

Automated Security Self-Evaluation
Tool Technical Documentation

Version 1.03

Mark McLarnon
Marianne Swanson, Editor

NISTIR 6951

January 31, 2003

NISTIR 6951 Automated Security Self-
Evaluation Tool Technical
Documentation, Version 1.03

The National Institute of Standards and
Technology

C O M P U T E R S E C U R I T Y

iii

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology
(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s
measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of
concept implementations, and technical analysis to advance the development and productive use of
information technology. ITL’s responsibilities include the development of technical, physical,
administrative, and management standards and guidelines for the cost-effective security and privacy of
sensitive unclassified information in Federal computer systems. This Interagency Report discusses ITL’s
research, guidance, and outreach efforts in computer security, and its collaborative activities with
industry, government, and academic organizations.

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 2003

For sale by the Superintendent of Documents, U.S. Government Printing Office
Internet: bookstore.gpo.gov — Phone: (202) 512-1800 — Fax: (202) 512-2250
Mail: Stop SSOP, Washington, DC 20402-0001

Certain commercial entities, equipment, or materials may be identified in this document in
order to describe an experimental procedure or concept adequately. Such identification is
not intended to imply recommendation or endorsement by the National Institute of
Standards and Technology, nor is it intended to imply that the entities, materials, or
equipment are necessarily the best available for the purpose.

Acknowledgements

The author Mark McLarnon of Booz Allen Hamilton and the editor Marianne Swanson of NIST would
like to acknowledge the efforts of Mike Indovina, John Wack, Elizabeth Lennon of NIST and Marc
Stevens of Booz Allen for their review and assistance in developing the drafts and final copy of this
document.

v

THIS PAGE INTENTIONALLY LEFT BLANK.

Table of Contents

1. Introduction ... 1
1.1 Purpose..1
1.2 Audience..1
1.3 Description of ASSET..1
1.4 References...1
1.5 License...2
1.6 Conventions ...2

2. Development Environment.. 3
2.1 Operating System Settings..3
2.2 MSDE Settings...3
2.3 ODBC Settings...3
2.4 Visual Café Settings ..4

2.4.1 Project Output... 5
2.4.2 Third Party JAR Files .. 7
2.4.3 Classpath Settings.. 8
2.4.4 Folder Configuration ... 8
2.4.5 File Requirements... 9

2.5 Java Command Line Compilation ...15
2.5.1 Compile ASSET with Symantec/WebGain Compiler 15
2.5.2 Compile ASSET with Sun Java Compiler .. 17

3. ASSET Components... 18
3.1 User Interface ..18

3.1.1 Swing 1.1 .. 18
3.1.2 MDI Interface .. 22

3.2 Class Design..23
3.3 ASSET System..24

3.3.1 ASSET System Operation.. 26
3.3.2 What happens when an assessment is created? .. 26
3.3.3 How do users navigate questions? .. 27
3.3.4 What happens when an assessment is completed?...................................... 29
3.3.5 Question map construction... 32
3.3.6 ASSET System Configuration File ... 35
3.3.7 ASSET System reports... 37

3.4 ASSET Manager ..42
3.4.1 ASSET Manager Operation.. 42
3.4.2 Manager User Interface.. 43
3.4.3 ASSET Manager Configuration File ... 43
3.4.4 ASSET Manager Menu... 46
3.4.5 Searching in ASSET Manager ... 47
3.4.6 ASSET Manager Reporting .. 48

3.5 Sorting in ASSET...49
3.6 ASSET Help...50
3.7 ASSET Core ..52
3.8 ASSET Change Password Utility ..53
3.9 Procedure Flow Diagram for each Component...55

4. ASSET Database... 57
4.1 Database Design ...57

vii

4.2 Extensibility of Question Content ..57
4.3 Asessment Rollups ..58
4.4 Dbmanager ..58
4.5 MSDE Data Backup...59

5. Security of ASSET .. 60
5.1 Introduction ..60
5.2 MSDE Network Vulnerability ...60
5.3 MSDE Service Packs...61
5.4 MSDE Hotfixes...61

6. ASSET Installer and Deployment.. 62
6.1 Windows NT Issues...62
6.2 Windows 9x Issues..62
6.3 Windows Command Prompt..63

Appendix A— Source Code and Class Diagrams... 1

A.1 ASSET System Source Code... 1

A.2 Class Diagrams ... 1

Appendix B— Database... 1

B.1 ER Diagram.. 1

B.2 SQL Source Code ... 3
B.2.1 ASSET System SQL Table Statements ... 3

B.2.2 ASSET System SQL Stored Procedure Statements.. 17

B.2.3 ASSET Manager SQL Table Statements ... 56

B.2.4 ASSET Manager SQL Stored Procedure Statements.. 56

Appendix C— Advanced Troubleshooting.. 1

C.1 MSDE Interoperability... 1

C.2 Changing the Default Database Password.. 1
C.3 ACL/Security Templates .. 2

Appendix D— Design Considerations.. 1

Appendix E— Acronyms .. 1

Appendix F— References.. 1

Tables

Table 1 - JAR file names in ASSET 1.0 ... 5

Table 2 - Required third party JAR files for ASSET... 7

Table 3 - System property file contents .. 36

Table 4 - Available System Reports ... 38

Table 5 - System Report Headers .. 41

Table 6 - Manager Property File Contents ... 45
Table 7 - Available Manager Reports ... 48

