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SINGULAR INTEGRALS, IMAGE SMOOTHNESS, AND THE
RECOVERY OF TEXTURE IN IMAGE DEBLURRING

ALFRED S. CARASSO*

Abstract. Total variation (TV) image deblurring is a PDE-based technique that preserves

edges, but often eliminates vital small-scale information, or texture. This phenomenon reflects the

fact that most natural images are not of bounded variation. The present paper reconsiders the image

deblurring problem in Lipschitz (Besov) spaces A(a,p,q), wherein a wide class of non-smooth images

can be accomodated, and develops a fast FFT-based deblurring method that can recover texture in

cases where TV deblurring fails completely. Singular integral modifiers, such as the Poisson kernel,

are used to create an effective new image analysis tool that can calibrate the lack of smoothness in an

image. It is found that a rich class of images belong to A(a, 1, oo)D A(/3, 2, oo), with 0.2 < a, /3 < 0.6.

The Poisson kernel is then used to regularize the deblurring problem by appropriately constraining

its solutions in A(a,2, oo) spaces, leading to new L 2 error bounds that substantially improve on the

Tikhonov-Miller method. This new so-called Poisson Singular Integral or PSI method is found to

be well-behaved in both the L 1 and L 2 norms, producing results closely matching those obtained

in the theoretically optimal, but practically unrealizable case of true Wiener filtering. Deblurring

experiments on synthetically defocused images illustrate the PSI method’s significant improvements

over both the total variation and Tikhonov-Miller methods.

Key words, image deblurring, singular integrals, non-smooth images, total variation, loss

of texture, Lipschitz spaces, Besov spaces, Poisson kernel, semi-group approximation, recovery of

texture, Tikhonov-Miller method, true Wiener filtering, PSI method.
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1. Introduction. The space BV(R 2
) of functions of bounded variation, normed

by the ‘total variation’ seminorm jR2 |

Vf\dxdy, plays an important role in much recent

work in image analysis. See e.g., [11], [13], [14], [15], [16], [20], [21], [26], [33], and [39].

In particular, highly successful applications of the total variation approach to image

denoising have been well-documented. In contrast, total variation image deblurring is

generally not well-behaved, and often results in unacceptable loss of fine scale infor-

mation. This phenomenon is now believed traceable to an improper choice of function

space [24], The present paper reconsiders the image deblurring problem in Lipschitz

spaces A(a,p,q) wherein a wide class of non-smooth images can be accomodated.

A new and fast FFT-based deblurring technique is developed that can demonstrably

recover texture in cases where total variation deblurring fails completely. The approx-

imation properties of certain singular integral modifiers are intimately linked to such

Lipschitz spaces [3], [4], [36]. Here, these properties are exploited in two distinct ways.

In the first part of the paper, such singular kernels are used to create an effective new
FFT-based image analysis tool that can calibrate the lack of smoothness in an image.

This tool can be used in contexts unrelated to deblurring, e.g., as a sharpness analysis

tool in performance evaluation of imaging systems or image reconstruction software

[38], or as a tool for detecting and quantifying ‘fine-structure’ content in images. In

the second part of the paper, singular integral modifiers are used as regularization

tools in the deblurring problem. Specifically, we show how to stabilize ill-posedness

by using the Poisson kernel to impose a-priori constraints, in appropriate A(a,p,oo)

spaces, on the desired non-smooth deblurred image. This so-called Poisson Singular

Integral or PSI method, is only one of a wide variety of singular integral deblurring

methods that can be constructed. Restricting attention to the case of defocus blurs,
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9 A. S. CARASSO

we derive L 1
error bounds for the PSI method for images € A(q, 2, oo), and demon-

strate robust recovery of fine structure in synthetically blurred images. Wider classes

of blurs will be considered in future papers.

Extensive numerical experiments with known exact solutions indicate that the

PSI method is remarkably well-behaved. In both the L l and L 2 norms, relative

errors in the PSI method are found to closely approximate those obtained in the

theoretically optimal, but practically unrealizable case of true Wiener filtering. The
latter method requires prior knowledge of the exact power spectra of each of the noise

and the unknown desired sharp image, i.e., a total of 8N'2 prior data values for a

2N x 21V image. Since the PSI method requires only 4 prior data values, its ability

to closely track Wiener filtering is especially noteworthy. The availability of reliable

fast deblurring methods is of major significance in the case of non-smooth images.

The true value of the Lipschitz exponent a in the desired sharp image is usually not

known in advance, although a plausible range of values for a can often be deduced.

Fast algorithms enable simultaneous computation and display of large numbers of trial

deblurred images, resulting from multiple choices for a, or some of the regularization

parameters. We stress that the PSI method is exclusively intended for deblurring and

is not. intended for denoising.

2. Lack of smoothness of images. In [27], a new analytical framework for

image processing is introduced, in which a given image f(x,y) is conceptualized as

being the sum of three components, f(x,y) = u(x,y) T- v(x,y) + w(x,y). Loosely

speaking, u(x,y) contains the edges and the other high-priority information that is

sufficient for object recognition, v(x, y) contains the fine-scale details and other low-

priority information that is often not necessary for recognition, and w(x, y) represents

noise. The v(x,y) component is called texture. One example of v(x,y) might be the

hair in a photograph of a person’s face. Another example of v(x, y) might be the heat-

shield tiles in an image of the Columbia space shuttle. The ability to resolve individual

hairs is generally not necessary for identification. In several image processing tasks,

such as compression, segmentation, or face recognition, this texture component can

often be neglected. However, there are numerous other situations where v(x,y) may
be of paramount interest. It is shown in [27] that only the u(x, y) component can

generally be expected to lie in BV(R2
). In [24], it is proved that most natural images

are not of bounded variation, because the texture component v(x,y) generally has

infinite total variation.

Denoising and deblurring are two basic image processing tasks where total varia-

tion restoration has been extensively applied. Such restoration can be accomplished

most effectively by solving an initial value problem for an appropriate nonlinear

anisotropic diffusion equation, using the stepwise marching scheme described in [26].

In deblurring, one typically starts with a degraded image g(x,y) which differs from

the desired true image f(x,y) in that the u(x,y) component is blurred but recogniz-

able, the v(x, y) component is seriously attenuated and often not recognizable, and

the w(x,y) component is usually small. Reconstructing v(x,y) while keeping w(x,y)

small, is the prime objective in numerous medical, astronomical, industrial, and sci-

entific contexts [9], [10]. However, while total variation deblurring sharpens u(x,y)

and keeps w(x,y) small, the texture component v(x,y) is often eliminated due to the

‘staircase effect.’ [13], [20], [29], [30], [39]. This is in accordance with the analyses in

[24], [27],

Let x = (,Xi,X2 ) € R 2
. Postulating f(x) € BV(R 2

)
means that f(x) is con-
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strained to satisfy,

(1) / \f(x + h) — f(x)\dx < Const \h\.

