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ABSTRACT

The Face Recognition Vendor Test (FRVT) 2002 is an independently administered 
technology evaluation of mature face recognition systems. FRVT 2002 provides 
performance measures for assessing the capability of face recognition systems 
to meet requirements for large-scale, real-world applications. Ten commercial 
firms participated in FRVT 2002.   FRVT 2002 computed performance statistics 
on an extremely large data set—121,589 operational facial images of 37,437 
individuals. FRVT 2002 1) characterized identification and watch list performance 
as a function of database size, 2) estimated the variability in performance for 
different groups of people, 3) characterized performance as a function of elapsed 
time between enrolled and new images of a person, and 4) investigated the effect 
of demographics on performance. FRVT 2002 shows that recognition from indoor 
images has made substantial progress since FRVT 2000. Demographic results 
show that males are easier to recognize than females and that older people are 
easier to recognize than younger people.  FRVT 2002 also assessed the impact 
of three new techniques for improving face recognition: three-dimensional 
morphable models, normalization of similarity scores, and face recognition 
from video sequences.  Results show that three-dimensional morphable models 
and normalization increase performance and that face recognition from video 
sequences offers only a limited increase in performance over still images.  A new 
XML-based evaluation protocol was developed for FRVT 2002.  This protocol is 
flexible and supports evaluations of biometrics in general.
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1. INTRODUCTION

The primary objective of the Face Recognition Vendor Test (FRVT) 2002 is to provide performance 
measures for assessing the capability of automatic face recognition systems to meet real world applica-
tions. Achieving this objective required an evaluation that was much larger and broader scale than any 
previous biometric evaluations. The increase in scale included the number of individuals in the evalua-
tion as well as the detail and depth of analysis performed. This required designing a new biometric evalu-
ation protocol and establishing a new standard for evaluations. This applies not only to face recognition, 
but biometric evaluations in general.

FRVT 2002 was an independently administered technology evaluation. Ten participants were evalu-
ated under direct supervision of the FRVT 2002 organizers at the U.S. Government facility in Dahlgren, 
Virginia, in July and August 2002. The participants were tested on sequestered data sets.  Sequestering 
the data sets guaranteed that all the participants were tested on a level field and the systems were tested 
on their recognition ability on new facial imagery. Digital data sets ensured that all the systems were 
tested on exactly the same data and performance among the systems could be directly compared.

The heart of FRVT 2002 was the high computational intensity test (HCInt) that measured system 
performance on 121,589 operational images of 37,437 people. The images were provided from the U.S. 
Department of State s̓ Mexican non-immigrant visa archive. From this data, real-world performance 
figures on a very large data set were computed. Performance statistics were computed for verification, 
identification, and watch list tasks. The performance results on the HCInt show an improvement in the 
capabilities of the face recognition systems over the last two years. On comparable experiments in FRVT 
2000, there has been a 50 percent reduction in error rates (Blackburn et al. 2001; Phillips et al. 2003).

In previous evaluations, performance was broken out by coarse imaging properties: facial images 
taken on the same day, images taken on different days, effects of pose changes, and effects of lighting 
changes. As face recognition technology matured from infancy to the first generation of commercial 
systems, this level of detail spurred research, identified the most promising approaches, and identified 
interesting research directions. Now, as face recognition technology is being considered for large-scale 
implementations and new research avenues are being developed, more detailed evaluations are required. 
FRVT 2002 is the first generation of large-scale face recognition evaluations. The broad scale of FRVT 
2002 consists of an experimental design that, for the first time, investigates key imaging and demo-
graphic factors affecting performance.

One possible face recognition application is to identify an unknown person from a large database. 
Effectiveness of face recognition technology for this application depends upon how database size affects 
performance. Previously, the largest performance evaluation was conducted on a data set of 1,196 people 
(Phillips, Moon, et al. 2000). The FRVT 2002 measures recognition performance on databases of up to 
37,437 people. This provides the first characterization of how database size affects performance.

 
In real-world applications, systems are required to recognize faces from images taken on different 

days. From earlier evaluations, we know that as the elapsed time between the enrolled image and a new 
image of person increases, recognition rates decrease. However, the rate at which performance declines 
had not been thoroughly investigated. In FRVT 2002, this temporal effect is reported in intervals of 60 
days. This provides the first characterization of how elapsed time between image acquisitions affects 
performance.  

As face recognition technology advances, new techniques are being proposed to improve perfor-
mance. Evaluations provide an opportunity to assess if new techniques improve performance. FRVT 
2002 assesses the impact of three new techniques: three-dimensional morphable models, normalization 
of similarity scores, and face recognition from video sequences. Three-dimensional morphable models 
correct for pose variations by fitting a three-dimensional model to a non-frontal facial image. The model 
then transforms the non-frontal facial image to a frontal facial image. The transformed frontal image 
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is then matched with other frontal images. Normalization is a post-matching, statistical technique for 
correcting differences in templates among people. Compensating for the statistical variation among 
people in a database potentially reduces the effect of differences among faces. The majority of face 
recognition systems perform recognition from still imagery. New techniques are being developed that 
explicitly incorporate temporal information in video sequences into face recognition algorithms. The 
theory is that the temporal information in video sequences contains more information than a still image 
and exploiting this information will improve performance. FRVT 2002 performed experiments to see if 
these three techniques improved performance. Experiments showed that three-dimensional morphable 
models and normalization could significantly improve performance. Experiments showed that for the 
video sequences in FRVT 2002, there was negligible change in performance.

An operational face recognition system will process and recognize different groups of people at 
different locations. Performance will vary for the different groups of people. To measure the potential 
variations among groups of people, FRVT 2002 calculates performance for different subsets of the 
37,437 people in the Mexican Visa database. This provides an estimate of the variability of performance 
over different groups of people using a face recognition system.

One application for face recognition technology is to detect people on a watch list. The watch list 
task has elements of both the verification and identification tasks. In the watch list task, a photo of an 
unknown person is provided to a system and the system must determine if the unknown person is on a 
watch list. If a system determines that a person is on the watch list, the system then provides the identity 
of the unknown person. FRVT 2002 provides the first in-depth examination and analysis of the watch list 
task for multiple face recognition systems. Experiments measure the effect of watch list size on perfor-
mance and performance as a function of the number of matches displayed. These results can provide a 
basis for establishing conditions under which watch lists can be effective in real-world applications.

Face recognition system performance is a function of the imaging conditions and the demograph-
ics of the population that will use the system.  To date, evaluations of face recognition systems has not 
considered the effects of demographics on performance. FRVT 2002 examines the effects of sex and age 
of a person on performance. Experiments show that males are easier to recognize than females and older 
people are easier to recognize than younger people. Results also show that the difference in performance 
between males and females decreases with age. Thus the demographics of a data set do affect reported 
performance. Demographic information needs to be considered when setting specifications for opera-
tional systems.

As face recognition technology has matured and is being considered for more applications, the 
demand for evaluations is increasing. At the same time, the complexity and sophistication of the evalua-
tions is increasing. This results in rising evaluation costs and increases the chance that  mistakes will oc-
cur. To overcome these challenges, the FRVT 2002 introduced an evaluation protocol that is XML-based 
and contains a package of standard scoring routines. The XML specifications include formats for test 
data sets, raw output formats from systems, and performance scores. The scoring routines are designed 
to work with XML file formats. The FRVT 2002 evaluation protocol, XML specification, and scoring 
package are general and can be used to evaluate other types of biometrics. The FRVT 2002 evaluation 
protocol is a solid basis for establishing a standard evaluation protocol.

The complete FRVT 2002 report comes in the volumes:  Evaluation Report, Summary and 
Overview, and Technical Appendices (all three are available at http://www.frvt.org). The Evalua-
tion Report is the document you are reading. It contains a detailed description of the FRVT 2002 
procedures, experiments, and results. The Summary and Overview briefly presents the key results 
from the FRVT 2002. The Technical Appendices provide supplementary material, detailed docu-
mentation of the FRVT 2002 evaluation protocol, and participant description of their systems and 
response to the FRVT 2002.

http://www.frvt.org
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2. BACKGROUND

FRVT 2002 follows four previous face recognition technology evaluations – three FERET 
evaluations (1994, 1995,1996) and FRVT 2000 (Phillips et al. 1996, 1998; Phillips, Moon, et al. 
2000; Blackburn et al. 2001; Phillips et al. 2003). The FERET program introduced evaluations 
to the face recognition community and helped to advance face recognition from its infancy to 
the prototype system stage. By 2000, face recognition technology had matured from prototype 
systems to commercial systems. The Face Recognition Vendor Test 2000 (FRVT 2000) measured 
the capabilities of these systems and their technical progress since the last FERET evaluation. 
Public interest in face recognition technology had risen significantly by 2002. FRVT 2002 was de-
signed to measure technical progress since 2000, to evaluate performance on real-life, large-scale 
databases, and to introduce new experiments to better understand face recognition performance.

In the literature, results are reported on three tasks: identification, verification, and watch list. 
Not every paper or report presents results for all three tasks. Computing performance requires two 
board sets. The first is the gallery which contains the database on individuals known to the system. 
The second is the probe set that contains the images (biometric signature) of an unknown individu-
als presented to the system for recognition. A probe is one signature in a probe set.

Each successive evaluation increased in size, difficulty and complexity, reflecting the matur-
ing of face recognition technology as well as evaluation theory. Table 1 shows the increase in 
difficulty of the evaluations. Table 1 lists the number of signatures in each evaluation, the number 
of comparisons between signatures required to complete the evaluation, the evaluation time limit, 
and the minimum number of comparisons per second required to complete the evaluations with 
in the time limit. The FERET Aug94 and Mar95 evaluations are not included in the table because 
their designed was based on a different evaluation protocol. Table 2 summarizes the experiments 
conducted in the FERET and FRVT evaluations. The experiments are broken into different catego-
ries.  The first category lists the different types of experiments conducted broken out by task and 
the maximum number of individuals in an experiment. The basic experiment category lists standard 
experiments included in face recognition evaluations. For the basic experiments, the gallery con-
sisted of frontal facial images taken indoors. The indoor same day—expression change experiment 
consisted of probes taken on the same day as the gallery image, but with a change in expression. 
The indoor same day—illumination change experiments investigated the effects of changes of illu-
mination indoors. In the indoor different day experiments, the probe image was taken on a different 
day than the gallery image. For the indoor different day—greater than 18 months, the probe image 
was taken at least 18 months after the gallery image of a person. In the outdoor same day experi-
ments, the probe was taken outdoors on the same day as the gallery image. For the outdoor different 
day, the probe was taken outdoors on a different than the gallery image. In the pose experiments 
the probes were non-frontal facial images. In the left or right experiments the face is looking either 
to the left or right at varying angles. In the up or down experiments, the face is looking either up 
or down. The detailed analysis experiments look at results in greater depth. The resolution experi-
ments examine the effects of changing the size of the face. The size of the face is changed by digital 
manipulation. The compression experiments examined the effect on performance of compressing 
the probe image. The media experiments examined the effect on performance of switching between 

Table 1. Measurements of the size of the FERET Sep96 and FRVT evaluations

Evaluation
No. of 

Signatures
No. of 

Comparisons
Evaluation Time 

Limt

Minimum No. of 
Comparisons per 

Second

FERET Sep96 3,813 ~14.5 million 72 hours 56
FRVT 2000 13,872 ~192 million 72 hours 742

FRVT 2002 – MCINT† 9,612 ~63 million 264 hours 66
FRVT 2002 - HCINT 12,1589 ~15 billion 264 hours 15,555

†Note: The MCINT portion of FRVT 2002 is the only test in this chart that included “video” signatures. Signatures in all other tests were a 
single still image.
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film and digital facial images. The distance experiment looked at the effects of distance from the 
camera on performance. Unlike the resolution experiment, these images were not digital manipu-
lated. The error ellipse experiments looked the effects of different galleries on performance. The 
gallery size experiments looked the effects of increasing the gallery size on identification and watch 
list performance. The watch list rank experiment looked at the effect of increasing the number 
matches examined on performance. The technology experiments investigated three new techniques: 
three-dimensional morphable models, normalization, and video-based recognition algorithms. The 
demographic experiments examined the effect of sex and age on performance.

Biometrics testing is an active area. Unfortunately, most results are not publicly released. 
Reasons for not releasing results include sensitivity of performance figures for operational systems 
and proprietary rights associated with the performance data. Aside from security concerns, it is 
advantageous to the biometrics community if results are released. Releasing the results allows 
for peer assessment of the evaluation procedure and results, makes the biometrics community 
aware of the latest results, and informs the biometric community of the latest advances in testing 

Table 2. Summary of experiments performed in the FERET and FRVT evaluations

Measurable
FERET 
Aug94

FERET 
Mar95

FERET 
Sep96

FRVT 
2000

FRVT 
2002

Largest number of individuals in:
A verification experiment 1,196 1,196 37,437
An identification experiment 498 831 1,196 1,196 37,437
A watch list experiment 25 3,000

Basic experiment categories
Indoor same day –expression change * * * * *
Indoor same day—illumination change * * * *
Indoor different day * * * * *
Indoor different day—greater than 18 months * * *
Outdoor same day * *
Outdoor different day *
Pose—left or right * * *
Pose—up or down *

Detailed analysis
Resolution of face * *
Image compression *
Media *
Distance of face from camera *
Standard error ellipses *
Id. Performance as a function of gallery size *
Watch list performance as a function of 
gallery size *
Watch list performance as a function of rank *

Technologies evaluated
3D morphable models *
Normalization *
Video *

Demographic factors
Sex *
Age *
Interaction between sex and age *
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methodology. If a biometric evaluation is designed correctly, the results should be reproducible. 
This means that the results reported in one evaluation should be observed in evaluations conducted 
by different groups. For example, in FRVT 2002, we found that males are easier to identify than 
females. If this was a general property of face recognition algorithms, then other face recognition 
evaluations should also observe this phenomenon. If other groups do not observe this phenom-
enon, there could a problem in one of the groups  ̓test methodologies or the phenomenon could just 
be a property of the data set in the evaluation or systems tested. If subsequent evaluations replicate 
the phenomenon, this provides further evidence that the phenomenon is a general property—in this 
example, that male faces are easier to identify than female faces. Public release of results helps the 
community to differentiate between general properties of a biometric and properties of a particular 
evaluation. As the testing community matures, this will evolve into a set of standard evaluation 
procedures.

