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Certain trade names and company products are mentioned in the text or identified in an

illustration in order to adequately specify the experimental procedure and equipment

used. In no case does such an identification imply recommendation or endorsement by

the National Institute of Standards and Technology, nor does it imply that the products

are necessarily the best available for the purpose.
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Abstract

This report discusses a general approach to reconstructing ground truth intensity

images of bar codes that have been distorted by LADAR optics. The first part of this

report describes the experimental data collection of several bar code images along with

experimentally obtained estimates of the LADAR beam size and configuration at various

distances from the source. Mathematical models of the beam size and configuration were

developed and were applied through a convolution process to a simulated set of bar code

images similar to the experiment. This was done in order to estimate beam spread

models (beam spread models are unique to each specific LADAR) to be used in a

deconvolution process to reconstruct the original bar code images from the distorted

images. In the convolution process a distorted image in vector form g is associated with

a ground truth image / and each element of g is computed as a weighted average of

elements of/ that are neighbors to that associated element. The deconvolution process

involves a least squares procedure that approximately solves a matrix equation of the

form Hf=g where H is a large sparse matrix that is made up of elements from the beam

spread function. The results of applying the several beam spread models to deconvolving

the bar code images are given. Deconvolution of data measured at 10 m was more

successful than that for 20 m or 40 m. The appendices include more detailed discussion

of the least squares algorithm used and sample programs used during the various phases

of the analysis.

Key Words: bar codes, beam spread, deconvolution, image processing, LADAR, object

recognition, sparse matrix.
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1.0 Introduction

Imaging sensors such as LADARs (laser distance and ranging devices) are used to

rapidly acquire data of a scene to generate three dimensional (3D) models. The increased

interest in this technology is due to the substantial growth in applications for real-time

scene updates driven by the recent advances in imaging sensor software and hardware.

Current applications include 3D modeling, site surveillance, map/terrain

update/reconnaissance, bathymetry
1

, indoor/outdoor visual inspection, autonomous
control navigation, and collision avoidance.

Imaging sensors are used to obtain two- or three-dimensional arrays of values such as

range, intensity, or other characteristics of a scene. Currently available LADARs can

gather four pieces of information - range to an object, two spatial angular measurements,

and the strength of the returned signal (intensity). Some instruments provide other

spectral information, such as Red-Green-Blue (RGB) colors. Various methods are used

to convert the data, which are collected in the form of point clouds, into meaningful 3D
models of the actual environment for visualization and scene interpretation. A point

cloud is a set of x, y, z points acquired by the LADAR during a scan. The need for

accurate representations varies with the purpose of the application. In the construction

industry, an accurate representation aids in determining payment for completed work,

determining if construction errors are being made, and in tracking work progress on a

project. In autonomous navigation, an accurate representation would result in crash

avoidance and successful course navigation. In military target acquisition, an accurate

model could mean the difference between hitting or missing a target.

The data points within the point cloud acquired by a LADAR are indistinguishable

from each other with regard to their origin; i.e., there is no way to tell if a point is

reflected from a tree or from a building. As a result, the methods used to generate the

models treat all points identically and the results are indistinguishable “humps/bumps
,,

on

a 3D surface model of a scene. Current surface generation methods using LADAR data

require intensive manual intervention to recognize, replace, and/or remove objects within

a scene. This is illustrated in Fig. 1.1 where prior knowledge and human intervention

was required to identify objects in the overlaid sets of data points obtained from several

scans. As a result, aids to object identification have been recognized by users as a highly

desirable feature and a high priority area of research.

The use of bar codes or UPC (Universal Product Code) symbols has become the

universal method for the rapid identification of objects ranging from produce to airplane

parts. The same method could also be used to identify objects within a construction

scene. This would involve using the LADAR to “read” a bar code. The concept is to use

the intensity data from the LADAR to distinguish the bar pattern. The advantage of this

concept is that no additional hardware or other sensor data is required. The basis for this

concept lies in the high intensity values obtained from highly reflective materials.

' Mapping of underwater terrain.
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Point Cloud of Initial Terrain

Truck

Figure 1.1. Plot of the point clouds of data acquired from several scans

of a portion of the grounds on the site of the National Institute of

Standards and Technology (NIST) in Gaithersburg, Maryland.

Using bar codes to identify objects on construction sites leads to several challenges:

® Determine the appropriate material for the bar codes - the material has to be

highly reflective and durable.

® Read bar code from 100 m or greater.

- The typical size of a construction site is generally 150 m or greater. This

translates into the ability of the instrument to capture sufficient points on

the bar code for correct identification. This in turn leads to the physical

size of the bar codes and a hardware requirement, the scanner’s angular

resolution. The two factors, bar code size and scanner resolution, are

related because a scanner with better resolution would require smaller bar

codes.

• Distinguish bar code points from the other points in a scene.

• Read bar codes that are skewed.

Early LADAR imaging results from test bar codes showed that at distances beyond

20 m, the intensity images were too blurred to be readable and that image processing

techniques were potentially necessary to reconstruct the image. The blurring or

convolution of the image is a result of the low resolution (number of pixels/unit area; a

consequence of the instrument’s angular resolution) of the intensity images at longer

distances and of distortion of the intensity image by the LADAR optics and by data

6



processing. As a result, an investigation of possible methods to de-blur (deconvolve) the

intensity images was conducted. Deconvolution of the image involves reversing the

convolution, implying that if the convolution process was known, the image may be

reconstructed.

This report documents an effort to use a specific LADAR to “read” bar codes of a

highly reflective material and the effort to determine a convolution-based method to

reconstruct the image. This latter effort includes developing software to convolve images

based on the characteristics of the LADAR, simulations to verify the software and the

reconstruction of the convolved and actual LADAR images. Section 2 describes the

process of data acquisition by the LADAR. Section 3 introduces image blurring

fundamentals. Section 4 describes numerical image reconstruction procedures. Section 5

discusses computational results. Section 6 gives references. Section 7 provides a

summary plus a brief discussion of future work. Appendix A introduces a fast matrix-

vector product algorithm. Appendix B describes the LSQR algorithm of Paige and

Saunders. A listing of the software is given in Appendix C.
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2.0 Data Acquisition

2.1 LADAR Specifications

A Riegl scanner, Fig. 2.1, was used for all the experiments. It returns four pieces of

information - range, two spatial angular measurements and intensity. The intensity is a

dimensionless quantity that ranges from 0 (least reflective) to 255 (most reflective) which

is based on the strength of the return signal.

The specified accuracy of the LADAR is ±2 cm in range accuracy with a maximum
range of 150 m. The field-of-view is 360° in the horizontal direction and 150° in the

vertical direction. The LADAR uses a pulsed (17 ns) laser with a wavelength of 903 nm.

It is mounted on a pan-tilt device whose horizontal and vertical movements are controlled

by two stepper motors. The angular resolution, both horizontal and vertical, is 0.045°.

The manufacturer’s data states that the size of the beam as it exits the LADAR is 42 mm
(W) by 25 mm (H) and the beam has a 3 mrad divergence.

Elementary calculations show that the minimum vertical or horizontal distance

between pixels is approximately 8 mm, 16 mm, and 31 mm for distances of 10 m, 20 m,

and 40 m, respectively.

Figure 2. 1 . Laser Scanner.
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22 Reflective Material

In order to “read” the bar code, its existence has to be first established. To establish its

existence, the bar code has to have a unique feature or characteristic so that it is easily

identifiable. Therefore, the bar code would have to be made of a material that makes it

easily distinguishable from any background material based on the returned intensity

value. A good candidate material would be one that that would return an intensity that

was both much higher than any other material commonly found at a construction site and

that was consistently high for distances of 0 m to 150 m, i.e., intensity did not drop off

with distance. These requirements are essential as the returned intensity is dependent on

several factors - reflectance of object, distance to object, reflectance of the surrounding

objects, lighting (e.g., sunlight, shade), etc. This dependency means that the intensity of

a black object at 10 m could be the same as the intensity of a shaded white object at 50 m
and there would be no way to determine if the object was black or white based solely on

the intensity value.

For the initial tests, 3M’s Long Distance Performance (LDP) reflective sheeting was

used to construct the bar codes. This material is a highly reflective prismatic lens

sheeting used for traffic signage. This material was chosen as it was readily available,

durable, and would reflect light even if skewed away from the light source.

The initial experiment was conducted to determine the viability of using the LDP
material to fabricate the bar codes. A photograph of the LDP material and several

magnified images of individual reflective prisms are shown in Figs. 2.2 and 2.3.

Figure 2.2. Photograph of 3M LDP Material.
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Figure 2.3a: Magnified Photo of LDP Material: Width represents 6 mm of surface.

Figure 2.3b. Magnified Photo of LDP Material: Width represents 1.5 mm of surface.
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2.3 Reflectivity vs Distance Experiment

The effect on the intensity value as a function of distance was examined by taking

readings at 10 m intervals from 10 m to 150 m. Four targets were created using

aluminum sheets, 508 mm (H) x 406 mm (W) (20 in x 16 in), that were: 1) painted matte

black; 2) painted matte white; 3) left unpainted (shiny silver); and 4) covered with a sheet

of LDP material. In anticipation of the need to read bar codes angled away from the

scanner, the LDP target was rotated to three positions - 0°, 45°, and 60° (Fig. 2.4).

Figure 2.4. Rotation Orientation of LDP Target.

At each distance, 10 readings were recorded. The plot of the average intensity vs.

distance is shown in Fig. 2.5. As seen in Fig. 2.5, the intensity values for the LDP target

at 0° are consistently high - 200 to 250 over the entire range of the scanner - and are

easily distinguishable from the other targets; thereby making these points easily

distinguishable from the other points in a typical scene. As expected, the intensity values

drop off when the target is turned 45° away from the scanner - the intensity values for the

LDP target at 45° are very similar to those for the shiny silver target at 0° and one could

be mistaken for the other. At an angle of incidence of 60°, the intensity values for a LDP
target would be indistinguishable from values for the white target. However, these

results are encouraging and indicate that the LDP material could potentially be used to

fabricate bar codes or tags that can be read by a LADAR.

In Fig. 2.5, the intensity values for the black, white, and LDP at 60° targets increase at

distances of 140 m and 150 m, which is contrary to expected. This increase may be

attributed to the contribution of the white wall behind the target at the longer distances;

the wall is located about 160 m from the scanner.
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Figure 2.5. Intensity vs. Distance. The Black, White and Silver targets were at 0
C

2.4 Bar Code Patterns

Once it was determined that the LDP material produced sufficiently high intensity

values and could be used to construct the bar codes, the next step was to determine if a

bar code pattern could be recognized.

2.4.1 Recognizing a Simple Bar Pattern at Close Range

The first test scanned bars of varying widths, set at a fixed spacing between bars of

76.2 mm (3 in) and a distance to the target of approximately 8.7 m (28.5 ft). Three LDP
bars were attached to a wooden board: 292.1 mm (H) x 152.4 mm (W) ( 11.5 in x 6 in),

292.1 mm x 76.2 mm (1 1.5 in x 3 in), and 292.1 mm x 38.1 mm ( 11.5 in x 1.5 in). Fig.

2.6a shows a photo of the bars and Fig. 2.6b shows a plot of the intensity values. As seen

in Fig. 2.6b, the bar pattern is easily recognizable.
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Figure 2.6a: Digital photograph of macro barcode test pattern.

Note that the “glare” from the bars is due to the highly reflective material of the bars.

Figure 2.6b: 2-D plot of LADAR intensity at 8.7 m (28.5 ft).

2.4.2 Distinguishing Bar Patterns at Varying Distances

The next step was to test the ability to distinguish bar patterns at various distances.

The objective was to determine the minimum size bar and the minimum spacing between

bars required to distinguish the bar patterns at various distances. A series of test scenes

were developed for various patterns and scanned at several distances.
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LDP bars were attached to a white poster board 762 mm (H) x 609.6 mm (W) (30 in x
24 in). Three target boards were used. Each board contained nine bars of the same size-
Board 1: 152 mm (H) x 102 mm (W) (6 in x 4 in) bars; Board 2: 152 mm x 51 mm (6 in

x 2 in) bars; Board 3: 152 mm x 25 mm (6 in x 1 in) bars. The arrangement of the bars
on each board was as follows:

* 3 rows of bars with 76.2 mm (3 in) spacing between the rows
• top row: 3 bars spaced at 76.2 mm (3 in)

® middle row: 3 bars spaced at 50.8 mm (2 in)

© bottom row: 3 bars spaced at 25.4 mm (1 in)

The original intent was to test the bar patterns at distances of 20 m, 40 m, 60 m, 80 m,
and 100 m (65.6 ft, 131.2 ft, 196.9 ft, 262.5 ft, and 328.1 ft). The images obtained at 60
m (196.9 ft) (Fig. 2.7) showed that the LDP bars were not distinguishable at that distance.

Therefore, scans were taken at shorter distances of 5 m, 10 m, 15 m, 20 m, 40 m and 60
m (16.4 ft, 32.8 ft, 49.2 ft, 65.6 ft, 131.2 ft, and 196.9 ft).

a. Intensity Image b. Intensity Plot

Figure 2.7. Scan of the 152.4 mm x 102 mm (6 in x 4 in) bars at 60 m (196.9 ft).

Note: Middle row of bars were covered up to get better separation between the top

and bottom rows of bars.

Three scans were obtained for each board at each distance. Some results are shown in

Figs. 2.8, 2.9 and 2.10. In each of these figures, the (a) figure is a digital photo of the test

board; figures (b), (c), and (d) represent the LADAR intensity image on a scale of 0 to

255 for various test ranges; figures (e), (f), and (g) are plots of the intensity values. In the

intensity images and plots, the blurring at the bar edges is likely caused by an averaging

of the intensity values when the laser beam is split between the bar and the background.

14



V

(e) 10 m (f) 20 m (g) 40 m

Figure 2.8. 152.4 mm x 25.4 mm (6 in x 1 in) bars at varying distances.

(a) Photo (b) 10 m (c) 20 m (d) 40 m

(f) 20 m (g) 40 m

Figure 2.9: 152.4 mm x 50.8 mm (6 in x 2 in) bars at varying distances.
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Figure 2.10: 152.4 mm x 101.6 mm (6 in x 4 in) bars at varying distances.

a-2in-40m

250

200

>-150
to

50

0

1.5

-5

Figure 2.11: Raw data acquired by the LADAR for 50.8 mm (2 in.) bar codes at

40 m. Note the need to isolate the bar code images at the far right from the large

amount of background data acquired during the scan.
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In a scan, the number of points acquired can vary from several thousand to several

million points. The number of data points is dependent on the desired field-of-view and

desired angular resolution. Thus, the number of points returned from bar codes would be

a very small percentage (< 1%) of the total number of points in a typical scene. The data

from one of the bar pattern experiments are shown in Fig. 2.11. The scan included the

target board and a small region around the board. As seen in Fig. 2.11, the bar code

points can easily be segmented or filtered out from the other background points due to the

high intensity values (> 200) of the bar codes. A histogram of the intensity values, shown
in Fig. 2.12, clearly shows the data segmentation. By filtering the data for points with

intensities greater than 200, a cropped data set of the bar code pattern may be obtained as

shown in figures (e), (f), and (g) for each of Figs. 2.8, 2.9, and 2.10. This method of was

applied to all the data sets. Fig. 2.12 is a histogram of a typical raw data set.

a-2in-40m

40 60 80 100 120 140 160 180 200 220 240

Intensity Level

Figure 2.12. Histogram of Raw Data Set.
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2.4.3 MATLAB Bar Code Identification Procedure

The MATLAB script given in Appendix C.l employs a simple method to segment the

LADAR data into background and bar data. A histogram technique is used. The
returned intensity signals are binned into 100 intervals. The sample histogram shown in

Fig. 2.12 displays the counts of intensities that fall within the intervals. There are two
dominant modes in the distribution. The lower mode represents the large amount of

background intensity shown in Fig. 2.11, whereas the higher mode represents the bar

code intensities.

The script assumes the data file generated by the LADAR is in text mode with a file

extension “.txt” and that there are leading header lines that begin with “#”.

The use of a histogram as a filter of the intensity response offers a significant tool to

isolate the intensity response from the background. The current algorithm filters out all

intensity data less than 200. Further exploration of this idea will have to be based on

more experimental data.

2.4.4 Bar Code Measurement Results

Two observations about the three dimensional meshing technique of the intensity data

used in this paper can be made. First, the figures show that at distances of 10 m and 20 m
it is possible to isolate reflector bars distanced 76.2 mm (3 in) and 50.8 mm (2 in) apart.

At a separation of 25.4 mm (1 in) discrimination is problematical. A rough estimate of

the separation required at 150 m (492.1 ft) for the current technology would then be 381

mm (15 in). This is based on an extrapolation of 50.8 mm (2 in) at 20 m. A further

enhancement in technology is clearly required in order to reduce this interval.

The second observation is that using a histogram as a filter of the intensity response

offers a significant tool to isolate the intensity response of the bar codes from the

background. The utility of this tool is highly dependent on having a material with a

unique intensity level. This unique intensity allows for easy data segmentation.

18



2.5 Beam Property Measurements

In image processing, the adequacy of the process of reconstructing an image is

enhanced by understanding the entire imaging process and knowing how that process

distorts the intensity measurements. Due to the proprietary nature of the particular device

used for the experiments, a complete knowledge of the optics of the LADAR was nearly

impossible. However, one way to estimate the dispersion of the LADAR beam and its

response from an object was to measure it experimentally. In classic optics the distortion

effects of an instrument can often be modeled based on measurements of bright points of

light that simulate, as close as possible, a delta function. This process in classic optics is

passive in the sense that the optics of the device simply measures the intensity of an

external source. For LADARs, however, the process is more dynamic in the sense that

the LADAR emits a beam that is reflected from an object and then the LADAR picks up

the reflected beam. Thus, in the case of a LADAR there is a beam emitted, whose nature

may or may not be known, there is the reflection from an object and finally there is the

LADAR processing of the reflected beam. This indicates that the LADAR imaging

process is a much more complex process than that of classic optics. For that reason this

section describes the measurements made of a LADAR beam and the imaging of small

round reflectors as an attempt to create delta functions which simulate light pulses

reflected off of a point source. This was used to model the image distortion due LADAR
optics.

2.5.1 Beam Size and Divergence Characteristics

The data for determining the beam size as a function of distance was obtained as part

of an experiment to determine the range accuracy of the LADAR as a function of the

angle of incidence of the laser beam and distance. An infrared viewer was used to see the

projection of the LADAR on the target so that an outline of the beam could be drawn.

Outlines of the beam were drawn by two or more observers and the measurements were

averaged. The procedure of locating the beam and measuring the dimensions is detailed

in another NIST report [1]. Beam dimensions were obtained for distances ranging from

2 m to 100 m and are shown in Table 2.1.

The LADAR used for this report consisted of three laser diodes and the projection of

the laser beam on the target was seen as a bright rectangle for distances less than 10 m
and three bright vertical bands separated by dark bands for distances greater than 10 m.

The widths of the bright bands are denoted by “a”, “c”, and “e” and the widths of the dark

bands are denoted by “b” and “d” in Table 2.1. At 10 m, one observer saw bands but the

others perceived only a rectangle.
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Table 2.1: Beam Size.