JR2

However, from the standpoint of modeling texture, it is advantageous to consider

functions f(x) satisfying weaker constraints, such as

/r 2
|

f(x + h) — f(x)\
pdx > < Const |h|

i/p

0 < a < 1 .

Such an / lies in A(a,p,oo). With 0 < a < 1, 1 < p < oo, the Lipschitz (Besov)

spaces A (a,p,q) [36], [37], consist of the class of functions f(x) € LP(R2
)
with finite

seminorm
|| / || Qpg ,

where

(3) || / \apq f(x + h) — f (x)
\\py dh/\h\

2
1/9

1 < q < oo,

(4) / lUpoo = sup {\h\
a

||
f(x + h) - f(x) ||p} , q = oo.

h€R2

For given p and q , functions with larger values of a are better behaved, or ‘smoother’,

than functions with smaller values of a, and functions in A(a,p,q\) are smoother than

functions in A(a,p, <72 )
if qi < <72 • In fact, the following continuous embedding results

are proved in [37, Theorem 9|.

(5) A(q 2 ,p, Qi) C A(qi,p, (72 )
0 < cti < Q'2 < 1; 1 < qi < qo < 00 .

Also, in R 2
,

(6) A(a,p,q) C A((3,r,q), a - 2/p = (3 -2/r, p < r.

Let r = 2, let the pair (ct,p) satisfy* 2/(1 + a) < p < 2, and let (3 = 1 + a — 2/p. Then,

0 < P < a, and it follows from (5) and (6) that

(7) A (a,p, q) C A(/3, 2, q) C A(/3, 2, 00 ) C L 2 (R2
).

This result will be important in the sequel.

For given fixed p with 1 < p < 00 and q — 2p/ (2 + ap), a class of Lipschitz spaces

A(q, q, q) C LP(R2
)

is considered in [18], [19], and shown to contain common types

of images. A method for empirically estimating image smoothness is developed in

[18], [19], based on analyzing the behavior of lossy wavelet compression of the image

f(x,y). In [12], the spaces A (a,q,q) C L 2(R2
), q = 2/(1 + ct), are advocated as

being particularly appropriate for accomodating a rich variety of real images in an

L 2
setting. Lossy wavelet compression is again used to estimate image smoothness,

and values of a in the range 0.4 < a < 0.75 are reported in [12] for a class of 24

test images e A(a, y~, jfyy).
In this approach, the restriction on q does not allow

consideration of the wider spaces A(a,p,oo) D A(a,p,q). Clearly, such a values are

an indication of true image smoothness only when the image is largely noise free. If

the noise component w(x, y) is not sufficiently small, artificially low values of a must

be expected.
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The present independent method of estimating image smoothness rests on an en-

tirely different analytical basis, and requires neither wavelet expansions nor image

compression. Instead, the method uses fast FFT algorithms to convolve the image

with a specific type of kernel, and then analyzes how well this convok ed image ap-

proximates the original image as the kernel approaches the Dirac S—function. This

simple direct approach permits consideration of the spaces A(a,p, oo), 1 < p < oo.

The results obtained here are compatible with those obtained in [18], [19], [12], and

[24] . We indeed find that most natural images are not of bounded variation, and that

a wide variety of images € A(a, 1, oo) with 0.2 < a < 0.6.

Remark 1. We deal with high resolution images f(x, y) of size 512x512 or 1024x 1024

pixels. Such an f(x, y

)

may be viewed as a piecewise constant or trigonometric poly-

nomial approximation to the original intensity field f°°(x, y), or as some other kind of

finite dimensional representation of the infinite dimensional object f°°. All norms are

equivalent on a finite dimensional space. Hence, even if f°°(x,y )
is not of bounded

variation, the discrete total variation norm for f(x, y) is always finite, though it may
be very large. To estimate smoothness properties of f°°(x,y) by examination of the

finite dimensional representation f(x,y) requires some sagacity. In [18, §4B, §5B], the

authors stress that in their method of estimating the value of a by monitoring the

rate of convergence as a function of the number J\f of nonzero wavelet coefficients, one

must restrict attention to low values of J\f. At high values of J\f, the fact that f(x,y)

is actually piecewise constant causes the error to decrease much too rapidly, resulting

in an artificially high reading for a that diverges from true behavior in f°°(x, y). This

same finite dimensionality pitfall occurs in the present approach, but wears a different

guise. See Remark 2 and the discussion surrounding Figure 1 in Section 5 below.

We shall use the spaces A(a, l,oo) and A(a, 2, oo) for examining and classifying

image smoothness. However, deblurring applications will be limited to the spaces

A(/3, 2, oo) C L 2 (R 2
), wherein all spaces A(a,p, q), 2/(1 + a) < p < 2, 1 < q < oo,

are continuously embedded. The spaces A(a, 2, oo) will be shown to contain a rich

and significant class of images.

3. The spaces A (a,p,q) and the Poisson singular integral. Define the

Fourier transform h(f,r/) of h(x,y) € Z,
1

( ) bv

(8) iF{h} — h(f,r]) = ( h(x, y)e~
2m^x+vy ^dxdy

.

Jr2

For each fixed t > 0, consider the Poisson kernel in R 2

(9) i’(x,y,t) = ,ov 3/ o .
(x,y)GR2

.

2tt(x- + y- +

We have

(10) . =e~tp
,

p= yjf
2 + rf

2
.

For each t > 0, define the linear operator U t on LP(R2
), 1 < p < oo, by

(11) U tf= / ip(x,y,t)f(x - u,y - v)dudv
Jr2

It can be shown that linpjo
||
Ul

f — / || p
= 0. Defining U° to be the identity op-

erator, it follows that for s,t > 0, LrtU s = Ut+S
. In fact, is a holomorphic
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contraction semigroup on LP(R2
). See [3]. We may write 17* = e~tA ,

where —A is

the infinitesimal generator of 17*. Here, A corresponds to the fractional differential

operator (—A)
1//2

. Note that for t > 0 ,
17* maps LP(R 2

)
into D(A), so that AUt

f is

well-defined for arbitrary f E Lp
. In general, this is not the case for non-holomorphic

semigroups. The Gauss singular integral, where the two-dimensional Gaussian kernel

is used in lieu of xb in (9), defines an analogous holomorphic semigroup IT*, with

A = —A. Many such singular integral semigroups 5* exist. A very rich variety can

be constructed by subordination [7], [40]. For small t > 0
,

5* behaves as an approx-

imate identity on Lp
. There is a large literature on how well S*f approximates /

as t | 0 . See [3], [4], [5], [35], [36], [37], and the references therein. As t [ 0
,
we

have
||
S*f — / || p= o(l) for arbitrary f E Lp

, ||
St

f — f || p
= 0(t) if and only if

f E D(A), and
||
St

f — f || p= o(t) if and only if St
f = f for all t > 0 . Thus,

the optimal rate is always 0(t). Of particular interest in this paper is the case of

non optimal approximation, where f </ D(A) yet retains sufficient smoothness that

||
St

f — f || p
= 0(ta ), 0 < q < 1. as t i 0. While complete theories exist for a wide

class of singular kernels, the simplest such theory revolves around the Poisson semi-

group U t
in (11). We have from [37, Theorem 4],

Theorem 1. Let 17*, t > 0. be the Poisson integral operator in (11), and let

0 < a < 1, 1 < p, q < oo. Then, f E A (a,p, q) if and only if

rOC

(12) /
(t~

a WlJtf - f \\p )

q
dt/t < oo.

