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The paper details the metrics used to quantify the performance of
the face recognition systems tested in FRVT 2002. The methods are
suited to any recognition evaluation, online or offline, technology
or scenario, for which complete similarity scores are archived.

The paper shows that the open-set identification problem known as
the watch list task is the general case: it requires systems to perform
1:N recognition with concurrent possibilities of false acceptance and
rejection. Two special cases are demonstrated: 1:1 Verification is
simply the watch list task with N=1; and closed-set identification
is that with no false accept rate.

The paper also presents the computation of standard error ellipses
used to show the effect of population variation on false accept and
false reject rates.
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Abstract. We present the methodology and recognition performance
characteristics used in the Face Recognition Vendor Test 2002. We refine
the notion of a biometric imposter, and show that the traditional mea-
sures of identification and verification performance, are limiting cases
of the open-universe watch list task. The watch list problem general-
izes the tradeoff of detection and identification of persons of interest
against a false alarm rate. In addition, we use performance scores on
disjoint populations to establish a means of computing and displaying
distribution-free estimates of the variation of verification vs. false alarm
performance. Finally we formalize gallery normalization, which is an ex-
tension of previous evaluation methodologies; we define a pair of gallery
dependent mappings that can be applied as a post recognition step to
vectors of distance or similarity scores. All the methods are biometric
non-specific, and applicable to large populations.

1 Introduction

The evaluation protocol [2] used in FRVT 2002 [4] is a framework for the quan-
titative determination of the performance of recognition technologies using ar-
bitrary biometrics. Specifically, it applies to either online (live human subjects)
or offline (stored imagery) testing as long as it produces output recognition data
that is available for subsequent analysis. This has the advantage that tests can
be conducted uniformly and fairly across participants, the results are repeatable,
and very large image sets can be tested expeditiously. We first present normal-
ization in section 1.1 and then introduce the terminology of the FRVT 2002
protocol and define our performance metrics in section 2.
In the FRVT 2002 protocol a system is required to compare two biometric

signatures and report a scalar similarity score. A biometric signature can be an
arbitrary ensemble of pieces of imagery from an individual, for example a face
and a fingerprint, or face and voice audio sequence. In FRVT 2002, both single
face stills and video sequences were used. We use the term image to include
such modalities, unless stated otherwise. A similarity score is a measure of the
sameness of identity of the individuals appearing in the images. Without loss of
generality the protocol requires that images of the same person have a large sim-
ilarity score. Systems reporting distance measures, where a small value indicates
sameness of identity, have their values negated before any processing.



2

The FRVT 2002 tests are structured around sets of images. An algorithm
compares all images in a query set, Q, with all images in a target set T . The
result is a similarity matrix whose ij-th element is the similarity between the
i-th element of T and the j-th element of Q. The matrix is computed and stored
in column order; each column corresponds to an unknown query image being
compared with all the known, enrolled, target images. In the general case the
matrix is rectangular, but for FRVT 2002 we used the special case T = Q.
This framework allows for great flexibility in arriving at quantitative results.

The sets T and Q are not normally used directly. Instead we consider virtual

image sets, a conceptual innovation first defined in the FERET protocol[3]. Here
a gallery, G, a subset of T , contains identically one signature per subject and
represents the set of images that have been enrolled in a biometric system.
Likewise a probe set, PG , is a subset of Q. Each of its images have a match
in the gallery, and represent a legitimate user. The images of a third set, the
imposter set PN , also a subset of Q, do not have a match in the gallery. This
set represents persons attempting to defeat a system. A match describes the
comparison of probe and gallery images of the same individual. A non-match

likewise arises from images of different persons.
The utility of this framework is that many different recognition experiments

are embedded within T and Q. All the results of FRVT 2002 are obtained from
the similarity elements corresponding to the rows defined by the subset G, and
the columns defined by PG and PN . Together these form a similarity matrix
S from which various performance statistics are computed. Disjoint gallery and
probe sets allow performance to be estimated on particular recognition tasks. For
example to explore the effect of subject ageing, a gallery containing the earliest
image of all persons is used with a probe set of more recent images.
This protocol evaluates recognition technologies rather than deployed sys-

tems. Particularly it ignores efficiency and performance when databases are par-
titioned. See Wayman [5] for a treatment of these issues.