Distance L + W+
a

f b+
c

+ d
+

e
+

(m) (mm) (mm) (mm) (mm) (mm) (mm) (mm)
2 17 41 na na na na na

2 15 45.5 na na na na na

2 15 47 na na na na na

2 17 40 a na na na na

2 14 41 na na na na na

5 19 42 na na na na na

5 25 46 na na na na na

5 18 36 na na na na na

5 19 41 na na na na na

10
2

31.5 49 15 2 10.5 1.5 20

10 27 51 na na na na na

10 28 48 na na na na na

10 22 46 na na na na na

10 29 58 na na na na na

10 24 53 na na na na na

10 31 62 na na na na na

20 60 68 19.5 8 16 10 14

20 53.5 68 9.5 16.5 14 14 14

20 55 56 9 15 14 11 8

30 86 79 7 21.5 11 29 10

30 79 87 9.5 24.5 15 34.5 3.5

30 74.5 86 16 18 16.5 23.5 12

39.5 117.5 116 11.5 37.5 14.5 37 15.5

39.5 96 111.5 14 35.5 13 29 20

40 115 117 17 26 20.5 31 22

40 101 105 13 24 24 30 14

50 136 159 39 32.5 14 54 19

50 127 146.5 12.5 47 22 43.5 22

60 158 166.5 21 48 23 57 17

60 161 166 24.5 53 18 47 22.5

70 180 194 20 68 25.5 62.5 18

70 166 187 16 71 18 66 16

80 176 183 14 78 18 59 14.5

80 166 207 20.5 53.5 27 84 22.5

80 172 213 19.5 97 17 57.5 22.5

90 186 260 26 115.5 25 72 21

90 254 248 22.5 73 54 61 38

90 230 230 26.5 65 44.5 64.5 29.5

100 182.5 274 25 101 34 84 30

100 234 266 17 120 14.5 101 12.5

100 246.5 263.5 15 99.5 14 122 14

100 284 288.5 21 107.5 24.5 110.5 25

2
Although the other observers saw a single rectangular bright spot this observer was

able to distinguish bright and dark bands within the rectangular spot.
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Size

(mm)

The lengths and widths of the beam projection are plotted as a function of the distance

in Fig. 2.13. Given the subjectivity when obtaining the beam dimensions, a clear trend is,

nevertheless, visible in Fig. 2.13. The regression fits for width and length are:

width = 0.007.x
2 + l.664x + 34.815

length = -0.0025.x
2 + 2.528.x + 6.959

where

5 < x = distance in meters < 100

width, length = dimension in millimeters

R 2 =0.9874

R 2 =0.9606

(2.1)

Figure 2.13: Beam Size vs. Distance.
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Based on the measured beam dimensions, divergences of the beam in the width
(horizontal) and length (vertical) directions were calculated. Since there were no
measurements of the beam size as the beam exits the LADAR, the beam size at 2 m was
taken as the reference or initial beam size when calculating the divergence. The
divergence was calculated using the following formulas (tan y = y for small angles):

rvertical
(x)

L(x) - L(2) ^

v

(x- 2) -1000
y

" L(x) - 15.55
>

(x- 2) -1000
•1000

Ykorizontal (x)
7 W{x)-W(2) ' W(x)~ 43 1

[
(x- 2) -1000

V

(x- 2) -1000
j

•1000

where

Yvertical YhorizontalM = divergence at distance X in milliradians

L(x) = Average length of beam at distance x in millimeters

W(x) = Average width of beam at distance x in millimeters

x = Distance in meters

73
r

0

t_

g
0>

u
c
4>

v.
<D
>
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Figure 2.14. Beam Divergence.

The average vertical beam divergence is 2.14 mrad (o = 0.39 mrad) and the average

horizontal beam divergence, excluding the outlier (negative divergence) is 1.86 mrad (a =
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0.44 mrad). The average beam divergence (horizontal and vertical combined) is

2.01 mrad (a = 0.43 mrad) - compared with the manufacturer’s specified divergence of

3 mrad. The lower experimental value is likely a result of the inability of the unaided

human eye to detect the faint edges of the laser beam projection. A plot of the beam
divergence is shown in Fig. 2.14.

Plots of the bandwidths of the bright and dark bands are shown in Figs. 2.15 and 2.16.

In Fig. 2.15, the bandwidths for the each individual band are plotted and a trend is visible

for the bright and dark bands. The linear regression fits for individual bandwidths are

given in Table 2.2.

Table 2.2: Coefficients for Linear Regression for Individual Bandwidths.

Description Bandwidth'

(mm)
Slope (M)

+
Intercept (B)

'

R2 *

Bright Bands

Left 0.1123 11.198 0.2283

Middle c^ 0.1842 9.8815 0.2938

Right e* 0.1315 10.643 0.2864

Dark Bands

Left tr 1.1426 -13.251 0.8954

Right d
§ 0.9815 -6.0425 0.8702

Notes:

Bandwidth = Mx + B where x = distance in meters; 5 < x < 100
+ Correlation coefficient squared
§ Corresponds to band widths shown in Notes section of Table 2.1.
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Figure 2.15. Individual Band Widths vs Distance.

Fig. 2.16 is a plot with the same data shown in to Fig. 2.15. However, in Fig. 2.16, the

data for the three bright bands were combined and plotted as ‘bright band’ and the data

for the two dark bands were combined and plotted as ‘dark band’. The regression lines

for the bright and dark bandwidths are:

Dark bandwidth = 1 .062x - 9.6468

Bright bandwidth = 0. 1426x + 10.574

where

x = distance in meters; 10 < x < 100

bandwidth in millimeters

R 2 =0.8784

R 2 =0.2578

(2.3)
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Figure 2.16. Combined Bright and Dark Band Widths vs. Distance.

2.5.2 Spread Function Measurements by Spot Reflection

In order to estimate what the beam spread response might look like, a small point of

light had to be simulated. This was done by cutting two sets of circles of the 3M reflector

sheet and placing them on a black background. Two diameters of circles were cut, the

first being 6.3 mm (1/4 in) and the second 12.7 mm (1/2 in). Three columns of each set

of “dots” were placed on two black metallic backgrounds. The dots were placed about

304.8 mm (12 in) vertically apart with the first and third colums aligned horizontally and

the middle column starting 152.4 mm (6 in) below the start of the first and the third.

This gave the effect of dots alternating by column every 152.4 mm (6 in).
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Figure 2.17: LADAR images at 10 m of 6.3 mm (1/4 in) spots in the left three columns and

12.7 mm (1/2 in) spots in the right columns.

One characterstic to notice of the spots in Fig. 2.17 is that there is a definite horizontal

broadening of the spot images as opposed to a vertical broadening. In fact there is

roughly a 2 to 1 aspect ratio of horizontal to vertical spread in the spot data. This aspect

ratio is also evident at 20 m (Fig. 2.18). At 40 m the spots flowed together and they

could not be distinguished (Fig. 2.19).

2.5.3 Summary of Beam Property Measurements

Being able to reconstruct a ground truth image from a distorted image depends

strongly on knowledge of the optical processes involved. As opposed to photography,

which is a passive process, in that it gathers light that is reflected from an object, a

LADAR is active in that it projects a beam at a target object and then gathers in the

reflected photons. Therefore, to understand a LADAR’ s image, one needs to have
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knowledge of the beam emitted by the LADAR as well as how the LADAR optics

distorts the photon beam reflected from each point of the target image.

The LADAR used in this study produced a beam of photons that split into three light

bands with two dark bands between.The beam size grew nearly linearly to about 250 mm
in length and width at 100 m distant. The predominant growth in the beam size was

accounted for by the near linear growth in the dark bands, whereas the light band widths

remained nearly constant in size.

The distortion affect of a camera’s optics on light reflected from an image is usually

measured by taking a picture of a small bright spot on a black background. In the case of

the LADAR a bright spot was simulated by a small spot of highly reflective material

against a black background. The measurements for the given LADAR showed that the

distortion need not be uniform in all directions. In fact, for the LADAR used, the

distortion tended to spread the image horizontally more than vertically (Fig. 2.17, 2.18)

and at 40 m the reflections from the spots were so distorted that no spots in the image

could be identified (Fig. 2.19).

20m-Spots

y

Figure 2.18. LADAR images at 20 m of 6.3 mm (1/4 in) spots in the

left three columns and 12.7 mm (1/2 in) spots in the right columns.
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Figure 2.19. LADAR images at 40 m of 6.3 mm (1/4 in) spots in

the left three columns and 12.7 mm (1/2 in) spots in the right.
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3.0 Image Blurring Fundamentals

Image processing methods have been successful when applied to blurred photographic

images. They have also been successful in medical imaging. The intent of the current

study was to determine to what extent image processing techniques, applied to LADAR
image reconstruction problems, would be successful.

For the purpose of modeling, the LADAR beam is assumed made up of a stream of

photons. The beam is aimed at a target point on the ground truth image. The value that

the LADAR assigns to that point is the result of an averaging process of the reflections of

the LADAR beam from points in a neighborhood of the target point as shown in Fig. 3.1.

This averaging process can be given a mathematical description beginning with a

discussion of a light pulse.

Figure 3.1. A schematic showing how an image point is assigned as a

result of the blurring process that occurs after a LADAR beam is

reflected.

A bright minute source of light in a dark background is essentially a highly localized,

two-dimensional, spatial pulse, representing a spike of irradiance. A convenient idealized

representation of this sort of sharply peaked stimulus is the Dirac delta function, 3(y).

This is a quantity that is zero everywhere except at the origin, where it goes to infinity in

a manner so as to encompass a unit area, that is

8(y) =
y *0

y = 0
(3.1)

and

J
S(y)dy = 1. (3.2)
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The basic operation of the delta function is called the sifting property and is given by

J f(y)8(y)dy = /(0). (3.3)

That is the delta function extracts the one value of f(x) at x = 0. With a shift of the origin

we have

S(y -y
0 )

jo y±y o

1°° y =yo
(3.4)

and

j f(y)8(y-y0
)dy = f(y0 ). (3.5)

In two dimensions one has

/ J f(y,z)8(y-y0 )S(z-z0
)dxdy = f(y0 ,z0 ). (3.6)

The LADAR can be thought of as an optical system that takes reflected data from

points on a plane, sometimes called a target plane, that are described by coordinates

(y,z) where the positive y coordinate axis points to the right and the positive z

coordinate axis points downward. The jc coordinate is always assumed to point in the

direction of the target. This axis configuration preserves the right-hand rule. The

LADAR then produces an image, often blurred in some manner, on a plane, usually

called the object plane, defined by coordinates (Y,Z) that are set in a one-to-one

mapping with the (y,z) coordinates in the target plane.

Without knowing the physical and optical processes associated with the production of

a LADAR image, a preliminary assumption to make is that it is a linear process. This can

be defined as follows. Suppose that an input signal f(y,z) passes through some optical

system and results in an output g(Y,Z). The system is linear if

1. the input af(y,z) produces the output ag(Y,Z) and

2. given that input f(y,z ) produces g x
(Y,Z) and f2 (y,z ) produces g 2

(Y,Z) then

af,(y>z) + bf2 (y,z) produces ag,(Y,Z) + bg 2
(Y,Z)

where a and b are any scalars.
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A linear system will be space invariant if changing the position of the input from the

target plane merely changes the location of the output in the object plane without altering

its functional form. Thus the output produced by an optical system can be treated as a

linear superposition of the outputs arising from each of the individual points on the target

object. The impulse response will be designated by H (Y -y,Z -z). Our model of

LADAR imaging can then be written as

g(Y,Z)=]
j
f(y,z)H(Y-y,Z-z)dydz. (3.7)

The restoration problem involves estimating the function f(y,z) given a measured

g(Y,Z). Finally there is also typically random noise degradation. In the presence of

additive noise degradation the convolution restoration model can be written as

OO CO

g(Y,Z)=j
J
f(y,z)H(Y-y,Z-z)dydz + n(Y,Z) (3.8)

Equation (3.8) is a special case of a class of ill-posed problems. In order to explain the

ill-posedness of the general superposition equation

OO OO

g(Y,Z) =
J J

f(y,z)H(y,z\Y,Z)dydz (3.9)

we consider two problems. The first shows that the same blurred image can be produced

even though the ground truth image is perturbed by high frequency noise. The second

shows that small noise perturbations of the blurred image can result from large

perturbations of the ground truth image.

First consider the following one-dimensional problem. Let f(s) = 0 for 5 £ [-a,a\ and

then

00 a

g(y)= J
f(s)H(s,y)ds=j f(s)H(s,y)ds (3.10)

The Riemann-Lebesgue Theorem states that

lim f sin(cos)H(s, y)ds = 0
.

(3.11)
W-*CO J

-a

Then

a

g(y) = lim f [/(^) + sin(^5)]//(5,y)J5.
CO—}oo J

-a

(3.12)
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The restoration problem can be stated as given g(y) and H(s, y) determine fls). However,

since a high-frequency sinusoid can be added to fls) and produce data very close to g(y),

a unique solution cannot in general be expected. Other techniques have to employed.

For the second problem we begin by defining

Then define

and note that

|y|
— i/2

otherwise
(3.13)

S
n (y) = nk(ny) (3.14)

jSjy)dy = l (3.15)

Let H(y) be a bounded continuous function defined on the real line. Then for any

integer «>0we can use the Mean Value Theorem for integrals to show

co 1/(2n) Y +\/(2n)

|
S
n
(y)H (Y - y)dy = n

J
H(Y-y)dy = n

J
H(u)du = H(£)

-l/(2/t) Y-\!(2n)
(3.16)

for some Y ^ < Y + l/(2n). Now let

oo

g(Y)=
j
f(y)H(Y-y)dx. (3.17)

Then

oo oo oo

]{f(y) + eSn
(y)}H(Y-y)dy =\ f(y)H(Y-y)dy+

{
eS„(y)H (Y -y)dy

= g(Y) + eH(£)

for some Y -l/(2n) < g < Y + l/(2n). For small e the right hand side of (3.18) is a

small perturbation of the blurred image g(Y) since H(y) is bounded. But the perturbation

offly) can be made arbitrarily large by selecting a sufficiently large n.
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Both of these examples show how ill conditioned the image reconstruction problem

can become. For this reason care must be taken when developing an image

reconstruction algorithm.

Before an algorithm can be described we need to discretize the associated integrals. In

general Equation (3.7) is never directly evaluated since the intensity values f (y ,z) are

possibly known only at discrete points. To discretize the ground truth or target image

define nf discrete values on the y-axis directed to the right and nf equally spaced discrete

values on the z directed vertically downward so that

°=>’i <yi <••<)'„/ =1.

0 = z, <z2 <---<z„f =1,

Ax = z,+i-z,-

Ay
(

= Az, = A.

(3.19)

The unit size is set to one in order to represent a one meter square background to the

bar codes used in the experiments. The intensity at the patch identified by the

coordinates (y,,z
y
) is modeled as

/(?;.<)

(

3 -2°)

where /is a function expressing the intensity response at some point in the patch. Due to

distortions, the LADAR image of the response from the bar code surface is smeared out

into some form of blurred spot.

The grid for the distorted image is taken as a subset (to be defined below) of the grid

for the ground truth image for the purpose of discretization; see Fig. 3.2. Points in the

distorted image will be identified by (7, Z) and those in the ground truth image by (y, z).

These are simply different notations for points in the same axis system.

The distortion at a point (Y

,

Z) in the object plane, due to a point (y,z) in the target

plane, is described by the function 7/(y,z;7,Z) , called here the Beam Spread Function ,

although in standard image processing it would be called a point spread function. For

most practical purposes the Beam Spread Function can be considered spatially invariant

in the sense that its distortion value only depends on the distance between (Y, Z) and (y , z)

so that H has the form H{Y-y, Z-z) as given in Equation (3.7). The incremental distortion

effect at (7, Z) due to a neighboring patch of (y,z) is then

&g(Y,Z) = f(y,z)H(Y-y,Z-z)AyAz. (3.21)

To describe the total effect g(Y, Z) of all of the points (y, z) in the ground truth image

one sums over all of the patches in the ground truth image
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g(Y,Z) = Y^f{y% z] )H(Y- y;,Z- z] )Ay,AZj
• (3.22)

,= 1 7=1

This is the discrete form of Equation (3.7), because as the number of grid points nf in the

ground truth image grows and the patch size tends to 0, the sum can be replaced by the

integral (3.7). This integral is called a convolution integral .

Ground Truth Image

Figure 3.2. This shows the relation of the distorted image to the ground truth image

and the fact that the Beam Spread Function only depends on relative distances

between, points.
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4.0 Numerical Image Reconstruction Procedures

In order to be in a form suitable for computer processing, an image function fly, z)

must be digitized both spatially and in amplitude. Digitization of the spatial coordinates

(y, z) will be referred to as image sampling, while amplitude digitization will be called

gray-level quantization.

Suppose that a continuous image fly, z) is approximated by equally-spaced samples

arranged in the form of an nfx nf array as shown by

f(y.z)

niD /(1,2) • /(!,«/)

/(2,1) /(2,2) • - f(2,nf)

/(»/. 2) - finf.nf)

(4.1)

where each element of the array is a discrete quantity. The right side of this equation

represents what is commonly called a digital image, while each element of the array is

referred to as an image element, picture element, pixel

,

or pel.

The digitization process requires that a decision be made on a value for nf as well as on

the number of discrete gray levels allowed for each pixel. It is assumed here that m
discrete levels are equally spaced between 0 and 255. The resolution (i.e. the degree of

discemable detail) of an image is strongly dependent on both nf and m. The more these

parameters are increased, the closer the digitized array will approximate the original

image. But computer storage and processing requirements increase rapidly as a function

of /i/and m. When an image of lower resolution, such as 16 x 16, is displayed at a higher

resolution, of say 512 x 512, pixels are each duplicated leading to a display that has a

checkerboard-like effect in the graphics display.

Assume that the ground truth image f(yr Zj

)

is given as a matrix f{i,j ) of size nfx

nfai points

0 = v, <y2
<---<y

nf = 1

0=Z, <Z2
<•"<£„, =1

(4.2)

and the beam spread function is given as a matrix H(m,n) of size ma x ma, ma < nf, where

m= 1, ..., ma, n- 1, ..., ma, with H( 1, 1) the upper left comer and H(ma, ma) the lower

right. H has the same grid size as /.

The convolution is a process in which beam spread function, as a matrix of weights, is

sequentially moved across the ground truth matrix. A weighted average of the ground

truth points under the beam spread matrix is computed and the averaged value is assigned
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to a point under the center of the beam matrix. The distorted image is a function g{Yp , Zq)

represented by a matrix g(p,q) of size ng x ng where nf and ng are related by nf= tig + ma
- 1; see Fig. 4.1. Note that ma must be taken as an odd integer.

(ma- 1)/2

Figure 4.1. This shows the relationship of the Ground Truth image of size nf x nf to the

distorted image of size ng x ng , where nf = ng + ma - 1, where the discrete model of the

LADAR beam has size ma x ma. The point X represents the pixel in the distorted image at

which the convolution of the beam with the Ground Truth is assigned.

The spatial coordinates for the distorted image are defined as follows. Let p,q- 1, ...,

ng then set

Y
p
=(P - 1)A,

4.3)
Z, =(<?-!)A.

Similarly, the spatial coordinates of the ground truth image are defined as follows. Let /,

7 = 1 ,..., nf then set

yt
=(/-i)A,

= (y-l)A.
(4.4)

Now we can define the indexed array for the beam spread function in terms of special

coordinates. Although H will be used to designate an indexed array, it will also be used as

the related function of coordinates. For m,n= 1, ..., ma let
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H (m, n) = Hl (um ,
w

n ) (4.5)

where H
L
designates the value of the matrix H at the local coordinates

u ~ ((2m -ma-l)/ 2)A,
" (4.6)
w

n = ((2n - ma - 1) / 2)A.

um and w
n
are local coordinates of H relative to the center of the beam spread function.

For example,

H (1, 1) = HL ((-(ma
-

1) / 2)A, (-(ma - 1) / 2)A),

H ((ma + 1) / 2, (ma + 1) / 2)
= HL (0, 0), (4.7)

H (ma, ma) = H
L
(((ma - 1) / 2)A, ((ma - 1) / 2)A).

A point (Yp ,
Zq) in the distorted image is linked to a point (y/, zj) by

i = p + (ma - 1) / 2,

(4.8)

j - q + (ma — 1) / 2.

For example,

Y
P = y, = >'^(™-i),2 = (p + ("w - 1)/ 2 -i)A - (4 -9>

Therefore, given any p , /, q,j.

Yp-y< =(p-i + (ma- 1)/2)A,

(4.10)
Z

(/
-z

J
=(q-j + (ma- 1)/2)A.