Jo

For q = oo, we have f E A (»,p, oo) if and only if

(13) sup t~
a

||
17*/ - / || p < oo.

t>o

Using the embedding results in (7) together with (13) leads to the following corollary.

Theorem 2 (Corollary). Let f E A (a,p,q), with 2/(1 + a) < p <2, and let

(3
—

1 + a — p/2. Then, in the L 2 norm

(14) .
sup t~

3
||
17*/ — / || 2 < oo.

t> o

4. Periodized problems, the Poisson summation formula, and FFT al-

gorithms. The above results can be used to fashion a practical image analysis tool.

Theoretically, given any image f(x,y) in L 1 (R 2
), one could use the Fourier transform

(8) to form

(15) T {U*/} = e-**7(£, rf), P = V^ + V
2

,

for sequences of positive 1-values tending to zero. Inverse transformation is always

possible on account of the factor e~ tp
, and this can be used to produce an infinite

sequence of positive numbers p n = {||
17*"/ — / || i / || / || 1 } with tn [ 0. If every

such sequence (tn ,g. n ), ultimately lies below the curve pit) = C t
a

, 0 < t < t, for

suitably chosen constants C > 0 and 0 < a < 1, then
||
17*/ — / ||i< C || / ||i t

a
,
as

t i 0 , and f(x,y) E A(q, 1
,
oo ) by Theorem 1 . However, this does not lead to a

practical procedure.
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On the other hand. Theorems 1 and 2 remain valid in the periodic case [36], [37].

Here, the image f(x,y) and the kernel i.jj(x,y,t) in (9) are now periodized [5], [
6 ]. Let

Cl denote the unit square — 1/2 < x, y < 1/2 in R 2
. The image f(x, y) is now viewed

as originally defined on Cl from which it is extended by periodicity to all of R2
. Let

(16) f (Z , v)= I f (x , y )e
- 2^x+™Uxdy .

Jq

Define the periodized Poisson kernel ip*(x,y,t) by

OO

(17) ip*{x,y,t)= Y x + k,y + m,t ), t > 0, (x,y)eR2
,

k,m=— oo

and let

(18) Utf= / if* (x,y,t)f(x — u,y — v)dudv, t > 0 .

J Q

The Poisson summation formula, [1], [5], [
6

], [22], [37], is used to show that the

periodized Poisson kernel has a complex Fourier series with Fourier coefficients again

given by (10), but where £,77 are nowT integers running from —00 to +00 . Moreover,

OC

(19) Utf= Y, e-^/0e,r7)e
2«0*+OT), t> 0, p^^Y+V2

-

£,T]=-oo

Again the factor e~ ip assures uniform convergence of the Fourier series in (19). Let

N

(
20

) fN (x,y) = Y e-tp
na,v)e

27ri(x(i+y7i\ t > 0, p= VC' + V
2

-

Z,V=~N

Since Lp
( Cl) C Zd(Q), p > 1, we may apply this approach to any / e Lp

,
and

||
U t

f — /n ||p
can be made arbitrarily small by choosing N large enough in (20).

Next, given the 2J x 2J digitized image f(x, y) with J > N, the discrete Fourier trans-

form
[
2

]
is now the appropriate numerical tool for analyzing this periodized problem.

One can use FFT algorithms to form the Fourier coefficients /(£, 77 ),
— J < £,77 < J,

and then apply the filter
(e~

tp — 1 ) as in (15). An inverse FFT then yields an accurate

approximation to Ut

f — f at each of the 2J x 2J pixels, for each small t > 0. We
may then examine the discrete Lp relative error in Poisson approximation as t

J. 0,

and locate constants C and a such that
||
U t

f — f || p< C
\\ f \\ p t

a
, 0 < t < t.

In summary, we have constructed an accurate numerical procedure, based on correct

mathematical analysis, for assessing membership in any A(a,p, 00
)
space. Equally

important, the values of C and a constitute a- priori information that will be useful

in stabilizing the ill-posed deblurring problem.

Remark 2. Analogously to the case of lossy wavelet compression discussed in Remark
1

,
there is a finite dimensionality pitfall in the above singular integral methodology

that necessitates the exclusion of very small values oft> 0. Let f°°(x,y )
be the orig-

inal image intensity field as in Remark 1
,
and assume that f°°(x, y) € A(0.5,p, 00 ), so

that
||

£/
f /°° — /

,oc
|| p
= O(Vt) as t \ 0 , by Theorem 1 . Let f(x,y) be the 2J x 2J

digitized image corresponding to f°°(x, y). We shall show that at very small values of
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t > 0, the behavior of
||
U t

f — f || p diverges from true behavior in y ), resulting

in a false reading for a. Let St = e~ tA be any contraction semigroup on LP(R2
). As

already pointed out, if / € D(A),
||
S1

f — f || p= Oft) as t
J,

0. This follows from

(21) Stf-f= [

t

-f(S
uf)du= [ SuAfdu,

Jo du Jo

so that
||
S t

f — f || p< t
||
Af

|| p , for all t > 0. In addition,
||
S*f — f || p~ t

||
Af

|| p ,

for all sufficiently small t > 0, because
||
St

|| p~ 1 for all small t. In the above Poisson

semigroup t/*, the unbounded operator A is defined as follows in Fourier space

(
22

) r{Af} = pfte,v), p=ve + v
2

-

Since the digitized 2J x 2J image f(x, y )
is a trigonometric polynomial, it is always

€ D(A) and
||
Af

|| p is always finite, although it may be very large. Consequently,

with a possibly large positive constant K, we always have
||
Ui

f — f || p< Kt for all

t > 0, as well as actual linear behavior
||

\J
t

f — f || p~ Kt for all sufficiently small

t. irrespective of the behavior of
||
U1

f°° — f°° || p at these same values of t. This

phenomenon is well-illustrated in Figure 1.