Other publicly available evaluations have also significantly contributed to our understand-
ing of biometric system performance. The NIST speaker recognition evaluations are annual 
technology evaluations that measure verification performance (Martin and Przybocki 2000). The 
overall goals of the evaluations have always been to drive the technology forward, to measure 
the state-of-the-art, and to find the most promising algorithmic approaches. As in the FERET and 
FRVT programs, the NIST speaker recognition evaluations have increased in size and scope since 
the first evaluation in 1996.

The Fingerprint Verification Competition (FVC) 2000 and 2002 are technology evaluations 
that measure verification performance of single-finger fingerprint devices (Maio et al. 2002a, 
2002b).  These evaluations were the first common benchmarks for fingerprint developers, thus 
allowing them to unambiguously compare their algorithms.

The UK Biometrics Working Group s̓ Biometric Test Programme Report is a scenario evalu-
ation report that compared six different biometrics (Mansfield et al. 2001). Representative face, 
fingerprint, hand geometry, iris, vein and voice recognition systems were tested for verification 
performance in a normal office environment with cooperative, non-habituated users. The objec-
tives of the test program were to show the level of performance attainable by a selection of 
biometric systems, to determine the feasibility of demonstrating satisfactory performance through 
testing, to encourage more testing to be sponsored, and to promote methodologies contributing 
to the improvement of biometric testing. The report is groundbreaking in that it is the first open-
source evaluation that directly compares performance of different biometrics for the same applica-
tion. “Best practices in testing and reporting performance of biometric devices” was developed in 
part based on the lessons learned from performing the Biometrics Working Groupʼs biometric test 
program (Mansfield and Wayman 2002).

San Jose State University has been evaluating biometric systems since 1994, and was the 
Biometric Consortiumʼs National Biometric Test Center from 1997-2000. The Test Center ex-
plored a number of essential questions relating to the science underpinning biometric technologies. 
The Collected Works document from these endeavors is publicly available and contains evaluation 
results from the INSPASS Hand Geometry System, the Philippine AFIS System and numerous 
small-scale evaluations (Wayman 2000).

Bone and Blackburn (2002) performed a scenario on the watch list task and the effect of gal-
lery size on verification performance. This study is the first publicly available evaluation to report 
in-depth on the watch list task.
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3. FRVT 2002 EVALUATION PROTOCOL

A design principle and testing protocol describes how evaluations are designed and conduct-
ed. Design principles outline the core philosophy and guiding beliefs in designing an evaluation; 
the evaluation protocol provides the implementation details.

The FRVT 2002 evaluation protocol is based on the September 1996 evaluation protocol 
(Phillips, Moon, et al. 2000). The protocol added general biometric signatures, normalization of 
similarity scores, and an XML-based specification.  The XML-based specification is extensible to 
other biometrics and is being used for fingerprint recognition evaluation.

The design of FRVT 2002, along with the FERET evaluations and FRVT 2000, followed the 
precepts for biometrics evaluations articulated in Phillips, Martin, et al. (2000). Succinctly stated, 
the precepts are:

1. Evaluations are designed and administered by groups that are independent of algorithm 
developers and vendors being tested.

2. Test data is sequestered and not seen by the participants prior to an evaluation.
3. The evaluation test design, protocol, and methodology are published.
4. Performance results are spread in a manner that allows for meaningful differences among 

the participants.

Points 1 and 2 ensure fairness in an evaluation. Point 1 provides assurance that the test is not 
designed to favor one participant over another. Independent evaluations help enforce points 2 and 
4. In addition, point 2 ensures that systems are evaluated on their ability to generalize performance 
to new sets of faces, not the ability of the system to be tuned to a particular set of faces. When 
judging and interpreting results, it is necessary to understand the conditions under which algorithms 
and systems are tested. These conditions are described in the evaluation test design, protocol and 
methodology. Tests are administered using an evaluation protocol that identifies the mechanics of 
the tests and the manner in which the tests will be scored. In face recognition, the protocol states 
the number of images of each person in the test, how the output from the algorithm is recorded, and 
how the performance results are reported. Publishing the evaluation protocol, as recommended in 
point 3, lets the readers of published results understand how the results were computed.

Point 4 addresses the ʻthree bears  ̓problem. Phillips, Moon, et al. (2000) first articulated the 
ʻthree bears  ̓problem in designing face recognition evaluations. The ʻthree bears  ̓problem sets 
guiding principles for designing an evaluation of the right level of difficulty. If all the scores for all 
algorithms are too high and within the same error margin, then one cannot distinguish among the 
algorithms tested. In addition, if the scores are too high in an evaluation, then that is an indication 
that the evaluation was in reality an exercise in ʻtuning  ̓algorithm parameters. If the scores are too 
low, then it is not possible to determine what problems have been solved. The goal in designing 
an evaluation is to have variation among the scores. There are two sorts of variation. The first type 
is variation among the experiments in an evaluation. Most evaluations consist of a set of experi-
ments, where each experiment reports performance on different problems in face recognition. For 
example, experiments might look at changes in lighting or subject pose of a face. The second type 
of variation is among algorithms for each experiment. The variation in performance among the ex-
periments lets one know which problems are currently sufficiently solved for consideration in field 
testing, which problems are research problems, and which problems are beyond the capabilities of 
the field. The variation among algorithm performance lets one know which techniques are best for 
a particular experiment. If all the scores for all algorithms across all experiments are virtually the 
same, then one cannot distinguish among the algorithms.

The key elements that ease adoption of points three and four can be incorporated into the 
evaluation protocol. For FRVT 2002, this was the FRVT 2002 evaluation protocol. This evaluation 
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protocol was designed to assess the state of the art, advance the state of the art, and point to future 
directions of research. The ability to accomplish these three goals simultaneously was through a 
protocol whose framework allows for the computation of performance statistics for multiple gal-
leries and probe sets. This allows for the FRVT 2002 evaluation protocol to solve the ʻthree bears  ̓
problem by including galleries and probe sets of different difficulties into the evaluation. This 
produces a comprehensive set of performance statistics that assess the state of the art, progress in 
face recognition, and point to future directions of research. The use of an XML-based specification 
allows for this evaluation protocol to become a formal standard for biometric evaluation.

The solution to the ʻthree bears  ̓problem lies in the selection of images used in the evaluation. 
The characteristics and quality of the images are major factors in determining the difficulty of the 
problem being evaluated. For example, the location of the face in an image can affect problem 
difficulty. The problem is much easier if a face must be in the center of image compared to the 
case where a face can be located anywhere within the image. In FRVT 2002 data sets, variability 
was introduced by the size of the database, inclusion of images taken at different dates and both 
outdoor and indoor locations. This resulted in changes in lighting, scale, and background.

The testing protocol is based upon a set of design principles. The design principles directly 
relate the evaluation to the face recognition problem being evaluated. In particular, for FERET and 
FRVT 2000, the driving applications were searching large databases and access control. Stating the 
design principles allows one to assess how appropriate the FERET tests and FRVT 2000 are for a 
particular face recognition algorithm. Also, design principles assist in determining if an evaluation 
methodology for testing algorithm(s) for a particular application is appropriate.

The FRVT 2002 evaluation protocol consists of two parts.  The first is the rules for conducting 
an evaluation, and the second is the format of the results that allow for scoring. The specific file 
format specifications are XML-based. Formal details can be found in “Face Recognition Vendor 
Test 2002: The Technical Appendices.”

The input to an algorithm or system being evaluated is two sets of signatures, the target and 
query sets. Galleries and probe sets are constructed from the target and query sets respectively. The 
output from an algorithm is a similarity measure between all pairs of images from the target and 
query sets. A similarity measure is a numerical measure of how similar two faces are. Performance 
statistics are computed from the similarity measures. A complete set of similarity scores between 
all pairs of signatures from the target and query set is referred to as a similarity matrix. The first 
rule in the FRVT 2002 evaluation protocol is that a complete similarity matrix must be computed. 
This rule guarantees that performance statistics can be computed for all algorithms.

To be able to compute performance for multiple galleries and probe sets requires that multiple 
signatures of a person are placed in both the target and query sets.  This leads to the second rule: 
Each signature in the target and query sets is considered to contain a unique face. In practice, this 
rule is enforced by giving every signature in the target and query sets a unique random identifier.

The third rule is that training is completed prior to the start of an evaluation. This forces 
each algorithm to have a general representation for faces, not a representation tuned to a specific 
gallery. Also, if training were specific to a gallery, it would not be possible to construct multiple 
galleries and probe sets from a single run. An algorithm would have to be retrained and the evalua-
tion rerun for each gallery.

Using target and query sets allows us to compute performance for different categories of 
images. Possible probe categories include (1) gallery and probe images taken on the same day, (2) 
duplicates taken within a week of the gallery image, and (3) duplicates where the time between 
the images is at least one year. This is illustrated in the following example. A target and query set 
consists of the same set of facial images. Eight images of each face are taken. Each face is taken 
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both indoors and outdoors, with two different facial expressions on two different days. From these 
target and query sets, one can measure the effects of indoor versus outdoor illumination by con-
structing a gallery of indoor images and a probe set of outdoor images, both consisting of neutral 
expressions taken on the first day. Construction of similar galleries and probe sets would allow 
one to test the effects of temporal or expression changes. The effect of covariates such as age and 
sex of a person can also be measured. It is the ability to construct galleries from the target set and 
probe sets from the query set that allows the FRVT 2002 protocol to perform a detailed analysis.

The FRVT 2002 evaluation protocol allows for the computation of performance statistics for 
identification, verification, and watch list tasks. The protocol is sufficiently flexible that one can 
estimate performance using sub-sampling and re-sampling techniques.  For example, galleries of 
varying sizes are created to measure the effects of gallery size on performance.  To estimate the 
variability of performance, multiple galleries are created.

4. PERFORMANCE STATISTICS

In FRVT 2002, performance results are reported for identification, verification, and watch 
list tasks. In addition to computing classical performance statistics, new statistical methods were 
developed to estimate variation in performance over multiple galleries and to explore the effect 
of covariates on performance. This section presents an overview of the performance statistics that 
describe the FRVT 2002 experiments. Mathematical details are provided in Appendix A.2.

The identification task allows one to ask how good an algorithm is at identifying a probe im-
age. The question is not always “is the top match correct?,” but rather “is the correct answer in the 
top k matches?” The identification task is modeled after real-world law enforcement applications 
in which a large electronic mug-book is searched to identify suspects. In identification scoring, the 
similarity scores between the probe and all the gallery images are sorted. A higher similarity score 
means there is a greater resemblance between two faces. In identification, every probe has a match 
with one of the gallery images—this is known as the correct match (identification is a closed 
universe evaluation). A probe is correctly identified if the correct match has the highest similarity 
score. More generally, a probe has rank k if the correct match is the kth largest similarity score. For 
example, a probe has rank 5 if the correct match is the fifth largest similarity score. A probe is cor-
rectly identified if it has rank 1. Rank can vary between 1 and the size of the gallery. The identifi-
cation rate at rank k is the fraction of probes that have rank k or higher. Identification performance 
is plotted on a cumulative match characteristic (CMC). Figure 10 from Section 7 shows a CMC. 
The horizontal axis of the graph is rank on a logarithmic scale. A logarithmic scale was chosen to 
emphasize the lower ranks. Most applications are based on performance at lower ranks. The verti-
cal axis is the identification rate. Identification is also known as ʻone to many  ̓matching because a 
probe is compared to an entire gallery.

In FRVT 2002, we assume the following operational model for biometric verification or 
authentication systems. In a typical verification task using, a subject presents his biometric 
signature to the system and claims to be a person in the systemʼs gallery. The presented biometric 
signature is a probe. The system then compares the probe with the stored signature of the subject 
in the gallery. The comparison produces a similarity score. The system accepts the identity claim 
if the similarity score is greater than the systemʼs operating threshold. The operational threshold 
is determined by the applications, and different applications will have different operational 
thresholds. Otherwise, the system rejects the claim. In analyzing verification performance, two 
cases need to be considered. The first case concerns when a person makes a legitimate identity 
claim—the person is who he claims to be. The performance measure for this case is the correct 
verification rate. The second case is when the claimed identity is incorrect—the person is not who 
he claims to be. The performance measure for the second case is the false accept rate. The ideal 
system would have a verification rate of 1.0 and a false accept rate of 0.0. All legitimate claims are 
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accepted and all false claims are rejected. However, there is a trade-off between the verification 
and false accept rates in real-world systems. By changing the operating threshold, the verification 
and false accept rate change. A higher operating threshold results in lowering the false accept rate 
and the verification rate.

Verification and false accept rates characterize verification performance. Both these perfor-
mance rates cannot be maximized simultaneously; there is a trade-off between them. Verification 
performance is reported by showing the trade-off between the verification and false accept rates 
on a receiver operator characteristic (ROC). An example of a ROC is shown at figure 7, Section 
7. The horizontal axis is the false accept rate (scaled logarithmically). A logarithmic scale is used 
because operating points of interest have low false accept rates and a logarithmic scale emphasizes 
low false accept rates. The vertical axis is the verification rate. Verification is also known as ʻone 
to one  ̓matching because a decision is made by comparing one probe signature with one gallery 
signature.  Because probes presented to a system are not necessarily in the gallery, verification is 
considered an open universe task.

In FRVT 2002, we examine how verification performance varies under two conditions. The 
first is how performance varies with different galleries. This models the performance of a system 
that might be installed at different locations. The second is how performance varies for different 
classes of probes. For example, what is the difference in performance for male and female probes? 
Each combination of the gallery and probe sets generates a different ROC. To study the variation, 
it is necessary to combine results over a set of ROCs. One method of combining results is to mea-
sure the variation of the verification rate for each false alarm rate. This models the situation where 
one can readjust the operating threshold for each gallery or probe set. For many applications, this 
is not feasible or desirable. However, this is an appropriate technique for combining ROCs from 
multiple systems because it is not possible to set uniform operating thresholds across different 
systems. For the same system, it is possible to set one operating threshold across all galleries and 
probe sets. Using this ʻbase-operating threshold,  ̓one computes the verification and false accept 
rate for each gallery and probe set. The resulting verification and false alarm rates will vary across 
the different galleries and probe sets. This method for computing variance in performance models 
the situation in which the operating threshold is set once for an application. Setting the base-oper-
ating threshold can be based upon an overall desired performance level for the population that will 
use the system. In FRVT 2002, the base-operating threshold is set based upon the system perfor-
mance on an aggregate population. The base-operating threshold corresponds to a specific false 
accept rate on the aggregate population—this is referred to as the nominal false accept rate.