Since H(u,w) is nonzero for (w,w) in [-((ma-l)/2) A, ((ma-l)/2)A ] x [-((ma-l)/2) A,

((ma-l)/2) A ] and 0 elsewhere, the discrete convolution integral becomes

q+ma -l p+ma -

1

X X mY'-y„Z'-z
t
)f(y„zJ

). (4.11)

Summation is first taken down y then z. The A factor has been subsumed into the

definition of H for computational ease. Note that, if the beam spread matrix is sitting

with its center at (Yp , Zq), the upper left point is sitting at (yp , zq). At point (Yp , Zq) of the

distorted image, the sum looks like
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g(p,q) = H(ma,ma)f(p,q) + H(ma-l,ma)f(p + l,q) + --+H(l,ma)f(p + ma-l,q )

+ — + //(l,m<2-l)/(p + w<2-l,raa-l) (4.12)

+—

l

-H (1,1)f(p + ma-\,q + ma- 1).

Since the ground truth image F is larger than the distorted image G, there are more

degrees-of-freedom involved in reconstructing F from a measured G. A computable

approach is to determine F in a least squares manner to satisfy

rrnn ||//F - G||
2

. (4.13)

This is an ill-posed problem since there can be multiple solutions. A penalty term can be

added to this minimization problem that puts a premium on the size of F selected.

Introduce A > 0 and form the following minimization problem

rrnn
|

||//F-G||
2

+/1 ||f||

2

j. (4.14)

The second term is called a regularization term and its function is to control the

magnitude of the final F. In practice A is selected as a small positive number.

At this point we discuss an iterative least squares algorithm by Paige and Saunders [8]

called LSQR. Although this has been discussed in [7] many of the details involved with

the implementation in code may not be familiar to some readers of the current report.

Therefore the details are included in APPENDIX B. Only the general outline will be

given here. A Fortran 77 code is available in zip compressed form on the web as ACM
Algorithm 583 from http://www.acm.org/calgQ/contents/ .

One begins with a fundamental result from Golub and Kahan [5]. Let H be any m x n

matrix with real elements. The original result allowed complex elements but only real

values will be used here. The matrix H can be decomposed as

H = U B V T
(4.15)

where U and V are orthogonal matrices and the first column of U is arbitrary. That is,

U TU - UU T = /, V
TV =W T = /. B is a bidiagonal matrix of the form
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a
x

0 ... 0"

••

3*>
••

,P ... 0

B = 0 •••
fin (4.16)

0 ••• 0 0

0 ••• 0 0

Using the orthogonality property of U and V it is clear that

where

HV = UB ,

H tU =VBt
,

(4.17)

B t

a, ••• 0 0

0 a
2

' •
. : :

: : /?„ o

0 • • • 0 a
n 0

0

0

0

(4.18)

The previous decompositions will become useful in the solution of the following least

squares problem

mm\\Hf-g(. (4.19)

If orthogonal matrices U and V are found that satisfy the above conditions then this least

squares problem can be reduced to a simpler form. By orthogonality we always have

Ml
= v T

so that

\\Hf - g\\ = \\UBV
T
f - g = U T (UBVT

f - g) = BV Tf-UT
g . (4.20)

Let the columns of U be denoted by

£/ = [«,, m
2 ,

•••, um \. (4.21)

Since the first column of U is arbitray, we can set

u,=J^. (4.22)
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(4.23)

T
g 'PC T

U T
g

T
»
2 8 =

0 0

T

_
Um8 \

_o_ _o

= P,e,

where, for notation, e
k

is the vector of all zeroes with one in the k"' element and /?, = |jgjj

.

With this notation one has

\\Hf-g\\ = \\By-P
x
e\ (4.24)

where y = V
T
f. Thus the previous least squares problem can be reduced to the new

minimization problem

min||Bj-^
l
e

l ||. (4.25)

The regularization term can be introduced by solving the minimization problem

min
y

B

AI
y

Pa
o

(4.26)

The algorithm of Paige and Saunders [7] proceeds iteratively so that after k+l steps

one has generated

A=II4
U

k+] — [w, ,m
2 ,

• ",u
k+] ],

VM =h>V2
,---,V*

+1 ],

a
}

/?2 (X
2

A a
3

(4.27)

B
k =

a,

Pik +

1
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The k
A
approximation to the solution /is defined by fk

= Vk yk
where yk

solves the k*

iteration problem

min

\

'

J*

i

yk
~ *r

i

\X1_
_
0 J

If we define the following residuals

(4.28)

h+i P\e B
k yk

r
k
= g-Hfk

then Paige and Saunders [7] show that the relations

(4.29)

y — [J t
'k ^k+Vk+l

H T
r
t
=A 1

fl
+aMTMv

k +

1

(4.30)

hold to machine accuracy. In the second equation r
k+l

represents the last component of

t
k+l = \t

x
, t2 ,

• •
•

,

r
k+l ]

r
. They also show that (r

k ,fk )
are acceptable solutions of

min
/

H
XI

(4.31)

if the values of
||/ +1 ||

or \ak+lTk+l
|

are sufficiently small.
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5.0 Computational Results

Before deconvolution was applied to the original measured bar code images, a

simulation was developed in order to better understand the data distortion brought about

by the convolution process. These computations required several stages. First, the targets

or ground truth images had to be created. There were three of those. Second, the

individual beam matrices had to be generated for simulated probing of the target at 10 m,

20 m and 40 m. Next the target images, originally defined as matrices, had to be

converted to vector form and the beam matrices had to be put into a form to use as

convolution kernels. Next the target images were blurred by computing the convolutions.

Finally a least squares deconvolution process was applied to the blurred images to

retrieve the original images. The first two subsections describe creating the simulated

ground truth data and the simulated blurred bar code images. The third subsection

describes the experience with deconvolving the measured bar code images using various

Beam Spread Functions.

5.1 Creating Simulated Ground Truth Bar Code Data

Determining the ground truth version of an image obtained by a LADAR is a nontrivial

task. One solution is to declare, in the case of the bar code images, that an image

acquired at say 5 m would be considered ground truth. Another might be to take a

photograph of the bar code display and scale, if possible, the photograph’s spatial and

intensity values to approximately those of a LADAR image taken at the same distance.

However, in all of these cases, the data would be affected by the blurring nature of the

data acquisition device. One could agree that at certain distances these effects would be

considered minimal. Another approach, however, and the one taken in this report, is to

build simulated bar code data sets using the distribution of the intensities from acquired

LADAR data. This approach allows one to create properly sized ground truth data sets,

depending on the values of the mesh size of the acquired data (ng) and the matrix size of

the beam spread function being evaluated (ma ), since the number of grid points in the

ground truth data set is related to these two quantities.

A MATLAB script for the simulated ground truth bars is given in Appendix C2. It

generates three sets of simulated bar codes depending on bar widths. The specifications

for these bar code configurations are based upon the experimental bar code artifacts.

Each set of bar codes consists of three rows of bars, each of height 0.1524 m (6 in). The

rows are separated by 0.0762 m (3 in). The axes are taken so that the Z-axis is directed

downwards, the Y-axis toward the right and the X-axis pointed forward. The origin of the

axis system is taken as the center of the middle bar of the middle row. The rows are

numbered 1 to 3 starting with the lower row. The individual bars are numbered left to

right beginning with the lower row as 1, 2, 3. The second row, left to right, is 4, 5, 6.

Finally the upper row, left to right is 7, 8, 9. The distances between bars in the lower first

row is 0.0254 m (1 in), between bars in the second row is 0.0508 m (2 in), and finally in
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the third row the distance is 0.1016 m (4 in). Each of the three sets of bar codes has the

same height. The three widths are 0.1016 m (4 in), 0.0508 (2 in) and 0.0254 m (1 in).

Figures 5.1 - 5.3 show the three simulated ground truth data sets.

Blur-10m-1 in

Figure 5.1. Simulated 0.0254 m (1 in) Bar Codes.

Blur-1 m-2in

Figure 5.2. Simulated 0.0508 m (2 in ) Bar Codes.
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Blur-10m-4in

Figure 5.3. Simulated 0.1016 m (4 in) Bar Codes.

Fig. 5.4 shows the simulated 0.1016 m (4 in) bar configuration with Gaussian noise

added. The colors in all of the figures are set by the default MATLAB color table.

Figure 5.4. A 3D plot of the simulated 0.1016 m (4 in) bar configuration. It

shows the slight variability of the data around the mean.

44



5.2 Creating Simulated Distorted Bar Code Images

The first computation performed was to use the simulated ground truth data sets and

several models of the beam spread functions to generate blurred images. This involved a

straightforward convolution calculation where the simulated bar code images played the

part of the F function and the blurring models played the part of the H function.

5.2.1 Simulated Three Beam Model

Based upon the measurements of the LADAR beam described in Section 2, three

models of the beam were constructed with one each for 10 m, 20 m and 40 m. For 10 m
a single averaging filter was created and for 20 m and 40 m two beam models were

constructed of three vertical averaging filters each. All of the beam models were defined

in terms of discrete points with grid spacing the same as the grid spacing of the ground

truth data sets. Each of the discretized beams was specified in terms of a square array.

The 10 m discretized beam was taken as a 15 x 15 array, the 20 m discretized beam was a

17 x 17 array and the 40 m discretized beam was a 29 x 29 array. Each of the mesh

spacings was taken as approximately 3 mm, which was the mesh spacing of the simulated

ground truth data. For all practical purposes, it was assumed that the beam model meshes

and the ground truth meshes were identical.

For the 10 m beam model, a subset of the 15 x 15 grid was selected. Nonzero values

were assigned to a subgrid of 8 vertical points by 15 horizontal points that fell across the

middle of the 15 x 15 grid. This subgrid simulated the approximate 27 mm x 55 mm
beam at 10 m and comprised 120 points. The nonzero value assigned to each subgrid

point was 1/120 so that the beam model would act like an averaging filter in the

convolution process.

The 20 m and 40 m beam models were each made up of three submatrix averaging

filters to simulate the split beams as described in Section 2. For the 20 m model, the grid

spacing was divided so that there were three 15x4 nonzero subgrids, far left, middle, and

far right, separated by two approximately equal zero subgids. Since there were 180

nonzero grid points, 1/180 was assigned to each point. For the 40 m model three nonzero

subgrids were selected, a 29 x 5 to the far left, a 29 x 7 in the middle and a 29 x 5 to the

far right with zero assigned elsewhere. Since there were 493 nonzero grid points a value

of 1/493 was assigned to each of them.

5.2.2 Simulated Blurred Bar Codes

In this section we show the results of using the three simulated beam models as

convolution kernels applied to the simulated ground truth bar codes. The blurred images

were compared with the actual measured bar code images. This comparison is shown in

Figure 5.5 for the 0.0254 m (1 in) bars, in Figure 5.6 for the 0.0508 m (2 in) bars, and in

Figure 5.7 for the 0.1016 m (4 in) bars.
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Simulated Blurrine Actual Bar Images

Figure 5.5. Comparison of Simulated Blurring of 0.0254 m (1 in) Bar Codes at 10 m,

20 m and 40 m with measured Bar Codes.
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Blurred

Inlensity

Blurred

Inlansrly

Slur • 10m - 2 in a-2in-l0m

a-2irv20m

Blur 20m • 2 in

Blur - 40m - 2 in

Simulated Blurring Actual Bar Images

Figure 5.6. Comparison of Simulated Blurring of 0.0508 m (2 in) Bar Codes at 10 m, 20 m
and 40 m with measured Bar Codes.
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Blur - 10m - 4 in

Blur - 20m - 4 in a-4in-20m

a-4in-10m

Blur • 40m 4 in

a-4m-40m

Simulated Blurring Actual Bar Images

Figure 5.7. Comparison of Simulated Blurring of 0.1016 m (4 in) BarCodes at 10 m,

20 m and 40 m with measured Bar Codes.
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The first observation that can be made about the differences of the simulated blurred

LADAR images and the measured LADAR images is that the measured images appear

broader horizontally than the simulated images. Due to the convolution integral the

simulated blurring process is only a local averaging. The figure does show that the beam
model does average together portions of neighboring bars. This also appears to happen

with the measured data, but the measured data appears to be broader horizontally. This

suggests that there are nonlinear components to the LADAR data acquisition process in

addition to local averaging. Some simple measurements of the blurred data at 10 m
indicated that the 0.0254 m (1 in) bar measured data spread horizontally to approximately

0.07112 m (2.8 in) whereas vertically they did not spread beyond 0.1524 m (6 in). The
0.0508 m (2 in) bars expanded horizontally to approximately 0.1016 m (4 in) and the

0.1016 m (4 in) bars expanded to approximately 0.1524 m (6 in). Again no appreciable

vertical expansion was noted. This clearly indicated that a more complex model than the

linear deconvolution model would probably be required to do a complete deconvolution.

Next we can examine the groupings by bar size. For the 0.0254 m (1 in) bars the

simulated averaging filter at 10 m tends to produce peaks in the lower bars in the middle

between the two bars. This is a known phenomenon in imaging. An averaging filter that

overlaps two objects separated by a low intensity region will produce a peak between the

two objects. This phenomenon does not appear in the measured image. Thus the effect of

the beam on the bar code artifacts involves more than averaging. How the photons are

reflected and processed by the LADAR is an open question that requires specialized

metrology devices not currently available. At 20 m and 40 m, the multiple beam models

do seem to produce simulated blurred results that have some relation to the measured

data. Again all of the measured data show a horizontal broadening effect.

For the 0.0508 m (2 in) simulated bars, the blurring again produces sharper edged

results than the measured responses. We should note that at 40 m the simulated and

measured results seem to have similar peaks suggesting again that the split beam model is

likely to be a candidate portion of the true blurring process. At 20 m however the split

beam model does not appear to produce the correct peak locations. This is also reflected

in the 0.1015 m (4 in) bar images, whereas the 10 m and 40 m results seem to be related.

All of these results indicate that the beam models selected are weak approximations of

the true imaging process. However, until both a more theoretical analysis of the LADAR
imaging process and more detailed metrology devices are available for the study of

LADARs, we have to depend on the approximate models. These approximate models will

reveal below the extent to which ground truth can be recovered from the measured

images of the bar code artifacts.

5.3 Ground Truth Reconstruction Using Various Beam Spread

Functions

In this section we cover the results obtained through reconstruction or deconvolution

calculations using two classes of beam spread functions. The first set is based on the
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beam spread functions used in the previous section to simulate blurred bar codes. The
second set is based on beam spread functions created from the measured spot data.

5.3.1 Reconstruction Using Averaging Filters

Figure 5.8 shows the possibility of deconvolving the blurred 0.0254 m (1 in) and
0.0508 m (2 in) bars at 10 m. In both cases the simple solid averaging filter was used. As
can be seen, the lower group of three bars has been separated to the point that they could

be identified.

Bar-I-Oeblurred Bar-2- Deblurred

Figure 5.8. Reconstruction by a 15 x 15 Averaging Filter of the Measured

Bar Codes at 10 m for the 0.0254 m (1 in) and 0.0508 (2 in) Bars.

These reconstructions were developed using the averaging filter at 10 m defined in

Section 5.2.1. However, the reconstructions of different bar code sizes are very sensitive

to the size of the filter. Figs. 5.9 and 5.10 show the results of reconstruction calculations

for the 0.0254 m (1 in) and 0.0508 (2 in) bars at 10 m based on 11 row by 11 column

averaging filters. Several filter forms were experimented with in order to determine

potential characteristics of optimum deconvolution filters for these cases. Fig. 5.9 shows

the results of several averaging filters applied to reconstruct 0.0254 m (1 in) bar codes.

The filters were constructed from an 11 x 11 base filter in which only a few rows,

centered about the middle of the 11 x 11 filter, were set to non-zero values while all of

the rest of the filter was set to zero. These are called submatrix filters in Figs. 5.9 and

5.10. It is clear that thinner filters, in the sense of fewer non-zero rows, relative to the

number of columns provide better deconvolution filters for the cases studied. This would

seem appropriate since the LADAR used spread images more horizontally rather than

vertically. One would expect that a filter with a height to width ratio less than one would

be a reasonable selection. Figure 5.10 shows the results of applying the same sequence of

filters to the 0.0508 m (2 in) measured bar data. None of the filters was successful in

deconvolving these images. The conclusion that could be drawn here was that filters used

to reconstruct the 0.0254 m (1 in) bar code images at 10 m could not be used to

deconvolve the 0.0508 m (2 in) bars at 10 m. That is, a filter that deconvolves one image

may not deconvolve another of similar form but of different sized image objects. Even

though Fig. 5.10 shows the lack of reconstruction it also shows that as the height to width

ratio increases the reconstruction becomes worse. This no doubt reflects the fact that the
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Figure 5.9. This figure shows the effect of applying different sized filters

reconstructing 0.0254 m (1 in.) bar codes.



cd

Intensity

•ivg00i5O-0ecofT<rolvo- i0m-2in

Avq20»50-deconvolYe- I0m-2in

AygiQiSO-decorryo^a- I0m-2in

AvolO *50-deconvol»e- 10m-2in

3x11 submatrix filter

Ayg30r50-deconvo(re- I0nv2in

Ayg5Dc60-d*corvohr»- I0rrv2in

Figure 5.10. This figure shows the effect of applying different sized filters to

reconstructing 0.0508 m (2 in.) bar codes.



LADAR spreads data more horizontally than vertically. Figs. 5.9 and 5.10 were created

after 10 iterations of the deconvolution algorithm. More iterations did not necessarily

create a better reconstructed image. This will be shown in a figure below.

5.3.2 Reconstruction Using Filters Based on Spot Reflections

The data used to develop the beam spread functions used for these calculations was

described in Section 2.5.2. Fig. 5.11 shows a sample distribution of the spread function

model for the 0.00635 m (1/4 in) spot data. A similar distribution was developed for the

0.0127 m (1/2 in) spot data. Both were developed from data acquired at 10 m. As Figs.

5.12 and 5.13 show, the filters constructed based on the spot data did not produce

successful bar code reconstructions at 10 m. The reconstruction using the smaller

reflection point data appears more successful than that for the larger spot data.

Furthermore, as shown in Fig. 5.12, a 3 x 11 element matrix filter produced the best

results. Thus the 1 1 x 1 1 matrix with a submatrix of 3 non-zero rows from the 0.00635 m
(1/4 in) spot data produced somewhat better results than did a submatrix with the full 11

non-zero rows.

0.9
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0.7

0.6

0.6

0 .*
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Figure 5.11. Sample plot of the data distribution from a 0.00635 m
(1/4 in.) spot at 10 m.
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Quartenn10H50-deconvolve-10m*2in

3x11 submatrix filter
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5x11 submatrix filter
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120
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Quart enrc50e5U deconvolve- I0m-2in

Figure 5.12. Reconstruction results of 0.0508 m (2 in) bar codes at 10 m using filters based on

data from 0.00635 m (1/4 in.) reflected spot data.
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Halfin-deconvolve-tOm-lin

Figure 5.13. Reconstruction of 0.0508 m (2 in) bars with data from 0.0127 m (1/2 in)

spot data using an 1 1 x 1 1 submatrix filter.

5.3.3 Convergence Aspects of the Reconstruction Process

When the deconvolution algorithm converged to a solution, it did so in only a few

iterations. Allowing the algorithm to proceed for more iterations tended to degrade the

solution image. This is demonstrated in Figs. 5.14 and 5.15.

Figure 5.14 shows the progress of the deconvolution process on the measured

0.0254 m (1 in) bars at 10 m. The figure shows iterations 1, 2, 5, 6, 9 and 10. The lower

three bars are beginning to be reconstructed by iterations 5 and 6 and are essentially

recovered by iteration 10. This was the general experience of applying the Paige and

Saunders algorithm. That is, when there is convergence, it occurs rapidly. These results

were achieved using the flat filter.

Figure 5.15 shows the results of allowing the algorithm to proceed to 100 iterations

using the 0.00635 m (1/4 in) spot data. The result can be compared with Fig. 5.12 to

show that adding more iterations tends to degrade results. Possible reasons for this

degradation the accumulation of round off and increased oscillation in the solution image.