5. Application to real images. The following examples illustrate the use of

the Poisson singular integral approach. Our first example, in Figure 1, is the 512 x

512 Mandrill image highlighted in [24] as an example of an image ^ BV(R2
). The

above FFT procedure was used to obtain the L 1 and L 2
relative errors in Poisson

approximation

(23) n(t) =|| U*f-f ||P / || / || P , p — 1,2,

at 300 values of t given by tn = 0.5(0.95)
n

,
n — 1,300. For the L 1 norm, a plot

of pit) versus t on a log-log scale produced the solid curve A in Figure 1. Least

squares fitting was used to find the two distinct majorizing dashed straight lines T

and E. For each dashed line, the y-axis intercept value obtained by least squares was

slightly increased so as to make each line lie visibly above the solid curve A\ however,

the slope of each line remains the same as that obtained from least squares. The
line r, defined by log pit) = 3.2 + 0.994 log t, accurately captures the misleading

linear trend of p(t) for very small values of t, while being grossly inaccurate at larger

values of t. It was obtained by excluding data corresponding to log t > —7 from

the least squares fit. The line T implies that
||
U*

f

— f ||i< 24.53
|| / ||i t

0 - 994

for all t > 0. As emphasized in Remark 2, this correct statement primarily reflects

the fact that the 512 x 512 Mandrill image lies in a finite dimensional space; it does

not describe the smoothness properties of the intensity field f°°(x,y) that gave rise

to the digitized Mandrill image. The majorizing dashed straight line E, defined by

log p(t) = —0.75 + 0.306 log t, accurately reflects behavior for —6 < logt < — 1,

while being grossly inaccurate at very small values of t. The line E was obtained

by excluding all data corresponding to logf < —6 from the least squares fit. Note

that this still leaves over 100 data points remaining. The behavior along E, where

||
Lft

f — / ||i< 0.472
|| / ||i t

0 - 306
,
0 < t < 0.1, is taken to be the true behavior in the

Mandrill image. From (13), this implies that the Mandrill image € A(0.306, 1, oo), and

hence, is not of bounded variation. The behavior in the L 2 norm is strikingly similar,

and indicates the image € A(0.271, 2, oo). Estimates of a in any other discrete Lp

norm can be obtained similarly. All a estimates shown in this paper were obtained
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LI RELATIVE ERROR IN POISSON APPROXIMATION

log t

Fig. 1. 512 x 512 Mandrill image was identified in [24] as not in BV(R2
). This is confirmed

in above graphical use of Theorem 1, using FFT techniques discussed in Section 4- Solid curve A is

a plot of p(t) =|| U*f - f ||i / || / ||i versus t, on a log-log scale. Majorizing dashed straight line

F, defined by log p(t) = 3.2 + 0.994 log t, accurately captures linear behavior of p(t) for very small

values of t, but is grossly inaccurate at larger values of t. Linear behavior at very small values of

t is misleading, and falsely implies that true image is of bounded variation. (See Remarks 1 and

2). Majorizing dashed straight line E, defined by log p(t) = —0.75 + 0.306 log t, accurately reflects

behavior for —6 < log t < —1, while being grossly inaccurate at very small values oft. Behavior

along E. where
||
Ut

f — f ||i< 0.472
|| / ||i t

0306
, 0 < t < 0.1, is taken to be true behavior in

Mandrill image. From (13), this implies image € A(0.306, 1, oo).

using the above procedure of constructing the line E in log-log plots of ft(t), after

excluding all data corresponding to logf < —6. As in [18, §5B], we have occasionally

found contradictory examples where the value of a in the L 2 norm was greater than

that in the L l norm. When that happened, a new E line was constructed for the L 2

trace, based on excluding data corresponding to log t < — 5. It is recommended that

data for very small values of t always be included in log-log plots of so as to

enable clear identification of the spurious linear trend prior to rejecting that part of

the data.

Our second example, in Figure 2(A), is a 1024 x 1024 Whirlpool Nebula image,

taken at the National Optical Astronomy Observatory, (NOAO/AURA/NSF), by T.

Rector and hi. Ramirez. As in the case of Figure 1, Poisson integral approximation

in L l was used to obtain the solid curve A, and the line E^ was constructed using

least squares. This procedure was repreated for the L 2 norm. The results indicate

that Figure 2(A) satisfies
||
U t

f — f ||i< 0.6
|| f ||i t

°' 530
, 0 < t < 0.1, and that
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A B

LI RELATIVE ERROR IN POISSON APPROXIMATION

Fig. 2. Whirpool Nebula M51. Original and sharpened images have noticeably different L 1

Poisson traces p(t) =
|| U*

f

— / ||i / || / ||i, reflecting substantially different values of Lipschitz

exponent a. (A) Original 1024 x 1024 image taken by T. Rector and M. Ramirez, National Optical

Astronomy Observatory, (NOAO/AURA/NSF). Poisson approximation produces solid trace A, ma-
jorized by dashed straight line E^ defined by \ogp(t) = — 0.5 + 0.530 log t. This implies that image

(A) € A(0.530, 1, oo). (B) Blind deconvolution of (A) using APEX method [9], brings out signifi-

cant fine scale detail, and results in solid trace B, majorized by dashed straight line Eb defined by

log p(t) — —0.2 + 0.239 log t. This indicates that deblurred image (B) € A(0.239, l,oo). Image (B)

strongly resembles [3f, plate 26] taken by Milton Humason using 200 inch Mt Palomar telescope.
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Fig. 3. A significant class of high-resolution 8-bit images have Lipschitz exponents a in the

range 0.2 < a < 0.6, in either L 1 or L~
, and are not of bounded variation.

TABLE 1. Values of (C, a) in
||
Ut

f — f || p
< C

|| / || p t
a

, 0 < t < 0.1, p = 1, 2,

for each image f(x,y ) in Figure 3, when U* is Poisson operator in (19).

Image Size (C, a) e A(a, l,oo) (C, ct) G A(a, 2,oo)

Marilyn Monroe 512 2 c = 0.77, a = 0.565 c = 0.68, a = 0.474

Sagittal brain MRI 512 2 c = 1.28, Q = 0.590 c = 1.02, a = 0.520

Washington DC Landsat 512 2 c = 0.45, a = 0.341 c = 0.55, a = 0.340

Mariner 5 spacecraft 512 2 c = 0.90, a = 0.448 c = 0.99, a — 0.417

USS Eisenhower 512 2 c = 0.47, a = 0.420 c = 0.50, a — 0.362

English Village 512 2 c = 0.49, a = 0.472 c = 0.55, Q = 0.439

Nanoscale micrograph 10242 c = 0.45, a = 0.415 c = 0.55, a = 0.415

Spiral galaxy MSI 10242 c = 0.68, a = 0.365 c = 0.78, a — 0.327

Cluster of galaxies 10242 c = 0.65, a = 0.222 c = 0.97, a = 0.216
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Figure 2(A) € A(0.530, 1, oo) (T A(0.462, 2, oo). Interestingly, if we sharpen Figure

2(A) using the APEX method [9], we obtain the image in Figure 2(B). This enhanced

image displays significant fine scale detail not readily visible in the original image,

and strongly resembles a Whirlpool galaxy plate taken by Milton Humason in 1950

using the 200 inch Mt Palomar telescope. See [34, plate 26). Here, L 1 Poisson analysis

produced the solid curve B and the majorizing line Sb- We find that Figure 2(B)

€ A(0.239, 1, oo) n A(0.230, 2, oo), and thus has substantially lower values of a than

does Figure 2(A). This result is highly plausible. Presumably, any low-pass blurring

process that may have affected Figure 2(A) would have attenuated fine scale features,

and thereby artificially increased the values of a. The result also indicates that APEX
processing of image (A) produced relatively more sharpening in the L l norm than in

the L 2 norm.

