Proceedings

DCMS (Distributed Credential Management Sys-

tem). DCMS defines how certification requests

should be expressed, how different security policies

can be enforced using this system, which are the

entities involved in a certification scenario, and how

these entities can exchange authorization-related in-

formation. We have used the AMBAR (Access Man-

agement Based on Authorization Reduction) proto-

col [2] in order to perform that exchange, but sim-

ilar protocols can be also used. This system is di-

vided into the naming management system (NMS),

which manages the issues related to SPKI ID cer-

tificates, and the authorization management system

(AMS), which is responsible for those procedures

related to SPKI attribute and authorization certifi-

cates. We believe that this system can lead up to

the definition of an application-independent system

which can be used in order to provide authorization

services to many different scenarios based on del-

egation. DCMS also complements some proposed

mechanisms for revocation and validation of SPKI
certificates [11], and can make use of public reposi-

tories for certificate storage purposes [9].

We can find similar proposals in the literature. In

[13], a security architecture is presented which is

related to authentication, authorization and delega-

tion in a distributed environment based on SPKI.

This proposal differs from DCMS about object for-

mats, and system structure. We use s-expressions

in order to specify the authorization policies and

requests, instead of HTTP-like messages and codes.

We do not find necessary to use a different encod-

ing since SPKI-like s-expressions are appropriate,

straightforward, and standard. Moreover, we do

provide a generic framework of authorities, proxies

and protocols that can be used as guidelines to de-

sign and implement authorization management ser-

vices. In fact, our system has been implemented us-

ing the Intel version 3.14 of CDSA (Common Data

Security Architecture) [5].

This paper is organized as follows. Section 2

presents an authorization scenario based on delega-

tion in order to clarify why DCMS is useful. Section

3 provides some basic background on the AMBAR
protocol. Section 4 presents the entities involved in

the naming management system (NMS), and shows

the s-expressions that will be used in this system

to specify certification requests and access control

lists. Section 5 contains similar details concerning

the authorization management system (AMS). Sec-

tion 6 presents how system entities can interoper-

ate using the AMBAR protocol. Finally, Section 7

makes some concluding remarks.

2 Motivation

In this section we are going to show a distributed

system where SPKI certificates and delegation can

be used to implement physical access control [3]. We
will also explain why DCMS is necessary.

This distributed system is based on a RBAC (Role

Based Access Control) model [15]. The central con-

cept of RBAC is that permissions are associated

with roles, and users are assigned to appropriate

roles. This greatly simplifies management of per-

missions since the two relations are considered com-

pletely independent.

In this system, special devices named TICA are

used, which are able to perform some access con-

trol operations like opening doors. They are located

at the entrances of the different buildings and/or

departments, and they can establish their own ac-

cess control conditions, trusted entities, and autho-

rization mechanisms. TICAs delegate authorization

management to particular authorization authorities

(AA). This is accomplished through authorization

certificates issued by the TICAs for a set of specific

AAs. These certificates basically give the AAs to-

tal authority over the device, and also permission

to further delegate the access control is granted.

TICAs can also delegate the authority by means

of ACL entries containing the same information in-

cluded in those certificates. Then, AAs usually cre-

ate new attribute certificates giving a subset of per-

missions to the roles defined by any of the exist-

ing naming authorities (NA). Roles are managed by

NAs, which issue ID certificates in order to state

that a particular user has been assigned to a spe-

cific role. In this way, TICAs are the beginning of

the authorization path, and not only the policy en-

forcement point. The device is able to make the

security decision regarding the authorization data

presented by the user requesting the access.

However, this certification management process

must be designed and implemented using a scal-

able approach. An encoding for certification re-

quests must be defined, and a mechanism is neces-

sary which is able to exchange authorization-related

information among the entities involved.

Using DCMS, once TICAs have delegated the au-

thorization management task to the different au-

66

1st Annual PKI Research Workshop—Proceedings

thorities, principals can request individual certifi-

cates in order to gain access. These requests can be

generated and sent to the authorities by the princi-

pal itself, or can be submitted using trusted service

access points (SAP). Authorities will issue the re-

quested certificates depending on the authorization

policy (authorities are the policy decision point).

This policy can be represented using SPKI ACLs,

a database or any other method, and it is system-

dependent, although in the next sections we will as-

sume that it is implemented using ACLs.

(ACLs are particular implementations of these poli-

cies) must be carefully performed since they can

contain sensitive information [16].

It has been designed to be session-oriented in

order to optimize those scenarios where the re-

quest/response messages are exchanged between the

same client and server. In addition, it does not need

to rely on any additional security protocol since it

adds confidentiality and integrity to the data being

transmitted.

Figure 1 shows a particular scenario where TICAs
delegate the authorization tasks to different AAs.

Users make use of DCMS in order to obtain specific

authorization certificates from these entities. In this

case, we assume that authority A and the SAP are

the AMBAR peers. Once the certificates are gener-

ated, these can be presented to the TICAs in order

to gain access.

The AMBAR protocol consists of different compo-

nents organized, as Figure 2 illustrates, in two lay-

ers.

jmmmmm jmmmm jmmmm jmmmmr
Session Retjuraa Authorization Error &»*»

Management Management Results Management Stream
Management Management

Transport Convergence

Figure 1: Use of DCMS

3 AMBAR Protocol

AMBAR (Access Management Based on Authoriza-

tion Reduction) [2] is a protocol for secure exchange

of authorization-related information based on public

key cryptography. This protocol does not depend on

a particular type of authorization or identity-based

certificate, and it contains a negotiation phase de-

signed to adapt the protocol to access control sce-

narios with different requirements (anonymity, con-

fidentiality, credential recovery, etc.). In general,

it provides functionality to transmit resource access

requests, the authorization information related to

those requests (credentials, ACLs), and results ob-

tained from a certificate chain discovery method or

compliance checker. ACLs can be transmitted in

order to give some information to the client about

which credentials would be necessary to access the

resource. However, disclosure of security policies

Figure 2: AMBAR Architecture

• Session Management module (SM). This

module transmits the client and server security

preferences, and generates the cryptographic

data used by the TC layer to protect the sub-

sequent communications. Clients and servers

negotiate the following parameters:

— Symmetric cipher. Parties select the sym-

metric cipher and its key length.

— Operation mode. AMBAR supports two

operation modes: anonymous client mode
and fully identified.

— Identity-based certificates. It is possible to

select X.509, OpenPGP, or SPKI certifi-

cates.

— Authorization-based certificates. AMBAR
supports SPKI certificates, PKIX at-

tribute certificates and KeyNote asserts.

— Credentials distribution. Parties can select

whether the credentials will be provided

by the client (push), or will be obtained

by the server from either a repository or

an issuer (pull).

• Request Management module (RM). The

RM module transmits two types of messages:

messages related to authorization requests and

credentials; and messages related to decisions

and ACLs. Contents and the sequence of these

67

1st Annual PKI Research Workshop—Proceedings

messages are determined by the negotiated op-

eration mode and the method for distribution

of credentials. As we mentioned previously, a

session-oriented protocol allows some optimiza-

tion to be performed. Therefore, the RM mod-
ule could be responsible for optimizing autho-

rization computations.

• Authorization Results Management
module (ARM). The ARM module gener-

ates notifications and transmits the demanded
resources. Negative notifications are transmit-

ted by the server when the access is denied. If

the access were granted, there would be two

possible response messages: an affirmative no-

tification if the client requested the execution

of remote actions; or the controlled resource.

It also enables (disables) the DSM module
when an authorization request demanding the

establishment (conclusion) of a data stream is

granted.

• Error Management module (EM). Sys-

tems use the EM module to signal an error or

caution condition to the other party in their

communication. The EM module transmits a

severity level and an error description.

• Data Stream Management module
(DSM). The described request/response

model is not suitable if we plan to use

AMBAR as a transparent layer providing

confidentiality, authentication and access

control services. The DSM module, initially

disabled, controls the transmission of arbitrary

data streams, which are enabled once a request

demanding the activation of this module is

granted.

• Transport Convergence module (TC).
The TC module provides a common format to

frame SM, RM, ARM, EM, and DSM mes-

sages. This module takes the messages to be

transmitted, authenticates the contents, then

applies the agreed symmetric cipher (always

a block-cipher), and encapsulates the results.

The cryptographic data used to protect the in-

formation is computed by the SM module dur-

ing the negotiation phase.

The AMBAR protocol is part of a complete autho-

rization framework for certificate-based access con-

trol systems. It is implemented with the Intel 3.14

version of CDSA (Common Data Security Architec-

ture) [5]. We have used the CSP (Cryptographic

Service Provider) module built upon OpenSSL, and
the X.509 and SPKI CL (Certificate Library) mod-
ules. We decided to use CDSA since this architec-

ture provides all security services necessary to im-

plement the framework and additionally, this pro-

vides integrity services which can be used to en-

sure component integrity and trusted identification

of the component’s source.

4 Naming Management System
(NMS)

As we mentioned previously, DCMS is composed by

two subsystems, NMS and AMS. In this section we
are going to present the naming management sys-

tem, which is responsible for the certification oper-

ations related to SPKI ID certificates. This type of

certificates can be used to link a name to a partic-

ular principal (public key), and also to define group

membership. NMS is very useful when authoriza-

tion is based on group membership. In relation to

the scenario presented in Section 2, we can imagine

a TICA granting physical access to those principals

which are members of group G. NMS can be used

by principals in order to obtain an ID certificate

for group G, which is issued by a particular naming

authority.

Naming is not a requirement of distributed sys-

tems, but it is worth noting that large-scale SPKI-

based delegation systems can be simplified using

this mechanism. Naming is an optional tool for

group management which can be useful to address

scalability of complex systems.

4.1 Architectural elements

Figure 3 shows the three types of entities involved

in NMS: requestors, service access points, and nam-

ing authorities. In this section we are going to give

a brief description about these core entities, we in-

troduce why they are necessary and howT they inter-

operate.

• Requestor. A requestor is a principal de-

manding the generation of a new ID certifi-

cate. This entity must create a certification

request and must send it to a particular nam-

ing authority (NA) in order to obtain the de-

manded certificate. This submission can be ac-

complished using a service access point or mak-

ing use of an AMBAR connection between the

68

1st Annual PKI Research Workshop—Proceedings

Figure 3: NMS entities

requestor and the NA. Other certificates can be

attached to the request in order to demonstrate

that the principal has permission to obtain the

demanded certificate. There are two types of

requestors: first, the principal demanding an

ID certificate for a particular public key; sec-

ond, the principal demanding an ID certificate

for a particular name (e.g. a certificate stating

that group B is a subgroup of group A). As we
will see later, these two situations are managed
following different approaches.

• Service access point. Requestors can make
use of access points in order to submit their

certification requests to the appropriate nam-

ing authorities. Access points are optional, but

they are very useful since they provide several

additional services to requestors. First, naming

authorities can be hidden from users. More-

over, in some scenarios with many authorities,

it might be complicated to know which are the

appropriate naming authorities for a particu-

lar ID certificate (especially with group mem-
bership certificates). SAPs can learn that lo-

cation information from digitally-signed state-

ments containing information about the system

structure and properties. It is simpler to dis-

tribute this type of information to few SAPs
than to all the principals. Finally, they can pro-

vide a certification service to requestors with-

out AMBAR capabilities. Communication be-

tween requestors and access points is system-

dependent, and it ranges from secure connec-

tions to public terminals placed at buildings or

departments.

• Naming authority. Naming authorities are

the certificate issuers. They create ID certifi-

cates upon the requests received through the

access points or directly from the requestors.

NAs are controlled by a particular authoriza-

tion policy, which can be implemented using

SPKI ACLs or other mechanisms. Whenever
a NA receives a request and its related cer-

tificates, it executes a certificate chain discov-

ery algorithm [6] in order to determine whether

the certification request must be granted or de-

nied. Inputs to this algorithm are the request,

the additional certificates, and ACL entries. If

a certificate chain is discovered, the algorithm

returns the information that will be used to

generate the new certificate. Communication

with NAs are performed using AMBAR. As
we have previously mentioned, AMBAR pro-

vides functionality to exchange authorization-

related information. Using this protocol, enti-

ties can be authenticated (identification of re-

questors is optional), messages are encrypted

and authenticated, and some optimization can

be performed in order to avoid unnecessary cal-

culations and transmissions (previous messages

and authorization decisions can simplify further

requests).

4.2 S-expressions for certification re-

quests and ACL entries

Certification requests for ID certificates must

contain information about the issuer defining

the name, the name itself, the intended subject,

and validity dates. Encoding can be based on

s-expressions [14] since there is no need for making

use of new syntax, and this can simplify the

authorization process. Thus, requests might be

encoded according to the representation form

recommended by SPKI for the authorization tag

field [7]. However, it is worth noting that the data

elements contained in a request are also contained

in a SPKI ID certificate, and therefore the structure

for this type of certificates can be used. It is not

necessary to define a completely new structure in

order to express certification requests. Moreover,

as we will explain, the same structure can be used

by ACLs in order to encode authorization policies.

S-expressions that we have used for certification

requests and ACL entries have the following format:

(cert-request

(issuer (name N

A

t
AT/))

(subject P)
(valid . .

)

)

• cert-request. This identifies the s-expression as

a certification request.

69

1st Annual PKI Research Workshop—Proceedings

• NAi . This is the public key of the naming au-

thority. This authority is responsible for issuing

the ID certificates related to the name N?

.

• N- .
N-i is one of the names defined in the

namespace of the authority NAi.

• P. This is the principal (or principals) request-

ing the ID certificate. P might be:

— A public key.

— A set of entities. There are two possibili-

ties in order to express a set of entities. On
the one hand, we can use a group name,

i.e., (name NA N). On the other hand, we
can use the *-operator set, such as for in-

stance (* set Q R) , where Q and R must

be public keys or names.

• valid. This specifies the requested validity pe-

riod. The structure of this held is the one in-

cluded in the SPKI standard.

If this s-expression is used as a certification request,

P can only be a public key or a name, and it means
that a new ID certificate is being demanded, whose

issuer will be NAi ,
P will be the subject, N- will

be the name linked to P, and will be valid during,

at most, the specified validity interval. However,

if this s-expression is included in the tag held of a

SPKI-like ACL entry, it means that the principal

(or principals) P are authorized to obtain an ID

certificate from NAi, where the name N- will be

linked to P (or each of the principals contained in P)

during the specihed validity period. Furthermore,

Nl can make reference to several names when a (*

prefix) form or a (* set) form is used.

Certihcation requests are encoded as sequences of

two elements. The hrst element is the s-expression

specifying the request, and the second one is a dig-

ital signature of that sequence. Signatures are en-

coded using the signature structure dehned in [7],

and they are generated using the requestor’s private

key. Requests have similar structure to certihcates,

but certihcates are signed by issuers and requests

are signed by requestors.

4.3 Some examples

In order to clarify how NMS entities cooperate to

generate ID certihcates, in this section we are go-

ing to analyze two certihcation requests. First, we

explain how a principal can obtain an ID certifi-

cate. Then, we will show how subgroups can be

dehned using ID certihcates whose subject held also

is a name. In these examples, authorization policies

are represented by ACLs.

4.3.1 ID certificates for principals

In this hrst example, P is a principal demanding

an ID certificate stating P as a member of group

Nfi which is dehned by NAi. P creates the next

certihcation request:

(sequence

(cert-request

(issuer (name NAi AT/))

(subject P))

(signature . .

)

)

This request is sent to NAi in order to obtain the

demanded certihcate. The request will be granted

if NA Z can hnd a certihcate chain from its ACL
entries to the requestor’s public key. The authority

contains the next ACL:

(acl

(entry

(subject (name NAi iV/D)

(tag (cert-request

(issuer (name NAi iV/'))

(subject (* set P Q P))

))

)

)

This ACL specihes that only members of Nj* can

request an ID certihcate for N-

.

If P, Q ,
or R

were members of Nf they could request their own
certihcates. Otherwise, Nj) can be considered as

a relaying party able to make the request. In this

case, we will assume that P is a member of Nf,
and therefore P must send the next ID certihcate

in order to be authorized:

(cert

(issuer (name NAi Nf)

)

(subject P)

)

70

1st Annual PKI Research Workshop—Proceedings

Finally, the naming authority uses the data ob-

tained from the authorization decision in order to

create the certificate (signature has been omitted).

(cert

(issuer (name N

A

t))

(subject P)

)

4.3.2 Subgroups

Subgroups are created using ID certificates whose

subject field is also a name. This can be useful

in order to establish group hierarchies by means of

ID certificates. However, it is worth noting that

a significant difference exists between generation of

subgroups and creation of ID certificates for pub-

lic keys. Generation of ID certificates is normally

requested by the principals involved, but subgroup

certificates cannot be requested by the subgroup it-

self. Authorized requestors are policy-dependent,

but some appropriate candidates are the naming au-

thority defining the subgroup, or even a subgroup

member. In this example, the authorized requestor

is the naming authority, but this has delegated the

authorization to principal R in order to avoid sign-

ing certification requests with the same private key

used to generate ID certificates.

This is the request sent by R to NAi in order to

define Nj* as subgroup of N (it is signed using the

private key of R):

(sequence

(cert-request

(issuer (name N

A

t
N])

)

(subject (name NAi Nf))

)

(signature . .

)

)

Next ACL specifies that NAi can request an ID

certificate for N?
,

and can also delegate that

permission.

(acl

(entry

(subject NAi)

(propagate)

(tag (cert-request

(issuer (name N

A

z)

)

(subject (name NAi JV/D)

))

)

)

R also sends the next authorization certificate

in order to demonstrate that NAi delegated the

permission to R:

(cert

(issuer NAi)

(subject R)

(tag (cert-request *))

)

Finally, NAi uses the data obtained from the au-

thorization decision in order to create the certificate.

(cert

(issuer (name NA
Z
N-))

(subject (name NAi Nf))
)

5 Authorization Management Sys-

tem (AMS)

Section 2 shown a scenario where authorization cer-

tificates can be used in order to gain physical ac-

cess to buildings. The system was based on dele-

gation, and users obtained this type of certificates

from trusted authorization authorities. In this sec-

tion we are going to present the authorization man-
agement system, which is responsible for certifica-

tion operations related to SPKI authorization and

attribute certificates.

5.1 Architectural elements

NMS and AMS are based on similar architectural el-

ements. Requestors and access points are also part

of AMS. Naming authorities are replaced by autho-

rization authorities (AA), but they share some basic

functionality. AAs create attribute and authoriza-

tion certificates upon the requests received through

the access points or directly from the requestors.

An AMS requestor is a principal demanding the gen-

eration of a new’ attribute or authorization certifi-

cate. This entity must create a certification request

containing information about the authorization tag

(the tag is completely application-dependent). Like

71

1st Annual PKI Research Workshop—Proceedings

in NMS, there also are two types of requestors: first,

the principal requesting an authorization certificate;

second, the principal requesting an attribute certifi-

cate for a particular name. As we will see later, we

consider that these two situations should be man-

aged following different approaches.

5.2 S-expressions for certification re-

quests and ACL entries

S-expressions used in AMS to specify certification

requests are also based on the structure defined by

SPKI for attribute and authorization certificates.

The main difference between NMS and AMS s-

expressions is the tag held. This held contains in-

formation about the particular authorization being

requested (when it is contained in a certihcation re-

quest) or granted (when it is part of an ACL entry).

Certihcation requests are also encoded as sequences

composed by the request itself, and its signature.

5.3 Some examples

In order to clarify how AMS entities cooperate to

generate authorization and attribute certihcates, in

this section we are going to analyze two certihca-

tion requests. First, we explain how a principal can

obtain an authorization certihcate. Then, we will

show how attribute certihcates can be generated.

In these examples, authorization policies are also

represented by ACLs.

5.3.1 Authorization certificates

In this hrst example, P is a principal demanding

an authorization certihcate containing a tag tagA

from authority AA
t . Next certihcation request is

created by P:

(sequence

(cert-request

(issuer AAA
(subject P)
(tag tagA))

(signature ..)

)

This request is sent to AA
X
in order to obtain the

demanded certihcate. The request will be granted

if AAi can hnd a certihcate chain from its ACL
entries to the requestor’s public key. The authority

contains the next ACL:

(acl

(entry

(subject P)
(tag (cert-request

(issuer AAA
(subject P)
(tag tagB)

))

)

)

This ACL specihes that P can request an authoriza-

tion certihcate containing the permission specihed

by tagB
(
tagA must be more restrictive or equal

to tagB). Finally, the authorization authority uses

the data obtained from the authorization decision

in order to create the requested certihcate.

(cert

(issuer AAA
(subject P)
(tag tagA)

)

One of the main advantages of this proposal is that

it is possible to specify a class of certihcates, pos-

sibly infinite in size, without having to issue them
all. The appropriate finite subset of that class can

be issued on demand. The potential inhnite size of

the class comes from use of *-forms.

5.3.2 Attribute certificates

Attribute certihcates can be used to specify roles.

The subject can be a name dehning a role, and this

type of certihcate states the permission related to

that role. Roles can be seen as various job functions

in an organization, and users can be assigned to one

role depending on their responsibilities. The role

permissions use to be stable since roles activities do

not change frequently. However, we must answer the

question: ’’Who must the requestor of an attribute

certihcate be?”

Certihcates are issued by authorization authorities,

hence valid requestors are those specihed by their

authorization policies. AMS should keep inherent

72

1st Annual PKI Research Workshop—Proceedings

policies to a minimum, in order to allow users of

the system to design their own authorization poli-

cies. Therefore, valid requestors can range from role

members to specific role managers. Nevertheless, we

find the latter approach very interesting for complex

systems since role management can be greatly sim-

plified using specific administrators (role managers).

Authorities can authorize role managers to request

attribute certificates for a particular set of group

names. This authorization can be expressed as:

AA
t
=> RM}(Nk,Ng

f
),RM?(N$)

This expression denotes that authority AAi autho-

rizes role manager RM 1 to request attribute cer-

tificates for the group Nk defined by NAi, and for

the group N9 defined by NAf. AAi also autho-

rizes RMn to request this type of certificates for

the group Nh defined by NAj.

We are going to see how this relation can be

implemented using AMS. In this example, RM}
requests an attribute certificate for Ng

,
with the

authorization tag tagA . This is the request sent by

RM'} to AAi (it is signed using the private key of

RM}):

(sequence

(cert-request

(issuer AAi)
(subject (name NAf Ng

))

(tag tagA))

(signature . .

)

)

The authority contains an ACL implementing the

above-expressed relation. This is the ACL:

(acl

(entry

(subject RM})
(tag (cert-request

(issuer AAR)
(subject (* set

(name NAi Nk
)

(name NAf Ng
)))

(tag tag3)))

)

(entry

(subject RM?)
(tag (cert-request

(issuer AAR)
(subject (name NAj Nj 1

))

(tag tagc)))

)

)

Finally, the authorization authority uses the data

obtained from the authorization decision in order

to create the requested certificate.

(cert

(issuer AAR)
(subject (name NAf Ng

))

(tag tagA)

)

6 Use of AMBAR in DCMS

Requests and certificates are exchanged using AM-
BAR connections. Although other protocols like

SSL (Secure Socket Layer) can be used for this pur-

pose, we find AMBAR a valuable approach since it

has been designed to exchange authorization-related

information. Entities making use of AMBAR do

not pay attention to issues such as the encapsula-

tion of requests or certificates. They create AM-
BAR connections in order to exchange this type of

information, and AMBAR modules are responsible

for encapsulation and protection. Furthermore, this

protocol has been designed to be session-oriented

in order to optimize those scenarios where the re-

quest/response messages are exchanged between the

same client and server (such as for instance, access

points and authorities).

In DCMS, there are two types entities which must

make use of AMBAR: access points and authori-

ties. Requestors can request their certificates using

access points, and therefore AMBAR functionality

is not a requirement for them. Authorities should

not employ their private keys to establish AMBAR
connections since it is not suitable to protect their

communications making use of the same private key

signing the certificates. Authorities should generate

a new key pair for communication purposes, and

they should issue a certificate authorizing the new

key pair to act as their network interface. This cer-

tificate should include a tag (tag dcms-com), and

will be used by access points and requestors to val-

idate that they are indeed exchanging information

with the right authority.

73

1st Annual PKI Research Workshop—Proceedings

AMBAR connections used in DCMS can perform

authentication based on X.509 certificates, or SPKI
certificates. Access points and authorities are al-

ways authenticated, but identity of requestors can

be preserved using the anonymous mode. Creden-

tials (additional certificates attached to the request)

can be provided by access points or requestors (push

method), or can be recovered from public reposito-

ries by authorities (pull method). Figure 4 shows

an exchange (push) between an access point and an

authorization authority, and how data are encap-

sulated in AMBAR messages. If the certification

request is granted, the authority sends a Resource

message containing the certificate. Otherwise, a

Negative Notification message is generated. Negoti-

ation is performed only once. Then, requests and re-

sults are exchanged using the previously-established

channel.

AMBAR Negotiation
and Authentication

Request Service

AMBAR Request Message
(request, cert 1, ... cert N)^

Naming

Certificate 1
Access Resource Message Authority
Point (requested certificate) "B"

Certificate N Neg_ NotifficaTion Message

Figure 4: Communication between an access point

and an authority

7 Conclusions

In this paper, we have proposed a management sys-

tem that can be used in SPKI scenarios based on

delegation. We present how certification requests

for ID, attribute, and authorization certificates can

be expressed, how authorization policies can be en-

forced in a distributed way, and which are the enti-

ties involved in a certification scenario.

We consider that our system provides strong mecha-

nisms to address scalability-related problems. First,

we have tried to keep inherent policies to a mini-

mum, in order to allow system administrators to de-

sign their own authorization policies. What is more,

following our approach, it is possible to specify a set

of certificates without having to issue them all since

they are issued on demand. Added to this, we make
a clear distinction between requestors and subjects

of certificates. We do not force both entities to be

the same one, enabling therefore the participation

of relying parties.

In order to complete our proposal, additional mech-

anisms must be designed, such as certificate revo-

cation or certificate storage. Currently, we are also

developing a new service of DCMS for automatic re-

duction of certification chains. Certificate reduction

can be used to improve performance of authoriza-

tion decisions and, as is commented in [1], to provide

anonymity services.

8 Acknowledgements

This work is partially supported by TIC2000-0198-

P4-04 project (ISAIAS), and by IST-2001-32161

project (Euro6ix)

References

[1] T. Aura and C. Ellison. Privacy and Account-

ability in Certificate Systems. Technical Report

HUT-TCS-A61, Helsinki University of Technol-

ogy, 2000.

[2] O. Canovas and A.F. Gomez. AMBAR: Ac-

cess Management Based on Authorization Re-

duction. In Proceedings of the International

Conference on Information and Communica-

tions security (ICICS 2001), volume 2229 of

Lecture Notes in Computer Science
,
pages 376-

380. Springer Verlag, November 2001.

[3] O. Canovas, A.F. Gomez, H. Martinez, and

G. Martinez. A Role-Based Implementation

of Physical Access Control using Authorization

Certificates. Technical Report UM-DITEC-
2002-2, Department of Computer Engineering,

University of Murcia, January 2002.

[4] Dwaine Clarke. SPKI/SDSI HTTP Server and

Certificate Chain Discovery in SPKI/SDSI .

Master’s thesis, M.I.T., September 2001.

[5] Intel Corporation. Common Data Security

Architecture (CDSA). World Wide Web,

http://developer.intel.com/ial/security, 2001.

[6] J.E. Elien. Certihcate discovery using

SPKI/SDSI 2.0 certificates. Master's the-

sis, Massachusetts Institue of Technology, May
1998.

[7] C. Ellison, B. Frantz, B. Lampson, R. Rivest,

B. Thomas, and T. Ylonen. Simple Public Key

Certificate. IETF Internet Draft, draft-ietf-

spki-cert-structure-06.txt edition, July 1999.

[8] C. Ellison, B. Frantz, B. Lampson, R. Rivest,

B. Thomas, and T. Ylonen. SPKI certificate

74

1st Annual PKI Research Workshop—Proceedings

theory ,
September 1999. Request For Com-

ments (RFC) 2693.
[9]

T. Hasu and Y. Kortesniemi. Implementing an

SPKI Certificate Repository within the DNS,

Poster Paper Collection of the Theory and

Practice in Public Key Cryptography (PKC
200) edition, January 2000.

[10] J. Koponen, P. Nikander, J. Rasanen, and

J. Paajarvi. Internet access through WLAN
with XML encoded SPKI certificates. In Pro-

ceedings of NordSec ’00 ,
October 2000.

[11] Y. Kortesniemi, T. Hasu, and J. Sars. A Re-

vocation, Validation and Authentication Pro-

tocol for SPKI Based Delegation Systems. In

Proceedings of Network and Distributed System

Security Symposium (NDSS 2000), February

2000 .

[12] T. Lampinen. Using SPKI Certificates for

Authorization in CORBA based Distributed

Object-Oriented Systems. In Proceedings of

NordSec’99
,
pages 61-81, November 1999.

[13] Per Harald Myrvang. An Infrastructure for

Authentication
,
Authorization and Delegation.

PhD thesis, Department of Computer Science,

University of Tromso, May 2000.

[14] R. Rivest and B. Lampson. SDSI: A simple

distributed security infrastructure.

[15] R. Sandhu, E. Coyne, H. Feinstein, and

C. Youman. Role-based access control models.

IEEE Computer
, 29(2), February 1996.

[16] K. Seamons, M. Winslett, and T. Yu. Lim-

iting the Disclosure of Access Control Policies

during Automated Trust Negotiation. In Pro-

ceedings of Network and Distributed System Se-

curity Symposium , April 2001.

75

1st Annual PKI Research Workshop—Proceedings

76

1st Annual PKI Research Workshop—Proceedings

Scalability Issues in PMI Delegation

Scott Knight

Royal Military College ofCanada
knight-s@rmc. ca

Chris Grandy

NDHQ/Directorate ofNational Information Systems (DNIS)

grandy. cc@forces. ca

Abstract

The Canadian Department of National Defence (DND) is shifting its methods for the delegation and exercise of

authority from paper-based to electronic-based means. DND has deployed a commercial PKI but there is no general

technical solution presently employed by DND for access control or electronic authorization of workflow in

distributed processing environments. The aim of this research is to show how an authorization system, or privilege

management infrastructure (PMI), can be used to support business processes DND. The results are expected to be

applicable to large enterprises in general.

The research demonstrates how ITU-T standard X.509 can be used to support DND authority and delegation

models. The investigation involves the analysis of the key authorizations within a specific DND problem domain.

The X.509 standard and concepts from role-based access control form the basis of the PMI design. This involves the

use of attribute certificates to control the specification and delegation of privileges. A novel interpretation of X.509

attribute certificates is proposed that provides separate hierarchies of responsibility for the management and

delegation of roles. The results provide insight into, and quantification of, the complexity of the resulting delegation

chains. The use of a roles based model for delegation is seen as being important to the scaling of PMI to service

large enterprises with mature, complex authority structures. If the processing complexity can be managed, the

flexibility of being able to model the actual privilege delegation paths in an organization is an advantage of a role-

based model.

1. Introduction

Public-key infrastructure (PKI) has matured into a

commercially supported, deployable technology. With a

high degree of assurance current PKI products offer

secure, reliable security services to support

identification, authentication, confidentiality, and non-

repudiation. These are powerful services but the

adoption of PKI in enterprise environments has been

slow. It is the opinion of the authors that wider

proliferation of PKI will come with the ability to

provide effective support for authority structures within

an enterprise. The authority structures within an

enterprise govern business process. Every legitimate

task is performed under the approval of some authority

that has ultimate responsibility for that part of the

business process. In many cases there is a requirement

that the entities performing a task must have the

appropriate approval, or privilege, to do so. An
attribute-certificate based privilege management
infrastructure (PMI) is a mechanism that can be used to

support enterprise authority structures. Attribute-

certificate based PMI is an aspect of PKI and requires

underlying services for the management of public-key

certificates (PKCs). To this extent the proliferation of

PMI can lead to more wide spread adoption of PKI.

Although there are standards that define PMI services

[X.509], and some commercial products that provide

support, there is little attention in the literature paid to

the issues of scalability in an enterprise environment.

Also, there do not seem to be examples of attribute-

certificate deployment models to support business

process. This work examines these issues by proposing

a PMI model to support authority structures in the

Canadian Department of National Defence (DND).

DND has deployed a commercial PKI to be used to

support the Government of Canada policy on Electronic

Authorization and Authentication [Gov96]. The PKI is

intended to support a variety of new systems and legacy

systems, and to provide a unified mechanism for

managing task authorization.

77

1st Annual PKI Research Workshop—Proceedings

An attribute-certificate based PM1 model is used to

explore the complexity of the certificate chains that

need to be verified when exercising privilege. The

resulting certificate chains are quite complex and some

chain pre-processing strategies are discussed to reduce

the real-time privilege verification overhead.

This work is an extension of [GraOl], Although the

model discussed here pertains to DND it is believed

that the work is relevant in a broader context and

reflects authority structure and business process issues

in large organizations in general. The rest of the paper

is organized as follows. Section 2 reviews the

significance of privilege management in the context of

supporting an organization’s security policy. An
overview of privilege management within DND is

presented in Section 3 to provide the context for the

development of a role-based authorization model.

Complexity issues arising from the model are discussed

in Section 4. Finally, Section 5 concludes the paper and

discusses further work.

2 Support Mechanisms for a Security

Policy

In defining security policy the classic literature defines

three security properties: confidentiality, integrity and

availability. The security policy defines the access

privileges a specified set of subjects have for objects in

the system. The objects are the information resources

that are protected by the system. In an information

system the security policy is realized by implementing

security mechanisms such as identification and

authentication (I&A), access control, audit. Through the

use of public-key certificates a PKI system can provide

strong I&A support for a system. This mechanism

provides good assurance of the true identity of the

subjects. In most business systems there must be a

determination of what kinds of access are permitted to

the system objects. Currently access control and the

format of the authorization database is application

specific (stovepipes) and there is no unified way to deal

with permission. A standard mechanism for the support

of access control decisions can provide more complete

support for security policy at the enterprise level. This

support can be provided by attribute-certificate based

PMI and the development of such mechanisms may
lead to greater proliferation of PKI in general.

The authority structures in a specific enterprise

environment have evolved over a period of time and

represent efficiencies in the command and control of

the organization. This is the case with the DND case

study being examined. It seems reasonable to expect

that the PMI would support the organization’s authority

structures and business process, and not expect that the

organization would have to make large changes to its

authority structures and business process to adapt to the

PMI mechanisms.

2.1 Attribute-certificates

X.509 public-key certificates have some support for

privilege management through the use of subject

attributes. However in the following cases it is

recommended that attribute-certificates are the more

suitable mechanism [X509]:

a) a different entity is responsible for

assigning particular privilege to a holder

than for issuing PKCs;

b) there are a number of privilege attributes

to be assigned to a holder, from a variety

of authorities;

c) the lifetime of a privilege differs from that

of the holder's PKC validity;

d) the privilege is valid only during certain

intervals of time which are asynchronous

with that user’s PKC validity or validity

of other privileges; or

e) delegation of authority is permitted, and

for any specific delegation there may be

differences in the kind of privilege that the

delegating authority passes down to the

delegated authority.

All these conditions are true in the case of the DND
example. In complex inter and intra-organizational

relationships, it makes more sense to manage

authentication separately. It is reasonable to expect that

PKC authorities will not have jurisdiction over

privileges that are solely the domain of the process

owner. One would expect this will become the rule

rather than the exception as the market encourages the

emergence of commercial CA services and PKI

outsourcing providers [WH99],

It is also the case that the authority structures of the

example environment have evolved to be heavily role-

based. For example, a member of the Canadian Armed

Forces normally has a career spanning decades.

Personal identification information is static for long

periods during this time. The member may serve in a

number of different roles (concurrently and

overlapping). The privileges associated with the roles

may be defined and modified by different agencies than

78

1st Annual PKI Research Workshop—Proceedings

those assigning the member to the role. It is expected

that this is not unique to the example, and that there are

a large number of enterprise environments where these

conditions hold. The X.509 standard provides a

mechanism for managing roles. This seems to be a

natural mechanism to be used to model the required

authority structures. The standard warns that the ‘"use of

roles within an authorization framework can increase

the complexity of path processing.” There is no

indication in the standard of how complex the path

processing can become, how the model will scale to

larger organizations, or how the role delegation paths

will effect the performance of privilege verifiers.

There are several factors that make X.509 attribute

certificates (ACs) an attractive option for managing

privileges. An X.509 AC can be managed in the same

way as the X.509 PKC. ACs can also be digitally

signed like PKCs. This authenticates the attributes and

provides integrity protection so that the certificates

cannot be modified. ACs are generalizations of identity

certificates, PKCs (an identifier through the use of a

public-key is just one of many possible attributes), and

have naturally evolved from them [BraOO], ACs are

digital certificates that serve primarily to enable

verifiers to establish attributes other than the identity of

the key holder (such as access rights, authorities,

adherence to standards, legal requirements, privileges,

permissions, capabilities, preferences, assets,

demographic information, and policy specifications).

An authorization service, PMI, can be designed using

attribute certificates which each point to a PKC. More
comprehensively, a PMI includes people, policies,

hardware and software interacting together to bind

privileges to a user by issuing him attribute certificates

[Ada99],

Because a PMI depends on the authentication provided

by a PKI, a PKI must be available before a PMI can be

implemented. Since ACs do not provide

authentication,one cannot assign privileges to a user

using attribute certificates if that user does not have at

least one associated PKC.

The standard specifies that a privilege holder must

present an attribute-certificate (AC) containing the

appropriate attributes/privileges to a privilege verifier

before access is granted to an information object (i.e.

the privilege holder asserts a privilege). The privilege

verifier acts as a reference monitor and controls access

to the object. The decision to allow access is based on

the security policy being enforced by the verifier and

any applicable environment variables (e.g. time of day).

2.2 Delegation

Delegation is the conveyance of privilege, from one

entity that holds such privilege to another entity. The

model consists of four components: the source of

authority (SOA), the attribute authority (AA), the

privilege holder and the privilege verifier.

The SOA occupies the highest position in the authority

hierarchy. Within a PMI, the source of authority (SOA)

is analogous to the root CA in hierarchical PKIs. It is

different in that there may be many sources of authority

(one for each privilege or set of privileges) whereas

there is only one root CA in a strictly hierarchical PKI.

The SOA is the issuer of certificates that assign

privileges to privilege holders and is present even in

Figure 1 - The Delegation Model [IntOO]

79

1st Annual PKI Research Workshop—Proceedings

environments where delegation does not occur.

In Figure 1, the SOA authorizes an entity to act as an

AA by assigning it a privilege and the authority to

delegate that privilege. The AA further delegates that

privilege to other AA’s or end entities through the

issuance of certificates that contain the same privilege

(or a subset thereof). The AA is analogous to

subordinate CAs within a PKI, but a CA issues public-

key certificates whereas an AA issues attribute

certificates. All entities that issue and obtain attribute

certificates need to be authenticated; therefore, they will

each require their own PKC. This means AAs will also

require PKCs. Each of the intermediary AAs may, in

certificates that it issues to further privilege holders,

authorize further delegation by those holders also acting

as AAs. The SOA may impose constraints on the re-

delegation of a privilege. A delegator can also further

restrict the ability of downstream AAs to delegate

[IntOO]. A universal restriction on delegation, known as

the domination rule, is that no AA can delegate more

privilege than it holds [IntOO].

The privilege verifier trusts the SOA as the authority

for a given set of privileges for the resource. Also,

when delegation is used, the privilege verifier trusts the

SOA to delegate some or all of those privileges to other

holders. If the privilege asserter’s certificate is not

issued by the SOA, then the privilege verifier must

locate a delegation path of certificates from that

privilege asserter to the SOA. The validation of that

delegation path must include checking that each AA
had sufficient privileges and was duly authorized to

delegate those privileges.

Processing an attribute certificate path in PMI is

analogous to processing other certificate paths within a

PKI. Validation is conducted with respect to attribute

authorities rather than certification authorities, and the

information pertains to privileges rather than identity.

However, with privilege path processing, the processing

engine will need to consider elements of both the PMI
and the PKI in the course of determining the ultimate

validity of a privilege asserter’s attribute certificate.

With respect to PKI, the privilege verifier must verify

the identity of every entity in the path using the

certification path processing procedure identified in the

X.509 standard [IntOO]. For example, a referenced

public-key must be checked for its validity before the

digital signature on an attribute certificate can be

verified.

Privilege path processing relies on the elements of PMI
to establish a valid delegation path. The central

requirement is to ensure that each entity in the path has

the authority to delegate privileges to the entity below.

The delegation path is distinct from the certificate

validation path used to validate the public-key

certificates of the entities involved in the delegation

process. The attribute certificates within the path must

still be digitally signed by the corresponding authority.

The delegation path represents a chain of trust between

the privilege asserter and the SOA.

Figure 2 provides a general illustration of the privilege

processing checks used to establish a chain of trust back

to the SOA. The privilege verifier is presented with an

AC, EE-AC, belonging to an end-entity, EE. EE-AC
might pertain to access to some resource. In order to

verify that EE has legitimate possession of EE-AC the

verifier must verify the signature on the certificate to

ensure it actually was created by the issuer named on

the certificate. In this case the issuer is AA1. To ensure

that AA1 legitimately holds the relevant privilege the

verifier must retrieve the AC that is owned by AA1.
AA1-AC is the certificate that allocates privilege to

AA1; it is issued by AA2. AA1-AC must also have its

signature verified. AA2 may or may not be directly

trusted by the privilege verifier for the required

attributes. If not, the privilege verifier may have to

retrieve another AC (e.g. AA2-AC) until it finds one

issued by a directly trusted AC issuer (SOA) for that

privilege.

Once a valid chain has been confirmed, the privileges

contained in that attribute certificate may be used to

make an access control decision. The attributes are

compared with the relevant privilege policy and other

information associated with the context in which the

certificate is being used. It must be determined if the

privilege holder actually intended to assert the

contained privileges for use with that context. The fact

that a chain of certificates to a trusted SOA exists is not

enough. The willingness of the privilege holder to use

that certificate has to be clearly indicated and verified.

The standard does not specify this application-

dependent mechanism.

The issue of certificate revocation complicates this

process. For the purposes of this paper we will consider

certificates to be short lived and the use of certificate

revocation lists will not be required. A more complete

treatment of this issue and the formats for the attribute

certificates can be found in [GraOl].

2.3 Roles

Roles provide a means to indirectly assign privileges to

entities. Providing access control based on the entity’s

functional role as opposed to its personal identity is a

powerful concept known as Role-based Access Control

80

1st Annual PKI Research Workshop—Proceedings

Figure 2 - Chaining attribute certificates

(RBAC). RBAC is a useful approach because it can

reflect the authority structures within an enterprise. The

basic role model described in the X.509 standard

consists of two types of ACs. Specific privileges

associated with a particular role are specified within

Role Specification Certificates (RSCs). Entities are

assigned to the role (specified by the RSC) via another

attribute certificate called a Role Assignment

Certificate (RAC). The de-coupling of privilege

assignment to roles, from the role assignment to

individuals allows privileges to be updated without

affecting the assignment of the roles.

3 Authorizations in the Problem
Domain

personal computer. This computer may be required

because of an operational requirement and it will be

connected to the Defence Wide Area Network

(DWAN). This particular example is chosen for a

number of reasons. Many readers will relate to this

example. More importantly, the procurement requires

the delegation of authority and the cooperation of

several different roles.

Specific authorities and responsibilities for the control

and spending of funds appropriated by Parliament for

DND are conferred on the Minister of National Defence

(MND) by the Financial Administration Act (FAA) and

the National Defence Act (NDA). Since the MND
cannot carry out these responsibilities personally, it is

necessary for him to authorize officials to exercise these

authorities on his behalf.

3.1 A Procurement Example

Consider a familiar business transaction. Suppose a

customer on a Canadian Forces Base needs to procure a

81

The MND is required to ensure that separate

organizations or individuals are invested with spending

authority and the complimentary, but completely

1st Annual PKI Research Workshop—Proceedings

distinct, payment authority. This is a standard business

practice for fraud protection. This requires at least two

distinct delegation paths to ensure the proper

separation-of-duty. Additionally the computer is

required to be connected to the DWAN. This requires

the approval of a network technical authority that

derives its privilege from a completely separate

delegation path.

As an example of delegation, the Responsibility Centre

(RC) Manager plays a central role exercising spending

authority. An RC Manager is anyone (military or

civilian) who manages a distinct unit or organization,

prepares and controls a budget, and has spending

authority for his/her budget [Dep99].

It is possible to summarize a process model for this

procurement process.
1

The customer, acting in the role

of RC Manager, will normally recognize the need for

the purchase. In this case, the requirement is for a

computer. The Base Telecommunications and

Information Services Officer (BTISO) role will take

responsibility for specifying and describing the

technical aspects of this need. The next five steps are

usually performed by the section belonging to the

Integrated Logistics Officer (ILogO role) based on the

input from the customer and the BTISO: determining

sourcing options; establishing price and terms;

preparing and placing a purchase order; and following

up on the order. The vendor receives the order and

ships the computer along with an invoice. The

customer, in his role as the RC Manager, receives the

computer and confirms it matches the requirement. He
then approves the invoice and submits the transaction

for review to another role, the Financial Officer, who
authorizes the release of funds to the vendor.

Other layers of delegation are possible. For example,

the BTISO would likely delegate this authority to

review and approve technical requirements to a

subordinate such as the Network Maintenance Officer

(NMO).

The processing of this procurement will require that the

individuals filling the various roles have access to the

necessary functions of the procurement system software

(a legacy system). Their access must be authorized.

Their decisions must enable the respective business

process function and can not be repudiable. An
interesting observation is that the entire transaction can

1 A complete process model for the procurement was

completed and is available at [GraOl],

be viewed as series of authentications and

authorizations.

3.2 Mapping the Requirement to

Attribute Certificates

The interaction of users in the various roles in the

previous section suggests that role-based access control

can have tremendous relevance in establishing

electronic authorization for business process. RBAC
takes the approach that authorizations are distributed

according to role rather than identity. The process

model clearly revealed that roles can be effectively used

to conduct a local procurement transaction.

The style of RBAC proposed by the X.509 roles model,

and summarized in section 2.3, can be applied to this

procurement example. Individuals could be assigned a

role assignment certificate matching one of the

procurement roles e.g. BTISO, ILogO, NMO. These

role assignment certificates could point to a

corresponding role specification certificate containing

the key authorizations, or privileges.

A complete design in support of this procurement

example will not be described here. The intent here is to

demonstrate the application of the X.509 standard to

this problem, and not to stipulate all the details of a

specific design. The portions of the design described in

this work are sufficient to support the modeling

scheme. Addressing every role in the process is not

only time-consuming, but also unnecessarily

repetitious. As much insight can be gained about the

specification, assignment and delegation of privileges

by investigating one role as by examining them all.

Therefore, only the BTISO role will be explored in

detail. The technique is completely analogous for the

other roles, such as the ILogO and the Finance Officer.

3.2.1 Extending the X.509 Roles Model

The BTISO typically requires more privileges than just

those needed to participate in a local procurement

transaction. He would also likely be the COMSEC
Custodian for the Base Crypto Account, the local

configuration authority for connections to the DWAN,
and, like many other managers (such as the customer in

this procurement example), an RC Manager responsible

for his own budget. While the details of these privileges

are unimportant here, it is likely that the privileges

associated with these other duties originate from

different sources of authority. Unfortunately, the X.509

standard offers no direct guidance for dealing with

complex roles

82

1st Annual PKI Research Workshop—Proceedings

The design in this paper employs a novel interpretation

of the roles model described within the X.509 standard.

The standard suggests using the role attribute within a

role assignment certificate to point to a single role

specification certificate where all the privileges are

held. The new interpretation builds upon this idea by

proposing that the role specification certificate can

itself contain role attributes, each pointing to another

role specification certificate.

Convenience was considered important in this design.

Otherwise, the attraction of using a certificate-based

PMI would fade for those wishing to apply it to

complex organizations and roles. The BTISO role in the

procurement example is quite common in DND; many

of the privileges and responsibilities associated with the

role are not unique to a particular Base. The same is

true for the other positions. It would be convenient if

the same role design could be reused wherever a

BTISO position exists. DND is an dynamic

organization that demands managers to adapt to

unfamiliar work environments in short periods of time.

It may be asking too much to expect an infantry

Colonel, newly appointed as a Base Commander, to

understand PMI and all the privileges required of his

BTISO. Sending him on a “shopping trip” for privileges

at the various SOAs, besides wasting time, will likely

yield incomplete and unsatisfactory results.

Convenience, therefore, also suggests that a Base

Commander should be able to appoint someone to a

position, such as a BTISO, by simply issuing him a

single role assignment certificate.

Think of the BTISO role as a super-role encompassing

the privileges held by a BTISO. Smaller, more specific

roles, such as COMSEC Custodian, DWAN
Configuration Control Officer and RC Manager, can be

thought of as sub-roles comprising the super-role.

Viewing complex roles in this way offers several

advantages. The most obvious convenience is that it

allows complex roles, or super-roles, to be quickly and

easily constructed by simply combining more

elementary roles. Designers of the role specification

certificate for the super-role can quickly gather many of

the necessary privileges by inserting pointers to role

specification certificates for the sub-roles.

Reuse is another observable benefit. The number of

attributes that have to be developed exclusively for the

role of BTISO can be minimized since many of the

necessary attributes already exist within the recognized

sub-roles. Of course, this can be a double-edged sword.

Each role will have to be carefully inspected to ensure

that a super-role does not inherit privileges that are part

of the sub-role, such that the super-role acquires

privileges it is not entitled to. Nonetheless, a single role

specification certificate can be reused by several super-

roles. The BTISO needs spending authority, but so does

the ILogO, the customer and many others across DND.
Somewhere in the hierarchies below these roles the

same generic set of spending privileges (identified by

the sub-role of RC Manager) could be referenced.

Finally, in keeping with the intent of the X.509

standard, many of the updates to complex super-roles

would be made automatically. Every change to a role

specification certificate will percolate upwards to

modify the capabilities of any role specification

certificate above it in the hierarchy. This effect will be

most pronounced whenever there are changes at the

bottom of the hierarchy. For example, any change in the

privileges associated with the role specification

certificate for RC Manager will automatically update

the capability of any super-role which references it, e.g.

the BTISO, the ILogO etc. Although designers of role

specification certificates higher in the hierarchy will

have to monitor the effects of these changes on the

super-roles, the outcome should be to generally increase

their currency and relevance since the changes are

being effected by the source of authority for a particular

privilege.

The bottom of the hierarchy would consist completely

of privileges that could not be decomposed any further.

These privileges would be contained within atomic role

specification certificates, such as RC Manager. These

atomic certificates contain privileges that naturally go

together; it would make no sense to split them any

further. It is likely that a large number of these atomic

role specification certificates will be re-used as sub-

roles within many other super-roles. These atomic role

specification certificates are a natural development

since, in all probability, a single source of authority will

be responsible for various privileges that are closely

related. For instance, all spending privileges, including

those associated with the role of RC Manager, are

controlled by the same source of authority, the MND.
These spending authorities (described earlier) are

designed to complement each other. Rather than assign

them individually, it would be practical to group these

complementary privileges together in role specification

certificates, such as for the role of RC Manager.

3.2.2 Delegation Chains for the Validation

of Role Specification

The specification and maintenance of these roles, used

across DND, would be a centralized function of the

National Defence Headquarters (NDHQ). In this way

role specifications are produced and maintained by

83

1st Annual PKI Research Workshop—Proceedings

people and organizations that understand the PMI and

the interaction of privilege. The SOA, in this case the

MND, would set up the required atomic certificates and

delegate the responsibility for the creation and

maintenance of complex roles for various parts of the

business process to staff officers. They can be thought

of as role managers. They produce ready-to-use role

specifications (probably complex roles) that can be

used by field officers to assign people to roles in their

organizations. The ability to access a step of the

business process must include verifying the delegation

chain from the required attribute/permission on an

atomic certificate, through more complex role

specification certificates, to the author of the RSCs (an

AA that must have the right to delegate the privilege),

and through any superior role-specification AAs back

to the SOA. The validation of this chain ensures that

the privilege is being exercised through an authorized

role, and that the creators of that role had the right to

delegate the privilege to the role.

3.2.3 Delegation Chains for the Validation

of Role Assignment

The delegation of authority to individuals has a separate

delegation chain tracing back to the SOA (in this case

the MND). The delegation of authority to individuals is

made by issuing role assignment certificates.

The MND delegates authority for the Canadian Armed
Forces to the Chief of the Defence Staff. The Chief of

the Defence Staff delegates authority for large

formations of the military to superior commanders who
in turn delegate authority for smaller units to

commanding officers. These delegations are made by

using the ready-to-use roles, which are prepared by the

centralized RSC managers in NDHQ. The commanders

do not have to, and do not want to, understand the

specification and maintenance of the ready-to-use

RSCs.

The ability to access a step of the business process must

include verifying the delegation chain from the required

attribute/permission on an atomic certificate, through

more complex role specification certificates, to the

commander assigning the role to an individual (an AA
that must have the right to delegate the privilege), and

through any superior commander AAs back to the

SOA. The validation of this chain ensures that the

privilege is being exercised through an authorized role,

and that the chain of commanders assigning that role to

the user both possess the privilege and had the right to

delegate the privilege to individuals down the chain of

command.

Figure 3 provides a graphical representation of these

dual delegation chains. It is assumed in the figure that

the AAs have the necessary privileges to delegate; the

diagram has been simplified and certificates associated

with this are not shown. The role specification

validation chain extends from the BT1SO RSC back

through the manager for the BISTO role to the SOA.
The role assignment validation chain extends from the

BTISO RSC back through the Base Commander to the

SOA.

4 Delegation Path Complexity

When an end entity tries to access a controlled object

the privilege verifier protecting that object must ensure

the end entity is in valid possession of the

privilege/security attribute required by the security

policy to allow access. This will require the privilege

verifier to walk the certificate chains to ensure the chain

of trust is not broken between the SOA and the user of

the attribute. For each certificate, the verifier will have

to ensure the certificate is properly signed (a public-key

operation), and that some required attribute(s) exist in

the certificate. The public-key certificate operations

dominate the complexity, and attribute checks can be

ignored.

The diagram in Figure 3 has been simplified. In the

general case there may be a number of RSCs in a chain

that describes the role hierarchy from the complex role

the end user is using, to less complex roles, and finally

to atomic roles. Each of the RSC certificates in the

hierarchy would have a role specification validation

chain rooted at the SOA (section 3.2.2). Each

specification validation chain might include more than

one role manager (i.e. the role management might be

delegated down the chain). Each chain must be

validated.

A superior commander assigns the role to the end entity

by issuing a RAC. The role assignment validation chain

extending back through commanders to the SOA must

also be validated. But at each step back through this

chain the commanders’ own privileges were assigned to

them through their own role RACs. So the certificate

chains of each commander’s role must also be walked.

Consider the following simplifying assumptions.

a) There is a simple CA; the verifier has

access to a trust root certificate for the CA
that it can use to verify any PKC.

Therefore certificate validation requires

two public-key operations: signature

verification of the attribute certificate

84

1st Annual PKI Research Workshop—Proceedings

People

Certificates

RC Manager)

Certificate authorship

Certificate attribute

Figure 3 - Delegation Chains

using the issuer’s PK.C, and PKC
verification using the certificate for the

CA.

b) The SOA directly issues all atomic RSCs.

c) The RACs issued to the role managers

directly reference atomic RSCs and do not

reference complex roles.

d) Delegation in the role specification

validation chains is uniform. I.e. there are

always the same number of role managers

in the management delegation hierarchy

for each complex RSC.

e) The RSC role hierarchy is uniform. I.e.

there is always the same number of

complex RSCs in the chain from the end

entity’s role RSC to the atomic RSCs.

Now, let numro i es be the number of complex roles in

the RSC hierarchy from the end entity’s RSC to the

atomic RSCs (including the end entity’s role). Let

nurrvgr be the number of role managers in the

management delegation hierarchy. Let numcdr be the

number of entities in the role assignment validation

chain extending back through commanders to the SOA
(including the end entity but not including the SOA).

Now, consider the number of certificates that need to be

validated in the delegation chains. The atomic RSC
containing the required privilege must be validated.

Also, each complex RSC in the role hierarchy must be

validated. This requires validation of the complex RSC
itself and validation of each of the manager’s RACs up

85

1st Annual PKI Research Workshop—Proceedings

the chain to the SOA. Therefore, for a role used by an

end entity or a superior commander

l+numroles (l+nurrimgj-) operations are required to

validate its management chain delegation.

The role used by an end entity or a superior commander

is assigned using a RAC, which must be verified. The

validity of each superior commander's role must also be

verified, which means validating its complete

management delegation chain too. The complete set of

attribute-certificates is then

nuiticdr (1+ (l+numroles (l+nummgr))

.

The number of operations required to validate an access

will be twice the number of certificates in the relevant

validation chains (from assumption a.). Therefore the

overall complexity of making an access control

decision for an end entity is:

2numcdr (2+numroles (l+nummgr)) (1)

If a very simple authorization structure is used, where

numroles=l, nummgr=l and numcdr=2, as depicted in

Figure 3, then 16 operations are needed to make an

access control decision. However, within DND five

levels of command delegation would not be

unreasonable. E.g. delegation might proceed from the

MND, to Chief of the Defence Staff, to the Commander
of the Army, to the Base Commander, to the BTISO.

Now as a more typical example, consider the case

where numroles=3, nummgr=2 and numcdr=5.

Complexity for an access control operation is now 1 10.

Public-key operations are expensive and the complexity

of implementing this model seems high. This bears out

the complexity warnings in [x509], and in [FH00]

where Farrell and Housely do not recommend the use

of delegation chains. This complexity results from

attempting to mirror the distribution of privilege within

a real organization. If the processing complexity can be

managed, the flexibility of being able to model the

actual privilege delegation paths in an organization is

an advantage of this role-based model.

The complexity due to processing paths and retrieving

certificates may be mitigated through the use of a cache

within the verifier components. This possibility stems

from the observation that most of the authorization

structure is stable for significant periods of time. The

roles assigned to individuals are often stable of a period

of months. The privileges associated with roles would

also have a similar period of stability. Significant

segments of the certificate chains can be pre-validated

and cached. Many different end entities require the

validation of common chain segments. For example a

superior commanders role validation is used in

validating access requests for all subordinates. Only

chain segments that have changed recently need to be

revalidated. The investigation of efficient caching

schemes to improve the efficacy of implementation is

future work.

5 Conclusion

This work demonstrates how the X.509 standard can be

used to support Canadian Department of National

Defence authority structure models. It is expected that

the results are applicable to large enterprise

environments in general.

The roles model in the X.509 standard is compatible

with the hierarchy of roles concept within role-based

access control (RBAC). An interpretation of the X.509

standard is proposed that allows the construction of

complex super-roles from more basic sub-roles. This

structure leads to a separation of attribute authorities

responsible for the specification of roles, from attribute

authorities responsible for the assignment of roles. The

combined effect is to produce a PMI model that meets

the DND criteria for control over the granting of

authority.

The results provide insight into, and quantification of,

the complexity of the delegation chains. The use of a

roles based model for delegation is seen as being

important to the scaling of PMI to service large

enterprises with mature, complex authority structures.

Using role assignment and role specification certificates

in conjunction with delegation paths will be a challenge

for designers in complex business transactions. The

large number of certificates required in delegation

models will complicate implementation. This concern

may be mitigated if the verifier can cache certificates

and recently calculated delegation paths.

References

[BraOO] S. Brands. Rethinking Public Key

Infrastructures and Digital Certificates

:

Building in Privacy. MIT Press, Cambridge,

Mass, 2000.

[Dep99] Department of National Defence.

Delegation of Authorities for Financial

Administration for DND and the CF A-FN-

100-002/AG-006, Government of Canada,

May 1999.

[FH00] S. Farrell and R. Housley. An Internet

Attribute Certificate Profile for

86

1st Annual PKI Research Workshop—Proceedings

[Gov96]

[GraOl]

[IntOO]

[WH99]

Authorizations. Draft - PKIX Working

Group. August 2000. (work in progress).

http://vvAVAvftetf.org/intemet-drafts/draft-ietf-

pkix-ac509prof-00.txt

Government of Canada. The Business Case

For Electronic Authorization and

Authentication (EAA) in The Government of

Canada. January 1996.

Grandy, Chris, Using A Privilege

Management Infrastructure To Support

Business Processes Within The Department

Of National Defence And The Canadian

Forces, Master’s Thesis Royal Military

College of Canada, April 2001.

International Telecommunications Union.

ITU-T Recommendation X.509\ISO/IEC

9594-8: Information Technology - Open

Systems Interconnection — The Directory

:

Public-Key and Attribute Certificate

Frameworks. ITU-T, 2000.