This can be observed in Fig. 5.14. Note that as the iteration progresses more surface

oscillations become visible.
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Iteration 1 for 0.0254 m (1 in) bars Iteration 2 for 0.0254 m (1 in)

bars

Iteration 5 for 0.0254 m (1 in)

bars

Iteration 6 for 0.0254 m (1 in)

bars

Iteration 9 for 0.0254 m (1 in)

bars

Iteration 10 for 0.0254 m (1 in)

Figure 5.14. This figure shows sample iteration results of the Paige and Saunders algorithm

used to deconvolve the measured 0.0254 m (1 in) bars at 10 m.
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Quarterin-aeconvolve-IOm-lir

Figure 5.15. 100 iterations of the deconvolution algorithm.

5.3.4 Reverse Engineering Filter Construction

One approach to constructing a deconvolving filter is to reverse the position of the

ground truth vector and the filter matrix. That is, one assumes that the ground truth is

known and that the filter is unknown. Thus the general problem of solving for the filter

becomes one of solving G = FH where G is the blurred image and F is the assumed

ground truth put into a matrix form while the unknown filter is treated as an unknown

vector H. A sample program for performing the reverse engineering filter identification is

given in Appendix C5. The essential idea in the subroutine Aprod was to set the indices

up in such a manner that the ground truth matrix aligned with the filter matrix, treated as

a vector. A discussion of how these matrices were aligned is also given in Appendix

C5.1.

When the program was implemented on the simulated 0.0254 m (1 in) bar data, it

produced a filter essentially the same size as the blurred image but the product of the

ground truth matrix and the reverse engineered filter produced a blurred image nearly

indistinguishable from the blurred image. This is shown in Fig. 5.16.

Figure 5.16. Results of applying the reverse engineered filter to ground truth data for

0.0254 m (1 in) bars.
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Even though the reverse engineering algorithm appeared to produce a filter that could

reproduce the original blurred data when applied to the simulated ground truth, when the

filter was used in the deconvolution progam it was unsuccessful in reproducing the

ground truth image. This is shown in Fig. 5.17.

Tst-Gl-1 in-IOm

Figure 5.17. Result of applying the reverse engineered filter in the

deconvolution program using the 0.0254 m (1 in) bar measured data.
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6.0 Summary and Future Directions

6.1 Summary

The applications for LADARs, ranging from terrain representation to object

recognition, have been increasing steadily over the past two decades and continue to

grow. As compared to traditional methods, LADARs enable the rapid capture of large

amounts of 3D information- several million points per scan. A typical LADAR locates a

point via range and angular information, providing coordinates centered at the

instrument. In addition to range and angular information, most LADARs return an

intensity level that can be used for imaging. Some LADARs also return other spectral

data such a red, green, and blue color levels.

LADARs have been used at NIST for several projects. One of these projects,

involved the use of LADARs for object recognition at construction sites. Object

recognition is crucial from several standpoints: automating processes such as “pick and

place”, ground truth determination, inventory, and obstacle avoidance. The wide and

ubiquitous use of bar codes led to the possibility of a similar implementation for a

construction site. The idea was to use the intensity information from a LADAR to “read”

a bar code. Experiments were conducted to determine the feasibility of this idea.

These experiments involved scanning bar codes made of highly reflective material

in various configurations and at various distances. The data obtained by the LADAR
indicated that beyond 10 m the images of the bar become so distorted that image

processing techniques would have to be applied to even attempt to recover the bar

configurations. However, the image processing techniques require an understanding of

how the LADAR beam dispersed and was reflected, and how the return signal is

processed by the LADAR optics. Much of the information about data processing by the

LADAR is usually proprietary to the LADAR manufacturer.

An attempt was made to create an approximate model of these processes, called a

Beam Spread Function. This beam spread function was needed to attempt to reconstruct

or deconvolve the bar configurations from the distorted images. The deconvolution

algorithm used depended on an iterative solution method for a large least squares

minimization problem in which the distorted LADAR image was approximated by the

product of a large matrix representing the Beam Spread Function and the unknown

ground truth image. The Beam Spread Function model was represented by a large sparse

matrix. In order to minimize computation time in the iterative least squares algorithm a

fast sparse matrix - vector multiply algorithm was developed that also minimized storage

requirements for the matices and vectors involved.

Although deconvolution is often highly successful in reconstructing photographic

images, the results of the current study indicate that until finer resolution LADARs are

made available, deconvolution techniques have limited capability of recovering LADAR
images.
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6.2. Future Work

The methods used to approximate the beam spread function were very crude as

there were no procedures, standard or otherwise, and facilities available for this purpose.

These experiments and others to characterize a LADAR underscore the necessity of an

intramural test facility. In keeping with its mission as the Nation’s metrology laboratory,

NIST is in a position to provide such metrology support to both users and manufacturers

of LADARs in addition to meeting its own substantial internal calibration needs. As a

first step towards establishing this test facility, a LADAR calibration facility workshop

was convened in June, 2003. It is envisioned that such a facility would enable

characterization of LADARs in terms of range and pointing angle uncertainties, beam

spread, and resolution.
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APPENDIX A: Fast Matrix Vector Products

The least squares algorithm outlined in Section 6.2 and detailed below in Appendix B

required the calculation of matrix products of the form Hf and H T
g . The algorithms for

both of these products are intimately related. They assume that a ground truth image, the

distorted image and beam matrix are specified as in Section 5.

A.l Calculating Hf

The object of the algorithm to compute the distorted image g = Hf is to perform the

operation by only storing the ground truth image, /, and beam spread matrix, which is

only of size ma x ma. That is, compute the ng x ng distorted image by only storing the ma
x ma beam spread matrix and the nfx nfground truth image.

One begins by storing the distorted image g and the ground truth image /as vectors by

columns

' g(U) > ' fa, i)
'

g(2,l) f (2,1)

g(«g.l) f (nf ,1)

gd,2)

f =

fa, 2)

g(ng,2) f(nf, 2)

g(l.Hg) f a, nf)

j(ng,ng)
/

f(nf,nf
)'

With / and g stored as vectors an examination of the discrete convolution double

summation shows that the calculation would require the beam spread function be stored

as a large sparse matrix of the form
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// =

H
x
H

2

0 H , H.

// 0ma

••• //

0 0 0 //, H
2

... //

(A2)

where, for q = 1, ...,ma

H. =

H(ma,ma-q + \) H(ma-\,ma-q + \)

0 H(ma,ma-q + 1) (ma - 1, ma -
<7 + 1)

0 0 0

H(l,ma-q -(-1) 0

H(l,ma-q + \)

H(ma,ma- q + 1) H(ma-\,ma-q + \) H{\,ma-q + \)

(A3)

Each block Hq
is made up of ng rows by nfcolumns. The entire H matrix is made up of

ng
2

rows by nf
2

columns. Each line of block H
q

is made up of the same values but shifted

by one for each row. The entire H matrix is made up of the same block rows but shifted

by one block at the next block row. The significant thing about this structure is that one

does not need to store the entire matrix. In fact one only needs to store the ma x ma beam

spread matrix.

Since/ and g are stored by column one can re-index them as a single dimension array

fik) = fi, j) where k = (j-l)*nf + i and g(l) = g(r,s

)

where / = (s-l)*ng + r. Next write /
and g as blocks of vectors

(A)

/= h
g = gi

JnS
,

Sng
^

(A.4)

where

' g((s-l)*ng + i)'

/,=
f((i-l)*nf + 2)

§ p

g((s-l)*ng + 2)

f(i*nf) g(s*ng)

(A5)
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The algorithm generates the g vector a block vector gp at a time where p = 1, 2, ng
and

8p
- H\fp +Hlfp+\

+ ’" +HmafpHma-\

)

(A6)

Given a p one now steps across the / blocks by letting p+(ma- 1). To do this

introduce an index k = 0, 1, ma- 1 and set i = p+k and observe that the product

tfk+i/p+k looks like

' H(ma,ma -k) H(l,ma-k) 0 0 ' f((p + k-l)*nf + \)'

"*,4* =
0 H(ma,ma-k) H{\,ma-k) 0 f((p + k- l)*nf + 2)

0 0 0 H(ma,ma-k) • • H(l,ma-k ) f((p + k)*nf)
j

(A.7 )

where one uses the fact that ma-k = ma-(k+ 1)+1.

The algorithm proceeds as follows: Step through p = 1, 2, ..., ng, i.e. loop on each

vector block. For each p, step through / = 1, 2, ng, i.e. loop on each row of the p
vector block. Compute the current global element of the g vector that is being computed

as j = (p-l)*ng + 1. Form the double sum below.

ma- 1 ma- 1

g(j) = X X H(ma-q,ma-k)* f((p + k-l)*nf +l + q)
k =0 <7=0

(A8)

This algorithm can be implemented with 4 loops and 13 lines of code as shown in the

sample FORTRAN 90 code below.

DO p = l,ng ! Loop over each y block of ng elements

DO 1 = l,ng ! Loop over local row number within y block

j = (p-l)*ng + l

sum = 0.0

DO k = 0,ma-l ! Loop over f blocks of nf elements

DO q = 0,ma-l ! Form the inner product for row j

e = (p + k - l)*nf +1 + q

sum = sum + h(ma-q,ma-k)*f(e)

END DO
END DO
g(j) = g(j) + sum ! Add A*f to g for row j

END DO
END DO
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A.2 Calculating Hr

g

The algorithm to compute H T
g begins by setting in vector block form

V,

'

8 1

/ =
f.

8 = 8 2

1>I _8 ng _

(A.9)

as in Equation (A.4). The transpose of H looks like

Hi 0 ... 0

Hi Hi \ 0

\ Hi \ 0

h t

a

•

H

!

0 Hi
1

Hi

0 0 o Hi

(A. 10)

The computation f = H T
g can be written in columnd form as

/,

fnf

1
1

0 0

Hi Hi
•

\ Hi 0

Hi 8i + g 2
+'•• + Hi

0 Hi Hi

0 0 .«l.

For the sake of the current discussion initialize / = 0. Then the left hand side can be

computed by iterative block summations. We observe that nf = ng + ma - 1. Thus for

each g block p - 1,2, ...,ng
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Block 1

f2 =f2
+Hlg,

fma fma ^ ma § 1

Block 2

f2 =f2 +Hig 2

h =fi+HU 2

f,ma + 1 fma+\ ~^~^ma& 2

Block p

fp
= fP

+ g

fP + 1 =fo + 1p + 1

Block ng

fp+(ma- 1) fp+(ma- 1)
^ ma S p

fng =fng +HU,

fng + 1 fng + \
^ 2 & ng

ng

T

fnf fne+(ma- 1)
= /,ng + (ma- 1)

+ // e
«g+(wfl-l) ma o

This sequence of block operations constitutes the outer loop of the algorithm. For the

/7
th

block in this loop one must compute individual elements on the left using elements on

the right. This constitutes the first inner loop where each local index of g p
is associated

with the global index used to define the entire vector g. Thus, for each / = 1, 2, ng

associate the global index j = (p-l)ng + 1. Therefore, the p* block of g can be written
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g((p-l)ng + l)

8 d = g((p~l)ng+l )

g((p-l)ng + ng )

Note that in each p block there are ma separate summations given by
#

fD+k fD+k ^ k+l 8 n

for k = 0, 1, ma- 1 which constitutes the second inner loop. The matrix-vector product

H T
k+x g is evaluated as an accumulated summation

h(ma,ma- k

)

H k+\8 p

h(l,ma-k )

0

0

h{ma- 0, ma-k)

h{ma-q,ma-k)

h{ma - (ma -
1), ma - k

)

0

0

0

g((p-l)ng + l) + --- +
0

h(ma,ma-k)

h{1, ma-k )

g(0-l)72g + «g)

8((P ~l)ng+l) +

+

0

0

h(ma -0, ma-k )

h(ma- q,ma- k)

h(ma -
(ma -

1), ma -k)

g((p-l)ng + ng)
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where the index q = 0, 1, ma- 1 represents the index of the final inner loop. The left

hand vector f k
is given by

f((p + k-l)nf + l)

f((p + k-l)nf + nf)_

Note that the entire summation above is identified by two indices. The index / = 1,2,

..., ng identifies the term in the summation. The index q = 0, 1, ..., ma- 1 identifies the

row for the given term /. If we assume that the vector fp+k has been initialized before

the summation begins then the sum can be accumulated as

f((p + k- \)nf + / + q) = /((/? + £- \)nf + / + q) + h(ma - q, ma - k)g((p - \)ng + /)

This summation proceeds as follows. Beginning with the / = 1 term the first ma rows (i.e.

q = 0, 1, ..., ma- 1) are added to the initialized first ma elements of fp+k (i.e. / + q = 1,2,

. . ., ma). Then the elements of rows 2, 3, ..., ma + 1 of the / = 2 term are added to the 2,

3, ..., ma + 1 elements of f k
(i.e. / + q = 2, 3, ..., 2 + (ma -1)). Next rows 3, 4, ...,

ma + 2 of the / = 3 term are added to rows 3, 4, . . ., ma + 2 of fp+k (i. e. / + q = 3, 4,

..., 3 + (ma - 1)). This process continues until / = ng. Note that the indexing accounts for

the shifting down by one element of the columns of H T
k+x

for / = 1, 2, ..., ng.

In terms of the actual implementation of the code k is incremented after / is set. That is,

all first terms of the sum are accumulated for k = 0, 1, ..., ma -1, then the second terms

are accumulated for each k and so forth.

DO p = l,ng

DO 1 = l,ng

j = (p-l)*ng + l

gj = g(j)

DO k = 0,ma-l

DO q = 0,ma-l

e = (p+k-l)*nf + 1 + q
f(e) = f(e) + h(ma-q,ma-k)*gj

END DO
END DO

END DO
END DO
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APPENDIX B: LSQR Algorithm

In this appendix we present an expanded discussion of the least squares algorithm

presented in Section 4. The algorithm is that of Paige and Saunders [6, 7]. The first part

of the appendix describes the iterative development of the U and V matrices such that

H =UBV t

where B is bidiagonal. The second part of the appendix describes the algorithm for the

sequential minimization of a reduced least squares problem.

B.l Computing U and V

To compute U and V, given columnwise with

V = \y^ v
2 ,

•••, vj, (B.l)

note that

H[vv •••, v,., •••, v„
] = [«,, •••, k„ m

i+1 , u
n \

a,

P, a
,

A+ 1

Bn an• n n

(B.2)

implies that

Hv
,
=«,«, + A+1“,+ i

(B-3)

or to compute the (/+7)-st term of U let

Pl+x
u
l+x= Hvl

-<x
l

»
l (

B -4)

where p l+]
is selected so that ||m

i+1
||

= 1. Furthermore
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H T
[u

{
,

•••, uM , — , k„] = [v„ — , v,, v
ltl , vj

a, P2

cc
2 /?>

«, p,.

a.

P,

a

(B.5)

Then

hT
“,u = Pmv

,
+«, + i

v
/ + i

(B.6)

or to compute the (i+1 )-st term of V let

«, +I
v,

+]
= //

r
M,

+1 - A+ 1

V
,

• (B-7)

Thus one can sequentially generate the columns of U, V and the bidiagonal elements of

B as follows. Initialize u
x
- g! /?, where px

= ||g||
. Next compute v, so that a

x

v
x
= H T

u
x

and 1^1
= 1. Then for i= 1,2, ..., n-l compute u

l+x , v
l+1

so that ||w
/+1

||

= ||v
;+1

||

= l by

p,*u,+i= Hv,

aMVM= Hlu^ ~PmV
,

(B.8)

At the stage one would have computed

V
k
= [u

x
.
—

»
U k-

V
t = v

l»
v,]

"tfl 0

P2
a

2

B
t =

Pm

(B.9)

where B
k

is a (&+1) x k matrix. One further has

U k+x (fi x
e

x )
= b (B.10)

since
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=M = «- (B11 )U
k+i(P\ei) [

wp w*+i]

A
o

o

It is clear that

HV
k
=UMB

k
. (B.12)

One can also show that

H TU
k+i
=V

k
BT

k+ ak+l
u
k+]

e
T
k+l

. (B.13)

This follows from

H TUM =AT
[u

t
, M

4 +i] = [
a

i

v
i> ^2V2 ’

* *
’

» fik+
\V

k + ^+iVfc+i ]

Afc+lTfc
]“^ ^*+l V/t+l [A

7
+^+lW[+ l

(B.14)

B.2 The sequential minimization algorithm

Now we will explain the algorithm used to solve a sequence of minimization problems

written as

mini#*);* -

P

x

e
{ \. (B.15)

yk

For notation, set

fk
=V

k yk

r
k =g-Afk

(B.16)

^k+i ~ A^i
—
At 3^

r
k
and tk+l

are related by

rk=U k+itk+l (B. 17)

since
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r
t
=g-Hx

k
= UM (fie,)- HVkyk

= UM (fie,)-UMB
t yk

= Ukkl (fi,e,-Bkyk )

(B.18)

Uk+\h+\

Introduce the augmented matrix of columns It will be shown below that

B
k
can be transformed by an orthogonal matrix Qk

as follows

Qk
B

k =
0

(B.18)

where Qk
is (&+1) x (£+1), B

k
is (£+1) x k. The right hand side is (&+1) x k and

B
k =

P\ &
2

o • • * 0

o p 2
e

3
••• o

; o \ ;

; : \ o,

(B.19)

o 0 p k

To show how the orthogonal matrix Qk
is developed let

B =

a
l

0

Pi a
2

0 p3

0 •••

0

0 ••• 0

\ 0

o Pn cc
n

(B.20)

Suppose that B has been reduced at the (k- l)
st

step to

Pi &
2

Pi

B =
Pk - 1

B
k

a,

Pk + \ &k +

1

Pn

(B.21)
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Construct the &
Ul

Givens rotation matrix as follows.

Q =
C

k

s
k

~ c
k

(B.22)

1

where c
k , s

k
are on the &-th row and s

k , -c k
are on the (&+l)

st

row with c
k , -c

k
on the

diagonal. This becomes an orthogonal matrix if one selects s
2

k
+c

k = 1 . Note that

QB =

P\ @2

Pi ^3

Pt -

1

G
k

Ck^k + S
k Pk +

1

Sk^k
~ Ckfik+\

Sk^k+\

~ Ck^k+\

a
n

Pn

(B.23)

At this point one sets s
k
a

k
~c

k p k+x = 0 and selects

s, = k +

1

a
,

2

* + ]

. (B.24)

This selection satisfies the previous criterion and then one can set

Pk Ck^k + Skfik+\ ~fak + Pk+
/ 2

@k Sk^k +

1

. (B.25)

Pk +

1

~ Ck^k + l

Note that in the last step fi n+l
is transformed to zero. This says that at the k

m
stage the

rotation essentially performs
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(B.26)
~C

k
s
k

"

Pk 0
<t>k ~pk ft*. </>k

~

Jk -c
k _ A* i ®k+l 0 0 Pk +

1

0k+\ _

Now applying the matrix Qk
to the augmented matrix ] gives

ft [ft /teH&ft QM
= ~ft <Pk

’

p, ft o

o p2
e

3

•••

(B.27)

0 *

0 ft

Pi-1 ft ft-l

o Pi ft

The significance of this decomposition, called a QR factorization, is that we can write

lift >7 -fteJI
2

=||ftfty* -ftfte, |fty*-ftf +|K (B.28)

Therefore the left member is minimized if one solves y k = fk
and the minimum is

equal to the last term, where

(B.29)

Although this relationship will not be needed directly it is interesting to note the

relationship between tk+l and
<f>k+l

is given by

t *+i
f

0 )

M j

(B.30)

This relationship follows from the orthogonality of Qk
and

Qjk +

1

Qk(P\ei) QAyk - <h ^

y^j

(R
k yt ) ft

- R
tyk ) ( o ^

o ftk +

1

y^+'j

(B.31)
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under the assumption that y k
has been computed from R

k yk
= (pk .