The nine images in Figure 3 and Table 1 form an interesting collection that

includes natural as well as man made objects, exhibiting a wide range of sizes. The

last row contains an electron microscop}' nanoscale structure, a galactic scale object,

and a cosmological scale structure. Along with the three images in Figures 1 and

2, this paper has applied the Poisson integral method to 12 high resolution images,

and we have found that in either A(a, 1, oo) or A(a, 2, oo), the values of a lie in the

range 0.2 < a < 0.6. This range of values is compatible with that found in [12],

[18], [19], using an entirely different method. Moreover, while A(a,2,oo) are smaller

spaces than are A(ct, l,oo), they are evidently wide enough to contain each of these

12 images, albeit with smaller values of a. Notice also that the values of the constant

C in Table 1 are confined to a very narrow range in both L l and L 1
.

The PSI deblurring method to be described in Section 7 below requires prior

knowledge of the values of C and a in the desired unknown deblurred image. In

general, these values will not be known. However, as shown in Figure 2, it is reasonable

to assume that a in the deblurred image will be lower than in the given blurred

image, provided that image is relatively noise free. Moreover, given a fast algorithm,

because of the narrow range of values involved in both C and a, it is feasible to

simultaneously compute and display multiple reconstructions, based on numerous

hypothetical choices of C' and a. Efficient exploration in parameter space is often the

key to the successful solution of inverse problems, when such problems can be solved.

6. Image deblurring in L 2(R 2
). We now consider the image deconvolution

problem Pf = g with a known shift-invariant point spread function (psf) p(x,y ),

(24) Pf = p(x,y) <g> f(x,y) = g(x,y), g(x,y) = ge {x,y) + n{x,y).

Here, <g> denotes convolution, g(x, y) is the given recorded noisy blurred image, ge (x, y)

is the hypothetical exact blurred image that would have been recorded in the absence

of any noise, and n(x
, y), presumed small, represents the cumulative effects of all noise

proceses and other errors affecting final acquisition of the digitized array g(x, y). The

noise may be multiplicative. Neither ge (x,y) nor n(x,y) are known, only their sum
g(x, y). Denoting the unknown exact sharp image by fe (x, y), we have

(25) Pfe = p(x, y) <g> fe (x, y) = ge (x, y).

Given only (24), we seek a solution f(x, y) in (24) such that Pf s; g ,
and such that

II / — fe || 2 is small. To achieve this goal, some a-priori information about fe and

n is always necessary. Most real images fe (x,y) contain fine-scale features, sharp

edges, and other kinds of non-differentiable singularities. Deblurring techniques that
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impose stabilizing constraints in the form of prescribed bounds on partial derivatives

of f(x,y )
in (24), are generally inapplicable, although they are often used. Penalties

for such use include smoothing out of sharp features, and possible loss of vital diag-

nostic information. Indeed, the desire to accurately reconstruct edges and other sharp

singularities was the principal reason for developing total variation methods. In fact,

several deblurring methods actually exist that do not require bounds on derivatives

[
8].

We shall limit discussion of (24) to the case of uniform defocus blur, where the

psf is proportional to the characteristic function of a disc of radius R. This is the

so-called ‘pillbox’ model [17], [25], [16], [31]. If R > 0 is the radius of the ‘circle of

confusion’, the psf for defocus blur is given by

( (
7ri?

2
)

-1
,

x2 + y
2 <R2

,

(26) P0r,y)=<

i 0, x2 + y
2 >R2

.

This has a Fourier transform given by the ‘sombrero function’ [23, p. 72]

(27) p(Z, 77 )
= 2Ji (Rp)/(Rp), p = v^2 + V

2
,

where Ji(x) is the Bessel function of the first kind of order 1 . In our numerical

experiments below on 2N x 2N images, the expression (27) is used to blur images by

Fourier domain multiplication with a preselected R > 0, and £, 77 ,
are integers with

-N < £,77 < N. Rather than interpret R as a radius, we simply observe that the

severity of such a blur is determined by the number of zeroes 1
in \p(p)\ on 0 < p < N

.

6.1. True Wiener filtering and the Tikhonov-Miller method. Wiener

filtering [32, p. 356], is an important example of a method that does not impose

differentiability constraints. It assumes instead that the power spectra |n(£, 77 ) |

and

l/e (C' 7?) I

°f each of n(x, y) and fe (x,y) are known. When this is the case, Wiener

filtering produces a solution f
w
(x, y) in (24) defined as follows in Fourier space

(28) r&v) p(^v)g(^v)

\p(t,V )\
2 + \n(t,v)\

2
/\fe(t,v)\

2

where 3 denotes the complex conjugate of 2 . Under some additional conditions, it

can be shown that f
w
(x, y )

is an approximate solution of Pf — g that minimizes

the error
|| / — fe H 2 over all / € L 2

. In practice, the power spectra |n(£, 77 )!
and

|/e (£, 77)1 are very seldom known in advance, and true Wiener filtering is almost never

realizable. However, the solution (28) is of considerable theoretical interest because

of its optimality property. Note that numerous ad-hoc versions of (28) exist, in which

more readily available quantities are substituted in place of the required but unavail-

able true power spectra. Such versions are sometimes called Wiener filtering by an

abuse of terminology. However, these substitute versions do not satisfy the Wiener

optimality criterion, nor do they elicit the same degree of theoretical interest.

One of the best-known rigorously analyzable and feasible versions of Wiener filter-

ing is the Tikhonov-Miller method [28], now considered canonical in image deblurring

[25] . Significantly, this method makes no a-priori assumptions regarding the statistical

character of the data noise. For non-differentiable images, Tikhonov-Miller restora-

tion requires the following a-priori information: an upper bound e > 0 for the L 2

1 The first five positive zeroes of J\(x) are 3.83171, 7.01559, 10.17347, 13.32369, and 16.47063.
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norm of the noise n(x, y) in the blurred image g(x, y), and an upper bound M for the

L 2 norm of the unblurred image fe

(29)
||
n ||2=|| pfe - 9 lb< G || fe || 2< M, e/M < 1.