P. Wing, B. O’Higgins. Using Public-Key

Infrastructures for Security and Risk

Management. In IEEE Magazine
,
pages 71-

73, September 1999.

87

1st Annual PKI Research Workshop—Proceedings

88

1st Annual PKI Research Workshop—Proceedings

Password-Enabled PKI:

Virtual Smartcards versus Virtual Soft Tokens

Ravi Sandhu Mihir Bellare Ravi Ganesan

SingleSignOn.Net Inc., and

George Mason University

rsandhu@singlesignon.net

SingleSignOn.Net Inc., and SingleSignOn.Net Inc.,

University of California, San Diego 1 1417 Sunset Hills Road, Reston, VA
mihir@cs.ucsd.edu ravi@singlesignon.net

Abstract

Recently there has been considerable interest

among PKI vendors and researchers in the concept of

password-enabled PKI. Several viable proposals and

products have emerged. Fundamentally there are two

distinct methods for using passwords with private

keys. One method is to use the password to retrieve a

private key, while the other uses the password as one

component of the private key. We motivate the

names virtual soft tokens for the former and virtual

smartcards for the latter. The major characteristics of

these two approaches are identified and contrasted.

1. Introduction and Motivation

The notion of a password-enabled PKI sounds like an

oxymoron to those of us who have lived through the

last decade of discussion on PKI and its rosy

prospects. PKI was supposed to do away with

passwords. By all logic and forecast, passwords

should be a relic of the stone age of cyberspace and

should no longer be in use today. PKI was expected

to replace them with private keys securely generated

and forever safe in tamper-proof smartcards. In the

coming brave new world, these private keys would be

activated by appropriate biometrics securely

embedded and captured by the smartcard. The reality

of 2002, however, is that passwords are used in

cyberspace on a scale scarcely imagined a decade

ago. There are hundreds of millions, perhaps even

billions, of instances of password usage in

cyberspace every day. Conservatively, consider tens

of millions of users each invoking ten instances of

password usages per day. In contrast one has to look

high and low to find actual uses of smartcards, even

in laboratory or pilot situations.

Simply stated, it is an indisputable empirical

fact that smartcards have not happened.
1

If the

1

This statement should be understood in context of the use of

smartcards for PKI on the Internet via widely available desktops

original vision of smartcards with ubiquitous readers

had become reality there would be no need to talk

about password-enabled PKI. All the same, it is

worth mentioning that the vision of smartcards has

not faded completely, and they may still happen some

day. At this moment the DoD is engaged in a major

rollout of smartcards in numbers that make sense in

the scale of today’s Internet." Not a few thousand or

even a few hundred thousand but in the scale of 2 to

5 million. The discipline and resources of the DoD
have few parallels in the world. This is a fascinating

experiment to watch. It may finally prove the

feasibility of a large-scale deployment of smartcards.

Nonetheless it will be hard for Federal Government

agencies, corporations, educational institutions, etc.

to emulate this scale of deployment of smartcards.

Note that the difficulty is not so much in the process

and cost of issuing the smartcards per se, but much
more in deploying smartcard readers on each and

every computer in use by the user population.

Proliferation of devices such as PDAs and wireless

phones further compounds the problem. Moreover,

we have needs at larger scale than the DoD
experiment. The Federal Government often deals

with 100’s of millions of users. It is not unusual for

large corporations to be in touch with 10’s of millions

of users. It is certainly within their vision to be in

touch with 100’s of millions and even billions of

users in the future. Given the multi-year deployment

of DoD smartcards, one wonders how the truly large

scale will ever be realized in this mode. It seems

rather unlikely that we will have a national scale

deployment of smartcards in the near future, let alone

a global scale deployment. Organizations whose PKI

strategy depends entirely on smartcards happening

very soon are making a rather risky bet.

and laptops The use of smartcards in specialized applications has

seen considerable success, more so in Europe and Asia than in

North America In these applications the smartcard is often

embedded in a device such as a wireless telephone or a television-

set top box, or in a credit-card with specialized readers
:
http://www defenselink mil/news/0ct2000/n 10 1 02000 2000 1010

7 html

89

1st Annual PKI Research Workshop—Proceedings

If smartcards are not available where do we
store the user’s private key and how do we make it

portable? Most systems today store the private key

encrypted with a user-selected password on the hard

disk. Portability is achieved by transporting the

encrypted private key on removable media, such as a

floppy disk. Currently one cannot guarantee

availability of floppy disk readers, or other media-

specific devices, on every computer. In general the

portability of any media-specific transport is

questionable in a truly open environment. All the

same the notion of a “soft token”, that is a private-

key encrypted with a password, in contrast to a “hard

token”, that is a private-key which never leaves a

smartcard, has been around for over a decade and has

been deployed in several systems. From the user’s

perspective it is a natural progression to store the soft

token on a network server rather than having to carry

it around. This is very easily achieved by copying

the contents of the soft token onto a server.

Password-enabled PKI relies on passwords to

enable the use of private keys. Passwords are

extremely easy to use and are easily usable from

multiple computers. Users continue to express

frustration with passwords, mainly because they have

too many of them and are often required to change

them too often. Password-enabled PKI alleviates

both of these problems. PKI facilitates use of the

same digital identity at multiple relying parties,

including those with whom the user has had no prior

contact. Thus a user need not be burdened with a

separate password for every relying party. With a

dramatically reduced number of passwords to

remember, users can be reasonably persuaded (or

gently enforced) to choose passwords of adequate

complexity without having to write them on paper as

a memory aid. Gentle enforcement of password

complexity rules is more user-friendly than the

current conventional wisdom of constantly chasing

users to change passwords as a countermeasure to

selection of weak passwords (or the writing on paper

of many complex passwords).

To a large extent password-enabled PKI has

happened in spite of PKI orthodoxy which calls for

smartcard-enabled PKI wherein the private key never

leaves the smartcard. As such the concept of

password-enabled PKI has not really been studied

systematically. Instead a number of proposals have

been published and implemented, each one motivated

by its own principal considerations. One of the goals

of this paper is to provide a systematic analysis from

security, functionality and operational perspectives.

We specifically assume that the underlying

cryptographic protocols are secure. This is a

reasonable assumption since in many cases proofs of

security or at least strong informal arguments have

been provided. Empirically, we can say that it is quite

feasible to get the cryptography correct. Our goal is

to understand the overall security that is achieved and

the functional and operational implications of

specific approaches.

2. Password Vulnerabilities

It is generally agreed that password-enabled

PKI will not provide the same level of security as

smartcard-based
3

or biometric-based PKI .

4
All the

same there is considerable confusion about the actual

security vulnerabilities of passwords. So we begin

with a brief discussion of password vulnerabilities

before turning to the main topic of the paper.

There are some inherent vulnerabilities of

password-based systems. A password can be

compromised without knowledge of the legitimate

owner. There is no physical evidence of theft. The

possibility for undetected compromise is further

enhanced if users reuse the same password at poorly

protected sites, who may do something silly like

storing passwords in the clear (or even less extreme).

This is almost as bad as writing the password on

paper and displaying it in a public place. Conversely

a password can be easily shared. A common
example is a corporate executive who shares her

password with her secretary. In absence of other

convenient mechanisms for this purpose, sharing of a

password is a simple means to provide the secretary

access to the executive’s email. These inherent

vulnerabilities cannot be completely addressed

without cooperation and education of users.

However, technology to mitigate these problems does

exist. Misuse detection systems can help in

identifying occurrences of misuse due to compromise

or sharing. The concept of a trusted path can be used

to ensure that passwords are revealed to trusted

entities and not to software that spoofs the look and

appearance of trusted entities. Even more effective is

the use of protocols that do not reveal passwords but

instead prove knowledge of the password for

authentication.

Passwords are also susceptible to guessing

attacks. On-line guessing requires the attacker to try

It should be noted that not all smartcards are equal. It is possible

to do smartcards very badly so they are not tamperproof. For

purpose of this paper we assume that smartcards can be made

tamperproof In practice this is a difficult goal
4

Currently there is considerable interest in biometrics for

authentication, especially following the events of September 11,

2001 Biometric-enabled PKI, with or without the use of

smartcards, is a fascinating possibility' for higher assurance than

achieved by password-enabled PKI or even smartcard-enabled

PKI Consideration of biometric-enabled PKI is beyond the scope

of this paper

90

1st Annual PKI Research Workshop—Proceedings

password guesses directly against the protected

system and see if the guessed password works

successfully. Enforcement of password complexity

rules makes these attacks harder. The threat is

further mitigated by throttling schemes which slow

down the rate at which such attacks can be pursued.

With a simple “three guesses and out” rule it is

possible to introduce denial of service vulnerabilities

but more sophisticated approaches are possible. For

our purpose we assume that on-line guessing is taken

care of in some such manner.

The most serious threat to existing password-

based systems is the possibility of off-line dictionary

attacks. In these attacks the attacker has knowledge

of the outcome of some cryptographic operation

which uses the password as a “key”. The precise

knowledge available and attendant attack varies from

system to system. We will generically call this

information as known plaintext.
5 We will also use

the shorter term dictionary attack to specifically mean

off-line dictionary attack. Known plaintext is

sufficient to allow an attacker to verify if a password

guess is correct or not. The crucial aspect is that the

guesses can be verified off-line. By trying large

numbers (tens or hundreds of thousands) of

commonly used passwords from a so-called

dictionary the attacker can succeed without searching

the entire key space. This problem has been well

known since at least 1979 [MT79] but it continues to

be a major vulnerability of existing password-based

systems [WU99]. We can distinguish between

network-based and server-based offline dictionary

attacks. In the former case the required known
plaintext is obtained from the network protocol,

possibly by network sniffing or more directly by

simply running the protocol. Server-based attacks

require capture of this information by server

penetration in some way. In particular system

administrators of the server will typically have easy

access to the requisite known plaintext.

To complicate dictionary attacks a password is

typically salted before it is used as a “key”. The salt

is a random number which is usually not kept secret.

Different users with different salts will generate

different known plaintext making the dictionary

attack more time consuming. In particular the

attacker cannot precompute known plaintext values

from the dictionary passwords alone, but must do so

separately for each value of the salt. This makes
precomputation of the dictionary attack infeasible

since the space of possible salts is very large.

It should be noted that known plaintext can be known structure

rather than known content

3. Password-based Cryptographic
Protocols

The Kerberos system [KN93, NT94] was one

of the first to use passwords as a basis for

cryptographic protocols. Susceptibility of Kerberos

to network-based dictionary attacks is well-known

[BM91, WU99].
6 A number of password-based

cryptographic protocols immune to network-based

dictionary attacks have since been published.

Notable amongst these are the EKE [BM92], SPEKE
[JAB96] and SRP [WU98] protocols, but there are

many others. All these protocols use public-key

cryptography in some way, a requirement that has

been shown to be theoretically necessary [HK99b],

We can reasonably claim that, since about 1992, we
know how to construct password-based cryptographic

protocols immune to network-based dictionary

attacks.
7

In the above protocols both the client and the

server store the password. Server compromise is

however a real threat, and in this case it immediately

yields the password to the attacker. In the augmented

EKE [BM93] and SNAPI-X [MPSOO] protocols, the

server holds a hash of the password rather than the

password, so server-compromise does not

immediately yield the password to the adversary, but

the attacker, having compromised the server, can still

mount a dictionary attack based on the password

hash. Immunity to server-based dictionary attack is

not so easy to achieve. An approach based on

multiple servers has recently emerged. The user’s

password is used to retrieve shares of a secret from

multiple servers without exposure to network-based

dictionary attacks. The secret is then assembled at

the client computer from its shares. This long

random secret can then be used for a variety of

cryptographic purposes. Ford and Kaliski [FKOO]

present an elegant n-of-n scheme for this purpose,

and suggest using 2-of-2 in practice. In general all n

servers need to be penetrated by an attacker.

Compromise of (n-1) is not sufficient. Jablon

[JAB01] proposes schemes with additional desirable

properties.

In practice schemes with multiple servers

impose operational requirements to keep additional

servers online and available. Moreover these servers

may be subject to common-mode security failures.

6
Kerberos failure to server attacks is complete and absolute

obviating the need to do a server-based dictionary attack It is

interesting to note that Kerberos employs the user name and realm

name as salt in its stnng to key function [KN93]
7

Security analysis of such protocols is however subtle, and

definitions of security goals, together with proven secure protocols,

including a proof for the core of EKE, have emerged only more

recently jBPROO. BMPOO],

91

1st Annual PKI Research Workshop—Proceedings

Once an attacker knows how to break one server,

likelihood of success on the other is quite significant

in practice. Possibility of insider attacks could be

reduced due to requirement of insider collusion

across multiple servers, but outsider attacks may not

be significantly mitigated. At the same time

operational quality may be degraded. Security

infrastructure is expected to be more robust than the

infrastructure it protects. Each security server would

generally be replicated for reliability purposes. Each

additional server therefore counts as two.

Appropriate hardening of a single server with suitable

separation of duties and least privilege could present

a more viable approach to outsider and insider

attacks.

4. Password-enabled PKI

With this background and motivation we now
address the main topic of this paper. There are

fundamentally two distinct ways to implement

password-enabled PKI.

1. Employ the user’s password as a means to

securely retrieve the user’s private key on to any

computer from where it can then be used without

further online interaction.

2. Employ the user’s password as a component of

the user’s private key which can be used only in

conjunction with another component which, in

turn, can only be used on an online server.

The principal distinction between these two

approaches is whether or not the user’s private key is

completely resident on the user's computer in a

usable form. In the first case the user’s key is

available in the clear on the user’s computer and can

be used independent of any further interaction with

the online server. Network-based storage of a user’s

private key in this manner is analogous to storage of

an encrypted private key on a soft token. Once this

private key is decrypted on a computer it can be used

indefinitely without continued need for the soft

token. Because of this analogy we call this approach

a virtual soft token (or network-based soft token).

In the second approach the password only

enables usage of the private key without bringing the

entire private key together in one place. The overall

private key is split into two components. One
component is computed from the user’s password.

The other is resident on a secure online server. Let

us call the former component the password

component and the latter component the server

component. Both components are required whenever

the user wishes to use her overall private key but they

are never brought together in one place. Instead an

interactive protocol is carried out to achieve that

result. Network-based usage of a component of the

user’s private key in this manner is analogous to

usage of a private key in a smartcard. Just as the

private key never leaves the smartcard, the server

component of a user’s overall private key never

leaves the network server. Because of this analogy

we call the second approach a virtual smartcard (or

network-based smartcard).
8

In the remainder of this paper we identify

major characteristics of these two approaches to

password-enabled PKI and compare them.

4.1. Virtual Soft Tokens

Virtual soft tokens enable retrieval of a user’s

private key onto any computer of the user’s choice.

A simplistic approach to this task would be to store

each user’s key encrypted with the user’s password

on an online server. Anyone could retrieve any of

these encrypted keys, but without knowledge of the

correct password would not be able to directly

decrypt them. The virtual soft token is simply a

substitute for the physical soft token.
9

Unfortunately

this scheme is susceptible to dictionary attacks. An
attacker who has access to the encrypted private key

can verify guesses for the password by decrypting the

private key with the guess and verifying success or

failure with respect to the known public key.
10

A virtual soft token therefore cannot be freely

accessible for download. Instead it must be protected

from network-based dictionary attacks by one of the

password-based protocols such as EKE, SPEKE or

equivalent.

Virtual soft tokens were first proposed in the

SPX system [TA91]. The designers of SPX did not

feel comfortable downloading the user’s long-term

private key to the client machine. Instead they

proposed creation of a short-term private key whose

public-key certificate was signed by the user's long-

term private key. Only the short term key would be

downloaded to the client machine for unrestricted use

within its short life. In a sense this proposal is

stronger than a physical soft token since compromise

*
It should be noted that the term virtual smartcard has been used

for schemes that are virtual soft tokens in our terminology This is

inappropriate since an essential characteristic of a smartcard is that

the private key never leaves the smartcard

People who use soft tokens can trivially virtualize them in this

manner by simply copying the soft token to some server from

where it is accessible
10 Hoover and Kausik [HK99a] suggest that this dictionary attack

can be avoided by protecting disclosure of the public key

Unfortunately their approach of “cryptographic camouflage”

negates the mam advantage of PKJ where the public key does not

need to be confidential Technically, Hoover and Kausik also

require elimination of redundancy in encryption of the private key

so “known structure” attacks are not possible

92

1st Annual PKI Research Workshop—Proceedings

of the client leads to compromise of a short-term key

with a life of say 8 hours. Compromise of a client

with a long-term key with a life of say 1 year is more

devastating. In another sense the SPX soft token is

weaker with respect to non-repudiation. The user’s

long-term key is exposed on the SPX server where it

is needed to construct the certificate for the short-

term key. The SPX server can therefore impersonate

the user via knowledge of the long-term key.

Novell’s NetWare v4 deployed a similar process for

downloading a temporary private key [KPC95]

(although it used a different set of underlying

cryptographic algorithms).

Recent proposals for virtual soft tokens have

returned to the idea of retrieving the long-term

private key on to the client. As we have seen we
know how to prevent network-based dictionary

attacks in this context. A number of protocols for

this purpose were recently presented by Perlman and

Kaufman [PK99]. There are some significant

differences in detailed properties of these protocols.

Nonetheless from our vantage they all share a

common core of security properties: exposure of

long-term private keys on the client and immunity to

network-based dictionary attacks.

Ford and Kaliski [FKOO], and later Jablon

[JAB01], propose solutions to server-based

dictionary attacks. As discussed earlier these

solutions require additional servers which may
degrade operational quality while the gain in security

may be diminished due to common-mode failures.

4.2. Virtual Smartcards

Virtual Smartcards are based on split private

keys. In classical 2-key RSA the public and private

keys for given n are related by the following

equation.

e*d = 1 mod cp(n)

The splitting of d into dl and d2 is computed as

follows.

dl *d2 = d mod cp(n)

The fundamental operation of exponentiation in RSA
then gives us the following equations.

(M dl

)

d2 mod n =

(M d2
)

dl mod n =

M dl * d
" mod n =

M d mod n

This idea can be extended to more than two

splits of the original private key d if so desired. It

can also be applied to an additive rather than

multiplicative split. These ideas were first published

by Colin Boyd [BOY89]. Their first application to

virtual smartcards is due to Ganesan [GAN95,
GAN96], Ganesan’s innovation was to realize that

one of the split keys, say dl, can come from a

password and therefore easily remembered and

carried around mentally by a user. Nonetheless

security of d2 is equivalent to security of a traditional

RSA private key.
1

1

To summarize, in a 3-key RSA system there

are 2 private keys whose multiplication mod cp(n) is

equivalent to a single overall private key. One of

these keys dl is computed from the user’s password

and known only to the user. It is the password

component of the overall private key. The server

component of the overall private key is d2 which is

stored and used only on a secure online server. The

server component constitutes a virtual smartcard

which can be used only if knowledge of dl is

demonstrated. The overall private key d is never

reconstructed on the client or the server. Every use

of d involves an online interaction between the client

and server.
12

An immediate benefit of virtual smartcards is

the ability to do instant revocation. The server

resident d2 can be revoked at any time rendering the

password component dl completely useless. From

here on dl cannot be used to generate a signature

even if the certificate for (e,n) continues to be valid.

The network-based virtual smartcard will refuse to

participate in the signing protocol. This is a

tremendous benefit relative not only to virtual soft

tokens but also to local smartcards. Another benefit

is potential for misuse detection by monitoring usage

of the virtual smartcard. Note that these benefits

continue to accrue even if dl is stored on a local

smartcard rather than computed from a password. As

such virtual smartcards provide valuable additional

services even when we reach the age of ubiquitous

smartcards (and smartcard readers).

MacKenzie and Reiter [MK01] have an

interesting variation on the use of split-key RSA.

They show how to make the loss of a local smartcard

safe in that there is no private key within the

smartcard that can be extracted. Also the smartcard

is useless without knowledge of the user’s password.

In a nutshell the password component of a user’s

password is much the same as in Ganesan's scheme.

11
This notion is formally proved in Appendix A

12
Contrast this with SPX discussed above where the entire private

key is resident on the server SPX thereby fails to provide non-

repudiation

93

1st Annual PKI Research Workshop—Proceedings

The server component, however, is stored encrypted

with the server’s public on the smartcard, i.e., d2

encrypted with the server’s public key. Cooperation

of the server is therefore required whenever the

smartcard is used. This is much like the virtual

smartcard scheme. However, revocation is done out

of band and requires the servers to maintain the

equivalent of revocation lists. Mobility in this scheme

is achieved by moving the device from computer to

computer which requires a suitable reader or

interface. This is a characteristic of conventional

local smartcards.

5. Conclusion

In this paper we have identified two

approaches to password-enabled PKI. We have

motivated the reasons for calling these virtual soft

tokens versus virtual smartcards. Virtual smartcards

remove exposure of the user’s private key on a client

computer while allowing for misuse detection and

instant revocation. Conversely, virtual soft tokens

expose the user’s private key on client computers and

cannot support misuse detection or instant revocation.

These are substantial differences.

As we look to the future, PKI thinking must

depart from its conventional reliance on smartcards

as the technology which will make PKI real. With

hundreds of millions of computers deployed all over

the world today retrofitting smartcard readers on each

one is a formidable task. A variety of wireless and

personal computing devices are also proliferating.

Uniform availability of smartcard readers across all

these devices is extremely unlikely. Instead we
should look to an environment where virtual

smartcards are pervasive with local smartcards and

biometrics being used for higher assurance situations.

The recent big push for identity services on the

Internet has veered away from PKI to proposals that

are entirely password based and make extensive use

of symmetric cryptography. In the past year we have

seen a number of such initiatives from big players in

the Information Technology arena. PKI still offers

considerable advantages over symmetric technology.

But if the PKI community is not alert and adaptive to

industry trends we may find the baby is thrown out

with the bath water.

References

[BM91] Bellovin, S and Merritt, M. “Limitations

of the Kerberos authentication system.”

Proceedings of the Winter USENIX
Conference, 1991, pp 253-267.

[BM92] Bellovin, S and Merritt, M. “Encrypted

key exchange: password-based protocols

secure against dictionary attacks.”

Proceedings of the IEEE Symposium on

Security and Privacy, 1992, pp. 72 -84.

[BM93] Bellovin, S and Merritt, M. “Augmented

encrypted key exchange: a password-

based protocol secure against dictionary

attacks and password file compromise.”

Proceedings of the ACM Conference on

Computer and Communications Security,

1993, pp. 244 -250.

[BPR00] M. Bellare, D. Pointcheval and P.

Rogaway. “Authenticated Key Exchange

Secure Against Dictionary Attacks.”

Advances in Cryptology - Eurocrypt 2000

Proceedings, Lecture Notes in Computer

Science Vol. 1807, B. Preneel ed,

Springer-Verlag,2000.

[BMP00] V. Boyko, P. MacKenzie and S. Patel.

“Provably Secure Password Authenticated

Key Exchange Using Diffie-Hellman.”

Advances in Cryptology - Eurocrypt 2000

Proceedings, Lecture Notes in Computer

Science Vol. 1807, B. Preneel ed,

Springer-Verlag, 2000.

[BOY89] C. Boyd. Digital multisignatures. In

Cryptography and Coding, H. Beker and

F. Piper eds., Oxford University Press,

1989, pp. 241-246.

[BS01] M. Bellare and R. Sandhu. “The security

of practical two-party RSA signature

schemes.” Manuscript, November 2001.

Manuscript available via

http://www.cse.ucsd.edu/users/mihir.

[FK00] Ford, W. and Kaliski, B. “Server-assisted

generation of a strong secret from a

password.” Proceedings 9th IEEE

International Workshops on Enabling

Technologies: Infrastructure for

Collaborative Enterprises, 2000, pp 176 —

180.

[GY94] R. Ganesan and Y. Yacobi. A Secure

Joint Signature and Key Exchange

System. Bellcore Technical Report TM-
24531, October 1994.

[GAN95] Ravi Ganesan. Yaksha: Augmenting

Kerberos with public-key cryptography.

94

1st Annual PKI Research Workshop—Proceedings

[GAN96]

[HK99a]

[HK99b]

[JAB96]

[JAB01]

[KPC95]

[KN93]

[MPSOO]

[MR01]

Proceedings of the ISOC Network and

Distributed Systems Security Symposium,

1995.

R. Ganesan. Yaksha: Towards Reusable

Security Infrastructures. PhD Thesis.

Johns Hopkins University, Baltimore,

MD, 1996.

D. Hoover and B. Kausik, “Software

smart cards via cryptographic

camouflage.” Proceedings of the IEEE

Symposium on Security and Privacy,

1999.

S. Halevi and H. Krawcyzk. “Public-key

cryptography and password protocols.”

ACM Transactions on Information and

System Security (TISSEC)

Volume 2 , Issue 3 (August 1999),

Pages: 230 - 268.

D. Jablon, “Strong password-only

authenticated key exchange.” ACM
Computer Communications Review,

October 1996.

D. Jablon, “Password authentication using

multiple servers.” Proceedings RSA
Conference: Cryptographers' Track, 2001

San Francisco, CA, April 8-12, 2001,

Springer LNCS 2020.

C. Kaufman, R. Perlman and M. Speciner,

“Network Security: Private

Communication in a Public World.”

Prentice-Hall, 1995.

J. Kohl and C. Neuman. The Kerberos

Network Authentication Service (V5).

RFC 1510, September 1993.

P. MacKenzie, S. Patel and R.

Swaminathan. “Password Authenticated

Key Exchange based on RSA.” Advances

in Cryptology - Asiacrypt 2000

Proceedings, Lecture Notes in Computer

Science Vol. 1976, T. Okamoto ed,

Springer-Verlag, 2000.

P. MacKenzie and M. Reiter. “Networked

cryptographic devices resilient to

capture” Proceedings of the IEEE
Symposium on Security and Privacy,

2001 .

[MT79] Robert Morris and Ken Thompson,

“Password Security.” Communications of

the ACM, Volume 22 Issue 1 1, November
1979.

[NT94] C. Neuman and T. Ts'o. “Kerberos: An
Authentication Service for Computer

Networks.” IEEE Communications,

32(9):33-38. September 1994.

[PK99] R. Perlman and C. Kaufman, “Secure

password-based protocols for

downloading a private key.” Proceedings

of the ISOC Network and Distributed

Systems Security Symposium, 1999.

[TA91] J. Tardo and K. Alagappan, “SPX: global

authentication using public key

certificates” Proceedings of the IEEE

Symposium on Security and Privacy,

1991, pp. 232-244.

[WU98] T. Wu, “The Secure Remote Access

Protocol.” Proceedings of the ISOC
Network and Distributed Systems

Security Symposium, 1998.

[WU99] Thomas Wu, “A Real-World Analysis of

Kerberos Password Security.”

Proceedings of the ISOC Network and

Distributed Systems Security Symposium,

1999.

Appendix A: Equivalence of 3-key

RSA To 2-key RSA

We show that the security of 2-key RSA is equivalent

to the security of 3-key RSA, following Ganesan and

Yacobi [GY94] who first established this conjecture

of Boyd [BOY89].
13

A traditional 2-key RSA pair is generated as follows.

Generate two large, distinct primes p, q of

roughly equal bit-length

2. Compute n=p*q

3. Select e such that gcd(e,q>(n))=l and l<e<(p(n),

where cp(n)=(p- 1)*(q- 1

)

4. Compute d, such that 1 <d<cp(n) and e*d =1 mod

<P(n)

We note that this argument only reflects key-recovery attacks

Security arguments for our schemes that consider forgery attacks

are more involved, and provided in [BS0I]

1.

95

1st Annual PKI Research Workshop—Proceedings

5. Destroy p, q

6. Public key is e, n and private key is d

In the password-based 3-key system steps 1-4 are as

above, followed by the steps given below.

5. Ask user to select a password Pwd that meets

password selection rules

6. Pick an iteration count IC

Repeat

6.1 Pick a random SALT
6.2 Compute dl = Expand(Pwd,SALT,IC)

Until (gcd(dl, (p(n))=l and 1 <d 1 <(p(n)

)

[The function Expand is specified via PKCS5.

The IC value and the final SALT value are

accessible for subsequent use by the user.]

7. Compute d2 such that l<d2<cp(n) and dl*d2 = d

mod cp(n).

8. Destroy p, q, d

9. Public key is e, n; user's private key component

is dl (user remembers password Pwd from

which dl is computed) and appliance private key

component for that user is d2.

We claim that the expected number of iterations of

the repeat loop in Step 6 is around 2, so that the loop

terminates quite fast. (Assume the Expand function

is random and has range {0,1 }

k
where 2

M< n <2k
.

Then the expected number of iterations is at most

(2*n)/cp(n) which is very close to 2.)

The strength of the split-key setting is that it provides

as much security as RSA even if the user password is

compromised, in the following sense: the problem of

computing d2 given n, e, dl is as hard as the

traditional RSA problem of computing the secret

exponent given the public key in the standard setting.

To detail this claim, we recall that the traditional

RSA problem is defined as follows:

Given: n,

e

Compute: d such that e*d=l mod (p(n) and 1 <d<(p(n)

We define the split-key RSA problem as follows:

Given: n, e, dl

Compute: d2 such that e*dl*d2 =1 mod cp(n) and

1 <d2<cp(n)

We claim that if the split-key RSA problem is

tractable, then so is the traditional RSA problem. To
justify this claim, we assume we are given a method

of solving the split-key RSA problem relative to a

password generation process (formally, randomized

algorithm) P that models the client's choice of

password. The following code shows how we can

then solve the traditional RSA problem.

Explanations follow the code.

Given n, e,

1 . Run P to obtain a password Pwd
2. Pick random SALT, and IC, and compute dl =

Expand(Pwd,SALT,IC)

3. Run the given split-key RSA solving method on

input n, e, dl to obtain d2

4. Let m = e*dl*d2 - 1

5. Use m, e to factor n [see later text for why this is

possible]

6. Use the factorization of n to compute cp(n)

7. Let d be the inverse of e modulo cp(n)

8. Output d

Note that the value dl chosen in Step 2 may not be

relatively prime to cp(n) and in that case the algorithm

will probably not succeed. However, dl as chosen in

step 2 has probability around 1/2 of being relatively

prime to cp(n) and hence the success probability of the

algorithm above is about one-half that of the given

method for solving the split-key RSA problem.

The value m computed in Step 4 is a multiple of cp(n),

because, modulo cp(n) we have:

e*dl *d2 -1 = e*dl*d2 - e*d = e*[dl*d2-d] - 0.

Step 5 uses a well-known fact, namely that given a

multiple of cp(n) it is possible to factor n.

One might ask why the algorithm does not, after step

3, simply compute d = dl *d2, output d and halt, since

this d satisfies e*d mod cp (n) = 1. However this d

may not satisfy l<d<cp(n).

96

1st Annual PKI Research Workshop—Proceedings

Delegated Cryptography, Online Trusted Third Parties, and PKI

Trevor Perrin, Logan Bruns, Jahan Moreh, Terry Olkin

{tperrin, loganjmoreh, tolkin}@sigaba. com, Sigaba Corporation

Abstract

We propose that enterprise PKI users should delegate asymmetric cryptography operations to an online

trusted third party maintained by their enterprise, thus freeing themselves from the burdens of owning key pairs or

interfacing with PKI. Users would authenticate to this third party (which we’ll call a delegate server) and then re-

quest it to sign and decrypt data on their behalf with its own private key and encrypt and verify data with the public

keys of other users or other delegate servers. A delegate server would thus be like a CA in that it represents a group

of users but like an end-entity in that it signs and decrypts using its own private key and encrypts and verifies using

public keys which it has calculated certificate paths to. To bind encryptions and signatures performed with delegate

server keys to particular users we suggest two approaches, one using XML security standards, and one using what

we call signature operation certificates which are signed by a delegate server and bind a hash value to a signing user,

and encryption operation certificates which are encrypted to a delegate server and bind a symmetric key to an in-

tended decrypting user. These operation certificates have several benefits, and so we propose that conventional PKI

end-entities as well as delegate servers could use them to encapsulate signatures and encryptions, and that current

PKI protocols could be modified to support them. If this was done, enterprises could individually choose whether to

utilize delegate servers or conventional PKI. In many situations a delegate server infrastructure would be easier to

deploy, easier to use, and easier to integrate with applications, and would offer advantages in security, extensibility,

and efficiency.

1 Introduction

The deployment of cryptography on modem
computer networks is proceeding on two fronts. The

first is the use of cryptography to achieve authen-

tication. Users log-on to workstations, networks, and

networked applications using credentials such as

passwords, one-time password devices[l,2], smartcards

containing private keys, or biometrics[3]. Crypto-

graphy either provides encryption to protect the

transmission of the user’s credentials (e.g. SSL[4] for

website passwords), or provides credentials-present-

ment protocols with various intrinsic degrees of

security (e.g. SRP[5,6] for passwords, or SSL with

client authentication for private keys).

These authentication and session-establish-

ment protocols are easy to use for both the credentials-

presenting and the credentials-verifying parties, and

thus are widely deployed. Such methods are not, how-

ever, sufficient to fulfill the promise of cryptography.

Ideally a cryptographic infrastructure would be capable

of providing confidentiality and authentication to both

interactive and noninteractive communications amongst

large groups of users
1

. Compared to this, authentication

methods (with the exception of asymmetric key pairs)

are limited in both scale and scope: scale in that a single

credential should only be used between a single pair of

users, and scope in that these methods can only secure

interactive traffic, and thus cannot be used to encrypt or

sign data such as emails or files. Attempts to solve the

scalability problem involve clients authenticating once

to a "single sign-on" service with their primary creden-

tials and then receiving secondary credentials that they

can use to access other services. This approach repre-

sents the current cutting-edge of authentication tech-

niques, particularly on the web where it is being pur-

sued by Microsoft Passport[7], the Liberty Alliance

Project[8], and the SAML XML specification^].

The second front on which cryptography is

being deployed is known as public key infrastructure

(PKI). This technology assumes that every client

should possess a long-lived asymmetric key pair[10].

The public key can be shared with different parties,

which can then authenticate the private key owner, ver-

ify the owner's signature on a piece of data, or encrypt

data that only the owner can decrypt. A single key pair

thus allows point-to-many instead of just point-to-point

security, and can be used to secure both interactive and

non interactive communications. These characteristics

enable certificates^ 1]: a user Alice could sign Bob's

public key along with Bob's name, thus producing a

certificate which could be published in a public direc-

97

1st Annual PKI Research Workshop—Proceedings

tory or carried around by Bob, and which would con-

vince anyone who trusts Alice that Bob's public key

really belongs to him. Bob can issue certificates to

other users as well; the certificates issued amongst a

group of users comprise a directed graph, and if one

user can compute a path from himself to another then

he can determine that other user's public key and use it

to secure communications between them. Often a spe-

cialized entity known as a certificate authority (CA)

will assume responsibility for issuing, revoking, and

publishing the certificates for some group of users. A
system of cooperating CAs, directories, and other sup-

porting services are what we collectively refer to as

PKI.

PKI appears to meet our requirements for

cryptographic infrastructure, yet attempts to deploy it

over the last decade have met with strikingly little suc-

cess. Even within a single enterprise, PKI rollouts are

often expensive and time-consuming, and result in

stovepipe systems unable to interoperate with each

other, integrate with new applications, or evolve to

meet new demands and incorporate new technolo-

gies[12,13,14,15]. Some feel these are growing pains

that will disappear as the technology matures, but we
will argue that they instead reflect several systemic

flaws in the PKI vision:
2

First, private keys are difficult for people to

use and easy for attackers to abuse. Private keys are not

memorable like passwords, derivable from the person

like biometrics, or enterable from any keyboard like

one-time passwords. They are instead typically stored

in a file on the user’s computer, stored on smartcards, or

stored at a server that delivers them to the user on re-

quest[16]. These approaches have various deficiencies

in terms of portability, universality, and security. Secu-

rity concerns are aggravated because private keys can

be stolen and abused offline (i.e. without generating an

audit trail).

Second, trust relationships are difficult for

people to manage. If a global PKI had materialized,

with a single CA at the root of a certificate hierarchy,

then this would be a non-issue: each user would simply

configure his software to fully trust the CA's public

key. Instead many different CAs exist, some public and

some private, and in some systems (such as

PGP[17,18]) users can issue certificates to each other as

well. Faced with such a fragmented trust environment,

users must configure their software’s trust list with the

"trust anchors" from which to begin computing certifi-

cate paths, by first importing and verifying these an-

chors' public keys and then indicating to what extent the

user trusts each anchor or over which names the user

considers the anchor authoritative. These procedures

are complicated yet security-critical, and users rarely

understand or perform them well[19].

Third, the interface between end-user software

and PKI systems is complex and difficult to standard-

ize. End-user software must interact with the PKI to

perform management operations such as obtaining, re-

voking, renewing, archiving, and recovering the user's

certificate and key pair, and also to construct and vali-

date certificate paths to other users' public keys. These

operations require knowledge of the PKI's management

protocols, directory architecture, trust topology, certifi-

cate formats and profiles, certification policies, and

revocation/validity-checking methods, among other

things. Each of these provides an axis along which

PKIs can and do vary. As a result, PKI end-user soft-

ware tends either to provide lowest-common-

denominator support for PKI or to be tightly coupled to

a particular vendor’s products or even a particular de-

ployment, yielding systems that are either underfunc-

tional or overly rigid and brittle.

Fourth, end-to-end path construction is ineffi-

cient: every user’s certificates and revocation data must

be made accessible to every other user in a timely fash-

ion, and every user must compute the paths between

himself and every other user with whom he wants to

communicate. The first requirement necessitates a

high-performance and high-availability distributed di-

rectory that will be difficult to scale to large communi-

ties of geographically dispersed users. The second re-

quirement results in redundant computations of poten-

tially lengthy and complex paths.

A few observations about the enterprise envi-

ronment will suggest a way to remedy these flaws.

PKIs are generally deployed to support users who
communicate under the aegis of enterprises (meaning

businesses or similar organizations). In these enter-

prises there are authentication methods already de-

ployed to control access to networks and workstations;

there is trust between members and their enterprise, and

between enterprises and each other; there are adminis-

trators capable of configuring and maintaining net-

worked services for enterprise members; and there are

private networks offering reasonably high performance

and reliability, and some measure of protection against

outsider attacks.

In such environments, we believe the authenti-

cation and PKI uses of cryptography should be hybrid-

ized in the form of a networked service, hosted by an

enterprise for its members, which users could authenti-

cate to and request to perform asymmetric cryptography

on their behalf. More precisely: users within an enter-

prise would authenticate to a locally-provided delegate

server (DS) which would possess a key pair and would

interface with a PKI system whose end-entities would

include both individuals and other DSs representing

other enterprises. To produce a signature on a docu-

ment Alice would send her DS a cryptographic hash of

the document, and the server would sign this hash along

with an attached statement that says "this was presented

98

1st Annual PKI Research Workshop—Proceedings

by Alice", and return this signed message to Alice who
would embed it in the document. To encrypt a docu-

ment to Bob, Alice would send her DS a symmetric

document encryption key and the name Bob, and the

DS would encrypt the symmetric key along with an

attached statement “this is intended for Bob” using

Bob’s public key or the public key corresponding to

Bob’s DS. When Bob received these secured docu-

ments from Alice he would extract the messages that

came from Alice’s DS and either process them using

his own private key or forward them to his DS. If the

latter, his DS would verify or decrypt these messages

and then examine the attached statements, and either

confirm that it was Alice on whose behalf the signature

was produced, or release the document encryption key

after verifying that it was indeed intended for Bob.

This approach addresses the first flaw in PKI

by using convenient authentication methods, instead of

private keys, to access a server which can monitor all

events for intrusion detection and response purposes. It

addresses the second and third flaws by centralizing

trust relationships and PKI software at the organiza-

tional instead of individual level, where they can be

managed at a single point by qualified staff. It ad-

dresses the fourth flaw by associating certificates and

key pairs with enterprises instead of individual users,

thus reducing the volume of certificates and revocation

data that must be distributed and the length of paths that

must be computed. It also centralizes path computation

at servers where its cost can be amortized across large

groups of users.

One drawback of this approach is its reliance

on communication between users and DSs. This raises

issues of performance and availability, and also raises

the spectre of denial-of-service and traffic analysis at-

tacks[20], but the characteristics of enterprise networks

we mentioned above should mitigate these concerns.

Another drawback is the potential security risk and per-

formance bottleneck of performing all asymmetric op-

erations for an enterprise at a single point. We believe

that adequate security can be achieved by choosing an

appropriate lifetime and strength for DS key pairs and

by confining sensitive data at the DS to a secure co-

processor^ 1,22], and that adequate performance can be

achieved with appropriate hardware or techniques such

as caching Diffie-Hellman key agreement values. A
third drawback is that having DSs involved in all cryp-

tographic operations may raise privacy concerns, but it

provides compensating benefits such as centralized

auditing, fine-grained access control, and instantaneous

user revocation. A final drawback is that current cryp-

tographic protocols and data formats were not designed

with DSs in mind, but we believe that an elegant exten-

sion to the notion of certificates will make it easy to

retrofit DS support into current PKI systems.

In what follows we will expand on these points

to argue that DSs make large-scale cryptographic infra-

structure feasible. In the next section we will take a

step back and develop a more abstract understanding of

the problems and methods of cryptographic infrastruc-

ture. In section three we will apply this understanding

to the real world to show why delegated cryptography

makes sense. And in the final section we will consider

how current cryptographic protocols and data formats

could be retrofitted to support this technique.

2 Cryptographic Infrastructure

For our purposes, the basic situation of crypto-

graphic infrastructure is this: there is a graph consisting

of nodes linked by communication channels, where a

node could be a machine or a person, and a channel

could be such things as a trusted courier, a computer

network, or even just a stretch of time. Some of these

channels are physically secure. Others may be subject

to passive attacks, where an adversary eavesdrops on

the messages going back and forth; or active attacks,

where an adversary alters, deletes, and adds messages.

It is desired that certain communications between nodes

be confidential and/or authenticated. By confidential

we mean that an adversary cannot determine their con-

tents. By authenticated we mean that an adversary can-

not delude one party to a communication as to the other

party’s identity.

Physically secure channels are not subject to

attacks and are thus both confidential and authenticated.

Otherwise passive attacks can violate confidentiality

and active attacks can violate authentication. To ensure

these properties on channels subject to these attacks the

nodes must code their communications using crypto-

graphic algorithms. These algorithms can be used to

protect either noninteractive messages (i.e. self-

contained units of data sent from one node to another)

or interactive sessions. Interactive sessions allow the

use of cryptographic protocols which make certain se-

curity properties easier to obtain; in particular, Diffie-

Hellman key exchange[10] can establish confidential

sessions between any pair of nodes, thus making au-

thentication the only difficulty in the interactive case.

2.1 Cryptographic Data

With the exception of Diffie-Hellman key ex-

change, the algorithms and protocols used by two nodes

to provide confidentiality and authentication require

that certain related cryptographic data be used as inputs

by both sides. We can classify these data as credentials,

symmetric keys, or asymmetric keys. Credentials in-

volve a data source possessed by one node (such as a

password, one-time password device, eyeball, etc.) and

credentials-verifying data possessed by another node

99

1st Annual PKI Research Workshop—Proceedings

(such as the password itself, a hash of the password, an

SRP verifier[5,6] of the password, an iris code[23],

etc.). Credentials either possess low entropy (pass-

words), imprecision (biometrics), or time-variance

(one-time password devices), and thus can only be used

to authenticate interactive sessions (i.e. they can’t pro-

vide message security). Certain credentials, such as

passwords, can be used in conjunction with zero-

knowledge password protocols[5,6,24] that provide

mutual authentication between nodes. Otherwise, the

credentials need to be presented from one node to the

other, which can only be done securely if the creden-

tials-presenting node has already authenticated the cre-

dentials-verifier.

Symmetric keys possess high entropy, and

thus a pair of nodes sharing a symmetric key can ex-

change confidential and/or authenticated messages and

establish confidential and/or authenticated sessions.

Asymmetric key pairs consist of both a private and pub-

lic key. The private key should be kept secret by its

owner, but the public key could be shared with many
other nodes, which makes this type of cryptographic

data intrinsically different from both credentials and

symmetric keys, which can only provide security be-

tween a single pair of nodes (if these data are shared

with more than two nodes, the excluded parties to any

communication relying on these data could launch pas-

sive or active attacks on the communication). Source

authentication can be provided to messages travelling

from the private key owner to a public key possessor,

and confidentiality can be provided to messages travel-

ling in the opposite direction. The private key owner

can also authenticate himself interactively to a node

possessing the public key.

Pulling this together, nodes can generate cryp-

tographic data and then exchange them with other

nodes over secure channels, then leverage these data to

add security to vulnerable channels. Credentials or

symmetric keys must be exchanged over confidential

and authenticated channels; otherwise the adversary

could intercept or forge the data, and later on launch

attacks. Public keys can be exchanged over authenti-

cated but nonconfidential channels, since secure use of

asymmetric cryptography does not depend on the se-

crecy of public keys. The value of all this is that a se-

cure channel which may be too transient, performance-

limited, or costly to use for regular communications can

be used to bootstrap security on a more convenient but

vulnerable channel.

2.2 Trust

Now it may happen that nodes desire a secure

channel, but do not have any physically secure channel

with which to bootstrap a cryptographically secure one.

In this case, they may have to trust a third party. For

example, if Alice wants to send a secure message to

Charlie but can’t do so directly, she may have to entrust

this message to Bob. But just how far do Alice and

Charlie trust Bob? If Alice sends the message directly

through Bob, and Charlie is willing to believe Bob
when Bob says ‘‘Alice sent this”, then Bob is clearly in

a position to read, alter, and forge messages from Alice

to Charlie. Alternatively, Alice could give Bob a sym-

metric key to give to Charlie, then communicate with

Charlie herself on a separate channel, but since Bob
knows the symmetric key, he could still launch passive

or active attacks on this channel, so we won’t consider

this method as requiring significantly less trust in him.

A third alternative is for Alice and Charlie to exchange

public keys through Bob. Bob could perform a man-in-

the-middle attack here, giving Alice and Charlie false

public keys so that he could read and forge their mes-

sages, but if he doesn’t want to be found out when they

try to communicate he will have to launch an active

attack where he makes it appear as if the messages were

actually processed using the appropriate public keys. If

Bob’s diligence in these attacks flags, or if Alice and

Charlie acquire a communication channel that Bob
can’t attack, then it is likely that they will discover his

perfidy.

So we can roughly say that Bob is either com-

pletely trusted (meaning Alice and Charlie accept that

he can read or alter their communications without de-

tection), or partially trusted (meaning Alice and Charlie

accept that he can only read or alter their communica-

tions if he falsifies the key exchange, and that he can

only keep this from being detected by launching con-

tinuous active attacks on their communications). To
clarify the overall picture, we can imagine that each

node maintains a table of trust relationships, each of

which consists of some cryptographic data and a list of

names
3
with associated trust values. For example, Al-

ice might have a trust relationship indicating that Bob’s

symmetric key is completely trusted for Bob but only

partially trusted for Charlie. The trust table contains

both primary trust relationships, which the node axio-

matically trusts, and derived relationships, which are a

consequence of communications that were secured un-

der some other relationship.

For example, when Bob sends Charlie’s public

key to Alice, Alice will add it to her trust table as a new

trust relationship, but if Alice laters discovers that

Bob's key was compromised, or decides that she no

longer trusts Bob to vouch for Charlie, then the rela-

tionship containing Charlie’s public key and any rela-

tionships derived from it will be invalidated. As an-

other example, asymmetric cryptography is expensive.

When Alice establishes a secure session with Charlie,

she will likely not encrypt all her messages to him using

his public key but might instead verify his signature on

a Diffie-Hellman public value as a prelude to establish-

ed

1st Annual PKI Research Workshop—Proceedings

ing a session key, which she will consider as a trust

relationship with Charlie for the duration of the session.

2.3 Trust Derivation

The point of the above is that a cryptographic

infrastructure can be analyzed in terms of both its static

structure of primary trust relationships and the proce-

dures it uses to build and utilize a dynamic structure of

derived trust relationships. To make this more concrete

we’ll examine PKI:

A classic, X.509-style PKI[25,26,27] consists

of end-entity nodes and CA nodes. End-entities and

CAs have key pairs, and end-entities have trust rela-

tionships with certain CAs wherein they partially trust

the CAs to vouch for certain other end-entities. CAs
express their trust relationships with each other and

with end-entities in the form of certificates, which they

make available in a directory (which is equivalent to

broadcasting them to all end-entities across an unsecure

channel). A certificate is an authenticated message

from a CA which asserts a trust relationship. This trust

relationship contains a public key and expresses com-

plete trust in an end-entity name if it is an end-entity

certificate, or expresses partial trust in a set of end-

entity names if it is a CA certificate. When an end-

entity examines a certificate which comes from a CA
whom the end-entity trusts, and references some names

which the end-entity trusts the CA to vouch for, the

end-entity will add a new, derived trust relationship to

its table consisting of the certificate public key and

those names. When an end-entity wants to communi-

cate with another, it will search in its trust table for a

completely trusted relationship with the other end-entity

and use the corresponding public key.

Now since CAs don’t participate directly in

end-entity communications, all derivation of trust rela-

tionships is performed by end-entities themselves. Fur-

thermore, since complete trust is only granted to end-

entity public keys whose corresponding private key is

assumed to be held by the end-entity himself, Alice has

only one choice when she wants to send a confidential

message to Bob: she must derive trust in his public key

and encrypt the message to it. One theme of this paper

is that there are alternative infrastructure choices worth

exploring. In particular, imagine replacing the CAs on

the trust path between Alice and Bob with online nodes

and changing the trust relationships along this path to

involve complete rather than partial trust. Alice could

still derive a trust relationship with Bob and encrypt to

him if these nodes published certificates, but she could

just as well encrypt and send the message to the next

node along the trust path, with an attached statement

that says ‘'please forward this to Bob”. If each node did

the same the message would get to Bob securely with-

out any derivation of trust relationships at all.

More abstractly: given any network of trust re-

lationships, nodes could always securely communicate

with other nodes by relying on the involvement of in-

termediaries. Derived trust relationships are a way for

endnodes to improve this process by relying on inter-

mediaries to securely communicate a trust relationship

once which the endnodes can thereafter use directly.

This enables partial instead of complete trust in inter-

mediaries when the derived relationship involves public

keys, and more generally improves the performance,

security, and availability characteristics of an

infrastructure since the overhead of constantly

contacting the intermediaries is removed, and they are

also (at least to some extent) removed as potential

points of failure or attack.

From this perspective, the PKI decision to

minimize interaction with intermediate nodes seems

well-founded. But there are costs associated with end-

to-end derivation of trust relationships as well: for one,

if multiple end-to-end paths share an intermediate path

segment, having each endnode calculate a trust relation-

ship across that segment is redundant. For another,

end-to-end derivation requires each endnode to be ca-

pable of communicating with every other intermediary

in the infrastructure; this level of compatibility might be

difficult to achieve in a heterogenous infrastructure, and

the amount of communication required could be expen-

sive in a large or geographically dispersed system. Fi-

nally, an intermediary node might desire to control an

endnode's ability to communicate securely, so as to be

able to monitor the endnode’s cryptographic activities,

and instantly revoke the endnode’s access if necessary.

This is not possible if trust paths can be derived be-

tween the endnode and other nodes that exclude the

intermediary. Clearly, weighing all these factors to

select and locate trust derivation mechanisms is a chal-

lenging job, and much of our argument centers on the

claim that conventional PKI has done this poorly.

2.4 Design Methodology

At this point we can suggest a methodology

for designing cryptographic infrastructures. First,

nodes and channels should be identified, and channels

should be classified as either secure enough to use for

establishing primary trust relationships or as vulnerable

and in need of cryptographic protection. Nodes should

then be assigned cryptographic data sufficient to their

capabilities: asymmetric key pairs if they are capable of

managing these and shouldering the computational bur-

den, credentials or symmetric keys otherwise. We
should assume nodes will distribute these data to each

other and assign trust in them, thus establishing their

primary trust relationships. Finally, mechanisms should

be deployed to support the derivation of trust relation-

ships. These should be placed so as to maximize the

101

1st Annual PKI Research Workshop—Proceedings

gains acquired by removing the involvement of inter-

mediaries while trying to avoid requiring derivations be

performed from nodes where this would be difficult or

expensive, or where it would remove nodes that we
would prefer to remain involved. We will apply this

methodology in the next section to analyze the applica-

tion of PKI to enterprise scenarios and to develop our

suggestion for a more effective approach.

3 Delegate Servers

We are using the term ‘enterprise’ for any or-

ganization that has the following characteristics: the

organization has a number of members and an adminis-

trative entity (or perhaps multiple entities, arranged in a

hierarchy); the members would like to have secure

communications with each other and with people out-

side the organization across vulnerable computer net-

works; the members trust the administrative entity to

vouch for the identity of everyone with whom they

communicate, and they also trust that it will not read,

modify, or forge their communications illicitly; each

member has some sort of secure channel with the ad-

ministrative entity, even if this is only the ability to

walk into the administrator’s office and talk to him; and

the administrative entity has the resources to operate a

networked service for the benefit of its members.

In the previous section we presented a meth-

odology for designing cryptographic infrastructures. In

the first section we presented a number of criticisms of

PKI, and presented an alternative approach using what

we called delegate servers. We will now apply our

methodology to the enterprise scenario, showing step-

by-step the construction of a DS-based infrastructure,

and highlighting how it differs from conventional PKI.

3.1 Credentials vs. Private Keys

First, we must identify nodes and channels.

Clearly each member of an enterprise is a node, and we
will make each enterprise's administrative entity a node

as well (or perhaps a hierarchy of nodes, if this reflects

administrative relationships more adequately). Com-
puter networks will provide channels between all nodes

which are subject to both active and passive attacks, but

we will assume that there are low-performance but

physically secure channels between enterprise members
and administrative nodes, and that there are low-

performance channels protected against at least active

attacks between certain administrative nodes, whether

belonging to the same or different enterprises.

The next step is to assign cryptographic data to

nodes. The PKI approach is to give each administrative

node a key pair and call it a CA, and give each person a

key pair and call him or her an end-entity. Since key

pairs are the most powerful form of cryptographic data,

and since administrative entities can presumably install

their private key once on a high-performance system

and be done with it, we concur in giving key pairs to

administrative nodes. We will call those administrative

nodes that have direct trust relationships with enterprise

members DSs, and those which only have trust relation-

ships with other administrative nodes (in a bit of fore-

shadowing) CAs. As for enterprise members, we reject

PKI’s assertion that key pairs are the best form of cryp-

tographic data for them. Instead, we feel that authenti-

cation credentials such as reusable passwords, one-time

passwords, and biometrics are generally easier for the

enterprise to deploy and easier for people to use.

Moreover, authentication credentials are widely de-

ployed: password authentication systems such as Ker-

beros[28,29], RADIUS[30], LDAP[31,32], or various

other Unix and Windows logon systems exist on most

corporate networks, and a vendor recently shipped more

than ten million of their one-time password devices[33].

The DS infrastructure will thus assume only that people

have some way of authenticating themselves to a ser-

vice; we will let each enterprise, or perhaps even each

person, decide precisely which authentication method

they prefer. Since authentication credentials can only

provide point-to-point secure sessions instead of point-

to-many secure sessions or messages like asymmetric

key pairs can, this decision will have substantial ramifi-

cations. Before moving on, let’s examine it carefully.

To compare credentials against private keys

we need to consider both ease of use and security char-

acteristics, since these tend to trade off against each

other. For example, a general difference between au-

thentication credentials and private keys is that the for-

mer can only be used online and the latter can be used

offline as well. Offline support is an occasional con-

venience for the user, particularly when travelling, but

it’s an even greater convenience for attackers, since

they can steal a private key and use it without generat-

ing an audit trail or monitorable events. Since there are

ways the DS approach could allow a limited degree of

offline operation, we consider the offline exploitability

of private keys a serious deficiency. To compare cre-

dentials and private keys more closely we will examine

three dimensions: portability, universality, and vulner-

ability. By portability we mean the ease with which a

person can carry the data with him. By universality we

mean whether or not the data can be used with any

computer or whether the computer requires special

hardware. By vulnerability we mean how easily the

data can be stolen, taking into particular account active

attacks on authentication protocols and local attacks by

software or hardware on the user’s machine. We will

consider three authentication methods versus three pri-

vate key storage methods: memorized passwords, one-

time password devices, and biometrics, versus private

102

1st Annual PKI Research Workshop—Proceedings

keys stored in files, smart cards, and servers.

Memorized passwords are highly portable,

universal since their entry only requires a keyboard,

relatively invulnerable to active attacks since they can

be used with zero-knowledge password proto-

cols[5,6,24] but might be vulnerable to online guessing,

and vulnerable to local attacks since the password must

be entered and stored in memory somewhere.

One-time password devices[l,2] are reasona-

bly portable, universal since entry of the password only

requires a keyboard, invulnerable to active attacks since

they can be used with zero-knowledge password proto-

cols and have enough entropy to resist online guessing,

and invulnerable to local attacks since the device secret

is not exposed to the local computer.

Biometrics[3] are extremely portable, not uni-

versal since their entry requires special hardware, vul-

nerable to active attacks since they cannot be used with

zero-knowledge password protocols, and vulnerable to

local attacks since the biometric value is typically ex-

posed to the local computer; also, attacks are unusually

damaging since once compromised a biometric cannot

be changed.

Private keys stored in files are difficult to

transport, universal since the file could be copied to any

computer, and highly vulnerable to local attack since

the private key file can be stolen at any time, not just

when the user is performing an operation.

Private keys stored in smart cards are reasona-

bly portable, not universal since not all computers have

smart card readers, and reasonably invulnerable to local

attack since the private key is contained within the card

and probably only vulnerable to hardware attacks such

as timing or power analysis[34,35], or glitching[36]).

Private keys stored on servers and delivered to

authenticated users are as portable and universal as the

underlying authentication technique, and are vulnerable

to local attacks.

In sum: storing private keys on the file system

is inferior in our metrics to downloading private keys

from a server, assuming a universal authentication

technique is used. So with private keys, we essentially

must choose between a nonuniversal solution reasona-

bly secure against local attack (smart cards) and a uni-

versal solution vulnerable to it (server delivery). With

authentication techniques, we can choose a solution that

is both universal and secure against local attack (one-

time password devices). Since there is no single metric

or combination of our metrics in which private keys are

superior to authentication credentials, since private keys

can be exploited offline, and since authentication cre-

dentials are already widely deployed, we believe that

enterprise cryptographic infrastructures should be de-

signed for people with authentication credentials (in-

cluding private keys) instead of solely for people who
have private keys.

3.2 Delegated vs. End-to-End Derivation

Now that we’ve assigned cryptographic data

we can assume nodes distribute these data to each other

along secure channels. In the PKI case that means all

nodes share their public keys with those whom they

want to be trusted by and then construct primary trust

relationships: CAs will trust end-entity keys completely

for the end-entity’s name, and all nodes will trust CA
keys partially for the set of end-entity names over

which they consider each CA authoritative. In the DS
case the only differences are that people share their

credentials-verifying data with their DS instead of shar-

ing their public keys; that if the authentication protocol

for a given credential provides mutual authentication,

then the person constructs their trust relationship with

the DS in terms of that credential instead of the DS’s

public key; and that all trust extended to DSs is com-

plete instead of partial.

Now that we have a structure of primary trust

relationships, we must specify the mechanisms whereby

this structure is used to secure communications. In a

PKI system CAs publish their primary trust relation-

ships as certificates, then do nothing further. End-

entities retrieve these certificates and use them to derive

trust relationships with other end-entities’ public keys

which are then used as inputs to cryptographic algo-

rithms and protocols. We earlier criticized this ap-

proach because it exposes end-entity software to the

specifics of all the PKI systems and data formats in a

potentially large and heterogenous infrastructure, and

because it requires the distribution of significant

amounts of certificates and revocation data, and redun-

dant path computations upon these; below we elaborate

on these points:

To address the first point: a network of pri-

mary trust relationships is similar to a routing network,

in that each link (i.e. cryptographic datum) is labelled

with the addresses (i.e. names) which can be reached

through it. The requirement that end-user software

must construct a complete trust path is analogous to a

requirement that each host network card not only com-

pute the entire route for its packets, but understand each

link-layer protocol along that route. This violates

modularity by making every point on the edge of a net-

work dependent upon every link in the network. The

result is either going to be that new PKIs are prevented

from joining the system and changes are not made in an

effort to keep the system homogenous so that end-user

software will continue to function, or alternatively

every modification will force painful software upgrades

on the user population; we earlier called this situation

one of rigidity and brittleness. We will enumerate the

dependencies that cause this brittleness below:

To construct a certificate path requires retriev-

ing certificates from one or various directories, corn-

703

1st Annual PKI Research Workshop—Proceedings

prehending the syntax and semantics of each certificate,

applying a search algorithm appropriate to the PKI’s

trust topology to these certificates to determine candi-

date or partial paths, applying a revocation or validity-

checking method to each certificate along such a path to

determine its validity, and iterating the above processes

until a complete and valid path has been built. This

process is thus dependent upon knowledge of directo-

ries and directory protocols (such as X.500[37],

LDAPv2[31], LDAPv3[32], or various proprietary pro-

tocols); certificate formats (such as X.509[25],

OpenPGP[18], or SPKI[38]) and their semantics (how

they express identities, attributes, and authorizations)

and their many different versions, profiles, policies,

extensions, unique identifiers, signature algorithms,

encoding quirks, etc. [39]; trust topologies (such as bidi-

rectional hierarchies, top-down hierarchies, hybrids

such as bridge structures, meshes, etc.); and revoca-

tion/validity-checking methods (such as CRLs[25,26],

segmented CRLs[25,26], delta-CRLs[40], sliding-

window delta CRLs[41], OCSP[42], DPV/DPD[43],

etc.).