The last task examined was the watch list. The watch list task is a generalization of verifica-
tion and identification. Like verification, watch list is an open universe task. In fact, verification 
and identification are special cases of the watch list task. In the watch list task, a system deter-
mines if a probe corresponds to a person on the watch list, and then identifies the person in the 
probe. When a probe is provided to the system, it is compared to the entire gallery. The gallery is 
also known as the watch list. As in identification, the similarity score between the probe and the 
gallery are sorted. If the top match is above an operating threshold, an alarm is declared and the 
estimated identity is reported. This is the verification portion of the watch list task. As in verifica-
tion, there are two performance statistics: detection and identification rate, and false alarm rate. We 
will first look at the case where the identity of a probe is someone in the gallery (in the watch list). 
A probe is detected and identified if the probe is correctly identified and the correct match score 
is above the operating threshold. The detection and identification rate is the fraction of probes of 
people in the gallery who are detected and identified. In the second case, a probe is not of someone 
in the gallery. This type of probe is also referred to as an imposter. A false alarm occurs when 
the top match score for an imposter is above the operating threshold. Watch list performance is 
reported on a ROC, where the x-axis is the false alarm rate and the y-axis is the detection and 
identification rate (see figure 12 in Section 7). A watch list ROC plots the trade-off between the 
detection and identification rate, and false alarm rate.
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In the general case, the system examines the top k matches with the gallery. A probe of a per-
son in the gallery is detected and identified at rank k if the probe is of rank k or less and the correct 
match is above the operating threshold. For imposter probes, a false alarm at rank k occurs if any 
of the top k matches are above the operating threshold. The full watch list performance is plotted 
along three axes: detection and identification rate, false alarm rate, and rank. The performance of a 
system is represented as a surface in the three-dimensional parameter space. When the size of the 
gallery is one, the watch list reduces to verification. Identification is the special case when the false 
alarm rate is 1.0. Formally, the identification CMC is the curve that results from intersecting the 
watch list performance surface with the false alarm rate equals 1.0 plane.

FRVT 2002 allowed participants to submit normalization procedures. Normalization is a post 
processing function that adjusts similarity scores based on a specific gallery. FRVT 2002 allowed a 
different normalization function for each task: identification, verification, and watch list. The input 
to a normalization routine is the set of all similarity scores between a probe and a gallery. The out-
put is a new set of normalized similarity scores between a probe and a gallery. The normalization 
function attempts to adjust for variations among probes and to emphasize differences among the 
gallery signatures. If the gallery changes, then similarity scores need to be normalized again. This 
has implications for scoring techniques that require performance on multiple galleries. Tradition-
ally, verification has been referred to as ʻone to one  ̓matching. This is because, in verification, 
one probe is matched with one gallery signature. Normalization requires that a probe be compared 
with a gallery. When normalization is applied, is verification still ʻone to one  ̓matching?

All the results in this report are performance statistics estimated from participant report simi-
larity scores. As with all estimation procedures there is an uncertainty associated with the mea-
surement. In face recognition and biometrics, it is an active area of research to develop techniques 
to measure the uncertainty of an estimator (Bolle et al. 2000; Beveridge et al. 2001; Micheals and 
Boult 2001; Moon and Phillips 2001). Unfortunately, there are no accepted methods for computing 
confidence intervals in the biometric community. Therefore, we do not place confidence intervals 
on performance statistics reported. Another measure of uncertainty is the variance of an estimator. 
For verification performance on the HCInt we report the observed variance of the verification 
performance estimators. In this case we were able to report the observed variance because of the 
large size of the HCInt data set.

Mansfield and Wayman (2002) describe four performance statistics that are not reported in 
FRVT 2002. These statistics provide an additional level of detail in performance and are mainly 
designed for scenario and fingerprint evaluations. FRVT 2002 views the systems being tested as 
black boxes and reports performance for the complete system. Two of the statistics are failure to 
enroll and failure to acquire. The analogy of failure to enroll in FRVT 2002 is that a template of 
sufficient quality could not be extracted for a gallery signature. In FRVT 2002, if a system could 
not extract a template for a gallery signature, then most likely, all matches with that signature 
would produce low similarity scores. This would be reflected in the performance statistics. The 
FRVT 2002 design is transparent to these types of internal errors that may be handled differently 
by each participant system. The analogy for failure to acquire is that a template of sufficient 
quality could not be extracted from a probe signature. This is handled in the same manner as a 
failure to enroll. Binning error rate and penetration rate are system-level statistics of the success 
of limiting the expense of one to many searches by suitably partitioning the gallery. FRVT 2002 
is transparent to partitioning; any binning undertaken by a system is internal and not explicitly 
reported.
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5. FRVT 2002 TEST DESIGN

FRVT 2002 was designed to allow participation by as many face recognition research groups 
and companies as possible. FRVT 2002 consisted of two sub-tests. These were the high computa-
tional intensity (HCInt) and medium computational intensity (MCInt) tests. The two sub-tests were 
designed to encourage broad participation in the evaluation. The HCInt was designed to evaluate 
the performance of state-of-the-art systems on extremely challenging real-world problems. The 
MCInt was designed to provide an understanding of a participantʼs capability to perform face 
recognition tasks with several different formats of imagery (still and video) under varying condi-
tions. The MCInt was also designed to help identify promising new face recognition technologies 
not identified in the HCInt.

FRVT 2002 was announced on 25 April 2002 in Federal Business Opportunities, the Biomet-
ric Consortium list server (listserv), and in e-mails to members of the face recognition and biomet-
rics communities. FRVT 2002 was open to all developers and providers of core face recognition 
technology. This included academia, research laboratories, and commercial companies. There were 
neither fees nor compensation for participating. Participants were required to provide all hardware, 
software, and personnel necessary to complete the test. Participants could take the HCInt, MCInt, 
or both. The participants and the tests they took are provided in table 32. FRVT 2002 was adminis-
tered at the U.S. Naval base at Dahlgren, Virginia between 10 July and 9 August 2002.

All images and video sequences in FRVT 2002 were sequestered prior to the test and had 
not been seen by any participant. Testing on sequestered data has a number of advantages. First 
it provides a level playing field. Second, it ensures that systems are evaluated on the general face 
recognition task, not the ability to tune a system to a particular data set.  FRVT 2002 was adminis-
tered under strict U.S. Government supervision. All tuning and adjustment to participants  ̓systems 
had to be complete prior to arrival at the test site.

The HCInt contained one target and query set. The target and query set were the same and 
contained 121,589 full frontal facial images (see Section 6.1 for details). The HCInt was fully 
automatic. In a fully automatic test, the input to the system is the facial image or video sequence. 
The system must automatically locate the face in the image and find any facial features that are 
required by the system. The HCInt had to be performed on the equivalent of three high-end work-
stations. Technical specifications for each participantʼs HCInt and MCInt systems are provided in 
the Face Recognition Vendor Test 2002: Technical Appendices. Participants were given 264 hours 
to complete the test and output the complete set of similarity files. The complete set of similarity 
files consisted of approximately 15 billion similarity scores.

The MCInt consisted of two sub-tests: still and video. The still and video sub-tests each had 
a target and query set. In both sub-tests the target and query set were the same. Both sub-tests 
were fully automatic. Participants had to complete both sub-tests in 264 hours on one high-end 

Table 3. List of FRVT 2002 participants and tests completed
Participant MCInt HCInt

AcSys Biometrics Corp X
Cognitec Systems GmbH X X
C-VIS Computer Vision und Automation GmbH X X
Dream Mirh Co., Ltd X X
Eyematic Interfaces Inc. X X
Iconquest X
Identix X X
Imagis Technologies Inc. X X
Viisage Technology X X
VisionSphere Technologies Inc. X X

2. The identification of any commercial product or trade name does not imply endorsement or recommendation by the 
National Institute of Standards and Technology, or any other FRVT 2002 sponsor or supporter.
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workstation. The output from the MCInt consisted of approximately 56 million similarity scores. 
The still target and query set consisted of 7,722 digital facial images. The types of facial images 
varied—details can be found in Section 6.2. The video target and query set consisted of 1,890 
signatures. The signatures consisted of 882 still facial images and 1008 facial video sequences.

6. IMAGE DATA SETS

This section describes the data sets used in FRVT 2002. Some common aspects of all images 
used in FRVT 2002 are that they contained the face of exactly one individual, that the face (and 
neck and part of the chest) was the only foreground object, and that the image was acquired in the 
visible spectrum in color. All images provided to FRVT 2002 participants were in standard JPEG 
format. 

6.1 HCINT DATA SET
The HCInt data set is a subset of a much larger collection provided by the Visa Services 

Directorate, Bureau of Consular Affairs of the U.S. Department of State. That collection consists 
of approximately 6.8 million images from about 6.1 million visa applicants collected from 1996 to 
2002. The HCInt data set consisted of 121,589 images from the database.  HCInt contained at least 
three images of each of the 37,437 subjects in the data set. 

The images are of good quality and were gathered in a consistent manner. They were col-
lected at U.S. consular offices using standard issue digital imaging apparatus whose specification 
remained fixed over the collection period. The result is a set of well-posed (i.e., frontal to within 
10 degrees) images of cooperative subjects usually with a mouth-closed neutral facial expression. 
The subject usually occupies a quarter of the image area. The top of the subjectʼs shoulders is 
almost always visible. The background is universally uniform, with a white background (in most 
cases). The names of the individuals were encoded to protect the privacy of the subjects. Year of 
birth was provided. Due to privacy considerations, representative images of the actual data set are 
shown in figure 1.

One concern with operational databases is the integrity of the identities associated with the 
images. There are two errors that can occur. First, two different persons can have the same iden-
tify. Since the identifier is based on a hash of the personʼs name and other identifying information, 
it is very unlikely that two people will have the same identifier. Second, a person has two identifi-
ers. This usually occurs because of clerical errors. Since each individual in the data set has at least 
three images, the same clerical error would have had to occur three times. Thus, the inclusion of 
three images of each person in the data set makes it very unlikely that a person in the HCInt data 
set will have two identifiers.

Fig. 1. Images included here are reasonable representa-
tions of those used in the FRVT 2002 High Computa-
tional Intensity test.
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6.2 MCINT DATA SET
In contrast to the HCInt image set, the MCInt data set is composed of a heterogeneous set 

of still images and video sequences of subjects in a variety of poses, activities and illumination 
conditions. The images originate from two sources. The first is the still facial image data set col-
lected the National Institute of Standards and Technology (NIST), Naval Surface Warfare Center 
(NSWC, Dahlgren), and the University of South Florida (USF) between 1999 and 2002. The 
second, from The University of Texas at Dallas, consists of video and stills taken in 2001.

The NIST-NSWC-USF data set is comprised of images taken indoors and outdoors. Although the 
images were taken over more than three years at three sites, they were acquired in almost identical 
circumstances such that their geometric and photometric characteristics are approximately the same. 
While the imagery itself has consistent properties, the subject populations of the three sites differ. The 
USF segment consists of subject population of diverse ethnicity that is distinct from the older, predomi-
nantly Caucasian mix at NIST and NSWC. The images in figure 2 are examples of the gallery and probe 
set images used for testing changes in expression, overhead lighting and outdoor lighting, and elapsed 
time. The outdoor stills are characterized by changing background and directional sunlight illumination.

The MCInt image set included partitions to test the efficacy of using 3D morphable models as 
a preprocessing step in the recognition of non-frontal images (Blanz and Vetter 1999; Blanz et al. 
2002). The concept is that a non-frontal image is fitted to a 3D model of human heads, and then the 
morphable model generates a frontal view based on the non-frontal image. In the MCInt, morphed 
images were generated by the algorithm of Blanz et al. (2002)(See Technical Appendice O).

The University of Texas at Dallas data set was created for use in human memory experiments. 
Close-range video clips and static images were taken of more than a hundred individuals on at 
least two different occasions to make duplicate sets separated by one week to six months. Included 
in the MCInt was a 63-person subset of this data set of subjects that appeared on two occasions.

Still Images. Nine high quality still images of each individual were taken from equally spaced 
viewpoints spanning angles from left profile to right profile.

Exploration Video Sequences. A video was taken of each individualʼs face moving through the 
nine facial poses used for the still images.

Facial Speech Videos. Two video clips were taken of individuals speaking, first in a neutral 
way, then in an animated way. Figure 4 shows two examples.

Fig. 2. Indoor and outdoor images from the NIST-NSWC-USF data 
set. The top row contains images taken indoors and the bottom con-
tains outdoor images taken on the same day as the indoor images.
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7. HIGH COMPUTATIONAL INTENSITY TEST RESULTS

The HCInt target set contains 121,589 images from 37,437 individuals, with at least three 
images of each person. The query and target set are identical. The design of the HCInt experiments 
is based on the HCInt large gallery and HCInt large probe set. The large gallery consists of the 
earliest dated image for the 37,437 individuals in the target set. The large probe set consists of 
two images of each person in the gallery. The first image is the most recent image. This ensures 
that performance can be computed for the greatest possible elapsed time for each person in the 
HCInt data set. The second image of each person placed in the probe set is that with a median time 
between the gallery and all images of a person. For people with three images in the query set, the 
oldest image is placed in the gallery and the two most recent images are placed in the probe set. A 
histogram of the distribution of elapsed time between probe and gallery images is given in figure 
5. The number of probes in each bin is broken out by sex.

The HCInt large gallery contains 18,468 males and 18,878 females (there were 91 individuals 
where the sex could not be determined). The numbers in figure 5 and figure 6 do not always add 
up. In figure 5 the histogram is terminated at 1,140 days. Some of the probes show the elapsed 

Fig. 3. The top row shows original images. The subject, illuminated by one light source, 
is looking left and right at about 45 degrees, straight at the camera, and up and down at 
about 30 degrees. The second row shows the corresponding frontal reconstructions from 
the 3D morphable model. The center column shows the effect of fitting the morphable 
model to a frontal image.

Fig. 4. The rows show selected frames from examples of the UT Dallas 
“facial speech” videos lasting 150 frames. The two rows show the subject 
gathered on different occasions.
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Fig. 5. Histogram of elapsed time between gallery and probe images of a person. The time intervals are 
divided into 60-day bins. The number of probes in each bin is broken out by sex.