The previous relations make it possible to compute fk
directly without computing y k

or t
k+1 . In particular write

ft =Vk Rl'<pk . (B.32)

Define

£>t =Vk
R-

k

' =[d, d
2

... d
k l (B.33)

The columns of D
k
can be found directly from

R T
t Dl =V

r
k

(B.34)

by forward substitution. The significance of using forward substitution is that the

columns can be computed iteratively as needed and then discarded. The columns are

computed as follows. Set

Dl =

d T

k
V * J

K =

o

y; =

0

T

K
k
J

0

d
k pk

(B.35)

Then

RT
k
DT

k =

P, 0

@2 Pi

0

o e
t pk

which implies, setting d
0 = x

0 = 0 ,

' Mr '

0
2dl + p2dl

dT
k

\
k
J ^k^k- 1

+ Pk^k
y

T

\
k
j

(B.36)
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d
2
=— (v

2
-0

2
d

x )

Pi (B.37)

and

dk (v* @kdk- 1 )

Pk

f * \

fk
~ D

k (Pk
\d\ - d

t ] =k • - d
t.t ]

•

A; A-'j

^ A-i Qkdk •
(B.38)

This implies that /t
can be computed in an iterative fashion. The actual algorithm of

Paige and Saunders [7, 8] introduces a slightly different but equivalent iteration. In

particular, write

— (A-A-.). (B.39)

Pk -

1

Then set w
k
= P k

d
k
and write the two step iteration

e.- w.

Pk-

1

1-1

fk = fk-l +—w
k

Pk

(B.40)

The iterative algorithm of Paige and Saunders [7, 8] can now be formulated as follows.

Step 1 : Initialization
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(B.41)
1 ,

v, =—H t
u,

w
i
=v,

+o
=°

P=P
Pi =«,

Step 2 : Execute the outer loop

For i = 1,2,3, ... do steps 3 through 6.

Step 3: Get the current values of u and v.

P+i=\\Hv.-a^W

«,+i -«,«,)
P,z+1

«,+l

=

z+1
=— (//

r
zz

ltl -A +1
v,)

(B.42)

Z+1

Step 4 : Apply the Givens rotation

, = (a
2
+#;,)'

2

,

=A
a

p,

@i+i
~ s,&i+

1

Pi+i
— —

c

Ai+i

0,
= cA

A+ i =*,A

(B.43)

Step 5 : Update/and w



(B.44)
p,

Q
w

,*\
= v

,+ i

—

~

w
,

P,

Step 6 : Test for convergence

If the algorithm converged exit, otherwise return to step 2.

To test for convergence Paige and Saunders [6, 7] estimate the following items

n .
H T

r,
’ M k ,

\\h\\, cond(H)

.

(B.45)

To estimate
||

r
k

||

one begins with

r
k ^k+dk+l ^ k+\Qk

( 0 ]

)

= 0t+,tf*+ i
QleM . (B.46)

Since the norm of orthogonal matrices is one and the norm of e
k+l

is one then

r
t l = **,. (B.47)

But (/>k+l
is computed by

so that

0t+i = Pi s i
si
• S

k
(B.48)

rA = P\ s
\
si'" s

k
(B-49)

and since s
t

in magnitude is less than one the iterative product pushes the norm to zero.

In estimating H T
r, one is really estimating the difference between the right and left

sides of the normal equation at x
k

. Begin with

H r
r
k =<fik+lH TUk+]Q

T
k
e
k+l = <pk+l

[V
k
BT

k +ak+l
V
k+l

e
T
k+l ]Q

T
k
e

=
0k+\ VA Qk e

k+ 1

"*
^k+l^k+l (

ek+\Qk e
k +

1 )]

. (B.50)
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Note that

B'Ql =\Q;Bj =[r] o], (B.51)

Then

H T
r
t =tMVt

[RT
k 0]eM +t„ 1

aM (eUgeM )VM . (B.52)

But [Rl o] e
k+l = 0 since kr

oj has k rows and k+l columns with the (k+ l)-st

column identically zero and the vector e
k+l

has all zero elements except with a one in the

(&+l)-st element. Also e
T
k+lQ

T

k
e k+x =-ck

since

'k +

1

Qlek+>=[0” 0 1
]

0

1

-c, (B.53)

so that

H T
r
k
=-$aMc

t
)V

k
. (B.54)

Therefore

H T
n fik+flk+l I

C
k I

(B.55)

As long as a k+l
does not grow too rapidly then this decreases towards zero.
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APPENDIX C: Sample Programs

NIST Standard Software Disclaimer

This software was developed at the National Institute of Standards and Technology by

employees of the Federal Government in the course of their official duties. Pursuant to

title 17 Section 105 of the United States Code this software is not subject to copyright

protection and is in the public domain. The individual programs are part of an

experimental system. NIST assumes no responsibility whatsoever for its use by other

parties, and makes no guarantees, expressed or implied, about its quality, reliability, or

any other characteristic. Users of the programs assume sole responsibility under Federal

law for determining the appropriateness of its use in any particular application; for any

conclusions drawn from the results of its use; and for any actions taken or not taken as a

result of analyzes performed using these tools. We would appreciate acknowledgement if

the software is used.

INTENT AND USE

The algorithms, procedures, and computer programs described in this report constitute

a methodology for predicting some of the consequences resulting from LADAR scans.

They have been compiled from the best knowledge and understanding currently

available, but have important limitations that must be understood and considered by the

user. The program is intended for use by persons competent in the field of image

processing and with some familiarity with personal computers. It is intended as an aid in

reconstructing images blurred by LADAR optics.

PROGRAMS

The following program scripts are given in this appendix:

1. In Section Cl the Matlab script INT_DIST.m is given. This script takes a file

generated by a LADAR and first produces a histogram of intensity values. The

histogram usually shows two dominant peaks. The leftmost one in general

represents background intensities and the rightmost one in general represents the

bar code intensities. The background is stripped from the file and the bar codes

displayed. The user has the option of saving the displayed figures in Postscript,

Encapsulated Postscript, JPEG, or TIFF formats.

2. In Section C2 the Matlab script GENERATE_BAR_DATA.m is given. This

script produces nine files of simulated ground truth data. It produces files for

0.0254 m (1 in) bars, 0.0508 m (2 in) bars and 0.1016 m (4 in) bars at 10 m, 20 m
and 40 m distance.
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3. In Section C3 a FORTRAN 90 program, called CONVOLVE.F90, program

implements a fast convolution algorithm on simulated ground truth bar code data.

The objects of the program are to test the effect of various convolution filters on

the ground truth data and produce blurred images of bar code data that can be

compared to bar code images acquired by LADAR scans. The program assumes

the existence of a square array ground truth data set,f, and a square array, h,

representing the convolution filter. The program produces a blurred array by

performing a finite convolution summation

4. In Section C4 a FORTRAN 90 program, called DECONVOLVE.F90, program

reconstructs ground truth bar code images from blurred images obtained from

LADAR scans. The program assumes the existence of a square array scanned data

set,g, and a square array, h, representing the convolution filter. The program

produces a best estimate array of ground truth by applying an iterative least

squares algorithm to a finite convolution summation. It is an inverse problem.

5. In Section C5.2 a FORTRAN 90 program, called SPREAD_FUNCTIO.F90
constructs by a least squares algorithm with residual correction an estimate of the

kernel matrix that generates a given blurred image from a known ground truth

image.
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Cl. MATLAB Script to Isolate Bar Codes

»j» «
|» jJj »J*

»
|«

»|*
»J»

»|» >|» v|* «j« «|< «
|« «|« «|» s|< <|« s|< «|« >|« »|»

»J«
«|« »|< »|« y^» >|« «|j «

|» ^|. «|« >|« »|« «|» «
|» «|« «|» «|« «|<

%INT_DIST - Separates Bar Code intensity data from background

% intensity.

%This file employs a simple segmentation approach in order

%to eliminate the background intensities and distances. This

%brings the bar code intensities and distance measurements to

%the foreground. The assumption behind the technique is that

%when the image intensities are histogrammed they will fall

%into a histogram form with two prominent peaks. The first

%peak represents the backgound intensities and the second

%represents the bar code intensities. The algorithm to

%eliminate the background is simply to select out the intensity

%values less than 200.

%
%The input file for this script is assumed to have been

%generated by a LADAR scanning instrument and provides

%x, y, z, and intensity values of object hits. The units

%of the coordinates are in meters. The intensity values are

%integers between 0 and 255. The positive x coordinate is

%directed from the scanner towards the target object,

%positive y is towards the right and positive z is down.

%The origin is the upper left data point of the scan.

%
%Input file format:

%
%The first lines are header information lines beginning

%with #. These lines are followed by individual lines

%of data points in four columns. The first column is x,

%the second column is y, the third z, and the fourth

%intensity. The input file extension must be .txt.

%
%Output file formats:

%
%There are three output file types available:

%
%1. The first file will have the same name as the input file

% with extension .dat. This file will contain only the data

% points with the header lines from the input stripped off.

% This file is automatically produced.

%2. The second file is a file of data points of the measured

% bar code data extracted from the input data file with the

% background noise removed. This is also automatically
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% produced.

%3. The third type of file is optional. Each of the figures

% produced has a menu button that allows the image to be

% stored in either Postscript (black and white), Postscript

% (color). Encapsulated Postscript (black and white),

% Encapsulated Postscript (color), JPEG, or TIFF.

%
%Usage instructions:

%
% 1 . First change the working directory in Matlab

% to the directory with the script and data files.

%2 . The current m-file is interactive. The user will be asked

% to enter the minimum intensity value between peaks

% in the histogram displayed when asked.

%3. For titles to plots, underscores in file names

% are changed to hyphens for display

%4. Each plot has a menu button to print the plot to a file

% in postscript, JPEG or TIFF.

%
% Author:

%
%
%
%
%
%

David E. Gilsinn

Mathematical and Computational Sciences Division

National Institute of Standards and Technology

100 Bureau Drive, Stop 8910

Gaithersburg, MD 20899-8910

e-mail: dgilsinn@nist.gov

%
v.!* *1« %lm «A» «A» »A» «A» •.!» *A» O, «£* »J.* *±» •.!« >.lu •.!» *1* »A* >1* «A» «A? »!< «A» •A* “A* it* *A» «A^ yLf

*j» •v*
*’*

•'r* ‘X1* •x« wj» 'T* *1' •x* *t* »r* •T® •p* •t* 'I' *T" *7* •** "T* *r* 'r* *r* 'T* *r* *p* r* ®p* *T* 'X'* *P* *7 ®t*

%Enter input file with .txt extension and create .dat file

file_name = input(Enter file name (omit .txt): ’/s’);

infile = strcat(file_name,’.txt’);

s = strcat(file_name,’.dat’);

fidin = fopen(infile,’r’);

fidout = fopen(s,’w’);

%Strip the Header lines from the input file

while feof(fidin) ==0

line = fgetl(fidin);

match = findst^line,’#’);

num = length(match);

if num == 0
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end

fprintf(fidout, ’%s\n ’,line)

;

end

fclose(fidin);

fclose(fidout);

%load the .dat file

load ( s);

%Matlab loads the data file into a matrix with the same name

%as the file, but if the file_name begins with a number then

%Matlab adds an X in front of it.

%Test whether the file starts with a number. If so then add X
%in front. In either case read the matrix into the array a for

%easier handling.

if isletter(s(l)) == 0

X_file_name = strcat(X’,file_name);

a = eval(X_file_name);

else

a = eval(file_name);

end

%pull out array columns as vectors

dist = a(:,l);

y = -a(:,2);

z = a(:,3);

intensity = a(:,4);

%Generate histogram of intensities to estimate

%where to cut the image to get rid of background

%"noise". Set up image output menu.

f3 = figure(l);

hist(intensity,100);

xlabel(lntensity Level
7

);

ylabeKTrequency Count
7

);

s3 = strcat(file_name,
7

_intensity_hist
7

);

new_file_name_3 = strrepCfile^ame,
7

.
7

,

7
-

7

);

title(new_file_name_3);

set(f3 ,NumberTi tie ’off
7

, . .

.

Name’,s3);
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set(f3 ,
Number-Title ’off’, . .

.

Name’,s3);

pr3 = uimenu(f3,...

’Label’,’ Print File
5

);

ps3 = uimenu(pr3,...

’Label’, Postscript, Black and White’,...

’CallBack’,’print(f3,”-dps”,s3)
T

);

psc3 = uimenu(pr3,...

’Label’, Postscript, Color’,...

’CallBack’,’print(f3,”-dpsc”,s3)’);

eps3 = uimenu(pr3,...

Eabel’, Encapsulated Postscript’,...

’CallBack’,’print(f3,”-deps”,s3)’);

epsc3 = uimenu(pr3,...

Eabel’, Encapsulated Postscript, Color’,...

’CallB ack’, ’print(f3
, ’’-depsc ”,s3 ) )

;

ipg3 = uimenu(pr3,...

Eabel’, ’JPEG’,...

’CallBack’,’print(f3,”-djpeg90”,s3)’);

tiff3 = uimenu(pr3,...

Eabel’, TIFF’,...

’CallBack’,’print(f3,”-dtiff”,s3)’);

%Filter out intensities less than 200

cutval = 200;

%Find all intensity values greater than or equal to cutval

k=find(intensity >= cutval);

yi = y(k);

zl = z(k);

inti = intensity(k);

%Generate the Bar Code intensity image. This image

%will likely not have a square base.

fl = figure(2);

ylin = linspace(min(yl),max(yl),257);

zlin = linspace(min(zl),max(zl),257);

[Y,Z] = meshgrid(ylin,zlin);

INT = griddata(yl,zl,intl,Y,Z,’cubic’);

mesh(Y,Z,INT);

xlabel(’y’);
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ylabel(’z’);

zlabeKlntensity*);

si = strcat(file_name,’_intensity’);

%change underlines to hyphens

new_file_name_ 1 = strrep (fi 1e_name ’i

;

title(new_file_name_l);

set(f 1 ,NumberTi tie ’off’, . .

.

’Name’,sl);

prl = uimenu(fl,...

Label’,’ Print File’);

psl = uimenu(prl,...

Label’, Postscript, Black and White’,...

’CallB ack’, ’print(f1 , ”-dps "si)
7

);

pscl = uimenu(prl,...

Label’, Postscript, Color’,...

’CallBack’,’print(fl,”-dpsc”,sl)’);

epsl = uimenu(prl,...

Label’, Encapsulated Postscript’,...

’CallBack’,’print(fl,”-deps”,sl)’);

epscl = uimenu(prl,...

Label’, Encapsulated Postscript, Color’,...

’CallBack’,’print(fl,”-depsc”,sl)’);

jpgl = uimenu(prl,...

Label’, ’JPEG’,...

’CallBack’,’print(fl,”-djpeg90”,sl)’);

tiffl = uimenu(prl,...

Label’, TIFF’,...

’CallBack’,’print(fl,”-dtiff”,sl)’);

%Generate an output file with a square base.

%The background base will have the value cutval

[row,col] = size(INT);

nanarray = isnan(INT);

[ii,jj] = find(nanarray);

for i = l:length(ii)

INT(ii(i),jj(i)) = cutval;

end

outfile = strcat(file_name,’_cut.txt’);

fidl = fopen(outfile,’w’);

for
j
= l:col

for i = l:row

fprintf(fid 1
,

’%6.2f\n ’,INT(i ,j ));

end
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end

fclose(fidl);

%
%Plot the filled in cut intensity picture

%
f4 = figure(3);

mesh(Y,Z,INT);

xlabel(’y’);

ylabel(’z’);

zlabel(’Intensity’);

s4 = strcat(file_name,’_intensity_cut’);

%change underlines to hyphens

new_file_name_4 = strrep(file_name,

title(new_file_name_4);

set(f4,NumberTitleVoff’,...

’Name’,s4);

pr4 = uimenu(f4,...

Label’, ’ Print File
7

);

ps4 = uimenu(pr4,...

Label’, Postscript, Black and White’,...

’CallBack’,’print(f4,”-dps”,s4)’);

psc4 = uimenu(pr4,...

Label’, Postscript, Color’,...

’CallBack ’, ’print(f4, ”-dpsc ”,s4) )

;

eps4 = uimenu(pr4,...

Label ’, Encapsulated Postscript’,. .

.

’CallBack’,’print(f4,”-deps”,s4)’);

epsc4 = uimenu(pr4,...

Label’, Encapsulated Postscript, Color’,...

CallB ack’, ’print(f4,”-depsc”,s4)’);

jpg4 = uimenu(pr4,...

Label’, ’JPEG’,...

’CallBack’,’print(f4,”-djpeg90”,s4)’);

tiff4 = uimenu(pr4,...

Label’, TIFF’,...

’CallBack’,’print(f4,”-dtiff”,s4)’);

%
%expand the cut intensity figure

%

f5 = figure(4);

k = find(intensity > cutval);

new_intensity = intensity(k);
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new_y = y(k);

new_z = z(k);

new_ylin = linspace(min(new_y),max(new_y),257);

new_zlin = linspace(min(new_z),max(new_z),257);

[NEW_Y,NEW_Z] = meshgrid(new_ylin,new_zlin);

NEW_INT = griddata(new_y,new_z,new_intensity,NEW_Y,NEW_Z, ’cubic
5

);

mesh(NEW_Y,NEW_Z,NEW_INT);
xlabeK’y

5

);

ylabel(’z’);

zlabel(’Intensity’);

s5 = strcat(file_name,’_intensity_crop’);

%change underlines to hyphens

new_file_name_5 = strrep(file_name,’_

title(new_file_name_5);

set^NumberTitleVoff’,...

Name’,s5);

pr5 = uimenu(f5,...

Label’,’ Print File
5

);

ps5 = uimenu(pr5,...

Label’, Postscript, Black and White’,...

’CallB ack’, ’print(f5 , ”-dps ”,s5 ) ^

;

psc5 = uimenu(pr5,...

Label’, Postscript, Color’,...
,

CallBack’,’print(f5,”-dpsc”,s5)’);

eps5 = uimenu(pr5,...

Label ’, Encapsulated Postscript ’,. .

.

’CallBack’,’print(f5,”-deps”,s5)’);

epsc5 = uimenu(pr5,...

Label’, Encapsulated Postscript, Color’,...

’CallBack’, ’print(f5
,

’’-depsc ”,s5) 0

;

jpg5 = uimenu(pr5,...

Label’, ’JPEG’,...

’CallBack’,’print(f5,”-djpeg90”,s5)’);

tiff5 = uimenu(pr5,...

Label’, TIFF’,...

’CallBack ’, ’print(f5 , ’’-dtiff”,s5 ) *)

;
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C2. MATLAB Script to Create Simulated Bar Codes

%GENERATE_BAR_DATA- This script produces ground truth files for

% the three bar code test configurations used to

% acquire measured bar code intensity data.

% This file generates simulated ground truth image data sets in vector

% form of an approximately 1 meter by 1 meter surface with 9 bar codes

% placed in

% three rows with three bar codes each. This simulation attempts to

% approximately recreate an experiment in which a board with similar

% bar codes of reflector tape was probed by a LADAR beam at various

% distances. The bar codes were 6 in high and 4, 2, 1 in in width for

% the different trials. The 3 top bars were place 4 in apart, the three

% middle bars were placed 3 in below the top row and 2 in apart, while

% the lowest row was placed 3 in below the second with bars place 1 in

% apart. From experimental data the intensity of the background board

% is about 150 and the reflector tape intensity was about 250. This was

% on a range of 0 to 255.

%
% The size of the simulated ground truth image depends on the desired

% filter image size and the filter matrix size. In particular if the

% desired filter matrix is ma x ma and the desired filtered image is ng

% x ng elements then the ground truth image will be set to nf x nf

% where nf = ng + ma - 1. Thus, for a filtered image of side ng

% elements the unit step vertically is dx = l/(ng-l) and the unit step

% horizontally is dy = l/(ng-l). In order to make things somewhat easy

% to work with we assume that ng and ma are odd integers which

% also makes nf odd. The ground truth image will be ((ma-l)/2)*dx (or

% dy) units on a side greater than the filtered image.

%
% ****************************

%
% * *

% * *

% * + + + + + + + + + .
*

% * + + + + + + .

*

% * + + + + + + + + + .
*

% * *

% * + + + ++ + + + + .

*

% * + + + + + + *

% * + + + + + + + + + .