And these are only the complications that per-

tain to path construction; if we consider the manage-

ment protocols between an end-entity and CA we find a

similar raft of competing, complex, and variably-

implemented protocols[44] such as PKCS #10[45] with

SSL[4], PKCS #10 with PKCS #7[46], CMP[47],

CMC[48], and SCEP[49]. In some of the above cases

we can expect convergence and stability as winners are

chosen and interoperability is pursued, but in other

cases, particularly those involving certificate semantics

and revocation strategies, there are substantial unre-

solved theoretical issues. In an environment of such

turmoil and complexity we can’t expect end-entity

software that supports anything but the simplest or most

homogenous PKI deployments to exist for some time.

Even disregarding this complaint, end-to-end

path construction suffers from being inefficient. Many
users, particularly within an enterprise, will share the

same trust anchor points and validation policies, and

thus the certificate paths they construct will be identi-

cal. Path construction is expensive because it requires

retrieving certificates and revocation information from

a potentially wide variety of sources and performing

expensive signature verifications and revocation look-

ups (or online status checks) upon these. Performing

revocation checking on end-user certificates is particu-

larly taxing[50]: end-users generally have transient rela-

tionships with their certificate issuer (people get hired,

fired, demoted, etc.), and their private keys are highly

vulnerable to compromise or loss (people lose their

smart cards, forget their PINs, store their private keys

on unprotected computers, etc.). A large volume of

revocation information will thus be generated, and since

the costs of relying on a compromised private key are

high, end-entity software must frequently download the

latest revocation lists. In the case of a complex trust

topology, these costs are magnified: path construction is

not deterministic but requires sophisticated graph ex-

ploration algorithms that can ignore dead-ends and de-

tect cycles; even if these algorithms work flawlessly

they may have to retrieve and consider a large number

of certificates before determining a path.

So for reasons of overcoupling and ineffi-

ciency, we feel that PKI’s reliance on end-user software

which processes messages from each CA to derive end-

to-end trust relationships is a poor design choice. A
better approach would be to have administrative nodes

derive trust relationships. For one thing, an administra-

tive node could derive these relationships once and then

reuse them. For another thing, administrative nodes are

assumed to be under the control of a competent staff

who can configure them and upgrade their software

quickly, thus managing the complex coupling with the

infrastructure that trust derivation requires. Also, there

will be many fewer administrative nodes in an infra-

structure than end-user nodes, so having to configure

and maintain them is less of a burden. The administra-

tive nodes that end-users have direct access to we have

called DSs. Since end-users must have access to these

trust-derivations to make use of them, it follows that

DSs are where trust derivations should be performed, or

at least made accessible.

Now it should be noted that end-to-end deriva-

tion of trust relationships without online interaction

with intermediaries is impossible in a DS infrastructure,

because of the structure of primary trust relationships:

end-users do not have public keys which can be com-

municated widely, instead they have authentication

methods which can only be used to provide secure ses-

sions with their DS. Thus, trust derivation will not only

begin at DSs, it must terminate at them as well, since it

is impossible to construct a path all the way to an enter-

prise member.

So we have located trust derivation; now the

question is how to perform it. Obviously we should use

PKI! Our criticisms of PKI are that it requires private

keys, that it requires a tight coupling between end-

entities and infrastructure, and that it is inefficient when

deployed to a large community of users with a high

revocation rate. But these criticisms don't apply to

DSs: for one, DSs already have key pairs, and they are

maintained by a staff which can manage the challenges

involved in software that is tightly coupled to an infra-

structure. Also, there are many fewer DSs then there

are end-users, and DSs are much less likely to be com-

promised than end-users, or to have a volatile relation-

ship with the enterprise, so revocation rates will be

lower. Path construction will thus occur in a much

smaller and more stable environment, and in this envi-

ronment the advantages of PKI come to the fore:

104

1st Annual PKI Research Workshop—Proceedings

namely, communication with and trust in intermediaries

is minimized. Given that cross-enterprise trust relation-

ships will span the public Internet, where traffic analyz-

ers and denial of service attackers may be lurking and

where occasional traffic outages and performance lags

occur; and given that cross-enterprise trust paths might

involve any number of intermediaries (governments,

industry consortiums, public CA maintainers, etc.),

there is clearly value in reducing communication with

these nodes and trust exposure to them.

Within the enterprise, it’s a completely differ-

ent story. Private keys are burdensome for people,

desktop software is so widely deployed that complex

configurations and upgrades are difficult, enterprise

networks are reliable, high speed, and sheltered from

grosser forms of abuse, and though DS involvement

adds a new point of attack and failure to the infrastruc-

ture, it also adds a point of monitoring for the first point

of attack (the user’s credentials). Under the reasonable

assumptions that DSs are highly trusted, that credentials

are highly vulnerable, and that monitoring substantially

increases the ability to detect compromises, determine

their extent, and trace their source, this results in a net

increase in security.

3.3 Delegate Server Infrastructure

Pulling this all together: we are proposing that

DSs should possess key pairs and function as end-

entities in a PKI, and that enterprise members should

authenticate to DSs to secure their communications.

An efficient way to do this is for enterprise members to

perform bulk cryptographic operations involving sym-

metric keys and hash values, then call out to DSs only

to perform asymmetric cryptography upon these. We
will discuss protocol details in the next section. For

now, we should view the result as simply PKI applied

at the granularity of enterprises instead of individuals:

since functioning as a PKI end-entity is difficult for

both the user and his software, and since PKIs with

large numbers of volatile and vulnerable end-entities

have performance problems, we are applying PKI only

at a high level, and extending security down to the user

level with simpler and more user-friendly authentica-

tion mechanisms. Alternatively, we can view DSs as

simply an aggregation technique: a DS allows us to

treat a group of user nodes as a higher-level enterprise

node from the perspective of a higher-level crypto-

graphic infrastructure. Though we’ve claimed this

higher-level infrastructure should be PKI, this is by no

Internet

Enterprise 1 Enterprise 2

Diagram. An example infrastructure showing two enterprises, each with a single DS and three clients The thick gray lines represent trust rela-

tionships: primary trust relationships link DSs and clients, and DSs and CAs. The DSs construct paths to each other to establish a derived trust

relationship, shown as a broken gray line. The thin black lines represent network communication channels. Clients communicate with their DS
and with other clients in the same enterprise using the enterprise network Clients communicate across enterprise boundaries using the Internet.

105

1st Annual PKI Research Workshop—Proceedings

means a foregone conclusion, and by no means the only

way we could knit DSs together. If end-user software

treats DS messages as opaque blobs of data, then we

can retain some flexibility for DSs to support whichever

algorithms, formats, and alternative infrastructure

strategies they desire. For example, when asked to en-

crypt a symmetric key to another DS, a DS could in-

stead add a unique identifier to the key and forward it

over a secure channel to the other DS, then return this

identifier to the client as if it was the encrypted key.

From a user’s point of view, a DS infrastruc-

ture would be simple yet effective. Alice could sit

down at any computer that was inside her enterprise’s

network (or perhaps even outside it), configure the

computer with the address of her DS, and then, with

nothing more than her password, achieve confidential

and mutually authenticated communications using

email, file transfers, instant messaging, remote login,

web browsing, videoconferencing, etc.. From an ad-

ministrator’s perspective a DS would be reasonably

easy to manage. The chief task would be to set up pri-

mary trust relationships with users, CAs, and other DSs,

and to configure the DS with whatever knowledge of

PKI systems was necessary to compute paths to other

DSs and end-entities (perhaps knowledge of remote

directories, certification policies, etc.). The chief ongo-

ing maintenance would be the periodic replacement of

DS key pairs and user credentials, and detecting and

responding to credentials compromises.

3.4 Security Criticisms

Several criticisms could be directed against

DSs. For one, authentication methods like passwords

are generally considered much weaker than private

keys[5 1 ,52], but DSs would use strong authentication

protocols[5,6,24], forcing attackers to contact the DS to

verify each guess. A DS could detect and rebuff

guesses by slowdown or lockout mechanisms,, and

could deter them by attempting to trace the attacker and

respond. Using randomly assigned passwords or en-

forcing a password-strength requirement should give

adequate security for many scenarios. For high secu-

rity, one-time password devices can be used. Since

authentication credentials are easier to use than private

keys and thus easier to deploy widely and since abuse

can be detected and monitored, we believe that in most

scenarios our approach is more secure than giving users

private keys.

We have made much of the ability of DSs to

detect and manage compromises. We will give an ex-

ample of how this might work: Alice would receive a

weekly usage statement from her DS. For each private

key operation Alice had performed, the statement

would list the date, time, IP address of the requestor,

and perhaps a plaintext string generated by Alice's end-

user software saying things like “Signing document

ContractForBob” or “Decrypting message from Charlie

with subject ‘Meeting notes’”. Alice would review this

usage statement and compare it against a local log of

her activities; if she noticed illicit uses she would con-

tact the DS and repudiate them, then cancel her creden-

tial and begin the process of getting a new one. Alice’s

DS could proactively notify the DSs that were on the

other end of any forged message authentication codes,

faked sessions, or illicitly decrypted messages, or per-

haps could publish a revocation list containing these

which other DSs could check, and if one of them no-

ticed that one of its users’ communications was af-

fected, then this DS would notify the relevant user by

email or phone that certain of his communications had

been compromised. A DS could also monitor requests

in real time to detect suspicious patterns of activity such

as users performing operations during nonbusiness

hours or when on vacation, or the decryption of a trip-

wire message or authentication with a duress code;

when suspicious activity was detected the DS could

prompt the user for a backup password, lock him out,

pretend to be unreachable, trigger an alarm, generate a

warning message to the user’s email address, etc..

This should be contrasted to how a PKI han-

dles compromise or loss of a private key. If Alice’s

private key is stolen covertly, the attacker could decrypt

all messages encrypted to her and could authenticate or

forge her signature without her receiving any indication

that this is occurring. If she does begin to suspect

something, she will have no way of knowing when the

attack occurred and how much data was compromised.

To be safe, she might have to repudiate everything ever

signed under the private key, and consider all messages

encrypted to it as compromised. Since PKI users typi-

cally have long-lived key pairs, this compromise could

affect a year or two’s worth of data. In sum, compro-

mise of a private key is catastrophic in PKI; when using

DSs, compromise of a credential can be quickly de-

tected, limited, and recovered from.

Another security criticism is that DSs provide

a high-value target for attacks. This is true: DSs are

completely trusted, not partially trusted like CAs. If a

DS was compromised, its private key could be used to

decrypt any messages encrypted to its users, forge any

of their signatures, or fake any of their authentications.

To reduce the risk of cryptanalytic attack, DSs should

be given large key pairs[53], and should change them

frequently. DSs should also destroy old private keys

once these reach a certain age, so a compromise of the

entire DS will only expose a limited amount of traffic;

this policy could impact the availability to users of their

own data; we will look at ways to mitigate this shortly.

The impact of compromise would also be lessened if

users availed themselves of protocols with perfect for-

ward secrecy[54,55] when possible.

106

1st Annual PKI Research Workshop—Proceedings

As a matter of prudence DSs should be kept in

a physically secure location, and their private keys and

credentials-verifying data should only be handled

within a tamper-resistant secure coprocessor^ 1]. This

may not keep them safe from someone willing to take

the DS offline and who has the technical resources and

time to dissect the module and defeat its safeguards, but

it should prevent covert theft of cryptographic data by

attackers with intermittent physical access. When all

these steps are taken (large keys with short lifetimes

that are deleted at a certain age, physical protection of

DSs, hardware protection of cryptographic data), we
believe the security advantages offered by DSs out-

weigh their disadvantages. We also believe that it is

not possible to significantly reduce trust in a DS while

preserving its advantages; some private key delivery

servers store private keys encrypted by user passwords

so as to hide these keys from the server itself, but the

server could always launch an offline attack and proba-

bly recover any user’s password and private key.

3.5 Performance and Privacy Criticisms

A third criticism is that DSs are a potential

performance bottleneck because of the computational

cost of asymmetric cryptography. Given that com-

puters are fast and getting faster, and that accelerator

cards costing less than two-thousand dollars currently

measure their speed in thousands of 1024-bit operations

per second[56], we think DSs could offer adequate per-

formance for a reasonable price. Moreover, centraliz-

ing computation has the advantage that weak client

devices such as PDAs, cellphones, chat devices, web
appliances, etc., would not have to perform the calcula-

tions themselves; they could authenticate once to the

DS using lower bit length or elliptic curve calcula-

tions[57,58], then request multiple different operations

in a single DS session (decrypting dozens of messages,

encrypting and signing others, etc.).

Regardless, if the cost of constantly perform-

ing asymmetric operations was deemed too high, a

community of DSs could use Diffie-Hellman key pairs.

These key pairs would allow each DS in every pair to

perform a single asymmetric calculation to determine

the shared symmetric key it has with its partner, which

it could then cache and reuse. With the appropriate

protocols and data formats these symmetric keys could

be used for point-to-point security; they could not be

used for signatures (i.e. point-to-many message authen-

tication) or anonymous encryption, but in a community
not requiring these operations the use of Diffie-Hellman

key pairs could eliminate asymmetric operations except

for periodic key agreements.

A fourth criticism is privacy. A DS can moni-

tor all operations performed by its users, and thus can

harvest data about whom users communicate with and

when, what their work habits are, etc.. This is unavoid-

able; we can only hope the security benefits of monitor-

ing and the ease of use benefits of DSs overwhelm this

deficiency. Theoretically, users could contact DSs us-

ing pseudonyms and untraceable channels, and could

distribute their operations under multiple different

names and DSs, and perhaps even blind[59,60] the data

they send to a DS so that it could not correlate user op-

erations with intercepted communications, but users

capable of all this probably don’t need DSs in the first

place. A more feasible approach to privacy might be

for a secure coprocessor at the DS to encrypt audit trail

records so as to keep them hidden even from the DS
administrator, and only make the relevant records avail-

able to authenticated users[22].

3.6 Communications Criticisms

The most serious criticisms involve the online

communications required between users and DSs. The

channel between a user and DS may be subject to denial

of service attacks or traffic analysis[20], and may suffer

performance or availability problems. Inside an enter-

prise network we believe these are minor issues. On
the Internet, DSs should not be used for important time-

critical communications, since an attacker or transient

network failure could render the DS unreachable for a

period of time. Internet DSs should also not be used

when extremely high performance is required, or when

the mere fact that a communication is occurring needs

to be hidden. Anyone designing DSs for Internet use

should take extreme care that the protocols are not ex-

ploitable and that they offer a measure of resistance to

denial of service attempts (by using stateless cookies,

for example[61]). Anyone deploying DSs on the Inter-

net should take measures such as deploying redundant

DSs in separate locations with high-speed network ac-

cess and ensuring a competent staff is on hand to ward

off crises.

Another concern with online communications

is that users cannot secure new communications or read

encrypted old ones when they are in environments

without network access. One partial solution to this,

and to the latency DSs introduce into asymmetric op-

erations, is a persistent cache of symmetric keys and

hash values stored on the user’s machine. Whenever a

DS is contacted to perform a decryption or verification,

the result would be stored in this cache, and from then

on every time the user opened the same file or read the

same email these values would be fetched locally. The

cache would be encrypted, so that whenever a user

logged onto his computer he would have to contact the

DS to decrypt it. This would keep data in a stolen

computer secure and help detect illicit access (for ex-

ample, by a coworker who knew your password and

read your emails while you were at lunch).

107

1st Annual PKI Research Workshop—Proceedings

If you knew you were going to be offline for a

period of time, you could leave the cache in a decrypted

state so that you could continue to access secure emails

and files without DS contact. Another benefit of this

cache is that it would keep alive messages that were

encrypted to private keys that the DS had expired. To
ensure that the cache itself does not expire, it could be

encrypted at the DS under a special long-term key, or

alternatively, every time the user contacted the DS the

cache could be re-encrypted under the DS’s current

private key. To reduce the dangers of cache compro-

mise, users should be able to review and purge the con-

tents of their cache. This cache would not allow users

to perform new operations when offline, but since the

user is offline and thus presumably not in a position to

communicate anyways, we consider this acceptable.

3.7 Delegate Server Interoperability

Despite all our arguments, DSs are inappropri-

ate for some environments. If a user does not com-

pletely trust anyone but himself, if offline operation is

important or constant contact with a DS is too vulner-

able, inefficient, or unreliable, or if no administrators

are willing to maintain a DS for this user, then he will

have to possess his own key pair and interact with PKI

on his own. Interoperability between non-DS and DS
users is assured because a non-DS user can be viewed

as merely a special-case DS: a DS’s key pair is used on

behalf of many people; a non-DS user’s key pair is used

on behalf of only one (himself).

In some environments, users may wish to use

DSs for some operations but not all. For example, a

user may wish to manage his own key pair but use a DS
for public key operations (i.e. encrypting and verify-

ing), thus freeing himself from the burden of path com-

putation. Alternatively, he might feel more secure us-

ing the DS’s key pair, but prefer to establish trust rela-

tionships with others himself.

3.8 Alternatives

Our criticisms of PKI are not novel. Various

proposals have attempted to address the vulnerability

and inconvenience of private key transport and the dif-

ficulty and expense of path construction. One approach

is not to use PKI at all, but to use an infrastructure like

Kerberos[28,29], which is entirely based around sym-

metric key trust relationships. We feel asymmetric

cryptography has significant advantages in minimizing

the trust and availability requirements placed on infra-

structure nodes. However, there is a proposal to use

asymmetric cryptography for cross-realm authentica-

tion^] in Kerberos which would realize these advan-

tages but still allow users to authenticate to their local

server using passwords. The resulting hybrid infra-

structure is quite similar to what we are proposing. The

difference is that Kerberos only supports the establish-

ment of symmetric keys between clients, whereas DSs
allow clients to perform asymmetric operations such as

signatures or anonymous encryptions. Also, whereas

Kerberos requires users to operate under an online

server, DSs are optional, and DS clients could seam-

lessly interoperate with conventional PKI users.

Turning now to proposals for improving PKI,

one approach to private key transport that we have al-

ready mentioned is the use of private key delivery serv-

ers[16], which make the private key more transportable

but leave it vulnerable to theft and offline abuse. An-

other approach is to use proxy certificates[63], which

are issued under a user’s regular certificate or under

another proxy certificate but are only valid for a limited

period of time and for a restricted set of uses. The gen-

eration of proxy certificates could be performed by the

user on his local machine or by an online service that

issues proxy certificates to users under proxy certifi-

cates that users had previously issued to it[64]. The

advantage of the proxy certificate approach is that long-

lived end-entity private keys can be kept in a highly

secure environment while the more exposed proxy cer-

tificate private keys are given limited validity periods

and privileges so as to minimize the damage done by a

compromise. Nonetheless, like any approach that gives

users control of private keys, the security benefits of

auditing and instant revocation are not available; in

addition, the transient nature of proxy certificates

makes them unsuitable for message confidentiality.

Short-lived certificates issued by online CAs[65] have

the same disadvantages, but eliminate the need for

long-lived end-entity certificates, while requiring

greater trust in the online service since it possesses a

long-lived CA private key instead of short-lived proxy

keys issued to it by various users.

An approach more like ours is the use of vir-

tual smart card servers[66], where each user’s private

key is stored at a server which the user authenticates to

and requests operations from. These servers provide

the same portability, auditing, and message confidenti-

ality benefits as DSs. As for path construction, proto-

cols like DPV/DPD[43] and XKMS[67] have been pro-

posed to allow clients to offload path construction to

servers, and we will assume that these work adequately.

Now if virtual smart card servers in conjunc-

tion with path construction servers accomplish the same

things as DSs but work with current PKI protocols and

data formats, isn’t that good enough? Why bother to

add explicit support for DSs? For a few reasons: For

one, storing end-entity private keys on a server abuses

certificate semantics: someone verifying an end-entity

signature will have no way of knowing that the corre-

sponding private key was actually in the possession of a

third party. This is a significant fact and should be

108

1st Annual PKI Research Workshop—Proceedings

somehow represented. For another, a virtual smart card

server requires a separate certificate for each user; ex-

changing and updating these is inefficient and will re-

veal much information about enterprise members, in-

cluding their affiliation with the enterprise, their contact

information, and the revocation status of their private

keys (which an attacker can check to determine whether

his compromise of a private key has been detected, for

example). A DS would need only a single certificate to

represent an entire enterprise, and wildcards within the

name forms (such as DNS names, IP addresses, tele-

phone numbers, etc.) would not reveal anything about

the enterprise’s internal structure.

Another problem with current PKI technolo-

gies is that you can only revoke keys from a particular

date and time, you cannot revoke particular operations.

A DS could allow the user to sift through audit trails

after a compromise and revoke private key operations

on a fine-grained basis. Another advantage of DSs is

that if DS messages are treated as opaque by clients,

then DSs acquire significant flexibility in terms of algo-

rithms, certificate formats, etc., and clients are shielded

from these details. For all these reasons (improved

semantics, fewer certificates, fine-grained revocation,

shielding client software from infrastructure), we be-

lieve that it is worthwhile to insert DS support into cur-

rent PKI protocols and data formats. We will turn our

attention to this in the next section.

4 Protocols and Data Formats

Below is an example protocol demonstrating

DS-secured messages. We assume all communications

between clients and DSs are mutually authenticated and

confidential.

C1,C2: end-users

SI, S2: Delegate Servers for the respective end-users

Dl, D2: Delegate Servers’ private keys (RSA-like)

El, E2: Delegate Servers' public keys (RSA-like)

k: symmetric encryption key

m: message

h(): hash function

k(): symmetric encryption function

D 1 (): asymmetric signature function

E2(): asymmetric encryption function

Signed Message

Cl -» SI: h(m),Cl

Cl <- SI: Dl(h(m),Cl)

Cl —» C2: m,Dl(h(m),Cl

)

C2 S2: h(m),Cl,Dl(h(m),Cl

)

C2 <— S2: true|false

Encrypted Message

Cl -> SI: k,C2

Cl SI: E2(k,C2)

Cl -» C2: k(m),E2(k,C2)

C2 -> S2: C2,E2(k,C2)

C2 <- S2: k

Signed and Encrypted Message

Cl SI: h(m),Cl,k,C2

Cl <- SI: Dl(h(m),Cl),E2(k,C2)

Cl C2: k(m,D 1 (h(m),C 1)),E2(k,C2)

C2 S2: C2,E2(k.C2)

C2 S2: k

C2 S2: h(m),C 1 ,D 1 (h(m),C 1

)

C2 <— S2: true|false

If the sending and/or receiving clients were not

using DSs, the messages sent between clients would be

the same but the asymmetric keys Dl and E2 might

refer to the sender’s private key or the receiver's public

key instead of to the corresponding DS keys, and clients

could perform the processing themselves without en-

gaging DSs. In fact, clients could always perform pub-

lic key operations (i.e. encrypting and verifying) with-

out engaging their DSs, so we should be very clear that

only private key operations are rigorously auditable.

When DSs are employed, clients need only a

minimal understanding of the DS data blocks. From the

perspective of client software, the protocol looks like:

Signed and Encrypted Message (client perspective)

Cl —» SI: h(m),Cl.k,C2

Cl <- SI: X,Y

Cl —> C2: k(m,X),Y

C2 S2: C2,Y

C2 S2: k

C2 —> S2: h(m),Cl,X

C2 <— S2: true|false

This gives the protocol a pluggable structure,

allowing the DS blocks to change without affecting

client software (to incorporate a new asymmetric algo-

rithm or data format, for example).

4.1 Operation Certificates

To emphasize the differences between the DS
and non-DS approaches, consider what a non-DS

signed and encrypted message would look like:

Signed and Encrypted Message (without DSs)

Cl —> C2: k(m,Dl(h(m)),E2(k)

109

1st Annual PKI Research Workshop—Proceedings

First, since the asymmetric keys uniquely

identify end-entities, there is no need to bind sender or

receiver names into the data format. Second, there are

obviously no sideband protocol exchanges with DSs.

When retrofitting DS support, then, we must determine

some standard representation of the DS signature and

encryption blocks X and Y which will allow us to rep-

resent operations and the names they apply to in a

packaged format whose processing can be delegated to

DSs.

One way to address these tasks is to embed

names into the data structures used to represent signed

hashes or encrypted keys. A name that was bound to a

signature would be a declarative statement from the

signer about whom the signature was produced on be-

half of. A name that was bound to an encryption would

be an imperative statement to the encryptee about

whom the encrypted data is destined for.

For example, to produce a delegated XML
Signature[68], a client could authenticate to his DS and

forward it a ds:SignedInfo containing the hash values

the client would like signed. The DS would add a

SAML[9] Authentication Assertion as a

ds:SignatureProperty, then sign the resultant

dsiSignedlnfo and return a ds:Signature to the client.

The Authentication Assertion would name the client,

the authentication method he used, and advice or condi-

tions relating to these. To validate an XML Signature

using a DS, a client could validate each hash within the

dsiSignedlnfo himself, then forward the ds:Signature

structure to his DS and receive back a boolean.

To produce an XML Encryption[69] targeted

to a DS client, one would encrypt some data with a

symmetric content encryption key, then generate an

XACML[70] xacmLpolicyStatement that expresses to

whom you would like the content encryption key deliv-

ered, and encrypt this xacmLpolicyStatement with a

symmetric policy encrytion key. Then one would gen-

erate a symmetric key encryption key and encrypt both

the content and policy encryption keys with it, and fi-

nally encrypt the key encryption key with the DS's pub-

lic key. The client who received all these data would

authenticate to his DS and forward them to it. The DS
would recover the content encryption key and the

xacmLpolicyStatement, then evaluate the policy state-

ment against the client’s Authentication Assertion, and

return the content encryption key to the client if access

is permitted. The use of an access control language like

XACML would allow the sender to specify the intended

recipients in sophisticated terms (i.e.: “give this key to

Bob or Carol, but only if they have a Top Secret clear-

ance, and only if they authenticate with a hardware to-

ken”).

To verify a DS-produced signature, or encrypt

to a DS client, one must be capable of determining the

DS public key. We could incorporate a flag into a

dsiKeylnfo to represent DS public keys, and perhaps

even add an xacmLpolicyStatement into a dsiKeylnfo

to express to whom and for what the key should be used

for. Someone wanting to encrypt a message to Bob
could perform an XKMS[67] query and receive back an

explicitly flagged DS key, and would thus know to em-

bed an xacmLpolicyStatement into the encryption to

represent the intended final recipient.

But XKMS is only intended as an interface to

PKI, so this raises the question of how we can represent

DSs within PKI data formats. For example, we would

need to modify the X.509 certificate format to support

DS certificates as opposed to CA or end-entity certifi-

cates. DS certificates would be like CA certificates in

that they are authoritative over some group of users

(they should support the name constraints extension to

express which group), but like end-entity certificates in

that the corresponding private key can perform signa-

tures or be encrypted to directly. We could add a boo-

lean into the basic contraints extension to identify DS
certificates (which might also be CA certificates, allow-

ing a DS to not only perform operations for clients, but

perhaps issue these clients short-lived certificates).

We might also wish to retrofit DS support into

PKI protocols that don’t use XML, such as SSL[4] or

S/MIME[71], As we recall, adding DS support requires

a standard format for representing signature and

encryption operations with names bound into them. In

XML there are standard formats for representing signa-

tures and encryptions which we could easily add names

into. In the X.509 PKI world there are not; however,

instead of binding names into operations, we can add

operations into bound names. In other words, we can

generalize the notion of certificates so that instead of

only binding names to public keys, certificates can bind

names to hashes as well, and thus represent delegated

signatures, and we can also invert the notion of signed

certificates to yield encrypted certificates, which are

imperative requests that a binding should be made to

exist in the future, instead of declarative assertions that

a binding did exist in the past.

In more detail, consider an X.509 end-entity

certificate. Typically such a certificate is said to bind a

name to a key. In truth, it binds not only a name, but

also a serial number so the certificate can be referred to

later and possibly revoked, a validity interval which

delimits the binding in time, and a policy which clari-

fies the binding’s semantics. And when we say that

these things are bound to a key, we really mean that

they are bound to the particular operations performed

by this key: that is, that they are attributes of the signa-

tures which it verifies and the encryptions it can be used

to produce. In other words, an X.509 certificate is a

mechanism for binding (within the limits of a validity

period and policy) an end-user name and a serial num-

ber to operations as expressed through the indirection of

110

1st Annual PKI Research Workshop—Proceedings

a public key.

It seems logical, then, to use certificates to

bind these same attributes directly to particular opera-

tions. For example, consider an end-entity who wants

to sign a document with his private key. He could hash

the document and then collect this hash along with a

serial number, a validity interval, and a policy, and then

use his private key to sign these, producing a signature

operation certificate (OC). The serial number would

allow him to later revoke this particular signature by

including its number in a revocation list. The validity

interval would allow him to represent the time period

over which he is asserting this binding. The policy

would allow him to express the particular semantics of

his signature on this document. Someone verifying this

signature should validate the entire certificate chain,

including first the CA certificates, then the end-entity

certificate, and finally the OC, before extracting and

checking the hash value inside the OC.
An encryption OC would be similar to a signa-

ture OC but would contain a symmetric encryption key

instead of a hash value, and would be encrypted to the

target’s public key, instead of signed by the issuer's

private key. The policy identifier would identify a re-

quest instead of a statement: that is, instead of a state-

ment from the signer saying “I authenticated Alice to

degree X and assume liability Y for the assertion that

this data is associated with her”, it would say “Please

authenticate Bob to degree X and only deliver this data

to him if you are willing to assume liability Y”. One
difference between signature and encryption OCs is that

signature OCs represent past occurrences, whereas en-

cryption OCs represent conditions on future occurences

(mirroring the distinction between SAML assertions

and XACML policies). Thus while signature OCs
would be similar to end-entity certificates in that they

bind a particular name, encryption OCs would be like

CA certificates in that they might bind a range of names

(using the name constraints extension), representing all

the users who would be allowed to decry pt this data.

Looking back at our protocol diagrams, the

Dl(h(m),Cl) blocks represent signature OCs, and the

E2(k,C2) blocks represent encryption OCs. The chief

problem with OCs is that they don’t yet exist: current

cryptographic protocols and data formats such as

CMS[72] (used by the S/MIME email security stan-

dard) or TLS[73] (derived from SSL) would need sur-

gery to support them. Below we will consider exactly

what this entails.

A signature OC will be mostly identical to an

end-entity OC except that the issuer field will refer to

the end-entity certificate or DS certificate that issued it,

and the subjectPublicKeylnfo field will be replaced by

digestAlgorithm and digestValue fields. An encryption

OC will be a little different; in particular, its top-level

structure will be something like this:

EncryptionOperationCertificate ::= Sequence{

encryptedCertificate EncryptedCertificate

encryptionAlgorithm Algorithmldentifier

encryptedKey BIT STRING
target Targetldentifier

}

Instead of this:

Certificate ::= Sequence{

tbsCertificate TBSCertificate

signatureAlgorithm Algorithmldentifier

signatureValue BIT STRING}

It may be desirable to support signature and

encryption OCs that have both an issuer and a target, so

that hash values and encryption keys could be transmit-

ted securely using key agreement algorithms, and this

could be done with straightforward extensions to the

EncryptionOperationCertificate.

Clients could create and process OCs on their

own or by authenticating to DSs and engaging in a re-

quest/response protocol. We could use TLS for confi-

dential and authenticated session establishment, and

modify it to support SRP for mutual authentication[74]

between the client and server. The request/response

protocol would allow clients to request signature OCs
along with the certificate chains leading up to them by

sending hash values and to-be-signed attributes to DSs,

and to request encryption OCs by sending symmetric

encryption keys and the names of intended recipients to

DSs. We would also want to allow clients some input

into the validity and policy fields of the OCs, and allow

clients to retrieve the certificate chain up to their DS in

a separate step from procuring an OC, for use in proto-

cols where one party sends a certificate chain to a sec-

ond who then encrypts something to the first’s certifi-

cate (such as TLS). To process OCs (i.e. to verify sig-

natures and extract symmetric encryption keys) would

involve similar protocol exchanges.

OCs would work with revocation-checking

mechanisms such as CRLs and OCSP. The issuer

(whether an end-entity or DS) would be capable of re-

voking signature OCs, and the target (whether an end-

entity or DS) would be capable of revoking encryption

OCs. Reason codes should be added that are suitable

for use by DSs and end-entities. For example, DSs

should be able to specify that an operation was revoked

because it was accessed using stolen credentials. Revo-

cation-checking of OCs would not need to take place

for online operations where timeliness was guaranteed

(such as verifying a signature OC on a nonce). For

operations where the overhead of retrieving and check-

ing CRLs is too great, revocation-checking can be de-

ferred and done periodically: for example, a DS might

download all CRLs only at midnight every day and then

111

1st Annual PKI Research Workshop—Proceedings

compare them against its audit logs to determine if any

of its users were affected. For point-to-point operations

(i.e. operations involving key agreement, or where sig-

nature and encryption OCs have been cryptographically

linked in some way), the DSs can notify only the af-

fected parties instead of having to make the revocation

public.

4.2 Using Operation Certificates

Finally, we need to add OCs into application

protocols and data formats. These formats already have

ways of representing signed hashes and encrypted keys,

and we will simply replace these older representations

with the corresponding OCs. For example, a CMS
Signerlnfo could be changed from something like this:

Signerlnfo ::= Sequence{

version CMSVersion
sid Signerldentifier

digestAlgorithm DigestAlgorithmldentifier

signedAttrs SignedAttributes

signatureAlgorithm SignatureAlgorithmldentifier

signature SignatureValue

unsignedAttrs UnsignedAttributes}

To this:

NewSignerlnfo ::= Choice{

oldSignerlnfo Signerlnfo

opSignerlnfo OperationSignerlnfo}

OperationSignerlnfo ::= Sequence {

version CMSVersion

signOpCert SignatureOperationCertificate

unsignedAttrs UnsignedAttributes}

The sid, digestAlgorithm, signatureAlgorithm,

and signature fields would all be replaced by the signa-

ture OC, and the signed attributes could be incorporated

into the OC as extensions. To add DS-based encryption

to CMS, we could extend the Recipientlnfo type with:

OperationRecipientlnfo ::= Sequence}

version CMSVersion
encryptOpCert EncryptionOperationCertificate}

To add DS support to TLS we could similarly

replace the Signature structure with a signature OC and

replace the EncryptedPreMasterSecret with an encryp-

tion OC. On these lines, we believe any public key

protocol or format (such as ssh[75], IPsec[76],

OpenPGP[18], etc.) could be retrofitted to use OCs.

In sum, OCs are a powerful primitive even

apart from DSs. OCs extend certificate validation to

the level of particular operations, allowing policies and

validity periods to be bound to operations, signed and

encrypted attributes to be incorporated into them, and

revocation-checking to occur upon them. By defining a

standard structure that uses asymmetric keys to secure

this information and bind it to hash values and symmet-

ric keys, protocol designers are given a higher-level

building block that makes their job easier. With DSs,

OCs become even more valuable, since OCs allow the

binding of names to particular operations and can be

easily passed back and forth between clients and DSs
and embedded in protocols.

It may be objected that we are abusing the no-

tion of certificates, but we feel that we are generalizing

it in a coherent way. A conventional certificate authen-

ticates a binding between attributes such as names and a

public key and qualifies this binding via policies, valid-

ity periods, etc.. This public key can then be used to

produce authenticated or confidential bindings between

these attributes (or some subset of them) and further

data. In the case where an authenticated binding is pro-

duced between attributes and another public key, this is

called a certificate.

In our opinion, this is a restrictive notion of

certificates: the idea of a qualified binding between

attributes and data is sufficiently important and general

that the same data format and terminology should be

used when binding attributes to data that are not public

keys (i.e. OCs) and when producing confidential in-

stead of authenticated bindings (i.e. encryption OCs
versus signature OCs). By treating all such bindings

consistently, the scope of concepts such as revocation-

checking, policies, and validity intervals is increased,

and the bindings are packaged into a standard format

which makes it easy to reuse them in the context of

different protocols and easy to delegate their processing

to DSs. This approach seems promising, but it clearly

needs a much more thorough analysis and explication

then we have provided here.

5 Conclusion

Delegated cryptography splits the problem of

end-to-end security into an intra-enterprise portion that

can be addressed with authentication techniques and an

inter-enterprise portion that can be addressed with PKI.

This exploits the strengths and avoids the weaknesses

of both technologies: Authentication techniques are

easy to use and widely deployed, but can only secure

interactive sessions between two parties. PKI can se-

cure sessions or messages between a large number of

parties, but imposes complex and difficult burdens on

these parties. By using authentication techniques to

access a PKI-enabled server we can confine the burdens

of PKI to a single point within an enterprise while mak-

ing its benefits available throughout.

112

1st Annual PKI Research Workshop—Proceedings

There are proposals to improve authentication

techniques by having one authentication stand in for

several (single sign-on), and to improve PKI through

piecemeal delegation of various functions (private key

storage, path construction, etc.)- We believe these pro-

posals are in the right direction but don't go far enough.

We think authentication should be used to access more

than simply further authentications, and that delegation

should be pushed to its logical extreme. Taken to-

gether, these points indicate an infrastructure that would

be easy to use, easy to write software for, full-featured,

highly secure, and efficient, and could be built on top of

the data formats and protocols in use today. We en-

courage and hope to participate in further research in

this direction.

Acknowledgements

We thank Sayan Chakraborty and the anony-

mous reviewers for their encouragement and helpful

comments on the ideas and organization of this paper.

Notes

1

Actually, we could expect much more from a crypto-

graphic infrastructure, and from cryptography in gen-

eral: we might want notary, timestamping, and nonre-

pudiation services, protocol support for things like vot-

ing, simultaneous contract signing, and digital cash,

steganography and watermarking functionality, anony-

mous communications, etc. [77]. Here we focus on the

more prosaic objectives of confidentiality and authenti-

cation, but it would be interesting to explore more ex-

otic uses of DSs.

2 Much of our argument against conventional PKI, and

our proposed solution, was anticipated by Don Davis’

paper “Compliance Defects in Public-Key Cryptogra-

phy”^]. In particular, after reviewing PKI’s advan-

tages in reducing trust, availability, performance, and

reliability demands on the infrastructure, he points out

that “these attractive features come at the cost of trans-

ferring corresponding burdens onto users”. His sugges-

tion, similar to ours, is a hybrid system: “We can com-

bine both cryptosystems’ administrative benefits, by

restricting public-key deployment to servers, and by

using symmetric-key protocols for desktop clients”.

This paper is highly worth reading, and provides further

evidence for many of our arguments.

3
Here as elsewhere we assume that principals possess

global names and form their trust relationships in terms

of these. This approach has been criticized: often the

name of some party to a communication is less relevant

than some attribute of this party (such as his organiza-

tional affiliation, security clearance, credit rating,

etc.)[38]. If trust relationships are expressed and calcu-

lated in terms of names then some other mechanism

(such as an access control list) must be used to map
identities to these authorizations or attributes, which is

both clumsy and a threat to privacy since user identities

are exposed in situations where they are not strictly

necessary. We agree with this criticism, but we believe

the debate is orthogonal to our approach: DSs could

wield attribute or authorization certificates just as easily

as identity certificates. For simplicity of presentation

we will continue to speak in terms of names but no loss

of generality should be assumed.

References

[1] R. Owens, One-Time Passwords: Functionality and

Analysis , October 2000
http://rr.sans org/authentic/onetime2.php

[2] N. Haller, C. Mertz, P. Nesser, and M. Straw, RFC
2289: A One-Time Password System, February 1998
http://www ietf.org/rfc/rfc2289.txt

[3] A.K. Jain, R. Bolle, and S. Pankanti, Biometrics:

Personal Identification in NetM’orked Society, Kluwer,

1991
http://www.wkap n!/prod/b/0-7923-8345-

1

[4] A.O. Freier, P. Karlton, and P.C. Kocher, The SSL

Protocol Version 3.0, November 1996
http://www netscape .com/eng/ssl 3/draft302 . txt

[5] T. Wu, The Secure Remote Password Protocol,

Proceedings of the 1998 Internet Society Network and

Distributed System Security Symposium, March 1998
http //www-cs-students. Stanford edu/-~tjw/srp/ndss.html

[6] T. Wu, RFC 2495: The SRP Authentication and

Key Exchange System , September 2000
http://www ietf.org/rfc/rfc2945.txt

[7] Microsoft .NET Passport

http://www microsoft com/myservices/passport/security doc

[8] The Liberty Alliance Project

http://www. projectliberty.org/

[9] P.H. Baker, E. Maler, et. al. Assertions and Proto-

colfor the OASIS Security Assertion Markup Language

(SAML)
http: //www. oasis-open org/committees/security/docs/

[10] W. Diffie and M.E. Heilman, New Directions in

Cryptography, IEEE Transactions on Information The-

113

1st Annual PKI Research Workshop—Proceedings

ory, 22, 1976
http://citeseer.nj.nec.com/ditTie76new html

[11] L.M. Kohnfelder, “Toward a Practical Public-Key

Cryptosystem”, B.Sc. thesis, MIT Department of Elec-

trical Engineering, 1978

[12] C. Daniel, Internet Security cannot be left to tech-

nologists alone. Financial Times, September 2001
http://specials.ft com/ftit/FT34WRFC6RC. html

[13] J. Lewis, PKI Won 't Hit The Mainstream Until

Vendors Reduce Complexity, InternetWeek, January

2001
http://www mtemetweek.com/columns01 /lewisO 1 080 1 htm

[14] B.D. Reimers, PKI's Are Still Tough To Deploy,

IntemetWeek, April 2001
http://www.mtemetweek.com/security/secure040901-l htm

[15] GAO, Information Security: Advances and Re-

maining Challenges to Adoption ofPublic Key Infra-

structure Technology, Item No. 0546-D; SuDocs No.

GA 1.13:GAO-01-277, February 2001
http://www gao.gov/new items/dO 1277 pdf

[16] A. Arsenault and S. Farrell, RFC 3157: Securely

Available Credentials - Requirements, August 2001
http ://www ietf.org/rfe/rfe3 1 57 . txt

[17] S. Garfinkel, PGP: Pretty Good Privacy, O’Reilly

& Associates, 1995
http://www.oreilly.com/catalog/pgp/

[18] J. Callas, L. Donnerhacke, H. Finney, and R.

Thayer, RFC 2440: OpenPGP Message Format, No-

vember 1998
http://www.ietf org/rfc/rfc2440 txt

[19] A. Whitten and J.D. Tygar, Why Johnny Can't

Encrypt: A Usability Evaluation ofPGP 5.0, Proceed-

ings of 8
th USENIX Security Symposium, August 1999

http://www-2.cs.cmu.edu/~alma/johnny.pdf

[20] J. Raymon, Traffic Analysis: Protocols, Attacks,

Design Issues, and Open Problems, Workshop on De-

sign Issues in Anonymity and Unobservability, 2000
http://citeseer.nj.nec.com/454354.html

[21] S.W. Smith and S.H. Weingart, Building a High-

Performance, Programmable Secure Coprocessor,

Computer Networks (Special Issue on Computer Net-

work Security), 31, pp. 831-860, April 1999
http://www. research . ibm.com/sec ure_systems/papers/arch.pdf

[22] S.W. Smith and D. Safford, Practical Private In-

formation Retrieval with Secure Coprocessors, IBM
Research Report RC-21806, July 2000

http://www.research.ibm.com/secure_systems/papers/rc21806.pdf

[23] J. Daugman, High Confidence Visual Recognition

ofPersons by a Test ofStatistical Independence, IEEE
Transactions on Pattern Analysis and Machine Intelli-

gence, v. 1 5 no. 1 1 , pp. 11 48- 1161, November 1 993

[24] S.M. Bellovin and M. Merritt, Encrypted Key Ex-

change: Password-Based Protocols Secure Against

Dictionary Attacks, Proceedings of the IEEE Sympo-

sium on Research in Security and Privacy, May 1992
http://www.research.att.com/~smb/papers/neke.ps

[25] ITU-T Rec. X.509, The Directory: Public-key and
attribute certificateframeworks, March 2000
http://www itu. mt/rec/recommendation.asp9type :=folders&lang=e&pa

rent=T-REC-X.509

[26] R. Housley, W. Ford, W. Polk, and D. Solo, Inter-

net X.509 Public Key Infrastructure Certificate and

CRL Profile, January 1999
http://www.ietf.org/rfc/rfc2459.txt

[27] R. Housley and Tim Polk, Planningfor PKI, John

Wiley & Sons, Inc., 2001
http://www. wiley. com/cda/product/0,,047 1 397024,00. html

[28] J.G. Steiner, B.C. Neuman, and J.I. Schiller, Ker-

beros: An Authentication Servicefor Open Network

Systems, Proceedings of the Winter 1988 Usenix Con-

ference, pp. 191-202, February 1988
ftp://athena-dist-mit.edu/pub/kerberos/doc/usenix.ps

[29] J. Kohl and B.C. Neuman, RFC 1510: The Kerbe-

ros Network Authentication Service (V5), September

1993
http://www.ietf org/rfc/rfc 1 5 10. txt

[30] C. Rigney et. al, RFC 2865: Remote Authentica-

tion Dial In User Service, June 2000
http://www.ietf org/rfc/rfc2865. txt

[31] W. Yeong, T. Howes, and S. Kille, RFC 1777:

Lightweight Directory Access Protocol

,

March 1995
http //www. ietf.org/rfc/rfc 1 777.txt

[32] M. Wahl, T. Howes, and S. Kille, RFC 2251:

Lightweight Directory Access Protocol (v3), December

1997
http://www.ietf org/rfc/rfc225 1 txt

[33] RSA Security Inc., Delivery of Ten Millionth RSA
SecurlD Authenticator, Press Release, December 2001
http://www.rsasecurity com/news/pr/01 1212 html

[34] P. Kocher, Timing Attacks on Implementations of

Diffie-Hellman, RSA, DSS, and Other Systems, Ad-

vances in Cryptology-CRYPTO ’96, Springer LNCS

114

1st Annual PKI Research Workshop—Proceedings

1109, pp. 104-113, 1996
http://www.cryptography.com/resources/whitepapers/TimmgAttacks

pdf

[35] P. Kocher, Differential Power Analysis, Advances

in Cryptology-CRYPTO ’99, Springer LNCS 1666, pp.

388-397, 1999
http://www cryptography.com/resources/whitepapers/DPA pdf

[36] RJ. Anderson and M.G. Kuhn, Tamper Resis-

tance -A Cautionary Note, Proceedings of the Second

Usenix Workshop on Electronic Commerce, pp. 1-11,

November 1996
http://www.cl.cam.ac.uk/~mgk25/tamper html

[37] ITU-T Rec. X.500, The Directory: Overview of
concepts, models and services, February 2001
http://www.itu int/rec/recommendation.asp?type=folders&lang=e&pa

rent=T-REC-X.500

[38] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B.

Thomas, and T. Ylonen, RFC 2693: SPKI Certificate

Theory, September 1999
http://www ietf.org/rfc/rfc2693.txt

[39] P. Gutmann, X.509 Style Guide, October 2000
http://www.es.auckland ac nz/~pgut001/pubs/x509guide.txt

[40] P.C. Van Oorschot, W.S. Ford, S.W. Hillier, and

J. Otway, Methodfor efficient management ofcertifi-

cate revocation lists and update information, U.S. Pat-

ent 5,699,431, December 1997
http://www.uspto.gov/

[41] D.A. Cooper, A More Efficient Use ofDelta-

CRLs, Proceedings of the 2000 IEEE Symposium on

Security and Privacy, pp. 190-202, May 2000
http://csrc.nist.gov/pki/documents/sliding_wmdow.pdf

[42] M. Myers, R. Ankney, A. Malpani, S. Galperin,

and C. Adams, RFC 2560: X.509 Internet Public Key
Infrastructure Online Certificate Status Protocol -

OCSP, June 1999
http://www ietf.org/rfc/rfc2560.txt

[43] D. Pinkas, Internet Draft: Delegated Path Valida-

tion and Delegated Path Discovery Protocols, work in

progress, July 2001
http://wwwietf.org/intemet-drafts/draft-ietf-pkix-dpv-dpd-OOtxt

[44] R. Housley and T. Polk, Planningfor PKI, John

Wiley & Sons, Inc., chapter 1 1, 2001
http://www wiley. com/cda/product/0,,047 1397024,00 html

[45] B. Kaliski, RFC 2314: PKCS #10: Certificate

Request Syntax Version 1.5, March 1998
http ://www ietf.org/rfc/rfc23 1 4 . txt

[46] B. Kaliski, RFC 2315: PKCS #7: Cryptographic

Message Syntax Version 1.5, March 1998
http://www ietf.org/rfc/rfc2315.txt

[47] C. Adams and S. Farrell, RFC 2510: Internet

X.509 Public Key Infrastructure Certificate Manage-

ment Protocols, March 1 999
http://www. ietf.org/rfc/rfc25 1 0.txt

[48] M. Myers, X. Liu, J. Schaad, and J. Weinstein,

RFC 2797: Certificate Management Messages over

CMS, April 2000
http://www ietf.org/rfc/rfc2797.txt

[49] X. Liu, C. Madson, D. McGrew, and A. Nourse,

Cisco System 's Simple Certificate Enrollment Profile,

2000
http://www cisco.com/warp/public/cc/pd/sqsw/tech/scep_wp htm

[50] S. Berkovits, S. Chokhani, J.A. Furlong. J.A.

Geiter, and J.C. Guild, Public Key Infrastructure study:

Final Report

,

MITRE Corporation, April 1994
http //csrc n ist

.

gov/pk i/documents/m itre
.

ps

[51] D.C. Feldmeier and P.R. Kam, Unix Password

security - ten years later, CRYPTO Proceedings, 1989

http //www,ja.net/CERT/JANET-CERT/../Feldmeier_and_K.am/
crypto_89 ps

[52] T. Wu, A Real-World Analysis ofKerberos Pass-

word Security, Proceedings of the 1999 Network and

Distributed System Security Symposium, 1999
http://www.isoc.org/isoc/conferences/ndss/99/proceedmgs/papers/wu.

pdf

[53] A.K. Lenstra and E.R. Verheul, Selecting Crypto-

graphic Key Sizes, to appear in The Journal of Cryptol-

ogy, Springer-Verlag

http //www cryptosavvy .com/Joc pdf

[54] C.G. Gunther, An identity-based key-exchange

protocol. Advances in Cryptology-EUROCRYPT ’89,

Springer LNCS 434, pp. 29-37, 1990

[55] R. Shirey, RFC 2828: Internet Security Glossary,

May 2000
http : //www . i etf. org/rfe/rfe2 828 . txt

[56] Cryptographic Appliances, Cryptographic Appli-

ances Releases Two PCI Accelerators, Press Release,

August 2001
http://www cryptoapps.com/press0807200 1 html

[57] V. Miller, Uses ofelliptic curves in cryptography.

Advances in Cryptology: proceedings of Crypto ’85,

LNCS 218, pp. 417-426, 1986

[58] N. Koblitz, Elliptic curve cryptosystems, Mathe-

115

1st Annual PKI Research Workshop—Proceedings

matics of Computation, 48, pp. 203-209, 1981

[59] D. Chaum, Blind Signaturesfor Untraceab/e

Payments , Advances in Cryptology: Proceedings of

Crypto 82, Plenum Press, pp. 199-203, 1983

[60] D. Chaum, Security without Identification: Trans-

action Systems to Make Big Brother Obsolete ,
Commu-

nications of the ACM, v. 28, n. 10, pp. 1030-1044, Oc-

tober 1985
http://www.chaum.com/articles/Secunty_Wthout_ldentification.htm

[61] P. Kam and W. Simpson, RFC 2522: Photuris:

Session-Key Management Protocol, March 1 999
http://www ietf org/rfc/rfc2522.txt

[62] M. Hur, B. Tung, T. Ryutov, C. Neuman, A.

Medvinsky, G. Tsudik, B. Sommerfeld, Internet Draft:

Public Key Cryptographyfor Cross-Realm Authentica-

tion in Kerberos, work in progress, November 2001
http ://www ietf. org/i nternet-drafts/draft- ietf-cat-kerberos-pk-cross-

08.txt

[63] S. Tuecke, D. Engert, I. Foster, V. Welch, M.

Thompson, L. Pearlman, and C. Kesselman, Internet

Draft: Internet X.509 Public Key Infrastructure Proxy

Certificate Profile , work in progress, February 2002
http://www ietf org/intemet-drafts/draft-ietf-pkix-proxy-02. txt

[64] J. Novotny, S. Tuecke, and V. Welch, An Online

Credentials Repositoryfor the Grid: MyProxy, Pro-

ceedings of the Tenth International Symposium on

High Performance Distributed Computing (HPDC-10),

IEEE Press, August 20001
http://www.globus.org/research/papers/myproxy.pdf

[65] Y. Hsu and S.P. Seymour, An Intranet Security

Framework Based on Short-Lived Certificates, Pro-

ceedings of the 6
th
workshop on Enabling Technologies

Infrastructure for Collaborative Enterprises, 1997
http://www.computer.org/intemet/icl 998/w2073abs.htm

[66] Secure Computing Corporation, Virtual Smart

Card Server Solution

,

July 2000
http://www securecomputing com/pdf/safeword_plus_wp_vscs.pdf

[67] W. Ford, P.H. Baker, B. Fox, B. Dillaway, B.

LaMacchia, J. Epstein, and J. Lapp,XML Key Man-

agement Specification (XKMS), March 2001
http://www w3 org/TR/xkms/

[68] D. Eastlake, J. Reagle, and D. Solo, RFC 32 75

:

(Extensible Markup Language) XML-Signature Syntax

and Processing, March 2002
http://www ietf org/rfc/rfc3275. txt

[69] D. Eastlake, J. Reagle, T. Imamura, B. Dillaway,

and E. Simon, XML Encryption Syntax and Processing,

W3C Candidate Recommendation, March 2002
http://www.w3.org/TR/xmlenc-core/

[70] S. Godik and T. Moses, OASIS extensible Access

Control Markup Language, Committee Draft, April

2002
http://www oasis-open org/committees/xacml/docs/

[71] B. Ramsdell, RFC 2633: S/MIME Version 3 Mes-

sage Specification, June 1999
http://www.ietf.org/rfc/rfc2633.txt

[72] R. Housley, RFC 2630: Cryptographic Message

Syntax, June 1999
http://www.ietf.org/rfc/rfc2630.txt

[73] T. Dierks and C. Allen, RFC 2246: The TLS Pro-

tocol Version TO, January 1999
http //www. ietf.org/rfc/rfc2246.txt

[74] D. Taylor, Internet Draft: Using SRPfor TLS Au-

thentication, work in progress, June 2001
http://www ietf.org/internet-drafts/draft-ietf-tls-srp-0 1 .txt

[75] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and

S. Lehtinen, Internet Draft: SSH Protocol Architecture,

work in progress, January 2002
http //www. ietf.org/intemet-drafts/draft-ietf-secsh-architecture- 12 txt

[76] R. Thayer, N. Doraswamy, and R. Glenn, RFC
2411: IP Security Document Roadmap, November 1998
http://www.ietf.org/rfc/rfc241 1 txt

[77] B. Schneier, Applied Glyptography, Second Edi-

tion, John Wiley & Sons, chapters 2-6, 1996
http //www.counterpane.com/appl ied.html

[78] D. Davis, Compliance Defects in Public-Key

Cryptography, Proceedings of the 6
th USENIX UNIX

Security Symposium, July 1996
http //world. std.com/~-dtd/compliance/compliance ps

116

1st Annual PKI Research Workshop—Proceedings

Security Characteristics of Cryptographic Mobility Solutions

Sarbari Gupta

Electrosoft Services , Inc.

sarbari'Tv.electrosoft- inc. com

Abstract
This paper focuses upon the security characteristics of

cryptographic mobility (CM) solutions. CM solutions

allow the roaming user to make use of their

cryptographic credentials from any workstation or

system that has network connectivity to the appropriate

credential server(s), without the need to carry portable

software or hardware tokens. While CM
implementations have a greater potential for security’

vulnerabilities than traditional (non-mobile)

cryptographic implementations
, it is anticipated that

the demand for products in this technology category

will continue to grow in thefuture.

1 OVERVIEW
Traditionally, systems that use public-private key pairs

for user authentication, digital signature or message

confidentiality protection store the user’s private keys

and private user data in encrypted form on the client

system’s hard drive. However, this mechanism does not

allow the user to roam, that is, to access the private key

information from any generic client terminal, in order

to digitally sign or encrypt material from that terminal.

Within a public key infrastructure (PKI), a user

credential is a cryptographically protected object, that

may contain the owner’s private key(s), public key

certificate(s), certificates for CAs within the owner's

PKI hierarchy, trust roots relevant to the user, and other

domain-specific parameters such as user IDs,

cryptographic algorithm names, salt values, etc. PKI

credentials may reside in hardware or software tokens.

Cryptographic roaming is highly advantageous for

many business and consumer applications. Such

solutions make cryptography accessible from a wide

variety of client systems, including public kiosks and

terminals. Currently, there are two fundamental

mechanisms for providing roaming access to public key

credentials - these are described below.

• Portable credentials - the user carries their

cryptographic credentials in a portable format

(which may be hardware or software). Smart cards

and other types of hardware tokens, and software

credentials stored on portable media such as

floppies are examples of portable credentials.

While the portable hardware token approach is

sound from the security perspective, it often

requires special hardware at the client workstation,

and is often cumbersome, impractical or cost-

prohibitive for most roaming scenarios.

Conversely, software portable tokens are cheap and

easy to deploy. However, very often, software

portable tokens are protected using password-based

encryption techniques (such as PKCS#5 [PI]).

Within a roaming environment, where public

terminals and kiosks may be used for secure

transactions, such a software portable token may
easily be subjected to offline brute-force password

guessing attacks, against a reasonably small

password space.

• Credential Servers - this approach makes use of

online Credentials Server(s), which allows the

credential owner to make use of their private key

material after they have successfully authenticated

themselves to one or more online Authentication

Servers. In this approach, all or portions of the

user’s private key material and private data are

stored, in a protected form, on a system that is

accessible to the online authentication and

credential servers.

In this paper, we will focus on the latter approach for

mobility', and analyze the generic security

characteristics. We will refer to such solutions as

Cryptographic Mobility (CM) solutions. There are

several CM products and techniques that are currently

available. References to some of the major schemes are

listed at the end of this paper. This paper is organized

as follows. Section 2 defines a generic architecture for

CM systems, while Section 3 describes the generic

operational phases. Section 4 discusses some of the

attributes that characterize a CM solution, while Section

5 describes the security issues that are more likely to

arise in CM implementations. Section 6 analyzes the

applicability of a CM solution. Section 7 provides brief.

117

1st Annual PKI Research Workshop—Proceedings

high-level descriptions of some of the currently

available CM products, and Section 8 presents some

conclusions.

2 ARCHITECTURE OF A
CRYPTOGRAPHIC MOBILITY
SOLUTION
A generic CM system comprises several functional

components as illustrated in Figure 1. Each of the

components is further described below. It may be noted

that although the functional components are shown as

distinct boxes the figure, two or more of the

components may be instantiated on the same physical

system for a given CM implementation.

Client Station : This component represents various

shared workstations and/or public kiosks that may be

utilized by a CM user to interact with the CM system.

The Client Station can be used to initialize a roaming

credential through interactions with the Initialization

Server. The Client Station can also be used to activate

and use the roaming credential for secure data

exchange. The CM user is required to authenticate to

one or more Authentication Servers, following which,

the user's credentials are made available with the

cooperation of the Credential Server(s). The Client

Station may run some kind of GUI-based client

software that is provided as a part of the specific

mobility solution.