It is assumed that e and M are compatible with the existence of an fe (x,y) € L 2

satisfying (29). Tikhonov-Miller restoration is defined as the unique function f
T
(x, y)

such that

(30) f
T
(x, y) = Arg min { ||

Pf - g \\l
+(e/M) 2

|| / ||1}
.

j (zL-(R -

)

As will be seen from Theorem 3, where the Tikhonov-Miller method corresponds to

the special case Tj- = 0, this minimum problem has a unique solution satisfying

(31 ) Qrf
T = P*g, Qr = P*P + (e/M) 2

/.

Moreover, there holds the following best-possible error bound for Tikhonov-Miller

reconstruction

(32)
II f

T - fe || 2< ex/2
II Qf

1/2
|| 2 ,

where

(33) \\Qf
1/2

\\ 2=swp{\p(£,ri)\
2 + {e/M) 2

}

1/_
.

C»7

Given the psf p(x, y), together with the a-priori information e, M, one can always find

the maximum value in the 2N x 2N array on the right of (33). As in (28) we may
implement (31) in Fourier space. We have

(34) r&v) P(^ V)9(Z, 9)

|p(e,fy|
2 + (e/A/)2-

Moreo\’er. from (29) and Parseval's relation

(35) [ |fi(£) g)\
2
dfdg < e

2
, [ \fe (£, g)\

2
dfdg < M 2

.

Jr- Jr 2

Therefore, the Tikhonov-Miller method can be viewed as an approximate version of

true Wiener filtering where the unavailable pointwise values of the spectra in (28) are

replaced by more readily available integrals of these quantities. However, it may be

anticipated that since true Wiener filtering requires prior knowledge in the form of

8N 2 numbers for a 2N x 2N image, whereas the Tikhonov-Miller method requires

only 2. less accurate results must generally be expected from the latter method.

7. The Poisson Singular Integral (PSI) method for images e A(q, 2, 00 ).

The preceding discussion was necessary to set the stage for the PSI method. Here, in

addition to the a-priori constraints (29), the behavior of
||
U*fe — fe || 2 on 0 < t < t

is assumed known, as in the case of Table 1 . The constants Cj and a are now used

to place a further constraint on fe (x, y). For any / € L 2 (R2
), we have on Fourier

transforming / — Uf

f and using (10),

(36) JF {/ - t/fy} = (1 - e~ tp
) f(t V), P = Ve + P

2
-
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I R-

Therefore, from Parseval’s theorem,

(37) [ ||
Us

f - f \\l
ds = [ ds

Jo Jo

For fixed t > 0, define £(£, 77, t) > 0 by

(38) z(^,rj,t) = \[ (l — e~ sp )~ ds

(1
-sp
Y \f(Z,v)\

2
d£dri.

t +
4e~tp — e~ 2tp — 3 )

2P j

1/2

It follows directly from the integral definition in (38) that for any fixed t > 0, z(p, t)

is a strictly increasing function of p, and that i(0,0, t) — 0. For fixed t > 0, define

the linear operator Z(t) in L 2 (R2
)
by

(39) Z(t)f= [ z(^ V,t)f(^ V)e
2^x+^d^dV .

Jr-

Then, from (37),

(40) Us
f — f || 2 ds =|| Z(t)f ||i.

For any fe & A(q, 2, 00). 0 < a < 1
,
we have

||
Us

fe— fe ||2< Cj
|| fe H2 s

Q
,

0 < s < t,

where Cj is a positive constant depending on t, fe and a. Therefore, with
|| fe ||2< M

>9 71 .r9Tl+2a

(41) \\Z(t)fe \\l<
t

II \ jje 112- 1+2ft

Define

(42)

( \ V 2

r-= /
1 + 2q

1

\ c=Y
+2a

J

Then,

(43) ||
P/e - g || 2< e, (e/M)

|| /e || 2< e, l

FLx t > 0, and consider the minimization problem

(44) P'(x,y) = Arg min
o
{\\Pf-g ||| + (e/7\/)

2
(|| f \\%

+r|
||
Z(t)f |||) }

-

fGL-(R-)

As will be seen in Theorem 3 below, this minimum problem has a unique solution

satisfving

(45) Qpf = p*
3 , Q* = P*P + (e/A/)

2
{/ + r=z(iyz(i)}

.

The function f^(x,y) in (44) is defined to be the PSI deblurred image. Moreover,

there holds the following error bound for PSI deblurring

(46)

where

f* - fe l|2< ev/3
j| <j:

1/2

t\,2 \ 1-1/2Qw
'

l| 2
= sup {|p(C,7?)|

2 + (e/fi/)
2
(1 + r=|c(^,7?,t)|

2

)}(47)



SINGULAR INTEGRALS AND RECOVERY OF IMAGE TEXTURE 15

Given the psf p(x,y), together with the a-priori information e, M, and Tj, one can

always find the maximum value in the 2N x 2N array on the right of (47). Again, as

in (28) and (34), can be found explicitly in Fourier space. We have

(48)
Hit n \ = flMj)
1 m,v )\

2 + (e/M)2{! + rf|£(e,r?J)|
2 }’

Equations (45-48) should be compared with equations (31-34). Tikhonov-Miller de-

blurring can then be seen as an extreme case of PSI deblurring, the case where fe (x, y)

is presumed no smoother than the most general L 1
function, so that

||
U t

fe — fe ||
o=

o(l) as t { 0. This corresponds to Cj = oo in (41), and hence, Tj = 0 in (48).

Theorem 3. Fix t > 0 and let the exact image fe (x,y) satisfy the a-priori

constraints (43). Let f^'(x,y) minimize (44)> and let Qq, be the positive self-adjoint

operator on L 2(R2
) given by

(49) Qj, = P*P+ (e/M) 2 {I + Tf Z(?)*Z(i)} .

Then fP is the unique solution of Qq,f^ = P*g, and satisfies

II
Pf - 9 III

+(e/M) 2

{ ||
ft

III
+T|

||
zq£)f+ III} < 3e2

,

(50)

II Pif ~ fe) III
+(e/M) 2

{ ||

/* - fe II

2
+Tf ||

Z(t)(f* - fe ) ||

2

}
< 3e2 .

This implies the L 2 error bound

(51) ||
- fe || 2< e v/3

|| Qf
1 ’2

|| 2 ,

where

(52)
|| Qf

l/2
|| 2
= sup { [p(£, 17 ) |

2 + (e/M) 2
(l + r5|£(^, 77 ,

i)|
2

) }

_1/2
.