Fig. 6. Histogram of age distribution of people in the HCInt large gallery. The number of people in 
each bin is broken out by sex.
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time is greater than 1,140 days, however, the number is sufficiently small so performance was not 
calculated. The people in the HCInt data set were divided into 12 age categories. Each age cat-
egory is a five-year bin, with the first bin containing 18 to 22-year olds. The age of a person is set 
at the age when the gallery image was taken. A histogram documenting the distribution of elapsed 
time between probe and gallery images is shown in figure 6. The number of people in each bin is 
broken out by sex. The numbers do not add up to 37,437. People older than 78 were not included 
in the histogram. This is because there are too few of them to justify experimentation.

Additional galleries and probe sets are derived from the large gallery and probe set. The exact 
composition depends on the experiment run. Unless otherwise stated, if the image of a person is 
placed in the gallery, then the two images of that person in the large probe set are placed in the 
new probe set.

One of the new features introduced in FRVT 2002 is measuring the variance in the statistics 
computed to determine how performance changes if the people in the gallery are different. 
Computing the variance requires computing performance statistics on multiple galleries and probe 
sets. To perform the variance experiments, a set of twelve HCInt small galleries were generated 
from the large HCInt gallery. Each gallery consists of 3,000 individuals. The twelve galleries 
are disjoint. There are twelve corresponding small probe sets. A small probe sets consists of the 
two probe images in the large probe set for each person in the gallery. Thus, each small probe set 
consists of 6,000 images from 3,000 individuals; each probe is an image of a person in the gallery.

The first experiment is the HCInt large gallery verification experiment. Figure 7 shows 
verification performance on a ROC for the eight participants. The false accept rate axis is on a 
logarithmic scale. The verification performance was computed by the round-robin technique. The 
false alarm rate was computed from probes in the large probe set; i.e., the match and non-match 
distributions were both generated from the large probe set.

Fig. 7. Verification performance ROC for eight participants on the HCInt large gallery and probe set. 
The gallery consisted of 37,437 individuals with one image per person, and the probe set consisted of 
74,874 probes with two images per person. 
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The results in figure 7 report verification performance for a single large gallery. The results 
do not address the important question of how performance varies if the people in the gallery 
are different. To measure this variation, verification performance was computed for the twelve 
HCInt small galleries. The false alarm rate was computed from 6,000 true imposters (two im-
ages of 3,000 individuals). The results for this experiment are presented in figure 8 for Cognitec, 
Eyematic, and Identix. The centerline is the aggregate performance for the twelve galleries. For 
selected operating points, performance was computed for the twelve small galleries and probe sets. 
For each of the twelve galleries, verification rates and false accept rates were computed. The false 
accept rate was computed with true imposters. Thus, at each operating threshold, there are twelve 
pairs of verification and false accept rates. A standard error ellipse was computed for each set of 
verification and false accept rates.

Error ellipses in figure 8 are two times the standard deviation of the verification and false 
accept rates along the appropriate axes. An ellipse gives an estimate of the range in performance 
that could result if the people in the gallery are changed. If the large gallery were larger, it would 
be possible to compute performance for more small galleries of size 3,000. The greater number of 
small galleries would increase the accuracy of the error ellipse. However, the size of the ellipses 
would not decrease as the number of small galleries increased. This is because the error ellipses 
are a function of the multiple small galleries, and composition of the small galleries reflects the 
natural variation in the population. The natural variation will always be present—more small 
galleries increase the accuracy of the estimated variation in the performance due to the natural 
composition of the population. In the HCInt the ellipses are estimated from disjoint galleries and 
probe sets. This avoids many of the issues associated with re-sampling techniques. Re-sampling 
techniques require making assumptions about the distributional properties of the similarity scores. 
Typical assumptions are that similarity scores are independent and identification distributed (iid). 
In interpreting the meaning of error ellipses, a number of subtle facts need to be noted. The error 
ellipses are not error bounds on the ROC. Rather, error ellipses are a measure of the variance in 

Fig. 8. Standard error ellipses for verification performance for Cognitec, Eyematic, and Identix. The 
standard error was computed from twelve HCInt small galleries of size 3,000. The center line is the 
ROC performance for the aggregate of all twelve galleries. The ellipses are two times the standard 
deviation at selected performance points, and the points clustered around the ellipses represent the 
performance of one of the twelve galleries at the selected performance point. 
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performance that occurs by changing the gallery. The standard error is an empirical estimate of the 
variation. They are not confidence intervals. Confidence intervals decrease in size as the number 
of samples increase. To estimate confidence intervals requires that one knows or can estimate the 
underlying distribution.

One of the recent innovations in face recognition has been the adoption of normalization. C-VIS, 
Eyematic, Identix, and Viisage submitted normalization routines in FRVT 2002. In two experiments, 
we investigate the contribution of normalization to verification and identification performance.

To measure the effect of normalization on verification, performance was computed for 
normalized and non-normalized versions for the twelve small galleries and probe sets. The 
difference in the verification rate was computed for four false accept rates: 0.0001, 0.001, 0.01, 
and 0.1. Figure 9 plots the normalized score minus the non-normalized score. Figure 9 contains 
four panels, one for each false alarm rate. In each panel, the mean change in verification rate 
over the twelve small galleries is plotted. For example, at a false accept rate of 0.001, the mean 
change in performance for Eyematic is 0.089. This means that normalization improved Eyematic s̓ 
verification rate by 0.089. In this experiment, the improvement in verification rate over the twelve 
galleries was very stable. The variance in the change is sufficiently small that it would not show 
up in figure 9 if plotted. The results in figure 9 show that normalization improves performance. 
All verification performance results in FRVT 2002 are computed with normalized scores for those 
who submitted normalization functions.

The same experiment was repeated with identification. The results showed that normalization 
did not improve performance for identification. Because normalization did not improve identifica-
tion performance, all identification scores in FRVT 2002 are computed without normalization. For 
the watch list task, the improvement from normalized scores was comparable to verification, and 
therefore, watch list performance is computed using normalized scores.

The results of the HCInt large gallery identification experiment are shown in figure 10. 
Identification results are reported on a CMC with rank scaled logarithmically.

While the HCInt large gallery experiment measured performance on a large gallery of 37,437 
individuals, the HCInt gallery size experiment examines how rank 1 identification performance 
decreases as gallery size increases. Figure 11 shows performance as a function of gallery size. The 
horizontal axis is gallery size on a logarithmic scale and the vertical axis is rank 1 identification 
performance. The performance was computed for thirteen difference gallery sizes: 25, 50, 100, 
200, 400, 800, 1,600, 3,000, 3,200, 6,400, 12,800, 25,600, and 37,437. The spread of the galleries 
sizes is approximately logarithmic in gallery size.

Fig. 9. Plots showing the difference between normalized and non-normalized verification perfor-
mance. Performance was computed for the twelve galleries in the experiment. Relative performance 
of the verification rate is shown for false accept rates of 0.0001, 0.001, 0.01, and 0.1.
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The identification rates plotted in figure 11 are an average identification rate over a set of galler-
ies. For each gallery size, disjoint galleries were generated and the mean identification was computed. 
Where possible, performance was computed from twelve galleries. However, the number of disjoint 
galleries generated was limited by the size of the HCInt data set. For example, it was not possible to 
generate more than one gallery of size 25,600 and 37,437. Where possible, performance is the aver-
age over multiple galleries. The averaging was done to provide a reliable estimate of performance.

Fig. 10. Identification performance reported on a CMC for the large gallery and probe set. The large 
gallery contained images of 37,437 individuals. The horizontal axis is on a logarithmic scale

Fig. 11. Rank 1 identification performance as a function of gallery size.
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The following experiments examined watch list performance: the watch list ROC experiment, 
the watch list rank experiment, and the watch list gallery size experiment. Performance of a system 
on a watch list task is characterized by four values: detect and identify rate, false alarm rate, gal-
lery size, and rank. To understand the effect of each of the values on performance, we performed 
three watch list experiments. In each of the experiments, one or two of the values are held constant 
so that the effect of changing the remaining values can be examined.

The watch list ROC experiment computes a watch list ROC for all eight participants. In this 
experiment, performance was computed for twelve galleries. To provide a reliable estimate, aver-
age performance over the twelve galleries was plotted. All galleries consisted of 3,000 individuals. 
The probe set consisted of 6,000 probes of people in the gallery and 6,000 imposters (there were 
two images per person in the probe set). Rank 1 identification performance is computed. Specifi-
cally, is the top match with a given probe a person on the watch list? Figure 12 shows the watch 
list performance for all eight participants.

In a normal watch list task, the rank 1 match between a probe and a gallery is found. If the rank 
1 match score is above a threshold, an alarm is issued. The general case finds the top k matches 
between a probe and a gallery, and reports those matches above an operating threshold. The watch 
list rank experiment investigates the effect of examining the top k matches on performance. In 
this experiment, results are only reported for Cognitec in order to keep the graph readable—the 
overall trend applies to all participants. In the watch list rank experiment, the gallery consists of 
800 individuals. The probe sets consist of 1,600 probes of people in the gallery (two per person in 
the gallery) and 1,600 imposters of 800 individuals. Results for this experiment are shown in figure 
13. Full CMCs are computed for eight false alarm rates. The x-axis is rank and the y-axis is the 
detection and identification rate. Each curve in the CMC is calculated for a given false alarm rate. 
The false alarm rate associated with each curve is adjacent to the curve on the right-hand side. For 
a false alarm rate of 0.01, performance is the same for all ranks. Even at a false alarm rate of 0.1, 
performance increases very slightly for k u 2. This suggests that in watch list applications, one 
only needs to examine the top match. It is worth noting that in figure 13 the curve with a false alarm 
rate of 1.0 is the CMC for identification against the gallery of 800 individuals.

Fig. 12. Watch list performance ROC. Gallery size is 3,000. Rank 1 performance is reported. The C-VIS 
system does not operate for the full range of false alarm rates plotted in this experiment.
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The watch list gallery size experiment examines how watch list size (gallery size) affects 
performance. Performance was computed for eight galleries sizes: 25, 50, 100, 200, 400, 800, 
1,600, and 3,000. The spacing of the gallery sizes is approximately logarithmic in size of the 
gallery. Each probe set contained two images of each person in the gallery and an equal number of 
imposters. To provide a reliable estimate of performance for each gallery size, watch list perfor-
mance was computed on twelve disjoint galleries. The average performance is plotted in figure 14. 
The curves correspond to a false alarm rate of 0.01. The decrease in the detection and identifica-
tion rate mirrors that of the decrease in identification. The decrease is approximately linear in the 
logarithm of the gallery size.

The performance analysis on the HCInt data set has, so far, concentrated on tasks: verifica-
tion, identification, and watch list. The next step is to look at the effect of three covariates on 
performance. The covariates are: elapsed time between acquisitions of gallery and probe images of 
a person, sex, and age of an individual. Since there are multiple images of an individual in the data 
set, we fixed age by the age of an individual when the gallery image was taken.

Previous evaluations have examined the effect of temporal variations at a very coarse level. 
In past evaluations, the categories were: Images Collected on the Same Day, Images Collected on 
Different Days, and Images Collection over a Year Apart. FERET and FRVT 2000 showed that 
there was a major difference in performance between same-day images and images collected on dif-
ferent days. However, the rate at which performance declined as a function of elapsed time between 
gallery and probe could not be accurately estimated. This was due to the small size of the probe set.

In the HCInt, the effects of temporal variation are studied by computing identification and 
verification performance on a large gallery and probe set. The probe set is partitioned into 19 bins. 
Each bin corresponds to a 60-day interval. The first bin corresponds to 1 to 60 days. A probe is in 
the 1 to 60-day bin if the time between the acquisition of the gallery and probe image is between 1 
and 60 days. The second bin corresponds to 61 to 120. The remaining 17 bins are constructed in a 
similar manner in 60-day intervals. Figure 5 shows the number of probes in each 60-day interval.

Fig. 13. Watch list performance for Cognitec as a function of rank for eight false alarm rates. The false 
alarm rates for each curve are on the right side of the graph. The gallery size is 800. The top curve 
(false alarm rate of 1.0) is the CMC for the gallery in this experiment. 
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Both identification and verification performance were computed. For all 19 bins, performance 
was computed against the large gallery, and the size of the probe set varied according to the bin. 
Figure 15 shows the rank one identification rate. Figure 16 plots the verification rate at a nominal 
false accept rate of 0.01. The false accept rate is nominal because there is a change in the false 
accept rate for each bin. Details on how the verification and false alarm rate are computed for each 
bin are explained in more detail in Section 4. Briefly, from the large gallery verification experi-
ment, the threshold that corresponds to a false accept rate of 0.01 is selected. Using this threshold, 
verification and false accept rates are computed for the different probe sets. The different probe 
sets correspond to the elapsed time bins. This results in different verification and false accept rates 
for each probe set. This method of computing effects for both verification and false accept rates is 
the basis for analysis in the HCInt covariate experiments.

Imaging conditions and elapsed time between images are one set of conditions that affect 
performance. These effects have been extensively studied in this and previous evaluations. In 
addition, the population in a database can significantly affect performance. Two examples are the 
sex and the age of people being recognized. Experiments on the HCInt show that the sex and age 
of a person affects performance.

To measure the effect of sex on performance, the HCInt large probe set was divided into 
male and female probe sets. Identification performance was computed for the male and female 
probe sets against the large gallery. Note: the large gallery was not divided into male and female 
galleries. For all systems, the identification rate for males was higher than the identification rate 
for females. Figure 17 shows the difference in identification performance for the male and female 
probe sets. For each rank, male minus female performance is plotted.

The calculation of the difference in performance for identification is straightforward; subtract 
the male and female identification rates. For verification, the procedure is a bit more complicated. 
Two statistics characterize the performance difference between males and females, the difference 
in the verification rate and the difference in the false accept rate. Figure 18 shows the difference 
in performance between the male and female probe sets in a ROC. The difference is shown by a 

Fig. 14. Watch list performance as a function of gallery size for a false alarm rate of 0.01. Rank 1 
performance is measured.