Initialization Server : The Initialization Server is

responsible for the creation of roaming credentials, and

the establishment of the authentication information for

the roaming user. If new certificates need to be issued

to the user during the creation of the roaming

credentials, this component may interact with a

Certification Authority. The Initialization Server will

also typically interact with the Authentication and

Credential Servers to populate their databases with the

appropriate data for the user.

Authentication Server(s) : This is the component that is

responsible for authenticating the roaming user before

they are allowed access to their credentials. The

Authentication Server may need to maintain an

authentication database that allows it to determine

whether a given user’s authentication attempt was

successful.

Credential Server(s) : This component may hold all or

portions of the user’s cryptographic credentials. The

held credentials may be stored in a backend data store.

Figure 1. Generic Functional Architecture of a Cryptographic Mobility Solution

118

1st Annual PKI Research Workshop—Proceedings

Certification Authority (CA): The CA component is

responsible for the generation of signed certificates for

roaming credential use, if that is necessary to the CM
solution. The Initialization Server interacts with the CA
component to create and initialize special roaming

credentials.

3 OPERATIONAL PHASES OF
A CRYPTOGRAPHIC MOBILITY
SOLUTION
Although there are varied schemes for implementing a

CM solution, the majority of the schemes can be broken

down into some generic operational phases. These are

described below.

Credential Initialization Phase - During this phase, the

user’s PKI credentials may be created and/or packaged

to accommodate roaming usage. The Client Station

component interacts with the CM Initialization Server

to perform the steps needed to establish a set of

roaming-capable credentials, and make them accessible

to the user. Some CM solutions can package existing

user credentials into a roaming accessible form, while

others require the generation of specially-crafted

credentials to support roaming usage. In the latter type,

the CM solution will typically require generation of

new key pairs, and the issuance of new certificates. In

some cases, the CM solution may provide its own
Certification Authority or certificate generation

function. In other cases, the CM solution can pass the

certificate signing request to an external Certification

Authority.

During the Initialization Phase, information is collected

for the authentication of the roaming user. This

information is used to populate the Authentication

Server database. Additionally, the roaming credential

package is handed to the Credential Server for access

over the Internet.

Authentication Phase - This phase of the roaming

protocol occurs each time the user wishes to establish

their connection to their online credential server to

download or make use of their roaming credentials.

During this phase, the online user operating from a

generic workstation or terminal authenticates to the

Authentication Server to assert and establish their

identity. Although there are wide variations in the

technologies and protocols used between the Client

Station and the Authentication Server, the human user

at the Client session almost uniformly is required to

provide an account identity and a password. The user

may also be required to provide answers to one or more
questions to provide restricted, personal, information.

The user provided account name, password, and

perhaps other user secrets that are required, may be

used in a variety of ways to authenticate to the remote

Authentication Server(s). Some schemes use a

challenge-response protocol using the user-provided

password, others use the password for a local operation

(at the Client Station) to unlock private key functions to

authenticate to the Authentication Server(s). Yet other

schemes use some form of strong password schemes

using strong secrets that are provided by remote, online

server(s).

The frequency of the authentication phase during a user

session, and the ability to invoke multiple uses of the

user’s private roaming credentials, varies considerably

with the particular scheme under consideration. For

ease of use, some schemes allow caching of the user

provided authentication information so that the user is

only required to provide this information once during

the course of a session regardless of the number of

times the roaming credential is used and the variety of

applications that invoke the user private key. While

very convenient for the user, this approach of single

sign-on is fraught with risk in terms of credential hijack

by subsequent users of the Client Station. Other CM
schemes take the conservative approach of necessitating

a user authentication to the Authentication Server(s)

each time the user private key is used. This approach

provides much greater security for the roaming

credential and supports other associated security

functions, such as auditing the use of the private keys

for purposes of fraud detection and non-repudiation;

however, the user’s convenience factor is greatly

reduced.

Credential Download Phase - Many of the CM
technologies involve an intermediate phase of

credential download to the Client Station. The

credential download follows the authentication phase

and precedes the credential usage phase. The

downloaded material may be part or all of the user’s

credentials and other private user data, and is always

protected with additional layer(s) of cryptography to

prevent credential misuse at or to the Client Station.

The additional layer(s) of cryptographic protection may

be unlocked using a session authentication key or

through user provided secrets.

Credential LIsane Phase - The most significant

operational phase of a CM solution is the actual use of

the user’s private key for authentication, digital

signature, or message decryption functions. During this

phase, the user has the ability to make use of their

credentials, either by unlocking a local copy of their

119

1st Annual PKI Research Workshop—Proceedings

credentials, or by availing of online services that assist

in completing the usage of the credentials.

Some CM schemes allow the download of a copy of the

user’s credentials to the local client station. This copy is

cryptographically protected and may be unlocked for

use after the user provides a PIN or passphrase. The

user is able to make repeated use of the local copy of

the credential without involving the remote

Authentication or Credential Servers. This type of

scheme is typically faster and easier to use. However,

the local copy of the user’s credentials on the Client

Station may be subjected to offline attacks and

unauthorized reuse.

In certain CM schemes, the user’s credentials or key

material is never actually downloaded to the local

Client Station. Each use of the roaming credential

requires the involvement of one or both of the

Authentication and Credential Servers. This type of

scheme, though possibly slower and more tedious to

use, has the benefit that it never exposes the user’s

credentials at the Client Station or allows its copy or

reuse by an attacker.

Credential Release Phase - The final phase of a CM
scheme is the Credential Release Phase, during which

the Client Station scrubs any downloaded key material

and authentication information from memory and

magnetic storage, and formally ends the current user

session. This phase may be implemented unilaterally

within the Client Station, or it may require the Client

Station to interact with the Credential and/or

Authentication Servers to inform them about the

termination of the roaming user session.

4 CHARACTERISTICS OF CM
SOLUTIONS
There are some common characteristics in nearly all of

the cryptographic mobility solutions that are available.

These are enumerated below.

• Client Station does not need special hardware such

as token readers - The fundamental reason to seek

out a CM solution is to avoid the use of special

hardware tokens and token readers. Thus all CM
implementations share this common attribute.

• Client Station needs vendor-specific CM client

software that has to be either downloaded or

installed in a trusted manner - In all of the CM
products studied, there is a need for a vendor-

specific client software module that performs the

needed operations (such as authenticating the user.

downloading and storing a local copy of the

credentials or key materials, and enabling the use

of the user’s PKI credentials for private key

operations. Since this piece of software collects the

user’s authentication information as well as

handles the user’s private key usage, the assurance

level for the software has to be fairly high.

• User needs to remember authentication

information, whether it is a password, or answers

to a series of personal questions - The roaming

user has to authenticate to an online server to

acquire the ability to use public key credentials for

subsequent authentication operations. However, the

user cannot use public key operations during the

initial authentication phase for obvious reasons.

The user also cannot typically use other strong

mechanisms such as hardware One-Time-Password

generators (e.g. SecurlD cards) since that would

involve the usage of hardware tokens. Thus, most

CM implementations make use of secret sharing

schemes, such as passwords or answers to personal

questions for the initial authentication phase.

• Users interact with remote Authentication Servers

to authenticate themselves to the system - Since

the user is assumed to be working from a Client

Stations that does not have a local copy of their

credentials, all roaming solutions necessarily

involve a remote authentication function where the

authentication information supplied by the human

user is transported through some means to a remote

server which verifies them to identify and

authenticate the user.

• An authenticated user is able to perform

cryptographic operations using their private key -

The fundamental goal of a roaming PKI user is to

ultimately use their private key for digital signature

or data decryption operations. All CM
implementations provide this facility through

different mechanisms.

• Credential is unusable after the end of the user’s

session - The premise of a roaming user is that

they avail of a shared Client Station when

attempting to use their PKI credentials. Thus, it is

very important that upon the last user leaving the

Client Station, there be no residual ability to make

use of the last user’s credentials by the subsequent

user. All CM implementations use this as a

common functional goal.

• Part or all of a user’s PKI credentials are stored on

an online remote credential server -The user's

120

1st Annual PKI Research Workshop—Proceedings

authentication information is stored on a database

accessible to an online authentication server.

5 SECURITY ISSUES WITH CM
SOLUTIONS

CHARACTERISTICS THAT ADD
SECURITY VULNERABILITIES

Due to the fundamental nature of a cryptographic

mobility solution, in that it makes use of remote

authentication and credential servers, there are a

number of additional security issues that may arise.

Depending upon the particular implementation of CM,
some or many of these issues may be sidestepped

through the use of novel schemes. This section will

describe some of the security issues that are particularly

relevant when assessing a CM implementation. The

various architectural components of a CM system have

their own characteristics that may introduce additional

security vulnerabilities. Some of these characteristics

are described below.

• The Client Station is assumed to be a shared access

workstation or kiosk that has network connectivity

to the CM Server entities, possible over the

Internet. The Client Station is also assumed to use

some form of CM client software that has to be

installed.

• The Authentication Server(s) are assumed to be

available online, possibly over the Internet, for

access by Client Stations. The Authentication

Server is also expected to have some form of

database (possibly on a backend system,) that holds

user data that can be used to complete the

authentication step.

• The Credential Server(s) are also assumed to be

online and available for network-based attacks. The

Credential Server has to ascertain that the user has

been properly authenticated before allowing the

download or use of their private keys. The private

key material for CM users is typically held in some

kind of database at the backend of the Credential

Server.

• The three primary architectural components of a

CM system interact with each other using online

protocols over shared and (often) untrusted

networks. Thus, these protocols may be attacked by

network intruders.

POTENTIAL SECURITY
VULNERABILITIES

When evaluating the security of a CM solution, a

number of questions should be asked. The answers

must then be taken collectively to determine the

specific security vulnerabilities that exist for a given

system. The security relevant questions to be asked

include:

• How and where are client key pairs generated?

Depending upon whether the user’s key pair is

generated at the Client Station or on a server, the

non-repudiation claims of a private key may be

stronger or weaker. To support a strong case for

non-repudiation, the server system must never

handle the unencrypted private keys or private key

material for a user.

• Where is the user’s private key actually used - at

the Client Station or on a remote server

component? The location of “usage” of the private

key has an impact on the non-repudiation

properties of the CM implementation.

• How is the client private key deposited at the

Credential Server? The Credential Server must

hold all or part of the user’s private key in order to

allow the user to have roaming access to the private

key. However, the mechanism for protecting the

private key while the credential server holds it is

very significant in determining whether a capture

of the protected private key container, leads to the

ability to use that private key.

• How is the client private key protected at the

Credential Server?

• What are the security characteristics of the

authentication protocol between the Client Station

and the Authentication Server(s)? Are the protocols

susceptible to man-in-the-middle and

eavesdropping attacks? Does the scheme reveal the

CM user’s authentication information to the

Authentication Server?

• How is the client private key made available for

use at the Client Station?

• Can the user’s private key be compromised at the

Client Station?

• How is the client private key disabled at the end of

the user’s session?

• How does the user establish trust in the Client

Software? How does the user know the source of

the Client Software and establish trust in its

integrity?

• How does the Client Module handle the sensitive

authentication information that is collected from

the user - is it held in memory or is it cleared after

each use?

121

1st Annual PKI Research Workshop—Proceedings

• How does the Client Module handle the local copy •

of the user’s credentials that is obtained from the

Credential Server - is it held in memory for ease of

use or is it cleared after each use? •

• How does the Client Module establish trust in the

Authentication and Credential Servers? If SSL is

used, how are the PKI trust roots established in the

Client Station?

• Can the Authentication Server(s) be compromised

such that the authentication database becomes

available to the attacker? If so, what can the

attacker do with the captured information?

• Can the Credential Server be compromised such

that the Credential Database becomes accessible to

the attacker? If so, what can the attacker achieve

with the captured information?

• Can the CM user be subjected to Denial-of-Service

attacks through the compromise or disablement of

the Authentication and Credential Servers?

6 APPLICABILITY OF CM
SOLUTIONS
In this section, the major issues that affect the decision

to deploy a CM solution are briefly explored. While

CM solutions may be recommended in certain usage

scenarios, they are definitely not advisable in others.

This section attempts to clarify some of the issues that

should be considered before adopting a CM product.

REQUIREMENTS THAT DRIVE
THE SELECTION OF A CM
SOLUTION
The decision to deploy a cryptographic mobility

solution is usually made because of some requirements

that are levied due to the characteristics of the user, the

user’s IT environment, or the secure application. Some
of the typical requirements that drive an organization to

consider a CM implementation are:

• Users are highly mobile, and need to use variety of

systems/workstations, operated and controlled

(possibly) by various organizations

• Hardware cryptographic tokens too expensive or

cumbersome or infeasible due to requirement to

have compatible readers

• Users are in an IT environment where dedicated

workstations are infeasible or prohibitively

expensive

• Software cryptographic tokens not practical or

secure enough

Simple user interface is required - user only needs

to provide user ID and password, and answer

simple personal questions

User or application requires strong authentication,

and/or message encryption

CONTRAINDICATIONS FOR
SELECTION OF CM SOLUTIONS
Some environments and user populations exhibit

requirements that are contraindications for certain types

of CM products. When these requirements exist within

an environment, extra caution must be exercised in

selecting a CM product that meets these requirements.

These include:

• Strong, legally binding non-repudiation of

electronic transactions is an absolute must

• Recovery of encryption keys is essential

• Long term archival and possible usage of the

protected data

• Guaranteed access to credentials for decryption and

signatures - zero tolerance for denial-of-service

situations

7 A SAMPLING OF CM
TECHNOLOGIES AND
PRODUCTS
In this section, several of the leading products and

technologies that provide CM solutions are identified

and described very briefly. It should be mentioned that

the information contained in this section is based upon

data collected from the vendor websites and dialogue

with vendor personnel. The goal was to develop a brief,

high-level description of each product, rather than to

provide detailed technical coverage of each product.

These descriptions should not be used to evaluate the

products - the interested reader is directed to contact

the vendor directly to obtain more technically accurate

and up to date information on each product.

ENTRUST ROAMING PKI

Entrust has been providing a PKI mobility solution

within Entrust/Roaming™, a complementary product to

Entrust/PKI® 5.0 [El]. Entrust/Roaming™ makes use

of a public Directory Server to store the cryptographic

profiles for users, encrypted with a strong symmetric

key. A strong password authentication mechanism

named SPEKE is used to securely download the strong

keys that can decrypt the user’s protected cryptographic

122

1st Annual PKI Research Workshop—Proceedings

profiles, and hence make use of the private key material

held inside.

SPEKE stands for Simple Password-authenticated

Exponential Key Exchange [E2], It provides strong

password authentication to prove knowledge of a small

secret (namely, a password) without revealing it to

anyone.

An Entrust profile contains the PKI credentials for a

given user. Typically, the profile is stored locally on the

hard drive in a form that is protected with a user-chosen

password. This protection format provides very little

resistance against a concerted offline dictionary-based

attack. Hence, in the Entrust Roaming solution, the

standard user profile is further encrypted with a strong

symmetric key K (K > 128 bits) and stored on a

Directory Server. The Entrust solution also makes use

of an online Roaming Server that authenticates the user

using the SPEKE protocol, establishes a shared strong

key S based upon the authentication, and provides the

user with ES(K) such that the user is then able to

retrieve K and hence unlock and use their cryptographic

profile. The downloaded roaming profile can then be

used similar to a local Entrust profile stored on the local

hard drive.

VERISIGN ROAMING
The VeriSign PKI roaming solution is a part of the

VeriSign OnSite PKI offering [VI, V2, V3, V4], It

uses multiple, independent Roaming servers, each of

which provides a component of the key that the user

employs to retrieve and decrypt his or her roaming
credentials from the Storage Server. The

technique for utilizing multiple Roaming Servers, to

recreate the strong key that can be used to decrypt the

protected roaming credentials, is based upon the

password-hardening protocol published by Warwick

Ford and Burt Kaliski. In the Ford-Kaliski scheme, a

user interacts with two or more Roaming Servers to

harden the user’s password into a strong secret, without

revealing the user’s password or the derived strong

secret to any of the Roaming Servers. The user’s

roaming credentials are held on an online Storage

Server in a strongly encrypted form. The user may
download the protected credentials from the Storage

Server, and unlock them using the strong secret that is

derived with the assistance of the Roaming Servers.

ARCOT ID MOBILITY
Arcot has a patented cryptographic camouflaging

scheme that it uses as the cornerstone of its ArcotID

mobility solution [Al, A2, A3, A4], In this solution.

multiple PKI credentials for a user may be bundled into

a protective package called a “key bag”, encrypted with

a strong symmetric key. Each user also possesses an

ArcotID, which comprises the Arcot certificate, and the

camouflaged Arcot private key. The user may
download his or her “key bag” and ArcotID from an

online Card Server, after authenticating to it using

shared secrets. The user then supplies a PIN to the

ArcotID allowing the de-camouflaging and use of the

Arcot private key for authenticating to an Arcot

Authentication Server (AS). [It may be noted that the

unique feature of the cryptographically camouflaged

Arcot private key is that it can only be unlocked with

the correct PIN - however, many incorrect PINs will

also yield a plausible private key to attackers, who now
have to use the candidate key to authenticate to the AS.

The AS is configured to lock out a user after a certain

number of failed attempts.] Upon successful

authentication to the Authentication Server, the user is

able to retrieve a portion of the symmetric key that

protects the user’s “key bag”. The user’s supplied PIN

is used to generate the other portion to recreate the key

that may be used to decrypt the “key bag” to allow

access to the contained credentials for normal PKI

based operations.

SINGLESIGNON.NET APPLIANCE
SingleSignon.Net’s Secure Identity Appliance

TM
is at

the heart of its Practical PKI offering [SI, S2, S3]. The

Secure Identity Appliance is a hardened “black box”

that can be connected to a corporate network, and store

sensitive information for users. In this scheme, each

user’s private key is split into two components, one of

which is held by the appliance, and the other is derived

from the user’s password. When a roaming user needs

to make use of their PKI credentials for secure

transactions, they authenticate to the appliance using a

password-based strong mechanism to establish a secure

channel. A digest of the data to be signed is then

transported to the appliance over the secure,

authenticated channel, and the appliance generates a

partial signature using the component of the user’s

private key that is held by the appliance. The user then

performs another partial signature operation on the

returned data using the other component of the private

key (that is derived from the user’s password) to

complete the signature on the target data. The final

signature may be validated using the user’s public key

using the normal mechanisms. Since the appliance has

to participate in every invocation of the user’s private

key, it can perform other operations as well, such as

revocation checking, usage analysis, auditing, etc.

123

1st Annual PKI Research Workshop—Proceedings

MICROSOFT ROAMING
PROFILES
In recent versions of its operating systems, Microsoft

provides a roaming profile scheme that allows the

profile to be a container of PKI credentials for a user

[Ml, M2], A properly authenticated domain user is able

to download their profile from a central server to the

local workstation. The user profile is protected using

the MS Data Protection API (DPAPI). Under the MS
DPAPI scheme, a master key is created for each user at

first logon. Two copies of the master key are stored in

the user’s profile. The first is copy is protected using a

160-bit RC4 key that is derived from the user’s logon

password. The second copy is protected using a

derivative of the Domain Controller’s master key. In

order to use the encrypted profile that is downloaded to

the local workstation, the user’s password is used to

unlock the user’s master key. The master key is used to

retrieve the key that protects the private keys in the

user’s key store.

RSA SECURITY KEON
WEBPASSORT
RSA Security’s Web Passport offering is primarily for

organizations that require the use of PKI credentials

with Web Applications that provide security services

such as digital signatures, VPN access or secure email

[Rl, R2, R3]. The product has two main components,

the Web Passport Server and the Web Passport Plug-in.

The former resides on a web server and is used to

enforce authentication and authorization policies that

determine the authorizations that users have to web
resources.

Users can authenticate to the Web Passport Server

using a variety of mechanisms, including passwords

and SecurlD authenticators. Once authenticated, the

user's virtual (smart) card is downloaded from a LDAP
directory to the Web Passport Plug-in on the Client

Station. The virtual card is a protected container for the

user’s PKI certificates and private keys. Once

downloaded, the virtual card can be accessed through

the Microsoft Cryptographic API or the PKCS#11
interface from any application that has the capability to

invoke these APIs.

The Web Passport Client Plug-in may be installed on

the Client Station manually. If it is not present when the

user tries to access a Web Passport protected resource,

the plug-in is automatically downloaded from the web.

The Web Passport virtual card contains up to two user

certificates as well as the corresponding private key(s).

The private key(s) are encrypted with 112-bit

3DES2EDE-CBC secret key, while the secret key is

protected using a PIN Unlock Key (PUK). The PUK is

a random 128-bit RC4 key. Web Passport uses cookies

to keep track of authentication state, PKI credential

state, key contained names, etc.

The Web Passport product supports PKI credentials

from any of the industry leading CAs. It allows users to

have multiple virtual cards (possibly issued by different

CAs and different organizations) and allows the user to

have simultaneous access to multiple sets of virtual

cards.

BALTIMORE UNICERT OPTION
FOR ROAMING
The UniCERT PKI product offers an optional

component for roaming credential usage [Bl, B2, B3],

It allows subscribers to digitally sign transactions and

participate in secure online applications from a web
browser without requiring the use of hardware tokens.

The Baltimore CM product comprises a number of

components. The Roaming Server coordinates the

operation of the UNICERT roaming facility. The

Roaming Administrator component allows system

administrators to initialize and manage the UniCERT
Roaming system by creating and updating roaming

users. The Protected Encryption Key (PEK) Server

deals with roaming user authentication before allowing

them access to their signing key, and comprises

hardware cryptographic modules. In order to insulate

the Roaming and PEK Servers from direct network-

based attacks from the Internet, a Proxy Server is used.

There are two kinds of applets that are used within the

UniCERT roaming system: a Signing Applet that can

download and make use of roaming credentials to sign

web data, and a Change Passphrase Applet which

allows the passphrase protecting the user’s signing key

to be changed.

The use of two dedicated servers (Roaming and PEK)

implies that both servers need to be successfully

attacked in order to compromise the system. The PEK
Server stores double encrypted end-user keys, while

internal sequence numbers protect against brute force

attacks. If fault-tolerance and high availability is

required, or high volume is anticipated, multiple PEK
and Roaming Servers may be deployed. The Baltimore

roaming solution will work with certificates issued by

any standards-compliant CA including Baltimore’s

UniCERT.

124

1st Annual PKI Research Workshop—’Proceedings

HUSH COMMUNICATIONS
ROAMING SOLUTION
The Hush Key Server Network provides outsourced

management and hosting of PKI credentials [HI, H2],

The Hush Key Server stores and manages the

subscriber public and private keys through the use of a

Private Key Database and a Public Key Database. The

former holds the user private keys, protecting them with

a “private alias” derived from a user-generated

passphrase that the user never shares with any other

entity. The User ID and passphrase are passed through a

message digest repeatedly to generate over 1 million

characters that comprise the “private alias” for the user.

The “private alias” is used as a means of anonymizing

and strengthening the storage of user private keys on

remote servers. The private alias is used as an index

into the Hush Key Private Key Database such that the

private keys are nearly anonymous. The private alias is

also used to authenticate the user within the Hush

system.

The Public Key Database stores the corresponding user

public keys. It is indexed by the user’s email address

and contains the user’s public key certificate and

revocation status. The Hush Encryption Engine

facilitates public key exchange between two parties in a

transparent fashion - when needed, a connection is

automatically made between the first party and the

Hush Key Server to retrieve the public key of the

second party. The Hush Key Server also supports user

key pair generation and registration with a CA. Hush

offers a secure email solution using this roaming PKI

scheme.

8 CONCLUSIONS
In studying various technologies and products that are

currently available to support cryptographic mobility, it

is clear that some areas of vulnerability remain as

common elements to most available solutions. It is

interesting to note that all of the systems referenced in

this paper, offer strong mechanisms for user

authentication, and use strong protocols for

authentication and credential download that are not

susceptible to active or passive man-in-the-middle

attacks. All of the systems use Client Station modules

that store password and key information in volatile

memory only, depending upon operating system

facilities to keep the information from being copied to

disk. However, some of the common vulnerabilities are

discussed below.

Most of the techniques described above, rely upon the

use of downloaded software that comprise the Client

Station Module. The downloaded module is a signed

component, in most cases. However, when used from a

shared workstation or public kiosk, it is difficult to have

assurance regarding the trust roots that are configured

into the web browsers and other PKI applications. It is

also possible that rogue software implanted on these

workstations captures the users keystrokes, (and hence

their passwords and other authentication information,)

and transfers them to some configured location. The

rogue software may also affect the entropy of the

random numbers generated on the workstation and

hence adversely influence key pair generation,

symmetric session key generation, etc.

Another area of vulnerability of roaming solutions is

the susceptibility to denial-of-service attacks. A
roaming solution implicitly requires the availability of

one or more online servers. If any of these servers are

made unavailable, the user will not have access to their

cryptographic credentials, and may have to settle for

unsecured interactions to meet their functional

objectives. All roaming solutions should therefore

address this problem by providing a high degree of

redundancy to ensure that the roaming user is able to

access their credentials.

Many of the solutions described above, store the user

credentials on a single online server, in such a way, that

the password-protected version of the credentials are

available to an attacker that compromises that online

server. It is well known that credentials protected by

PKCS#5 type password-based cryptography are

susceptible to offline password cracking attacks. Thus,

the solutions that employ two or more servers in a way

that the compromise of one server does not allow

password-protected credentials to fall into the hands of

an attacker are inherently more secure than solutions

that employ a single server.

Additionally, online servers that hold credential or

authentication information are high value targets for

attackers. Hence, these systems must be implemented to

use various types of available protections to lessen their

vulnerability to such attacks. The use of proxy servers,

firewalls, FIPS 140-1 approved hardware cryptographic

devices, hardened operating systems, physical,

personnel and operational security measures, should be

employed to strengthen the security of these systems.

Some of the solutions studied cause the user's private

keys, and/or the passwords that provide access to

private keys, to be available to a roaming server system

at some point during the initialization process. If these

private keys are used for authentication or digital

signature operations, the non-repudiation claims of the

system are intrinsically weakened in such situations.

125

1st Annual PKI Research Workshop—Proceedings

Despite these common weaknesses and potential

vulnerabilities, it is our belief that cryptographic

mobility solutions will continue to see greater adoption

in the future. Due to the intrinsic nature of our current

lifestyle, the user will necessarily be away from their

home/office/workstation, but will continue to require

access to high-grade cryptography as they pursue their

personal and work-related goals. Thus, it is anticipated

that the security issues with mobility solutions will be

resolved with the help of innovative engineering skills,

and CM implementations of PKI will gain rapid

acceptance.

9 FURTHER INFORMATION
Further information about the analysis of cryptographic

mobility solutions may be obtained by contacting the

author, Sarbari Gupta at sarbanfdelectrosoft-inc.com .

10 REFERENCES
[Al] “Securing Digital Identities,” Presentation to the

Federal PKI TWG, September 2000.

[A2] “Arcot Key Authority: Solution for controlled

access to Conventional Private Keys,” Arcot Systems

White Paper.

[A3] D. Hoover, B. Kausik, “Software smart cards via

cryptographic camouflage," IEEE Symposium on

Security and Privacy, 1999.

[A4] “Arcot WebFort™ Overview: Strong

Authentication and Secure Signing Using Software,”

Arcot System White Paper.

[Bl] “Roaming: Secure Electronic Transactions

Without Boundaries”,

http://www.baltimore.com/unicerLunicert/roaming.html

[B2] UniCERT Roaming UniCERT Extended

Technology” Baltimore White Paper.

[B3] “UniCERT Extended Technology - Roaming
Version 1.0 Administrator's Guide,” Baltimore

UniCERT documentation.

[El] “Secure Roaming with Software Tokens,”

Presentation to the Federal PKI TWG, September 2000.

[E2] Jablon, David, “Strong Password-Only

Authenticated Key Exchange,” ACM Computer

Communication Review, vol. 26, no. 5, Oct. 1996.

[HI] “Hush Encryption Engine™ White Paper Version

2.0,” Hush White Paper, July 2001.

[H2] “Services: Hush Key Server Network”

http:/, www .hush.com/services/kev server network/ .

[Ml] Finnegan, Sean, “Crypto, Key Protection, and

Crypto, Key Protection, and Mobility in Windows
Mobility in Windows,” Microsoft Presentation.

[M2] Guttman, Peter, “How to recover private keys for

Microsoft Internet Explorer, Internet Information

Server, Outlook Express, and many others,” White

paper available at

http://www.cs.auckland.ac.nz/---pautOO 1. pubsbreakms.t

xt.

[PI] “PKCS#5 v2.0 - Password-Based Cryptography

Standard,” RSA Laboratories, March 1999.

[Rl] Carboni, E., “RSA Keon Mobile Credentials,”

Presentation to the Federal PKI TWG.

[R2] “RSA Keon Web PassPort: Technical Overview,”

A white paper from RSA Security.

[R3] Mark Diodati, “Frequently Asked Questions, RSA

Keon Web PassPort, RSA Security Paper, May 2001.

[51] “The SingleSignon.Net Difference,”

SingleSignOn.Net White Paper.

[52] Bhatt, Harish, “Towards Practical PKI,”

SingleSignOn.Net White Paper.

[53] Boyd, Colin, “Digital Multisignatures,”

Cryptography and Coding, Oxford University Press,

1989, pp 241-246.

[VI] Ford, Warwick, “Server- Assisted Generation of a

Strong Secret from a Password,” Presentation to the

Federal PKI TWG.

[V2] Ford, W. and Kaliski, B., “Server-Assisted

Generation of a Strong Secret from a Password,”

Proceedings of the IEEE Fifth International Workshop

on Enterprise Security, 2000.

[V3] “VeriSign Personal Trust Service,” VeriSign

Product Literature.

[V4] “Administrator’s Guide: ROAMING SERVICE,”

VeriSign Product documentation.

126

1st Annual PKI Research Workshop—Proceedings

A Note On SPKI’s Authorisation Syntax

OlavBandmann* *

Industrilogik L4i AB
Odengatan 87, SE-113 22 Stockholm, Sweden

olav@L4i . se

Mads Dand
LECS/IMIT, Royal Institute of Technology (KTH)
KTH Electrum 229, SE-164 40 Kista, Sweden

mfdOkth . se

Abstract

Tuple reduction is the basic mechanism

used in SPKI to make authorisation decisions.

A basic problem with the SPKI authorisation

syntax is that straightforward implementa-

tions of tuple reduction are quadratic in both

time and space. In the paper we introduce

a restricted version of the SPKI authorisa-

tion syntax, which appears to conform well

with practice, and for which authorisation de-

cisions can be made in nearly linear time.

1 Introduction

SPKI [3, 4] is a framework for authori-

sation intended particularly for networked

applications. In SPKI, authority is bound
to principals primarily identified by pub-

lic keys. An SPKI authorisation certificate

<1 ,S ,D ,A,V> specifies the following items

of information:

• I: An issuer as a public key.

• 5: A subject which is identified primar-

ily through a public key.

*Work done while at SICS, Swedish Institute of

Computer Science. Project at SICS supported by a

grant from Microsoft Research, Cambridge, U.K.
• Partially supported by the Swedish Agency for

Innovation Systems, project “Policy-Based Network
Management”, and by the Swedish Research Council
grant 621-2001-2637, “Semantics and Proof of Pro-

gramming Languages”

• D: A delegation flag, indicating whether

or not the authorisation at hand is dele-

gable.

• A: A “tag”, or authorisation, determin-

ing the authority assigned to the subject

by the certificate.

• V: A validity field determining optional

intervals and online conditions for valid-

ity.

Authorisations are given in the form of S-

expressions, following on from the work of

Rivest [8]. S-expressions are essentially

parenthesized list expressions in the style of

LISP. To give an example, the right for sub-

jects in the group admin, belonging to unit

finance, to read the income attribute of all

objects of type person might be given as a

nested list structure

X : (obj person

(conds (grp admin)

(unit finance))

(op income read))

Authorisations and requests are given in the

same syntax. If we consider A as a request

a corresponding authorisation might have the

shape e.g.

Y : (obj person

(conds (grp admin))

(op income read))

meaning that all members of the group admin

are permitted read access, not only members

127

1st Annual PKI Research Workshop—Proceedings

of the finance unit. Or, as another example,

the authorisation might have the shape:

Z : (obj person

(conds (grp admin)

(unit finance))

(op income))

intended to be interpreted such that now the

income attribute can be read and written. In

both cases X should be granted, since, in an

intuitive sense which we make precise in the

paper, A' is “more specific than” , or, “autho-

rised by”
,
both Y and Z. The example gives

the game awray: An authorisation expression

becomes more specific by extending lists to

the right.

In order to be able to specify more complex

authorisations in a concise manner, SPKI
adds a number of auxiliary constructions to

be interpreted, essentially, as abbreviating

sets of basic S-expressions. The following ex-

tensions are considered:

• (*) is the wildcard.

• (* set X\ Xn) is the union of the

sets X\ , . .
.

,

Xn , n > 1

.

• (* range R l u) is the set of all X in

the interval determined by the ordering

R , lower limit l and upper limit u.

• (* prefix w) is the set of all strings

having w as prefix.

Thus, to give an example, the authorisation

X' : (obj person

(conds (grp admin)

(* set (unit finance)

(unit personnel)))

(op income (* set read write)))

is just an abbreviation for the obvious size 4

set.

In SPKI, authorisation decisions are

made through a process of “tuple reduc-

tion”. Authorisations and requests are

compared by computing their intersection

using the operation AIntersect. As an

example, with X and X' as defined above,

AIntersect (A"' , X) — X. The intersec-

tion of X' and X is the most permissive

authorisation granted by both X' and A.
If AIntersect (A', A) = A' then the most

permissive authorisation granted by both

X' and X is A itself, or in other words, all

authorisation granted by X is also granted

by A', i.e. A" is authorised by A'.

Computation of the AIntersect function

is in' many cases quite unproblematic, in

particular when one of the arguments lack

one of the special * forms. In general,

however, AIntersect may cause a quadratic

blowup, and this is the basic problem we
address in this note.

The problem arises when comparing * set

forms. The naive algorithm simply expands

an S-expression involving * set forms to

one without them. In many applications

this procedure is in fact quite adequate.

First, it will often be the case that one of the

arguments to AIntersect is without * forms.

Second, requests will often be small, and

a quadratic blow-up will be without much
consequence. The SPKI standard opens

up for implementors to provide set-to-set

transformations to alleviate the problems

that may remain, but no concrete suggestions

are given.

On the other hand one will in fact some-

times want to compute using complex autho-

risations. For instance, one will want to sub-

ject authorisations to simple analyses of the

type:

Q: Is authorisation A" stronger than

authorisation Y7

where X and Y are general S-expressions.

Observe that Q is just a different way

of saying that AIntersect (A, Y) — X.

Secondly, simply by providing the tools to

describe complex authorisations, users may
eventually want to use them, for instance

to precompute sets of authorisations, or to

use the * set notation as a macro facility.

128

1st Annual PKI Research Workshop—Proceedings

This is discussed in slightly more detail in

section 9. As another example we have, in

the Amanda project at SICS, been exploring

a general mechanism for delegation based on

a modelling of delegation as the constrained

issuance of new authorisations [6, 1]. The
resulting S-expression can become quite

complex, and furthermore the need arises,

in the decision making process, to compare

authorisations of a general shape.

For these reasons we have found a need to

subject the SPKI authorisation syntax to a

deeper analysis. In the paper we obtain the

following main results:

1. A characterisation of the SPKI entail-

ment relation in terms of a partial or-

dering < .

2. A weak version of -*<
,
which is sound

,

so that x y implies x <
s y.

3. A restricted S-expression syntax for

which the weak relation is complete
,

i.e. coincides with < .— s

4. An efficient algorithm to compute

AIntersect, and a proof that

AIntersect is the greatest lower

bound with respect to the <
s

ordering.

The key idea for the restricted S-expression

syntax is simply to require that non-atomic

elements of * set expressions are tagged

with a unique tag (or, in SPKI terminol-

ogy, type). On the evidence we have so

far gathered this is nothing more than a

formalisation of existing SPKI practice, and

all examples in the SPKI documents [3, 4, 5]

stay within the restricted syntax.

The paper is organised in the following

way: In the first sections we describe au-

thorisation trees as the basic form of *-free

S-expressions, and then the syntax and se-

mantics of S-expressions is given as sets of

authorisation trees. The syntax is given in

slightly abstract terms; instead of the con-

crete range and prefix constructions we just

assume a set of primitive set constants, as

this makes the presention less cluttered. In

section 5 we proceed to introduce the partial

orders < and -<
,
and in section 6 we relate

<
q
and by showing first soundness, and

then pinpointing the condition in the defini-

tion of the weak partial order which causes

completeness to fail for general expressions.

Then, in section 7 we turn to AIntersect, to

establish the results (4) above.

2 Authorisation Trees

We start by defining authorisation trees,

used to give semantics to the complete SPKI
authorisation element. Let A be a denumer-

able set of “atomic” elements ranged over by

a of one or several data types such as strings

or integers. The set T of authorisation trees
,

ranged over by t, is determined by the follow-

ing BNF style grammar:

t ::= a
\

(at \ tn)

where n > 0.

The intention is that authorisation trees

are positional. Types, in particular the type

of an atom a' appearing as a subtree t z of

the tree (a t\ •
- - tn) ,

are determined by two

pieces of information:

• The position i

• The label a

Types are determined by some external

means; here it suffices to assume some fixed

binding of types to labelled tuple positions.

We define a partial order <
t

on T induc-

tively as follows. Let x,y € T.

1. If x e A or y G A then x <
T y if and

only if x = y.

2. If x = (xi Xm) £ T and y =
(yi Vn) € T, then x <

T y if and

only if m > n and x %
<
t yi for i =

1, . .
.

,

n.

A simple proof by induction shows that <
r

is indeed a partial order.

129

1st Annual PKI Research Workshop—Proceedings

Elements in T represent authorisations,

and the partial order <
t

represents the

“is authorised by” relation, which in SPKI
normally is represented in terms of the

AIntersect operation.

Example 1 Consider the authorisation trees

X, y, and Z of section 1. We obtain that

X <
t
Y and X <

t
Z, but not Y <

T
Z and

neither Z < Y

.

If we let—T

U : (obj person

(conds (grp admin))

(op income))

then Y < U and Z < U.—T —

T

In terms of the partial ordering <
t ,

the

intended use of authorisation trees is as

follows. Assume that a certain principal

p wants to perform an action a requiring

the authorisation x. Then p has the autho-

risation for a if (and only if) p has some

authorisation y satisfying x <
T V-

A problem here is that the language is too

restricted to be very useful. The solution

is to use sets of authorisation trees instead

of singletons. In the example above, p
has the authorisation for a if p has some

authorisation Y (a set of authorisation trees)

such that there exists & y £ Y satisfying

x <
t y.

For this reason SPKI extends the basic S-

expression syntax by notation for sets of au-

thorisation trees.

3 Syntax of S-expressions

S-expressions represent sets of authorisa-

tion trees. Essentially, authorisation trees

are extended with notation for set unions, in

addition to primitive range and prefix con-

structions. To cater for these primitives we
assume a denumerable set B of set constants,

and a mapping Val :E?—>-2A \{0} assigning

to each constant in B the nonempty set of

atoms it represents.

Definition 1 (S—expressions) The set S
of S-expressions

,
ranged over by X, Y, is de-

termined as follows:

X (*)
|

a
|

b
|

(a X2 Xn)
|

(* set Xi • • • Xm)

where a £ A, b £ B ,
and n > 0, m > 1.

So, an S-expression can be either an atom (in

A), a primitive set of atoms, a tuple, or a (*

set . . .) form, used to denote unions. We
assume, of course, that A does not contain the

special wildcard symbol (*). S-expressions

of the form either a £ A or b £ B are called

atomic. In SPKI, two types of set constants

are considered:

1. Elements representing ranges of ele-

ments in A. E.g. all strings in A be-

tween “bird” and “fish”, alphabetically,

or all integers in A greater than 5. There

are many options here including type of

interval and type of order. Note that,

by the definition of Val above, we do not

allow empty ranges.

2. Elements representing sets of strings in

A which have a certain strings as pre-

fixes. E.g. all strings in A beginning with

“/pub/”.

4 Semantics of S-expressions

An element X of S represents a non empty

subset of T: the set of trees that axe autho-

rised by X.

Definition 2 (S-expression Semantics)

We define the function ||-|| : S —> 2
T

\ {0} as

follows:

1. ||(*)|| =T

2. ||a
||
= {a} for all a £ A

130

1st Annual PKI Research Workshop—Proceedings

3. jjfr|| = Vd{b) for all b G B

4. ||(Ai ••• Am) ||
= {(fi ••• U) \

l >
TnXi:l<i<m ti G ||A

Z ||}

5.
||
(* set X\ ••• Xm)\\

—
||Xi|| U ... U

1 1

Xm
1

1

Note that, in (4), Ai and t\ are constrained

to be atoms, by definition 1. We expect j|A||

to be lower closed, so that if t G ||A"|| and

t' <
T

t then also t' G
||
ATjj

,
or in other words,

if t is authorised by A and t' is authorised by

t then t' should be authorised by X as well.

This property is easily verified.

Proposition 1 For all X G S, ||A"|| is lower

closed.

Proof A trivial induction.

The naive way of deciding whether or not

t G ||
A'

||
is to rewrite X to a normal form

where all occurrences of the * set construc-

tion are pushed to the outermost level, thus

reducing questions of the form t G ||A|| to the

case where X does not have occurrences of

the * set construction. To make this clear,

say that Ai and X2 are equivalent, Ai = A2 ,

if IIXjII = ||x2 ||.

Proposition 2

(ATi---(* set Au ••• Ai,n)---Am) =
(* set (Ad Am)) •••

(Ar-Ai.n-AJ)

Example 2 Let

X — (a (* set b (c (* set d e))))

where all a, 6, etc. are atoms in A. This rep-

resents the set of authorisation trees which

are lists of length at least two beginning with

a and having either b or another list t of

length at least two as its second element,

where t begins with c and has d or e as its

second component. Using (2) along with the

obvious idempotency law we obtain:

X = (* set (a (* set b (c d)))

(a (* set b (c e))))

= (* set (a 6) (a (c d))

(a b) (a (c e)))

= (* set (a 6) (a (c d))

(a (c e)))

Note that, according to def. 2, the set ||A'||

includes not only a list such as t = (o (c e)),

but also any authorisation tree t' for which

t' <
t

t. As an example, t' can have the shape

(a (c e f) g h).

5 Preorder on S—expressions

Clearly, calculations like the one in exam-

ple 2 are not very efficient. To circumvent

this, we need to be able to decide the follow-

ing problems without actually calculating ||-||:

1. Given f G T (an authorisation request)

and an S-expression A (stored, perhaps,

as the authorisation element of some cer-

tificate), does t G
||
A

||
hold?

2. Given S-expressions A and Y, is every

authorisation request granted by X also

granted by Y?

Observe that both questions can be put in

the same form, since t is trivially represented

as an S-expression denoting the lower closure

of {t}. We thus define a preorder, < ,
on

S-expressions to reflect the semantics of 2.

above:

Definition 3 (S-expression Preorder)

The preorder <
s
on 5 is defined by

x <
s
y nxii c uni

In other words, whatever is authorised by

A is also authorised by Y. The difficulty in

computing <
s

is illustrated by the following

example, which also shows why <
s

is not a

partial order.

131

1st Annual PKI Research Workshop—Proceedings

Example 3 Let X = (a (* set be)) and

Y= (* set (a b) (a c)). By definition 3,

X <
s
Y and Y <

s
X, even though X Y

(

X

and Y are syntactically different). It is

easy to deduce that Y <
s
X since (a b) <

s

A' and (a c) <
q
X both hold. To verify

X <
s

Y, on the other hand, essentially re-

quires the computation of ||Aj|, to realize that

||
A

||
is the lower closure of the set containing

(a b) and (a c).

This example shows the case which is to be

avoided, namely where the right hand side

of the equality is a set expression with at

least twro elements. In order to ameliorate

the worst case behaviour we propose a

weaker preorder on S, which is reasonably

efficient to compute, and which does not rely

on computing ||-|| (but it does rely on the

computation of VaZ, since this function has

not been explicitly defined).

The definition of the weak preorder uses

the operation fit , which uses the equivalences

such as

O set X\ (* set A2,i A3,2) A3) =
(* set X\ A2 ,i A2,2 A3)

to flatten all immediate nestings of the * set

constructor.

Definition 4 (Weak Preorder) Define

the preorder < on S by induction in the

following way. Let A, Y £ S. Then A -<
s
Y

if and only if one of the following cases hold:

1. y = (*)

2. A, Y £ A and A = Y

3. X = aeA, Y = beB, and a £ Val(b)

4. A = b £ B,Y = a e A
,
and Val{b) =

{a} (a rather unusual situation)

5. A,Y £ £ and Val{A) C YaZ(Y)

6. A = (Ai ••• Am), Y = (Yi ••• Yn)

,

m > n, and Az Yi s
Yi for i = 1, . .

.
,n

7. A = (* set Ai Xm) and A\

Y for i — 1 , . .
.

,

m

8. A = beB,jit(Y) = (* set Yl
- • • Yn),

and Val(X) C (J{ ||T^
|| |

l<i<n and Y*

is either atomic, or Y* = (*)}.

9. A is of the form neither b nor * set, Y =
(* set Yi ... Yn), and 3* A Zi s

Y
z

Referring to example 3 note that Y Y s
X

holds, but A Y does not. The clause

4.9 is the cause of incompleteness. The

problematic case is when A is a list and

Y a * set expression, as in example 3.

Observe also that 4.8 does in fact appeal

to the function ||-||. However this is only a

convenience, and does not introduce extra

computational overhead, since all Yi in

that case are either atoms or sets of atoms.

The reason for using the fit operation is to

avoid otherwise pathological cases such as

b -< (* set (* set b)).—

S

Since this is not completely apparent we
check that indeed defines a preorder.

Theorem 1 The relation is a preorder.

Proof We must prove that

1. A ~< A' for all A € 5, and— S

2. A' ^ Y and Y Z implies A' Z
for all A,Y,Z £ sf

The first part is proved by a simple induction

over the definition of ^ . We’ll skip the de-

tails.

The second part is a rather tedious induc-

tion over the structure of first Y, and then A
and Z, as needed. So, assume A Y and

Y -< Z :— s

Y = (*): Since Y Z the only cases that

can apply are Z = (*) (which is trivial) and

Z = (* set Z\ Zm) such that, in the

latter case, Y -< Z, for some i : 1 < i <
m. By the induction hypothesis, A -<

s
Z

x

whence A Z as well, completing the case.

Y = (Yi • • • Yn): In this case Z has one of

the forms Z = (*) ,
Z = (Zi ••• Zm), or

Z = (* set Z\ Zm). In each case the

proof is easily completed.

132

1st Annual PKI Research Workshop—Proceedings

Y — (* set Y1 Yn): We may assume

that flt(Y)
— Y

.

One of the following sub-

cases apply:

• X = (* set X1 Xi) and X, Z, Y
for all i : 1 < i < l.

• X — b and Val(X) C u{||Yj||
|

1 < i <
n,Yi atomic, or Yi = (*)}

• X -< Yi for some i : 1 < i < n— S 1 — —

The first and third subcases are immediately

dismissed by the induction hypothesis. For

the second subcase we know that Yt < Z—

S

for each i : 1 < i < n. We proceed then

by cases on Z, noting that we need only

consider the case of Yi atomic or Yi = (*).

Thus, flt(Z) has one of the forms a, 6, (*),

or (* set Z\ Zm) such that, for each

choice of i we find a j such that Y%
-<

s
Z

3
.

The former three cases are resolved by a little

calculation. For the latter we may assume

that Z
3

is either atomic, or Z
3 = (*). Thus,

since Z s
is sound for atomic expressions,

we know that ||Yi|| C \\Zj\\. This suffices to

establish the conclusion.

The remaining cases for Y atomic are quite

simple and left to the reader.

6 Soundness and Completeness

In this section we relate the definitions of

< and -<
. First we show soundness.— s —

S

Theorem 2 (Soundness of Z) For all

X,Y £ S

X Z s
Y => X <

s
Y . (1)

Proof By induction over the definition of Z s

(def. 4). We begin with the base cases 1-5.

Assume that X ~< Y and that one of the— S

cases 1-5 in definition 4 applies. We want

to show that \\X\\ C ||y||. Consider the five

cases:

1.

Y= (*):

\\X\\CT=\\Y\\

2. X = Y = ae A:m = mi
3. X — a € A, Y = b G B ,

and a € Val(b):

11*11 = Hall = W C Val(b) = ||6|| = |m||

4. X = b E B, Y — a G A, and Val(b) =
{a}:

11*11 = Val(b) = {a} =
||
a

||
= ||T||

5. X = h G B,Y = b2 £ B, and Val{pi) C
Val(b2):

||*|| = Val(bi) C Val(b2) = \\Y\\

Hence, cases 1 to 5 are proved. We continue

with the inductive step in cases 6-9:

6. X = (Xi Xm), Y — (Yi • • Tn),

m > n, and Xx <
s
Yx for i = 1, . .

. ,
n:

Let t £ ||X||. Then t has the shape

t = (ti • •
• £/)

l > m, and tt £ ||*j|| for all i : 1 < i <
m. By the induction hypothesis, tj £

|| Y, ||
whenever 1 < j < n and it follows

that t £ ||Y||.

'

7. X = (* set X1
••• Xm), Y / (*),

and Xi ~< Y for all i : 1 < i < m.

By the induction hypothesis, Xx <
s
Y

as well, so X < Y follows.— S

8. X = b£B
, flt(Y) = (* set Yi ••• Yn),

and Val(X) C (J{||Yj||
|

1 < i < n and

Yj is atomic, or F* = ()}. By calcula-

tion.

9. X is of the form neither b nor * set,

Y = (* set Yl ... Yn) ,
and 3, X Z s

Y
x

. By the induction hypothesis, X <

Yi hence also X < Y

.

As we have pointed out, Z
s

is incomplete

in general. To attain completeness the only

change required is to make the final clause of

4 more inclusive.

Definition 5 Define the preorder Z'
s

on S

by replacing the clause 9 of def. 4 by the fol-

lowing condition:

9'. X is of the form neither b nor * set,

Y = (* set Yi ... Yn), and \\X\\ C

mu-

133

1st Annual PKI Research Workshop—Proceedings

So, the source of incompleteness is clause 9,

i.e. that there should exists a universal i such

that every element in ||X|| is bounded from

above by some element from ||Y^||. The result

is that this completely explains the difference

between < and -<
.— S —

S

Theorem 3 (Soundness and Complete-
ness for)

For all X, IT 5

X <' Y X < Y . (2)

Proof The implication => is a simple exten-

sion of the soundness proof, taking the mod-

ified clause 9’ into account. This is an easy

exercise.

The completeness argument hinges on the fol-

lowing auxiliary observation, namely that if

Y= (* set Y\ ••• Yn) and (*) <
s
Y then

(*) <_ Yi for some i : 1 ...n. For a con-

tradiction suppose that for all i, O) <
s
Yt

does not hold. We may assume that Y is flat-

tened. Each Yi will be either atomic or have

the shape (a* . . .) . Pick some a distinct from

all the dj. No authorisation tree of the shape

(at i
••• tO is in ||F||, so (*) <

q
Y cannot

hold.

We now assume X

<

s
Y and proceed by in-

duction over the structure of Y. First, how-

ever, note using clause 7 of def. 4 we may
assume that X is not a set expression.

1. y = (*): Since ||(*)|| = T the result is

immediate.

2. Y = a. Either X = a as well, or X —
b and Val(b) = {a}. In either case the

proof is complete.

3. Y = b. Either X — a and a £ Val(b
) or

else X = b' and Val(b') C Val(b). Either

cases are immediate.

4. Y = (Yi ••• Yn) . The only possibil-

ity is X —
(X\ ••• Xm) ,

m > n, and

Xi <
s

Yi for all i : 1 < i < n. The
result then follows directly from the in-

duction hypothesis.

5. Y — (* set Y\ ••• Yn). By the above

observation we can assume that X ^
(*) . If X = a then A" T s

Yi for some i

and we are done. If X — b then clause 8

can be seen to hold. The final case, then,

is for X of the shape (Xj Am), and

in this case the modified clause 9’ ap-

plies. The proof is thus completed.

7 Restricted S-Expressions

We then turn to the identification of a

syntax fragment for which the weak preorder,

even without the modification of Theorem

3, is complete. The idea is to use tagging:

Every authorisation tree appearing in a set

expression must contain a leading a, making

it distinct from trees appearing in other

elements of that set. Formally, the restricted

syntax can be defined thus:

Definition 6 (Restricted S-expressions)

The set R of restricted S- expressions, ranged

over by r, along with the set of a-restricted

S-expressions
,
ranged over by r

a
,
a £ A, is

defined by the following grammar:

r ::= (*)
|
a

|
b

|

(a r\ • • rn)
|

(* set rai ... rani)

ra ::= a'
\

b
|

(a r\ - • • rn)

where a, a' G A, b £ B, n > 0, m > 1, and

where all a*, 1 < i < m are distinct.

The purpose of the r
a form is to ensure that

if ra is actually a list then it is tagged by a.

Choices of ra as atoms or set constants can

be done freely.

Example 4 The S-expression

r= (ai (* set (02 c) (02 d) 02))

is not restricted. The S-expression

s= (ai (* set (a2 c) (a3 d) a2)),

on the other hand, is restricted, as is the S-

expression

r' — (ai (* set (a 2 (* set c d)) a 2)).

Note that r = r'

.

134

1st Annual PKl Research Workshop—Proceedings

In fact, the restriction appears to merely

codify existing SPKI practice. All the exam-

ples of [3, 4, 5] fit the restricted syntax, and

indeed it is not hard to show that that any

S-expression can be rewritten into restricted

form, by flattening nested * set’s and

pushing tags out of * set’s, as in example

4. Thus, whenever a “real” set union (as

opposed to the disjoint union provided by

the restricted syntax) is needed, it suffices

to use atomic S-expressions only, which is

permitted.

We obtain that the weak preorder is actu-

ally complete for the restricted fragment.

Theorem 4 (Completeness, Restricted

S-expressions)

For all restricted S-expressions r \ ,
r2 G R,

n <
s

r2 => r 1 S s
r2

Proof By 3 it suffices to show r\ <' r2 =>
r i di s

r2 . To establish this by induction

it is sufficient to show that, for restricted

expressions, condition 3.9’ implies condition

4.8. We may thus assume that r2 has the

form (* set rai ram), and for r\ there

are three cases to consider:

• r*i = (*). Since r2 is restricted the only

possibility is that r Ul — (*) as well for

some i.

• r i
= a'. Either r° ! = a' for some z, or

else rai = b for some i and b G B such

that a' G Val(b). In either case we are

done.

• ri = (a rli i r 1)Tl), n > 0. Since

all ai are distinct, we can infer that

(a,ri i , . .

.

,ri n) <
s

rai for some i :

1 < i < m, and we are done by 4.9.

8 SPKI’s AIntersect

In this section we show that SPKI’s

AIntersect behaves as we expect when <
is interpreted as set containment, and when

applied to the restricted syntax.

Since AIntersect is not completely

defined in the SPKI documents we define

this operation ourselves below. It is quite

straigthforward to verify that our version

fits the examples given in the draft standards.

To define AIntersect in the present

slightly abstracted setting we need to assume

that intersections exist at least on the level

of set constants b G B. That is, for all

b\ ,
b2 G B there is a 6, denoted b\ n b2 ,

such

that Val(b) = Val(b\) n Val(b2). We assume

that b\ n b2 can be computed in time linear

in the size of representation of bi and b2 .

Now, to define the AIntersect operation

the set S is extended by the special constant

_L, denoting failure. For lists, if one of the

argument positions is _L, the entire list is _L.

For unions, if one of the argument positions

is T that argument is ignored. With these

comments, the definition is given on fig. 1.

In the figure a few symmetric cases are left

out, in order not to clutter up the picture un-

necessarily. Note that AIntersect is indeed

well-defined as an operation on 5 U 1. For

time complexity we obtain:

Proposition 3 AIntersect (rq ,r2) is com-

putable in time O(nlogn) where n is the sum

of the lengths of r\ and r2 .

Proof Start by sorting the input such that

elements of set expressions appear in order.

This can be done in time C9(nlogn). Once
ordered, the computation of AIntersect is

linear.

Observe that proposition 3 applies to the

restricted syntax only. Notice also that if

authorisations can be assumed to be already

sorted, a linear scan of the expressions

suffices.

Finally we need to show that AIntersect is

indeed the greatest lower bound with respect

135

1st Annual PKI Research Workshop—Proceedings

AIntersect ((*) ,r) =r
AIntersect (r , (*)) = r

AIntersect (_L ,r) = _L

AIntersect (r,_L) = _L

AIntersect (a, a) = a

AIntersect (a, 6) — a, if a G Val(b
)

AIntersect (a, b) = _L, if a ^ Val(b)

AIntersect (a, (a' ri ••• rn)) = _L

AIntersect (a, (* set r\ •
•

• rl = a - • - rn)) = a

AIntersect (a, (* set rq • - - 7q = 6 • • • rn)) = a, if a G Val{b
)

AIntersect (a, (* set rq rn))= _L, if none of above two cases apply

AIntersect (6,6') =6fl6 /

AIntersect (6, (a, rq ••• rn))=_L

AIntersect (6, (* set rq rn))

= (* set AIntersect (b,r[) ••• AIntersect (6, r^))

,

where r[, ... is the sequence of atomic elements in rq , . .
.

,

rn

AIntersect ((a rq rn) , (a r[- r'n r'n+1 r'm))

= (a AIntersect (rq ,r \) ••• AIntersect (rn ,r^) r^+1 r^),

where m > n

AIntersect ((a q - - rn) , (a' r^ • • • r^)) = _L, if a 7^ a'

AIntersect

(

(a rq ••• rn) ,
(* set r\ r' ••• r

'

k))

= AIntersect ((a ri ••• rn) ,r')
,
if r- has tag a

AIntersect ((a rq ••• rn) ,
(* set r\ ••• r^)) = ±,

if no r\ has tag a

AIntersect ((* set rq rn) ,
r as (* set r[r'm))

= (* set AIntersect (ri ,r) AIntersect (rn ,r))

Figure 1: Definition of AIntersect

136

1st Annual PKI Research Workshop—Proceedings

to < for the restricted syntax. This verifies

that

• The operation AIntersect behaves as

we expect of an intersection operation

• The preorder <
s

behaves as we expect

with respect to AIntersect

For this purpose recall that a semilattice is

a structure with a binary operation which is

idempotent, commutative, and associative.

Further, we extend ||-|| to the domain 5Ul
by

II
-L

||

= 0-

Theorem 5 (Correctness of AIntersect)

1. (5, AIntersect) is a semilattice.

2. For all ri,r2 € R,

||AIntersectOi,J-2)i| = ||ri|| iff

n <
s

r2 .

Proof Both proofs are routine inductions.

We leave out the proof of (1) altogether. For

(2) we proceed by induction on the structure

of r\. We cover a couple of representative

cases:

ri = (a ri,! •••
7"i,n) : We proceed by cases

in r2 - The cases where r2 is one of (*), _L,

or atomic are resolved by symmetric counter-

parts of equations in fig. 1. Remaining are:

• T2 — (a

'

7*2,1 ••• r2 ,m): If a ^ a' then

||AIntersect(ri, 7*2)11 = 0 ^ ||r*i
[|
and

||t*i
|{ ^ ||r*2 1|

- If a = a' we can assume

that m > n the case otherwise is sym-

metric. The conclusion now follows di-

rectly by the induction hypothesis.

• 7*2 = (* set 7
*

2,1
•••

7*2,m

)

: We obtain

||AIntersect(7*i, r2)|| ^ 0 just in case ex-

actly one 7*2,i has tag a, which is sufficient

to establish the case.

9 Conclusion

We have shown how a restricted syntax

for the SPKI authorisation element can be

defined such that general authorisations and

entailments between authorisations can be

decided in almost linear time. Moreover, the

restricted syntax appears to follow existing

SPKI practice, so no real restriction in

expressive power or usage is incurred.

To which extent our results are important

in practice can be discussed. The computa-

tion of AIntersect is simplified when queries

do not involve unions, i.e. the * set con-

struct. ' This is the assumption made, for in-

stance, in the Pisces implementation (see url:

www. cnri .reston.va. us/software/pisces/) . At

any rate, as long as authorisation expres-

sions and certificate chains remain small,

the overhead may be negligible. More-

over, SPKI’s simple delegation model enables

chaining to be decided in polynomial time [2].