€,v

Proof. Let H denote the Hilbert space direct sum L 2 (R2
)0 L 2 (R 2

)0 L 2 (R2
)

with elements [u,v,w\, scalar product ([tti, v\, tui], ]v,2 ,
V2 , wff) =< u\,uo > + <

v\,V2 > + < u>i

,

W2 >, and norm
||| |||. Let P : L 2 (R2

)
1
—

> TL be defined by

Pf = [Pf, iwf, uTjZ(t)f], where uj — (e/M), and let g = [p, 0, 0]. We seek to

minimize |||P/ — g||| over all / G L 2 (R2
). The normal equation P*Pf^ = P*g gives

Qii’f^ — P*9 with Q as in (49). By hypothesis \\\Pfe — g|||
2 < 3e2

. The minimizing

element is such that Pf^’ is the orthogonal projection in Tt of g on the range of

P. By the Pythagorean theorem

(53) |||P/* - 5 |||

2 + III P(fe - /*)|||
2 =

1 1

1

Pfe
~

5 |||

2 < 3e
2

.

This proves (50). We now establish (51). From (49), (50),

(54) II (?7
2
(/e - f*) ||1=< <?*(/, - f+), (u - f*) >= |||P(/« - /Pill

2 < 3e
2

.

Hence,
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Fig. 4. Instructive deblurring experiment with exact a-priori information highlights significant

differences in behavior in above three FFT-based methods. (A) Defocused Marilyn Monroe image

with R = 0.06 and 3% multiplicative noise. (B) Tikhonov-Miller method with exact parameters e and
M. brings out significant noise. (C) PSI method with exact parameters e, M, a = 0.474, Cj = 0.68.

(D) True Wiener filtering with exact power spectra |n(£, rj)|, |/e(£,i?)|- Realizable PSI deblurring

closely matches unrealizable true Wiener filtering.

TABLE 2.

Behavior in defocused Marilyn Monroe image in Figure 4

Deblurring Method L 1
relative error L 1

relative error

Tikhonov-Miller (B) 29.82% 34.17%

Poisson Singular Integral (C) 6.81% 9.03%

True Wiener Filtering (D) 6.03% 7.88%
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ERE OR BOUND FUNCTIONS
(
EQ

.

56) IN FIGURE 4 EXPERIMENT.

DISCRETE FREQUENCY (INTEGER )

POISSON SINGULAR {SOLID) TIKHON0 V—MILLER
(
DASHED

)

Fig. 5. Plot of error bound functions 0T (f), (dashed curve), and (solid curve), as defined

in Eq. (56), for the deblurring experiment in Figure 4 Maximum value in 6T is more than six times

larger than in 6^ .
Qualitative difference in behavior in these two curves implies significant difference

in Fourier domain regularization in the PSI and Tikhonov-Miller methods. Difference in maximum
values explains large difference in L 2 relative errors in Figures 4(B) and 4(C).

8. A preliminary deblurring experiment. In the following controlled exper-

iment, knowledge of the exact solution fe (x,y) is used to derive exact values for all

parameters that constitute a-priori information in each of the above three methods.

Such exact knowledge is not available in practice. The experiment is primarily of

theoretical interest. It is designed to illustrate major differences in behavior, and to

properly locate the PSI method in relation to Wiener filtering and the Tikhonov-Miller

method.

The 8-bit 512 x 512 Marilyn Monroe image fe {x,y) in Figure 3 was synthetically

defocused by Fourier domain multiplication with the expression in (27) using R = 0.06.

This produced the exact blurred image ge (x , y). Multiplicative noise n(x, y) was then

added to ge as follows. Each pixel value ge (x,y )
was perturbed by adding to it

the quantity n(x,y) = 0.03cr(x,y)ge (x,y), where a(x,y) is an array of uniformly

distributed random numbers in the range [—1,1]. We term this process ‘adding 3%
noise’. With varying percentages, we shall use the same process in all our experiments.

Note that no noise is thereby added at points where ge (x,y) = 0. The resulting

g(x,y
)
= ge (x,y

)

+ n(x,y
)

is shown in Figure 4(A). We find
||
n

|| 2
= e = 2.247, and

|| fe || 1
= 107.59,

|| /e ||
0= M = 131.13. Therefore e/M — 0.01713. From Table

1, we have
||
U l

fe — fe || 2< 0.68
|| / H 2 t

0 '4 ' 4
,
0 < t < 0.1. With t = 0.1, (42)

gives Tj = 19.33. Next, using FFT algorithms, we obtain the exact power spectra

|n(£,p)|, |/e (£,p)|. We are now ready to compare these three FFT-based procedures
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under optimal conditions for each method.

The Tikhonov-Miller reconstruction is shown in Figure 4(B). Significantly, this

reconstruction is quite noisy, despite the use of exact values for e and M. While the

regularizing information in (29) prevents explosive noise amplification, it is obviously

insufficient to prevent serious noise contamination. This is generally the case in the

Tikhonov-Miller method. The Poisson Singular Integral restoration is shown in Figure

4(C). Here, the additional information that fe E A(a, 2, oo), together with the values

of the constants Cj and a, were evidently decisive in eliminating noise. The Wiener

filtered solution, shown in Figure 4(D), appears only slightly better than the PSI

solution. However, the very major difference between true Wiener filtering and the

approximate version known as the Tikhonov-Miller method, is another significant

result brought out by this deblurring experiment.

It is instructive to study the L l and L 2
relative error pattern shown in Table 2.

It is widely assumed in practice that the L 2 minimum error property of true Wiener

filtering remains more or less true for the more feasible, approximate versions of such

filtering. This is not the case. The Tikhonov-Miller relative errors are more than four

times larger than the true Wiener errors. On the other hand, relative errors in the

PSI method are only slightly larger than those for true Wiener filtering. Put another

way, the PSI method appears to be a feasible procedure that can very substantially

improve upon the Tikhonov-Miller method.

Insight into how this improvement comes about can be gained by an analysis of

the respective error bounds for each method. Notice that each of the denominators

on the right hand sides of (34) and (48) are radially symmetric functions of (£, 77 ),

while this is not the case in (28). These denominators play a dual role. They define

the actual regularization procedures in (34) and (48), and they define the resulting

error bounds in (33) and (47). Because of the radial symmetry, a one-dimensional

picture tells the whole story. Define the respective Tikhonov-Miller and PSI error

bound functions 9T (£), 9^ (£) as follows

9r(Z) = {mO )\

2 + (e/M) 2
}

1/2
.

(56)

In Figure 5, we plot 9 r (f) and 9U , (

f

) as determined by the actual parameter val-

ues that entered the deblurring experiment in Figure 4. The significant differences

in these two curves translate into fundamental differences in the Fourier space reg-

ularization that defines the corresponding procedures. From (27), we see that #r (£)

has a maximum of M/e = 58.36, at every point £ > 0 where Ji(0.06 f) = 0. There

are 4 such points on 0 < £ < 256. The curve #p(£) also develops maxima at these

same points, but these maxima are about six times smaller than those in #r (£), owing

to the additional term involving z(£, 0, t). Since the error estimate in each method

is proportional to the maximum along the corresponding curve, it is natural to find

substantially smaller errors in Figure 4(C) than in Figure 4(B).