1.1 Normalization

The FRVT 2002 protocol allows a normalization option. This is a post-processing
transform of similarity scores, that may exploit the fact that the gallery, unlike
the target set, contains only one image per person by definition. Specifically, a
vector, s, contains the column of elements sip from S corresponding to the single
probe p against gallery G. Normalization is defined as a function, f : RN → RN ,
mapping s to a new vector, t. For an algorithm that uses normalization, the fi-
nal performance scores are computed over these transformed values. Notably the
normalization option is operationally realistic only if each probe is processed in-
dependently of all others. Certain unjustified performance gains may be realized
if normalization were allowed across probes.
Two classes of normalization functions were allowed in FRVT 2002. The

first is simply t = f1(s). The second also takes a matrix of similarities, SGG,
between all gallery pairs, whose off-diagonal elements contain information avail-
able to an operational system. The second form of normalization, then, is simply
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t = f2(s, SGG). Notably, the use of this second form is impractical for even mod-
erate gallery sizes because SGG imparts O(N

2) resource constraints. FRVT 2002
participants were given the option of submitting different f1 and f2 functions
for each of the recognition tasks: identification, verification and watch list, dis-
cussed in the next section. The functions were supplied to, and run by, NIST as
functions in an object file.
It should be noted that the use of normalization causes all searches to become

one-to-many operations. The verification task, detailed below, is usually consid-
ered a one-to-one search and is correspondingly efficient, but if normalization is
to be used then a gallery, of some size and content, must be constructed. If the
gallery is changed, normalization must be recomputed.

2 Performance Metrics

In FRVT 2002, we evaluate an algorithm on three related tasks: identification,
verification, and watch list, and we state separate appropriate statistics for each.
As described above, performance on each of these tasks is obtained solely from
the similarity values extracted from the similarity matrix and from the subject
identities. In a proctored test such as FRVT 2002, identity information is not
available to the recognition systems.
The watch list problem is a generalization of both identification and verifica-

tion. For this task, a probe p is compared to a gallery which we term the watch
list. The probe ranks the gallery, so we state performance as an identification
rate. However a significant operational constraint is that a system should not
attempt identification of individuals not on the watch list. We must also, there-
fore, measure a false alarm rate. This makes clear that the generalized watch list
problem is defined over an open-universe.
In the next three subsections we formalize the watch list problem and show

that verification is the special case when the watch list size is 1, and identification
conversely is a closed universe watch list task.

2.1 Watch List

We measure the watch list performance using a watch list G and two probe
sets: PG with subjects who should be identified and, PN with true imposters
who should not throw an alarm. The former is used to state the detection and
identification rate equal as the fraction of probes in PG that are detected at or
above threshold t and recognized at rank r or better:

PDI(t, r) =
|{pj : rank(pj) ≤ r, sij ≥ t, id(pj) = id(gi)}|

|PG |
∀pj ∈ PG (1)

where the rank is defined as the number of watch list entries which have greater
than or equal similarity to the probe than the matching entry:
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rank(pj) = |{gk : skj ≥ sij , id(gi) = id(pj)}| ∀gk ∈ G. (2)

Throughout we use i and k to subscript gallery elements, corresponding to rows
of the similarity matrix, and j to subscript the probe sets corresponding to
columns of the matrix. In practice, this needs to be modified to handle tied
similarity values: we elected to use the mean of the lower and upper ranks of the
run of tied values:

2 rank(pj) = |{k : skj ≥ sij , id(gi) = id(pj)}|+ (3)

|{k : skj > sij , id(gi) = id(pj)}|+ 1

The imposter set is used to compute the false alarm rate as the fraction of
probes from PN whose similarity to any gallery image is at or above threshold:

PFA(t) =
|{pj : maxi sij ≥ t}|

|PN |
∀pj ∈ PN ∀gi ∈ G (4)

2.2 Identification

Identification is a special case of the watch list task: If we mandate a closed
universe, then the false alarm rate is undefined and a pure identification rate
specifies performance. Formally for each probe p from PG we sort the similarity
scores against gallery G, and obtain the rank of the match. Identification perfor-
mance is then stated as the fraction of probes whose gallery match is at rank r

or lower. If the set of probes with a close match is

C(r) = {pj : rank(pj) ≤ r} ∀pj ∈ PG (5)

where the rank is defined as before. We now define the Cumulative Match Char-
acteristic (CMC) to be the identification rate as a function of r:

PI(r) =
|C(r)|

|PG |
(6)

which we plot as the primary measure of identification performance. It gives an
estimate of the rate at which probe images will be classified at rank r or better. It
is a non-decreasing function of r. Although the CMC is most often summarized
with rank one performance, other points and the steepness of the curve are also
relevant operationally. One drawback of the characteristic is its dependence on
gallery size, |G|. For this reason we also plot identification performance at fixed
rank as a function of the gallery size.

2.3 Verification

The use of biometric systems for the verification task is perhaps more common
than identification. The operational model assumes that a probe pj is compared
with its matching gallery image and that the single similarity score is compared
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Fig. 1. Identification rate as a function of rank and false alarm rate for a watch list
size of 3000. Note the weak dependence on rank, except at high false accept rates. The
horizontal plane gives the rank one closed-universe identification rate.

against a threshold to verify the individual or otherwise. Two types of error
can occur in this process: first a false accept in which an imposter claims an
identity and is matched by the system above threshold; and secondly a false reject
in which the system incorrectly matches the individual below threshold. This
method for accepting or rejecting a claim models the Neyman-Pearson observer.
A Neyman-Pearson model maximizes the verification rate for a constant false
accept rate[1].