So one may argue that the problem is in

practice negligible. We do not think this

point of view is necessarily valid. First,

we have not found such a thing as a clear

and well-established SPKI practice. Nothing

in the draft standards prohibits the use of

unions in requests, and this capability might

very well be used in practice. Several exam-

ples can be given. For instance, an applica-

tion programmer might wish to exploit the

revocation predictability built into the SPKI
framework by computing a set of requests in

advance. Or, as another example, it might be

deemed useful to use the union construction

to introduce macros. For instance, USLocs,

MidWestLocs, etc., might be introduced as

macros (at the application level) representing

S-expressions of the form e.g.

MidWestLocs =

(* set

(location Nebraska Lincoln)

(location Kansas Topeka Centre)

(location Kansas Topeka North)

(location Kansas Wichita)

...)

There is no prior reason why such a macro

might not appear as part of a request, say,

to determine whether access to Midwestern

branch office sales statistics is permitted or

not. The result, however, can be serious per-

137

1st Annual PKI Research Workshop—Proceedings

formance degradation at request time.

Going beyond SPKI as it currently stands

there is also the possibility that new mecha-

nisms, for instance for delegation (cf. [1, 6,

7]), will be introduced which require compar-

isons to be made between authorisations of a

general shape. An important purpose of the

present paper is to set the stage for further

studies in this direction, in terms of an eval-

uation model with good computational prop-

erties.

Acknowledgements Thanks to Dieter Goll-

mann, Microsoft Research, Cambridge, also

to Babak Sadighi and Roland Hedberg, SICS,

and to Thom Birkeland at IMIT/KTH.

[7] Jon Howell and David Kotz. A formal se-

mantics for SPKI. In Proc. 6th European

Symposium on Research in Computer Se-

curity, 2000.

[8] Ron Rivest. S-expressions, May
1997. Internet Draft, expired. URL:
http: / /theory.lcs.mit.edu/ rivest /sexp.txt.

References

[1] O. Bandmann, M. Dam, and B. Sadighi

Firozabadi. Constrained delegation. In

Proc. 23rd Annual Symp. on Security and

Privacy , 2002. To appear.

[2] Dwaine Clarke, Jean-Emile Elien, Carl

Ellison, Matt Fredette, Alexander Mor-

cos, and Ronald L. Rivest. Certificate

chain discovery in SPKI/SDSI, 1999.

[3] Carl M. Ellison, Bill Frantz, Butler Lamp-
son, Ron Rivest, Brian M. Thomas, and

Tatu Ylonen. SPKI Certificate Theory,

May 1999. RFC 2693, expired. URL:
ftp://ftp.isi.edu/in-notes/rfc2693.txt.

[4] Carl M. Ellison, Bill Frantz, But-

ler Lampson, Ron Rivest, Brian M.
Thomas, and Tatu Ylonen. Sim-

ple public key certificate, July

1999. Internet Draft, expired. URL:
http://world.std.com/ cme/spki.txt.

[5] Carl M. Ellison, Bill Frantz, Butler Lamp-
son, Ron Rivest, Brian M. Thomas, and

Tatu Ylonen. SPKI examples, March
1998. Internet Draft, expired. URL:
http://world.std.com/ cme/examples.txt.

[6] B. Sadighi Firozabadi, M. Sergot, and

O. Bandmann. Using Authority Certifi-

cates to Create Management Structures.

To appear in Proc. 9th Security Protocols

Workshop, Cambridge, UK, April 2001.

138

1st Annual PKI Research Workshop—Proceedings

Public-key Support for Collaborative Groups
Steve Dohrmann, Carl Ellison

steve.dohrrnann@intel.com, cme@jf.intel.com

Intel Labs

Abstract: In this paper, we describe a use ofpublic-key

cryptography to achieve access control over

communication and data transfers in order to support

the work ofcollaborative groups. The participants

form themselves into groups and access is granted to

group members. The use ofcryptography in this

project is exceptional only in the care with which we

designed the protocolsfor identity establishment. Our

goal is to produce a working application that has the

potential to be more secure than earlier alternatives,

because it is easier to use correctly. This paper

compares our identity> establishment process, along the

lines ofSDSI, to that ofan X.509 PKI or PGP, and

shows the security advantages ofthe process we use.

We also describe an experimental methodfor key

verification intended to make strong key verification

both easy and enjoyablefor the average user.

1 Introduction

This paper describes a project to build and run

collaborative groups over ad hoc networks with strong

access control for communications and data transfers,

strong encryption for the privacy of those interactions

and strong but easy to use administration of access

control. It was our initial premise that cryptography

and protocol development had achieved adequate

security long ago, and yet weaknesses remained in

fielded implementations that came primarily from

human mistakes attributable to user interface elements

[6], such as

1. confusion when the user is forced to deal with

unfamiliar concepts,

2. mistaken identity when referring to people by

name, or

3. the simple refusal to employ security features

because of a distasteful user interface.

It was our intention to address these issues and thus

make a family of devices that improve on the security

offered by PKI-based mechanisms, such as PGP,

S/MIME, and SSL. We want to handle corporate

sensitive data with improved security while simplifying

the user interface to the extent that an untrained user at

home would use the system correctly. We stop short of

implementing MAC (Mandatory Access Control) and

labeling of data, although that is an area for future

development.

The devices we use are PDAs and laptops. These are

mobile computing platforms, and in our prototype

implementation they are connected by wireless

networking, although nothing in this design rules out

interoperating with wired devices. Because we are

using wireless networks, we have no control over who
might connect to that network. We have no secure

perimeter and therefore do not rely on one. In

retrospect, this appears to be a good design choice even

for wired networks, since it is becoming difficult, if not

impossible, to establish a secure perimeter in wired

networks as well.

We take as our paradigm of collaborative group the

pattern we experience at Intel, where groups are formed

to address tasks, perform their function and then

dissolve when the function is complete. Such groups

remain active anywhere from a half hour to years.

These groups are formed via personal invitation

(sometimes indirectly, via a referral from an invitee)

and are constructed based on availability and needed

skills without any special regard to the corporate

organization chart. As a result, it is not uncommon for

an individual to be a member of multiple groups and be

the only participant in common among those groups. It

is also not uncommon to meet more than one new
person in each new group a person joins. These groups

might address extremely sensitive matters, such as

designs for new features for future microprocessors, but

they might also address non-sensitive matters, such as

planning an annual departmental party or raising money
for a needy family. We assume that this model covers

more than just Intel. It applies clearly to people’s

behavior at home. If there is a more structured work

environment where task groups are constrained by an

organization chart, such constrained groups can still fit

into our model.

Although we envision creating small collaborative

groups, typically the size of a group one would find in a

conference room, the mechanism defined here scales

easily to a community of any size. Meanwhile, even

though the group may be small, the population from

which we choose that group is large, up to the size of

the global Internet. This introduces a naming problem,

discussed in more detail below. It is that naming

problem that would make a global PKI unacceptable for

our purposes, even if such a PKI were to exist.

Fortunately, from our experience there is no need for

such a global PKI. Instead, we expect to see a

139

1st Annual PKI Research Workshop—Proceedings

proliferation of the kind of public key authentication

and authorization mechanism that we have

implemented and that we describe in this paper.

This paper describes the full process of achieving

strong authorization of communication and file access.

In section 2, we cover physical discovery of other

devices. In section 3 we cover the process of

establishing identity of other participants, specifically

of linking their identities as established biometrically

with their keys as provided over the network. That

section is perhaps the most controversial and

accordingly occupies the bulk of this paper. In section

4, we describe the process of group formation, based on

identities that have been established by the methods of

section 3. In section 5, we list some of the uses to

which these groups can be put. In section 6, we
consider some user interface issues, especially the issue

of key verification - something vitally important for

security but something that most users find annoying

and wish to skip entirely. In section 7, we give our

conclusions and in section 8 we consider areas for

future research.

2 Discovery

In our current implementation, we use laptops or PDAs
with dual networks, one local-area (802.1 1 ad hoc) and

one wide-area (GPRS). The discovery mechanism is

different for the two, not merely because the underlying

hardware is different but because the population size is

radically different. Under 802.1 1, one would expect

fewer than 200 machines within range. Under GPRS,
there might be millions of users online (just as there

would be on the whole Internet). In neither case do we

trust information obtained by discovery without the

further proof that is provided during the identity

establishment phase, but in both cases we need to find

the party with whom we intend to do that identity

establishment.

2.1 GPRS Discovery

Discovery here is by sign-on name, a name
programmed into the cellular card at time of service

activation. It is by these names that the cellular

provider identifies and catalogs subscribers. These

names are arbitrarily chosen and not necessarily known
by the person encountering the name, so they are not

necessarily meaningful to users. They are used as

indexes into a database, typically under verbal

instruction.

As part of our project, we have created a directory to be

operated by the cellular provider, in which we record

presence information: whether a given subscriber is

online at the moment and the current IP address of that

subscriber. Discovery over GPRS is achieved by

consultation of that directory. Write-access to that

directory is authenticated strongly, via public key

operations, using a key installed during provisioning

and bound to the user’s sign-on name. This key is

empowered only to give directory access and is not

used for other access control.

2.2 802.11 Discovery

With 802. 1 1 , there is no need for a sign-on name, but in

order to be consistent across networks, we invent and

use a sign-on name for the 802.1 1 discovery process as

well. This is a potential weakness. There is a certain

level of security provided by the GPRS discovery

mechanism, since one must be strongly authenticated to

place an entry in the presence directory. When the

directory under GPRS returns an IP address for a given

sign-on name, one can rely on the fact that the binding

ofname to IP address was strongly authenticated and

was provided by the holder of that sign-on name.

However, under 802.1 1, there is no authentication of

the sign-on name. It is merely a claim. If the user had

been trained by GPRS experience to rely on the validity

of this name binding, this is not safe. We do not rely on

our users to keep that distinction between GPRS and

802.1 1 in mind. As a result, a machine that has been

freshly discovered over either network is assumed by

our system not to have been authenticated at all and is

not granted any restricted access until after Identity

Establishment and Authorization.

3 Identity Establishment

During the introduction phase, we establish the

identity of correspondents. The identifier we use is not

the sign-on name, for two reasons.

1 . We allow a user to generate multiple personae

and use them as she sees fit, choosing which

one to use in introducing herself, just as a user

chooses which business card to beam from a

PDA.

2. We do not believe in one-name-fits-all-uses.

The login name, introduced in the 1960’s (or

even earlier), is a good method of identifying a

person to a computer, but we have seen

numerous failures in attempts to use such

names to specify a person, through a

computer, to another person.

The description of introduction, which follows, may
seem pedantic and perhaps elementary. However, we

have tried to show all our steps so that we can compare

this process to that used by a more traditional global-

name PKI such as X.509 or PGP.

140

1st Annual PKI Research Workshop—Proceedings

Frances John

AAAAB3NzaC1kc3MAAAC8APJQkdHPKOgnxD55GQUJmo
m3Jea/Up9XPeczYHG6089V1 6ToSyTr2BUVuicP92i05
DFMxUlul RraKVwjV38sg67UPcCUPYsRMmP6ASrTQyNg
eZXcyPkv9+30V97BH86UA8ctn8k+Dhc0zZuo*kkTvGc

8pPY H p>*PDguKnQwbNHAAAAFQDHmD6cVaX IFLm +/cp*

6wyfix3KXnQAAAlEA7v+J71XMN7X/DQ6JEunGMapaQXg

AAAAB3MzaC 1 kc3MAAACBAPJQkcfHPKOgrjxD55GQUJmo
m3JeflrUp9XPeczYHG6089V16ToSyTr2BUVuteP92r05
DFMxUkil RraKVwiV38sg67UPcCUPYsRMmP6ASrTQyNg
eZXcyPkv9^30V97BH86UA8ctn8k*Dhc0zZuo*kkTvGc

8pPYHp)PDguKnQwt>NHAAAAFQDHmD6d/aXIFLm*/cp+
6wyhx3KXnQAAAIEA7v>J71XMN7X/DQ6JEunGMapaQXg

Figure 1: The Process of Establishing Identity

Within the computers and over the network, nodes in

our networks are known by various transitory

addresses, such as an IP address, but also by a

permanent, globally unique ID: a public key associated

with the user’s chosen persona. The introduction job

is therefore to establish the identity of that key.

By “establishing identity of a key”, we mean
establishing that the key belongs to the person you

think it does. The phrase “the person you think it

does” implies that you have some concept of the

person. If you have never met the person, and therefore

have no concept of him or her, the phrase has no

meaning and you cannot establish identity. The most

you can do in that case is to learn facts about that

keyholder based on statements by some other party.

However, here we are interested in establishing

identity.

In our analysis of the introduction process, we look at

three slices of reality:

1. Digital: things that reside in and happen

inside computers and networks (keys)

2. Physical: people and things that have physical

existence (people, computer screens), and

3. Mental: thoughts and memories inside a

person’s mind (knowledge about a person,

biometric matching procedures, decision

making, etc.).

“The person you think it does” exists in the mental

slice of reality. It is a body of memories about the

person in question. The purpose of introduction is

therefore to establish a binding between a body of

memo ries and a public key. This implies that the

introduction phase requires personal acquaintanceship.

Our system does not limit all system use to personal

acquaintances of one person. Non-acquaintances are

made accessible during the invitation phase. But, we

do block system use by complete strangers (those not

known to anyone in the collaboration group).

3.1 The Identity Establishment Process

Each person who is party to an introduction operates in

three different spaces: one physical, one digital and one

mental. For mutually establishing identity between two

parties, there are then six spaces involved, and steps in

the process used to establish identity must cross from

one space to another. The boundary crossings must be

considered carefully because they offer increased

likelihood of errors.

In Figure 1 we show the process of introduction from

Frances Chamish to John Wilson. Ms. Chamish does

not use the name Frances, except on official documents,

like her driver’s license, passport and income tax return.

With everyone else, she uses the name Leanna. So, we
will refer to her by the name Leanna, unless we are

being formal.

The process described in Figure 1 might be mistaken

for the PGP key signing ritual, but it is different in that

it does not assume knowledge or relationships that are

not actually present. [The comparison to the process

used by a traditional PK.I like PGP or X.509 is given in

section 3.2.]

141

1st Annual PKI Research Workshop—Proceedings

The identity establishment process of Figure 1 has six

steps.

1. John sees Leanna and since he knows her

already, he compares the person he sees before

him to a template stored in his memory. This

is a biometric comparison, based on face or

voice recognition and possibly other

characteristics, processed by John’s senses and

brain, rather than some hardware biometric

sensor. A similar biometric comparison would

happen if the encounter between them were by

telephone or videoconference.

2. As part ofnormal background activity,

Leanna’s and John’s PDAs broadcast

discovery messages containing their sign-on

names and IP addresses. By mutual

agreement, Leanna and John start the

introduction phase by releasing their public

keys and associated information to each

other’s PDAs, using the IP addresses learned

during the discovery phase. [Figure 1 shows

only one half of this exchange.]

3. John wants to change Leanna’s key (an entry

in his Contact List) from anonymous to

known. This requires a verification phase.

For Leanna’s part of that phase, she displays

verification graphics of her public key, on her

PDA. [In Figure 1, this is shown as a key hash,

but it could be any appropriate display

carrying enough entropy to verify the key.]

4. John’s computer simultaneously displays the

verification graphics of the newly arrived key.

5. John compares these two images, by seeing

them displayed on the two PDAs, held side by

side (or if they are connected over a telephone

connection, he listens to Leanna read

displayed data or listens to her computer and

his own simultaneously render verification

data as sounds). From this, John now knows
that the key he has selected in his PDA is the

one belonging to Leanna. He knows this in his

own brain, the same brain that established

Leanna’s biometric match in step 1.

Therefore, those two match results are

communicated to his decision-making without

having to cross reality-slice boundaries.

6. With the success of the two equality tests,

John gives a name to that selected public key

using the name “Leanna”, which is the name
he uses to index his set of memories that

include her biometric templates. This name
comes from his memory and its sole purpose is

to be a link back to his memory from his

computer display. It does not have to be a

name that anyone else would recognize as

belonging to Frances L. Chamish. This

binding of the name Leanna to her public key

must be protected from tampering. John

establishes that protection by leveraging the

protection of his own private key. He creates a

SDSI [5] name certificate binding the name

“Leanna” to her public key and signs the

certificate with his private key. After John has

accepted and labeled Leanna’s key, future

encounters with her will not require any of the

steps of this introduction process. Her key

remains marked as fully introduced.

At the conclusion of this protocol, John has a Contact

List entry that ties a public key to a body of memories,

including one or more biometric templates, that stands

for his concept of the person he calls Leanna. In other

words, he has established that the key belongs to the

person he thinks it does.

The relationship established here is immediately

between John’s mind and John’s PDA’s digital memory
(with linkage by use of the name “Leanna”). There is a

secondary linkage to Leanna’s private key, by virtue of

the fact that a given public key has only one

corresponding private key, at least in our public-key

algorithms. From there, there is a linkage to any digital

signature made by Leanna’s private key, and from there

to any message or file thus signed.

This process has been tuned to link information via

identifiers appropriate to the domain in which they are

used. Between John’s mind and his PDA’s memory, a

local name, meaningful only to him, is used. Between

John’s PDA and Leanna’s PDA, a globally unique

identifier (the public key) is used.

3.2 Establishing Identity via Traditional

PKI: X.509 or PGP
X.509, PGP and SDSI ID certificates differ in format,

process and meaning. The difference in format is

irrelevant for this paper. We focus on the difference in

process and meaning. Most especially, we note that

both X.509 and PGP deal with globally unique IDs that

are expected to be meaningful to whoever intends to

use the key. Since this ID carries a global meaning, the

binding of ID to key is an act that must be performed by

a trusted service. In X.509, that trusted service is a

specially trusted Certificate Authority (CA). In PGP,

that trusted service is a collection of less trusted key

signers who, taken together, constitute a distributed

trusted service (the web of trust). By contrast, the SDSI

(local) names we use are intended to have meaning only

for the person who creates the name and binds it to a

key. That one person is the sole authority on this name

142

1st Annual PKI Research Workshop—Proceedings

Frances TTP John

{credentials for

Frances ...}

AAAAS3NzaC1kc3MAAAC8AP.
dHPKOgn*D55GQUJrTXHTi3Je8/Up9
XPeczYHG6089V16ToSyTr2BUVul

cP92X55DFMxUlu1 RraKVwtV38sg6
TUPcCUPYsRMmPSASrTQyNgeZX
cyPkv9+30V97BH86UA8ctn8k+Ohc
0zZiioH(kTvGc8pPYHplPDguKrTQw

bNHAAAAFQDHmD6d7aXIFLrm-/cp
6wytix3KXnQAAAlEA7v*-J7lXMN
7)0DQSJEunGMapaQXg

<certificate for

Frances Chamish>
<certificate for

Frances Chamish>

Figure 2: Establishing Identity via PKI

binding and therefore the only one who can bind that

name to a key.

In Figure 2 the “person” labeled “TTP” stands for a

Trusted Third Party and can be either an X.509 CA or a

set of PGP trusted introducers.

3.2.1 TTP Process: Leanna to John

The process of Figure 2 appears simpler than the

process of Figure 1, because it omits the detail effort

involved in creating a certificate. In the case of PGP,

for example, that effort often involves the hash

computation and comparison steps shown in Figure 1.

The process shown in Figure 2 is:

1. Leanna takes various credentials and a copy of

her public key to the TTP. At PGP key

signing parties, those credentials might include

a driver’s license or passport. By means of

these credentials, Frances lays claim to her

true name. That is, she demonstrates to the

TTP that she is not impersonating someone
else. These official credentials all list Leanna

as “Frances Chamish”, some using the middle

initial “L”.

2. The TTP instructs his or her computer to

generate a certificate binding Leanna’s name,

“Frances Chamish”, to her public key. In the

case of PGP, the certificate construction will

have been done already by Leanna and the

TTP(s) merely sign(s) that certificate body. In

the case of an X.509 CA, the TTP builds the

certificate and most likely chooses a name for

Leanna in the process. PGP does not require

that IDs in certificates be globally unique, but

X.509 practices often require name
uniqueness, at least over the set of individuals

certified by that CA. As a result, the X.509

certificate will bind a Distinguished Name
(DN) to the public key, where that DN may

include the name Frances Chamish but may
also include other information to make the DN
unique.

3.

The certificate issued to/for Leanna is

delivered to John at a time when John is not in

direct contact with Leanna and he must make a

decision based on the information contained

within that certificate. This delivery can be

via a directory service (e.g., the PGP key

server or some directory of X.509 certificates)

or from Leanna as part of a communication

(e.g., via S/MIME). If he is acting properly,

he will fail to make any connection between

the certificate and his memory of Leanna,

since the two have too little information in

common to confirm with high probability that

they refer to the same physical person.

Note that PGP has a slight advantage here. Under PGP,

Leanna chooses the name she wants bound to her public

key and needs only to convince some number of key

signers to sign that association. On the other hand, a

high quality PGP key signer should refuse to sign a key

with a name not backed up by official documents.

143

1st Annual PKI Research Workshop—Proceedings

3.2.2 TTP Process: John to Leanna

In the other direction, there is a different problem. John

Wilson uses the same, true name in all his official

credentials, on all his documents and with all people.

But, in Figure 3 we see that Leanna is still unable to

connect his certificate to his identity in her mind.

Although the names compare between the certificate

and Leanna’s memory, Leanna does not know which of

the TTP’s John Wilsons this certificate corresponds to.

She knows only one John Wilson, but the TTP might

know and have certified hundreds. It is true that a good

CA will make the certificates for each John Wilson

different, by including additional information beyond

the common name “John Wilson”. (That information is

shown in Figure 3 as serial numbers.) Flowever, if

Leanna does not know this additional information about

John, then all of these certificates would equally match

Leanna’s memory of John and therefore the certificate

in Leanna’s computer could be for any of those John

Wilsons. In the best case, she will discount the

certificate as worthless to her because she knows she

doesn’t know which John Wilson it belongs to, but

there is a more serious threat. She does not get all of

the certificates issued to all the John Wilsons. She gets

only one, especially if it is delivered (e.g., by S/MIME
or SSL) from someone claiming to be John Wilson. If

she were a naive user, she might not think about the

hundreds of other John Wilsons that the TTP could

have certified and, since she knows only one John

Wilson, accept the offered certificate as referring to the

John Wilson she knows. That is, she might assume that

she has verified John’s identity via that certificate when
she hasn’t.

By contrast, when Leanna creates a SDSI name
certificate with the name “John Wilson” by the process

of Figure 1, since she knows only one John Wilson she

knows to which John Wilson her certificate refers. If

she knows more than one John Wilson, then she must

choose additional information to append to the name to

make it unique for her, just as a CA needs to do.

However, she will choose information that she knows
and that should therefore be meaningful to her when

she gets around to using that certificate in the future.

3.3 Security of Private Keys

There may be suspicion of the personal introduction

processes we use for their lack of use of a CA. As we
have shown above, the use of global names that comes

along with using a CA adds substantial insecurity to the

introduction process. However, an X.509 CA is

expected to be very good at protecting its own keys. In

our mechanism, by contrast, certificates are generated

by keys that are not specially protected. In PGP, the

key signers do not specially protect their keys, but the

fact that a key is supposed to be signed by multiple

signers (the web of trust) implies that any attacker must

have compromised all of those keys. PGP aims to

achieve through redundancy what an X.509 CA tries to

achieve through a guarded vault. At some number of

signatures, the attack effort required becomes greater

for PGP than for an X.509 CA and therefore the

strength of PGP would be greater. Our certificates have

neither form of protection.

144

1st Annual PKI Research Workshop—Proceedings

In spite of the relatively unprotected signing keys in our

mechanism, we can show that we have lost no security

for lack of the TTP. At the same time, as shown in the

previous sections, we would have lost security via

naming had we used either of the global-name ID

mechanisms.

Our argument is that if an attacker can steal (or operate

at will) a user’s private key, that attacker can

impersonate the user as well as generate certificates.

Since confidentiality keys are established in our system

by signed Diffie- Heilman key agreement[3], forward

secrecy is maintained and the attacker does not gain

access to any past (recorded) messages or file transfers.

This is not to deny the severity of theft of a private key.

The ability to impersonate the attacked user is a wide

security breach. The ability to generate certificates as

that attacked user, however, does not give any extra

access. No user in our system is in the role of a TTP -

certifying memberships, IDs or authorizations that the

attacked party does not herself possess and therefore

that the attacker does not himself possess after theft of

her key.

If the attacker chooses to use the stolen key to generate

a certificate for his own key, to invite it to join a group

(see section 4, below), then the attacker would have

access to activities of that group as a full participant

without continued use of the stolen key. However, he

would also leave a trail of use of his own key. That

key, although not tied to any locator information, is an

identifier and has forensic value. Therefore, a savvy

attacker would continue to impersonate the attacked

person by using her stolen key, rather than generate a

certificate giving group membership to his key.

In summary, the theft of a private key is undesirable,

but the ability of the thief to generate certificates gives

the thief no powers beyond those already gained just by

possession of the private key and might, in fact, work
against the attacker. A TTP would not increase private

key security on an individual node. It would only

increase certificate-issuing security, and therefore is of

no benefit to us.

4 Group Formation

We start with the concept of a secured collaboration, or

collaboration for short. A collaboration is a group of

principals, known as members, who are permitted to

share messages and files as part of that collaboration.

Some of these members also have the permission to add

new members to the collaboration.

A collaboration starts out as a name in the namespace
of the creator of the collaboration. It is expressed as an

SPKI/SDSI name: “(nam e <public key> <ASCII name
of collaboration^”. [4]

The creator of a collaboration might be a private

individual, creating a set of friends, or a project leader

in a corporation, creating a digital reflection of her

project team. The official or unofficial nature of a

collaboration is a function of the intention of the creator

and does not show up in any difference in the software

used.

Given correspondents who are known with assurance,

the process of Invitation is that of granting

authorization to those known correspondents to

participate in a secure collaboration. An invitee can be

granted membership in the collaboration and might also

be granted the right to invite others into that

collaboration.

We grant membership without permission to add new
members by creating an SPKI/SDSI ID certificate:

(cert

(issuer (name <public key> <ASCII
name of collaboration))

(subject <public key of invitee>)

(valid (not-after <end date>))

)

We grant the ability to add new members as well by

issuing the certificate:

(cert

(issuer (name <public key> <ASCII
name of collaboration))

(subject (name <public key of
invitee> <large random value>)

)

(valid (not-after <end date>))

)

That is, we create a named group in the grantee’s

namespace and add that named group to the

collaboration. That grantee then adds individual

members to that new named group, via certificate:

(cert

(issuer (name <public key of

invitee> clarge random value>)

)

(subject <public key of next
invi tee>

)

(valid (not-after <end date>))

)

The members of a collaboration are those public keys

that are direct members of the top level named group or

of some named group contained within that top level

group, at whatever nesting depth.

4.1 Cross-corporate Invitations

In our system, invitations are issued only to

acquaintances, but these do not have to be close

145

1st Annual PKI Research Workshop—Proceedings

personal friends. These can be people one had met for

the first time just prior to issuing the invitation.

Such might be the case with cross-corporate working

groups, such as standards bodies, corporate acquisitions

or venture capital funding activities.

The invitation process does not require an act of the IT

departments of the various corporations involved. It

does not give any access into any of the corporations by

members of the other except for the strictly limited

functionality of the collaboration for which the

invitation was issued. In this way, it models current

business practices.

Other PKI mechanisms for permitting cross-corporate

interactions do not share this attribute. A bridge CA
[1], for example, effectively merges the certificate

space of the two bridged corporations. The very

existence of the bridge CA might, in fact, leak sensitive

information (for example, evidence that an acquisition

or merger is in the secret negotiation stage).

By contrast, with the invitation process, corporation A
learns nothing about the employee database of

corporation B. Members of corporation B are

represented in the group as public keys. No names of

keyholders are exchanged as part of the invitation. One
does not know if a second key invited by someone in

corporation B was that of another employee or was a

second key of the original employee. Therefore, one

does not even learn anything about the headcount of

corporation B beyond that which was learned during the

in-person negotiation meeting(s) during which the

introduction phase crossed the inter-corporate

boundary.

5 Use

From the point of view of the user, the collaboration

tool is just another instant messaging tool that happens

to operate over dual networks and offers peer-to-peer

file sharing. It happens to have a peculiarly rigid

introduction process, but we are tuning the prototype to

make sure that that process is not onerous.

The user has no choice over whether or not to use

cryptography and, if so, how strong. User keys are all

1024-bit DSA. All messages and file transfers are

encrypted with 168-bit triple-DES CBC, with session

keys and IVs derived from 1024-bit D-H key

agreement. All messages and file transfers are digitally

signed. This use of cryptography is transparent to the

user.

Full details of the features of this prototype belong in a

product data sheet rather than this paper, but that data

sheet has not been written yet. In summary, then:

1.

Users can send messages to

a. an entire named group.

b. a set of members of a named group,

or

c. a single member of a named group

2. Users can make files available to a named
group

3. Users can fetch a file that is available to a

named group from the machine that holds it

4. Users can send files as if attached to a message

(i.e., addressed the same way)

With every operation, a group must be specified. It is

the named collaboration group that constitutes the only

access control at this time. That is, in order to keep the

UI simple, we provide for only one level of access

control. If you are in the group, you can read any

message or file made available to that group.

Each computer in a group maintains state for that

group, including the list of group member keys and the

list of any files that have been made available to the

group. Whenever two group members regain contact,

they synchronize this group state. The synchronization

is automatic and gives users the impression of common
state, although at times of network partition, that

common state loses consistency.

The resulting use model is very basic and we hope easy

to understand. Wider trials of the prototype will let us

confirm that hope or give us information with which to

improve the user’s experience.

6 User Interface issues

It is essential to do proper cryptographic engineering,

both in writing code and in designing protocols.

Flowever, that careful engineering is not sufficient to

achieve security in an end-user product [6], The user

interface needs to be designed in such a way that the

user would naturally do the correct thing and avoid

doing the wrong thing.

We must assume that there is always an attacker trying

to gain access to our collaborations, even though we
realize that in most cases there will be no attackers.

This lack of evidence of attack makes motivation of the

user especially difficult. It is therefore incumbent upon

us to make the user interface as pleasant and simple as

possible

Computer software engineers, no matter how well

meaning, cannot be expected to get a user interface

right. There must be extensive testing, with real users.

We have just started that extended testing and cannot

report full results at the time of this writing. However,

we have learned a number of things that are worth

reporting here. These are cases where lessons we
learned go against the inclination of our own

developers.

146

1st Annual PKI Research Workshop—Proceedings

6.1 Minimizing Choices

We have found that we need to minimize choices and

options, especially when there might be a bad choice.

Our initial users are more comfortable when given

fewer options.

We have limited options by defining a Contact (a Java

Object) that goes through state changes. It starts out,

after discovery, as an anonymous, non-trusted thing. It

has a sign-on name and may have an IP address. The

only thing that can be done with this non-trusted object

is to engage in introduction.

After introduction, the Contact has a public key that has

been verified and named by the user. An introduced

Contact is only then available to participate in

invitations to join one or more named collaboration

groups.

All message traffic and file transfers are associated with

a named group and are limited to members of that

group. It is not possible to engage in messaging or fie

sharing outside a named group.

Groups and Contacts are shown to the user as names,

but the state of a Contact is shown by color and icon so

that the user does not need to look beyond the top-level

screen to tell what can be done with the Contact.

One invites a Contact to join a group by dragging and

dropping the Contact name onto the group.

6.2 Sign-on Names

For security purposes, it is best not to display sign-on

names to the user at all. These names are weak

identifiers at best and are subject to the John Wilson

problem, described in section 3.2.2.

On the other hand, both developers and experienced

users have been well trained to use sign-on names.

Many users view sign-on names as a way to deliver a

message - e.g., the name “fundude”, or the name

“fundOOd” that conveys a slightly different message.

In the prototype, we have compromised. We use sign-

on names during discovery, but have the person who is

building a personal Contact List choose a name for each

entry in that list. This name will probably turn out to be

the original offered sign-on name most of the time and

we expect that to be a potential weakness, due to the

John Wilson problem, with or without actual attacks.

We take it as ongoing work to look for a solution to this

problem that is acceptable to users.

6.3 Key Verification

We recognized early in the development process that

key verification (e.g., the comparison of hex key

fingerprints) is the geekiest, slowest, most painful and

most cumbersome part of the introduction process.

This can be made a little easier by converting key

hashes to lists of words to be read aloud, as PGP did

several versions back. However, the task is still time

consuming. The list of words from a SHA-1 hash on a

PGP key takes on the order of 24 seconds to read. The

hex version of the hash takes about the same length of

time.

When keys are verified over a telephone connection, in

our prototype, we currently have the two parties read

words alternately to each other, to achieve mutual

verification of the hash. However, when keys are

verified by placing two mobile computers next to each

other, so that the person receiving the key can verify

correct receipt, we can use a graphical mechanism that

permits entropy comparisons to be much faster.

Figure 4: Verification graphic

Figure 4 shows a PDA screen displaying a graphic that

we call a “flag”. Preliminary experiments show that

people can compare a time sequence of these apparently

random graphics on two side-by-side screens, at a rate

of 2 per second, with comfort. Assuming the verifier is

not color-blind, each flag carries 25 bits: 1 for

horizontal vs. vertical orientation; 6 for the color of

each rectangle. This rate needs to be confirmed by

more extensive testing, but assuming it is confirmed,

this permits a key hash comparison at 50 bits per

second. One can then compare a full 160-bit hash in

just over 3 seconds, for a speed-up of a factor of 8.

If the graphic is black and white, e.g., for fully color-

blind users, we expect to get at least 1 0 bits/second of

comparison, for a full 160-bit hash in 16 seconds, but

we have not yet experimented with shapes to see how

much more rapidly we can do comfortable entropy

comparison.

It is our goal to get the verification time low enough

that a user would verify the correctness of a key’s hash

in the time it takes to move a stylus or mouse to accept

a key as valid. This does not eliminate the verification

147

1st Annual PKI Research Workshop—Proceedings

step, but does permit it not to add time to the user’s

process.

7 Conclusions

The problem of making sure that only those who truly

should be authorized to access some data actually end

up with access to that data is a very hard problem in

general. We have addressed a subset of the family of

security policies that have this requirement. We
provide for policies in which every member of a

defined group is permitted the same access as every

other member, but we allow for the definition of an

arbitrary number of groups. We have been very careful

to make sure that groups are made up only of

individuals known personally by someone with the

authority to add to the group membership. This does

not cover all possible groups, in theory, but does cover

all groups we encounter in practice, both at work and at

home.

Prior to this work, we had observed that the greatest

leakage of confidential information came from

misdirection of communication, through name
confusion, and only secondly from a failure to employ

security mechanisms to protect data. To respond to

those problems, we have been careful to keep the

named people and groups that any individual must deal

with down to the personal acquaintances and group

memberships of that individual. No choices are made
from a larger namespace. We allow the individual to

choose his or her own names for these individuals and

groups, to minimize confusion of names. We have

made all communications encrypted and digitally

signed, with no user choice, so that all accesses to data

handled by this system must be via the access control

mechanisms we have defined.

This system is doubtless not perfect. However, it has

addressed the greatest needs we have identified and

further improvements can follow as we gain experience

with use of this system.

8 Future Work
We have chosen not to deal with revocation of keys or

of authorizations (group memberships). The underlying

SPKI mechanism supports a variety of revocation

methods, but the complication of the user interface did

not seem warranted for what are almost always short-

lived groups of long-lived keys.

The limitation of operations to group members, and the

labeling of files as available to a group, can be thought

of as a poor man’s MAC/DAC architecture. We could

possibly improve the security of our mechanism by

implementing it on top of an operating system that

supports data labeling and mandatory access controls.

We need to continue our user trials of key hash

comparison mechanisms, including audio trials

alongside graphical ones, in order to determine the

actual number of bits being compared per second by the

user.

Because our underlying engine is the AuthCompute
library from CDSA [2], we have the full power of SPKI
and SDSI at our command. However, we have not

found a reason to use all that power. It is still an open

question whether the refinement of access controls full

SPKI would make possible would be of use to a naive

user base or whether it would add an unacceptable

amount of confusion. For example, it is possible to use

the SPKI threshold subject mechanism to have more

elaborate security policies - such as permitting access

only if a group member is also still employed and has a

non-revoked key. However, this functionality would

require a complication of the user interface and might

lead to more errors than the extra refinement of

authorization would prevent.

9 Acknowledgements

We want to thank Leanna Chamish and John Wilson for

granting permission to use their names, stories and

images in this paper. We especially want to thank the

many engineers within Intel Labs who collaborated in

producing the prototype whose characteristics we report

here.

10 References

[1] Bridge-CA: for one discussion of a bridge CA, see

http://www.bridge-ca.org/english/index.html

[2] CDSA: http://developer.intel.com/ial/security/

[3] Whitfield Diffie and Martin Heilman, "New

Directions 'in Cryptography", IEEE Transactions on

Information Theory, November 1976, pp. 644-654.

[4] Ellison, Frantz, Lampson, Rivest, Thomas, and

Ylonen, “SPKI Certificate Theory”, RFC2693,

September 1999.

[5] Ronald L. Rivest and Butler Lampson, “SDSI - A
Simple Distributed Security Infrastructure”, September

1 996, http://theory.lcs.mit.edu/~rivest/sdsi 1 0.html

[6] Alma Whitten and J.D. Tygar, Why Johnny Can't

Encrypt: A Usability Evaluation ofPGP 5.0

.

Proceedings of the 8
th USENIX Security Symposium,

August 1999,

http://www.usenix.org/publications/library/proceedings/

sec99/whitten.html

148

1st Annual PKI Research Workshop—Proceedings

Authorization Policy in a PKI Environment

Mary R. Thompson, Srilekha Mudumbai, Abdelilah Essiari, Willie Chin

National Energy Research Scientific Computing Division

Ernest Orlando Lawrence Berkeley National Laboratory

Berkeley, CA, 94720

pkidev@george.lbl.gov

Abstract

The major emphasis of Public Key Infrastructure has

been to provide a cryptographically secure means of

authenticating identities. However, procedures for

authorizing the holders of these identities to perform

specific actions still needs additional research and

development. While there are a number of proposed

standards for authorization structures and protocols.

[17, 5, 22, 10, 6] based on X.509 or other key-based

identities, none have been widely adopted. As part ofan

effort to use X.509 identities to provide authorization in

highly distributed environments, we have de\>eloped and

deployed an authorization service based on X.509 iden-

tified users and access policy contained in certificates

signed by X.509 identified stakeholders. The major goal

of this system, called Akenti, is to produce a usable

authorization system for an environment consisting of

distributed resources used by geographically and

administratively distributed users. Akenti assumes com-

munication between users and resources over a secure

protocol such as secure socket layer (TLS) which pro-

vides mutual authentication with X.509 certificates. This

paper explains the authorization model and policy lan-

guage used by Akenti, and how we have implemented an

Apache authorization module to provide Akenti authori-

zation.

Background

There is significant and growing set of distributed com-

puting environments where the resources, resource

stakeholders and users are geographically and organiza-

tionally distributed. The DOE sponsored Collaborato-

ries [1] and various “Computational Grids” [13] are

examples of these as well as the ubiquitous Web-con-

This work is supported by the U. S. Department of Energy, Office of

Science, Office of Advanced Scientific Computing Research, Mathe-

matical, Information and Computation Sciences office (http://

www.er.doe.gov/production/octr/mics), under contract DE-AC03-

76SF00098 with the University of Califomia.See the disclaimer

at http://www-library.lbl.gov/teid/tmRco/howto/RcoBerkeley-

LabDisclaimer.htm.This document is report LBNL-49512.

trolled sets of documents and services. These systems

effectively define a Virtual Organization whose mem-
bers and resources span many different real organiza-

tions. These virtual organizations need a way to

authenticate and then authorize their users.

One of the characteristics of a collaboratory or Grid is

that both the stakeholders and users may come from

many different administrative domains. Thus the vir-

tual organization needs to identify its users in a

domain neutral manner. The most common candidates

for cross-domain identities are Kerberos and PKI.

Kerberos is mostly used within a single administrative

domain, but there are many examples of cross-authen-

ticated Kerberos realms, where the Kerberos adminis-

trators have agreed to accept tokens from another

realm. Negotiating cross-realm agreements is often a

lengthy and complex process. Some examples of such

domains are universities where there may be multiple

Kerberos realms within the university, and the DOE’s

ASCI-DisCom 2 program [9] that connects Lawrence

Livermore National Laboratory, Los Alamos National

Laboratory and Sandia National Laboratories in a

computational Grid.

Looser collaborations, such as Grids based on Globus

[14] middleware, [24,27] Col laboratories [8,25] and

portals [20] have chosen to use PKI identities to

authenticate members. These organizations either run

a Certificate Authority of their own and/or accept cer-

tificates from a set of trusted CAs. Establishing

trusted CA relationships can also be a lengthy pro-

cess, but since many current collaboratories and grids

are experimental in nature, the trust relations have

been established on an informal basis by the research-

ers, rather than the system security administrators.

Once a collaboration has decided to use PKI identities

to authenticate users, it needs to develop an authoriza-

tion system using those identities plus some addi-

tional access policy information for each of its

resources.

149

1st Annual PKI Research Workshop—Proceedings

Another characteristic of collaboratories and Grids is

that their resources, such large scientific instruments,

computing resources and data stores, may have more

than one person (called a stakeholder) who needs to

control access to the resource. For example, when

remote control of an instrument is allowed the instru-

ment administration may want assurance that any user

who can control the instrument has passed a local train-

ing course, while the principal investigator may be

mostly concerned that the person controlling the instru-

ment during his allowed time is a member of his

research group. An authorization system that allows

access policy to be defined independently and remotely

from the resource gateway is needed.

However, standard access control methods typically

require that the stakeholder has privileged access to the

machine on which the resource resides to set the access

control. Also such systems, to the extent that they use

the underlying operating system for actual access con-

trol, require that all users of a shared resource must have

a local account on the system. The requirement for indi-

vidual system accounts on the resource machine does

not scale well.

We have developed the Akenti [32] authorization system

to meet these two needs: to use a virtual organization-

wide user identity (in our case an X.509 identity certifi-

cate); and to facilitate setting access policy by multiple

independent stakeholders remote from the actual

resource gateway.

This paper explains the authorization model and policy

language that we use, and how we have implemented an

Apache authorization module to provide the same

authorization policy and mechanism for resources

accessed via a Web browser as accessed by other remote

methods such as Globus job submission [14] or CORBA
object invocation.

Akenti

Akenti is built using X.509 identity certificates [18] and

the SSL/TLS [7] connection protocols to securely iden-

tify a user that is requesting access to a resource. It rep-

resents the authorization policy for a resource as a set of

(possibly) distributed digitally signed certificates. These

policy certificates are independently created by autho-

rized stakeholders. When an authorization decision

needs to be made, the Akenti policy engine gathers up

all the relevant certificates for the user and the resource,

validates them, and determines the users rights with

respect to the resource.

Authorization model

The Akenti model consists of resources that are being

accessed via a resource gateway by users. These users

connect to the resource gateway using the SSL hand-

shake protocol to present authenticated X.509 identity

certificates. The stakeholders for the resources express

access constraints on the resources as a set of signed

certificates
,
a few of which are self-signed and must be

stored on a known secure host (probably the resource

gateway machine), but most of which can be stored

remotely. These certificates express what attributes a

user must have in order to get specific rights to a

resource, who is trusted to make such Use-condition

statements and who can attest to a user’s attributes. At

the time of the resource access, the resource gatekeeper

asks a trusted Akenti server, what access the user has to

the resource. The Akenti server finds all the relevant cer-

tificates, verifies that each one is signed by an accept-

able issuer, evaluates them, and returns the allowed

access. See Figure 1.

Figure 1. Akenti Authorization Model

There are several models for arriving at access control

decisions. One is the classical access control list model,

where the user just presents an identity to the gatekeeper

who finds the policy information for the resource and

evaluates the users access. Another is the capability

model, where the user presents a capability which grants

the holder specific rights to the resource, and the gate-

keeper has to verify that the user has come by the capa-

bility legitimately and then interpret the rights that have

been presented. There are also hybrids of the two mod-

els, where a user may present some identity information

and possibly a restricted set of his full rights.

150

1st Annual PKI Research Workshop—Proceedings

We have mostly concentrated on the first model in order

to allow applications to use Akenti authorization over

standard SSL connections which can transport and ver-

ity X.509 identity certificates. We have also experi-

mented with s capability model where Akenti will return

a signed capability certificate containing a subject’s Dis-

tinguished Name (DN), public key, the Certificate

Authority (CA) that signed for this name, the name of

the resource and the subject’s rights. If this is presented

to a resource gatekeeper, along with an authenticated

identity certificate, the gatekeeper need only verify the

signature of the certificate by using its copy of the

Akenti server’s public key, and verify that the subject

named in the capability is the same as that in the identity

certificate. These capability certificates are short-lived in

order to avoid the problems of revocation.

Akenti policy language

Akenti policy is expressed in XML and stored in three

types of signed certificates: Policy certificates , Use-con-

dition certificates and Attribute certificates

.

Policy cer-

tificates are self-signed, co-located with the resources to

which they apply and contain only minimal information.

Use-condition certificates contain the constraints that

control access to a resource. Attribute certificates assign

attributes to users that are needed to satisfy the use con-

straints. Akenti attribute certificates are simpler than the

proposed IETF Attribute certificates. See the section on

Related Work for a more detailed comparison. See Fig-

ure 2 for an example of a Use-condition certificate and

Appendix A for the DTD definition of the complete

Akenti Certificate schema.

Policy certificates specify who the resource stakeholders

are, and thus who may sign Use-condition certificates.

The Use-condition certificates specify who can attest to

the required attributes and thus who may sign Attribute

certificates. Whenever a certificate is used, the Akenti

policy engine will check that it has been signed by an

acceptable issuer, and that the signature verifies.

<?xml version=”1 .0” encoding=”US-ASCII”?>

<!DOCTYPE AkentiCertificate SYSTEM “/home/g1/proj/akenti/release/common/AkentiCertificate.dtd”>

<AkentiCertificate>

<SignablePart>

<Header Type=”useCondCertificate” SignatureDigestAlg=”RSA-MD5” CanonAlg=”AkentiV1”>

<Version ver=”V1”/>

<ID id=”griffy.lbl.gov#4e6ba338#Mon Mar 01 10:56:51 PST 1999”/>

<lssuer>

<UserDN> /C=US/0=Lawrence Berkeley National Laboratory/OU=ICSD/CN=Mary R. Thompson </UserDN>

<CADN> /C=US/0=Lawrence Berkeley National Laboratory/OU=ICSD/CN=IDCG-CA </CADN>
</lssuer>

<ValidityPeriod start=”981224003646Z’ end=”020123003646Z’/>

</Header>

cllseConditionCert scope=”locar enable=”false”>

<ResourceName> LBL </ResourceName>

<Condition>

<Constraint>(o=Lawrence Berkeley National Laboratory
| (

group = distrib))
</Constraint>

<Attributelnfo type=”X509”>

<AttrName> o </AttrName>

<AttrValue> Lawrence Berkeley National Laboratory </AttrValue>

<CADN> /C=US/0=Lawrence Berkeley National Laboratory/OU=ICSD/CN=IDCG-CA </CADN>
</Attributelnfo>

<Attributelnfo type="AKENTI”>

<AttrName> group </AttrName>

<AttrValue> distrib </AttrValue>

<Principal>

<UserDN> /C=US/0=Lawrence Berkeley National Laboratory/OU=ICSD/CN=Srilekha Issuer </UserDN>

<CADN> /C=US/0=Lawrence Berkeley National Laboratory/OU=ICSD/CN=IDCG-CA </CADN>
</Principal>

</Attributelnfo>

</Condition>

<Rights> read, write </Rights>

<SubjectCA> /C=US/0=Lawrence Berkeley National Laboratory/OU=ICSD/CN=IDCG-CA </SubjectCA>

</UseConditionCert>

</SignablePart>

</AkentiCertificate>

Figure 2. UseCondition Certificate

151

1st Annual PKI Research Workshop—Proceedings

Resources controlled by Akenti authorization may be

grouped into a resource realm. A resource realm can be

organized as a flat structure of resources such as instru-

ments or compute platforms, or a hierarchical structure

such as a file system or set of Web documents. Each

resource realm has at least one Policy certificate which

must be stored in a known and secure place. Normally it

is on the same machine that controls access to the

resource, but it could also be on the platform where the

Akenti server is running, if they are different. Since a

Policy certificate is centrally stored and may be admin-

istratively difficult to update there is a minimal amount

of information in it. It contains information about the

Certificate Authorities that are trusted to sign identity

certificates, including a copy of their public keys and

information about where they publish certificates and

certificate revocation lists. It also lists the stakeholders

(or stakeholder groups) for the resource and where they

store the Use-condition certificates that they issue. It

may optionally store URLs in which to search for

Attribute certificates.

In the case of hierarchical resources, there must be at

least one Policy certificate at the top of the tree (some-

times referred to as the root policy). Then there may be a

Policy certificate at any level where there are new stake-

holders, or restrictions on the allowed CAs. Levels with-

out their own Policy certificates inherit policy from

higher levels. Policy certificates are signed by one of the

stakeholders listed in the certificate, making them self-

signed certificates. As such they must be uploaded by a

trusted method and kept in a secure location.

Each stakeholder group for a resource must create at

least one and possibly more Use-condition certificates

for its resource. A Use-condition certificate consists of a

constraint which is a relational expression of the

attributes a user must have to get a certain set of rights

with respect to the resource. Components of the X.509

distinguished name can be used such as CN=Mary R.

Thompson, or 0=Diesel Combustion Col laboratory, or

values of attributes that are defined in the context of the

resource. For example, role = researcher or group =

accounting. These attribute requirements can be com-

bined with the boolean operators && or ||. It is also pos-

sible to specify real-time or system parameters such as

time<=5PM && time>=9AM, or system_load < 2. If

Akenti is unable to evaluate such system parameters it

may pass them back to the resource gateway for evalua-

tion. An attribute authority (consisting of an issuer and

its CA) is specified as the signing authority for each

attribute-value pair. Thus the stakeholder for a resource

must specify who is trusted to attest to the attributes that

are required.

The Policy certiticate contains URLs to search tor each

stakeholder group’s Use-condition certificates. A stake-

holder may put Use-condition certificates in more than

one place for reliability, but each directory must contain

the complete set. Since Use-conditions restrict access to

a resource, it is essential that either all or none of them

are found. If no Use-conditions are found for a stake-

holder group, all access to the resource is denied. This is

not the case with Attribute certificates since they only

serve to increase access. Thus a missing Attribute certif-

icate may limit or deny a user’s access, but will never

allow an access that should be denied.

Attribute certificates contain an attribute-value pair and

the subject name and issuer to whom it applies. They are

signed by attribute authorities that have been specified

in a Use-condition certificate. Attributes can apply to

more than one resource, although they are likely to be

applicable in only a single resource realm.

Creating policy

Since policy is contained in signed XML certificates

which are interdependent, a stakeholder needs some

tools to assist in their creation. A stakeholder starts by

creating the root Policy certificate for the resource

realm. The X.509 certificates of all the trusted CAs must

be available from a trusted source and are placed in the

root Policy certificate. This certificate also contains the

URLs of the locations where these CAs publish the cer-

tificates that they issue and their certificate revocation

lists. The first stakeholder must decide if other stake-

holders for the resource are to be allowed and, if so,

include their DNs and CAs in the root Policy certificate.

In a hierarchical set of resources, only the top level

stakeholders need to be known initially. They in turn,

can delegate control to other stakeholders for resources

lower in the hierarchy.

Akenti certificates can be created either by using a com-

mand line tool to sign an XML input certificate, or by a

GUI program that steps a stakeholder though a menu ol

choices for each field in the certificate. The GUI pro-

gram is supported by a Resource Definition Server run-

ning on the resource host which in turn reads a Resource

Definition File and any existing Policy files to find

stakeholder names, acceptable attributes and actions for

a resource realm. The command line method is fine for

very simple policy, and for the root Policy certificate,

but as soon as the policy becomes hierarchical, or there

are many stakeholders, the GUI interfaces which prompt

the stakeholder with acceptable choices become prefera-

ble. The Resource Definitions File is only used to pro-

vide suggestions to the policy creation GUIs. It includes

the names of the CAs, and their publishing directories.

152

1st Annual PKI Research Workshop—Proceedings

principals that are acceptable for issuing specific

attribute and values, and a list of actions that are relevant

to the resource realm. Information that is used at access

decision making time, such as the certificates of the

CAs, must be stored in the root Policy certificate, since

it is a signed document. In summary the two methods of

getting started are:

• Create an XML version of a root Policy certificate,

following one of the templates provided by the

Akenti distribution, sign it using CertGen with the

stakeholder’s private key contained in a pkcsl2 for-

mat file, and store it in the resource tree

• Create a Resource Definition File, start the

Resource Definition Server, and then use the GUI,

PolicyCert.sh to create, sign and store a Policy cer-

tificate.

The stakeholder must now create at least one Use-condi-

tion certificate for the resource. Anyone can create a

Use-condition certificate, but it will only be used during

the access control decision if it is issued and signed by

one of the stakeholders currently listed in the resource’s

Policy certificate. As in the case of the Policy certificate,

a Use-condition certificate can either be created by

inputting an XML version of the certificate and private

key to CertGen or can be generated and signed by a GUI
program, UseCondition.sh. The GUI program uses the

Policy certificate to determine the allowed stakeholders,

and the Resource Definitions File to determine what

attributes, values and actions have been defined for this

resource realm. The stakeholder is led through a process

to specify who he is, where his private key is, what

resource the certificate applies to, what attributes and

values are required, which attribute authorities should

vouch for them, and what actions are to be granted. It

also asks about such details as the length of time for

which this certificate should be valid, the scope of the

Use-condition (does it just apply to the one resource or

to a hierarchy of resources), whether it is a critical Use-

condition (it must be satisfied or the user gets no access

to the resource even if he satisfies other Use-conditions).

The Use-condition certificates must be stored in a direc-

tory that is specified in the Policy certificate.

Attribute certificates can also be created by either Cert-

Gen or a GUI program Attribute.sh. Attribute certifi-

cates are actually independent of a particular resource,

but the GUI program will look at the Resource Defini-

tions File associated with a particular resource to get a

list of attribute names. Resource Policy certificates, and

Use-condition certificates may specify where the

Attribute certificates should be stored.

Once a set of Policy, Use-condition and Attribute certifi-

cates have been stored, the stakeholder can use a Web
based interface to see what access they provide. The

Resource Definition Server will execute the required

CGI script.

Checking access

The Akenti authorization service can be called in several

ways: It can be invoked as a function call by a gate-

keeper program and thus run as part of the gatekeeper. It

can be contacted as a server through an insecure proto-

col such a TCP. If the akenti server is running on the

gatekeeper host, it can return the rights as a simple

string. If it is running on another host, it can return a

signed certificate. The gatekeeper process must have a

copy of the Akenti servers’s public key and verify the

certificate, before it can trust the information. Or the

Akenti server can be contacted as a server through a

secure protocol such as SSL and the protocol will do the

authentication of the Akenti server and encrypt the

returned access string. Akenti returns an authorization

answer in one of two ways: a list of strings representing

unconditional actions; or a signed capability certificate

which may include both conditional and unconditional

rights. Conditional rights are rights that may have some

conditions attached that only the gatekeeper can evalu-

ate, such as current machine load, disk availability or the

state of some related systems.

As has been mentioned previously, the Akenti policy

engine finds all the Use-conditions by searching in the

URLs specified in the Policy certificates and verifying

the issuer and signature on each certificate. If a Use-con-

dition certificate cannot be found for each stakeholder

group, access to the resource is denied. Attribute certifi-

cates are searched by following URLs in either the Pol-

icy certificates and/or Use-conditions. Again, the issuer

and signature of each certificate is verified. This signa-

ture verification requires that the Akenti policy engine

be able to find the X.509 certificates for each issuer. If

the CAs who issue certificates publish them in an LDAP
server, Akenti will look there. Otherwise there must be

some setup actions taken to put all the expected certifi-

cate issuers’ X.509 certificates in a file system or a web

browser where they can be found.

Mod_akenti module for Apache web server

Web-controlled sets of documents and services have

rapidly grown from collections of read-only documents

that are centrally administered to a vast array of

remotely managed documents and services. In the sci-

entific community such Web based systems have

become known as portals, and are increasingly used to

153

1st Annual PKI Research Workshop—Proceedings

provide a common interface to static documents, to

allow shared authoring of documents, to allow access to

legacy data bases, to allow execution of codes on shared

server machines, and practically anything else an inven-

tive scientist can think of. Authorization to perform such

access is usually implemented by the http Basic Authen-

tication mechanisms, (e.g. user/password or domain

based) or by ad-hoc scripts based on the username.

These passwords are passed across the internet in clear

text and are thus deemed insecure.

In order to make Akenti authorization available for the

widest range of distributed resources, we wanted to

make it available to Web-accessed resources. There

were several ways to accomplish this: referencing

resources through CGI scripts that called Akenti, refer-

encing resources through Java servlets or JSPs that

called Akenti, or building Akenti authorization into a

Web server. The first two methods, involve an indirec-

tion between the request and response which is both less

efficient and requires more complicated URLs to refer to

documents. Since the Apache Web server makes it

straightforward to include new functionality, we decided

to build a Akenti module for Apache.

The Apache [2] web server is a widely-used, high-per-

formance freeware server which is built around an API

[30] which allows third-party programmers to add new

server functionality. Indeed, most of the server’s visible

features (logging, authentication, access control, CGI,

and so forth) are implemented as one of several mod-

ules, using the same extension API available to third

parties. The modules can be statically or dynamically

linked to the server. [33]

How apache modules work

Apache divides the handling of requests into different

phases:

• URI to file name translation

• Authentication and access checking

• Determining the MIME type ofthe requested entity

• Returning data to the client

• Logging the request

Each module can contribute to any of these phases. For

each phase, a module can completely replace an existing

module or can be added to a list of existing modules.

The list of modules acts as a queue in which control is

passed from one module to another. Each module can

return one of three values: OK, DECLINE and FOR-
BID. If a module returns OK, then the server passes the

request on to other modules in the queue. A module

returns DECLINE when it wishes to ignore a specific

request. A FORBID return causes the server to forbid

access to the resource requested. The FORBID return

veto’s other modules replies. Each module can declare a

set of handlers to handle specific types of URI requests.

The interface between the server core and the extension

modules is through a module structure which consists of

vector of callback routines. A module provides a call-

back for each phase that it wishes to handle and NULL
for the rest. The module structure for Apache 1.3.x pro-

vides the option of defining one or more of the follow-

ing callback routines.

module MODULE_NAME = {

STANDARD_MODULEJSTUFF,
<module initializer routine>,

<per-directory config creator routine>,

<merge routinefor directory config>,

<server config creator routine>,

<server config merge routine>,

<command tablefor defining directives>,

<list ofhandlers to handle specific requests>,

<filename-to-URI translation routine>,

<check/validate user_id routine>,

<check user_id is valid *here* routine>,

<check access routine>,

<MIME type checker/setter routine>,

<module specificfixup ofheaderfields routine>,

<module specific logging activities routine>,

<header parser routine>,

<process initializerroutine>,

< process exit/cleanup routine>,

<post read_request handling routine>

}:

Apache allows each module to read directives from the

configuration file by specifying a command table struc-

ture. The entries in the command table include the name

of the command, a pointer to the command handler, an

argument which is passed to the command handler,

items which tell the server core code where the com-

mand may appear (RSRC_CONF), what sort of argu-

ments it takes (TAKE2 means two string arguments),

and a description of what arguments should be supplied,

in case of syntax errors.

There are three major classes of directives that can be

defined in Apache. First Global directives which can

occur inside server config files but must be outside vir-

tual host sections. The second class is per-server direc-

tives which occur within the context of server config and

the virtual host sections. The third class is the per-direc-

tory directives which can pretty much occur anywhere

154

1st Annual PKI Research Workshop—Proceedings

(server config, virtual host, directory,.htaccess). These

three classes are subsets of each other.

How mod_akenti works

Mod_akenti is an Apache module that provides Akenti

authorization capabilities for the Apache web server.

Mod_akenti is implemented as a Dynamic Shared

Object module which can be loaded into the server at

start-up or restart time. It currently works in Apache

1.3.x. Mod_akenti does not define any handlers as it

serves as an access control mechanism for all requests to

the web server unless otherwise specified.

Mod_akenti defines two global directives inside the

server configuration, and defines a check access call-

back. So its interface consists of a call for per-directory

configuration, a command table, and a callback for the

check access routine.

The two Akenti directives are: AkentiConf, which sup-

plies the name of the configuration file used to configure

Akenti policy engine; and AkentiResources, which is

used to specify what part of the document tree should be

controlled by Akenti. The second directive is of interest

as it allows other authorization mechanisms to coexist

with that of mod_akenti. It accepts a set of resource

names to be controlled, or ‘ALL’ to control the whole

hierarchy or an empty argument to control none of the

resources.