26 27

series of line segments for each system. The dot at approximately the center of each line segment 
is the aggregate performance for both male and female probe sets. This point is found on the large 
gallery ROC in figure 7. The bottom end of each line segment is the corresponding performance 
point for the female probe set. The top end of each line segment is the corresponding performance 
point for the male probe set. For all systems, the verification rate for males is better than for 
females. However, the same is not true for the false accept rates. For Cognitec, Eyematic, Viisage, 

Fig. 15. Rank 1 identification rate for temporal variation study. The identification performance is 
broken out by 60-day intervals. The identification rate is for probes against the HCInt large gallery. 
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VisionSphere, the false accept rate for males is better than for females (line segments go from the 
top left to bottom right). For these four systems, performance on males is better than females. For 
C-Vis, DreamMIRH, Identix, and Imagis, the false accept rate for females is better than males 
(line segments go from the top right to bottom left). For these systems, neither female nor male 
performance is better than the other. Rather, the decision depends on the scenario.

Figure 17 and figure 18 break out performance by sex for the large gallery and large probe 
set, and show noticeable differences in performance between the sexes. This generates a follow-up 
question:  Is the difference in performance consistent, or is it a property of the large gallery and 
large probe set? To address this question, verification and identification performance was broken 
out by sex and was computed on the twelve small gallery and probe sets. Verification and false 
accept rates were computed for both male and female probe sets. The performance figures were 
computed at a nominal false accept rate of 0.01. For each of the twelve galleries the male minus 
female performance figures were calculated for both verification and false accept rates. Figure 19 
plots these differences for all twelve small galleries and participants. Each symbol is the perfor-
mance of one of the participants in one of the twelve galleries. The x-axis is the difference in the 
false accept rate and the y-axis is the difference in the verification rate. For each participant, the 
results for all twelve galleries cluster. With the exception of three runs, the verification rate for 
males was better than females, and for the three exceptions, the rate is very close to zero. There 
is an order of magnitude difference between the two axes. This shows that there is a much larger 
change in the verification rate than in the false accept rate. The same computations were performed 
for identification, and the results are consistent with the results in figure 17. For all galleries and 
all participants, the identification rate for males was better than females. This shows that the bias 
towards males in the large gallery is consistent with the results of the twelve small galleries and 
provides strong evidence that the observed sex bias is a property of the HCInt data set.

The effect of age on performance has not been previously examined. To examine the effect 
of age on performance the HCInt large probe set was divided into 12 age categories. Each age 
category is a five-year bin, with the first bin containing 18 to 22 year olds. All probes of a person 

Fig. 17. CMC showing the difference in performance between male and female probes. For each rank, 
male minus female performance is plotted. The CMC shows that the identification rate of males is 
better than females.
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Fig. 18. ROC showing the difference in performance between male and female probe sets. For each 
line segment, the center point is the aggregate performance for male and female probes. The end of 
the line segment below the center is the performance on the females, and the end above the center 
point is performance for the males. For each ROC, the difference in performance at multiple operat-
ing points is shown.

Fig. 19. Difference in verification performance for male and female probe sets for the twelve small 
galleries and probe sets. The x-axis plots the change in the false accept rate and the y-axis plots the 
change in the verification rate. Note that there is an order of magnitude difference in the scales of the 
two axes.
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are placed in the same bin, and the bin is determined by the age of a person when the gallery 
image was taken. For example, if the gallery was taken when a person was 21 year old, and the 
probes where taken when the person was 24 and 25, then both probes were placed in the 18 to 22 
year bin. The performance for all age bins was measured against the HCInt large gallery. The top 
rank identification performance was broken out by age and is plotted in figure 20.

Fig. 20. Rank 1 identification performance on the HCInt large gallery broken out by age.

Fig. 21. Interaction between age and sex for rank 1 identification on HCInt large gallery (for Cog-
nitec, Eyematic, and Identix). Rank 1 performance for males minus females is plotted for each age 
bin.
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Figures 17-20 show that both the sex and age of a person affect performance. However, it is 
possible that the age and sex effects are the same. This could happen if the males are much older 
than the females. Thus, we need to check the interaction of the two factors. This is accomplished 
by dividing each of the 12 age probe sets into male and female probe sets. For each of the 12 age 
bins, we compute the difference in the male and female rank 1 identification rates (male minus 
female identification rate). The results for Cognitec, Eyematic, and Identix are shown in figure 21. 
Figure 21 shows that the difference in performance for the sexes decreases as age increases, and 
shows an interaction between sex and age. Figure 27 shows rank 1 identification performance for 
all participants.

The HCInt experiments have provided answers to a number of long-standing questions and 
raised new questions. The long-standing questions have been the effect of gallery size on perfor-
mance, variation in performance for different galleries, effect of elapsed time on performance, 
and characterization of watch list performance. New questions emerge from studying the effect of 
covariates on performance. The new questions arise from the determination that sex and age, and 
their interaction, do affect performance. This will lead to new research and insights into how face 
recognition systems work as well as issues associated with deploying automatic face recognition 
systems.

8. MEDIUM COMPUTATIONAL INTENSITY TEST RESULTS

The MCInt was designed to measure performance under different imaging conditions. MCInt 
reports three sets of the experiments and their results. The first set investigates recognition from 
frontal images under different imaging conditions. The second set looks at how pose variations 
affect performance and the impact of using three-dimensional morphable models as a preprocess-
ing stage. The third set compares recognition performance using still and video sequences. The 
experiments also provide another assessment—the effect of pose variations on performance.

The goal of the MCInt is to provide a broad assessment of progress and the state-of-the-art. 
To provide a clear and concise assessment, performance is characterized in the Evaluation Report 
by two statistics: rank 1 identification rate and verification rate at a false accept rate of 0.01. Full 
identification CMCs and verification ROCs for each experiment and participant can be found in 
the Technical Appendices. In figure 22 through figure 24, the verification rate is plotted for a false 
accept rate of 0.01. In figure 28 through figure 30 in Section A.4, the experiment performance is 
reported for rank 1 identification rate. Verification rate was selected for the main body of the report 
because verification performance is not a function of the gallery size. This allows for a degree of 
comparison among the results from the three sets of experiments. A strict comparison among the 
experiments is not possible because performance was computed from different galleries.

The first experiment is the MCInt frontal face experiment, which investigates how changes in 
lighting conditions affect face recognition from frontal mugshot style images. Performance is com-
puted for five probe sets against the same gallery. The gallery consisted of 787 people taken under 
incandescent studio lighting. The subjects had a neutral expression. To provide an empirical upper 
bound on system performance, the first probe set consisted of images taken within five minutes 
of the gallery image under the same imaging conditions. This is referred to as the indoor-same 
day probe set. The indoor-same day probe set had a different expression than the gallery image 
and contained 786 images from 781 individuals. The gallery images the expression was usually 
neutral, and in the probe the expression was usually a smile.

The indoor-overhead lighting probe set consisted of images taken with five minutes of the 
gallery images but with overhead fluorescent illumination. This probe set contained 786 images 
from 786 individuals. The indoor-overhead lighting probe set tested the effects of indoor lighting 
changes on performance.
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The indoor-different day probe set contained probes taken under the indoor studio setup on 
a different day than the gallery image of a person. This probe set contained 320 images from 320 
individuals and measured the effects of temporal variation on indoor probes. The median elapsed 
time between gallery and probe image was 147 days and the maximum was 730 days.

The outdoor-same day probe set contained images taken outdoors on the same day as the gal-
lery image of a person. This probe set contained 444 images from 435 individuals and measured 
the effects of outdoor illumination.

The outdoor-different day probe set contained images taken outdoors on a different day than 
the gallery image of a person. This probe set contained 145 images from 103 individuals. The 
outdoor-different day probe set measured the effects of temporal variation and outdoor illumina-
tion. The median elapsed time between gallery and probe image was 152 days and the maximum 
was 505 days.

The results from the MCInt frontal face experiment are presented in figure 22 and figure 28. 
Figure 22 shows verification performance at a false accept rate of 0.01 for each participant and each 
probe set. The y-axis is verification performance. The x-axis is categorical, with one category for 
each of the five probe sets. The marks on the vertical line above Indoor (same day) are verification 
performance for the indoor-same day probe set. The performance results for the other four probe 
sets are reported in the same manner. Lines are drawn between the results for each participant on 
different probe sets. This is done to make it easier to examine how the properties of different probe 
sets affect performance. Figure 28 plots identification performance in the same manner.

The MCInt morphable model experiment examined the effects of pose variation and mor-
phable models on performance. This experiment consisted of one gallery and nine probe sets. The 
gallery consisted of full frontal images of 87 individuals taken indoors under studio conditions 
with a single incandescent photo floodlight. Each probe set consisted of 87 images of 87 people. 
All probe images were taken within five minutes of the gallery image under the same conditions.  
The only difference is the pose.

Fig. 22. Comparison of system performance on different categories of probes. The verification rate at 
a false accept rate of 0.01 is plotted.
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Figure 3 shows examples of the nine probe sets. The 45 left and 45 right probe sets contained 
facial images facing 45 degrees to the left and right of center respectively. The 45 L and 45 R 
columns in figure 23 and figure 29 report verification and identification results for the 45 left and 
45 right probe sets. Line segments are drawn between original and corresponding morphed probe 
sets to emphasize the effect of morphing. The 30 up and 30 down probe sets contain facial images 
facing 30 degrees up and down respectively. The performance results for these two probe sets 
are reported in the 30 U and 30 L columns. In the remaining five probe sets, a three-dimensional 
morphable model has been applied to the probes. See figure 3 for examples of applying a three-
dimensional morphable model to a probe.

The frontal morph probe set provides a baseline for how morphing affects a system. In the 
frontal morph probe set, the morphable model is applied to the gallery images. Thus, the differ-
ence between a gallery and a frontal morph image is that the morphable model has transformed the 
probe. The results for the frontal morph probe set are in column frontal (morph). If a system were 
insensitive to the artifacts introduced by the morphable model, then the verification and identifica-
tion rates would be 1.0. In Figure 23, sensitivity to morphable models range from 0.98 down to 
0.45.

To investigate the effects of morphable models, performance was computed for four probe 
sets: 45 left morphed, 45 right morphed, 30 up morphed, and 30 down morphed. These probe 
sets were produced by applying the morphable model to the 45 left, 45 right, 30 up, and 30 down 
probe sets respectively. The results for the morphed probe sets are in columns 45 L (morph), 45 R 
(morph), 30 U (morph), and 30 D (morph). The results show that with the exception of Iconquest, 
morphable models significantly improved performance.

The MCInt still-video experiment compares performance of still and video-style probe sets. 
This experiment consisted of one gallery of still full frontal digital images of 63 individuals taken 
indoors under studio conditions. In the still-video experiment, there are two probe sets: still and 
video. Both probe sets contained 63 signatures from 63 individuals. The probes in both probe 

Fig. 23. The effect of still versus three-dimensional morphable models. The verification rate at a false 
accept rate of 0.01 is plotted.
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sets were taken indoors under studio conditions, consist of the same individuals, and are taken 
on different days than the gallery images. The still and video signature probes of a person were 
taken on the same day. The still probe set consisted of a single still full frontal image. A video 
probe was extracted from a 5 second video sequence of a person speaking (see figure 4). A video 
probe consisted of a sequence of 100 images (3.33 seconds), where each image was a frame in the 
original digital video sequence. We called this probe set video-style because the probe set consists 
of a sequence of frames. 

The results of the MCInt still-video experiment are shown in figure 24 and figure 30. (Human 
inspection of the Viisage similarity files confirmed their performance on the still probe set.) With 
the exception of DreamMIRH and VisionSphere, performance was better on the still probe set than 
the video probe set. This was true for both verification and identification.

9. ANALYSIS AND DISCUSSION

The large number of images and people in the HCInt allow for a much more detailed analysis 
than in previous face recognition and biometric evaluations. The HCInt measures performance on 
indoor images taken on different days. Performance for this category was also reported in FRVT 
2000 (Blackburn et al. 2001). Because the gallery sizes in FRVT 2000 and FRVT 2002 vary, com-
paring the results between the two must be restricted to verification. On comparable experiments, 
the error rate has dropped by approximately 50 percent between FRVT 2000 and 2002. This shows 
substantial improvement in performance since FRVT 2000.

A companion NIST study on fingerprints highlights progress in face recognition and points 
to directions of research to improve identification rates for large galleries (NIST 2002). Perfor-
mance was computed for the verification test bed (VTB), an in-house NIST algorithm based on 
an automated fingerprint identification system (AFIS). The matching technology in the VTB is 
comparable to commercial systems in 1998. The recognition rates were computed from finger-
prints provided to NIST by the U.S. Immigration and Naturalization Serviceʼs IDENT system. 

Fig. 24. Plot showing still versus video recognition for frontal imagery. The verification rate at a false 
accept rate of 0.01 is plotted.
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Fingerprint verification performance was computed for twelve independent galleries and probe 
sets. The gallery consisted of the fingerprint of one index finger for 6,000 individuals. The probe 
set consisted of a single fingerprint for the 6,000 people in the gallery.

Figure 25 shows verification performance with error ellipses for the VTB, Cognitec, Eyemat-
ic, and Identix. At false accept rates around 0.0l, verification performance is comparable. In fact, 
this is the cross-over point between face recognition and fingerprint performance. At false accept 
rates below 0.01, fingerprint performance is better. At rates above 0.01, the best face recognition 
systems perform better. The good news is for false accepts around 0.01, that face recognition 
performance is now comparable to large-scale fingerprint systems available in 1998. This suggests 
that a dual face recognition and fingerprint system is viable.

We now turn our attention to identification rates for large galleries. Figure 26 shows rank 1 
identification rate as a function of gallery size for Cognitec, Identix, Eyematic, and NIST VTB 
(single index finger). The face and fingerprint curves do not completely overlap because identifica-
tion rates were computed for different sized galleries for face and finger. The results from the VTB 
clearly show that fingerprint performance on identification is superior to face. In Appendix A.5, 
we present a moment model for predicting performance as a function of gallery size (see later in 
this section for a more detailed discussion). The moment model relates verification and identifica-
tion performance.  The model predicts that the verification rate for false accept rates at 0.001 and 
0.0001 have the most significant impact on identification performance for large galleries. This 
could explain why face and finger performance are comparable at a false accept rate of 0.01, but 
do not have comparable identification performance. Verification performance at false accept rates 
of 0.001 and 0.0001 has a greater impact on identification rate.