*

% * *
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+ + + + + + + + +%
%
%
%
%

*

* + + + + + + *

* + + + + + + + + + *

* *

* *

%
% ***************************

%
% The figure above is a schematic of a board that holds the bar codes.

% The outside boundary depicted by *** represents the ground truth

% image. Note that it is larger than the filtered image depicted by ...

% since the filter matrix at the boundary of the filtered emage

% overlaps the edge. Let f(i,j) represent the ground truth image. Then

% f(l,l) is taken in the upper left comer and f(nf,nf) is in the lower right. Grid spacing

% will be taken based on dx and dy defined above.

%
% The object of this script is to make nine files of barcode data for

% 4, 2, 1 in bars. These files will simulate ground truth images for

% each of three distances thus nine files. Distances are 10, 20 40

% meters. The files will be used to produce filtered images of size ng

% = 257 points on a side. Interval between points will be

% approximately 0.004 meters (4 mm). At 10 m the filter will be

% ma = 15 points on a side, at 20 m the filter will be 17 points on a

% side and at 40 m it will be 29 points on a side. The number of points

% on a side of the ground truth image is determined by nf = ng + ma -1.

% The matrix structure of the file is: f(l,l) is in the upper left

% comer and f(nf,nf) is in the lower right. This is based on a beam of

% ma x ma points.

%
% x direction is down and y to the right (not LADAR coordinates)

% grid spacing in both x and y = 1/256 = 0.0039, set to 0.004

% bar data set has dimension 1 + ((ma-l)/2)*0.004 in both directions

% Extra amount beyond 1 m square is to accommodate the blurring operator

% at the edges.

%
% The files will be written out as vectors, one entry per line, in the

% form:

% f(l,l), ..., f(nf, l),f( 1 ,2),...,f(nf,2), ...,

% f(l,nf),...,f(nf,nf)

%
% Author:

% David E. Gilsinn

% Mathematical and Computational Sciences Division

% National Institute of Standards and Technology

% 100 Bureau Drive, Stop 8910

% Gaithersburg, MD 20899-8910
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% e-mail: dgilsirm@nist.gov

%

%
% Define output file names

%
% The Barfiles will contain (x, y, z) values of the simulated ground truth data

%
Barfiles = [’barsl0mlin.txt’;barsl0m2in.txt

,

;barsl0m4in.txt’;...

bars20mlin.txt’; bars20m2in.txt’; bars20m4in.txt’;...

bars40mlin.txt’;bars40m2in.txt’;bars40m4in.txt
r

];

%
% The Intfiles will contain only the z values for plotting of the intensities in

% MATLAB
%
Intfiles = [intl0mlin.txt

,

;Intl0m2in.txt
,

;

v
intl0m4in.txt’;...

Int20mlin.txt
,

;

,

int20m2in.txt
,

;

r
int20m4in.txt’;...

Int40mlin.txt’;
r
int40m2in.txt

,

;

r
int40m4in.txt];

Folder = ’c:\Bar_Code_dataV;

Barcells = cellstr(Barfiles);

Intcells = cellstr(Intfiles);

%
% Define number of beam grid points per side

%

ma(l) = 15;

ma(2)= 17;

ma(3) = 29;

%
% Define the number of grid points per side for distorted image

%

ng = 257;

%
% Define grid spacing in meters

%

delta = 0.004;

%
%Specify bar code width (numbers refer to inches)
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bar_width(l) = 1;

bar_width(2) = 2;

bar_width(3) = 4;

%

%
% Generate the nine ground truth image vector files

% by stepping through each of the distances (10, 20, 40 m) and

% then through the bar code sizes (4, 2, 1)

%
% Step through each beam model for a distance

%

for i = 1:3

%
% Compute size of ground truth image on a side

%

nf = ma(i) + ng -1;

%
% Generate the x (downward) location of the

% comers of the bar codes. Values are in meters

% Bars are numbered as follows:

% First index is the bar number

% Lowest row, left to right: 1,2,3

% Middle row: 4,5,6

% Top row: 7,8,9

% Second index is comer number on bar (clockwise):

% Comer 1 is lower left, Comer 2 is upper left,

% Comer 3 is upper right, Comer 4 is lower right.

%
% Offset downwards by the ground truth overlap

%

bar_x(7,2)

bar_x(7,3)

bar_x(8,2)

bar_x(8,3)

bar_x(9,2)

bar_x(9,3)

bar_x(7,l)

bar_x(7,4)

0.1952 + ((ma(i)-l)/2)*delta;

bar_x(7,2);

bar_x(7,2);

bar_x(7,2);

bar_x(7,2);

bar_x(7,2);

bar_x(7,2) + 0.1524;

bar_x(7,l);
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bar_x(8,l)

bar_x(8,4)

bar_x(9,l)

bar_x(9,4)

bar_x(4,2)

bar_x(4,3)

bar_x(5,2)

bar_x(5,3)

bar_x(6,2)

bar_x(6,3)

bar_x(4,l)

:

bar_x(4,4) =

bar_x(5,l) =

bar_x(5,4) =

bar_x(6,l) =

bar_x(6,4) =

bar_x(l,2) =

bar_x(l,3) :

bar_x(2,2) =

bar_x(2,3) =

bar_x(3,2) =

bar_x(3,3) :

bar_x(l,l) =

bar_x(l,4)

:

bar_x(2,l) =

bar_x(2,4) =

bar_x(3,l) =

bar_x(3,4) =

= bar_x(7,l)

= bar_x(7,l)

= bar_x(7,l)

= bar_x(7,l);

:bar_x(7,l) + 0.0762;

= bar_x(4,2);

: bar_x(4,2);

: bar_x(4,2);

: bar_x(4,2);

: bar_x(4,2);

: bar_x(4,2) + 0.1524;

bar_x(4,l);

bar_x(4,l)

bar_x(4,l)

bar_x(4,l)

bar_x(4,l);

bar_x(4,l) + 0.0762;

bar_x(l,2);

bar_x(l,2);

bar_x(l,2);

bar_x(l,2);

bar_x(l,2);

bar_x(l,2) + 0.1524;

bar_x(l,l);

bar_x(l,l)

bar_x(l,l)

bar_x(l,l)

bar_x(l,l);

%
%

for bar_w =1:3

%
%
%

%Defme the bars y coordinates. bar_width is 4, 2 or 1

%
%First index is the bar number

%Lowest row, left to right: 1,2,3

%Middle row: 4,5,6

%Top row: 7,8,9

%
%Entering y coordinates that change with

%bar width working from the board center

% 4 in = 0.1016 m, 2 in = 0.0508 m
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% 1 in = 0.0254 m, 1/2 in = 0.0127

%

switch bar_width(bar_w)

%
% The case numbers are the bar width values

%
case 4

%
%Lowest row: row 1

%

bar_y(2,l) = ((l+(ma(i)-l)*delta)/2) - 0.0508;

bar_y(2,2) = bar_y(2,l);

bar_y(l,4) = bar_y(2,l) - 0.0254;

bar_y(l,3) = bar_y(l,4);

bar_y(l,l) = bar_y(l,4) - 0.1016;

bar_y(l,2) = bar_y(l,l);

bar_y(2,4) = ((l+(ma(i)-l)*delta)/2) + 0.0508;

bar_y(2,3) = bar_y(2,4);

bar_y(3,l) = bar_y(2,4) + 0.0254;

bar_y(3,2) = bar_y(3,l);

bar_y(3,4) - bar_y(3,l) + 0.1016;

bar_y(3,3) = bar_y(3,4);

%
%Middle row: row 2

%

bar_y(5,l) = ((l+(ma(i)-l)*delta)/2) - 0.0508;

bar_y(5,2) = bar_y(5,l);

bar_y(4,4) = bar_y(5,l) - 0.0508;

bar_y(4,3) = bar_y(4,4);

bar_y(4,l) = bar_y(4,3) - 0.1016;

bar_y(4,2) = bar_y(4,l);

bar_y(5,4) = ((l+(ma(i)-l)*delta)/2) + 0.0508;

bar_y(5,3) = bar_y(5,4);

bar_y(6,l) = bar_y(5,4) + 0.0508;

bar_y(6,2) = bar_y(6,l);

bar_y(6,4) = bar_y(6,l) + 0.1016;

bar_y(6,3) = bar_y(6,4);

%
%Top row: row 3

%
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bar_y(8,l) = ((l+(ma(i)-l)*delta)/2) - 0.0508;

bar_y(8,2) = bar_y(8,l);

bar_y(7,4) = bar_y(8,l) - 0.1016;

bar_y(7,3) = bar_y(7,4);

bar_y(7,l) = bar_y(7,4) - 0.1016;

bar_y(7,2) = bar_y(7,l);

bar_y(8,4) = ((l+(ma(i)-l)*delta)/2) + 0.0508;

bar_y(8,3) = bar_y(8,4);

bar_y(9,l) = bar_y(8,4) + 0.1016;

bar_y(9,2) = bar_y(9,l);

bar_y(9,4) = bar_y(9,l) + 0.1016;

bar_y(9,3) = bar_y(9,4);

%
%Write out data file

%
% Define the output file for each case

%
% Create the file names for the eighteen output files

% Nine (x,y,z) files and nine z files

% output is the character string for an (x,y,z) data file

% outputl is the character sting for a z data file

%
file = (i-l)*3 + bar_w;

output = [Folder Barcellsf file }];

outputl = [Folder Intcellsffile }];

fid - fopenCoutput/w
5

);

fidl = fopen(output 1,’w
5

);

for j
= l:nf

y = (j-l)*delta;

for k = l:nf

%go down rows first then colums

x = (k-l)*delta;

if ((bar_x(7,2) <= x) & ...

(x <= bar_x(7,l )))...

& ( ((bar_y(7,2) <= y) & ...

(y <= bar_y(7,3)))...

|

((bar_y(8,2) <= y) & ...

(y <= bar_y(8,3))).--

|

((bar_y(9,2) <= y) & ...

(y <= bar_y(9,3)))

)

z = 250;

elseif ((bar_x(4,2) <= x) & ...

(x <= bar_x(4,l )))...

& ( ((bar_y(4,2) <= y) & ...
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(y <= bar_y(4,3)))...

I
((bar_y(5,2) <= y) & ...

(y <= bar_y(5,3)))—

I

((bar_y(6,2) <= y) & ...

(y <= bar_y(6,3)))

)

z = 250;

elseif ((bar_x(l,2) <= x) & ...

(x <= bar_x( 1,1 )))...

&(((bar_y(l,2) <= y) & ...

(y <= bar_y(l,3)))...

I

((bar_y(2,2) <= y) & ...

(y <= bar_y(2,3)))...

|

((bar_y(3,2) <= y) & ...

(y <= bar_y(3,3)))

)

z = 250;

else

z= 150;

end

fprintf(fid, ’%8.4f %8.4f %6.2f\n\...

x,y,z);

fprintf(fidl,’%6.2f\n’,z);

end

end

fclose(fid);

fclose(fidl);

%
case 2

%
%Lowest row: row 1

%

bar_y(2,l) = ((l+(ma(i)-l)*delta)/2) - 0.0254;

bar_y(2,2) = bar_y(2,l);

bar_y(l,4) = bar_y(2,l) - 0.0254;

bar_y(l,3) = bar_y(l,4);

bar_y(l,l) = bar_y(l,4) - 0.0508;

bar_y(l,2) = bar_y(l,l);

bar_y(2,4) = ((l+(ma(i)-l)*delta)/2) + 0.0254;

bar_y(2,3) = bar_y(2,4);

bar_y(3,l) = bar_y(2,4) + 0.0254;

bar_y(3,2) = bar_y(3,l);

bar_y(3,4) = bar_y(3,l) + 0.0508;

bar_y(3,3) = bar_y(3,4);

%
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%Middle row: row 2

%

bar_y(5,l) = ((l+(ma(i)-l)*delta)/2) - 0.0254;

bar_y(5,2) = bar_y(5,l);

bar_y(4,4) = bar_y(5,l) - 0.0508;

bar_y(4,3) = bar_y(4,4);

bar_y(4,l) = bar_y(4,3) - 0.0508;

bar_y(4,2) = bar_y(4,l);

bar_y(5,4) = ((l+(ma(i)-l)*delta)/2) + 0.0254;

bar_y(5,3) = bar_y(5,4);

bar_y(6,l) = bar_y(5,4) + 0.0508;

bar_y(6,2) = bar_y(6,l);

bar_y(6,4) = bar_y(6,l) + 0.0508;

bar_y(6,3) = bar_y(6,4);

%
%Top row: row 3

%

bar_y(8,l) = ((l+(ma(i)-l)*delta)/2) - 0.0254;

bar_y(8,2) = bar_y(8,l);

bar_y(7,4) = bar_y(8,l) - 0.1016;

bar_y(7,3) = bar_y(7,4);

bar_y(7,l) = bar_y(7,4) - 0.0508;

bar_y(7,2) = bar_y(7,l);

bar_y(8,4) = ((l+(ma(i)-l)*delta)/2) + 0.0254;

bar_y(8,3) = bar_y(8,4);

bar_y(9,l) = bar_y(8,4) + 0.1016;

bar_y(9,2) = bar_y(9,l);

bar_y(9,4) = bar_y(9,l) + 0.0508;

bar_y(9,3) = bar_y(9,4);

%
%Write out data file

%
% Define the output file for each case

%

file = (i-l)*3 + bar_w;

output = [Folder Barcells{ file }];

output 1 = [Folder Intcells{ file}];

fid = fopen(output,’w’);

fidl = fopen(output lfw
7

);

%
for

j
= l:nf
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y = (j-l)*delta;

for k = 1 :nf

%go down rows first then colums

x = (k-l)*delta;

if ((bar_x(7,2) <= x) & ...

(x <- bar_x(7,l)))...

& ( ((bar_y(7,2) <= y) & ...

(y <= bar_y(7,3)))...

|

((bar_y(8,2) <= y) & ...

(y <= bar_y(8,3)))...

|

((bar_y(9,2) <= y) & ...

(y <= bar_y(9,3)))

)

z = 250;

elseif ((bar_x(4,2) <= x) & ...

(x <= bar_x(4,l )))...

& ( ((bar_y(4,2) <= y) & ...

(y <= bar_y(4,3)))...

|

((bar_y(5,2) <= y) & ...

(y <= bar_y(5,3)))...

|

((bar_y(6,2) <= y) & ...

(y <= bar_y(6,3)))

)

z = 250;

elseif ((bar_x(l,2) <= x) & ...

(x <= bar_x( 1,1 )))...

& ( ((bar_y(l,2) <= y) & ...

(y <= bar_y(l,3)))...

|

((bar_y(2,2) <= y) & ...

(y <= bar_y(2,3)))...

|

((bar_y(3,2) <= y) & ...

(y <= bar_y(3,3)))

)

z = 250;

else

z = 150;

end

fprintf(fid,’%8.4f %8.4f %6.2f\n’,...

x,y,z);

fprintf(fid 1 ,
’%6.2f\n ’,z);

end

fclose(fid);

fclose(fidl);

%
case 1

%
%Lowest row: row 1
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%

bar_y(2,l) = ((l+(ma(i)-l)*delta)/2) - 0.0127;

bar_y(2,2) = bar_y(2,l);

bar_y(l,4) = bar_y(2,l) - 0.0254;

bar_y(l,3) = bar_y(l,4);

bar_y(l,l) = bar_y(l,4) - 0.0254;

bar_y(l,2) = bar_y(l,l);

bar_y(2,4) = ((l+(ma(i)-l)*delta)/2) + 0.0127;

bar_y(2,3) = bar_y(2,4);

bar_y(3,l) = bar_y(2,4) + 0.0254;

bar_y(3,2) = bar_y(3,l);

bar_y(3,4) = bar_y(3,l) + 0.0254;

bar_y(3,3) = bar_y(3,4);

%
%Middle row: row 2

%

bar_y(5,l) = ((l+(ma(i)-l)*delta)/2) - 0.0127;

bar_y(5,2) = bar_y(5,l);

bar_y(4,4) = bar_y(5,l) - 0.0508;

bar_y(4,3) = bar_y(4,4);

bar_y(4,l) = bar_y(4,3) - 0.0254;

bar_y(4,2) = bar_y(4,l);

bar_y(5,4) = ((l+(ma(i)-l)*delta)/2) + 0.0127;

bar_y(5,3) = bar_y(5,4);

bar_y(6,l) = bar_y(5,4) + 0.0508;

bar_y(6,2) = bar_y(6,l);

bar_y(6,4) = bar_y(6,l) + 0.0254;

bar_y(6,3) = bar_y(6,4);

%
%Top row: row 3

%

bar_y(8,l) = ((l+(ma(i)-l)*delta)/2) - 0.0127;

bar_y(8,2) = bar_y(8,l);

bar_y(7,4) = bar_y(8,l) - 0.1016;

bar_y(7,3) = bar_y(7,4);

bar_y(7,l) = bar_y(7,4) - 0.0254;

bar_y(7,2) = bar_y(7,l);

bar_y(8,4) = ((l+(ma(i)-l)*delta)/2) + 0.0127;

bar_y(8,3) = bar_y(8,4);

bar_y(9,l) = bar_y(8,4) + 0.1016;

bar_y(9,2) = bar_y(9,l);
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bar_y(9,4) = bar_y(9,l) + 0.0254;

bar_y(9,3) = bar_y(9,4);

%
%Write out data file

%
% Define the output file for each case

%

file ” (i-l)*3 + bar_w;

output = [Folder Barcells{ file}];

outputl = [Folder Intcells { file}];

fid - fopen(output,’w’);

fidl = fopen(outputl,’w’);

%
for j

= l:nf

y - (j-l)*delta;

for k = l:nf

%go down rows first then colums

x = (k-l)*delta;

if ((bar_x(7,2) <= x) & ...

(x <= bar_x(7,l )))...

& ( ((bar_y(7,2) <= y) & ...

(y <= bar_y(7,3)))...

|

((bar_y(8,2) <= y) & ...

(y <= bar_y(8,3)))...

|

((bar_y(9,2) <= y) & ...

(y <= bar_y(9,3)))

)

z = 250;

elseif ((bar_x(4,2) <~ x) & ...

(x <= bar_x(4,l )))...

& ( ((bar_y(4,2) <= y) & ...

(y <= bar_y(4,3)))-..

|

((bar_y(5,2) <= y) & ...

(y <= bar_y(5,3)))—

|

((bar_y(6,2) <= y) & ...

(y <= bar_y(6,3)))

)

z = 250;

elseif ((bar_x(l,2) <= x) & ...

(x <= bar_x( 1,1 )))...

& ( ((bar_y(l,2) <= y) & ...

(y <= bar_y(l,3)))—

|

((bar_y(2,2) <= y) & ...

(y <= bar_y(2,3)))—

|

((bar_y(3,2) <= y) & ...

(y <= bar_y(3,3)))

)
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else

z = 250;

z = 150;

end

fprintf(fid,’%8.4f %8.4f %6.2f\n’,...

fprintf(fidl,’%6.2f\n’,z);

end

end

fclose(fid);

fclose(fidl);

%end switch on bar-width

end

%end of bar_w cases

end

% end of distance cases

end

x,y,z)
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C3. FORTRAN 90 Convolution Program

C3.1 Program CONVOLVE.F90

CONVOLVE.F90

This program implements a fast convolution algorithm on simulated

ground truth bar code data. The objects of the program are to test

the effect of various convolution filters on the ground truth

data and produce blurred images of bar code data that can be

compared to bar code images acquired by LADAR scans. The program

assumes the existence of a square array ground truth data set,f, and

a square array, h, representing the convolution filter. The

program produces a blurred array by performing a finite convolution

summation.

Let

ma = side length of filter (integer),

nf = side length of ground truth image (integer),

ng = side length of filtered image (integer).

These quantities are related by the formula

nf = ng + ma - 1

Note that this implies that ng < nf.