Configuration and installation

Mod_akenti is a C++ module, while the core Apache

server is written in C. Hence the shared object standard

C++ library (ex. libstdc++.so) must be linked at server

start-up. This is done through the LoadFile command in

httpd.conf. The other shared object libraries can be

either in LD_LIBRARY_PATH or defined in the

httpd.conf similar to standard C++ library. The Akenti

module requires a secure Apache web server (Apache +

mod_ssl., which in turn requires that the server be built

with the Extended API), the OpenSSL libraries (an open

source toolkit that implements SSL and TLS as well as

general cryptography), the OpenLDAP libraries (open

source library for LDAP suite of applications) and the

Akenti suite of libraries. A special program apxs

(APache eXtenSion) is used to insert mod_akenti into

the web server before start-up. The mod_akenti distribu-

tion package [23] provides detailed information about

how to build and configure the Akenti module.

Web authentication and authorization

methods

Standard Web authentication and access control is based

either on the domain in which the request originated, or

something called Basic Authentication [15] where the

user provides a user name and password which the Web
browser matches against user information stored on the

server machine. There are many authentication modules

for Apache based on this mechanism [3]. Mod_auth is

the basic module that matches a user and password with

an entry in Web specific password and group files. Mod-
ules such as mod_auth_dbm and mod_auth_db provide

greater scalability by looking up users in a data base.

There are also modules available for authenticating

users in ldap directories, Oracle, and msql data-bases,

and Kerberos users. In all of these schemes the user

name and password is passed over the network in plain

text. There is one other form of user authentication

which is not supported by many browsers called Digest

Authentication which is implemented by

mod_auth_digest. This protocol has the server send a

nonce to the browser who then returns an MD5 hash of

the nonce, the user name, password, http request and the

URL Thus the password is not sent in the clear.

Mod_ssl [21] which uses X.509 certificates to create

encrypted channels between the browser and the server

adds a whole new dimension to authentication and

authorization. In the typical commercial use of SSL only

the server is required to have an identity certificate and

private key. This key is used to establish encrypted com-

munication between the browser and server over which

passwords can be passed securely. However, SSL can

run in a mode that requires the browser to have a certifi-

cate and private key for the client. When this mode is

used mod_ssl can provide access control based on the

client certificate.

The mod_ssl directive SSLVerifiyClient can hold one of

the three possible values: none, optional and require. If

it is set to require, the browser must provide a certificate

that identifies the user. If it is set to optional, the browser

will look for a user certificate, but if none exists will

attempt the access anyway. If it is set to none, no user

certificate is sent.

Once mod_ssl has a client certificate, it provides several

more types of access control. It can implement a Fake-

BasicAuth option where it uses the subject of the client’s

X.509 certificate as a user name, but no password needs

to be obtained from the user. It also provides a directive

called SSLRequire (see Figure 3.) which specifies con-

straints which need to be fulfilled in order to allow

access. The requirement specification is an arbitrarily

155

1st Annual PKI Research Workshop—Proceedings

complex boolean expression containing any number of

access checks. The variables used in the expression

include all the standard CGI/1.0 and Apache variables,

plus a large number of variables defined by mod_ssl that

refer to parts of both the server and client certificates:

e.g. client subject’s DN, the client issuer’s DN and most

components of the client’s certificate. The syntax also

allows an expression to be used from an arbitrary file.

This method is used to match portions of distinguished

name compared to the FakeBasicAuth where the whole

DN is used.

While the SSLRequire directive is very powerful its

main limitation is that the constraints are specified as

part of server’s configuration file. If many resources

need to be controlled, the server configuration will

expand to the point where it becomes difficult to man-

age. In distributed environments where policies for

resource access are managed by multiple owners, a cen-

tralized access control list does not scale well. For

example, WebDAV [16] has been implemented as

Apache module, mod_dav, which allows extensions to

HTTP protocol in order to provide a shared file system.

If several projects need to be managed by one server,

there should be a a way to limit the writing of access

policy for a set of resources to the project manager. But

since all the policy is in one file, this is not possible.

Mod_akenti, on the other hand, stores all of its policy

information outside of the Web server configuration file.

The only information in the configuration file is the

name of the resources which mod_akenti wishes to con-

trol and a pointer to Akenti’s own configuration file. The

Akenti configuration file points to where the root Policy

certificate for each resource tree is. Akenti policy

defines who the resource owners are and allows resource

owners to express use-conditions on each resource. The

use-conditions are signed and stored in a distributed

fashion at the owner’s convenience. The variables used

in the use-conditions are defined by the stakeholder,

rather than the Web server. Thus the same access policy

can be used for resource referenced via the Web or by

another remote method. At run-time Akenti collects all

the use-conditions applicable for a certain resource in

<Directory /foo>

SSLRequireSSL

SSLRequire 0%{SSL_CLIENT_S_DN_O} eq

“LBNL " and

%{SSL_CLIENT_S_DN_0U}
in {“DSD”, “ICSD ”, “NERSC ”}

Figure 3 Example of SSLRequire

order to make access decisions. Akenti caches certifi-

cates in order to reduce search time. It also caches a

Capability which has the access rights of a user for a

resource, so that subsequent requests for the same

resource require no decision making.

mod_akenti could also be used to provide access control

for mod_dav which currently uses basic authorization

provided by Apache. In this case, the use-conditions

have to be specified for WebDAV methods (MOVE,
COPY, PROPFIND, DELETE etc.). In addition, a few

additional directives are required for mod_akenti inside

the per-directory configuration.

Related Work

Policy representations

While there has been a great deal of work in formulating

use requirements and standards for authorization proto-

cols or data structures, no single standard has emerged.

There is an IETF proposed Attribute Certificate profile

[12] to carry attributes associated with an X.509 identity

certificate. While the contents and purpose of this certif-

icate are basically the same as an Akenti Attribute certif-

icate, we chose not to use it in our implementation

because it is difficult for users and applications to deal

with ASN.l structures. A major goal of Akenti was to

make the policy as easy to understand as possible, so

using ASCII files to represent policy and principals

names consisting of a CA’s DN and the user’s DN was

preferable to using a an ASN.l structure that identified

the holder as a CA and serial number. To understand the

meaning of such a certificate, requires a program to print

the contents in a readable form, and the ability to find

the holder’s X.509 certificate and extract the subject

name.

KeyNote [5] is a trust management system, which pro-

vides a simple language for describing and implement-

ing security policies, trust relationships, and digitally-

signed credentials. The KeyNote defines principal as

any convenient string which may include a crypto-

graphic public key. Authorization policy is contained in

assertions which consist of a sequence of fields. Each

field is represented by a keyword and value. A creden-

tial asserts some attribute about a principal and is signed

by a trusted authority. Both assertions and credentials

are represented by the same keyword policy language.

Akenti and KeyNote both provide a function call API

for compliance-checking for a resource gatekeeper to

call when making an access decision. Both systems

return list of trusted actions. KeyNote is less tied to one

form of authentication than Akenti. A KeyNote princi-

pal may be represented by a cryptographic key, or it may

156

1st Annual PKI Research Workshop—Proceedings

just be an opaque string. They deliberately did not

require X.509 certificates in order to separate the issues

of secure naming and authorization. While this removes

the need for maintaining a PKI, it means that the princi-

pals named in the authorization policy may be opaque

making it harder for a stakeholder to read and evaluate

the policy of a resource.

The mechanisms for creating and storing policy asser-

tions and storing and marshaling certificates are left up

to the installer of a KeyNote system. In contrast, one of

the emphases of the Akenti system is to support remote

creation and storage of policy certificates. It thus pro-

vides several tools to help in their creation and signing,

while the policy engine supports gathering certificates

from file systems, LDAP servers or Web servers. Other

systems rely on the user being able to edit policy files on

the resource gateway machine which does not meet our

goal of accommodating distributed stakeholders.

In our original implementation of Akenti, we chose a

simple keyword language for our certificates similar to

that used by KeyNote. Eventually, expressing the con-

straints and trust relationships for all the attributes

became increasingly awkward, with too much informa-

tion being implicit in the ordering of fields or in rela-

tionships between fields. For our second implementation

we switched to XML for greater flexibility and more

precise definition of the semantics. We were also

encouraged by the availability ofXML parsing tools in a

variety of languages and have made use of the Xerces

parsers from the Apache XML Project [4]

A recent XML standard specification for security asser-

tions named Security Assertion Markup Language

(SAML) [17] has been published by the OASIS [29]

consortium. This standard defines both XML protocols

and assertion structures. Assertions come in three types:

Authentication: the specified subject was authenticated

by a particular means at a particular time; Authorization

Decision: a request to allow the specified subject to

access the specified resource has been granted or

denied; Attribute: the specified subject is associated

with the supplied attributes. Since Akenti is only sup-

porting X.509 authentication, it does not need a general

purpose Authentication structure. It just uses the X.509

certificate (or chain of certificates if delegation is

involved) and assumes that the resource gateway has

authenticated the certificate. Akenti will check for revo-

cation, since the current implementations of SSL do not

do this. The capability certificate returned by the Akenti

server differs from the Authorization Decision assertion

in that it does not contain the reasons (evidence) of why

it made the decision, but may contain unresolved condi-

tions on the actions, so that the gatekeeper can do fur-

ther checks. Again the attribute assertion/certificate

covers has the same purpose as the PKIX Attribute Cer-

tificate and the Akenti Attribute certificate: namely, a

subject name, an associated attribute-value pair and the

authority that attests to this. The SAML standards seem

to be focused on letting various peers report security

decisions. The focus in Akenti, is more on gathering and

interpreting of policy (Use-condition) statements about

the resource. The only real communication is the autho-

rization request and reply between the resource gateway

and the Akenti server.

Authorization models

The authorization model used by KeyNote is essentially

the same as Akenti uses. A principal makes a request to

a resource gateway, handing it an identity credential that

can be authenticated. In Akenti this is normally just an

X.509 certificate, while KeyNote supports other types of

credentials. Then the gateway server makes an authori-

zation request to the authorize^ e.g. Akenti or KeyNote.

The current implementation of KeyNote only supports

function calls, where Akenti will support function or

server calls. The authorizer returns a list of allowed

actions to the gate keeper for its interpretation or in the

case of Akenti being called as a server, it returns a capa-

bility certificate signed by Akenti.

Shibboleth [11] is a cross-institutional authentication

and authorization service for access control to Web-

accessed resources. It is being specified by the InterNet2

middleware architecture committee. It has many of the

standard goals of distributed authorization with one

additional twist. It wants to be able to grant access to a

user who can still maintain anonymity at the resource

site. The major motivation for this goal is access to

library materials by academics. Their authorization

model entails a user making a request to a web server

and providing a identity handle back to his home institu-

tion. The Web server then asks that institution for

attributes about the user. It then checks those attributes

against its local policy to allow or deny access. The user

need only authenticate to his host site and may use

whatever type of credentials that site recognizes. One

difference between this trust model and that used by

Akenti, is that in Akenti, the resource provider specifies

a limited number of trusted authorities that it will accept

for authenticating users and attributes. In the Shibboleth

case, each member institute must trust all the sites at

which any of its user’s reside. So for a user to get access

to a remote resource, its whole site must be trusted.

157

1st Annual PKI Research Workshop—Proceedings

While in a more traditional PKI environment, a user

only needs to get a credential for himself from an

authority that the resource site trusts.

The Community Authorization Server (CAS) [28] is a

new authorization service being developed by the Glo-

bus Project [13] for Grid environments. Their authoriza-

tion model allows a resource site to grant a community

access to resources and the authorization server for that

community to grant access to the community members.

This is implemented by having the user go to the CAS
server and get a delegated proxy certificate [31] with the

CAS server’s identity, which includes a rights restriction

extension that limits what resources can be accessed.

The resource gatekeeper must interpret the restricted

rights extension and verify that the community has such

rights to the resource. Since the delegated proxy is a

short-lived X.509 identity certificate it gets passed

between the user and the resource gateway as part of the

SSL connection. There is no additional information that

needs to conveyed, as is the case when a user needs to

hand attribute certificates to the gatekeeper. CAS differs

from Akenti in that the examination of policy and grant-

ing of rights is done before the gatekeeper is contacted.

This means the user must ask for all the rights he will

need in advance of referencing the resource. In Akenti,

all the gathering and checking of policy is done after the

call to the gatekeeper to perform a certain action. Akenti

does cache the rights that the user was granted, to deal

with the common case of several calls in rapid succes-

sion for resources in the same realm.

Policy about resources is stored and managed by the

CAS servers and so far mainly consists of lists of

objects and allowed rights. This information is included

in the rights restriction extension of the delegated proxy.

The intent of the CAS project is to extend the policy lan-

guage as the need arises. The CAS administrator is

responsible for adding each community member to the

appropriate groups. The CAS administrator may also

delegate administration of subsets of the objects to addi-

tional people. In contrast, in Akenti, a new user would

need to contact the stakeholder for the resource to be

added to the policy files.

Conclusions

Akenti is an authorization service that uses authenti-

cated X.509 identity certificates and distributed digitally

signed authorization policy certificates to make access

decisions about distributed resources. It supports autho-

rization decisions based either on policy that is gathered

by the resource gatekeeper, or on a rights-granting capa-

bility presented by the user. It supports Globus proxy

identity certificates, and could be easily extended to

handle restricted delegation credentials. We have imple-

mented an Apache Web server module which allows the

same authorization policy to be used to control access to

Web accessed resources as well as resources accessed

by other remote methods. Thus all the resources in a

portal can use the same authorization mechanism.

Akenti differs from most of the other work that we have

surveyed in the emphasis on using easily read policy

statements that are independently created and signed by

multiple stakeholders. This policy can be stored on the

resource host or locally to the stakeholder and be gath-

ered and evaluated by the trusted authorization server at

the time of resource access. The Akenti distribution also

includes several tools for displaying the combined

authorization policy for a given resource and for track-

ing the steps in a user’s authorization or rejection.

It has been used as part of the Diesel Combustion Col-

laboratory [26] to control access to Web-based docu-

ments and remote execution and is now being integrated

with the Globus job manager to control access to legacy

applications in the National Fusion Grid [19].

The code is freely available as C++ source code, or

Linux and Solaris executables, (http://www-itg.lbl.gov/

Akenti)

Acknowledgments

The original idea for Akenti came from William

Johnston. Case Larsen did a large part of the original

implementation. Maria Kulick, Guillaume Farret and

Xiang Sun have also contributed to the current imple-

mentation.

158

1st Annual PKI Research Workshop—Proceedings

Appendix A: XML definition for the Akenti policy language

<?xml version=”1 .0” encoding=”US-ASCir?>

<!- This DTD is intended to define all the Akenti Policy elements:

Policy Certificates, UseCondition Certificates, Attribute Certificates,

Capability/Authorization Certificates, and Cache Certificates

—

>

<!— Note: one or more (+), zero or more (*), or zero or one times (?)-->

<!ELEMENT AkentiCertificate (SignablePart, Signature)>

<!ELEMENT SignablePart
(
Header, (PolicyCert

|

UseConditionCert
|
AttributeCert

|
CapabilityCert))>

<!ELEMENT Header (
Version, ID, Issuer, ValidityPeriod) >

<!ATTLIST Header

Type (attributeCertificate
|
cacheCertificate |capabilityCertificate

|
policyCertificate

|

useCondCertificate
)
#REQUIRED

SignatureDigestAIg (RSA-MD5
|

RSA-SHA1
|
DSA-MD5) #REQUIRED

CanonAIg (AkentiVI) #REQUIRED >

<!ELEMENT PolicyCert
(
ResourceName, CAInfo*, UseCondlssuerGroup+, AttrDirs*, CacheTime)>

<—

ResourceName Name of the resouce to which this policy applies

CAInfo The DN and X509 identity certificates of all the CAs we will trust.

May include pointers places where it publishes CRLs and identity certificates

UseCondlssuerGroups Stakeholders and their Certificate directories

At least one UseCondCert must be found from

each group.

AttrDirs optional list of URLs in which to search for Attribute certificates

CacheTime Maximum time in seconds that certificates relevant to this resource may be cached
-->

dELEMENT UseConditionCert (ResourceName, Condition, Rights, SubjectCA*)>

<!—

ResourceName name of the resource to which the useCondition applies

Condition A boolean expression stating what attributes a user needs to satisfy the UseCondition and what users

and CAs are trusted to attest to specified attribute

Rights An opaque list of actions known to the stakeholder and the resource gateway
—

>

<!ATTLIST UseConditionCert

enable (true
|
false) #REQUIRED >

<!—

scope if sub-tree the UseCondCertificate applies to all the resources that are in the sub-tree named by the resource

if local, it applies just to the one resource named
enable if true, this UseCondition must be satisfied by anyone wanting to use the resource, if false it need not be satisfied

if a user satisfies other UseConditions.

dELEMENT AttributeCert
(SubjectAndCA, AttrName, AttrValue, Condition*)>

<!—

SubjectAndCA

AttrName

AttrValue

Condition

Subject to which this attribute applies

name of attribute

value of attribute

An optional Constraint that is placed on how or when the attribute should apply

dELEMENT CapabilityCert
(ResourceName, SubjectAndCA, Actions*, ConditionalActions*)>

<!—

ResourceName name of the resource to which the rights apply

SubjectAndCA user who has the rights

UnConditionalActionsthe actions that have been authorized

ConditionalActions actions that still have some unevaluated constraints.

-->

dELEMENT ConditionalActions
(Condition, Actions)>

dATTLIST ConditionalActions

critical (true
|

false) #REQUIRED >

<!—

Condition Constraint that is placed on how or when the attribute should apply

159

1st Annual PKI Research Workshop—Proceedings

Actions The access rights that are allowed if the condition is true

Critical If this is false, the Condition must evaluate to true, or even the UnConditionalActions do not apply

—

>

<!ELEMENT CAInfo (CADN, X509Certificate+, IdDirs*, CRLDirs*)>

<!—

CADN the distinguished name of the CA
X509Certificate A chain of the X509 identity certificates of the CA, includes its public key.

IdDirs an optional list of directories in which the CA stores the certs it issues

CRLDirs a list of 0 or more URLs to directory services in which to search for certificate revocation lists

—

>

dELEMENT Condition
(
Constraint, Attribute Info+)>

<!-- A Condition contains a boolean expression stating what attributes a user needs to satisfy the UseCondition and

what users and CA are trusted to attest to what attribute/value pairs.

—

>

<!ELEMENT CRLDirs (URL+)><!-- list of 0 or more URLs to directory services in which to search for certificate revocation lists—

>

dELEMENT AttrDirs (URL+)> <!-- AttrDirs list of 0 or more URLs to directory services in which to search for attribute certificates.-->

dELEMENT IdDirs (URL+)> <!-- list of 0 or more URLs to a directory services in which to search for identity certificates. -->

dELEMENT UseCondlssuerGroup (Principal,URL+)> <!-- group of stakeholder and their certificate directories. -->

dELEMENT Attributelnfo (AttrName, AttrValue, (CADN
|

Principal), AttrDirs*, ExtArgs*) >

dATTLIST Attributelnfo type (STANDARD
|
X509

|

AKENTI
|
EXT_AUTH

)
#REQUIRED>

<!--

STANDARD
X509
AKENTI
EXT_AUTH

AttrName

AttrValue

CADN
Principal

AttrDirs

ExtArgs

—

>

dELEMENT ValidityPeriod EMPTYx!-- Beginning and End date in UCTime of when the certificate is valid -->

dATTLIST ValidityPeriod

start CDATA #REQUIRED
end CDATA #REQUIRED

>

dELEMENT ExtArgs (String+)>

dELEMENT ID EMPTY> <!--A unique ID assigned to every certificate when it is created -->

dATTLIST ID id CDATA #REQUIRED >

dELEMENT Version EMPTY> <!-- Certificate format version -->

dATTLIST Version ver CDATA #REQUIRED >

dELEMENT Issuer (UserDN,CADN,URL*)>

dELEMENT Principal (UserDN,CADN)>

dELEMENT SubjectAndCA (UserDN,CADN)>
dELEMENT URL (#PCDATA)> <!-- protocol, host, port and file name -->

dELEMENT CADN (#PCDATA)>

<!ELEMENT SubjectCA (#PCDATA)>

<!ELEMENT X509Certificate (#PCDATA)>

<!ELEMENT UserDN (#PCDATA)>

<!ELEMENT ResourceName (#PCDATA)>

attributes if they are evaluated by some system call

attributes if they are part of an X509 Identity certificate, e.g. O, OU, CN;

attributes if there is an Attribute certificate to attest to a user’s possession of the attribute

if some external authority is called to evaluate them

name of attribute used in constraint

name of value required by constraint

name of CA that issues the identity certificate that contains the x509 attribute we need.

the name of the attribute issuer and CA for Akenti attr

or the name of an external authority that can evaluate an attribute

an optional list of directories in which to search for Attribute Certificates

optional list of arguments that may be handed to an external authority.

160

1st Annual PKI Research Workshop—Proceedings

References

1 . D. A.Agarwal, S. R. Sachs, W.E.Johnston The Real-

ity ofCollaboratories Computer Physics Communi-

cations, 1998, vol. 1 10, p. 134-141

2. Apache Software Foundation

http://www.apache.org

3. Apache Module Registry,

http://modules.apache.org/

4. Apache XML Project; http://xml.apache.org/

5. M. Blaze, J. Feigenbaum, J. Ioannidis, A. Keromy-

tis. The KeyNote Trust Management System, Version

2. RFC-2704. IETF,September 1999.

http://www.crypto.com/papers/rfc2704.txt

6. N. Damianou, N. Dulay, E. Lupu, M Sloman,: The

Ponder Specification Language Workshop on Poli-

ciesfor Distributed Systems and Networks

(Policy2001), HP Labs Bristol, 29-31 Jan 2001

7. T. Dierks, C. Allen, The TLS Protocol, Version 1

IETF RFC 2246; http://www.ietf.org/rfc/rfc2246.txt

8. Diesel Combustion Collaboratory (DCC), http://

www-collab.ca.sandia.gov/dcc/

9. DisCom", http://www.llnl.gov/asci/discom/

10. C. Ellison SPKI Requirements, IETF RFC 2692

1 999, http://www.ietf.org/rfc/rfc2692.txt

11. M. Erdos, S. Cantor, Shibboleth-Architecture

DRAFT v04 ,
http://middleware.intemet2.edu/shib-

boleth/docs/raft-intemet2-shibboleth-architecture-

04.pdf

12. S. Farrell, R. Housley, An Internet Attribute Certifi-

cate Profilefor Authorization, <draft-ietf-pkix-

ac509prof-09.txt>, June, 2001 http://www.ietf.org/

intemet-drafts/draft-ietf-pkix-ac509prof-09.txt

13. I. Foster, C. Kesselman, eds. The Grid: Blueprint

for a Nexv Computing Infrastructure, 1 999, Morgan

Kaufmann

14. I. Foster, C. Kesselman, S. Tuecke, The Anatomy of

the Grid: Enabling Scalable Virtual Organizations

.

International J. Supercomputer Applications, 15(3),

2001. http://www.globus.org/

15. J. Franks, et.al. HTTP Authentication: Basic and

Digest Access Authentication, IETF RFC 2617,

http://wwwl.ics.uci.edu/pub/ietf/http/rfc2617.txt

16. Y. Goland, et al., HTTP Extensionsfor Distributed

Authoring - WEBDAV, IETF RFC25 1

8

http://www.ietf.org/rfc/rfc25 1 8.txt

17. P. Hallam-Baker, E. Maler, eds. Assertions and Pro-

tocol for the OASIS Security Assertion Markup
Language (SAML),draft-sat-core-25, http://

www.oasis-open.org/committees/security/docs

18. R. Housley, W. Polk, W. Ford, D. Solo, Internet

X.509 Public Key Infrastructure Certificate and

CRL Profile <draft-ietf-pkix-new-partl-12.txt>

http://www.ietf.org/internet-drafts/draft-ietf-pkix-

new-partl-12.txt

19. K. Keahey, et al.. Computational Grids in Action:

The National Fusion Collaboratory, submitted to

Future Generation Computer System, 2001., http://

www.fusiongrid.org

20. Launch Pad, Portal to the IPG, http://

www.ipg.nasa.gov/launchpad/servlet/launchpad

21. modssl, http://www.modssl.org/

22. J. Myers, Simple Authentication and Security Layer

(SASL), IETF RFC 2222, 1997, http://www.ietf.org/

rfc/rfc2222.txt

23. S. Mudumbai, mod_akenti: Akenti Access Control

modulefor Apache http://www-itg.lbl.gov/Akenti/

docs/mod_akenti .html

24. NASA’s Information Power Grid, http://

www.ipg.nasa.gov/

25. National Fusion Grid, http://www.fusiongrid.org/

26. C. Pancerella, L. Rahn, C. Yang, The Diesel Com-

bustion Collaboratory: Combustion Researchers

Collaborating over the Internet, Proceedings of

ACM/EEEE SC99 Conference, November 13-19,

1999. Portland, Oregon, USA, http://www-col-

lab.ca.sandia.gov/dcc/

27. Particle Physics Data Grid (PPDG), http://

www.ppdg.net/

28. L Pearlman, V. Welch, I. Foster, C. Kesselman, S.

Tuecke. A Community Authorization Servicefor

Group Collaboration. Submitted to IEEE 3rd Inter-

national Workshop on Policies for Distributed Sys-

tems and Networks, 2001, http://www.globus.org/

research/papers.html#CAS-2002.

29. Oasis, www.oasis-open.org

30. R. Thau , Apache API notes , http://mod-

ules.apache.org/doc/API.html

31. S. Tuecke, et al., Internet X.509 Public Key Infra-

structure Proxy Certificate Profile ,
IETF draft,

http://www.ietf.org/intemet-drafts/draft-ietf-pkix-

proxy-01 .txt

32. M. Thompson, et.al.. Certificate-based Access Con-

trolfor Widely Distributed Resources , Proceedings

of the Eighth Usenix Security Symposium, Aug.

‘99

33. Wainwright P. Professional Apache,Wrox 2001,

http://www.apache.org/

161

1st Annual PKI Research Workshop—Proceedings

1st Annual PKI Research Workshop—Proceedings

Invited Talks and Experience Reports

163

1st Annual PKI Research Workshop—Proceedings

Improvements on Conventional PKI Wisdom
Carl Ellison

carl.m.ellison@intel.com

Intel Labs

Abstract: This paper contrasts the use ofan ID PKI
(Public Key Infrastructure) with the use ofdelegatable,

direct authorization. Itfirst addresses some commonly

held beliefs about an ID PKI - that you need a good ID

certificate to use digital signatures, that the ID

certificate should comefrom a CA that has especially

good private key security, that use ofthe ID certificate

allows you to know with whom you ’re transacting and

that the combination gives you non-repudiation. It then

identifiesflaws in those assumptions and addresses,

instead, the process ofachieving access control - either

through an ACL plus ID, or directly. It then applies

each method ofachieving access control to two

examples - one within a large company and one

between companies.

[This paper is an expanded transcript ofthe invited talk

ofthe same title preparedfor the Internet-2 1
st Annual

PKI Workshop, which was held at NIST at the end of
April 2002.]

1 Introduction

The thesis of this paper is that the PKI community has

accepted a number of concepts, listed here as

“Conventional PKI Wisdom” that actually get in the

way of achieving security. Some of them are false

premises. Some of them are not achievable. None of

them is necessary to achieve actual security. Instead, it

advocates paying attention to the problem of access

control and especially the determination of

authorization. Authorization usually requires the same

level of effort as ID certification. It can be used
'

alongside ID certification, incurring extra load and

expense, or it can be used instead of I D certification.

2 History

The concepts at issue here date back to the introduction

of public key cryptography by Diffie and Heilman.

In their 1976 paper, “New Directions in Cryptography”

[2], Diffle and Heilman postulated that the key

management problem is solved, given public key

technology, by the publication of a modified telephone

directory, which they called the Public File. Instead of

a name, address and phone number, the Public File

would contain a name, address and public key. When
you want to send me a message for my eyes only, you
turn to the Public File, find my entry and use the public

key associated with that entry to encrypt a message for

me. Only I can decrypt that message, since presumably

only I have the associated private key. Because of the

nature of public key cryptography, there is no need to

keep the public key secret, although one must still

protect that Public File from tampering.

As a demonstration of the power of public key

cryptography, this was a brilliant example. The

problem is that there are people who took this example

literally and set about creating such a directory, when as

I point out here, there is an inherent flaw in this

construction. Namely, you cannot find me in that

directory. Diffie and Heilman solved the previously

difficult key management problem by use of names, but

did not offer any solution to the even more difficult

name management problem.

In his 1978 MIT Bachelor’s thesis [5], Loren

Kohnfelder addressed the Public File proposed by

Diffie and Heilman, noting that a networked version of

this directory would have a performance problem. He
proposed instead that each line item of that directory,

which he identified as name (presumably login name)

and public key, be digitally signed and distributed to

anyone who wanted a copy, for them to hold. He

coined the name certificate for this digitally signed

directory line item. This may have avoided the problem

of loss of access to the central Public File (e.g., because

of network partition), but in fact it made the name

management problem worse. On the other hand, no one

was especially aware of that problem, so solving it was

not part of Kohnfelder’s requirement set.

In the 1980’s, the X.500 effort set about building a

directory like that envisioned by Diffie and Heilman, as

a single directory to cover the world’s devices and

people. For authentication (e.g., to provide notation of

the permission to modify an entry in the directory), that

standards effort specified the X.509 certificate format,

binding a public key to a Distinguished Name (DN),

which can be thought of as a pathname into the X.500

directory. For our purposes, it is an identifier that is

intended to refer uniquely to the person who holds the

key to which the X.509 certificate binds it.

Around 1990, the Privacy Enhanced Mail (PEM) effort

in IETF chose to use X.509 certificates to identify mail

recipients. There was a fair amount of excitement at

the time over the potential of X.500 to make sense of

what was already a bewildering set of people connected

by the various networks (now just called “the Internet”,

but still quite small at that time, before AOL

165

1st Annual PKI Research Workshop—Proceedings

experienced its user e>plosion). However, PEM failed

because X.509 failed. Not only were there no

Certificate Authorities (CAs) in place to issue X.509

certificates, the very process of choosing a DN and

generating an X.509 certificate appeared to have legal

connotations that at least the company where I worked

at the time was not willing to accept.

To get around this failure of X.509, there was a version

of PEM produced, called RIPEM that did not use

X.509. It allowed the use of keys that were delivered

out of band and used without certification. To provide

for certification without CAs, in 1991, PGP allowed for

any keyholder to sign the key of any other keyholder,

under the Web Of Trust assumption: that multiple

independent signatures on a certificate would be as

trustworthy as one highly trusted signature on that same
certificate, when you had exceeded some number of

independent signatures, no matter how vulnerable each

of those signers might be.

PGP succeeded where PEM failed, but there was still

something wrong with the PKI model. In 1996, three

independent efforts (SDSI, SPK1 and PolicyMaker)

departed from the PKI model in the same way: using a

public key itself as the identifier of the keyholder,

rather than some name. This has the advantage that

there is no ID certificate needed to bind that key to the

ID of the keyholder since the key is the ID.

3 Conventional PKI Wisdom
There has been a great deal written and discussed about

PKI, but there are some frequently encountered items of

conventional wisdom about PKI that this paper

addresses directly:

1. that you need an ID certificate;

2. that you should get that ID certificate from a

CA that protects its signing keys well (e.g.,

uses a vault with strong physical protection

against theft or misuse of keys);

3. that with such an ID certificate, you will know
with whom you are dealing when you process

a signed message or encrypt a message to

some key; and

4. that with all of this, you get non -repudiation,

which means that the signer cannot later deny

having sent a particular signed message when

you present that signed message to a judge and

ask for it to be considered binding against the

human you have cited as the signer.

As it turns out, all four of these items of wisdom are

seriously flawed, if not completely false.

3.1 ID Certificates

The original model of an ID certificate was one that

would bind me to my entry in the X.500 directory, by

way of the DN that both identified me and uniquely

specified my entry in the directory. The assumption

was that one needed only one such entry (or perhaps

two: one at work and one at home).

By contrast, each of us has multiple identities both at

home and at work. I, for example, have five different

but equally valid IDs at work. They are used for

different functions and their format and nature was

determined by the applications in which they are used.

At home, I have even more. There are 4 credit card

numbers, 1 ATM card number, 4 bank account numbers

(all from the same bank), ISP account names, etc.

There are two problems with getting one ID certificate:

1. we would have to change all legacy software

and business processes to use that one ID or

have that one ID certificate list all ofmy IDs;

and

2. we would have to find one CA with the

authority to establish all of those ID to key

bindings.

We take it as impossible to change all business

processes to use one common ID. It is also a potential

privacy violation either to use a single ID or to bind all

different IDs into one credential, so that some party can

know how to link all ofmy transactions to one another.

More serious is the problem of finding one certificate

issuer that has the authority to do all of these ID

bindings. My company will accept only itself to bind

my key to my employee ID number. My bank will

accept only itself to bind my key to my bank account

number. The key used could be the same in both

certificates, but the binding must be performed by an

entity with the authority to perform that binding. That

authority comes from business rules and security

policy, not from some CA characteristic like strength of

protection of the CA’s own private keys.

The conclusion is that we cannot have one ID

certificate that is used for everything. We will most

likely need as many certificates as we have

relationships.

3.2 CA Key Security

It is accepted wisdom that certificates should be issued

by a Certificate Authority that operates out of a vault -

that is, that protects its signing keys very strongly, with

military grade physical and personnel security, multi-

factor authentication of people, multi-person access

controls, etc. Such a facility is extremely expensive, so

there cannot be many of them. Let us consider the use

166

1st Annual PKI Research Workshop—Proceedings

of a CA in four different ways, discussed below, and

improve on this design.

3.2.1 Client goes to the Vault

Early theoretical papers on certification assumed that

the client would go to the vault, present credentials

proving identity along with a public key and receive an

ID certificate in return. This is presumably secure, but

has the problem that it is too expensive for the user.

Meanwhile, it actually has a security problem, in that

there will be very few such vaults, so the people

running the vault have no idea who the user is. They

will never have met the user and therefore will have to

rely on other credentials to establish the identity of the

user. This weakens the overall process to something

less than the security of the credentials used and opens

the process up to traditional identity theft techniques.

Since we see identity theft increasing in frequency, it is

doubtful that we could call this mechanism secure.

3.2.2 Client Opens a Channel to the Vault

One early attempt to overcome the expense of the

previous method was to permit a client to open a

communications channel to the vault. This could be by

telephone, but more likely it is by web form over an

encrypted channel.

Let us assume for the sake of argument that the

connection is established and there is no man in the

middle. We know that if you have a confidential

channel, you can mutually authenticate the parties on

the two ends by use of a shared secret. So, it is possible

to establish identity over this channel. Once that has

been done, the CA in the vault can issue a certificate for

the public key provided by the user, and from then on,

that key pair and certificate could be used for

authentication.

The problem comes with establishing that shared secret.

At least one company considered making a business

relationship with a credit bureau and then using the

credit bureau’s body of knowledge about the user to

quiz the user and establish identity. The problem with

this mechanism is that there are no secrets shared

between the user and the credit bureau. That is because

the credit bureau’s primary business is the selling of the

information it gathers about people. Making matters

worse, even if one were to find a repository of

information about people that is not in the business of

selling that information, if it uses the same information

that some other organization makes publicly available,

then that information can still not be used as a secret

shared with the user.

So, the problem of establishing a good, high entropy,

shared secret with the user boils down to something as

expensive as the first mechanism. That is, the user can

come to the vault, prove identity to trusted employees

of the vault, get that identity recorded along with a high

entropy secret generated and shared with the user

during that visit. That high entropy secret can then be

used later, over a web connection, to get a certificate.

3.2.3 Registration Authorities

With the previous mechanism ruled out because it is

either grossly insecure or as expensive as the first

mechanism, the next step is to reduce the cost for the

user by enlisting registration authorities (RAs). For

each CA, there would be a large number of RAs, so that

any user could find an RA within easy travel distance.

The user could then prove identity to that RA. The RA
would then instruct the CA, over a mutually

authenticated, cryptographically secured channel, to

issue the desired certificate from the vault.

This allocates the cost of the first mechanism to the CA
infrastructure rather than the user. The CA has come to

the user rather than the other way around. This also

could have a security advantage. That is, if there are

enough RAs, it could be that the user would be known
personally by the RA and identity could be established

not by paper or plastic credentials but rather in person.

This would reduce the threat of standard identity theft.

Although this is far more secure than the previous

mechanism and much cheaper for the user than the first

mechanism, its security can be better.

3.2.4 CA on the RA Desk

To improve the security of the previous mechanism, the

secured network connection between the RA and the

CA should be severed and the computer on the

Registration Agent’s desk should run a CA and directly

issue the user’s certificate.

This is categorically more secure than the previous

design, primarily because the network connection

between the RA and the CA has been eliminated,

depriving an attacker of one avenue for attack. There is

also a security advantage, since the CA in the vault

would now not sign individual certificates but rather

sign the certificates of the next layer of CAs- those

now on the RA desks. Because this is a much lower

volume operation, the CA could operate in a different

fashion. For example, it might use split-key

(distributed signing) technology rather than a single,

secured vault. With enough key shares, split-key

technology can be arbitrarily secure, far surpassing the

security of any vault, even with key shares held in only

moderately secure but tamper-evident storage.

Some may argue that this design exposes a valuable key

- the final CA private key - to possible theft because

the RA computer is not specially protected. However,

this could also be a security advantage. If an attacker

167

1st Annual PKI Research Workshop—Proceedings

can steal the CA key from the computer on the RA
desk, then that attacker could just as easily steal the key

by which the RA authenticates its connection to the CA,
under the previous design. Under that design, the

attacker could then get the CA to sign a false certificate

and that false certificate would have the imprimatur of

having come from the real CA in the real vault. If the

theft were discovered, then all signatures by that CA
key would be called into question and the CA key itself

might need to be revoked, along with all certificates it

had generated. Under this last design, if a leaf CA key

were stolen, then only that one key need be revoked

along with only those certificates it had generated.

3.3

Know the Other Person

The third element of conventional wisdom is that with a

proper ID certificate, you can know the person with

whom you are transacting. This idea traces back to the

1976 Diffie-Hellman paper [2], which made the

assumption that the first important job was to learn the

identity of the party on the other end of a

communications connection. The Public File and then

the ID Certificate were to achieve that by binding the

person’s name to the person’s public signature key.

This assumes that names work as identifiers.

3.3.1 The John Wilson Problem

The fact is that names do not work as identifiers. This

has come to be known as the John Wilson problem,

named after a co-worker.

3.3. 1.1 E-mail

At Intel, there are (at the time of this writing) eight

employees with the name John Wilson, in some

spelling. The IT department is very careful to make

sure that each of these John Wilsons has a unique name.

That is because these names are used as e-mail

addresses and to index into the corporate employee

database.

In spite of the care with which each John Wilson has

been given a unique name (e.g., through the use of

middle initials), John keeps getting mail intended for

one of the other John Wilsons and they keep getting

mail intended for him.

3.3. 1.2 Airport

This problem isn’t limited to e-mail misdirection.

In August of 2001, John was returning from a one-day

business trip to the Bay Area. He had an electronic

ticket and no luggage. It was a simple trip.

On the return leg, he went to the ticket counter, was

asked for an 1 D (his driver’s license) and was asked if

anyone unknown to him had given him anything to

carry, etc. The ticket agent printed out his boarding

pass and gave it to him. He was looking at it as he

started to walk away but turned back to the ticket agent

to say, “I’m not going on to Eugene. I’m just going to

Portland.”

The ticket agent took back his boarding pass, consulted

the computer, and said that he had the boarding pass for

the other John Wilson on that flight. That other John

Wilson had his boarding pass.

So, the solution was for John to go to the gate and have

them page John Wilson - and then, when the other John

Wilson appeared, trade boarding passes.

Especially in light of the post-9/1 1 requirement to have

luggage removed from a flight if the ticketed passenger

does not take the flight, this could have been a serious

security problem.

3.3.1.3 Ann Harrison

When I tell the John Wilson stories, instead of getting a

reaction of disbelief or scorn at my making too much of

a case out of an isolated incident, the reaction is almost

always “That’s nothing. Listen to this.”

A friend of a friend, Ann Harrison, reacted that way.

She told of sitting on the examining table in her

doctor’s office, waiting for the doctor, when the nurse

came in, carrying a syringe. The nurse said, “This will

only sting a little”. Ann asked, in shock, what the nurse

was trying to inject her with and the nurse replied that it

was Botox (botulism toxin). Ann said that she doesn’t

get Botox injections, to which the nurse replied, “but

you’re Ann Harrison, aren’t you?”

3.3. 1.4 Carl Carlson

In the early 1900’s, Carl Carlson was working in a

factory in Wisconsin, in a heavily Swedish community,

and was getting annoyed that he kept getting paychecks

for another Carl Carlson, one who earned less than he

did. So, sitting in the bar after work one payday, he

decided to change his name to something really unusual

and avoid this problem. He looked across the bar and

saw a sign with a really unusual name ... and that’s

how my ex-in -laws ended up with the family name
Miller.

3.3.2

Names are not IDs

These anecdotes illustrate a point that should be of

concern to us as computer scientists and especially to

those of us involved in PKI.

Human beings do not use names the way we want

them to.

The actual process by which humans use names and the

psychology behind that process deserve a great deal of

study. It is clear, even prior to that study, that computer

168

1st Annual PKI Research Workshop—Proceedings

developers and computer users deal differently with

names.

I speculate that computer developers, and especially

PKI or large directory developers, think of names the

way we do variable names or file path names. That is, a

name is some string, unique within its block or

directory or context, that unambiguously identifies

some object (value, file, person, ...) - and we further

assume that the mechanism that uses this name (a

compiler, an operating system, or a human user) will

follow that unique string to the same object any other

mechanism would follow the string to.

Compilers and operating systems may behave this way,

but human users do not

Our PKls assume they do. Our mail agents assume

they do. Much of what we design in computer science

makes this same, false assumption. For our immediate

concern, the main impact is that PKIs are based on a

false assumption and the security of systems using

those PKIs suffers as a consequence.

In a way, however, this is good news. This means that

there are a great many fresh new research opportunities.

For example, how would you build a mail agent that

does not use names or e-mail addresses for people?

3.3.3 ID as Dossier

It is doubtful that human beings could ever be trained to

read all information offered in a certificate and verify it

against their knowledge of a person, before jumping to

a conclusion about the identified person. Even if that

training could be achieved, however, an ID certificate

usable by everyone would become a dossier.

Consider an ID cert for John Smith. The name alone

doesn’t tell you which John Smith, so you need

additional information. Andy works with John, so he

needs John’s employer (and building and mail stop) in

the ID certificate. Betty knows John only at home, so

she needs his home address in the ID certificate.

Charles knew John at work 10 years ago, so he needs

John’s work address from 10 years ago. Dan shared a

hospital room with John back in 1994, so he needs a

record of John’s hospitalization from then in order to

identify John unambiguously. This process needs to be

iterated over all possible relying parties, to make sure

the ID certificate works for all of them.

The result would be a nearly complete dossier on the

keyholder, and that dossier would almost certainly

violate privacy laws, not to mention John’s desires. As

a result, the ID certificate could not be released to the

public. That, however, violates the basic purpose of the

ID certificate. A workable alternative w'ould be to have

different ID certificates for use by different relying

parties [6], but that violates the design goal of one ID

certificate that lets an arbitrary relying party know with

whom she is transacting.

3.4 Non-repudiation

The fourth item of common wisdom has to do with non-

repudiation, which is usually defined as the inability of

a person later to deny having digitally signed a

document.

The central idea behind the concept of non-repudiation

is deferred enforcement of security. That is, one

receives a digitally signed document (often described as

a contract, when non-repudiation is discussed) and

verifies the signature on the document and the

certificate chain that identifies the key used, and then

acts on the document. In most cases there will be no

intention of fraud and the transaction proceeds

normally. However, in case there was fraud, the

document can be produced along with its certificate

chain to present to a judge. The judge can verify those

signatures and thus establish that this document was

signed by the defendant.

There are several problems with this understanding and

this process.

3.4.1 Expense

The process described above is expensive. The digital

signature and certificates that bind the signer to a

document do not bind that signer to a location. The

signer must be located and brought to trial. The process

of location and the process of trial are both expensive.

If the amount of the loss were small enough, taking the

case to trial would not pay.

3.4.2 Not Adequate

Assuming non-repudiation was achievable, technically,

and a judge found a defendant responsible, this process

works only if the victim can be made whole. In cases

of moderate financial loss, this might be adequate.

However, if the loss were of something more valuable

than the perpetrator’s total lifetime worth, then the

victim cannot be made whole. Worse, if the loss w'ere

of a life or of secrets, then no amount ofmoney could

compensate the victim.

3.4.3 Not Achievable

The main problem with the theory of non-repudiation is

that it is not technically achievable. That is, the

intention is to bind a human being to a digitally signed

document. With a holographic signature on a paper

document, the human’s hand came in contact with the

paper of the document. With a digital signature there is

machinery between the human and the signed

document: at least a keyboard, software (to display the

169

1st Annual PKI Research Workshop—Proceedings

document and to drive the signature process) and a key

storage and use facility (e.g., a smart -card).

No one has demonstrated, in the normal computer for

home or office use, the prevention of introduction of

hostile software. To the contrary, we have seen a

steady increase in such incursions over the years.

There are secure facilities for key storage and use, but

no mechanism that an average home or small business

user would choose to buy has been proved secure.

Meanwhile, computers are not restricted to isolated

rooms with card access entry, raised floors, guards

outside the glass walls, etc., that they might have been

in the 1970’s when much of this thinking about public

key cryptography had its nascence. Computers are not

only everywhere; they are unprotected to a continually

increasing degree. Therefore, even if the computer has

no hostile software and its private key is kept in a truly

secure facility, access to the keyboard of that computer

is not limited to the person certified to be associated

with that private key.

What might make this process of non-repudiation work

would be hardware that would serve as a witness to a

signature, providing tamper-proof evidence of the

actions of a human being (e.g., through videotape), of

what that human was reading and of the human’s

positive action to assent to the displayed document.

Such a log of human behavior could then be presented

in court to prove the claim of non-repudiation.

Of course, if such hardware were available, then we

would not need digital signatures, much less the

assumption of non-repudiation on digital signatures.

3.4.4 Contractual Commitment

For lack of technical achievability, some people try to

legislate non-repudiation. If laws are written to

presume that the certified keyholder is responsible for

anything done by that key, then the rational thing for a

computer owner to do is to refuse to accept ownership

and use of that private key. That could bring not just

PKI but use of public keys to a screeching halt.

The good news in this is that we do not need non-

repudiation in order to do business with digital

signatures. If two parties want to do electronic business

with each other, they can sign a paper contract with one

another in which party A might declare that it would

honor any document digitally signed and verified with a

public key that is given in the contract (or whose

cryptographic hash is printed in the contract). The

party accepting that responsibility for that key could

then protect that key with mechanisms appropriate to

the way that key was empowered. If one is ordering

office supplies with that key, then maybe it is kept

encrypted by password on the hard drive of a PC on a

secretary’s desk. If one is ordering millions of dollars

worth of industrial supplies, then the key might be kept

in a locked room, under 24x7 guard, with multi- factor

authentication for people entering the room, special

computers with strong key storage facilities that erase

their keys if the mechanism is physically moved, no

network connections for the computers and strict

control over the software that is allowed to be loaded

onto the computers.

4 New PKI Wisdom
The reasoning above gives us a new list of PKI

Wisdom:

1. There is and will be no single ID, so a single

ID certificate makes no sense.

2. Discard RAs and put CAs on the RA desks.

3. Knowing a keyholder’s certified name does

not tell you who that keyholder is.

4. Non-repudiation is neither adequate for serious

problems nor achievable.

So, instead, we need to do strong access control and

that requires more than ID certification. There are

several ways to achieve access control, as outlined

below.

5 Certificate :: DB Trade-off

As we consider the various ways to do access control,

we must address the religious battle between those who
advocate certificates and those who advocate servers.

Each technology can achieve the same results, under

certain assumptions. The main difference is in their

behavior under network load or partition, but there are

security differences, discussed later in this paper,

having to do with database administration.

For example, Kohnfelder created certificates by

digitally signing a line item from a protected database:

the Public File. This has the advantage of making

verifiable data available even when the database is not,

whether by network partition or by mere performance

problem.

This process can be applied with any kind of database.

In particular, it applies to all three edges of the

credential triangle shown in Figure 1.

5.1 CAP Principle

Fox and Brewer of UC Berkeley have put forth the

CAP Principle [4], stating that it is possible to design a

distributed system that achieves any two of:

1. Consistency

2. Availability

3. tolerance of network Partitions

but it is not possible to achieve all three.

170

1st Annual PKI Research Workshop—Proceedings

The invention of certificates as signed line items from

the Public File was a choice to achieve A&P while the

Public File achieves C&A.

There are frequent attempts to criticize one or the other

of these mechanisms for not achieving the third

desirable attribute and to come up with some new
design that tries to achieve all three, but by the CAP
Principle such attempts are doomed.

One must look at the specific security requirements of a

particular application and decide which of the three

desirable attributes can be sacrificed. This choice will

be different for different applications.

6 Credential Classes

Identifier

Figure 1 : Credential Classes

Diffie and Heilman bound Identifiers to Public Keys

through the Public File. Kohnfelder took line items of

that public file and made ID certificates.

Those of us who wanted to use ID certificates as part of

implementing access control, needed to get from

Authorization to Public Key. That is, a transaction

would come over the net with a digital signature

verifiable by a public key and it would require

authorization before it could be honored.

The knee-jerk reaction, relying on time-sharing system

practice from the 1960’s, was to use an Access Control

List (ACL) binding authorization to login name. [By
the way, Kohnfelder described the names in his thesis

as login names, so this use of an ACL is not mixing

metaphors.]

By the arguments of section 5, you can also convert line

items of the ACL into certificates, and in this case, they

become what we know as attribute certificates.

In 1996, however, a number of us started developing

the third side of the triangle: authorization

certificates. That is, something directly binding an

authorization to a public key, rather than going through

an identifier.

Also, by the logic of section 5, one can have protected

database versions of the authorization certificate as we

find with X9.59 and with the SSH access control file

(.ssh/authorized_keys).

7 Authorization via ACL and ID

Figure 2 shows the use of an ACL and ID certificate to

determine authorization. The ACL could be held

locally in the machine that acts as gatekeeper for the

protected resource, or it could live in some central

authorization database that the gatekeeper queries over

the network to approve any access request.

The security perimeter shown in Figure 2 indicates that

both elements of the process - the ACL (or attribute

certificate) and the ID must be protected equally. If the

attacker can control either, then he or she can get

improper access. However, there is a third vulnerability

not immediately visible in the triangle diagram: the

name. That is, the diagram shows one “Identifier” node

at the top of the triangle, but in fact there are two

identifiers involved: one on the ACL edge and one on

the ID edge. The identifiers need to be the same, to link

these two sides together, and some mechanism has to

do the comparison to establish that.

Security Perimeter

Figure 2: Authorization via ACL and ID

If that mechanism is executed by a computer and the

names used are unique, then the comparison can be

done with security. If the mechanism is executed by a

human, then even if all names are unique, the John

Wilson problem shows us that there will be mistakes

made, and a clever attacker can exploit those mistakes

to gain improper access. A human might make that

comparison with each access, as we see with S/MIME
or SSL, since in those cases the ACL is kept in the

human user’s own head. Or the human might make a

name comparison when some database is administered

by a human or a certificate is issued. In general, it is

safe to assume a human will be involved at some point

in the process because it is for human use that names

are used in the first place.

171

1st Annual PKI Research Workshop—Proceedings

When the method of Figure 2 is used, there is also the

problem of administering the ACL side of the triangle.

We consider two possibilities for that, below.

7.1 Authorize Everybody

The job of building an ID PKI is difficult enough that

some people rebel against building an ACL as well.

Instead, they use a one-line ACL: (*). That is, grant

access to anyone who has an ID certificate. This isn’t

exactly the non-repudiation case, since it’s not a

question of having a signed contract. Rather, this is a

situation like that employed by browsers when they

decide whether to show the padlock icon as locked or

unlocked. The icon is shown locked if the ID

certificate is valid (and refers to the domain name from

which the web page (or part of it) came).

The problem there is that users rely on that closed

padlock rather than on a personal inspection of the ID

certificate to decide whether to trust the web page and

its server. This leads to a wonderful quote, from Matt

Blaze, in the hallways of the RSA 2000 Convention: “A
commercial PKI protects you from anyone whose

money it refuses to take.”

7.2 Authorization DB
You can, instead, build a real authorization database.

Consider the database for something the size of a large

PKI, with 6 million users.

If each user changes his or her entry in the database

every two years, then there is one change to the

database every 2.5 seconds of each normal workday.

Since this database is being kept in a central, secured

location, it is being maintained by a staff of people

cleared to enter that facility. Those people do not know
all 6 million users. So, when a request comes in to

change the authorization of some user, it must be

investigated. If that investigation were to take a man-

week, then the office would need more than 50,000

investigators, making this a very large operation.

No matter how large it is, the process begs the question

of what makes these people administering the central

database authorities on the data they are entering.

8 Direct Authorization

Another option is to go the other direction around the

credential triangle, as shown in Figure 3.

In this process, there is only one point of attack, rather

than the three of Figure 2. One would have to attack

the authorization certificate issuer (or the maintainer of

the authorization-to-key ACL).

One might ask why Figure 3 shows an ID when that ID

is not used as part of the authorization process. The
reason it is there is for forensics.

One can easily gather an audit log with entries

identified by keys used (or their hashes, as more

compact identifiers that are still globally unique). From
processing those audit logs (or other tests) one might

determine that a given keyholder (a given key) has

misbehaved and needs to be punished. As Steve Kent

quipped, during a DIMACS talk on this topic, ‘You

can’t punish a key. What would you propose doing?

Lop a bit off?’

You need to punish the keyholder. The simplest

punishment is to put that key on a local black list. That

keeps the keyholder from gaining access at the machine

where you discovered the misbehavior. However, you

might want to actually punish the keyholder, legally.

For that, you need to locate the keyholder. So, you

need a link from the key to the keyholder. This is

indicated as an ID or name, but more likely it would be

a whole file of information that would allow a security

officer, lawyer or policeman to find the keyholder.

This information could include the keyholder’s name,

address, phone numbers, bank accounts, friends, family,

employer, etc.

Security Perimeter

Figure 3: Direct Authorization

More interesting for those interested in PKI is the fact

that this information binding a key to ID does not need

to be either online or in certificate form. It is not used

in the authorization process. It is used only during the

manual process of punishing the errant keyholder.

Therefore, the information could be kept in a non-

networked PC in the security office. It could even be

kept in manila folders. This affords the user with a

certain amount of privacy. The user’s identifying

information need not be released to a resource guard

whenever an access is made.

9 Delegation of Authorization

SPKI [7] permits delegation of authorization. SDSI [6]

permits delegation of group membership. For some

cases, the two mechanisms can be shown to be

equivalent. The examples below can be achieved either

way, but they will be described as authorization

172

1st Annual PKI Research Workshop—Proceedings

certificate delegation - and contrasted with the use of a

corporate authorization DB together with PKI for ID,

according to the model of Figure 2.

10 Large Compa ny VPN Example

In this example, we deal with a large company that

permits VPN access only to authorized employees. We
consider it two different ways, first via a central

authorization database and then by distributed,

delegated authorization.

10.1 VPN Access via Central DB
Figure 4 shows part of an organization chart for a large

company that has decided to give VPN access only to

approved employees. We assume that employees are

identified by some ID PKI, but authorization is

maintained by a corporate authorization database. That

database is maintained by some person or group,

labeled A in the figure. A user, U, requests access by

web page, since A and U are probably in different states

if not countries and have never met one another and are

not likely ever to meet one another.

Figure 4: Central Authorization DB for VPN Access

If A were simply to enter U in the database in response

to the web form, then there is no security to speak of in

the system. So, A looks in the corporate central

employee database to find U’s manager and sends an

e-mail, asking if U should be allowed VPN access.

When the answer comes back in the affirmative, A
enters U in the authorization database and U has VPN
access.

There are at least two problems with this mechanism:

1. A sends an e-mail to someone whose name is

very much like the name listed in the

employee database as being U’s manager.

Thanks to the John Wilson problem, that does

not mean that A sends an e-mail to U’s

manager.

2. The mechanism as described above implicitly

grants every manager in the company the

power to grant VPN access. Correction of that

limitation would greatly complicate the

database administration process.

In the next section, we address these problems.

10.2 VPN Access via Delegated Direct

Authorization

In Figure 5, we accomplish the same function, but by

authorization certificate and delegation of authorization.

The organization or person. A, responsible for the ACL
of the machine(s) that enforce VPN access, enters a

public key into that ACL, as the head of a tree of

certificates to be empowered to have VPN access.

Person A then uses the matching private key to grant

authorization certificates to his or her manager. That

authorization flows, by authorization certificate, up the

organization chart to the CEO and from there down the

entire organization, but only into those groups where

VPN access makes sense. In particular, as shown by

the heavy lines, it flows from A to U and therefore has

the same effect as the process shown in Figure 4.

The process of Figure 5 has some distinct advantages

over that of Figure 4:

1. Each grant of authorization is between two

people who work together and therefore can

authenticate one another biometrically, in

person. Names are not used in the process, so

there is no security flaw from the John Wilson

problem.

2. Each grantor of authorization is in a position to

know better than anyone else whether the

grantee should receive that grant of

authorization.

3. These decisions - of authentication and

authorization - are made with almost no effort.

No investigation is required.

4. The work that used to be done by A is now
distributed around the company, although it is

miniscule at each place a decision is made.

This frees A to do other, more interesting

173

1st Annual PKI Research Workshop—Proceedings

work. That, in turn, saves money for the

corporation.

So, this process both saves money and increases

security of the administration of the authorization

process.

11 Cross-company B2B P.O. Example

The example of the previous section dealt with

operations within a single company that had a single

PKI. We now address a pair of companies that want to

do electronic purchase orders, with orders automatically

processed by computers in company A when they are

signed by authorized keys (keyholders) within company

B. Each company has its own, independent PKI.

11.1

B2B via Central DB
In Figure 6, we build a structure analogous to Figure 4.

The employees of Company B that should be

authorized to sign electronic purchase orders are shown

in gray, while there is one person (or group) in

Company A that maintains the ACL on the machines

Company A uses to process purchase orders

automatically.

The purchasing agents must request, somehow, to be

added to the ACL, and the maintainer of the ACL needs

to verify the propriety of each such request. This

request goes from company B to company A. The

verification of that request is a dialog initiated by the

responsible parties in company A.

Company A Company B

Figure 6: B2B via PKI and Authorization DB

11.1.1

Bridging of PKIs

The first thing we observe is that for ID’s issued by

Company B’s PKI to be usable within Company A, we
need to bridge the two PKIs, either with a bridge CA or

by adding each PKI root to ACLs in the applications on

both sides. However, when we bridge the two PKIs, we
make the John Wilson problem worse for both.

1 . It is made worse just by having more people

under the same namespace. This leads to more

name collisions and more mistakes.

2. It is possible that name uniqueness is violated.

Company A could have been very careful to

have only one “John Q. Wilson” and Company
B could have been very careful to have only

one “John Q. Wilson”, but after the bridge,

there are two. What is missing is some entity

that would control the issuing of names within

companies A and B, before they decide to

bridge their PKIs. There is no such entity

today, and the experience of ICANN (The

Internet Corporation for Assigned Names and

Numbers and other Top Level Domain efforts)

suggests that no such entity will ever exist.

11.1.2 Employee Data

In the process of Figure 4, the maintainer of the ACL
consulted the central employee database to find the

party to contact to get approval of the request for

authorization. Company A does not need the entire

employee database of Company B, but it does need

enough of that database (or remote access to a view of

that subset) to permit it to make the proper

authorization decisions.

This kind of data, especially linked to names, is

traditionally considered confidential by companies. A
special exemption would have to be made in this case.

Meanwhile, the data that company A needs would have

to be made available under strict access controls, and

the authorization database for those access controls

becomes an additional problem to address. This way

leads to uncontrolled recursion.

11.2 B2B via Delegated Authorization

Company A Company B

Figure 7: B2B by Delegated Authorization

In Figure 7, we show the same B2B process, but by

delegated authorization rather than authorization

database and ID PKI.

174

1st Annual PKI Research Workshop—Proceedings

In this figure, we introduce a new node color (darker

gray) to stand for the executives of the two companies

who meet to decide to form the business relationship.