The Receiver Operating Characteristic (ROC) is computed to quantify ver-
ification performance. It shows the tradeoff between the two types of error by
plotting estimates of the verification rate, PV (i.e. the true accept rate) against
the false accept rate, PFA as a parametric function of the prior operating thresh-
old, t. The verification rate is the fraction of probes whose gallery match has
similarity greater than or equal to the threshold value, t:

PV (t) =
|{pj : sij ≥ t, id(gi) = id(pj)}|

|PG|
∀pj ∈ PG (7)

The false accept rate is computed over the set of imposters, PN , containing
those individuals who are not present in the gallery:

PFA(t) =
|{sij : sij ≥ t}|

|PN | |G|
∀pj ∈ PN , (8)
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Fig. 2.Watch list performance. The rank one detection and identification rate is plotted
as a function of gallery size and false alarm rate.

where the denominator shows our use of all the non-matching similarities in
order to improve the fidelity of our PFA estimate. In reality an imposter would
usually claim just one identity, but our method of using all scores is realistic
unless an imposter has a known prior resemblance to a person.
Note that this definition differs from that for verification false accept rate.

Here we determine if there exists at least one gallery image more similar to
the imposter than t. This occurs more frequently than in verification where the
number of scoes above t between an imposter and all galleries are counted.
The use of a true imposter set PN contrasts to “round-robin” evaluations,

in which PG and PN are the same set. From an operational standpoint, this
models the case where a subject, already with legitimate access to the system
(they are in PG), attempts to gain access to the very same system, under a
different identity. There may be some specialized scenarios where this is a valid
model. However, we prefer to model the situation in which a person who does
not already have access to the system attempts verification. In this model, the
persons (not just the images) in PN are different from those in the gallery. The
rationale for using true imposters is that the non-match distributions estimated
from SGPN

and SGPG
may be different.

An empirical ROC is not a curve but a sequence of steps corresponding to
a set of operating points where PV and/or PFA changes. Because systems are
operated on the ROC’s convex hull which corresponding to PV changes, we use
the |PG | match values as thresholds. We sort these values, keep their unique
subset as ti, i = 1 . . . |PG | and insert the artificial threshold t0 = −∞. This
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avoids the use of a much large number of non-matches |G||PN | in the ROC
calculation. The computation of PV proceeds by binning the number of match
values from SGPG

that are in the range [ti, ti+1), and finally by accumulating all
of them. The same thresholds and procedure are used for PFA from SGPN

.

2.4 Limiting Cases

Figures 1 and 2 show watch list performance as functions of watch list sizes, false
alarm rates and rank. They were generated from the similarity scores of a leading
FRVT 2002 participant. For galleries of size 1 the watch list measures reduce
to verification; the intersection of the surface and the (1,y,z) plane is the ROC
curve. The CMC curve is the plane (x,1,z) of figure 1 and similarly identification
performance as a function of gallery size is given by the intersection of the surface
and the (x,1,z) plane, as shown in figure 2. These two cases correspond to the
relaxation of the threshold, t → −∞ whence PFA → 1 then the detection and
identification rate becomes the identification rate, i.e. PDI(1, r) = PI(r).

2.5 Comparing Verification Performances

Frequently we seek to compare verification results, either between systems, or
across different data sets processed by the same system. Between systems this
may be accomplished by looking at the verification rate at fixed false accept
rates. This is appropriate because it is not possible, nor operationally feasible, to
set a uniform threshold across different systems that report on different ranges
and scales. However, for studies using just one system and many gallery and
probe sets, fixed PFA values correspond to different thresholds, which are not
operationally realizable. The correct approach is to set a single threshold t and
acknowledge that the PV (t) and PFA(t) are random variables across experiments.
Thus, to be able to compute variation in verification and false accept rates

across multiple galleries and probe sets, we must compute the ROC using a fixed
global set of thresholds. Formally, if R experiments use R different G, PG and
PN image sets, we extract the sorted union of R sets of match scores. These
thresholds will generally “oversample” each individual ROC. Thus we have R

(PV , PFA) pairs at each threshold, which we plot with an error ellipse that traces
two standard errors in the PV and PFA dimensions. The principal axes of this
ellipse are the eigenvectors of the covariance matrix of the R pairs. This is shown
in figure 3.
As a summary statistic we usually report the PV and PFA at a threshold that

gives PFA ≈ 0.01. We favor this over equal error rate (when PFA(t) = 1−PV (t))
because PFA = 0.01 is an operationally realistic number, while equal error rate
not only varies, but is usually higher.

3 Conclusion

The paper details the evaluation framework and scoring metrics used in the Face
Recognition Vendor Test 2002. We have outlined the concept of operational re-
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Fig. 3. Verification variation. The figure shows the results of computing ROC curves
from 23 disjoint populations of size 800.

alizability based on the real-world usage of systems with fixed operating thresh-
olds. We show how variation in verification performance must be computed at
the same threshold. Motivated by operational relevance we have defined true
imposters and shown via the non-match distribution that their use is necessary
in evaluations. We define the watch-list scenario and show that verification and
identification are special cases of it.
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