The convolution filter is given by a matrix

h(ma,ma) = filter values

The ground truth image is assumed to be given by a function

defined at equally spaced points f(y(i),z(j)) where

y(i) < y(2) < ... < y(nf)

z(l) < z(2) < ... < z(nf)

The resulting blurred image will be given by a function g(Y(p),Z(q))

where

Y(l) < Y(2) < ... < Y(ng)

Z(l) < Z(2) < ... < Z(ng)
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The finite convolution summation is then given by

q+ma-1 p+ma-1

xxxxxx xxxxxx

x x

g(Y(p),Z(q)) = x x h(Y(p)-y(i),Z(q)-z(j))*f(y(i),z(j))

x x

xxxxxx xxxxxx

j=q i=p

In the computation the functions f and g will be written as

elongated vectors x and b and the convolution filter h will be

represented in its matrix form.

INPUT File Formats:

1. Parameter input file name is Convolve_Input.txt with format

Line 1: ma, ng Read as two integers (space 4dig space 4dig)

Line 2: ma Read as a character string, (4 characters)

Line 3: Filter (Beam) matrix file name (Up to 120 character string)

Line 4: Blurred image vector file name (Up to 120 character string)

Line 5: Name of ground truth image (Up to 120 character string)

Put a CR/LF (ENTER) at the end of line 5

2. Filter input file format:

ma rows by ma columns. Each entry in G15.6.

3. Ground truth file format:

Three columns in (F8.4,F9.4,F7.2). Column 1 is the y value, column 2

is the z value, and column 3 is the image intensity value.

Author:

David E. Gilsinn

Mathematical and Computational Sciences Division

National Institute of Standards and Technology

100 Bureau Drive, Stop 8910

Gaithersburg, MD 20899-8910

e-mail: dgilsinn@nist.gov

jfc jjc »}» 5|6 »jc jfc jjc »j» rfc »f» »}* »f» ?fc jjc »f% if* 'f' 'f* ^

PROGRAM Convolve

IMPLICIT NONE
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**********************************************************************

The object of this program is to test the convolution algorithm

on known bar code ground truth images.

Parameter specifications:

CHARACTER(*), PARAMETER :: Folder = "c:\ConvolveV

Other varaible specifications:

x is a vector representing the ground truth image stored by columns

of length nf*nf. b is the filtered image stored by columns of length

ng*ng.

INTEGER :: p, 1, k, q ,e, ma, nf, ng

INTEGER :: i, j, n, m, Inputstatus, Memorystatus, nout

REAL, DIMENSION^,:), ALLOCATABLE :: h

REAL, DIMENSIONS, ALLOCATABLE :: yl, zl, x, b

REAL :: xx, yy,z, sum, residnorm, maxb, minb

CHARACTER(120) :: BeamMatrix, GroundTruth, Beam, BeamL, GT, GTL,&
FilteredVect, Filtered, FilteredL, Output, &
OutputL,Printfile, Reconstruct, ReconstructL,&

PredGroundTruth, Input, InputL

CHARACTER(4) :: CharMa, CharMaR
CHARACTER( 1 2) :: BeamFMT

Get the parameter input file. Display input parameters.

Input = Folder//"Convolve_Input.txt"

InputL = ADJUSTL(Input)

OPEN(UNIT = 2, FILE = InputL, IOSTAT = Inputstatus)

IF (Inputstatus > 0)&
STOP "*** Error on opening unit 2 Input file

***"

READ(UNIT = 2, FMT = ’(215)0 ma, ng

Print *,ma,ng

READ(UNIT = 2, FMT = ’(A4)0 CharMa
Print *,CharMa
READ(UNIT = 2, FMT = ’(A 120)0 Beam
Print *, Beam
READ(UNIT = 2, FMT = ’(A12O)0 Filtered

Print *, Filtered
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READ(UNIT = 2, FMT = ’(A 120)*) Reconstruct

Print *, Reconstruct

CLOSE(2)
BeamL = ADJUSTL(Beam)
FilteredL = ADJUSTL(Fi 1tercd)

OutputL = ADJUSTL(Output)

ReconstructL = ADJUSTL(Reconstruct)

CharMaR = ADJUSTR(CharMa)
BeamMatrix = Folder/ZBeamL

print *,BeamMatrix = BeamMatrix

FilteredVect = Folder//FilteredL

PredGroundTruth = Folder//ReconstructL

BeamFMT = ,

(’//CharMaR//G15.6)’

Allocate arrays

Get lengths of ground truth image vector, n, and filtered image

vector, m.

nf = ng + ma -1

n = nf*nf

m = ng*ng

ALLOCATE(h(ma,ma), yl(n), zl(n), x(n), b(m), STAT = Memorystatus)

IF (Memorystatus /= 0) STOP "*** Memory allocation error
***"

Get the filter data as a matrix.

OPEN(UNIT=4,FILE = BeamMatrix,STATUS = OLD’,IOSTAT = Inputstatus)

IF (Inputstatus > 0 ) THEN
PRINT *, BeamMatrix

STOP "*** Error on opening unit 4 ***"

END IF

DO i = l,ma

READ(UNIT = 4, FMT = BeamFMT) (h(i,j), j
= I,ma)

END DO
CLOSE(4)

Get the ground truth image image

OPEN(UNIT = 6, FILE = PredGroundTruth,STATUS = OLD")

i = 0

DO
READ(UNIT = 6,FMT = ’(F8.4,F9.4,F7.2)’,IOSTAT = Inputstatus)&

yy, z, xx

IF (Inputstatus > 0) STOP "*** Input Error on Unit 6 ***"

IF (Inputstatus < 0) EXIT ! End of file
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i = i + 1

yl(i) = yy ! y value of data points (Not used)

zl(i) = z ! z value of data points (Not used)

x(i) = xx

END DO
CLOSE(6)
Print *, ’gt image. Next integers should be equal.’, i, n

I

! Perform the convolution algorithm

I

DO p = l,ng ! Loop over each y block of ng elements

DO 1 = l,ng ! Local row number within y block

j = (p-l)*ng + 1

sum = 0.0

DO k = 0,ma-l ! Loop over x blocks of nf elements

DO q = 0,ma-l ! Form the inner product for row j

e = (p + k - l)*nf +1 + q
sum = sum + h(ma-q,ma-k)*x(e)

END DO
END DO
b(j) = sum

END DO
END DO

! Scale the output intensities to between 140 and 255

! Write the output as a vector for Matlab graphics

minb = MINVAL(b)
maxb = MAXVAL(b)

OPEN(UNIT = 8,FILE = FilteredVect, STATUS = UNKNOWN 7

)

DO i = l,m

b(i) = ((255.0-140.0)/(maxb-minb))*(b(i)-maxb) + 255.0

WRITE (UNIT = 8, FMT = ’(IX, G12.6)
7

) b(i)

END DO
CLOSE(8)

i

! Deallocate memory
j

DEALLOCATED, yl, zl, x, b )

END PROGRAM Convolve
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C3.2 Sample Input Parameter File

11 095

11

spot_quarterin_10m.txt

Quarterin_conv_Bar_lin_10m_95x95.txt

yzint_Bar_lin_10m_data_105xl05.txt
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C4. FORTRAN 90 Deconvolution Program

C4.1 Program DECONVOLVE.F90

DECONVOLVE.F90

This program reconstructs ground truth bar code images from

blurred images obtained from LADAR scans. The program

assumes the existence of a square array scanned data set,g, and

a square array, h, representing the convolution filter. The

program produces a best estimate array of ground truth

by applying an iterative least squares algorithm to a

finite convolution summation. It is an inverse problem.

Let

ma = side length of filter (integer),

nf = side length of ground truth image (integer),

ng = side length of filtered image (integer).

These quantities are related by the formula

nf = ng + ma - 1

Note that this implies that ng < nf.

The convolution filter is given by a matrix

h(ma,ma) = filter values

The ground truth image is assumed to be given by a function

defined at equally spaced points f(y(i),z(j)) where

y(l) < y(2) < ... < y(nf)

z(l) < z(2) < ... < z(nf)

This will be the function reconstructed.

The scanned blurred image will be given by a function g(Y(p),Z(q))

where

Y(l) < Y(2) < ... < Y(ng)

Z(l) < Z(2) < ... < Z(ng)
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The finite convolution summation is then given by

q+ma-1 p+ma-1

xxxxxx xxxxxx

x x

g(Y(p),Z(q)) = x x h(Y(p)-y(i),Z(q)-z(j))*f(y(i),z(j))

x x

xxxxxx xxxxxx

j=q i=p

In the computation the functions f and g will be written as

elongated vectors x and b and the convolution filter h will be

represented in its matrix form. The object is to use the filter h

and the scanned data g to obtain a best estimate of f.

INPUT File Formats:

1.

Parameter input file name is LSQR_Input.txt with format

Line 1: ma, ng Read as two integers, FORMAT (215)

i.e. space 4dig space 4dig

Line 2: ma Read as a character string, FORMAT (A4)

Line 3: Beam matrix file name Character string FORMAT (A 120)

Line 4: Filtered image vector file name Character string

FORMAT (A120) (file in F6.2)

Line 5: Name of LSQR output file FORMAT (A120)

Line 6: Name of predicted ground truth image FORMAT (A120)

Line 7: damp - regularization parameter FORMAT (F5.3)

Line 8: atol - relative error in data defining A matrix.

For 3 figures 0.001. FORMAT (F8.6)

Line 9: btol - relative error in data defining right hand b.

For 3 figures 0.001. FORMAT (F8.6)

Put a CR/LF (ENTER) at the end of line 9

2. Filter input file format:

ma rows by ma columns. Each entry in G15.6.

3. Scanned data file format:

Three columns in (F8.4,F9.4,F7.2). Column 1 is the y value, column 2

is the z value, and column 3 is the image intensity value.

Subroutines required:
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1. SUBROUTINE Aprod((Mode, m, n, x, y, Leniw, Lenrw, Iw, Rw)
This subroutine computes the following:

If Mode = 1, set y = y + H*x

If Mode = 2, set x = x + (HAT) * y
where HAT is the transpose of H formed from h.

Leniw, Lenrw are the length of the working arrays Iw, Rw

2.SUBROUTINE LSQR( M,N,APROD,DAMP,
1 LENIW,LENRW,IW,RW,
2 U,V,W,X,SE,

3 ATOL,BTOL,CONLIM,ITNLIM,NOUT,
4 ISTOP,ANORM,ACOND,RNORM,ARNORM,XNORM)

This subroutine performs the iterative least squares algorithm.

For a description of the algorithm see

(a) Paige, C., Saunders, M, "LSQR: An algorithm for sparse linear

equations and sparse least squares", ACM Transactions on

Mathematical Software, Vol 8, No. 1, 1982, 43-71.

(b) Paige, C., Saunders, M, "Algorithm 583, LSQR: Sparse linear

equations and least squares problems", ACM Transactions on

Mathematical Software, Vol 8, No. 2, 1982, 195-209.

The subroutine can be obtained from the ACM web site at

http://www.acm.org/calgo/contents/. It is not included in

the current code publication for copyright reasons.

Author:

David E. Gilsinn

Mathematical and Computational Sciences Division

National Institute of Standards and Technology

100 Bureau Drive, Stop 8910

Gaithersburg, MD 20899-8910

e-mail: dgilsinn@nist.gov

**********************************************************************

MODULE LSQR_global
***********************************************************************

This module provides access to the quantities ma, nf, ng, h from

the subroutines.

***********************************************************************

INTEGER :: ma, nf, ng

REAL, DIMENSION!:,:), ALLOCATABLE :: h

END MODULE LSQR_global
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The main program DECONVOLVE begins here

PROGRAM Deconvolve

USE LSQR_global

IMPLICIT NONE
EXTERNAL Aprod, LSQR

Parameter specifications

INTEGER, PARAMETER :: Leniw = 1, Lenrw = 1

CHARACTERS), PARAMETER :: Folder = "c:\DeconvolveV

Other specifications

x is a vector representing the ground truth image stored by columns of

length nf*nf. b is the filtered image stored by columns of length ng*ng.

INTEGER, DIMENSION(Leniw) :: Iw

INTEGER :: i, j, n, m, Mode, Inputstatus, Memorystatus, nout, istop, mout(16),&

itnlim

INTEGER, DIMENSIONS) :: Val

REAL, DIMENSION(Lenrw) :: Rw
REAL :: xx, atol, btol, conlim, damp, anorm, acond, morm, amorm, xnorm, y,z

REAL, DIMENSIONC), ALLOCATABLE :: x, b, u, v, w, se

CHARACTERS 20) :: BeamMatrix, GroundTruth, Beam, BeamL, GT, GTL,&
Input, InputL,&

FilteredVect, Filtered, FilteredL, Output, OutputL,&

Printfile, Reconstruct, ReconstructL,PredGroundTruth

CHARACTER(4) :: CharMa, CharMaR
CHARACTER( 1 2) :: BeamFMT
CHARACTER(LEN= 1 2) :: Real_clock(3)

Read the parameter input file

Input = Folder//"LSQR_Input.txt"

InputL = ADJUSTL(Input)

OPEN(UNIT = 2, FILE = InputL, IOSTAT = Inputstatus)

IF (Inputstatus > 0) STOP "*** Error on opening unit 2 Input file
***"

READ(UNIT = 2, FMT = ’SE))
7

) ma, ng

Print *,ma,ng

READ(UNIT = 2, FMT = ’(A4)
5

) CharMa
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Print *,CharMa

READ(UNIT = 2, FMT = ’(A^O)
5

) Beam
Print *, Beam
READ(UNIT = 2, FMT = ’(A 120)’) Filtered

Print *, Filtered

READ(UNIT = 2, FMT = ’(A120)’) Output

Print *, Output

READ(UNIT = 2, FMT = ’(A 120)’) Reconstruct

Print *, Reconstruct

READ(UNIT = 2, FMT = ’(F5.3)’) damp
Print *, damp
READ(UNIT = 2, FMT = ’(F8.6)’) atol

Print *, atol

READ(UNIT = 2, FMT = ,

(F8.6)
T

) btol

Print *, btol

CLOSE(2)
BeamL - ADJUSTL(Beam)
FilteredL = ADJUSTL(Filtered)

OutputL = ADJUSTL(Output)
ReconstructL = ADJUSTL(Reconstruct)

CharMaR = ADJUSTR(CharMa)
BeamMatrix = Folder//BeamL

FilteredVect = Folder//FilteredL

Printfile = Folder//OutputL

PredGroundTruth = Folder//ReconstructL

BeamFMT = ’(V/CharMaR/IV 15. 6)’

j

! Allocate arrays

i

! Get lengths of ground truth image vector, n, and filtered image vecctor, m.

j

nf = ng + ma -1

n = nf*nf

m = ng*ng

ALLOCATE(h(ma,ma), x(n), b(m), u(m), v(n), w(n), se(n), STAT =

Memorystatus)

IF (Memorystatus /= 0) STOP "*** Memory allocation error ***"

t

! Get the filter data as a matrix.

j

OPEN(UNIT = 4,FILE = BeamMatrix, STATUS = OLD’, IOSTAT = Inputstatus)

IF (Inputstatus > 0 ) THEN
PRINT *, BeamMatrix

STOP "*** Error on opening unit 4 ***"

END IF

DO i = l,ma

112



READ(UNIT = 4, FMT = BeamFMT) (h(i,j), j
= l,ma)

Print *, (h(i j), j
= l,ma)

END DO
CLOSE(4)

I

! Get the scanned data image

I

OPEN(UNIT = 6, FILE = FilteredVect, STATUS = ’OLD 7

)

i = 0

DO
READ(UNIT = 6,FMT = 7

(F8.4,F9.4,F7.2)’,&

IOSTAT = Inputstatus) y, z, xx

IF (Inputstatus > 0) STOP "*** Input Error on Unit 6 ***"

IF (Inputstatus < 0) EXIT ! End of file

i = i + 1

b(i) = xx

END DO
CLOSE(6)
Print *, Filtered image’, i, m

!

! Assign b to u for input to LSQR. Note u is overwritten.

! Dummy values. Work arrays not used.

i

Iw(l) = 0

Rw(l) = 0.0

! Setting up parameters for LSQR. Open an internal file

! used by LSQR for diagnostic output and a file to save

! the reconstructed image, x. Time calls are made for

! diagnostic information.

nout = 7

OPEN(UNIT = nout, FILE = Printfile, STATUS = UNKNOWN 7

)

OPEN(UNIT = 8, FILE = PredGroundTruth, STATUS = UNKNOWN 7

)

conlim = 1.0e+7

itnlim = 10

CALL DATE_AND_TIME(Real_clock( 1 ), Real_clock(2),&

Real_clock(3), Val)

Print *, Val(l), Val(2)
,
Val(3), Val(5), Val(6),&

Val(7), Val(8)

Call LSQR( m,n,Aprod,damp,Leniw,Lenrw,Iw,Rw,u,v,w,x,se,&

atol,btol,conlim,itnlim,nout,istop,anorm,&
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acond,rnorm,arnorm,xnorm

)

CALL DATE_AND_TIME(Real_clock(l), Real_clock(2),&

Real_clock(3), Val)

PRINT *, Val(l), Val(2) , Val(3), Val(5), Val(6),&

Val(7), Val(8)

DO i = l,n

WRITE (UNIT = 8, FMT = ’(IX, F12.6)’) x(i)

END DO
!

CLOSE(nout)

CLOSE(8)
i

! Deallocate memory
i

DEALLOCATE^, x, b, u, v, w, se )

I

I

END PROGRAM Deconvolve

i

SUBROUTINE Aprod (Mode, m, n, x, y, Leniw, Lenrw, Iw, Rw)

! This version of Aprod performs a convolution of a filter matrix, h,

! with an image vector, x. It also applies the transpose of h to a

! filtered image vector y. The storage of images is by columns.

! The image vector is stored in x of length n. It is generated from

! a square image of side nf so that n = nf*nf. If f(i,j), i, j
= l,nf

! is the image, the structure of x is as follows:

! x(l) = f(l,l), x(2) = f(2,l), ..., x(nf) = f(nf, 1),

! x(nf + 1) = x(l, 2), ..., x(2*nf) = x(nf, 2),...,

! x(nf*nf) = f(nf, nf).

! The blurred image vector is stored in y of length m. It is generated

! from a square image of side ng so that m = ng*ng. If, g(i, j),

! i, j
= 1, ng is the blurred image, the ! structure of y is as follows:

!
y(l) = g(l, 1), y(2) = g(2, 1), ..., y(ng) = g(ng, 1),

!
y(ng + 1) = g(l, 2), ..., y (2*ng) =

! g(ng, 2), ...,

!
y(ng*ng) = g(ng, ng)

! The matrix A is the sparse block Toeplitz matrix formed from the

! filter matrix, h, of size ma x ma. In this subroutine the sparse

! matrix is never created. Outputs are created by rows using the filter

! matrix. This reduces storage requirements.

! Aprod performs the following function:
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If Mode = 1, set y = y + A*x
If Mode = 2, set x = x + (AAT) * y

Iw and Rw are work arrays of length Leniw and Lenrw respectively.

They are not used in this version of Aprod

Module LSQR_global contains h, ma, ng, nf

USE LSQR_global

IMPLICIT NONE
INTEGER :: n, m, Leniw, Lenrw, Mode
INTEGER ::p, l,j,k, q, e

REAL :: x(n), y(m), Iw(Leniw), Rw(Lenrw)

REAL :: sum, yj

Select the mode

IF (mode == 1) THEN

Mode = 1 — Set y = y + A*x

DO p = l,ng ! Loop over each y block of ng elements

DO \- l,ng ! Local row number within y block

j = (p-l)*ng + l

sum = 0.0

DO k = 0,ma-l ! Loop over x blocks of nf elements

DO q = 0,ma-l ! Form the inner product for row j

e = (p + k - l)*nf +1 + q
sum = sum + h(ma-q,ma-k)*x(e)
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! Add A*x to y for row j

END DO
END DO
y(j) = y(j) + sum

END DO
END DO

!

ELSE
I

I

! Mode = 2 — Set x = x + (AAT)*y
!