These executives exist already and perform this

function. Two companies do not spontaneously decide

to do business with each other. There is a period of

investigation and decision-making before that decision

is made. The decision is usually sealed with a contract

and the contract is signed by individuals of the two

companies. These meetings might be electronically

intermediated, but they are meetings of people rather

than of computers.

In Figure 7, the permission to delegate the authorization

to have purchase orders accepted and processed

automatically is granted from the person or group that

maintains the gate keeping machines in Company A to

the executive in Company A who is going to sign that

B2B contract. After the signing of that contract, the

executive from A grants the executive from B the

power to authorize such purchase orders. The

executive from B takes that authorization back to

Company B and delegates it to the purchasing group

manager who certifies the individual purchasing agents

within her group.

Note that this process:

1. does not use a bridge CA, so it saves that

expense,

2. does not use names, so there is no John Wilson

problem,

3. does not require either company to access the

other company’s confidential employee data,

4. does offer improved security, just as we saw in

Figure 5.

12

The AND Effect of ID PKI

There are those who claim that doing authorization

computation via the combination of ACL and ID cert is

important because it gives you a logical AND of two

conditions: the authorization and key validity. The

assumption there is that a valid ID cert does more than

name the keyholder. It also represents certain security

conditions. It attests to the key itself not having been

revoked and might also attest to the keyholder’s

continued employment.

This is valuable functionality. However, the use of an

ID instrument for these other characteristics is not the

best system design. What if some application cares

about key compromise but not about continued

employment? This mechanism does not allow the

application designer to separate those three attributes of

a key: ID, non-revoked status and continued

employment. It also does not allow the application

designer to specify the AND of other functions, without

loading those onto the ID instrument as well.

A cleaner design is to use an explicit logical-AND and

specify the conditions individually, each with its own
certificate (chain). Each of these attributes can be

bound to a key by an authorization certificate, with the

certificate issued by the proper authority. That is, a

24x7 key loss reporting service might be in charge of

providing online validity information of the non-

revoked status of a key while a corporate HR office

might provide information about continued

employment. These attributes do not require any ID.

They can be bound directly to a key. By contrast,

loading all of these attributes into an ID certificate by

side effect requires the ID certificate issuer to be the

authority on all of those attributes - something that may
be difficult to achieve, organizationally.

[Note that SPKI/SDSI [7] includes a construct called

the “threshold subject” that permits expression of such

“AND” conditions in ACL entries or certificates. The
code that implements threshold subjects is available in

[!]•]

13 Conclusions

This paper makes the case that there are fundamental

problems with the original ID-based notion of a PKI, in

that it fails to take account of certain realities (such as

human limitations). Instead, we can use delegated,

distributed authorization, which does not suffer from

those fundamental problems. Two examples of the use

of distributed authorization were given, in brief, but

there are a great many other examples. The reader is

encouraged to try applying these techniques to other

problems, as was done in [3].

14 References

[1] CDSA: http://developer.intel.com/ial/security-

source code and documentation, including a full

implementation of SPKI and SDSI certificate reduction.

This link leads to the open source repository for that

code.

[2] Whitfield Diffie and Martin E. Heilman, “New
Directions in Cryptography”, IEEE Transactions on

Information Theory, Vol. IT-22, No. 6, November
1976.

[3] Steve Dohrmann and Carl Ellison, “Public Key
Support for Collaborative Groups”, Intemet2 PKI

Workshop, April 2002.

[4] Armando Fox and Eric A. Brewer, “Harvest, Yield,

and Scalable Tolerant Systems”, Proceedings HotOS-

VII, 1999

[5] Kohnfelder, Loren M., "Towards a Practical Public

-

key Cryptosystem", MIT S.B. Thesis, May 1978.

[6] SDSI: http://theory.lcs.mit.edu/~cis/sdsi.html

[7] SPKI: http://TheWorld.com/~cme/html/spki.html

175

1st Annual PKI Research Workshop—Proceedings

P

P

P

P

P

P

P

P

P

i

i

P

P

P

P

P

P

P

P
176

1st Annual PKI Research Workshop—Proceedings

Report: EDUCAUSE - NIH PKI Interoperability Pilot Project

Peter Alterman, Russel Weiser, Michael Gettes, Kenneth Stillson, Deborah Blanchard, James

Fisher, Robert Brentrup, Eric Norman

Background
Under mandate to adopt broad electronic business

methods by October 2003, Federal Agencies are

working hard to figure out ways to put their business

on-line in a way that is secure. A leading contender

to make e-govemment secure and trustworthy is

public key cryptography. At the same time, far-

sighted institutions of higher education have been

busy deploying PKIs and issuing digital certificates

to their faculties and staffs to enable secure,

electronic business with the government and with

each other. These institutions wish to use their

locally-issued digital credentials to do electronic

business with the government securely. The NIH, in

turn, wishes to be able to rely on business partner-

issued digital credentials, thereby avoiding the cost

and administrative burden of issuing and managing

electronic credentials. NIH and EDUCAUSE
jointly constructed a PKI interoperability pilot

project that demonstrated the ability of the Federal

Government to receive electronic forms signed with

digital certificates issued by institutions of higher

education.

Description of Project

In order to address this situation, NIH and

EDUCAUSE conceived a research project that

would demonstrate a simplified approach to

submitting digitally signed electronic grant

applications to NIH. Although the project used an

electronic grant form, in reality any form could have

been used; the point being that the project’s

approach is applicable to any electronic form or file.

The explicit goals of the interoperability project

were to:

• Receive grant applications as digital forms

signed with two different, validated, digital

certificates each (an NIH business process

requirement);

• Use digital certificates issued by three (later

changed to five) participating academic

institutions;

• Demonstrate interoperability among different

CA vendors’ products, including PKI service

providers.

A key consideration in the design was that NIH
would be a relying party with respect to the digital

credentials used to sign the electronic grant

applications. This is important for several reasons.

For privacy and resources reasons, NTH would like

to avoid issuing digital credentials to individuals and

institutions. Experience trying to maintain an up-to-

date, accurate inventory of research faculty and staff

has demonstrated to NIH the futility of a

government-centric, centralized approach to issuing

and maintaining credentials of faculty engaged in

government-sponsored biomedical and

biobehavioral research. On the other hand,

academic institutions have a much easier time of

keeping track of their faculty and graduate students

- so long as they wish to continue to receive

paychecks.

Many academic institutions are in the process of

deploying PKIs and issuing digital certificates to

faculty, staff and students to facilitate e-business on

campus, and these schools have voiced a clear desire

to use their locally issued digital credentials for

doing business with the Federal government. Thus,

the logical design plan was to encourage

deployment of institutional PKIs.

To support the work of the project, NIH and

EDUCAUSE contracted with Digital Signature

Trust (DST) and Mitretek Systems to complete key

portions of the work. Fundamental work resolving

directory issues was done by Georgetown

University.

NIH provided the participating institutions with a

Microsoft Word Template version of the PHS-398,

Application for Research Grant form, to be used as

the model for this pilot. The form was made

available for download at an NIH web site.

(Although not selected by any participant, a PDF
version of the PHS-398 was made available to all

institutions for the pilot.) This was done to provide

the institutions 'with an electronic document that

could be manipulated locally by common desktop

software applications. Desktop signing of the Word
templates was accomplished using Assured Office

(now ProSigner) software, a Microsoft Office Suite

177

1st Annual PKI Research Workshop—Proceedings

plug-in and standalone application developed by E-

Lock (now Lexign). ProSigner, however, only

works on the Microsoft Windows platform.

Phase One of the project incorporated the following

assumptions and features:

• A form that could be shared between the

Principal Investigator and the Authorized

Official of Record (AOR) at the research

institution. The PHS-398 is completed by Pis

and the AORs, also known as Institutional

Representatives (IR) in recognition of the fact

that NIH funds institutions, not individuals. The

form must allow for completion by multiple

users, although only one of these users will

submit the form to NIH.

• A form that could be digitally signed with

multiple digital signatures. Both the PI and an

IR sign the PHS 398. Both digital signatures

need to be validated, that is, checked to verily

they are good, when the form is submitted to

NIH. The PI is typically part of a research

operation of an organization. The institutional

representative is an administrator, typically

called the Authorized Official of Record (AOR)
or IR. The two may be hundreds or thousands

of miles apart. Bringing these people into a

room at a single moment is often not feasible.

Further, the AOR or IR may be handling

numerous forms at a single time, related to

many different investigators.

• A form that could be completed with

virtually no additional software

requirements for the PI and IR/AOR. In

order to allow for maximum scalability, the

team decided that the adopted solution should

have as small a client footprint as possible, not

only because of difficulties in downloading and

installing products, but also because

Information Technology (IT) departments are

averse to installation of software that is not part

of the standard configuration supported by the

Institution’s IT environment. This concern

arises from added cost and support (which also

translates to cost) requirements.

• A form that could utilize commercial-off-the-

shelf (COTS) digital signing products. Based

on our analysis of COTS digital signing

software, the product that we recommended, E-

Lock Web-Signer (now Lexign ProSigner),

would sign not only portable document format

(PDF) files, but also generally any other file

type. Due to the number of users participating

in this pilot, it was more cost effective to use

the per-user-priced Assured Office (ProSigner)

rather than the recommended Web-Signer,

which is priced on a server basis.

Research into the capabilities of Adobe Acrobat

reader revealed that the reader software

supported verification of signatures, but did not

support digital signing or digital certificate

validation natively. Additionally, Adobe
. Acrobat software, as distributed by the

manufacturer, requires additional software plug-

ins to be added to the desktop to allow it to

function with PKI certificates that would be

applicable to the project requirements. By
using a COTS product that worked correctly

with any file format, including Word templates,

a separate plug-in for Adobe did not need to be

created.

• Form could be digitally signed and sent as an

email attachment, requiring no changes to

the NIH mail server. In order to best meet the

needs of the constituents of the pilot, e.g., the

research institutions and NIH, the Word
template needed to be completed, digitally

signed, and emailed as an attachment to the

NIH OER recipient. This allows for easier

submission of the form, requiring no changes to

the NIH email server or to current database or

web servers. Furthermore, it greatly simplified

the submission process for the institutions. The

fact that their email systems logged the sending

of the message as proof of date and time of

submission was a serendipitous extra benefit.

PKI Bridges
To allow NIH to successfully validate the digital

certificates affixed to the electronic grant

applications, EDUCAUSE deployed a Higher

Education Bridge Certification Authority (HEBCA)
prototype structurally similar to the Federal Bridge

Certification Authority (FBCA) prototype. With the

support and approval of the Federal PKI Steering

Committee, which included a generous grant, the

two bridges were cross-to-certified and currently

interoperate at the test level of assurance.

Participating institutions’ PKIs cross-certified with

the Higher Ed Bridge while a proxy NIH CA cross-

certified with the Federal Bridge. Thus, a trust path

was created between NIH and the institutions

178

1st Annual PKI Research Workshop—Proceedings

through the bridge-bridge infrastructure created to

support the project.

Trust path discoveiy and validation for the bridge

infrastructure model required use of specialized

software. Mitretek Systems modified the Certificate

Arbitration Module (CAM) originally created for

the GSA Access Certificates for Electronic Services

(ACES) program (an umbrella contract mechanism

allowing the Government a acquire a broad range of

PKI services) and added DAVE. The CAM/DAVE
became the validation service used by Assured

Office to validate the digital signatures affixed to

the completed MS Word templates. How this

worked will be explained further on in this paper.

Significant issues were encountered in attempting to

link the different directories that supported the

institutional PKIs. To resolve them successfully, the

team found it necessary to use an Internet 2-

supported “registry of directories,” described below,

developed by Michael Gettes of Georgetown

University.

Interoperability

In addition to brokering trust among discrete PKIs,

the Federal and Higher Education bridges also

supported Certificate Authority (CA) product

interoperability. The University of Alabama at

Birmingham used the DST TrustID certificate

service (RSA technology); the University of

Wisconsin-Madison used the Netscape iPlanet CA
and Dartmouth College used the Entrust CA. The

University of California Office of the President and

the University of Texas - Houston Health Science

Center used the VeriSign On-Site CA service. (The

latter has not yet been demonstrated to operate

successfully in the pilot, but is expected to be

operational shortly.)

By using interoperating bridges, the overall number
of cross-certifications required within the

community of interest was reduced. Policy mapping

decisions were offloaded to the Bridge policy

authorities. This model allowed disparate PKI
communities to be “bridged” together. Its

disadvantages were also evident: liability issues

arose by offloading policy mapping functions to a

Bridge policy authority; it was heavily dependent on

a distributed directory system that was vulnerable to

failure in a number of locations. Certificate path

construction was complex, and there were

disparities between the underlying directories, e.g.,

X.500 vs. LDAP. If proper certificate constraints

were not used, then security issues were destined to

erode the trust in the infrastructure. Depending on

the policies of the Bridge Policy Authority, peer-to-

peer cross-certification of CAs still could be

required.

University CA Issues

As part of this project, university participants

utilized their own CA software. The University of

Wisconsin, for one, utilized the iPlanet CMS as its

CA for university personnel certificates. This was

one of the most challenging experiences - especially

for the directory services. Their CA came integrated

with the iPlanet LDAP directory in its default

configuration, which assumed the CA would be

used for an enterprise PKI in which users existed

within the directory prior to obtaining the end entity

certificate.

Because of this assumption, cross certifying with the

HEBCA took some effort, specifically obtaining a

PKCS#10 certificate request of the University of

Wisconsin’s root. This was found to be written as a

file, instead of provided to the administrator. The

publication of the cross certificate pair to the iPlanet

directory had to be performed manually. The

iPlanet software came with the

CertificationAuthority object class and included

CrossCertificatePair as one of the attributes. Using

the LDAPModify command from the command line,

the CrossCertificatePair could be published the

directory

The Certificate Arbitration

Module (CAM)
The CAM is an application-level router that

efficiently and consistently routes certificates from

relying party programs to the issuing certificate

authorities (CAs) for validation. By interfacing

directly with the CAM, a relying party application

can interact seamlessly with multiple CAs. CAM is

also flexible; it allows RSA-based certificates to be

validated with the Certification Authority. The

CAM runs as a separate process within the agency’s

security domain, allowing the agency to manage the

resources and controls necessary to support the

validation processing at .the enterprise level.

Applications interact with the CAM - through a

simple validation API that communicates over

TCP/IP or by using a Microsoft ActiveX control.

179

1st Annual PKI Research Workshop—Proceedings

V'x2v:“^ '-S' 5 " V- «
lip ^ 'Up i&

n

University A Assured Office

Digital Signed

Grant App.
:'

.

.

;.'. .< :

E-Lock

University B Assured Office

Digital Signed

GrantApp.
..

E-Lodc
University C Assured Offioe

Distal Signed

GrantApp.

NIH OER Mail Server

/
' ''

E-Lock

Assured Offioe

Digital Signed

Certificate Validation

University A
• v £ -Cv ^ ^

Bill V\ ' |

Certificate Validation

L
UniversityB

datlon

University C

^_ 4j

NIH CAM Server with DAVE
ki

/ E-Lock yAssured Officd

M.onoKlodT

' V,^ V /

> ''#?p:sv j

Phase 2 of the NIH-EDUCAUSE Interoperability Pilot Project with FBCA and HEBCA

When a digital signature and the corresponding

signer’s certificate are presented to a PKI-aware

application and the application does not recognize it,

the application submits the certificate to the CAM.
The CAM parses the certificate, verifies that it has

not expired and checks to see that the certificate

issuer trusted by the application. The CAM then

either uses stored instructions or looks at the

Authority Information Access (AIA) extension

within the certificate to obtain the location of the

OCSP validation service cited by the issuing CA.
The CAM then builds an OCSP request, digitally

signs it with a certificate issued to the CAM, and

submits it to the OCSP server for validation.

When DAVE is incorporated, the issuing CA no

longer needs to be known a priori (via

configuration) and trusted by the CAM. Instead,

DAVE’s trust anchor is known a priori, and DAVE
performs the steps of trust path discovery and

validation, the latter typically via Certificate

Revocation Lists (CRLs).

The CAM Validate Request message contains three

parameters: a message type, an Application ID

string, and the DER-encoded certificate to validate.

CAM then performs certificate validation on behalf

of the application and returns a response message

back to the application. The Validation Response

message contains five parameters: message type,

certificate status, an ACES profile check code (not

used in this project), an ASCII representation of the

parsed certificate, and the binary digitally-signed

validation response message received by the CAM
from the CA’s validation service.

As the application-to-CAM communication utilizes

TCP/IP, an Intranet (or Internet) connection must

exist between the application and the CAM. The

validation request response messages are transmitted

in “Little Endian” byte order, so applications

integrating with the CAM must take this into

account and translate the messages if they are not

running on a non-Intel platform. The NIH and many
of the academic institutions used Intel platforms, so

this was not an issue for them during the pilot

project, but it was noted that a significant Macintosh

users are part of the NIH client base.

The CAM receives the signed OCSP response from

the issuing CA’s Responder, verifies the signature,

and parses the response to obtain the certificate

status. The CAM logs the response (providing an

audit trail) and packages the status along with

additional information in the Validation Response

message, as discussed above. While the

180

1st Annual PKI Research Workshop—Proceedings

functionality of each CAM is limited to a single

security domain, it is also ideal for a one-stop

gateway or portal architecture.

Enabling applications to utilize the CAM for

validation is a fairly straightforward task. Several

key points must be taken into consideration, though

(See CAM Communications Specifications -

Version 3.1.0 at http://cam.mitretek.org/cam):

The original design requirements assumed that the

CAM and the application are running in the same

security domain, that is, the protocol between the

application and the CAM itself were not currently

authenticated:

• The CAM server runs on a Microsoft NT 4.0 or

Windows 2000 platform;

• The CAM utilizes TCP/IP to transport the

validation request, responses to and from the

CAM;
• The CAM trust model, when not extended by

DAVE, is that the CAM is authoritative; only

certificates issued from a CA explicitly trusted

by the CAM are validated, hence applications

have no need for further validation.

CAM Implementation
To date, the CAM has been deployed successfully in

a number of instances within the Federal

Government. Although not in broad use today, this

growth trend should continue over time. Examples:

1. The SSA is in the third year of its “Annual

Wage Reporting” (AWR) pilot and the second

year of utilizing the CAM as a signature

validation service for electronic AWR filings.

This year’s pilot includes the use of a simplified

signing control, “simple sign” to calculate the

signature hash, sign the signature hash, and

submit the filing to the SSA services. There,

the signature is validated through the CAM
validation server. Not only is SSA accepting

signatures through the ACES program, it has

added the State of Washington PKI as a trusted

issuer within their CAM trust list;

2. FEMA utilizes the CAM validation service in

several programs; first, to provide certificate-

based access control to several critical

databases available to emergency personal

during disasters; second (deployed since the

September 11
th

attacks), a government

assistance program for local government

agencies that are applying for FEMA assistance.

This application allows electronic submission of

grant applications as well as certificate-based

access to check on the status of the application

by the applicant;

3. NIST has developed an electronic grant

application submission and review workflow to

support its research grants program. This

program utilizes both ACES and NIST-issued

certificates and handles signature validation via

the CAM;
4. NTIS has enabled its labor union wage

reporting system, utilizing CAM for signature

validation of union officials when union wage
reports are filed with the NTIS servers. The

reports are then accepted and the information

fields verified and fed into the Agency’s back-

end workflow system;

5. The EPA ran a pilot, “CDX,” that enabled

digital signing of pollution reports by reporting

agencies and businesses. The program has

recently incorporated a full-blown reporting

exchange that includes the digital signatures,

submitted reports, and their validation at the

point of acceptance.

Discovery And Validation

Engine (DAVE)
DAVE is an open-source software package that

provides X.509 certificate trust path discovery and

validation services as a TCP/IP accessible Microsoft

Windows NT/2000 service. DAVE may be used as

an add-on to the CAM, extending CAM-enabled
applications to hierarchical and cross-certified PKI
domains.

Configuration settings for DAVE include:

• A certificate corresponding to the “trust

anchor.” All trust-paths end at this “most

trusted CA;”

• An LDAP server name and port to use for

retrieval of certificates and

CRLs and/or ARLs.

The incoming request protocol used by DAVE is the

same as that used by the CAM. Starting with CAM
version 3.6a, the “CAM-linking” and “default CA”
capabilities may be used to defer validation to

DAVE for CAs not specifically listed on the CAM
trust list. The outgoing request protocol for

certificate path discovery and for CRL retrieval is

LDAP, both for certificate path discovery and CRL
retrieval. OCSP-based validation may be added at a

later time. CAM already provides OCSP support,

but only for directly trusted CAs, not ones located

by path discovery.

181

1st Annual PKI Research Workshop—Proceedings

DAVE applies multiple techniques to construct the

certificate path. When the location of the issuer’s

certificate is given in the AIA field of the certificate

in question, DAVE contacts that specified LDAP or

X.500 directory directly. When explicit locations

are not conveyed in the AIA field, or when a

complete trust path has not yet been constructed,

DAVE switches to a second technique, issuing

LDAP “read” requests to its default LDAP server

which, in turn, discovers and queries the correct

directories. Such discovery is made by way of

hierarchical CA certificates and cross-certificates.

The explicit steps taken are: (1) read the issuer field

from the certificate in question and call this the

target domain name (DN), and (2) do an LDAP read

for the target DN, asking for the return of both all

cACertificate and crossCertificatPair attribute

values.

This places two requirements on the directory

infrastructure DAVE utilizes:

1. PKI objects (certificates, cross-certificates, and

CRLs / ARLs) must be properly stored in a part

of the Directory Information Tree (DIT) with a

DN equal to the subject field of the object(s);

2. The LDAP server to which DAVE connects

must know of and be able to retrieve any

intermediate certificates or CRLs / ARLs along

the constructive paths. This generally implies

directory chaining agreements or an LDAP
referral arrangement.

Internally, much of DAVE’s functionality is

provided by other open-source packages:

• The Certificate Management Libraiy (CML) v2

provides path construction logic and certificate

validation functions;

• Crypto++ provides cryptographic functions for

signature verification;

• Netscape LDAP SDK DLL (in object form; no

source available) provides referral-enabled

LDAP client functions;

• S/MIME Freeware Library (SFL) provides

MIME processing functions, and an abstraction

for Crypto++;

• Certificate Arbitrator Module (CAM) code is

taken from CAM for NT service abstraction and

basic core library functions that provide thread

safety, safe memory allocation, logging, etc.

DAVE Status
Initial development of DAVE is completed, and the

source-code will be freely available shortly. DAVE
has been tested in a number of trust topologies, with

a variety of certificates issued by different CA
product vendors.

Interoperability Pilot Test

Environment
NIH is a participant in the Federal Bridge CA
(FBCA) prototype and has a CA cross-certified with

the FBCA prototype. The universities are

participants in the Higher Education Bridge CA
(HEBCA) prototype and their CAs are cross-

certified with HEBCA. When a certificate is

validated in this test environment, it demonstrates a

trust path that traverses hierarchical and cross-

certificate-based PKI domains, multiple bridges,

multiple CA product vendors, and both LDAP
networking mechanisms, directory chaining

agreements for the FBCA, and an LDAP referral-

based directory networking for the universities.

The pilot project test environment pictured above

involved two users at three of the universities

sending “dual signed” grant request forms using

certificates issued by their respective CAs
(DST/RSA, iPlanet, Entrust). The digitally signed

forms were sent as attachments via standard e-mail

to a user at the National Institutes of Health (NIH).

The NIH user received the e-mail message and used

the CAM-enabled Lexign ProSigner application to

validate the attached, signed form. ProSigner was

configured to contact NIH’s CAM, which contained

a single-item trust list, deferring validation to

DAVE. DAVE was configured with NIH’s self-

signed CA as it’s trust anchor, and an LDAP meta-

directory (referral-based) as its LDAP starting-point.

On an initial run, this system was able to validate

both signatures on the form within 20 seconds. On a

second test run, when DAVE had automatically

cached the certificates of the path, validation took

place in under 5 seconds.

182

1st Annual PKI Research Workshop—Proceedings

Pilot Project Description, highlighting positioning ofCAM and DAVE in the trust discovery path

Directory Overview
Currently, the FBCA environment relies heavily on

the use of X.500 directory standards to facilitate

path discovery and path processing. This is partially

due to the Federal Government’s extensive

experience with X.500 directories. Although the

FBCA does utilized the LDAP v3 protocol as the

primary protocol to the bridge directory, another

X.500 based protocol is utilized to connect

transparently to a distributed mesh of directories.

Certificates that make up a full path may reside in

external directories that are connected to the bridge

directory transparently. The FBCA environment

relies on the X.500 DSP protocol to chain

automatically to the external distributed directories

to retrieve the CA certificates, CRLs, and ARLs that

are needed to perform path processing. The DSP
protocol is managed through the use of ‘Chaining

Agreements’ that manage authentication and

retrieval of attributes and values that reside on these

external directories. This environment has been

tested in small scale by the FBCA with several

directory and CA products.

Directory Issues
The FBCA model presents two fundamental

challenges to the development of a HEBCA world.

First, the FBCA was constructed under the

assumption that X.500 directory services would be

used for both the bridge and the agency directories,

and the location for publishing certificates

(including objects containing client, CA, CRL and

ARL information) would be known a priori.

Second, using directory request chaining to resolve

requests for X.509 objects which the X.500 standard

supports presents difficulties for LDAP
implementations, since LDAP does not have a

uniform mechanism for chaining requests and not all

LDAP clients understand LDAP referrals. In the

Higher Education computing environment, as in the

marketplace, the use of X.500 directory servers is

quite limited and LDAP is the predominant

directory server technology employed for enterprise-

class directory-enabled services. Since directory

chaining is not one of the X.500 capabilities brought

forward into the LDAP .specification, the project

team developed techniques for getting around these

limitations.

183

1st Annual PKI Research Workshop—Proceedings

Fundamental to the Federal BCA model is the

notion that a request for an object associated with a

SubjectName (Subject or Signer) is performed

directly and not by issuing search requests. An
application simply calls the “getDN” function and

the directory infrastructure resolves the DN for the

application.

It is also important to note that without an AIA

extension in the certificate, the issues related to

chaining and locating objects become significant.

Very little software makes use of AIA , however,

DAVE and CAM both use the ALA extension if it is

present. If an HTTP URL form is present, DAVE
will bypass directory lookups and use HTTP
directly. If an LDAP URI form is presented to

DAVE, the module directly queries the given LDAP
server for the given DN; if it is a DN-only form,

DAVE queries the default LDAP server using the

DN from the AIA field, not the DN from the

issuer/subject fields. The same logic applies for

CDP fields when getting CRLs.

Chaining
This paper does not attempt to describe all aspects

of chaining per the X.500 specification, but simply

makes note of some of the reasons for choosing the

X.500 chaining methodology and presents

challenges for an LDAP equivalent methodology.

What typically transpires in the BCA model is that

an application receives a form or document with an

affixed certificate. To validate that certificate, the

CRL associated with the issuer of the certificate

must be queried to see if the received certificate is

still valid. The application (or an associated

certificate-handling module) extracts the Issuer

Subject Name from the certificate and requests the

DN that is the Issuer SubjectName from a locally

defined and -configured directory service. In the

X.500 context, the DSA has the responsibility for

performing any name mapping and for chasing

down the DSA that houses the object associated

with the DN. Since this involves accessing other

directories, the authentication credentials are

appropriately passed to other directories for proper

access control to required information. This places

the burden of translation and location on the DSA,
and the application has to know little of the “magic

behind the curtain.” This “magic” is commonly

referred to as “knowledge references” and there are

various types to describe and implement different

behaviors. One reference describes a chaining

agreement between two DSAs. Another reference

describes a referral, which is returned to the

application to be handled as the application sees fit.

From an application perspective, this is a reasonable

mechanism.

In the LDAP world, however, chaining doesn’t exist

formally. It is relatively easy to implement a

simplified version of chaining using LDAP, but

there is no standard defined for the activity. In the

pilot project, the application has to chase the DSA
associated with an issuer DN. While applications

usually call libraiy functions, this model potentially

increases the complexity for the applications,

depending upon which LDAP libraries are used. In

the case of the open-source OpenLDAP
implementation, a derivative of the University of

Michigan SLAPD implementation, the libraries

handle referral chasing rather well. Nevertheless,

for both referral and chaining, there is still work that

must be done at the DSA to define knowledge

references (and, of course, to test those references).

Thus, in LDAP-based models, applications must

know more about the process of certificate

validation, calling library functions and performing

the work, but this type of activity is commonplace

for LDAP-enabled applications. If handled

properly, the X.500 model and the LDAP model are

equally transparent to the application.

One important lesson from the FBCA work is that

chaining agreements between different vendors of

X.500 DSAs is quite problematic - to the point that

a workaround was required for successful

demonstration of the project proof of concept. Not

every institution has the same Certificate Authority

product or directory service product, and if they do

have the same products, they might be different

versions that are incompatible. This last situation

particularly caused problems at the Dartmouth

College PKI Lab, both with the CA and the

directory (which had to be upgraded to the latest

version, and even then had numerous directory

chaining issues though it was an X.500 directory).

Finally, the DSP protocol is time-dependent and

hence two directories that are tied by chaining

agreements require time synchronization in order to

operate correctly.

Resolving Objects via LDAP:
Registry of Directories

Given that LDAP has no inherent chaining

capability, a knowledge reference service was

developed that the LDAP-enabled, BCA-aware

applications utilized. This service is a Registry of

Directories (RoD). The RoD is an LDAP directory

184

1st Annual PKI Research Workshop—Proceedings

utilized to provide “smart referrals” for CAs which

are cross certified with the HEBCA, but which do

not have X.500 directories that support the DSP
chaining protocol. The RoD provides DN entries

for the organization CA and an LDAP-based URI

referral to the organization’s directory, where the

CA certificate, CRLs and ARLs actually reside. This

allows DAVE to access the directory of the

institution quickly and to retrieve the CA certificate,

CRLs and ARLs in order to perform the path

development and processing needed to bridge a

trusted path with generic LDAP read and LDAP
search operations. This is not much different from

the FBCA concept, except that multiple directories

are accessed via LDAP by the path processing

software as opposed to being accessed by a single

bridge directory, which then chains to the

distributed directories of the participating CAs. The

advantage of this is the simplicity of management of

the RoD, as opposed to establishing separate

chaining agreements across numerous distributed

directories. This is particularly important given the

sheer number of institutions, and the diversity of

their infrastructures and needs.

The project created the RoD on a test system

(dodhe.intemet2.edu) using different ports to

simulate a federated administration model of this

registry. Our first implementation required the

application be configured with the top of the registry

service defined - or pointed to - any DSA associated

with the RoD service. Each RoD DSA was

configured with a superior reference, which implied

that any DN requested that was not managed by the

current DSA yielded a referral to the top of the RoD.
The RoD figure below shows an expansion of the

RoD hierarchy for this phase of the project. For

each root, we configured a new RoD hierarchy. We
defined two roots for this part of the project, one for

c=US and one for dc=edu. Only the c=US branch is

shown below, since this presents the FBCA test

environment, as well as the FIEBCA test

environment.

Registiy of Directory hierarchy for Phase Two of the pilot

185

1st Annual PKI Research Workshop—Proceedings

Note the referrals shown in the above figure at:

c=US
o=U.S. Government

ou=NIH
ou=FBCA
o=University of Wisconsin

o-dartmouth college pki lab

The RSA FBCA Certificate Authority was also

selected in the above figure and shows the object

contents to the right, revealing the CRL,
crossCertificatePair, and caCertificate attributes

that would be utilized in path validation and

discovery. An application requesting the associated

data with this object would, starting at the top,

receive one referral for c=US, then another referral

for o=U.S. Government, then one more referral for

ou=fbca. The DN of this object is: cn=RSA_FBCA,
ou=fbca, o=U.S. Government, c=US.

Referrals within the RoD service may exist at any

level as appropriate for the administration of the

namespace being referred. This offers flexibility to

delegate administration out to the true owners of the

namespace in the "global" DIT space.

Open Issues for the Registry of

Directories

• Resource discovery seems to be a daunting and,

as of yet, unsolved problem. Configuring client

software (email clients, web servers and so on)

with a local (or remote) DSA that is part of the

RoD service is not desirable. Software should

have a mechanism for locating the global

service only if there is not a locally defined

service. Using DNS SRV records and even

poking at the DNS hierarchy within the local

domain seem appropriate until an RoD Service

SRV record is located. This will allow the

starting point to be locally defined and will

provide an escape route from the global

hierarchy for special arrangements or

alternative hierarchies depending on the

commercial climate of namespace providers.

DNS security is not an issue here since the

objects being located will be digitally signed

and will be, therefore, “self-secure” with

respect to the certificate being validated.

• It is not clear which approach is better: getting

an object or searching for an object. If

certificates contain AIA extensions that lead

directly to the object associated with the issuer,

this is clearly the best approach. However, not

all methodologies associated with AIA are

understood by all software. If one has to locate

the issuer object, then how is that

accomplished? Do we search on the DN in

question or simply get it? Currently, there is

quite a bit of discussion within the IETF-PKIX

community as to which approach is best, and

even discussions regarding the representation of

a certificate in a directory. Do we provide new
attributes that represent the contents of

certificates and search those attributes (since

X.509 certificates are stored as binary blobs) or

do we search using special filters and matching

items that allow for searching inside the binary

X.509 blobs? These questions are not yet

resolved, but the FBCA model will likely have

to incorporate some new set of techniques to

work with new, PKI-aware applications

developed in response to the results of the IETF

deliberations.

• The referral URI used in the smart referrals of

the RoD must be pre-escaped, meaning the URI
definition rules must be adhered to such that

space characters must be translated to the %20
in the URI.

• Utilizing the LDAP standard port definitions of

389 or 636 simplifies the setup, since the

firewalls usually are already open for other

LDAP services. The X.500 chaining agreement

setup requires special ports to be opened, which

can lead to time delays and further security

concerns by IT staff.

• In the case of X.500 directory chaining,

chaining agreements are required in both

directories. This requires a coordinated effort

and substantial amount of administrative time to

initially setup, and test proper chaining. The

LDAP referral method was found to be easily

set up and tested without the need for tightly

coordinated effort and without the number of

schema restrictions of chaining.

• Directory availability and security are critical

issues associated with the deployment of this

type of PKI. There exist many issues and

solutions to yield high levels of both

availability and security. The Federal model

advocates use of a "border directory" which is

essentially a public view of data originating

from internal directories or databases that likely

reside behind a firewall. There are other issues

associated with directory-enabled applications

that also require consideration that we will not

attempt to discuss here. For more information,

186

1st Annual PKI Research Workshop—Proceedings

refer to the Intemet2 Middleware Initiative web

site and the LDAP-Recipe at

http://niiddleware.intemet2.edu .

Border directories are specialized directories

exposed to the world that contain a partial

replica of proprietary information in the

enterprise directory information tree of an

institution or enterprise. This allows the border

directoiy to supply public information to the

bridge environment, thereby reducing the need

for directory access controls and simplifying

directory administration. The concept of the

border directory is part of the FBCA
architectural design to provide agency-based

directories that expose only information needed

for the FBCA to perform the path discovery and

path processing. Institutions participating in the

HEBCA will probably find this same concept to

be a useful data security measure. Within the

FBCA, the directories and border directories

may be considered critical infrastructure

systems and therefore require redundancy. This

adds to the setup time and testing of the X.500

chaining agreements for both the bridge

directory and the border directories. The

HEBCA and the participating institutions could

also be considered critical systems, but it is

much easier to set up and test the smart referrals

in the RoD than it is to ensure redundancy on

all parts of the directory architecture.

• Firewalls and access controls to the directories

within the institutions and the HEBCA will

always need to be considered, although the

referral mechanisms of the RoD simplify these

issues because of LDAP’s use of standard ports

389 or 636, as mentioned above.

• Anywhere that X.500 DSP is utilized, the

administration of chaining agreements will

require continuous checking, as well as

synchronized time supplied, adding complexity

to the infrastructure.

• Referral management will require institutional

administrators to be aware of changes to the

local directory tree that could affect RoD smart

referrals. The LDAP Browser/Editor version

2.8.2 by Jarek Gawor was utilized for the

creation of the smart referrals in the RoD as the

native administration interface of the directory

server was found to be cumbersome.

• Dartmouth College cross certified an Entrust

Authority CA with the HEBCA. The Critical

Path (previously PeerLogic) X.500 directory

product was used with the Entrust Authority

CA in this installation. The X.500 product

needed to be upgraded to version 8A3 to

resolve problems with directory chaining. The

cross-certification exchange of certificates did

not complete properly because of a still-

unresolved incompatibility in the RSA product's

response to the Entrust product. This issue was

worked around by manually installing the cross

certificates in the Dartmouth directory. A
shadow DSA was created to avoid potential

. issues resulting from the manual certificate

storage operation. Since additional hardware

was not readily available to support the shadow

DSA at Dartmouth, the team initially attempted

to use a non-standard port for the shadow

directory's LDAP connection. The Mitretek

firewall, however, was only open for port 389

traffic. To work around this issue, the shadow

directory was subsequently hosted on a server

inside the Mitretek firewall. In addition, the

update frequency for the CRL was extended to

simplify synchronization with the shadow

directory.

Desktop Service - Lexign

ProSigner (E-Lock Assured
Office)

ProSigner is a Public Key Enabled (PKE)

application, allowing any PC-based documents to be

digitally signed and encrypted. ProSigner is fully

integrated with Microsoft Word, Microsoft Excel,

and Adobe PDF enabling users to sign and encrypt

documents quickly.

• Provides ease of use through a point-and-click

tool bar that integrates with Microsoft Word,

Excel, and Adobe Acrobat;

• Enables document encryption, so only specified

people can view the content of a document;

• Provides centralized security including signing,

encryption, verification, and certificate

validation;

• Manages multiple signatures and creates an

audit trail of documents as they flow through

the signature cycle;

• Supports any X.509 digital certificate and

works seamlessly with certificates issued by

DigitaLSignature Trust, Entrust, RSA Security,

* VeriSign and others; •

.

• Policy definition,
- enforcement and auditing

insure simple workflow requirements.

187

1st Annual PKI Research Workshop—Proceedings

Usage
ProSigner version 4.2 was utilized as a desktop

service enabling the university partners to sign the

Microsoft Word template PHS-398 form. To enable

the signing, NIH translated its research grant

workflow rules into Lexign signing policy that

defines the two signatures be applied to the PHS-

398 form.

The use of ProSigner, Microsoft Word and the PHS-

398 allowed the researchers to fill out the electronic

grant application form offline, wherever they were

located. The researchers simply utilized Word to

add the pertinent information into the PHS-398

document. Once all the information was completed,

the researchers used the ProSigner controls in

Microsoft Word to select their personal signing

certificate to sign the application, then they attached

it to an email to the institutional signing authority.

The signing authority then reviewed the document,

verified that it was signed by the researcher, and

digitally signed it with his/her own signing

certificate. Once both signatures were attached to

the PHS-398, it was submitted to NIH simply by

attaching it to an email and sending it to the OER
email server.

The NIH recipient then opened the email and

opened the attached PHS-398 with WORD and

ProSigner. The NIH officer’s ProSigner was

configured to validate all certificates against a local

CAM/DAVE validation service. When the PHS-398

was opened, signature validation was requested via

the Validate API. If the certificate was within the

trust list of the CAM, then standard ACES-level

OCSP validation was performed. Since the

certificates were issued from CAs not in the CAM
trust list, validation was passed to DAVE and its

configured default CA, the FBCA - HEBCA bridge

infrastructure, to perform path discovery and path

processing. When both certificates were verified

through the CAM/DAVE service, the NIH officer

then verified all the proper information was

completed for the applications and disseminated it to

referral and data entry.

As mentioned before, currently, ProSigner users

must mange participating institutions’ root

certificates since the application still needs to see

them in the Microsoft certificate store as trusted CA
issuers in order to operate properly, even though it is

CAM-aware.

Since Entrust software uses a proprietary client-side

certificate store, it was necessary for Dartmouth’s

PKI Lab to use the Entrust-specific version of

ProSigner to sign the sample NIH PHS-398 form

with Entrust-generated certificates. Other pilot

project participants used the Internet Explorer

version. The now-current version of Entrust

supports key/certificate export to the Microsoft

Crypto-API, which should allow use of the IE

version of ProSigner in the future. With these issues

resolved, signatures and remote verification at NIH
were successful.

Outstanding Desktop
Application Issues To Be
Resolved
The ProSigner version 4.2 utilized in the pilot

project contained several problems that were

worked around and should be fixed in later versions.

Following is a brief list of these problems, followed

by further explanation.

1. Explicit Trust in the CAM/DAVE validation

without attempting to verify the CA within the

local browser root store : ProSigner has been

designed so that its certificate validation

supported CRLs, OCSP, and CAM validation.

In the case of CRL and OCSP based

validations, the explicit validation of the CA
required that the issuing CA root certificate was

in the local browser root store and that the

certificate being validated was valid within the

validity period of the issuing CA’s certificate.

2. The CAM response interpretation : Currently,

the CAM validation API utilized by ProSigner

returns several components to the validate API

response message. Two of these parameters are

important to the operation of the bridge-bridge

model: the first is the CAM status code, which

is the authoritative status of the certificate being

validated and the second is the binary response

message received by the CAM from the CA.

Traditionally, this has been an OCSP response

message from the issuing CAs validation

service that may be used for long-term

validation or archival proof of the certificate

validation.

The addition of DAVE means that an OCSP
response message is not sufficient to contain the

path information and its validation response to

be stored with the document, allowing for the

long-term interpretation of the document

signatures. The addition of another signed

binary response is an issue. Also, the signed

188

1st Annual PKI Research Workshop—Proceedings

binary response from DAVE that encapsulates

the path and validation information has not been

standardized to provide a clear standard for

developers to utilize. Although several IETF

drafts provide options into which this

information may be put, they are still subject to

change. This is an area that needs further

development. The first viable IETF Standard

RFC to defined response information that

includes path and validation information should

be incorporated into DAVE. Of course,

determining which IETF standard is viable can

be problematic.

3. The CAM’s application-to-CAM API has no

security provisioning built into the validate

API . This may be a limiting factor of the

CAM’s acceptance as a general validation

service. An unexpected finding of the

interoperability pilot project was the desire of

researchers to use ProSigner and the

CAM/DAVE validation service across

institutional boundaries. This could allow a

researcher to share critical research information

securely utilizing ProSigner. The recipients

then would need to verify the source of the

signed documents electronically and would

require that a public validation service such as

CAM be deployed with new APIs providing

security to the educational institutions.

4. Verification and Timestamp Issues. ProSigner

stores audit information along with the signed

document as signatures are verified. The

timestamp of the verification is associated with

the signature and with the document. However,

if a document is signed and verified on

4/1/2002 at 12:01AM and then again on

4/15/2002 atll: 59PM, the timestamp is set to

4/15/2002 and not the original signing and

validation date o 4/1/2002. Although not a

direct issue for the pilot project, long-term audit

information is highly important as proof of

when a valid signature is applied to a document

over time. It has been suggested that an initial

validation timestamp and last validated

timestamp should both be associated with

digitally signed documents. This would

facilitate creation of a minimal long-term

archive of signed documents like the PHS-398.

5. When a document that has been signed and

validated with the validation response stored

with the document, then the document’s

signature hash is broken with a debugger,

ProSigner does not report a invalid hash when

using offline validation. This problem was

reported as a defect to Lexign and should be

fixed in the next release of ProSigner.

Policy Issues

The CAs that are part of the Interoperability Project

issued certificates at the test level of assurance. To

do business electronically, some form of policy

needs to be created that addresses trust Within the

commercial X.509 PKI community, this is

understood to require creation of a Certificate Policy

(CP) in RFC2527 format that formulates the policies

and procedures for issuing X.509 certificates at

stated levels of assertion of identity and security. It

also requires creation of a Certification Practices

Statement (CPS) that describes in detail how the CA
is to be operated to comply with the Certificate

Policy. The degree to which a certificate user can

trust the binding embodied in a certificate depends

on several factors. These factors include the

practices followed by the certification authority

(CA) in authenticating the subject; the CA's

operating policy, procedures, and security controls;

the subject's obligations (for example, in protecting

the private key); and the stated undertakings and

legal obligations of the CA (for example, warranties

and limitations on liability).

Beyond the strictly formal policy and procedures

requirement, however, the organization issuing

digital credentials needs to develop trust policies

that address the questions implicit in establishing

secure electronic business processes, for example:

which credentials are good enough to satisfy trust

requirements for a given transaction? What must be

done to satisfy the business objectives, legal

requirements, and culture of the organization issuing

digital certificates?

Lessons Learned
Client Applications Client applications that rely on

a Bridge CA have to know how to handle the

certificate of each CA in the Bridge or to rely on the

server-based certificate validation. Certificate

repositories may not be accessible to the client

applications. Client applications tend to not be able

to handle complicated certificate hierarchies that

may . use cross certificates. Finally, client

applications must be able to utilize the policy

mappings of the different CAs in the bridge. This

tends to be too much 'processing for client

applications to handle.

189

1st Annual PKI Research Workshop—Proceedings

Applications and Certificate Path Processing

Server- based applications need to be able to handle

the complexities involved to support certificate path

processing and validation of the trust domains. In

the implementation of the HEBCA, the CAM was

enhanced to use an add-on discovery and validation

engine (DAVE) module to facilitate certificate path

processing and to validate the trust domains.

Trusted Servers Organizations are moving towards

solutions that leverage trusted servers to do the hard

work associated with certificate processing, rather

than have the client do all the work. Hence

solutions like CAM and OCSP or even plug-in

modules such as DAVE are designed to perform

discovery of a certificate path for processing to be

used for validation.

Cross Certification In the Bridge approaches

previously mentioned, cross certification can only

be obtained with self-signed root certificates.

Numerous commercial PKIs are designed such that

subordinate CAs within the hierarchy are designated

as the trust anchor for specific policies. This leads to

the need to cross certify subordinate CAs with the

bridge environment.

Directory Implementations In the Bridge

approaches previously mentioned X.500 directory

and border directory implementations need to

further embrace LDAP. As mentioned in the

implementation of the HEBCA, a registry of

directories and smart referrals were utilized to

address interoperability across a diverse community

of directory technologies.

Using a Bridge CA The cost for many agencies or

institutions to operate and run their own PKI is more

than these organizations can budget or afford.

These organizations need to consider that in order

to use a BCA, the agency or institution must have

their own PKI. An organization is oftentimes best

served to utilize a trust model or PKI that is already

in existence, such as ACES or a trusted third party

(TTP).

Areas for improvement in the current

application-to-CAM communications protocol:

first, the lack of security within the protocol.

Although not an original design requirement of the

CAM, there are now use cases where the CAM and

PKI implementation would benefit by the addition

of authentication and confidentiality features to

allow validation of the messages sent and received

across the Internet. This would protect the

transactions against denial of service (DOS) attacks

and against replay attacks. Second, as noted above,

the TCP/IP messages between the application and

CAM utilize a nonstandard packet byte ordering,

that is, Microsoft byte ordering instead of standard

network byte ordering. Special attention should be

paid to this when integrating applications to the

CAM. The CAM source AA TEST application,

which is used for initial testing of a CAM
installation, is a good starting point for integrators

implementing the validate API.

Continuing Work
As more agencies and organizations adopt and

participate in the BCA approach, more work needs

to be done to ensure their success. Some of the

immediate needs are identified below.

• Create a cookbook or document that identifies

the minimal requirements and contents of the

cross certificates and the directories; Given the

lessons learned and discoveries made for all the

components, a cookbook or document needs to

be formally written that identifies the minimal

requirements for certificates, directories and

applications.

• Complete the cross-certification of Dartmouth

by resolving the incompatibility with the RSA
Keon CA product and Entrust;

• Continue to work with Verisign to complete the

cross-certification of the University of

California-Office of the President and

University of Texas-Houston Health Science

Center;

• Split the registry of directories to enhance

performance across the infrastructure;

• Analyze and determine a more general solution

for DAVE to perform directory discovery. It

may be advantageous for DAVE to speak

OCSP, for example;

• An investigation into multiple smart referrals to

provide two different URIs to verily the

enablement of redundancy for critical

infrastructure cases. This would include

teaching DAVE to try a secondary URI if the

first did not return a response. If the AIA
extension were mandated for any CA that wants

to operate in a bridge environment, that would

be a good beginning. Then, require an RoD
entry for all participants of a bridge

environment so the software would look at the

AIA extension or the RoD to locate the issuer.

190

1st Annual PKI Research Workshop—Proceedings

Summary/Conclusions
Given the disparate and many PKIs that are in use

within the Federal Government and within other

communities of interest, research institutions and

Federal Government need to begin understanding

how they can best leverage and work with the PKI

environments that are underway. We need to come

to an understanding and agreement that there will

never be a single open PKI for everything. Rather,

each major industry will determine its own solution,

and the other industries that have a requirement to

interoperate with other industries will need to figure

out how to interoperate. An example is in the credit

card world. The Federal Government did not define

its own credit card standard. Rather, it evolved its

payment processes to include the use American

Express (AMEX) cards by Federal employees. The

same is true for PKI. As an example, the higher

education community will define its solution, and if

the higher education community and the Federal

Government want to interoperate, these two diverse

communities will need to determine the best method

of interoperability or continue to participate in the

development of the infrastructure for each

community.

Acknowledgements
Grateful appreciation for their participation in the

pilot project and in the preparation of this

manuscript is acknowledged to: Clair Goldsmith,

University of Alabama at Birmingham; Jill

Gemmill, University of Alabama at Birmingham;

Keith Hazelton, University of Wisconsin-Madison;

Eric Norman, University of Wisconsin-Madison

Robert Brentrup, Dartmouth College; Ed Feustel,

Dartmouth College; Michael Gettes, Georgetown

University; David Wasley, University of California

Office of the President; Bill Weems, University of

Texas - Houston Health Science Center; Mark
Luker, EDUCAUSE; Steve Worona, EDUCAUSE;
Deb Blanchard, Digital Signature Trust; Monette

Respress, Mitretek Systems; Jim Fisher, Mitretek

Systems; Ken Stillson, Mitretek Systems; Russ

Weiser, Digital Signature Trust; Jack Kirivong,

Lexign; Andrew Lehfeldt, RSA Security; Andrew
Lins, Mitretek Systems; Cheryl Jenkins, Federal

Bridge Certification Authority; Judy Spencer, Chair,

Federal PKI Steering Committee. .

References
LDAP-Recipe: A Recipe for Configuring and

Operating LDAP Directories. Michael R Gettes,

Georgetown University, February 2001 & April

2002

Bridge Validation Authority , Ambarish Malpani,

ValiCert, Inc., December 2001

Planning for PKI, Best Practices Guide for

Deploying Public Key Infrastructure, Russ Housley,

Tim Polk, John Wiley and Sons, Inc., 2001

Federal Grant Streamlining Program, Department of

Health and Human Services Response to RFI-4-02-

HHS-OS, Digital Signature Trust, February 2002

Final Report - Phase 1, Prepared for National

Institutes of Health (NIH) Office of Extramural

Research (OER), Under Contract No.

GS00T99ALD0006, Digital Signature Trust,

February 2002

Report of Federal Bridge Certification Authority

Initiative and Demonstration Electronic Messaging

Association Challenge 2000, October 2000,

Mitretek Systems

PKI, Implementing and Managing E-Securitv. Nash,

Duane, Joseph, and Brink, RSA Press, McGraw
Hill, 2001

Educause Review. “A “Bridge” for Trusted

Electronic Commerce,” Mark A. Luker,

January/February, 2002, Volume 37, Number 1

The Evolving Federal Public Key Infrastructure ,

Federal Public Key Infrastructure Steering

Committee and Federal Chief Information Officers

Council, June, 2000

Intemet2 Middleware Initiative Web Site ,

http://middleware.internet2.edii . Middleware

Architecture Committee for Education (MACE), et.

al.

191

1st Annual PKI Research Workshop—Proceedings

192

1st Annual PKI Research Workshop—Proceedings

Experiences Establishing an Experimental International Coalition Public

Key Infrastructure

By Glenn Fink (Naval Surface Warfare Center, Dahlgren VA, fmkga@nsxvc.navy.mil),

Shawn Raiszadeh (Lockheed Martin Corporation
, Fairfax VA, US,

shaxvn.s.raiszadeh@lmco.com), and Timothy Dean (QinetiQ, Ltd., Malvern,

Worcestershire, UK, tbdean@qinetiq.com)

Abstract

Research and testing teams from the US and UK
participated in joint design and testing ofa Public Key

Infrastructure (PKI) for international militaty coalition

operations. We planned the design and testing in five

phases from an initial PKI interoperability study

through design of a second-generation PKI based on

web services. Each design phase is followed by a

testing and demonstration event to verify and

recommend improvements to the system designed.

The paper opens with a description ofthe unique set of
requirements an international militaty coalition must

levy on its PKI. Next, we briefly describe each design

and testing phase to give the reader a sense of context.

This paper documents experiences with PKI technology

that our research group had during the two most recent

testing phases, II and III. We have included design and
test-structure information for these two phases and
highlighted our lessons-learned. We conclude with our

current plans for future phases of the study. The

intended audience for this paper is experienced PKI
users, vendors, and researchers. We hope ourfindings

and recommendations will be useful to the scientific

community as we attempt to enable solutions complex

problems through technology.

Keywords: Public Key Infrastructure, PKI, Security,

International Militaty Coalition, Authentication,

Nonrepudiation.

1.0 Introduction

The Virtual Operations Network (VON) project is an

international military effort to facilitate management of

naval coalitions involving forces from many nations.

Teams of researchers from the UK (QinetiQ in Malvern

and Portsdown West) and the US (Lockheed Martin

(LM) in Fairfax, Virginia, and Naval Surface Warfare

Center (NSWC) in Dahlgren, Virginia)' joined together

to form our VON PKI research group.

1.1 Unique Requirements of Coalitions

Coalitions in operations like Desert Storm and East

Timor have demonstrated that traditional solutions for

communications among a diverse group of coalition

partners require an unsatisfactory amount of time and

effort to establish and maintain. Some of the

communication problems arise from equipment and

software incompatibilities. Other communication

issues come from the inability to trust once

communications are established. Part of the VON
effort involves establishing a degree of trust to facilitate

information-sharing among coalition partners that are

not traditional allies or may even be traditional

adversaries. This project is complicated by the

dynamic nature of modem coalitions where members
may join for a relatively short period of the overall

operation and may change roles during the operation.

Nations participating in international coalitions come
from a broad spectrum of technological ability—from

low-tech, third world nation-states to technological

superpowers. To level the playing field, nations with

technology advantages may have to provide “throw-

away” PKI components and services to their

disadvantaged partners. While it is likely that the US or

one of its high-tech allies would host some of the

coalition PKI, it is essential that any nation, including

the PKI hosting nation, be able to walk away from the

coalition at any time without leaving indispensable

personnel or sensitive equipment behind to maintain the

PKI. Any equipment that must be left behind must be

highly tamper-resistant to prevent technological

espionage.

The coalition PKI should be accreditable by various

nations. This implies that nations can be assured that

none of their national secrets will be released into any

associated coalition without the nation’s explicit

consent. Accreditation generally requires presenting

evidence that the risk is sufficiently low to make it

worth the information gained. Accreditation also

influences the amount of time taken to establish a

coalition. The coalition PKI may be able to reduce this

193

1st Annual PKI Research Workshop—Proceedings

delay by selecting standard or pre-approved hardware

and software packages.

Because the partner nations are quite independent, a

coalition PKI must have decentralized management of

trust. Some partners may already have national PKIs,

and most have national secret networks. Each of these

partner-nations will want full access to information

from the coalition PKI but tightly control the flow of

national data into the coalition.

In military operations of all sorts, timely authentication

and nonrepudiation are mission-critical requirements.

PKI clients must be able to determine the validity of

digital signatures quickly with a high degree of

certainty that the status is up to date. Hardware tokens

are envisioned for this application so that

nonrepudiation may be more reliably achieved. For

timeliness, we plan to require revocation windows of

less than an hour.

The planned coalition PKI will run on shipboard

platforms communicating over High Frequency (HF) or

Ultra-High Frequency (UHF) radio links with

extremely limited bandwidth and intermittent

connectivity. In each battle group there will be one or

more “gateway” ship(s) with satellite communications

(SatCom) capability that will connect battle groups to

the shore-based Network Operations Centers (NOCs).

The NOCs may be nationally or internationally owned
and will interconnect via secure, fixed links. PKI

applications that cannot operate correctly under

circumstances of intermittent connectivity and low

bandwidth need not apply. Figure 1 is an overview of

the communications concept used by VON.

Figure 1: VON Communications Concept

1.2 The Experiments

Our research group conducted experiments with two

separate PKIs during Fall 2000 and Summer 2001.

During the test periods, laboratories at four

geographically separated sites hosted simulated tactical

platforms (ships and NOCs). The platforms were

interconnected by dial-up ISDN lines simulating radio

frequency (RF) transmission speeds. This effort was a

step towards deploying PKI technology in a multi-

national at-sea trial in 2002.

The VON PKI effort can be divided into five phases of

experimentation leading toward eventual deployment in

operational environments:

Phase I Lockheed PKI Interoperability Study

Phase II UK-US Joint PKI Interoperability Test

Phase III UK-US Joint Proof of Concept

Phase IV Multinational At-Sea Prototype Trial

Phase V 2
nd

Generation PKI: Web Services

Currently the project has completed Phase III and some

initial testing for Phase IV. We will complete Phase IV

during Summer 2002. This report documents

experiences our joint research group had while fielding

experimental PKIs during Phases II and III and will

outline plans for the following phases.

Phase I was conducted by the LM team according to

requirements defined by NSWC and the Office of

Naval Research (ONR). LM evaluated five PKI

certificate management systems (CMSs) and two

Lightweight Directory Access Protocol (LDAP)
directory-server products, given the requirements we
had defined. The team simulated a three-nation

coalition PKI using three different PKI vendors. This

study is documented in [1] and is not further expanded

upon here, but findings from it form the basis for the

phases that followed.

Phase II testing occurred in the Fall of 2000 (September

through early December), with the focal testing events

conducted 13-17 November. The purpose of Phase II

was to test the work done in [1] in a truly international

setting. This was our first bilateral experiment in the

PKI school of hard knocks. Two Certification

Authorities (CAs) were set up, Netscape Certificate

Management System in the US and Baltimore UniCert

in the UK. We achieved limited PKI interoperability by

maintaining a trusted lists of CAs in the clients. Parties

successfully exchanged and verified signed and

encrypted e-mail (sans attachments), and, with mixed

success, visited each others’ SSL-secured web pages.

We also established secure network tunnels (via

Internet Protocol Security (IPSec)) but used only static

keying without automated enrollment via PKI.

Phase III testing was conducted in late summer of 2001

(July through August). The purpose was threefold:

1. To centralize trust management at the national

level (as opposed to each user managing trust

lists individually).

194

1st Annual PKI Research Workshop—Proceedings

2. To reduce risk of component or system failure

during the planned at-sea trial during Phase

IV, and

3. To incorporate hardware tokens (smartcards,

etc.) for end user credential storage.

Phase III testing was focused on cross-certification,

exchange of S/MIME e-mail with attachments, and

revocation testing. Both nations setup their own root

CA (the US used Entrust, and the UK used Baltimore)

and the teams cross-certified the two PKI domains. The

2001 testing period is believed to have been the first

time that govemment/military organizations from

different countries successfully established trust

between independent national PKI domains using

different vendor products. Participants at four separate

sites exchanged, validated, and read digitally signed

and encrypted email messages, proving the

interoperability afforded by the coalition PKI.

The Phase IV at-sea trial will exercise the PKI

configuration established and refined in earlier phases.

This phase may involve more nations and will be on

actual rather than simulated shipboard platforms. This

phase should be completed by the end of this summer.

Phase V will incorporate the knowledge gained during

the at-sea trial and attempt to define a middleware

prototype that will standardize the application program

interface to the coalition PKI regardless of the

underlying PKI structure. This phase will rely heavily

on Extensible Markup Language (XML) technologies,

especially XML Key Management Specification

(XKMS) and Security Assertion Markup Language

(SAML). Work beyond this phase will probably

involve further interfacing the coalition PKI with

national PKIs and the multitudes of policy issues that

arise from these interfaces.

2.0 Phase II Experiments

2.1 Objectives of Phase II

The overall objective was to set up a simulated

coalition communications infrastructure and PKI to test

interoperability results obtained during the study done

in the previous phase. The supporting objectives of this

experiment were:

1 . Build a simulated RF shipboard network using

ISDN links and RF simulators.

2. Establish TCP/IP (e-mail) connectivity.

3. Standup national PKIs and establish coalition

trust via trust list.

4. Exchange signed and encrypted e-mail.

5. Test mutual web-server access and SSL.

6. Test publishing certificates to an LDAP
directory and test remote LDAP replication.

7.