The fingerprint verification ROC is flatter than the face ROC (figure 25). A ROC that is flat 
means that a system either recognizes a person or completely fails. This suggests that a fingerprint 
recognition algorithm is much more likely to recognize a majority with high confidence and the 
remainder with low confidence. Face recognition, on the other hand, is more “egalitarian;” it 
recognizes most people at about the same level.

Fig. 25. Verification performances of Cognitec, Identix, and Eyematic on Visa images and NIST VTB 
single fingerprint matcher on IDENT data.
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The results from FRVT 2002, the VTB, and the moment model indicate that to improve 
identification performance, effort should be made to increase verification performance for low 
false alarm rates. One possible approach is to concentrate on the vast majority of faces that are 
relatively easy to recognize and to not concentrate on the hardest faces to recognize. This would 
flatten out the resulting ROC, but at the same time, this could have a significant effect on identifi-
cation performance for large galleries. To be able to increase the verification rate for very low false 
accept rates may require new features that are tailored to an individual or group of individuals. 
This differs from current approaches that select features that distinguish among a large population 
of people.  Developing and evaluating performance for improvements at very low false accept 
rates will require experiments to be performed on large databases.

The large number of images and people in the HCInt data set made it possible to estimate the 
variance in performance statistics. For verification performance, error ellipses were computed. 
This provided an estimate of the change in verification when different people are in the gallery. 
Knowledge of the amount of variation is necessary for understanding the predictive value of an 
evaluation. If the error ellipses are large, the actual performance of a deployed system could be 
substantially different than performance predicted in an evaluation. If this is the case, the predic-
tive value of the evaluation is small. Also, for applications in which a system will be deployed at 
multiple locations, the ellipses can provide an estimate of the range of performances that will be 
observed over the multiple locations. From a scientific point of view, error ellipses are one method 
of investigating the natural variation of faces in the population. This is because part of the varia-
tion that contributes to the error ellipses is generated by the natural variation in the population.

One of the primary purposes of the evaluation was to assess the state-of-the-art in face 
recognition. The HCInt provided a robust assessment of performance on digital visa images. The 
visa images were taken indoors under controlled lighting conditions. While the HCInt provides an 
assessment of performance for one category of images, the MCInt provides an assessment over a 
wider range of imaging conditions.

Fig. 26. Rank 1 identification rate as a function of gallery size for Cognitec, Eyematic, Identix, and 
NIST VTB single fingerprint matcher on IDENT data. 
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The results from the HCInt provide a baseline to calibrate the difficulty of image categories in 
the MCInt. The primary performance measure for comparing results from different experiments is 
the verification rate at a false accept rate of 0.01. Verification performance was selected because 
it is independent of gallery size. A specific false accept rate was selected because it makes the 
comparison manageable and is representative of a real-world operational setting.

To confirm that it is possible to compare results from the HCInt with the MCInt, a set of 
1,024 visa images of 512 individuals was included in the MCInt.  Verification results from the visa 
images in the MCInt and HCInt are comparable and consistent. Performance on the MCInt visa 
image experiment is within the error ellipses on the HCInt data.

We first examined the probe categories taken indoors. The frontal facial image experiment 
examined three categories of probes that were taken indoors: same-day different expression, same-
day different illumination, and different day. Verification performance on the MCInt different-day 
probe set is comparable to the performance on the HCInt visa images. The top three performers 
do not have the same verification performance on the HCInt and MCInt indoor different day 
probe sets. However, the top three verification scores, without consideration of which participant 
produced the score, are comparable.

For the better systems, performance on the same-day expression and overhead lighting probe 
sets is comparable. The difference between these probe sets is primarily lighting. The indoor-dif-
ferent day and visa probe sets are comparable. Here again, the primary difference is lighting. This 
suggests that the best face recognition systems are not sensitive to normal indoor lighting changes.

Next we examined the effect of faces taken outdoors on performance. Compared to the indoor 
probe set, there was a large decrease in performance on the outdoor probe categories—same day 
and different day. For the better systems, the change in performance going from indoor to outdoor 
probes was much greater than the change going from same day to different-day probes. We also 
ran the experiment with a gallery consisting of outdoor images. We then measured performance on 
same-day and different-day outdoor probes. Performance was comparable to the results reported 
for the indoor gallery and different-day outdoor probe set (figure 22). This suggests that the main 
cause of the drop in performance from indoor to outdoor imagery is that the images were taken 
outdoors. MCInt recognition results on outdoor probe sets are consistent with the results of FRVT 
2000. This indicates that recognition of faces in outdoor images needs to be a focus of research.

Figure 15 and figure 16 show the results for the HCInt time-lapse experiment. Identification 
performance dropped off roughly linearly in the time elapsed between acquisition of the gallery 
and probe images. Identification performance drops are approximately 0.05 points per year.  For 
verification, performance dropped off more slowly than for identification. The next step was to 
make sure that the drop-off in performance was not confounded with the sex effect. To address 
this, performance was broken out by sex for each elapsed time bin. The results were consistent 
with previous results (figure 15 and figure 16). This shows that the time difference results and sex 
of the subject are not confounded.

FRVT 2002 looked at three new face recognition techniques: three dimensional morphable 
models, normalization of similarity scores, and face recognition from video sequences. The results 
of preprocessing non-frontal images with three-dimensional morphable models are shown in figure 
23 and figure 29. The effects of pose changes in looking right and left, and up and down were 
examined. For all but one system, Iconquest, preprocessing with three-dimensional morphable 
models produced a substantial increase in performance.

Participants were not aware that the MCInt would include non-frontal images that had been 
preprocessed by three-dimensional morphable models. Therefore, the systems were not tuned to 
artifacts that the morphing may have introduced into the images, and the morphing technique was 
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not tuned to any of the systems. These results provide a baseline for improvements in recognition 
of non-frontal images after preprocessing by a morphable model.

Normalization is a post-processing procedure that adjusts for variations in the composition of 
galleries. Four of the evaluation participants submitted normalization routines. FRVT 2002 results 
show that for identification, normalization did not improve performance. For verification, three 
of the normalization routines increased performance; but the amount of increase depended on the 
false accept rate. Similar results were found for verification in the watch list experiments. Our 
results are consistent with those found by Mansfield et al. (2001) for fingerprints.

The third technique investigated was face recognition from video sequences. There are two 
theories supporting the hypothesis that face recognition from video is better than stills. The first is 
that there are more images of person acquired. The second is that video techniques can explicitly 
incorporate temporal information in a sequence the representation of a face. Video sequences can 
potentially improve the performance of a system at two stages. One is at the detection and location 
stage. A test of this stage would involve video where the face size and angle would vary through 
the video sequence. The other is at the recognition stage. FRVT 2002 examined performance at the 
recognition stage. To test recognition at this stage, the probe video sequences contained a face of 
a person talking—sometimes expressively. Each frame in the video sequence was the quality of a 
mugshot image. The difference between a mugshot image and the frames in the video was that the 
collection of frames contained a greater range of expressions and motions. By testing systems on 
high quality facial imagery, FRVT 2002 tested the recognition ability from video. If the sequences 
had contained people walking towards the camera where the face varied in size and orientation, 
the results would have confounded detection and recognition.

FRVT 2002 results show that with the exception of DreamMirh and VisionSphere, recognition 
performance did not improve using video. While DreamMirh and VisionSphere performance was 
better on video, their performance from video sequences was significantly worse than the recogni-
tion rate on stills for the best systems. Our results show that for the FRVT 2002 video sequences, 
and the system tested, pure recognition from video does not improve performance.

Previous evaluations have broken out performance by imaging conditions, but have not 
previously examined the effects of demographics on performance. The HCInt evaluation showed 
that demographics can have a significant effect on performance. The HCInt results showed that the 
sex and age of a person affect performance. The effect of race on performance was not examined 
because the overwhelming majority of faces in the HCInt data set were Mexican. It is known that the 
race of a person does affect algorithm performance (Furl et al. 2002). The second largest racial group 
in the HCInt data consisted of 629 people born in China. Because of the limited size of this popula-
tion, we were not able to perform a detailed study. However, results based on the limited amount of 
data suggest that people of Chinese origin are easier to recognize than people born in Mexico. Thus, 
race is another demographic factor that needs to be considered when fielding a system.

It is important to differentiate between two types of effects of covariates on performance. 
The first examines the effects on a specific population or set of users of a biometric system. In the 
HCInt data set, FRVT 2002 measured the performance of a population that was roughly equally 
divided between male and female, contained significantly more young people than older people, 
and consisted mostly of Mexicans. The performance would have been different if the data set had 
consisted of primarily males in their twenties. Because of the observed effect of covariates on 
performance, it is recommended that prior to fielding a system, the performance for that system is 
estimated for the demographic make-up of the user population.

The second type of effect of covariates consists of fundamental properties of the systems or 
images themselves. The most prominent covariate result in the HCInt evaluations is that males are 
easier to recognize than females. Is the difference in performance a fundamental property of male 
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and female faces, or is it a function of ratio of male to females in the HCInt data set? To provide 
insight into this question, we ran a number of additional experiments on balanced data sets. A 
balanced data set consists of an equal number of gallery images from each covariate. By balancing 
on the covariate, we control for the effect of the covariate in the data set.

Two experiments were run to measure the effects of the sex of a person on performance. The 
first examined sex alone. The other looked at the interaction of sex and age. For the first experi-
ment, two galleries were created of the same size: one all female and one all male. Identification 
performance for the male-only gallery was higher than the female-only gallery.

In the second experiment, one gallery was created that was balanced for both sex and age. 
Thus, there were the same number of male and female individuals in each age bin, and all age 
bins were the same size. The results are consistent with the unbalanced experiment. Both unbal-
anced and balanced experiments showed a sex effect, an age effect, and an interaction between 
the two.

One of the lessons of the covariate experiments is that covariates cannot be examined in 
isolation. The interactions among the covariates need to be examined. If the interactions are not 
examined, it is possible the observed effects of two covariates are from the same source. For 
example, it may have been the case the younger age bins had contained significantly more females 
and the older age bins may have contained significantly more males. If this were the case, the 
observed age and sex effects would have been caused by the same underling phenomena. But, as 
was observed in the HCInt data set, the performance gap between males and females declines with 
age. Without examining the interaction, this effect would not have been found.

There are a number of results in the literature that support the observation that base recogni-
tion rates are higher for males and females. Givens et al. (2002) found a small sex effect, and also 
found a statistically significant age effect. The effects are reported for a principal component-base 
face recognition algorithm using images from the FERET database. In the Givens et al. study, 
there were only two age groups: young and old. Our findings differ with those of Gross et al. 
(2001). Gross et al. found females easier to recognize than males from the AR database (Martinez 
and Benavente 1998). However, their findings were on a small data set of 130 people.

A related problem in face processing is automatically determining the sex of an unknown 
face. While there is an extensive literature on this subject, very few papers report classification 
rates for males and females. Moghaddam and Yang (2002) report male and female classifica-
tion errors for eight algorithms. Their experiments were conducted on images from the FERET 
database. For all eight algorithms, the error rates for males were lower than females. Shaknarovich 
et al. (2002) find similar results on a database of images collected on the World Wide Web.

The results from FRVT 2002 and in the literature provide evidence that automatic recogni-
tion tasks are easier for males than for females. The underlying reason that males are easier to 
recognize is not known. Additional experiments are required to provide an explanation. Possible 
explanations range from facial hair on men to the general observation that women are more likely 
to have greater day-to-day variation in their appearance than men. However, follow-up experi-
ments are required to determine the explanation for the bias.

It is known that the training set for a face recognition algorithm does affect its performance 
on different demographic groups. Systems were trained and tuned prior to starting the FRVT 2002. 
The FRVT 2002 evaluation protocol did not specify a training set or restrict the training set that 
a participant could use in training and tuning their system. Thus, the FRVT 2002 did not control 
for the composition of the training set, and this could have contributed to the covariate effects. 
However, the covariate effects existed for all eight systems. This suggests that the composition of 
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the training set is not the only possible source of the covariates effects. Additional experiments are 
required to determine the contribution of the composition of the training set to covariate effects.

The identification results in figure 11 show that identification performance decreases as 
gallery size increases.  The rate of decrease in gallery size appears to be linear in the logarithm 
of gallery size. Performance decreases by approximately 0.06 for every order magnitude increase 
in gallery size (base 10). The one exception is DreamMirh. The log-linear performance in figure 
11 is observed up to a gallery of 37,437.  Does the log-linear performance continue indefinitely 
or change at some point? The same trend was observed for performance as a function of gallery 
in the watch list task (see figure 14). An empirical answer to this question requires experimental 
runs on even larger galleries.  The other challenge is to develop a mathematical model to explain 
this phenomenon.  One current model regards identification from a gallery of size N as N attempts 
at verification. Wayman (1999) and Daugman (2003) formalized this as a binomial model, where 
the binomial coefficient is constant for all gallery sizes. This model does not explain the observed 
data because the model predicts an exponential decrease in performance as gallery size increases. 
Appendix A.5 presents a more sophisticated model that is based on moments of the match distribu-
tion.  This model predicts the log-linear behavior, but underestimates the identification rate.  The 
probable cause of the underestimation is that the model assumes that the similarity scores are 
independent and identically distributed (iid). The iid assumption fails because there are complex 
interactions among the similarity scores.

The face recognition community, and biometrics in general, has developed a range of evalu-
ations in terms of number of people and images. To provide a rough guide to evaluation size, we 
introduce the following nomenclature:

• Small: ~1,000 signatures and ~330 individuals
• Medium: ~10,000 signatures and ~3,300 individuals
• Large: ~100,000 signatures and ~33,000 individuals
• Very large: ~1,000,000 signatures and ~330,000 individuals
• Extremely large: ~10,000,000 signatures and ~3,300,000 individuals

Each size has its own role and place. A larger evaluation is not inherently better, especially 
when cost is considered. Most previous evaluations have been small, but they have had a positive 
impact on the development and assessment of biometrics.

The MCInt is a small to medium evaluation, and was able to differentiate between large and 
small effects on performance. For example, the MCInt results showed a large difference in perfor-
mance between recognition of non-frontal images and non-frontal images that have been morphed. 
Thus, the MCInt results showed that morphable models improved performance for non-frontal 
images. In another example, the MCInt results showed a small change in performance for video 
versus still signatures, and we concluded that video signatures do not improve performance. An 
evaluation such as MCInt, is good for making an assessment on 1) a specified set of experiments, 
and 2) where one is looking to distinguish between large and small effects.