Table 8 - Windows NT Workstation 4.0 Requirements .. 62

ix

Figures

Figure 1 - ASSET ODBC Authentication Type... 4
Figure 2 - Incorrect JDK Compile Errors.. 5

Figure 3 - Create stand-alone archive Project option .. 6

Figure 4 - MainClass attribute of ADPU project ... 7

Figure 5 - Missing Xerces JAR files compile time error. .. 8

Figure 6 - Sample system project directory.. 9

Figure 7 – ASSET System question map shows multi-line questions ... 19

Figure 8 - ASSET System question map using incorrect PLAF... 20
Figure 9 - Closing action for active assessment in System... 23

Figure 10 - Closing action for active report window in System.. 23

Figure 11 - ASSET System User Interface... 25

Figure 12 - ASSET System Main Layout.. 25

Figure 13 - ASSET System AssessmentWindow layout.. 26

Figure 14 – Example of System Question Tab .. 28

Figure 15 - Export Active Assessment Button.. 29

Figure 16 - Multiple Assessment Export Dialog ... 30
Figure 17 - Sample XML Assessment Export .. 32

Figure 18 - System question map cache file .. 33

Figure 19 - System property file ... 35

Figure 20 - Example System Property File... 37

Figure 21 - System reporting interface... 38

Figure 22 - Complete System Report... 39

Figure 23 - System Report Screen Layout ... 40
Figure 24 - System Reporting Export Dialog.. 41

Figure 25 - Create New Assessment in Manager .. 43

Figure 26 – Manager property file ... 44

Figure 27 - Manager Menu Tree Example ... 46

Figure 28 - ASSET Manager Menu Cache File.. 46

Figure 29 - Manager Search Interface ... 47

Figure 30 - Choose Browser Wizard .. 51

Figure 31 - Cancel Choose Browser Wizard.. 52
Figure 32 - ADPU User Interface.. 54

Figure 33 - ADPU Advanced tab .. 55

Figure 34 - System Procedure Flow... 56

Figure 35 - Manager Procedure Flow... 56

Figure 36 - ASSET MSDE Communications Configuration ... 63

Figure A-1 - System UML Class Diagram...A-1
Figure A-2 - Manager UML Class Diagram...A-2

Figure B-1 - ER Diagram for System and Manager ..B-2

Figure B-2 - System Database Scripts Install Location...B-3

1

1. Introduction

1.1 Purpose

This document is the technical complement to National Institute of Standards and Technology (NIST)
Interagency Report (NISTIR) 6885, Automated Security Self -Evaluation Evaluation Tool (ASSET) User
Manual (hereinafter referred to as the ASSET user manual). It is intended as a development guide for
software engineers/database administrators who wish to troubleshoot unique installations of ASSET,
reproduce the development version of ASSET, or extend the functionality of ASSET.

1.2 Audience

This report has been written for those who are skilled in software development and relational database
design. Users of this report should have detailed knowledge of the Java programming language and its
user interface applications programming interfaces (API), such as the Swing API and the Microsoft SQL
Server Desktop Engine (MSDE) powered by the relational database programming language Transact-
SQL (a derivative of the ANSI SQL92 standard). Readers are assumed to have a moderate to intermediate
level of experience with Visual Café Expert Edition, the integrated development environment used to
create ASSET.

1.3 Description of ASSET

ASSET was designed to automate the NIST Special Publication 800-26, Security Self -Assessment Guide
for Information Technology Systems. The ASSET user manual contains a nontechnical description of
ASSET. The description in this report focuses on the technical nature of ASSET. ASSET is comprised of
three tools: ASSET System, ASSET Manager, and the ASSET Database Password Utility. ASSET
System and ASSET Manager are designed to gather and aggregate the results of a self-assessment. The
ASSET Database Password Utility is designed to modify the password for the systems administrator
(‘sa’) user account of the MSDE.

1.4 References

This document makes extensive references to Internet resources and additional ASSET documentation.
Readers of this document are assumed to have access to the content described in this section. The
following publications and websites are referenced in this document:

• NIST Special Publication 800-26, Security Self-Assessment Guide for Information Technology
Systems, August 2001
http://csrc.nist.gov/publications/nistpubs/800-26/sp800-26.pdf

• NIST Interagency Report 6885, Automated Security Self -Evaluation Tool User Manual, October

2002
http://csrc.nist.gov/asset/ASSET-User-Manual.pdf

• ASSET website (hosted on the NIST Computer Security Resource Center web server)
http://csrc.nist.gov/asset/

• Java 2 (version 1.3) API Documentation

http://java.sun.com/j2se/1.3/docs/api/

1.5 License

The following license applies to ASSET:

ASSET was developed at the National Institute of Standards and Technology by employees of the
Federal Government in the course of their official duties. Pursuant to title 17 Section 105 of the
United States Code, this software is not subject to copyright protection and is in the public
domain. ASSET is an experimental system. NIST assumes no responsibility whatsoever for its use
by other parties, and makes no guarantees, expressed or implied, about its quality, reliability, or
any other characteristic. We would appreciate acknowledgement if the software is used.