Experiment with certificate issue, revocation,

reissue, and CRL distribution.
2.2

Testbed Configuration for Phase II

The testbed for Phase II consisted of a wide area

network (WAN) of computers using ISDN as the

backbone. Figure 2 shows the coalition communication

concept for this phase. Four simulated ship platforms

from fictional countries: Green (San Francisco, CA,
US), Red (Portsdown, UK), Blue (Dahlgren, VA, US),

and Orange (Malvern, UK) communicated over

simulated radio links.

Figure 2: Phase II Coalition Structure

No NOC was used although network operations were

concentrated in Red and Green. Blue and Orange were

the PKI providers for the exercise. The US hosted the

following services:

• CA/RA: Netscape Certificate Management System

v4.1.5 (NT)

• LDAP Directory: Netscape Directory Server v4.1.5

(NT)

• SSL-compliant Web Server: iPlanet Web Server

vl.O (Solaris)

• Web Clients: Netscape Navigator Clients v4.7.5

(NT/Solaris)

• Mail Server: Netscape Messaging Server v4.1

(Solaris)

• S/MIME-compliant Mail Client: Netscape

Communicator Messenger v4.7.5 (NT/Solaris)

The UK hosted the following services:

• CA/RA: Baltimore UniCERT Certificate

Management System v3.0.5 (NT)

• LDAP Directory: ISOCOR Directory Server v2.3rl

(LDAP)

195

1st Annual PKI Research Workshop—Proceedings

• SSL-compliant Web Server: MS Internet

Information server v4.0 (NT)

• Role-Based Access Control: WebMACE v 1.1 (NT)

• Web Clients: MS Internet Explorer v5.5 (NT)

• Mail Server: MS Exchange v5.5sp2 (NT)

• S/MIME-compliant Mail Client: MS Outlook 98

(NT)

• Firewall/Mail Guard: SWIPSY (Trusted Solaris)

2.3 Testing Conducted and Results from

Phase II

We followed a pseudo-military scenario that involved a

coalition forming, performing a mission, evolving, and

disbanding. From the scenario and the objectives we
derived the following our technical PKI events of

interest. Each national CA sent the other CA its self-

signed certificate for the end users to add to their

trusted list. Then US CA issued “coalition” certificates

to UK users and vice versa. We tested these certificates

by exchanging signed and/or encrypted email and by

visiting each other’s secure web sites (via Secure

Sockets Layer (SSL) v2.0 using both server-side and

client-side authentication). After using the certificates

we revoked them and attempted the same tests with the

revoked certificates to make sure that revocation ended

the trust relationship.

Overall success was achieved in most areas. The most

notable deficiencies were caused by incomplete

implementation of PKI awareness in the client

applications.

2.3.1 Problems Encountered in Phase II

There were numerous bumps along the way and a few

failures of minor objectives. This section is a collection

of our problems grouped according to the software unit

where the problems were manifested.

iPlanet Directory Server—We learned that the

Directory Information Tree (DIT) structure is tightly

coupled with working of the CA and other PKI servers.

We originally underestimated the degree of coupling

and could not publish certificates to the directory. We
were forced to do several directory naming scheme

reworks to make certificate publishing work.

Even after fixing the directory problems, we were

unable to publish certificates from Netscape CMS via

SSL to the iPlanet directory consistently. Either the

directory or the CA seemed very buggy on this point.

Once we got it working we dared not touch it. This

behavior would not be acceptable in an operational

environment.

Netscape Certificate Management System (CMS)

—

SSL server-to-server communications never worked for

the Netscape Messaging server. Although certificate

enrollment for the Messaging Server seemed to work

well, the subsequent use of the certificates in SSL
communications did not work. This implied no secure

transfer of e-mail from one mail server to another, no

secure Internet Mail Access Protocol (IMAP), and no

secure access to directory data from the directory

server. We were however using IPSec to bulk-encrypt

all traffic so these issues were not immediate problems.

Netscape CMS seemed to be quite brittle requiring

reinstallation numerous times. Simple changes (e.g., IP

addresses of servers, etc) could render CMS useless

until it was re-installed.

Netscape Communicator clients in general—The

inability of client software to reliably check certificate

status was a major problem. In Netscape

Communicator’s web and e-mail clients, revoked SSL
server certificates would not raise any alarm until a

CRL was explicitly downloaded into Communicator

from Netscape CMS’s end-user web interface. The

button used to download a CRL to Communicator

apparently is only available when visiting the client

web portal of Netscape CMS. Once a CRL was

downloaded into the client, revoked web site

certificates generated the appropriate warning, and mail

users could not use expired certificates for signing

messages. All this was expected and proper, but after

downloading a CRL, the client must manually reload a

new CRL before the old one expires or be unable to use

any SSL or S/MIME facilities. This then prevents the

user from downloading a new CRL! This behavior is

clearly counter-productive. Some flexibility to allow a

user to participate in SSL transactions even if the local

CRL has expired would be helpful. Another possibility

would be to automate the CRL download process. For

our application, CRL lifetimes were very short (fifteen

minutes) so we were forced to ignore CRLs altogether

to avoid the continual annoyance of downloading new
CRLs manually.

Netscape did provide a Personal Security Manager

(PSM) plug-in for its Communicator 4.73 client. This

plug-in would allow the use of Online Certificate Status

Protocol (OCSP) to verify certificates presented to the

client. Plowever, PSM was so buggy and caused so

many crashes that we decided not to use it. Since there

were at that time no other freely available OCSP-aware
clients we elected not to use OCSP.

Netscape Navigator web client—Users of both

national PKIs were able to register for and receive

certificates from the web portal of the foreign CA, but

US users were inexplicably unable to import the UK’s
CA chain into Navigator’s trust list. Numerous creative

attempts failed, although the UK was unable to

duplicate the incompatibility. The reason for this

196

1st Annual PKI Research Workshop—Proceedings

problem was never discovered and may have been

caused by influences outside either the Baltimore CA or

Navigator.

By default. Navigator expects the Distinguished Name
(DN) of an SSL server’s certificate to follow a specific

format. A certificate’s DN must have the common
name (CN) of the server as its first element, and the CN
must match the server’s Domain Name System (DNS)

name exactly. Using a more human-readable CN (e.g.,

“CN=Stanleys Web SSL Cert”) in the certificate

generated name mismatch errors in the browser every

time the web site was visited. This makes maintaining a

large number of certificates unwieldy because they are

not readily identifiable by humans. Supporting the

Subject Unique Identifier field or allowing the CN to be

free form would help.

The UK certificates generated by Baltimore CA and

issued to US users could not be used to sign messages

or validate signatures. The problem appeared to stem

from the inability of the US’s Netscape clients to

import the UK’s trust chain. Reasons for this inability

are unknown.

Role-Based Access Control (RBAC)—Hosts at all

sites were able to access the native web interface of

NSWC’s Netscape CMS CA using SSL with mutual

authentication. US users with certificates issued by the

UK were able to access UK home-grown websites

requiring presentation of a client certificate. But US
Netscape users were unable to properly access UK
pages controlled by the RBAC software, WebMACE.
The reasons for this are not known. The US did not

attempt to protect any of its home-grown websites via

PKI because it was not immediately apparent how to

implement this and testing time was limited.

Firewall and Guards—The UK deployed a coalition

guard on the periphery of its national network. The

purpose of the guard was to prevent leakage of sensitive

information from the national network into the

coalition. Unfortunately, the guard did leak e-mail

addresses with names that revealed the underlying

structure of the UK network (e.g., the domain name
indicated which platform the user was located on).

Eventually this guard would also be a PKI signature

proxy. The guard would replace the signatures of

individual UK users with the guard’s signature so that

the internals of the national PKI would be shielded

from the coalition. This feature has not yet been

implemented.

General PKI Instability—The US lab at SPAWAR
Systems Center—SanDiego, California (SSC-SD)
provided Radio Frequency (RF) link simulation for the

exercise via AdTech SX-12 RF simulators installed at

their site. The RF simulators were intended to provide

realistic bandwidth limitations and error characteristics

to emulate the HF radio and Satellite communication

links that will be used in at-sea scenarios.

Unfortunately, we were unable to simulate RF links in

Phase II because the PKI was never stable enough to be

stress tested.

2.3.2 Accomplishments of Phase II

Out-of-band resources were established for exchange of

administrative data among experimenters. These

resources included ftp, web, and chat servers, Voice-

over-IP (both in the clear and over IPSec), and

teleconference phone calls. The latter two were

indispensable in overcoming the PKI and networking

obstacles we encountered.

We used an IPSec encryption mesh between each of the

four sites using pre-shared keys and 56 bit DES. This

allowed us to assure the security of the experiments

without relying exclusively on PKI.

We published certificate and user information to US
and UK LDAP directories accessible to all. There were

no problems with users registering or retrieving

certificates, except for the US’s problem attempting to

import the UK’s trust chain. Thus, users at all sites were

able to exchange signed and encrypted email using at

least US-issued certificates.

The US deployed a Network Time Protocol (NTP)

server for eventual use as a trusted time server for non-

repudiation. The NTP server was, however, only used

to synchronize clocks in order to preserve the correct

order of receipt of mail messages from all sites.

2.4 Lessons Learned in Phase II

Many general lessons were learned about the issues of

PKI deployment:

• PKI interoperability was, at that time, an

afterthought among vendor products we tested.

• PKI-enabled applications were rare and

limited in their implementation of PKI features

such as certificate status checking.

• PKI was much harder than we thought, and

implementations were not at all robust. The

brittleness of all the PKI implementations

tested meant that they could not be relied upon

for operational use at that time. We learned

that the foundation of workable PKI is the

directory. The format of information stored in

national border directories is crucial for all

parties to agree upon.

• Constant coordination was required to bring up

a coalition PKI.

The state of PKI technology did improve over time as

did our understanding of it. We had much more

success in the next phase of experimentation.

197

1st Annual PKI Research Workshop—Proceedings

3.0 Phase III Experiments

3.1 Objectives of Phase III

The goals of VON Phase 111 were threefold:

1. To centralize trust management at the national

level,

2. To reduce risk of PKI component or system

failure during the at-sea trial (Phase IV) by

defining common minimum architecture

requirements and baselining the configuration

for the at-sea trial, and

3. To incorporate hardware tokens for end

entities’ certificate storage and presentation.

Testing was focused on cross-certification, exchange of

S/MIME e-mail with attachments, and revocation

testing (both end-entity and cross-certificate). Web and

other services were de-emphasized in favor of

solidifying the PKI itself. As the PKI evolves, we
anticipate adding other services.

3.2 Testbed Configuration for Phase III

The testbed for Phase III (shown in Figure 3) simulated

five platforms located at four geographically separate

sites: two national NOCs, one in the US and the other in

the UK, a US gateway ship and two US leaf nodes: The

US NOC was physically split between two locations.

The LM site provided the PKI servers in its half and

NSWC provided DNS and mail servers and served as a

network hub. Both US sites hosted LDAP servers for

performance, redundancy, and fail-over reasons.

QuinetiQ. Malvern. UK

UK NOCQ P
UK CA UK Master LDAP

MaLCfent

^RouterML

Lockheed Martin. VA. US

Router
US Leaf «_

|

CiienLi Clients r

US NOC at Lockheed
Router :nn — LJ U

j||tt
B

US CA US Master LDAP Client f

Figure 3: Testbed Configuration for Phase III

The US team developed a proposed coalition PKI

architecture document [2] that specified interface

standards that PKI products used in the demonstration

must support to achieve the minimum acceptable level

of interoperability. Only commercial PKI products

were used in the demonstration. The proposal was

accepted by the UK with minor changes. In particular,

it was agreed that secure and trusted collaboration

would be achieved by cross-certification between the

US and UK CAs over a single ISDN 64 Kbps channel

that emulated throughput expected during the at-sea

trial in the following phase.

The configuration below was outlined in the proposal to

achieve secure communications and mutual trust

between US and UK systems. The boldface items

represent changes from the Phase II configuration. The

results of the testing confirmed this as the baseline

configuration for Phase IV.

The US hosted the following services:

• CA/RA: Entrust v5.1.1 (NT)

• LDAP Directory: Netscape Directory Server v4.1.5

(NT)

• Mail Server: Netscape Messaging Server v4.

1

(Solaris)

• S/MIME-compliant Mail Client: MS Outlook

2000 (NT) with Entrust Express plug-in

The UK hosted the following services:

• CA/RA: Baltimore UniCERT Certificate

Management System v3.5 (NT)

• LDAP Directory: Border: iPlanet Directory

Server v4.1.5 (NT); Internal: Novell DirXML
1.0 and eDirectory.

• Mail Server: MS Exchange v5.5sp2 (NT)

• S/MIME-compliant Mail Client: MS Outlook 2000

(NT) with Baltimore MailSecure.

• Mail Guard: SWIPSY (Trusted Solaris)

3.2.1 Certification Authorities

Both fielded CA products supported cross-certification

as defined in RFC 2587 [3]. To ensure the security of

the certificate exchange, an “out-of-band” process

(voice telephone) was used to verify the thumbprint of a

cross-certificate request.

Scalability problems arise when establishing and

maintaining trust relationships solely via cross-

certification. A total cross-certification trust model

implies a mesh topology with 0(n
:

) cross-certificates to

be issued and maintained. However, we assumed that

the number of relationships is manageable given our

small demonstration coalition. We chose cross-

certification as a potential step toward an bridge CA
trust model that would require only O(n) cross-

certificates.

To avoid the undesirable side-effects of transitive trust,

we specified that the pathLenConstraint field of the

Basic Constraints extension would be set to zero as

described in RFC 2459 [3]. Transitive trust is indirect

198

1st Annual PKI Research Workshop—Proceedings

trust between PKI domains that can be established

either knowingly or inadvertently. For example,

suppose CA) trusts CA2 and CA2 trusts CA3 . If after

this CA
t
now trusts CA3 then transitive trust exists.

Transitive trust management via name constraints, etc.

was not used.

Risk reduction tests conducted prior to Phase III found

that a number of CA configuration options had to be

agreed upon in order to ensure client application

interoperability. Therefore, the CA products for both

countries were required to support the following

configuration:

• 160-bit SHA-1 hash for authority and subject

key identifiers

• X.509v3 certificates with the following

standard extensions:

o keyUsage

o authorityKeyldentifier

o subjectKeyldentifier

o cRLDistributionPoints

o subjectAltName (containing the subject’s

email address per RFC 822), and

o basicConstraints.

• All other extensions marked as non-critical.

The US installed its CA at the LM NOC site and

published CA information including CRLs, CDPs,

ARLs, and certificates to the collocated US master

directory server. Likewise, the UK installed its CA at

the UK NOC site and published CA information

including CRLs, CDPs, ARLs, and certificates to its

master directory server

The US issued two identity certificates to each US users

one for encryption and another for signing. Private keys

for the signing and encryption certificates were

generated on smart cards; but only encryption private

keys were escrowed at the CA. The UK issued

certificates to its users similarly, except that they used

soft tokens and did not escrow any keys.

The UK and US then exchanged copies of their

respective Root CA certificate both in native format and

in a PKCS #10 signing request via in-band e-mail Once
exchanged, both parties verified the thumbprints of the

PKCS #10s over the telephone. These tasks helped us to

understand the impact of the following problem-domain

issues: the effort involved in using a secure method of

exchanging the PKCS# 10 requests, the amount of work

needed to configure cross-certification, and the time

required to set-up a root CA for coalition operations.

3.2.2 Directory Service

The US and the UK agreed to standardize on the iPlanet

Directory Server v4.1.5 as the border directory service

implementation. The agreement to use a common

directory product avoided several technical and

implementation issues, most notably directory

replication. Surprisingly, although i Planet directory

server v5.0 was available to us, its replication function

is not compatible with version 4.x of the same product.

Since the US did not have the resources to test

interoperability between Entrust and the v5.0 directory,

the UK decided to use the older directory server for its

border directory. Directory interoperability is certainly

an area where standards are lacking. Emerging

standards and products for directory-to-directory

interoperability such as LDAP Duplication/-

Replication/Update Protocols (LDUP)), Directory

Services Markup Language (DSML) and Novell’s

DirXML are possible solutions. The UK demonstrated

the use of Novell’s DirXML internally as an automated

directory synchronization agent between iPlanet

Directory Server v4.1.5, Microsoft Exchange and

Novell eDirectory.

We used centralized-partitioned (a.k.a. hub and spoke

directory) topology for our directory replication

scheme. Communication between the UK and US
directories occurred through the US hub and its UK
replica. In a coalition environment where connectivity

is sporadic and throughput limited, the hub and spoke

topology was best for scalability, redundancy and

manageability. Each coalition member provided a read-

only directory replica of local security information to

the hub directory. The hub directory provided a

complete read-only replica to each spoke, thus allowing

each coalition member a complete local view of the

coalition. Figure 4 depicts an idealized hub and spoke

directory topology in a coalition environment.

Red User

|| |
Directory Server _ Directory Updates Query/Response

Figure 4: Hub and spoke directory topology

In the figure, Blue country supplies its own master

directory information to the coalition and receives back

a re-mastered copy of the entire coalition directory

(including entries for Green country and the Red user).

199

1st Annual PKI Research Workshop—Proceedings

This model allows for countries to participate without

supplying a master directory or a CA/RA. Replication

agreements are minimized while redundancy is

preserved. Any country providing a master directory

server and a coalition shadow may take over as the

coalition hub in case the original hub is damaged or

lost. Note that the Coalition CA in the diagram need not

exist at all and the coalition directory may be hosted by

any partner nation.

Our implementation of hub and spoke topology is

shown in Figure 5. Both parties agreed on a directory

schema including DIT, added PKI attributes, etc. The

US configured two directory servers: one as a US
Replication Hub (US-1), one as a US master replica

(US-2). Then, the US configured a simulated gateway

ship computer (US-3) as a read-only replica of the US
Replication Hub (US-1). The US set up replication

from US-2 to US-1 (replication path RP1); and from

US-1 to US-3 (RP2)

Figure 5 Coalition directory replication topology

The UK also configured two LDAP servers: one as a

UK master replica (UK-1), and one as a read-only

replica (UK-2) of the US Replication Hub (US-1). The
UK collaborated with the US to set up replication from

UK-1 to US-1 (RP3). Finally, the US collaborated with

the UK to set up replication from US-1 to UK-2 (RP4).

Replication path RP2 demonstrated replication over

intermittent links or unreliable connections as may
happen between the Gateway ships and NOCs on the

shore. Replication paths RP3 and RP4 demonstrated

replication over a reliable link, as expected between the

two NOCs in the following phase and in deployment.

Replication was achieved using LDAP bind IDs and

passwords, rather than certificates for this phase.

Replication over SSL will be used in later phases. All

replication was server-initiated (push) rather than

consumer initiated (pull).

3.2.3 Applications

Secure (S/MIME) email was the touchstone application

used to test the Phase III coalition PKI architecture.

S/MIME provides authentication and integrity via

digital signatures over message hashes, and data

confidentiality via encryption. Both the US and UK
used Microsoft Outlook 2000 for encoding and

decoding of S/MIME messages. We used plug-ins for

Microsoft Outlook 2000 to provide trusted exchange of

messages leveraging coalition cross-certificates. The

US used the Entrust Express plug-in and the UK used

Baltimore’s MailSecure product for verifying trust

between the cross-certified PKI domains. The plug-ins

enabled Microsoft Outlook 2000 to check user

certificate status by downloading Certificate

Revocation Lists (CRLs) from a local directory replica.

3.3 Testing Conducted and Results from

Phase III

As detailed above, before beginning testing in this

phase we took pains to define minimum interoperability

standards. This precaution resulted in a much smoother

testing period. We tested by transmitting unsigned,

signed, encrypted, and signed-encrypted e-mail

messages both with and without attachments during the

test phase. Our results demonstrated working path

validation and discovery. We also tested revocation by

sending signed e-mail between realms after revocation

of a user certificate or a cross-certificate.

We used network analyzers to record email and LDAP
traffic and verify system correctness. The recorded

traffic was analyzed to ensure email messages were

indeed digitally signed and/or encrypted when
applicable. The recorded traffic was also used to ensure

proper workflow for certificate validation. Figure 6

depicts the certificate validation logic the US Entrust

Express client used to validate a digitally signed email

message from a UK user.

200

1st Annual PKI Research Workshop—Proceedings

<
Anonymous

bind to local

directory

Get US CRL

Get US and UK CA certs

Get US Cross-Certs

Figure 6: Client-Side Signed Email Validation

3.3.1 Problems Encountered in Phase III

This section presents major problems encountered

during Phase III testing. The problems are organized

according to the products where they manifested

themselves. We have explained each problem to the

extent of our forensic abilities, but because of the

inherent complexity of PKI, formal attribution of

problems is not possible. We hope these records will

be useful to the vendors and to new PKI users as they

field their own PKIs.

Entrust CA—Insufficient fields were present in the

PKCS #10 cross-certification request from the US’s

Entrust CA for a correctly formatted cross-certificate to

be produced by Baltimore's UniCERT CA. In particular

the Subject and Authority Key Identifier fields

appeared to be missing. These fields are essential in

correct trust path building. Cross certification was
successfully achieved using the US root self-signed

certificate instead of the PKCS #10 message. The
missing fields were manually added to the cross-

certificate by the UK’s CA operators.

Baltimore UniCERT CA-The UK found it difficult to

achieve reinstallation of Baltimore’s UniCERT CA

without reinstalling the machine’s entire operating

system. It is very important to establish correct CA
configuration throughout the coalition at install time.

A few other minor incompatibilities were also

discovered between MailSecure and UniCERT in trust

path building using cross-certificates.

Entrust RA - After revoking a user through Entrust

RA, the CRL must be manually created and pushed to

the directory via the Entrust RA interface in order for

the latest CRL to be immediately published to the

directory. Once again, a publish-and-subscribe CRL
mechanism would be ideal.

Entrust Express Outlook 2000 plug-in - Outlook

2000 must be installed in “Corporate Mode” in order to

support Entrust Express. Installing in “Internet Mode”
produced inconsistent results and strange errors when
doing signature validation.

When trying to add a user to the Entrust Address Book

from a Directory Search, Entrust Express generated an

error". Entrust assumes that the certificate being added

to the Entrust Address Book from the LDAP Directory

is an encryption certificate (e.g. the keyUsage value is

“Key Encipherment”). Entrust does not publish digital

signature certificates to the directory because they are

sent in every S/MIME of digitally signed message. If

the userCertificate attribute for a user in the directory

contains multiple certificates, the first or only certificate

must be the user’s encryption certificate. For Entrust

Express, the ideal would be for each user entry of the

directory to contain only one certificate: the users’

current encryption certificate. To avoid problems, any

revoked certificates must be manually remove from the

directory and the first certificate entry must be a valid

encryption certificate.

Entrust Express was unable to validate the certificate

chains with heterogeneous signature algorithms. VON’s
policy specified DSA key pairs, since DSA was the

preferred US and UK Government algorithm. When the

RSA algorithm became public VON’s requirement

changed to using RSA key pairs since RSA has wider

usage. The UK had installed its Baltimore CA using a

DSA self-signed certificate prior to the policy change

and preferred not to reinstall the CA in order to comply.

Instead, the UK team decided to issue all end-entity

certificates with RSA key pairs and leave the self-

signed root certificate alone. Unfortunately, we found

during testing that Entrust Express displayed an error
11 '

when opening digitally signed messages received from

the UK since the sender’s CA certificate public key

algorithm was different from the public key algorithm

used by end-entity certificates. The work-around was to

ensure the same public key algorithm is used for CA
and end-entity certificates. To fix this problem during

the testing events, UK had to reinstall its entire CA to

change the CA’s self-signed certificate to use the RSA

201

1st Annual PKI Research Workshop—Proceedings

algorithm. All UK user certificates were then issued

with the RSA public key algorithm. In general we
determined that the Entrust plug-in could handle

homogeneous RSA or DSA algorithms all the way up

the chain, but cannot validate certificates whose

validation paths use mixtures of DSA and RSA signing

algorithms.

iPianet Directory Server - Occasionally, replication

agreements did not result in automatic replications

when the directory service in question functioned as

both a supplier and a consumer of the same tree (e.g.,

coalition mirror directories that also replicated

themselves to other directories).

iPianet Messaging Server - The Messaging Server

must be able to write to the directory root organization

(e.g. “o=coalition.mil”) where it pulls email-related

information. Otherwise the Messaging Server will fail

to start Simple Mail Transfer Protocol (SMTP) services.

The Messaging server uses the root entry to store

certain administrative data. If the root entry is not

writeable, the SMTP service cannot start, but other

services may. The US had to constrain directory

replication to its Messaging Server to the “ou=United

States, o=coalition.mil” subtree to work around this

limitation.

Entrust & Baltimore Mail Client Plug-ins—By
default, Entrust and Baltimore cache Certificate

Revocation Lists (CRLs) and Authority Revocation

Lists (ARLs). It was therefore necessary to restart the

clients to download the latest CRL from the directory

when conducting revocation tests. This is not a

shortcoming; both retrieve CRLs from the directory

when the most recent CRL expires. Unfortunately, we
found no way to push an interim CRL containing newly

revoked certificates to the clients before the next update

time. Turning caching off produced excessive CRL
network traffic, and caching time could not be set

below four hours for Entrust because that is the

minimal CRL lifetime allowed in the version of Entrust

CA we were using. Our requirement for timely

revocation drove this testing, and no suitable alternative

could be found. OCSP was not supported by either

client, and even with OCSP, our requirement to tolerate

intermittent network connectivity would have limited

OCSP’s utility. The most satisfactory arrangement

would be if there were some way to set up a CRL
publish-and-subscribe mechanism where CRLs could

be pushed asynchronously to clients.

Problems were encountered when sending e-mail

messages between Entrust Express software and

Baltimore’s MailSecure software. Entrust Express

includes the entire certificate chain with each signed

message. MailSecure used the chain included in the

message to perform validation instead of consulting the

directory. Therefore all Entrust Express-signed

messages failed to validate in MailSecure because the

US-signed-by-UK cross-certificate found in the

directory was never seen. Since the UK’s trust of the

US was documented in the cross-certificate, the US root

self-signed certificate was not trusted directly.

Individual user certificates could be validated after

opening the messages by manually resolving trust paths

back to the cross-certificate. Since it would be

impossible for Entrust Express to include the correct

validation chain for a UK user, a straight-forward

solution would be to no longer include the validation

chain in messages at all. Unfortunately, Entrust Express

did not provide such a facility. Inclusion of a proper

validation chain would help satisfy the intermittent

network connectivity requirement, but the amount of

additional data sent with each message could pose a

bandwidth problem under the strain of operational use.

A number of attributes needed to be added to the UK’s

directory entries that were mandated by Entrust: First

Name, Last Name, Common Name, User ID, Password,

mailrecipient ,
nsmessaginservet'user, mailbox ,

Maildeliver, Mailhost to correctly process them. These

were not strictly needed by the UK, but were added for

compatibility reasons.

Baltimore MailSecure—MailSecure did not recognize

the cross-certificates we used to establish trust because

it did not use the crossCertificatePair attribute of the US
CA’s directory entry. As a workaround, the UK
obtained the US’s cross-certificate signed by the UK
(labeled «US signed by UK» in Figure 7) and copied

it into the cACertificate attribute of the US CA’s

directory entry. They did this in a “stub” directory

copied from the real directory so as not to modify the

original. They then pointed MailSecure to the stub

directory as the first source for certificate path

validation. When a certificate’s trust chain led

MailSecure to the US CA’s certificate in the stub

directory, the cACertificate attribute further referenced

the UK’s own CA as a superior in the trust chain. We
believe this work-around does not impact the trust

hierarchy. However, if the same modifications were

made in the master (US) directory, all PKI enabled

applications under the US’s CA that use the

cACertificate attribute would work incorrectly.

Therefore the stub directories are a necessary part of the

approach. Fortunately, MailSecure does allow the use

of multiple directories to build validation paths.

Without this capability the UK users would have had to

copy their entire directory into the stub directory to

make the process work.

Figure 7 shows how MailSecure searches the stub

directory first to find certificates. When it needs to find

the US CA certificate, it finds the appropriate entry and

looks at the cACertificate attribute. The first value in

the attribute is the «US signed by UK» certificate

202

1st Annual PKI Research Workshop—Proceedings

that points to the UK CA. This feature allows

MailSecure to automatically trust all US-issued

certificates. The self-signed certificate remains as the

second value of the attribute for compatibility purposes.

However, we have found, in general, that PKI path-

building clients do not look beyond the first value of an

attribute.

Figure 7: Using a Stub Directory with MailSecure

General PKI Problems—Some PKI products expect a

country (C=) code to be the root element of all coalition

DNs (after the fashion of X.500). Since VON uses the

Organization (0=) code as the root, we encountered

several PKI problems. For example, with no country

code in the DN, the UK users were unable to generate

their own keys and request certification via MailSecure.

However, this was achieved at the local Registration

Authority (RA) using face-to-face certification resulting

in the manual transfer of user certificates to client

machines. This DN restriction also means that each

user may need a set of certificates for the coalition and

another set for national use. The practicality of this

must be considered.

RFC 2459 [3] is ambiguous in its specification of CRL
Distribution Points (CDPs). Although all PKI products

we used follow the standard, different legitimate

interpretations resulted in incompatibilities between

compliant products. We discovered that the UK’s
Baltimore UniCERT CDPs could be configured in a

way that made them incompatible with Entrust Express,

although both appeared to be following the standard.

The ambiguity allowed directory locations to be

resolved from UK and US certificates in incompatible

ways. In order to resolve this incompatibility, we found

the Issuing Distribution Point (I DP) must be set to non-

critical and fully qualified CDPs must be used.

We found it necessary to use third-party utilities to

confirm the correct configuration of certain pieces of

software used in the trials. For example, certificate

viewers and Base-64 decoding tools from the OpenSSL
distribution were needed to debug problems with

certificates issued by foreign CAs. We suggest that

vendors include such tools in debugging suites to

increase the interoperability of their software with

others.

3.3.2 Accomplishments of Phase III

All participants accomplished the following during the

summer 2001 test period:

1. Established network infrastructure over a

private ISDN link.

• Simulated platforms included national NOCs and

several simulated ship platforms.

• Infrastructure included both nations providing

coalition e-mail and DNS servers.

2. Established nationally supplied directory

services interconnected into a unified coalition

directory with automatic replication between sites.

3. Set up national PKls and cross-certified them

yielding a unified coalition PKI including:

• Directory Servers

• Certification Authorities (CAs)

• Registration Authorities (RAs)

• PKI enabled e-mail clients

4. Verified the functionality of the coalition PKI

via e-mail tests.

• Conducted 48 e-mail tests (including digitally

signed and/or encrypted e-mail both with and

without attachments) with no unqualified

failures.

• Discovery of encryption certificates via

unified coalition LDAP directory worked

consistently.

5. Tested revocation of individual coalition users

and cross-certificates.

3.4 Lessons Learned in Phase III

The Phase III testing identified a number of issues with

the vendor products used. While all 48 email-exchange

tests were successfully performed, a few of the

exchanges required workarounds deemed unsuitable for

203

1st Annual PKI Research Workshop—Proceedings

a tactical environment. These workarounds were due to

PKJ vendor incompatibilities. In addition a number of

issues were discovered concerning the underlying

network infrastructure (e.g. DNS, routing, etc), which

must be resolved prior to at-sea trials. The teams will

perform additional work in 2002 to get the

demonstration testbed ready for at-sea trials in 2002.

Following are some logistical lessons we learned during

the testing process:

• The conference telephone call was an invaluable

tool that allowed problems to be solved in an

efficient and timely manner. It also allowed out-of-

band verification of certificate fingerprints during

the cross certification process. We found using an

out-of-band channel for verifying certificates and

PKCS # 1 Os to be simpler and more cost-effective

than face-to-face certificate exchange.

• Detailed configuration planning in advance avoids

unnecessary, lengthy reinstallations of software.

• Separating key server machines among several

sites makes it more difficult to locate and rectify

network configuration and other problems.

• The US found it useful to have several

administrative user accounts for each nation: echo,

record, and revocable. The echo user is configured

so that e-mail to this user is automatically echoed

to the sender. This account is useful in testing basic

e-mail connectivity so that one nation can verify

that another’s e-mail server is responding without

further coordination or specialized knowledge. The

record user was used as a repository for CCs of all

mail messages sent during the testing. This user’s

mailbox formed a complete record of all e-mail

sent during the test and often served as verification

that a nation actually sent a message when network

congestion caused delayed delivery to the recipient.

The revocable user accounts are useful for

conducting revocation testing. These user’s

certificates are intended to be revoked for testing

purposes so that other users’ accounts need not be

disturbed and no one’s feelings get hurt!

Following are some lessons we learned about planning

and managing LDAP directory servers for PKI:

• Hub and spoke replication topology worked well,

allowing access to the complete coalition directory

even when remote links were down. Further

experiments may be needed to check that this

strategy will work with high volumes of data

and/or low bandwidth links.

• The e-mail address book is often separate and

disconnected from the coalition directory because

the directories are used for different purposes.

Manually copying e-mail information into the

coalition directory is a slow and error-prone

method. Automatic replication between the e-mail

and the coalition directories is highly desirable. .

The UK successfully demonstrated Novell’s

dirXML product for this purpose in their testbed.

• Each nation needs to ensure that its users’ entries

are fully completed in the directory so that the PKI-

enabled client software in use for other nations can

process all users’ certificates.

• The directory must be a robust product. Restarting

the directory and rebooting the directory server

regularly will not be satisfactory in real-time

operations.

4.0 Conclusions and Future Work
The Phase IV at-sea trial will exercise the PKI

configuration established and refined in earlier phases.

Work is ongoing now to refine the configuration in

preparation for the testing event. Several more e-mail

exchange tests have been conducted, and the testing

methodology has been refined to a high degree of

precision. Since the test will be shipboard, a great deal

of logistical matters must be considered. It normally

takes over a year to determine the ships where an

installation will be done, schedule a time for the ship to

be in port, find a place for the installation, and verify

that the installation works without negatively impacting

any mission-critical systems. At this time, the logistics

dominate the preparation process and the exact venue is

still uncertain. This phase may involve more nations

and will involve untrained users for the first time. We
are prepared to collect data on both the functionality

and the usability of our design from a user perspective.

In Phase V, we will seek to overcome the problems of

PKI by using Extensible Markup Language (XML) and

its child technologies. XML is quickly becoming the de

facto standard for providing interoperability between

disparate systems. XML’s meteoric rise together with

the momentum of Web Services may finally push PKI

to deliver on its promise of universally defined trust and

usability. In particular, XML standards that may be

leveraged to make PKI easier to use and implement

include XML Digital Signatures, XML Encryption,

XML Key Management System (XKMS) and Security

Assertion Markup Language (SAML). These standards

may help solve problems inherent to the design of a

Coalition PKI. For example, providing PKI services for

nations that do not have a pre-existing PKI or the

technology to establish one. With a standard web-based

interface to the coalition PKI, the coalition would be

able to meet nations at their level of technology and,

with minimal provision, make it accessible. The

coalition PKI should have a common interface that is

usable in the same way by all partners regardless of the

204

1st Annual PKI Research Workshop—Proceedings

underlying PKI provider. PKI should be a transparent

part of the network infrastructure and should be usable

over low-bandwidth links and on low-end workstations

or mobile devices. It should allow for considerable

mobility by low-end clients and be easy to set up and

tear down dynamically as coalition partners come and

go. Different coalition members need different access to

the coalition PKI for the various roles they may play.

Particularly useful is the offloading of CPU intensive

PKI processes from the client to the server and making

developers job of integrating PKI into applications

easier. As a result, thin clients can take advantage of

the strong security a full-fledged PKI provides. Using

XML as a fundamental technology for PKI may allow

machines to communicate in a language they already

understand without a complex rollout of customized

hardware and software. The issues of the online nature

of these follow-on technologies will be a subject of

considerable concern in this phase. We plan to

contribute to the development of the standards to the

benefit of all those who cannot depend on continual

availability of the internet or high-bandwidth

connections.

Beyond managing a single coalition, one of VON’s
future aims is to manage interactions among multiple,

simultaneous coalitions. Each coalition must be treated

as a separate “community of interest” with

administrative and policy structures that are somewhat

independent from those of the member nations.

Additionally, there are usually multiple security levels

and compartments within each community. Given n

nations the potential number of communities is

bounded by the expression, 2
n
-l. The number of

security levels and compartments is completely

arbitrary and may be as complex as the coalition

administration finds useful. The picture is further

complicated when one considers the existence of

informal ties and covert channels between nations. The
rules for controlled interchange among such

communities are necessarily complex and should be

enabled/enforced by a coalition PKI.. This very difficult

problem may not be addressable by any technological

solution at all, but the goal of the VON project is to

identify and implement technology that will enable at

least a partial solution to problems of this sort.

In conclusion, we observe that military coalitions are

often formed between partners with complex political

relationships and data sharing requirements. These

requirements must be underpinned by technologies that

support individual identification, encryption of content

for privacy purposes, data separation and access

control, and non-repudiation. These will all be essential

services for future network-enabled warfare operations

between military allies. PKI has been shown to provide

the technical underpinning for such services, and is

likely to be an important part of future coalition

operations. The technologies have been demonstrated

practically, and are found to be reaching the state of

maturity where they can be used for such purposes.

Nevertheless, there are some areas where further work

is required if the military is to reap maximum benefit

from this young technology. In particular, policies on

the use of PKI must be refined, the robustness of the

technology must be determined under a variety of

circumstances, and network operators must be trained

in its use if it is to support coalitions of the future.

References

[1] NTA Coalition Information Technology

Interoperability Final Report, 5 January 2001

[2] “Proposed AUSCANNZUKUS+ Coalition PKI

Architecture for VON 2002 Pacific

Demonstration,” 26 June 2001, by NCAT/
Lockheed Martin M&DS and Glenn Fink, NSWC
Dahlgren

[3] RFC 2587 - Internet X.509 Public Key
Infrastructure LDAPv2 Schema

[4] RFC 2459 - Internet X.509 Public Key
Infrastructure Certificate and CRL Profile

Biographical Data:

Glenn Fink (MS, Comp Sci) is a member of the Information Transfer

Technology group at the Naval Surface Warfare Center (NSWC) in

Dahlgren, Virginia. He specializes in computer and network security,

especially PKI and Intrusion Detection. He has worked for the DoD
for 14 years during which time he has been associated with a variety

of projects mostly involving software development. He plans to leave

the government in Fall 2002 and pursue a doctoral degree in

Computer Science at Virginia Tech. Apart from work, his primary

interest is in his family: his beautiful and intelligent wife and two

sweet young children. He is the "principal" and occasional teacher

for his children's home-school. His family participates in a house-

based church fellowship.

Shawn Raiszadeh has worked for Lockheed Martin designing and

developing cutting-edge security systems for the past three years.

Shawn has worked on a number of research and development

programs with the goal of creating new and innovative solutions to

existing problems. Shawn has a Bachelor of Science degree in

computer science from Virginia Tech.

Tim Dean, (BSc, MSc, MBCS) leads a research team and is a

technical specialist in IT Security. His particular interest is in Public

Key Infrastructures (PKI) and the issues associated with their

practical deployment. He worked for the UK Ministry Of Defence

for 14 years during which time he led teams in a variety of defence-

related messaging and security projects. These included the design of

new security protocols and architectures, including a key

management scheme for a NATO communications network. For the

last five years he has headed a research team studying network

vulnerabilities and countermeasures in a military context. He now
works for QinetiQ, where he is continuing his research interests. In

his leisure time, he enjoys playing the piano and violin, which he uses

as part of the worship group at his local Baptist Church.

i VON is a joint Office of Naval Research (ONR, US) and Defence

Science and Technology Laboratory (DSTL, UK) In the US, ONR
subcontracted its VON work to Naval Surface Warfare Center in

Dahlgren, Virginia (NSWC, US); SPAWAR Systems Center in San

205

1st Annual PKI Research Workshop—Proceedings

Diego, California (SSC-SD, US); and Lockheed Martin, Management

and Data Systems, Integrated Solutions Center, eSecurity Center of

Excellence in Fairfax, Virginia (LM, US). On the UK side, DSTL
(formerly Defence Evaluation and Research Agency (DERA))
subcontracted work to the government-owned private company,

QinetiQ Limited (QinetiQ, UK). Of these entities, our bilateral PKI
research team was composed of members of QinetiQ, LM, and

NSWC. To reduce confusion bred of multiple acronymns QinetiQ

will be referred to as the UK team and LM and NSWC jointly will be

referred to as the US team where their separate accomplishments are

not significant to the context.

II

Entrust Express error: “(-3975) A certificate attribute for this

EntrustName does not exist.”

III

Entrust Express error:“(-4089) Signature algorithm cannot be used

with given key.”

206

1st Annual PKI Research Workshop—Proceedings

Position Papers

207

1st Annual PKI Research Workshop—Proceedings

208

1st Annual PKI Research Workshop—Proceedings

PKI Trust Models

Position Paper for PKI Research Workshop
NIST, Gaithersburg, MD - April 24-25, 2002

Yassir Elley

Internet Security Research Group

Sun Microsystems Laboratories
yassir. elley@sun.com

One of the major obstacles to the widespread

deployment of PKI is the use of poor trust models. The

advantages and disadvantages of using a particular trust

model need to be carefully considered before

deployment. Currently, PKIs commonly use either the

multi-rooted hierarchical trust model (used by web

browsers) or the anarchy trust model (used by PGP).

This position paper summarizes the drawbacks of these

two commonly deployed trust models and advocates a

third approach (known as the bottom-up trust model).

For a more complete analysis, please refer to [1],

authored by Radia Perlman, a member of the Internet

Security Research Group at Sun Labs.

In the multi-rooted hierarchical trust model, each

relying party is configured with the public keys of

several well-known trusted CAs. These trusted CAs are

typically associated with various security vendors and

are completely trusted to vouch for anyone’s public

key, or to delegate authority to another CA to vouch for

public keys. X.509 certificates are typically used in this

model. Starting with a trusted public key, a user can

attempt to build a chain (or path) of certificates to a

specific target. One of the major drawbacks of this trust

model is that if any of the private keys corresponding to

the set of trusted public keys is compromised, the

security of a vast number of entities (presumably the

majority of browsers) is compromised. Even if a trusted

key pair is changed for legitimate reasons (e.g. key

rollover), a massive world-wide reconfiguration needs

to take place. There is also the additional question of

why these CAs have been granted this universal

authority to vouch for anyone’s public key in the first

place. In the real world, trust relationships tend to be

strongest at the local level and tend to dissipate as the

distance between a certificate issuer and subject

increases. It is unclear why a user would place greater

trust in some distant CA than in a CA that is operated

locally by a competent administrator. While it is

possible for users to remove these universally trusted

public keys, ordinary users rarely do this and are more

likely to add malicious keys to this list as a result of a

message box urging them to do so.

The anarchy trust model employed by PGP also

uses pre-configured public keys that are completely

trusted to vouch for other keys. However, these trusted

public keys are typically those of close friends who the

user trusts to serve as introducers to other users. This

trust model addresses the reality that local trust is often

stronger than distant trust. However, this model

requires the user to completely trust the initial trusted

public keys AND to completely trust any public keys

vouched for by the initial public keys. The multi-rooted

hierarchical trust model is better in this regard, because

X.509 certificates allow a certificate issuer to place

various constraints (e.g. name constraints, policy

constraints, path length constraints) into the certificate

limiting the sorts of certificates the subject is trusted to

issue. Additionally, the anarchy trust model does not

scale well beyond relatively small communities. Chains

of certificates can be arbitrarily long and the absence of

constraints on certificates can make the problem of

constructing a certification path intractable.

The bottom-up trust model that we advocate

incorporates the advantages of the multi-rooted

hierarchical and anarchy trust models, while avoiding

their disadvantages. A relying party is configured with

a single trusted public key, which is usually the public

key of a local organizational CA, thus providing the

advantage of local trust. The bottom-up trust model

assumes a hierarchical namespace and uses the

properties of that namespace to efficiently construct

paths from a trusted public key to a target. Chains start

at the bottom (with your trusted CA), traverse up the

namespace as often as necessary, cross over to a

namespace ancestor of the target (if necessary) and then

down to the target. Another advantage of the bottom-up

trust model is that it can be deployed incrementally

within a workgroup or an organization and does not

require users to obtain (and pay for) certificates from an

outside organization. If the CAs in your organization

are managed well, keys of outside entities that are

compromised will have no effect on intra-

organizational security because the certificate chain

between two users within the organization will never

include a key of an entity outside the organization.

209

1st Annual PKI Research Workshop—Proceedings

Finally, if a CA's public key is compromised, there is

no need to re-configure all the machines in the world.

Only the users who have that CA’s public key

configured (typically those in a particular workgroup or

organization) need to be re-configured.

Rather than using specific namespace heuristics, the

bottom-up trust model can be realized by using the

name constraints present in X.509 certificates to

constrain the search space when constructing paths.

This adds flexibility to the model and allows standard

X.509 certificate processing software to be employed.

One result that we reported in a paper at NDSS ’01 is

that building paths from the trust anchor to the target is

more effective for general trust models than building

from the target to the trust anchor. [2] Building from

the trust anchor allows the path to be validated while it

is being built, enabling the quick rejection of paths that

fail to validate. In addition to adopting a bottom-up

trust model, software must be deployed that can build

complex certification paths. To that end, our research

group has contributed to the development of the Java™
Certification Path API [3] and reference

implementation, which has now been released as part of

JDK 1.4.

Additional Information

[1] R. Perlman, “Overview of PKI Trust Models,” IEEE
Network

,
Nov/Dec 1999.

[2] Y. Elley, A. Anderson, S. Hanna, S. Mullan, R.

Perlman, S. Proctor, “Building Certification Paths:

Forward vs. Reverse,” Network and Distributed System

Security Symposium Conference Proceedings (NDSS
’

01), 2001.

[3]

httpr//iava.sun.com/i2se/1.4/docs/guide/security/certpat

h CertPathProgGuide.html

210

1st Annual PKI Research Workshop—Proceedings

PKI Position Paper: How Things Look From The Trenches*

William F. Flanigan, Jr., Ph.D. Deborah M. Mitchell

Information Assurance Chief PKI Program Manager

william.flanigan@mail.dss.mil deborah.mitchell@mail.dss.mil

U.S. Department of Defense

Defense Security Service

881 Elkridge Landing Road

Suite 140

Linthicum, MD 21090

As Public Key Infrastructure (PKI)

technology becomes an aging teenager,

it appears problematic that significant

stability/maturity will be achieved as it

moves into its early twenties. What
follows is a brief description of some of

the principal problems, pitfalls, and

perils of PKI as viewed from a day-to-

day operational perspective. They have

not been prioritized. We present these

issues with the hopeful expectation that

this newly-organized Workshop will

thoughtfully examine them and, where

appropriate, either provide solutions

directly or serve as a means to help

achieve attenuating processes and

mechanisms.

1. Cost. Not only are "gold-plated"

PKIs to be aggressively avoided [1], but

"brass-plated" and even "pot-metal"

PKIs often remain prohibitively

expensive to lease, buy or do-it-yourself.

Large and equity-rich organizations such

as governments and the institutions they

support (for example, college and

university systems), the financial

community, well-endowed academic

centers, and, in general, the Fortune 100

seem to be unique in their ability to

mount post-pilot PKIs. It appears that

this is because these entities can not only

afford PKI, but are not necessarily

subject to the same level of retum-on-

investment (ROI) scrutiny (or any ROI
scrutiny) faced by the rest of the .corn's,

.gov's, .edu's, and .org's on the planet

[2]. There are also PKI life-cycle

maintenance/technology-migration costs

(often “hidden” or not fully compre-

hended initially) that will be incurred at

the organizational-PKI level as well as

for subcomponents (such as corporate

departments and governmental

offices/agencies) utilizing the "free"

organizational PKI utility. These hidden

costs can prove to be formidable, and

may preclude the continued use of the

PKI. What can be done to mitigate this

cost problem? Are most/all PKI costs

directly related to the needless

complexity of PKI technology?

2. Needless Complexity. PKI is

anything but a simple, user-friendly

technology. Part of the complication

seems to stem from digital ancestor

worship of closed-door-generated

standards going back to at least the mid

80's. However (and ironically), the

complexity also would appear to be due

to the current open-standards process.

* This is an unofficial position paper submitted to the First Annual PKI Research Workshop. It

does not represent the views, policies or positions of the U.S. Department of Defense or the

Defense Security Service. The authors have a combined 6-7 years of experience in participating

in Internet standards bodies as well as in designing, building, implementing, and employing large

scale COTS-based PKIs.

21

1

1st Annual PKI Research Workshop—Proceedings

The outputs of Internet standards bodies

are primarily generated by de facto

"professional" protocol writers. As is

the case with all professions, these

individuals speak a unique, esoteric

language. Further, protocols are usually

crafted by committees whose members
have a multiplicity of conflicting

agendas. The result seems to be

protocols so convoluted and obtuse that

vendor implementation is

difficult/impossible and costly (the latter

may discriminate against new and

emerging innovative enterprises).

Further, product protocol compliance is

no guarantee of product interoperability

(or even out-of-the-box full

functionality). What needs to be

addressed to reduce/remove this peril?

Do PKI protocols call out for a hefty

application of the KISS principal?

3.

End-User Needless Confrontation.

End-user awareness, training and

education is unrelenting, and often self

defeating. Extensive hand holding is

required with end users to get them set

up and started using this security

mechanism. Once implemented, users

continue to find it easier to just turn PKI

off rather than to try to figure out (or

remember) what actions they need to

take to use it. This is compounded with

the roll out of new PKI releases and

versions. Virtually nothing about PKI is

totally transparent (or even opaque) to

the end user. What corrective actions

could/should the PKI community pursue

to eliminate this pitfall? Must this

situation continue unabated? Is the lack

of PK-enabled, commercial-off-the-

shelf (COTS) applications that painlessly

foster (or ''force") the utilization of PKI

part of the problem?

4. Certificate Revocation Lists

(CRLs). PKI provides level-of-

assurance trust interoperability between

end users and machines with certificate-

revocation status comprising a large part

of that trust. The CRL concept requires

the replying party to not only validate a

subscriber's signature certificate, but also

to validate the certificates of the

subscriber's signing CA plus the

signature certificates of all the

intermediaries. As to the latter (and

ignoring local caching), it's not

inconceivable that a relying party may
need to check the revocation status of

the certificate used by a validation

authority to sign a path validation

guarantee who, in turn, may need to

check the revocation status of the

certificate used by a responder to sign a

delta CRL who, in turn, may need to

check the revocation status of the

certificate used by a CRL distribution

agent to sign the latest, distributed CRL
who, in turn, may need to check the

revocation status of the certificate used

by the CA to sign the CRL. With

multiple PKIs, the process grows in

complexity. What measures and

mechanisms could/should the PKI

community be designing/testing to

mitigate/eliminate this problem? Is

certificate-revocation status based on

CRLs a needless (and expensive) digital

goat rope?

5. Configuration Management of Self-

Signed Certificates. Browsers now
come preloaded with up to 100 self-

signing certification authorities (CAs)

and roots which are automatically

trusted by the client. Who are these

entities? Some could be your

competitors or adversaries. Intruder

addresses and certificates inserted into a

secure message thread could be

212

1st Annual PKI Research Workshop—Proceedings

automatically trusted. The same may
hold for person-in-the-middle Web sites

exhibiting ''authenticated" certificates

and running SSL/TLS. How can this

peril be countered or minimized, at what

level(s), and will it be scalable? Should

this issue be elevated to the level of a

cyber terrorist threat?

6.

Key Escrow and Recovery. It is

essential for businesses and

organizations to be able to access

encrypted data in the event that

something happens to an employee or

the employee’s cryptographic module.

Some PKI products provide limited

support for key escrow and recovery, but

not (yet) for third-party certificates. It

would seem prudent that escrow and

recovery policies and practices evolve

and migrate in full and complete

synchronization with available

technologies (building a policy field is

no guarantee that the open-standards,

COTS vendors will come!). The legal

ramifications, complexities, and costs

are also directly related to what technical

procedures, processes, and devices are

available (and utilized). Further, there

are not insignificant life-cycle issues to

contend with. How will data, audit

trails, and electronic records in general

required to be retained in an encrypted

state for extended periods of time (due to

legal requirements) continue to be

protected as well as made accessible to

ever-changing parties with access rights

and privileges? Can this problem be

adequately addressed using open-

standards, COTS-based products? Like

the profiles and checklists that have been

formulated and adopted for certificates,

CRLs, policies, and practices by the PKI

community, is a key escrow and

recovery profile and checklist also called

for?

7. Registration Agent (RA) as Super-

user Inside Intruder. In most/all PKIs,

the RA would seem to have unlimited

power with unquestionable authority.

By virtue of their role, RAs must be

trusted, but what about the insider

threat? The RA is not just limited to

making changes in the organization or

business they support; they can, in fact,

effect changes for any objects under the

root and signing CAs of the PKI. How
can this peril be prevented or at least

managed effectively? Can corrective

action be expected from open-standards,

COTS-based PKIs?

8. Cross Certification (Trust Inter-

operability) In The Client. Passing the

key-management buck to the client is

probably tantamount to zero key

management. End users are likely to just

click through the manual trust sequence

when each new PKI is presented.

Checking multiple (or any) CRLs is also

pretty unlikely if not impossible both

technically (at least for now) and

psychologically (forever?). What
processes or techniques might eliminate

this pitfall for, say, S/MIME? Could a

pragmatic solution (in terms of cost and

scalability) consist of reducing the

subscriber's key management to just two

key sets, the mail-server's certificates

and the subscriber's certificates?

References

[1] T. Polk. Panel comments. COTS-
Based PKI: The Hard Questions Persist.

RSA Conference 2002, February 2002.

[2] W. Price. Panel comments. COTS-
Based PKI: The Hard Questions Persist.

RSA Conference 2002, February 2002.

213

1st Annual PKI Research Workshop—Proceedings

214

1st Annual PKI Research Workshop—Proceedings

Novel Schemes for Certificate Management in Public-Key

Infrastructure
1

Ravi Mukkamala
Department of Computer Science

Old Dominion University

Norfolk, Virginia 23529-0162

mukka@cs.odu.edu

Abstract

Efficient and timely distribution of certificate revocation information is the biggest challenge

currently facing the providers of Public-key Infrastructure (PKI). All of the current schemes,

including the Certificate Revocation List (CRL) and its variants, place a considerable processing,

communication, and storage overhead on the infrastructure elements (e.g., Certification

Authorities (CAs) and its repositories) as well as the relying parties. We think that the concepts of

active certificates and recertification would greatly improve the current situation. An active

certificate is one that not only contains static data but also executable code. This concept also

gives rise to several possibilities in using digital certificates for authentication, authorization,

access control, and privilege management. With recertification, a certificate needs to be

recertified periodically during its lifetime. This additional step is expected to reduce the size of

the revocation lists drastically and thereby make the process of validation more efficient. In

addition, it may make it possible to offer several qualities of service to a relying party that are not

possible in the current system. The PKI research group at the Old Dominion University is

currently investigating these concepts in much more depth to investigate their feasibility and

utility in real-world applications.

Detailed Position Statement

In PKI, a certification authority (CA) accepts requests for certificates and issues the same after

verifying the authenticity of the user provided information. Basically, it plays the role of a trusted

third party (TTP), certifying the identity of one party to another. While the primary intent of a

digital certificate is to assure a relying party that a public-key indeed belongs to the purported

owner, it is now being used for other purposes such as authenticating other attributes of a

certificate holder and even for access control.

When a PKI certificate is issued, it is expected to be in use for its entire validity period. However,

various circumstances may cause a certificate to become invalid prior to the expiration of the

validity period. Traditional method of managing certificate revocation is through CRLs as

specified in X.509. Here, a CA issues a CRL periodically and posts it to a repository (or a

directory service). The CRL includes all unexpired certificates issued by the CA that have been

revoked. Each CRL includes a nextUpdate field that specifies the time of the next CRL issuance.

A relying party requiring certificate status information, that does not already have an unexpired

1

The work is supported in part by a grant from Commonwealth Information Security Center (CISC) at the

James Madison University, Virginia, USA.

215

1st Annual PKI Research Workshop—Proceedings

CRL, retrieves current CRL from the repository. Several variants of CRL schemes have also been

suggested.

However, both PKI researchers and practitioners have identified several shortcomings of the CRL
and its variants. First, they are expensive to distribute. Second, they involve expensive storage

and validation costs at the relying parties (e.g., service providers). Third, they provide only

negative information (i.e., a certificate is not revoked) instead of positive confirmation. Fourth,

they place a considerable burden on a relying party to verily a user’s certificate. Fifth, they

contain substantial redundant information (e.g., consecutively published CRLs would have more

than 99% of redundancy).

We (myself and a group of graduate students) are currently investigating two mechanisms to

solve the current problems in certificate management: active certificates and recertification.

Active Certificates

Current digital certificates are passive—they are simply a stream of bits (or bytes) of

data. They are not executables. Whenever a certificate-holder needs a service, he/she

submits the certificate to a relying party (service provider). The relying party is now
responsible for validating the certificate. This often involves contacting a chain of

certificate authorities and processing several CRLs. This process is both resource and

time consuming. Often the relying party spends time in locating the CA or other

repositories. Some time, a relying party may not have the required bandwidth, the desired

storage, or the processing power to do such validations. Since a relying party is more

interested in expending resources for its own service rather than validation of certificates,

we need to find an alternate way.

Our solution to the problem is active certificates. This term is coined by us and is new to

the PKI world. According to our definition, an active certificate is one that contains not

only the necessary data but also an executable code . In other words, it is similar to an

applet or servlet in Java terminology. Now that a certificate is an executable, several

opportunities exist for its use. For example, we can now shift the burden of verification

and proof of validation on the certificate-holder instead of a relying party. In addition,

instead of simply using a certificate for authentication, we can extend its usage for

authorization (e.g., a line-of-credit of $4,000 granted by a certificate), access control, and

privilege management. It also may be helpful in more efficient management of certificate

revocation. In this context, we are currently investigating the following issues.

1 . Flow should the active certificates be implemented in the current technology?

2. How can the certificates be used for authorization? How should the authorizations

change as a certificate is being used? How to prevent duplicate authorizations

being created?

3. How to revoke privileges or authorizations?

4. What security and trust concerns are introduced due to active certificates that are

capable of modifying themselves?

5. What types of newer domains of applications can the active certificates be used

that were not even considered with the current static certificates?

216

1st Annual PKI Research Workshop—Proceedings

Recertification

The primary impetus for introducing the recertification concept comes from the following

observations:

o It is more efficientfor a CA to issue certificates with long validity periods. Since there is

a considerable overhead involved in issuing a certificate, it is more economical to issue

long-life certificates.

o The information about a revoked certificate needs to be maintained and distributed until

its expiration time. In other words, longer the lifetime of a revoked certificate, longer is

the period of maintaining its status by a CA or a repository. So a CRL, for example,

keeps maintaining a revoked certificate on its list until it expires. A longer CRL is

expensive (processing cost) to prepare (at CA), expensive (communication cost) to

distribute to repositories, expensive (communication cost) for relying parties to copy

from the repositories, and expensive (processing cost) for the relying parties to search

when users submit requests.

The concept of recertification aims to combine the benefits of long-life certificates for an issuer

with the benefits of short-lived certificates for revocation. The main idea is to initially issue a

certificate for the normal period of duration (e.g., 1 or 2 years) and then require the certificate-

holder (or user) to get the certificate recertified at certain intervals during its lifetime. A relying

party not only looks for the lifetime of a certificate but also for its recertification at the time of

verification. To reduce the load on the certificate issuer (e.g., CA), the recertification task is

assigned to a different entity called the recertification authority (RCA). Certainly, RCA should

have been delegated this authority by a CA, say by issuing an attribute certificate to this effect.

Typically, RCA does not have to be as trusted and secure as a CA, since it does not originate the

certificate but only recertifies it. However, the CA should certify it so the relying parties can trust

its actions.

In this context, we are currently investigating the following aspects of recertification.

1 . Suggest schemes for efficient implementation of recertification concept.

2. Identify the trust and security concerns of introducing recertification.

3. Evaluate the performance improvements due to the introduction of recertification and

thereby reducing the length of Cross. Similarly, evaluate the increase in load due to

frequent renewals of certificates. A detailed cost-benefit analysis is necessary if the idea

is to be accepted by the PKI community.

4. Identify application domains where recertification would be most suitable. Identify those

where recertification would be too expensive or not appropriate.

In summary, we feel that introducing the active certificates and recertification will greatly

extend the range of applications that the PKI can be used. It will also offer several

qualities of services for both relying parties and users that are currently not possible.

217

p

p

I

I

I

I

I

I