I

DO p = l,ng

DO 1 = l,ng

j = (p-l)*ng + l

yj = y(j)

DO k = 0,ma-l

DO q = 0,ma-l

e = (p+k-l)*nf + 1 + q
x(e) = x(e) + h(ma-q,ma-k)*yj

END DO
END DO

END DO
END DO

I

END IF

I

END SUBROUTINE Aprod

C4.2 Sample Input Parameter File

11 095

II

Beam_ 10m_gaus_sig06_3x7 .tx t

yzint_a_2in_ 10m_crop_95 .txt

LSQR_decon_out_2in_10m.txt

decon_gaussig06_3x7_a_2in_ 10m_gt .tx t

0.001

0.000001

0.000001
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C5. FORTRAN 90 Program to Reverse Engineer the Beam Spread

Function

C5.1 Matrix alignment

In order to apply the LSQR algorithm to the reverse engineering problem the matrices

involved need to be stored in such a way that they align properly. As in the convolution

and deconvolution programs the scanned data, g, is stored by columns. That is

f
*(U)

>

*(2 , 1)

*(n*.l)

*0 . 2)

g(ng, 2)

*0,"*)

K
g(ng,ng)

/

(C5.1)

Similarly the unknown filter matrix, H, is also stored in vector form as

r ff(l.l) ^

H(2 , 1 )

H(ma, 1)

H(l, 2)

H =

H(ma, 2)

H&ma)

(C5.2)

H(ma,ma

)

\ /

The ground truth image is also assumed to be stored in column form as
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(C5.3)

/(1)
N

/(2)

/-

H^
of

..

k,

EC

/(«/)

f(nf + 1)

F(nf, 1)

F{1,2)

f(2nf) F(nf, 2)

f{(nf-X)nf) F(nf,nf- 1)

f(nf
2

)
,

F(nf,nf)
t

In order to satisfy the requirements of LSQR, the ground truth image has to be stored as a

matrix for use in a modified version of the Aprod subroutine. The ground truth image is

stored in a matrix of size A(ng
2

, ma
2

).

/(l)

f(2)

f(ma)

/(ma + 1)

f(nf + 1)

f(nf + 2)

f(nf + ma

)

f(nf + ma + 1)

/((ma-l)n/ + l)

/((ma-l)n/ + 2)

/((ma - 1)«/ + ma)

/((ma - l)n/ + ma + 1)

f(ng)

f(nf + 1)

f(ng+(ma- 1))

f(,nf + \ + (ma-l))

f(nf +ng )

f(2nf + 1)

/(;i/ + ng +(ma-l))

f(2nf + \ + (ma-l))

fa>na-\)nf +ng)

fa>na)nf + 1)

/((ma -
1 )n/ + ng + (ma - 1))

/((ma)n/ +l + (ma- 1))

f(nf+ng)

f(2nf +1)

f(nf + ng+(nw-l))

f (2/i/ + 1 + (ma - 1))

f(2iif +ng)

/(3«/ + l)

f (2nf + ng+(ma-l))

/(3«/ + l+(ma-l))

fama)nf +ng )

/((mo + l)«/ + 1)

fama)nf +ng +(ma-l))

/((ma + l)a/ + l+(ma-l))

f(2nf + ng) f(2nf + ng+(.ma-l)) fOnf + ng ) ffinf + ng +(ma- 1)) /((ma + l)n/ + ng) /((ma + l)n/ + ag +(ma - 1))

f((ng - \)nf +1) f((ng-\)nf + \ + (ma-\)) f((ng )/i/ + l) /((Hg)/l/ + l + (Wfl-l)) ••• /((;ig-l + ma-l)/i/ + l) /((ng - 1 + ma - l)n/ + 1 + (ma - 1))

f((ng-\)nf + ng) f((ng-l)nf + ng+(ma-\)) f((ng )nf -nig) fang)nf +ng+(ma-l)) /((«g -l + ma-l)nf + ng) /((ng - 1 + ma - l)n/ + ng + (ma -1))

The storage is accomplished in the main program by the following portion of code. The

transpose, AT, is also computed.

DO cc = 0, ng-1

DO dd = 0, ng-1

DO ee = 0, ma-

1

DO ff = 1 ,ma

kl = cc*ng+dd+l

k2 = ee*ma+ff

k3 = (ee+cc)*nf + dd + ff

A(kl,k2) = F(k3)

END DO
END DO

END DO
END DO
DO cc = l,m

DO dd = 1 ,ma2
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AT(dd,cc) = A(cc,dd)

END DO
END DO

C5.2 SPREAD„FUNCTION.F90 program

I ^ -if *1' *1? ®if •'1* ®1? ®lf sif Sif iJf “li* ®Jc" it* ®J> •if «J> •»!» ••If *1* •d' 'i” »lf »if *lf *!• »1» »i^ «1» «lf *1* *lf «Jf -4f »lf fjf «!» *i< •I' ••I-* «J> •!> «1* «X» .1^ *1^ *A» »>» *,L. *X. »•, »*, «A» ,r.

| *T* *T* *T* ®T® *T® "T* *T* *T® •T* *T® T* “T* 'r *T* *T* *T* *1** ®T* *T* *T“ ,T® *T* *T* • *T® eT* "T* *1® *?“ *T® *T® *7® *P *T® *T® 'I* 'T *T* 'I® *T* *T® *«* *T® *T® *r *7® "T” "T® ®T® *1® '•'* •T‘ ‘T® *T® *T® *7® *T® *T* *T® ^f® 'T* “T* »t® *T® ?f®

! SPREAD_FUNCTION.F90

! The object of this program is to construct by a least squares

! algorithm with residual correction an estimate of the kernel

! matrix that generates a given blurred image from a known ground

! truth image.

! INPUT FILES:

! 1. Parameter input file format

! Line 1: ma, ng Read as two integers, FORMAT 215 i.e. space

! 4dig space 4dig

! Line 2: Charma Character form of ma
! Line 3: Ground Truth file name Character string (file in F6.2)

! Line 4: maximum number of kernel update iterations (at least 1

! is performed)

! Line 5: Filtered image vector file name Character string

! (file in F8.4,F9.4,F7.2)

! Line 6: Name of LSQR output file

! Line 7: Name of predicted spread function

! Line 8: damp - regularization parameter

! Line 9: atol - relative error in data defining A matrix.

! For 3 figures 0.001.

! Line 10: btol - relative error in data defining right hand b.

! For 3 figures 0.001

! Put a CR/LF (ENTER) at the end of line 10

! 2. Filtered or scanned file image

! The file is assumed to be in three columns in (F8.4,F9.4,F7.2).

! Column 1 is the y value, column 2 is the z value, and column 3

! is the image intensity value.

! 3, Ground truth image

! The file is assumed to be in three columns in (F8.4,F9.4,F7.2).

! Column 1 is the y value, column 2 is the z value, and column 3
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! is the image intensity value.

Subroutines Required: LSQR, Aprod, Maxnorm

Author:

David E. Gilsinn

Mathematical and Computational Sciences Division

National Institute of Standards and Technology

100 Bureau Drive, Stop 8910

Gaithersburg, MD 20899-8910

e-mail: dgilsinn@nist.gov

•sL* sX» *1* *1^ *1* «X» si* *1* st* *1* *1* ^ *1* si* 4* «1« si* *1* »j* si* «X» si* si* »I* *X* ^* kL* si* si* si* si* si* si* si* si* si* si* si* si* si* si* si* si* si* si* si* si* si* si* si* si* si* si* si* si* vL* si* si* si* si*
'T* *7* *t* *1* *T“ *T* *T* 'T* *T* *T* *T* 'I* 'r *1* *T* *T* 'T* *i* 'T* 'r *v* *T* 'I' 'f* *f* *i* »X* *i* 'T* *T» *}» *f* *7» *7* *J» qs *J» »j» JJs «js *js *7* *7> *f» *}s *Js *7* *}s *js

! This module provides global access to ma, nf, ng, A, AT

! where

! ma = side length of filter,

! nf = side length of ground truth image

! ng = side length of filtered image, nf = ng + ma -1

! A(ng*ng,ma*ma) - Allocatable Ground truth as a matrix

! AT(ma*ma,ng*ng) - Allocatable transpose of ground truth

MODULE LSQR_global

I

INTEGER :: ma, nf, ng

REAL, DIMENSIONO,:), ALLOCATABLE :: A, AT
|

END MODULE LSQR_global

! Main Program for spread_function

PROGRAM Spread_Function

USE LSQR_global

IMPLICIT NONE
EXTERNAL Aprod, LSQR

! Parameter specifications
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I

INTEGER, PARAMETER :: Lemw = 1, Lenrw = 1

CHARACTER^), PARAMETER :: Folder = "c:\Spread_function\"

I

character length 15

I

! Other specifications

I

! F is a vector representing the ground truth image stored by columns of

! length nf*nf.

! b is the filtered image stored by columns of length ng*ng.

! u, v , w, se are working arrays for LSQR
! h is a matrix representing the LADAR optics kernel or filter.

I

REAL, DIMENSION^), ALLOCATABLE :: F, x, b, u, v, w, se, y, tmp, e, resid

REAL, DIMENSION(:,:), ALLOCATABLE :: h

DOUBLE PRECISION, DIMENSION!; ), ALLOCATABLE :: rl, r2

I

REAL, DIMENSION(Leniw) :: Iw

REAL, DIMENSION(Lenrw) :: Rw
REAL :: xx, atol, btol, conlim, damp, anorm, acond, morm, amorm, xnorm,&

xl, x2

REAL :: xmaxnorm, residnorm

INTEGER :: i, j, n, m, Mode, Inputstatus, Memorystatus, nout, istop, mout(16),&

itnlim, ma2, cc, dd, ee, ff, kl, k2, k3, k, iter, maxiter

CHARACTER(120) :: BeamMatrix, BeamVector, GT, GTL, Input, InputL,&

FilteredVect, &
Printfile, Reconstruct,

ReconstructL,PredGroundTruth,&

GroundTruthL, BarCodes

CHARACTER(50) :: Beam, BeamL, Filtered, FilteredL, GroundTruth,&

Output, OutputL

CHARACTER(4) :: CharMa, CharMaR
CHARACTER( 1 2) :: BeamFMT

Get the parameter input file.

Input = Folder//"LSQR_Spread_Input.txt"

InputL = ADJUSTL(Input)

OPEN(UNIT = 2, FILE = InputL, IOSTAT = Inputstatus)

IF (Inputstatus > 0) STOP "*** Error on opening unit 2 Input file
***"

READ(UNIT = 2, FMT = ’^IS)
7

) ma, ng

Print *,ma,ng

READ(UNIT = 2, FMT = ’(A4)
5

) CharMa
Print *,charma
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READ(UNIT = 2, FMT = ’(14)’) maxiter

Print *, maxiter

READ(UNIT = 2, FMT = ’(A50)’) GroundTruth

Print *, Beam
READ(UNIT = 2, FMT = XA50)

9

) Filtered

Print *, Filtered

READ(UNIT = 2, FMT = ^50)) Output

Print *, Output

READ(UNIT = 2, FMT = ’(A50)’) Beam
Print *, Reconstruct

READ(UNIT = 2, FMT = ’(F5.3)) damp
Print *, damp
READ(UNIT = 2, FMT = ’(F8.6)*) atol

Print *, atol

READ(UNIT = 2, FMT = ’(F8.6)
7

) btol

Print *, btol

CLOSE(2)
BeamL = ADJUSTL(Beam)
BeamMatrix = Folder//Mat_7/BeamL

BeamVector = Folder//’Vect_
,

//BeamL

FilteredL = ADJUSTL(Filtered)

OutputL = ADJUSTL(Output)

GroundTruthL = ADJUSTL(GroundTruth)

FilteredVect = Folder//FilteredL

Printfile = Folder//OutputL

BarCodes = Folderi/GroundTruthL

CharMaR = ADJUSTR(CharMa)
BeamFMT = ,

(y/CharMaR//’G15.6)’

Allocate arrays

Get lengths of ground truth image vector, n, and filtered image vecctor, m.

nf = ng + ma -1

ma2 = ma*ma
n = nf*nf

m = ng*ng

Print *, nf, ma2, n, m
ALLOCATE(A(m,ma2), AT(ma2,m), x(ma2), b(m), u(m), v(ma2), w(ma2),&

se(ma2), F(n), h(ma,ma), y(m),tmp(m),e(ma2), rl(m), &
r2(m), resid(m), STAT = Memorystatus)

IF (Memorystatus /= 0) STOP "*** Memory allocation error ***"

Print *, Memory allocated’

Read ground truth image
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OPEN(UNIT = 8, FILE = BarCodes, STATUS = UNKNOWN*)
Print *, Barcode file = BarCodes

i - 0

DO
READ (UNIT = 8, FMT = *(F8.4,F9.4,F7.2)*, IOSTAT = Inputstatus)

xl,x2, xx

IF (Inputstatus > 0) STOP "*** Input Error on Unit 8: Barcodes ***"

IF (Inputstatus < 0) EXIT ! End of file

i = i+l

F(i) = xx

END DO
CLOSE(8)
Print *, Barcodes’, i, n

Get the LADAR scanned or filtered image

OPEN(UNIT = 6, FILE = FilteredVect, STATUS = UNKNOWN*)
i = 0

DO
READ(UNIT = 6,FMT = ’(F13.6)’,IOSTAT = Inputstatus) xx

READ (UNIT = 6, FMT = ’(F8.4,F9.4,F7.2)’, IOSTAT =&
Inputstatus)xl,x2, xx

IF (Inputstatus > 0) STOP "*** Input Error on Unit 6 ***"

EF (Inputstatus < 0) EXIT ! End of file

i = i + l

b(i) = xx

END DO
CLOSE(6)
Print *, Filtered image’, i, m

Convert Ground truth vector F to matrices A and AT

DO cc = 0, ng-1

DO dd = 0, ng-1

DO ee = 0, ma-1

DO ff = l,ma

kl = cc*ng+dd+l

k2 = ee*ma+ff

k3 = (ee+cc)*nf + dd + ff

A(kl,k2) = F(k3)

END DO
END DO

END DO
END DO
DO cc = l,m
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DO dd = 1 ,ma2

AT(dd,cc) = A(cc,dd)

END DO
END DO

I

! Assign b to u for initial input to LSQR. Note u is overwritten.

I

u = b

! Make b double precision

rl = b

I

! Dummy values. Work arrays not used.

!

Iw(l) = 0

Rw(l) = 0.0

! Setting up parameters for LSQR

nout = 7

OPEN(UNIT = nout, FILE = Printfile, STATUS = UNKNOWN 5

)

conlim = 1.0e+7

itnlim = 50

I

iter = 0

! Begin the iterative refinement procedure to estimate the filter

t

! Determine initial kernel guess x on iteration 0

I

Print *, Initial kernel and Residual Correction, Iteration = ’, iter

Call LSQR( m,ma2,Aprod,damp,Leniw,Lenrw,Iw,Rw,u,v,w,x,se,&

atol,btol,conlim,itnlim,nout,istop,anorm,&

acond,morm,amorm,xnorm)

! Compute residual

Mode = 1

y = 0.0

Call Aprod(Mode, m,ma2,x,y,Leniw,Lenrw, Iw,Rw)

r2 = y ! Make y = Ax double precision

resid = rl - r2 ! r - b - Ax
tmp = resid

residnorm = MAXNORM(m,tmp)
Print *, Residual maxnorm, iteration O’, residnorm
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! pass in the initial residual to start the updates
!

u = resid

!

DO
iter = iter + 1

get the correction term and update the beam vector

i.e. solve Ae = r

Call LSQR( m,ma2,Aprod,damp,Leniw,Lenrw,Iw,Rw,u,v,w,e,se,&

atol,btol,conlim,itnlim,nout,istop,anorm,&

acond,morm,amorm,xnorm)
i

! update kernel approximation
!

x = x + e

I

! compute the new residual

!

Mode = 1

y = 0.0

Call Aprod(Mode, m,ma2,x,y,Leniw,Lenrw, Iw,Rw)

r2 = y ! Make y = Ax double precision

resid = rl - r2 ! r = b - Ax
tmp = resid

residnorm = MAXNORM(m,tmp)
Print *, Residual maxnorm, iteration =’, iter, residnorm

I

! pass in the new residual to get the next update

I

u = resid

I

!
go back for the next correction

I

IF (iter >= max iter) EXIT
I

END DO
CLOSE(nout)

I

x = x - e

I

! Write out the final filter

OPEN(UNIT = 4, FILE = BeamVector, STATUS = UNKNOWN’)
DO i = ma2,l,-l
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WRITE(UNIT = 4, FMT = ’(G15.6)’) x(i)

END DO
CLOSE(4)
DO i = l,ma

DO j
= l,ma

k = (i-l)*ma + j

h(ma-(j-l),ma-(i-l)) = x(k)

END DO
END DO
OPEN(UNIT = 4, FILE = BeamMatrix, STATUS = UNKNOWN 7

)

DO i = l,ma

WR1TE(UNIT = 4, FMT = BeamFMT) (h(i,j), j
= I ,ma)

END DO
CLOSE(4)

I

! Deallocate memory
I

DEALLOCATED, AT, x, b, u, v, w, se, F

)

I

CONTAINS

I

FUNCTION MAXNORM(m, y)

{

I

! This function overwrites y
f

IMPLICIT NONE
REAL :: MAXNORM
INTEGER :: m, i

REAL, INTENT(INOUT) :: y(m)

DO i = l,m

y(i) - ABS(y(i))

END DO
MAXNORM = MAXVAL(y)

I

END FUNCTION MAXNORM
I

!

END PROGRAM Spread_Function

I

I

SUBROUTINE Aprod (Mode, m, n, x, y, Leniw, Lenrw, Iw, Rw)
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J

! This version of Aprod performs a convolution of a filter matrix, h, with an image

vector, x.

! It also applies the transpose of h to a filtered image vector y. The storage

! of images is by columns.

I

! The beam vector is stored in x of length n. It is generated from a square image

! of side ma so that n = ma*ma. If h(i,j), i, j
= l,ma is the beam, the structure of x is as

follows:

! x(l) = h(ma,ma), x(2) = h(ma-l,ma), ..., x(ma) = h(l, ma), x(ma + 1) = x(ma, ma-1), ...,

x(2*ma) = h(l, ma-1),

! ..., x(ma*ma) = h(l, 1).

! The blurred image vector is stored in y of length m. It is generated from a square

! image of side ng so that m = ng*ng. If, g(i, j), i, j
= 1, ng is the blurred image, the

! structure of y is as follows:

! y(l) = g(l, IX y(2) = g(2, IX .... y(ng) = g(ng, IX y(ng + 1) = g(l, 2), .... y (2*ng) =

! g(ng, 2), .... y(ng*ng) = g(ng, ng)

! The matrix A is the sparse block Toeplitz matrix formed from the ground truth image of

! size ng*ng X ma*ma. AT is the transpose

! Aprod performs the following function:

! If Mode = 1, set y = y + A*x
! If Mode = 2, set x = x + (AAT) * y

! Iw and Rw are work arrays of length Leniw and Lenrw respectively. They are not

! used in this version of Aprod

USE LSQR_global

! This subroutine needs to be placed in a module to access global values for

! h, ma, nf, ng defined below

IMPLICIT NONE
INTEGER :: n, m, Leniw, Lenrw, Mode
INTEGER :: i, j, ng2, ma2
REAL :: x(n), y(m), Iw(Leniw), Rw(Lenrw)

REAL :: sum
i

I

ng2 = ng*ng

ma2 = ma*ma
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Select the mode

IF (mode == 1) THEN

Mode = 1 -- Set y = y + A*x

DO i = l,ng2

sum = 0.0

DO j
= l,ma2

sum = sum + A(i,j)*x(j)

END DO
y(i) = y(i) + sum

END DO

ELSE

Mode - 2 — Set x = x + (AAT)*y

DO i = l,ma2

sum = 0.0

DOj = l,ng2

sum = sum + AT(i,j)*y(j)

END DO
x(i) = x(i) + sum

END DO

END IF

END SUBROUTINE Aprod
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C5.3 Sample Input Parameter File

11 095

11

0100

yzint_Bar_lin_10m_data_105xl05.txt

yzint_a_ 1 in_ 10m_crop_95 .txt

LSQR_output_ 1 in_ 10m_95 .txt

Beam_est_a_lin_10m_llxll.txt

0.001

0.0001

0.0001
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