The HCInt allowed for a detailed analysis and was able to estimate the variance of perfor-
mance statistics and measure the effects of covariates on performance. This analysis required not 
only a large numbers of images and people, but also an appropriate number of errors. If there had 
only been ten or hundred errors, we would not have been able to perform detailed covariate analy-
sis. In designing very large and extremely large evaluations one needs to state the object of the 
evaluation and have an idea of the overall accuracy of the biometric being tested. For example, if 
a biometric has an identification rate of 0.9999 (error rate of one in 10,000), then an evaluation on 
a data set of 100,000 images would on average produce ten errors. To be able to perform a detailed 
analysis of performance, such as in HCInt, would require a test set several orders of magnitude 
larger.
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Evaluations of all sizes are needed and have their role in assessing performance of biometrics.  
Factors effecting the size and design of an evaluation include the evaluations goals and the overall 
accuracy of a biometric. The greater the accuracy of biometric, the larger the required size of an 
evaluation. The more detailed analysis needed, the larger the required size of an evaluation. At the 
other end of the scale, an evaluation with very specific and defined purposes maybe able to meets 
its goals with a small evaluation.

10. CONCLUSION

At a simple level, FRVT 2002 was an evaluation and comparison of ten face recognition 
systems. Upon closer examination, FRVT 2002 will have a much broader impact. From an 
operational perspective, FRVT 2002 results will impact policy, the engineering design of large-
scale biometric systems, and how future technology, scenario, and operation evaluations will be 
designed. From a scientific point of view, FRVT 2002 will have an impact on future directions of 
research in the computer vision and pattern recognition, psychology, and statistics fields. FRVT 
2002 results raise many more questions than they answer.

Before summarizing the findings of FRVT 2002, two potentially important issues need to be 
addressed:

1) Does face recognition work?
2) Which system is best for my application?

The answers to both of these questions are closely related to one another. Face recognition 
performance, like other biometric types, is application-dependent. Just as there is no best biometric 
type for all operational applications, there is no best face recognition system for all operational 
applications. FRVT 2002 was not designed to be a “buyerʼs guide for face recognition” –where 
one looks at graphs or scores and selects the best system for installation. Rather, it is a technology 
evaluation that should assist decision-makers in determining (1) if face recognition technology 
could potentially meet the performance requirements for an operational application, and (2) which 
systems should be selected for application-specific scenario evaluations.

In order to determine if face recognition works and which system(s) should be deployed, one 
first needs to properly define the operational application of interest and operational performance 
requirements. These requirements need to be as specific as possible because even a small change 
in operational requirements can sometimes significantly alter anticipated performance. Questions 
to ask when defining an application include:

• Identification, verification or watch list mode of operation?
• The size of the database for identification or watch list?
• Demographics of the anticipated users (age, sex, etc.)?
• Lighting conditions – indoor/outdoor? Supplemental lighting?
• Is the system to be installed overtly or covertly?  
• What is the anticipated user behavior? 
• How long has it been since the images in the database were taken? 
• What is the required throughput rate?
• How many “exception handling” cases can you handle for a given period of time?
• For each mode of operation, which parameter (identification: rank or identification rate; 

verification: false alarm or probability of verification; watch list: false alarm or correct 
alarm) is most vital?

• What are the minimum accuracy requirements?

FRVT 2002 can only provide input to several, but not all of these questions. Questions 
associated with anticipated user behavior, exception handling, human computer interaction, and 
how a system is integrated into the business model are not addressed in a technology evaluation 
such as FRVT 2002. Providing answers to these types of questions are the province of scenario 
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and operational evaluations. Answers to some of these questions will identify which experiments 
in FRVT 2002 are relevant to a given application. Results from the relevant experiments will 1) 
show if face recognition could potentially meet the performance requirements for the application, 
2) identify which systems should be selected for follow-up scenario evaluations, and 3) provide 
a starting point for designing and conducting scenario and operational evaluations for a specific 
application. Without specifying requirements, implementation constraints, and process models 
for an application, one cannot accurately determine if face recognition will work or which system 
should be selected.

FRVT 2002 is the most thorough and comprehensive evaluation of automatic face recognition 
technology to date. The evaluation has examined many long-standing questions and raised several 
new questions for further study. These are discussed in detail in Section 9. The conclusions from 
FRVT 2002 are summarized below:

• Indoor face recognition performance has substantially improved since FRVT 2000.
• Face recognition performance decreases approximately linearly with elapsed time gallery 

and probe images.
• Better face recognition systems do not appear to be sensitive to normal indoor lighting 

changes.
• Three-dimensional morphable models substantially improve the ability to recognize non-

frontal faces.
• Normalization improves verification and watch list performance.
• On FRVT 2002 imagery, recognition from video sequences was not better than from still 

images.
• Males are easier to recognize than females.
• Younger people are harder to recognize than older people.
• Outdoor face recognition performance needs improvement.
• For identification and watch list tasks, performance decreases linearly in the logarithm of 

the gallery size.

One of the goals of a technology evaluation is to identify future directions of research. Among 
the research directions identified by FRVT 2002 are:

• Recognition from outdoor facial images.
• Recognition from non-frontal facial images.
• Recognition at low false accept/alarm rates.
• Understanding why males are easier to recognize than females.
• Greater understanding of the effects of demographic factors on performance.
• Development of better statistical methods for understanding performance.
• Develop improved models for predicting identification performance on very large galleries.
• Effect of algorithm and system training on covariate performance.
• Integration of morphable models into face recognition performance.
• Understanding the video sequences in FRVT 2002 did not improve performance.

Other major FRVT 2002 accomplishments include the evaluation protocol developed for this 
test and the associated scoring suite. The evaluation protocol and scoring suite are XML-based. 
They were designed to be applicable to general biometric evaluations, not just restricted for use in 
face recognition evaluations.

Face recognition and processing are important research problems spanning numerous fields 
and disciplines. This is because face recognition, in addition to having numerous practical applica-
tions, is a fundamental human behavior that is essential for effective communications and interac-
tions among people. Researchers are interested in how people process faces, and scientists and 
engineers are working on techniques to replicate the human face processing functions. Research 
advances along two intertwined paths. One path has an application orientation and the other, a 
scientific orientation. Advances on both paths reinforce each other, with FRVT 2002 providing 
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research directions for both paths. In the 1990ʼs, the FERET evaluations stimulated research in 
face recognition technology and in doing so helped advancing automatic face recognition during 
its infancy. With the numerous questions it raises, FRVT 2002 is poised to play a similar role in 
stimulating future face recognition and processing research.
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APPENDIX A

A.1 FRVT 2002 EVALUATION PROTOCOL DETAILS
The FRVT 2002 evaluation protocol is a general framework for conducting technology bio-

metric evaluations. The details presented are for FRVT 2002, but the framework is applicable to 
biometrics in general. The protocol encodes the philosophy and design of the evaluation, specifies 
the properties of the input to and output from a system, and dictates how performance statistics 
and results should be computed. The properties of the protocol are:

ü All participants are tested in the same manner.
ü Training is completed prior to the start of the evaluation.
ü Biometric signatures are completely general.
ü The input to a system is a target and query set.
ü The output is a complete similarity matrix.
ü All similarity scores s(q,t) are a function of a query/target pair (q,t).
ü A gallery can be any arbitrary subset of the target set with at most one biometric signature 

per person in the gallery.
ü Normalization is a post-processing function.
ü Normalization is a function of a gallery and a probe.
ü All performance scores are computed from sub-matrices of the complete similarity matrix.

In the FRVT 2002 evaluation protocol, a system is given two sets of biometric signatures: a 
target and a query set. A target set T contains the set of signatures that are known to a system. A 
query set Q contains signatures of unknown identity that are to be recognized. The term ʻrecogni-
tion  ̓covers identification, verification, and watch list tasks. In FRVT 2002, biometric signatures 
are either digital still images or digital video sequences. The FRVT 2002 evaluation protocol is 
general enough to be extensible to general biometrics signatures.

For each pair of query and target signatures (q,t)BQ!T, a system reports a similarity score 
s(q,t). A similarity score is a measure of how similar two biometric signatures are. The FRVT 2002 
evaluation protocol was designed with the assumption that each system has its own similarity mea-
sure. Systems that report distances can be incorporated into the scoring framework by negating 
their similarity scores.

The complete set of similarity scores over Q!T is a similarity matrix. The key property of 
the FRVT 2002 evaluation protocol, which allows for great flexibility in scoring, is that for any 
target-query pair, (q,t) we have s(q,t). From a full similarity matrix, “virtual” experiments are 
performed from subsets of Q and T. The basic components of such a ʻvirtual  ̓experiment are a 
gallery and a probe set. In traditional experiments, such as those in the FERET evaluations and 
FRVT 2000, an experiment consisted of a single gallery G and probe set P. A gallery G is a subset 
of a target set T and a probe set is a subset of a query set Q. For a virtual experiment, performance 
scores are computed from the similarity scores in P!G. The scores in P!G are extracted from 
Q!T.

Operationally, it was expected (but not required) that a FRVT 2002 participant generated the 
similarity matrix as follows. Given a query element q, the system compared q with all targets tBT 
to generate a vector, or single column of the similarity matrix. We denote this vector as s(q,T). 
This process is repeated for all query signatures to generate the full similarity matrix. We denote 
this matrix as s(Q,T).
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In summary, we have,
ü  s(q,t), a single scalar value, representing the similarity between query element q and target 

element t,
ü s(q,T), a vector of pTp elements, representing the similarity between query element q and 

each target element tBT, and
ü s(Q,T), a matrix of pQppTp elements, representing the similarity between every pair of target 

and query signatures, (q,t)BQ!T.

In constructing galleries from a target set, a gallery must contain only one biometric signature 
for each person. This rule does not present a limitation for scoring, but may require additional plan-
ning in designing target and query sets. The most common objection to this rule is creating a gallery 
that contains multiple images of an individual. One method to put multiple images of a person in 
the gallery is to place n images of a person in the gallery as n separate biometric signatures. When 
a probe is presented to a system, this will produce n similarity scores between the probe and the 
images of this person in the gallery. During scoring, the question is how to make a decision based 
on the n similarity scores? Does the scoring algorithm take the smallest, largest, or maybe the 
mean? The trouble with this approach is that the scoring code resolves the issues, not the system 
being evaluated. The approach taken by the FRVT 2002 protocol is to create a single biometric 
signature t that contains the n images. Thus, for a probe, a single similarity score is returned and 
the system decides how to integrate the information contained in the multiple images. In the FRVT 
2002 protocol, a biometric signature is a list of data in a specified format. The data in a biometric 
signature can be heterogeneous. For example, it could consist of a facial image and a fingerprint.

Using gallery and probes allows us to compute performance measures for different categories 
of images. For example, FRVT 2002 included: (1) probe and galleries that varied according to the 
subjectʼs age, (2) measurement of the empirical variation of the verification rate and false alarm 
rate across disjoint probe and gallery sets, (3) the effect of gallery size within a watch list scenario, 
and so on. Naturally, the possibilities for different experiments are limitless.

At the request of an FRVT 2002 participant, all participants had the opportunity to provide 
a custom normalization function as a component of their system. Operationally, a normalization 
function is applied to an appropriate subset of the score matrix, just before the scoring algorithms 
are applied. In its most general form, normalization is any post-processing transform performed on 
a subset of the similarity matrix. For an algorithm that uses normalization, the final performance 
scores are computed over the transformed values. 

In FRVT 2002, we distinguish between two families of normalization functions. One possible 
normalization function, say f1, takes each s(p,G) as input, and gives as output, a new set of similar-
ity, or “normalized” scores, s1(p,G;G)=f 1(s(p,G)). Here, we use a semi-colon to emphasize that 
s1(p,G;G)  is a vector of similarity scores that is dependent or parameterized by a particular gallery. 
Recall that s(p,G) and s1(p,G;G)  are all the similarity scores for a given probe. This means that nor-
malization occurs on a probe-by-probe basis, and is not a function of the entire similarity matrix 
s(P,G). If the results for each probe are joined together, we have a new similarity score matrix 
s1(P,G;G) , where each column of the matrix has been normalized with respect to the gallery.

The second type of normalization function f2, which also operates on a probe-by-probe basis, in-
corporates the similarity scores between all pairs of gallery images3 as well as the vector of similarity 
scoress(p,G). That is, s2(p,G;G)=f 2(s(p,G),s(G,G)). Note that if pGp is large, it may not be practical to 
use such an algorithm, since the matrix s(G,G) may exceed memory limits.

3. This implies that in order to use such a normalization routine, the target and query sets must share a set of (gallery) images.
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A.2 STATISTICS DETAILS
In FRVT 2002, we evaluate an algorithm on three related tasks: identification, verification, 

and watch list. Each of these tasks can be mapped to sets of operations on the similarity scores.

For the identification task, the operational model for FRVT 2002 is a closed universe. That is, 
for each probe pBP there exists one (and only one) gallery signature g*BG such that signatures p 
and g* are of the same subject. In the remainder of this Appendix, we will use g*  to represent the 
mate of probe p .

During identification, for a probe pBP, a system reports the gallery elements that have the 
highest similarities to the probe image. If the subject appears in the top n candidate gallery images, 
then the subject is correctly identified.  For each probe pBP, we sort s(p,G). A probe p is said to be 
of rank k if s(p,g*) is the kth largest similarity score in s(p,G). The definition of correct identifica-
tion can therefore be parameterized with respect to the rank k. Over all probes, let Rk denote the 
number of probes in the top k. Then, Rk CpPp is the fraction of probes in the top k.

So far, our scoring algorithm assumed that there are no ties among the similarity scores. To 
handle cases where s(p,g*) is tied with other values, the FRVT 2002 scoring software reports 
the mean value of two different ranks—the optimistic and pessimistic rank. The optimistic rank 
is (one plus) the number of similarity scores in s(p,G) that are strictly greater than s(p,g*). The 
pessimistic rank is the number of similarity scores in s(p,G) that are greater to or equal to s(p,g*). 
For example, suppose that for a particular probe, an algorithm reported identical similarity scores 
for each element in the gallery. Then, the optimistic rank would be one, since there would be zero 
scores strictly greater than s(p,g*). The pessimistic rank would be the same size as the gallery, pGp 
, since in this case, all pGp scores would be equal to or greater than s(p,g*). The final reported rank 
would be the average of the two ranks, or $1=pGp%C2.