9. Comparing total variation deblurring with PSI deblurring. The use of

initial value PDE methods in image processing and computer vision has mushroomed

into an important new branch of applied mathematics. The basic idea originates in

gradient descent methods for minimizing appropriate energy functionals. Instructive

surveys of this general set of ideas may be found in [11] and [39],
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Fig. 6. Comparison of total variation and PSI deblurring on mildly blurred image. Zooming on

selected parts of the image enables meaningful comparisons between the two methods. (A) Original

sharp USS Eisenhower image. (B) Mildly defocused image with R = 0.03 and 0.1% multiplicative

noise. (C) Total variation deblurring of image (B) by applying finite difference scheme in [26, §5/

to Eq. (59), with 0 = 0.0001, A = 300, At = O.l(Ax)2
,
T = lOOAl. (D) PSI deblurring of image

(B) using exact a-prion parameters, e, M, a = 0.362, Cj = 0.50. (E) Zooming in TV deblurred

image reveals significant loss of structural detail. (F) Zooming on same region in PSI image.
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Fig. 7. Comparison of total variation and PSI methods on moderately blurred image. Zoomingnow reveals unacceptable loss of content in TV deblurring. (A) Original sharp English Village image
(E) Moderately defocused image with R = 0.06 and 0.1% multiplicative noise. (C) Total variation
deblurring of image (B) using scheme m [26, §5/ with 0 = 0.0001, A = 500, At = 0.1(Ax2

), T =
lOOAt. (D) PSI method with exact a-priori parameters, e, M, a = 0.439, Cj = 0.55 (E) Zooming
in image (C) reveals loss of windows and roof shingles. (F) Zooming on same region in PSI image.
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The total variation approach introduced in [33] is one of the most popular PDE
methods, and it is primarily designed to recover edges in the original image. Given

the deconvolution problem Pf = g as in (24), TV deblurring presupposes the exact

sharp image fe (x,y

)

G BV(R2
), and it produces an Image f

tv (x,y) defined by

(57) f
tv

(x, y) = Arg min { (A/2)
||
Pf - g \\% + f I

Vf\dxdyX .

feBV(Ri) ( JR 2 J

This means that f
tv (x,y) is the solution of

(58) P'Pf* - A-'V. (j!(Z|) =P'9

Here, A > 0 is a regularization parameter that can be tuned. Provided the noise

level in g(x, y) is small, larger values of A produce sharper images. Too large a value

of A leads to computational instability. Unlike the cases in (31) and (45), (58) is a

nonlinear deconvolution problem that cannot be solved explicitly in Fourier space.

In fact, considerable effort is generally required to obtain f
tv

for large size imagery.

In p\:re denoising applications, where P — /, this effort is usually warranted by the

quality of the resulting restoration. Recent!}', a new time dependent evolutionary

approach to (58) has been developed [26], whereby f
tv (x

, y) is obtained as the steady

state solution to the following nonlinear anisotropic diffusion problem

(59)

'

ut = —A|Vw| P*(Pu -g) + |Vw| V. (Vu/{ VlVu] 2 + /?}) ,

<

k

u(x,y, 0) = g(x,y),

where the given blurred image g(x, y) is used as the initial value. In addition, u(x, y, t )

satisfies homogeneous Neumann conditions at the boundary of the unit square Q. In

(59), (3 > 0 is a small constant designed to prevent division by zero. In [26, §5], an

efficient new explicit finite difference scheme for (59) is proposed. This scheme has

improved stabilty and edge-enhancing properties, and converges rapidly to the desired

steady state solution. Accordingly, we shall use that method in our total variation

deblurring experiments.

This paper has drawn attention to the fact that most images are not smooth. The
PSI method is predicated on locating fe (x, y) in the correct Lipschitz space, while TV
deblurring assumes fe (x, y) € BV(R2

). It may be argued that such refined smoothness

measures are primarily applicable to f°°(x,y), the original intensity field that gave

rise to the digitized finite dimensional object fe (x, y), but may not be meaningful for

fe(x,y) itself. Indeed, since all norms are equivalent in finite dimensional space, it

remains to be seen whether such abstruse function space notions are ultimately of any

computational significance.

Our first experiment involves a slightly defocused image with very little noise.

The original sharp USS Eisenhower image is shown in Figure 6(A). Fourier space

multiplication with (27) using R = 0.03, followed by the addition of 0.1% multiplica-

tive noise, produced the blurred Figure 6(B). Because of the low noise level, we chose

P small and A large in (59), as recommended in [26]. With /3 = 0.0001, At = O.l(Ax) 2

and A = 300, we obtained Figure 6(C) at T = 100At. Higher values of A were com-

putationally unstable. Moreover, the resulting TV image did not improve if more

time steps were taken. Figure 6(D) is the PSI deblurred image using exact values for

e, M, and using a = 0.362, Cj = 0.50, from Table 1. Zooming on selected parts of
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the image in Figures 6(E) and 6(F), clearly shows significant loss of structural detail

in the TV image, as compared with PSI deblurring. For completeness, the L l
relative

errors in this experiment were as follows: true Wiener filtering (not shown) 1.67% ,

PSI method 2.16%, TV deblurring 6.83%, and Tikhonov-Miller (not shown) 4.71%.

In our second experiment, the sharp English Village image in Figure 7(A) was

moderately defocused using R = 0.06, and 0.1% multiplicative noise was again added

to form Figure 7(B). With (3 and At as in Figure 6(C), it was possible to choose

A = 500, and obtain Figure 7(C) at T — 100At. Again, no improvement was noted

with more time steps. Figure 7(D) is the PSI deblurred image using the exact values

for e, i\/, together with a = 0.439, Cj = 0.55, from Table 1. Because of the stronger

blur, more information is now lost in TV deblurring. Zooming in on the first three

houses in Figures 7(E) and 7(F), we see that the windows and roof shingles have

been almost completely eliminated in the TV image. The L 1

relative errors in this

experiment were as follows: true Wiener filtering (not shown) 1.98%, PSI method

3.02%, TV deblurring 6.70%, and Tikhonov-Miller (not shown), 7.42%.

In Figure 4, the PSI method’s improvement over the Tikhonov-Miller method can

be traced to the fact that the constraints in (29) allowed the solution to be too rough.

In Figures 6 and 7, PSI’s improvement over the total variation method stems from

the fact that the minimum principle (57) forces the solution to be too smooth. Ap-

parently, the use of Lipschitz spaces to calibrate image smoothness, together with the

direct use of that information in constraining the solutions of the deblurring problem,

constitute a significant new idea in image deconvolution.
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