For the verification task, the operational model for FRVT 2002 is as follows. A system 
performs a verification when a probe p is presented to a system along with a claim of identity. 
The system computes the similarity s(p,g*) where g* is the stored signature corresponding to the 
claimed identity. Naturally, for evaluation purposes, it is assumed that the g* exists—i.e., a subject 
does not claim to be someone not in the gallery. The claim of identity is accepted if s(p,g*)6t, 
where t is some a priori operating threshold.4

Performance statistics for the verification tasks are computed from collections of match and 
non-match scores. A match score is any similarity score generated by comparing a probe and gal-
lery element from the same subject. Similarly, a non-match score is a similarity measure between 
signatures of different subjects.

A verification experiment requires three sets to be specified. The gallery G, a set of probes 
PG that contain probes of people who are in the gallery. The set PG determines the set of match 
scores—i.e., if PG represents the set of probes with facial imagery in the gallery, then all the 
match scores in the similarity matrix s(G,PG) may be used to calculate the verification rate. Let PN 
represent the set of probes that are used to generate the non-match scores. The false accept rate 
is computed from all the non-match scores in the similarity matrix s(G,PN). Unlike PG, which, by 
definition of the verification problem must have corresponding gallery images, there is no such 
requirement for PN . The number of non-match scores varies according on the overlap among the 
subjects in the gallery and PN . If PG and PN  are the same set, then the number of non-matches 
is pGp7pPGp4pPGp. This was the case in the ʻround-robin  ̓method of computing verification per-
formance in Phillips et al (2000). When PN  does not contain any people in the gallery, then the 
number of non-matches is pGp7pPNp.

In the traditional ʻround-robin  ̓evaluations, PG and PN  are often the same set. From an 
operational standpoint, this models the case where a subject, already with legitimate access to 

4. This inclusive (as opposed to exclusive) method of accepting or rejecting a claim is compatible with a Neyman-Pearson observer. A 
Neyman-Pearson model maximizes the verification rate for a fixed false accept rate (Bickel and Doksum 1977; Egan 1975).



46 47

the system (they are in PG) , attempts to gain access to the very same system, under a different 
identity. There may be some specialized scenarios where this is a valid model. However, we prefer 
to model the situation in which a person who does not already have access to the system makes a 
false verification attempt. In this model, the people (not just the signatures) in the probe set PN  are 
different from the people in the gallery. The people in PN  are sometimes referred to as true impos-
ters. The rationale for having the non-match scores generated by true imposters is that non-match 
distributions from s(G,PG) may be different than those from  s(G,PN).

From the match and non-match scores, the verification and false accept rates are respectively 
computed. The verification rate is calculated by dividing the number of match scores above the 
threshold t, Mt by the total number of match scores M. For the threshold t, the verification rate 
(VR) is MtzM. The false accept rate is computed in a similar manner. If the total number of non-
match scores is N and the number of non-match scores greater than or equal to t, then NtzN is the 
false accept rate (FAR).

We first present a simple algorithm for computing an ROC, and then streamline it into a faster ver-
sion. In our implementation, we assume that M K N, and that N pO(M2). Strictly speaking, an ROC is 
not a ʻcurve  ̓but a collection of operating points where the verification or false alarm rate changes.

The first step in the ROC algorithm is to sort all M V N  match and non-match scores. In 
computing the corresponding ROC, one only needs to compute performance at thresholds equal to 
unique values of these M V N  scores. Let ti  be the ith largest similarity score—this can be either 
a match or nonmatch score. The verification and false accept rates are computed at each threshold 
ti , by starting with t1  (the largest score) and proceeding down the sorted list of similarity scores in 
ascending order.

The algorithm has some (simple) initial conditions. We add the artificial threshold t0 pw, 
and initialize an array of match and non-match counters Mti and Nti where we keep a match 
and non-match counter for each threshold. This initial condition corresponds to: 1) rejecting 
all identity claims, and 2) the operating point of both the verification and false accept rate are 
zero. The algorithm loops over each threshold, ti , in order. For each threshold, the number of 
match and non-match scores with a similarity score in the range[ti ,ti+1) is recorded. If mi (ni) 
is the number of match (non-match) scores with values in this range, then Mti(Nti) are simply 
MtipMt(i-1) V mt i (NtipNt(i-1) V nt i).

As stated, this algorithm computes the verification and false accept rate at more points than 
necessary. To show this, let ti  and t(i-1) be two adjacent thresholds that each have one non-match 
score and zero match scores. For both thresholds, the verification rate will be the same, but the 
false accept rate (FAR) will be lower at t(i-1) than at ti . Therefore, operationally, one would run the 
system at the operating point associated with t(i-1). To generalize this, performance only needs to be 
computed at the operating points ti  corresponding to match scores. A scoring algorithm adjusting 
for this observation proceeds by sorting the unique match scores and using these for the set of 
thresholds that define the match and non-match score counts.

This algorithm computes an ROC for a single algorithm on a single set of data. In FRVT 
2002, we wish to examine how a system performance varies with different gallery or probe sets. 
To study this variation, it is necessary to combine results over a set of ROCs. One method to 
accomplish this is to measure the variation on the verification rate for each false alarm rate. This 
is appropriate for combining ROCs from different systems, because it is not possible (nor is it 
operationally feasible) to set a uniform threshold across different systems (they would be tuned 
individually). However, for the same system, it is possible to set one threshold across all galleries 
and probe sets. For each threshold, it is possible to compute the variation in the verification and 
false alarm rates.
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To be able to compute variation in verification and false accept rates across multiple galleries 
and probe sets, we need to again modify our ROC algorithm. Our goal is to combine the ROCs 
from R experiments, where each experiment consists of a gallery, probe set for matches, and probe 
set for nonmatches. The first step in computing the combined ROC is to combine and sort all R 
sets of match scores to use for our thresholds. Here, contiguous thresholds may correspond to 
match scores from different experiments. This is not a problem, however, since we are using these 
thresholds to ʻoversample  ̓each of the individual ROCs.

In our variance analysis, we select ʻevenly spaced  ̓thresholds. Each threshold generates R 
operating points—there is a (VR,FAR) pair for each of the R experiments. In the FRVT 2002 
analysis, these individual points are plotted, along with an error ellipse that traces two standard 
errors in the TAR and FAR dimensions. From a linear algebra standpoint, the principal axes of the 
error ellipse are the eigenvectors of the covariance matrix of the R operating points.

The operational model of the watch list scenario is as follows. In some sense, the watch sce-
nario is a generalization of both identification and verification. In the watch list scenario, a probe 

 is presented to a system. The system then compares the probe to a gallery, which plays the role 
of the watch list. The system then: a) determines if the person is on the watch list and b) produces 
an estimate of the identity of the person. Alternately, the system can report the top n matches if 
there are sufficient matches above a threshold.

More formally, suppose a watch list system is presented with a probe p of a subject that is on 
the watch list. For a correct result, a probe must pass a verification and an identification require-
ment. A similarity threshold parameterizes the verification requirement t and a rank k parameter-
izes the identification requirement. The identification requirement is fulfilled if the rank of probe p 
is k or better (lower). Similarly, the detection requirement is met if s(p,g*)6t. Both requirements 
must be met for a correct watch list detection and identification. If the probe is not on the watch 
list, then the probe gives a false alarm if there is any gallery (a.k.a. watch list) element g B G  such 
that s(p,g*)6t. This is akin to someone not on the watch list being “similar” enough to someone 
on the watch list to warrant a ʻfalse alarm.  ̓For a watch list, the detection and identification rate is 
the fraction of probes (also on the watch list) that are detected and identified correctly. The false 
alarm rate is the fraction of probes (without corresponding gallery elements) that have a similarity 
to any gallery element that is greater than the threshold.
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A.3 HCINT ADDENDUM

A.4 MCINT ADDENDUM

Fig. 27. Interaction between age and sex for rank 1 identification on HCInt large gallery (for all eight 
participants). Rank 1 performance for males minus females is plotted for each age bin. 

Fig. 28. Comparison of system performance of different categories of probes. The rank 1 identification 
rate is plotted.



48 49

Fig. 29. The effect of still versus three-dimensional morphable models. The rank 1 identification rate 
is plotted.

Fig. 30. Plot showing still versus video recognition for frontal imagery. The rank 1 identification rate 
is plotted.
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A.5 PERFORMANCE ON VERY LARGE POPULATIONS

An important question is how recognition performance decreases as the gallery size increases. 
In HCInt, it was empirically observed rank-one identification rate drops linearly with the loga-
rithm of the gallery size (Figure 11). Our goal was to develop a model that explains the log-linear 
behavior from the match and non-match distributions. We formalize the model of the log-linear 
behavior by PI (G) = 1–a logG .

Gallery size is denoted by G, PI (G) is rank 1 performance for gallery size G, and a  is a system 
performance parameter. The difference among the systems tested is the parameter a . Three dif-
ferent models are discussed in this section, and their prediction for the performance for Eyematic 
is shown in Figure 31. The dashed red line in Figure 31 is Eyematicʼs actual performance as a 
function of gallery size. 

A lower bound is PI (G) = 1⁄G, which is the performance of randomly guessing the identity 
of a probe. Wayman (1999) and Daugman (2002) present models that model identification as N 
verification attempts. Both present a binomial model5,6 PI (G) = (1–PF (t))G–1.

There are four problems with this model. First, PF (t) is function of t , and they do not specify 
how t  is selected. Figure 31 plots the binomial model for three values of PF : 0.1, 0.01, and 0.001. 
The binomial model underestimates actual performance dramatically for anything other than small 
G  or very small PF . To obtain the observed performance for the Eyematic system on the HCInt 
large gallery, i.e., PI (37,437) = 0.65, the needed value is PF  = 1.15#10–5. In addition, the shape 
of the curve is not representative. Second, the model does not include the match distribution. The 
prediction is the same for all match distributions. Third, the model does not fit the observed data. 
Fourth, asymptotically the random algorithm is a better predictor.  The expected performance of 
randomly guessing the identity of a probe is PI (G) = 1⁄G. For a given PF (t), there is sufficiently 
large such for

1⁄G ` (1–PF (t))G–1

In this appendix, we present a moment model for predicting identification performance as a 
function of gallery size. The model is a function of both the match and non-match distribution. 
The moment model is more accurate than proceeding models. The model predicts the log-linear 
behavior, however, as a rule, it under estimates performance. Before proceeding, we introduce 
some notation. The probability density function (pdf) of the match distribution is m(t) and the 
cumulative density function (cdf) of the non-match distribution is N(t). The model is presented 
for similarity scores; therefore, we assume that the match distribution is to the right of the non-
match distribution. For an operating threshold t , N(t) is the associated false alarm rate.

We will proceed by discussing the case where the size of the gallery is two. For a probe 
p, there is one match score and one non-match score. In the moment model, the match score is 
sampled from m(t) and the non-match score is sampled from N(t). We assume that the sampling 
from the match and non-match distributions is independent. For an operating threshold t , the 
probability that the match score will be greater than the non-match score is N(t). Since the match 
score is randomly sampled from m(t), the probability that the match score will be greater than the 
non-match score is

However, Eq (1.1) is the area under the ROC (AUC) for the verification ROC (see Egan 
(1975) page 45). In signal detection theory, there is an experiment design called two interval 
forced choice (2IFC). In this experimental design, an observer is presented with two signals. One 
signal contains the true signal and the other, noise. The observer must decide which signal contains 
the true signal and which contains noise. The probability of making the correct decision is the area 
under the ROC. There is a direct relationship between 2IFC and closed universe identification. 

(1.1)

5. See discussion of eq. 13 in Daugman (2003).
6. See discussion around eq. 31 in Wayman (1999). Our penetration rate is 1 and the number of templates is 1. 

PI (2) = N(t)m(t)dt
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In identification, the true signal is the correct match, and the noise is the incorrect match. The 
observer is presented with two matches, and the observer must decide which match is the correct 
match. 

We now proceed to the general case for a gallery of size G. For a gallery of size G  and an 
operating threshold t , the probability that the match score will be greater than all G – 1 non-match 
scores is N(t)G–1. Since the match score is randomly sampled from m(t), the probability that all 
match scores will be greater than the non-match score is

We refer to this as a moment model because for a gallery size G, the expected identification 
rate is a function of the G – 1th moment of m(t) about N(t).

The 2IFC experimental design can be generalized to nIFC. In the generalization, an observer 
is presented with n – 1 noise signals and one true signal. The observer must than decide which 
of the n signals is the true signal. Identification from a gallery of size G  is equivalent to a nIFC 
experimental design.

We ran two simulations to see how well the moment model predicted empirical performance. 
The probability PI (G) is computed from empirical match and non-match distributions. In our 
simulations, the match distribution was estimated from 6,000 match scores and the non-match dis-
tribution was estimated from 18 million non-match scores. Simulations were run on both non-nor-
malized and normalized scores from Eyematic. The results are in Figure 31. The non-normalized 
simulation is labeled non-normalized moment and the normalized is labeled normalized moment. 
The non-normalized simulation underestimates the empirical slope. Similar results were found 
for the other participants. However, the normalized simulation fits quiet well with the empirical 
results. For the other participants that submitted non-normalization functions, the normalized 
scores were a better fit to the observed data. However, they did not fit the data. 

One of the assumptions made in the moment model is that all similarity scores are sampled 
independently. This is the reason that our model underestimates the identification performance. 
Interesting, however, the fit is much better for normalized scores. This suggests that one of the 
features of normalization is that it increases independence among the match and non-match scores.

Next we generalize the moment one more time, to predict performance at rank k. Putting the 
appropriate Bernoulli coefficients into the model, the probability that a probe is at rank k is

and the performance for gallery size G for rank k is

The availability of a large database allowed a more thorough investigation into the effect of 
gallery size on performance. To predict the performance, we introduced the moment model and 
showed its connection with classical signal detection theory. In turn, this connection established a 
link between verification and identification performance. In addition, the model provides insight 
into how normalization works. Further research is needed to correct the underestimation in the 
moment model.

PI (G) = N(t)G–1m(t)dt

(1–N(t))k–1N(t)G–1m(t)dt ,

P(G,k) = (1–N(t))i–1N(t)G–im(t)dt .
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Fig. 31. Study of identification performance as a function of gallery size.
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