ASSET is designed as an open source application, and as such is available for free download from the
NIST ASSET website. This license, the source code packages for ASSET, and all documentation are
available from the following ASSET website URL:

http://csrc.nist.gov/asset/

1.6 Conventions

The following conventions are used within this document. Refer to Appendix E for a complete listing of
the acronyms used within this document. The words system and manager will be used to refer to ASSET
System and Manager, respectively. When referring to both tools, or to the entire ASSET solution, the
term ASSET will be used. When referring to the ASSET Database Password Utility, the abbreviation
ADPU will be used. Any source code examples will be presented on numbered lines in 8-point Courier
New font as in the following example.

1 System.out.println(“This is an example”);
2 System.out.println(“of java source code.”);

Any references to Java class names or packages will be written with the full Java class name (including
package) in bold font as follows:

• javax.swing.JPanel refers to the class JPanel in the package javax.swing

• Interface ASSET refers to the ASSET interface of System and Manager

• Where applicable, Internet references to the official Java API documentation will be provided in
the form of hyperlinks on the class name.

Important notes and warnings will be written in bold-faced font and highlighted as in the following
example:

NOTE: This is an important note that the reader is encouraged to remember.

3

2. Development Environment

This section describes the development environment for ASSET. A complete understanding of the
development environment is necessary to reproduce or modify the ASSET tools. ASSET was developed
using Web Gain’s Visual Café Expert Edition version 4.5 under Windows 2000 Professional service pack
2. The corresponding help files for system and manager were developed using Macromedia
Dreamweaver UltraDev. Although the use of Java offered the possibility of cross platform capabilities,
one of the final decisions of the requirements gathering phase was to release the tool for the Windows NT
kernel initially (this includes Windows NT workstation, Windows 2000 Professional, and Windows XP
professional). Because of the method by which MSDE operates on Windows 95/98/ME, the initial release
of ASSET only supports the Windows NT kernel. The settings described here assume an intermediate
level of experience with Visual Café. For more information on Visual Café, consult the following URL:

http://www.webgain.com/products/visual_cafe/

2.1 Operating System Settings

No special operating system settings were necessary to configure the development machine. The initial
development period was performed when the most current service pack for Windows 2000 was service
pack 2. At the time of publication, the most current service pack was service pack 3. Compilation of
ASSET has not been attempted under Windows 2000 service pack 3. The following URL lists the
changes from Windows 2000 service pack 2 to service pack 3:

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q320853

2.2 MSDE Settings

The Microsoft SQL Server Desktop Engine (MSDE) was chosen to provide the database management
services for ASSET. Initial development took place using MSDE version 1.0 (installed with Visio 2000
SR-1). The ‘sa’ user account password was null until changed by the ASSET database password utility.
The development machine was also tested under MSDE service pack 3 successfully. Due to the complex
nature of the MSDE Package for the web, the version of MSDE that is distributed with Office 2000 and
later will also suffice. The database name for system was SAT_Client, and the database name for
manager was SAT_Admin.

Both databases were created with their associated database creation command line scripts named
dbmanager.bat. These scripts are packaged in the SQL directory but if the path is changed to a command
line variable, they can be run from anywhere on the hard drive. These scripts are discussed in detail later
in the document. Although not recommended, due to its compatibility with SQLServer, ASSET may be
used with an SQLServer installation if necessary. Users can explore this opportunity at their own risk.

NOTE: ASSET has not been tested with MSDE 2000. The 2000 release of both MSDE and its parent
product SQLServer included support for new technologies that may affect the method in which
assessment data is stored.

2.3 ODBC Settings

ASSET uses two ODBC file system data source names (DSNs). Manager uses a DSN named
MSDE_SAT_Admin_Data, and system uses a DSN named LocalServer. Both DSNs have their default

database set (the ODBC “Change default database to:” option) to the corresponding module of ASSET.
System’s DSN, LocalServer, has its default database set to system’s database, SAT_Client, and the
default database for manager is SAT_Admin. Both DSNs are set to SQL Server authentication using the
‘sa’ account as shown in the following figure for SAT_Client.

Figure 1 - ASSET ODBC Authentication Type

NOTE: If changed in system and manager configuration files, DSN names and MSDE authentication
information are arbitrary. Refer to section “3.3.6 ASSET System Configuration File” for more
information.

2.4 Visual Café Settings

This section describes the required configuration options for Visual Café to compile ASSET components.
ASSET development occurred within an integrated development environment (IDE) because the
interactive nature of the NIST self-assessment process dictates a complex user interface. ASSET was
developed using Java 2 version 1.3.0_01. Since the default virtual machine (VM) distributed with Visual
Café is Java 2 version 1.2.2, this required a new VM to be installed inside of Visual Café. Although
development occurred on Visual Café Expert Edition version 4.5.1, Enterprise Edition 4.5.1 was also
tested successfully. ASSET is comprised of four Visual Café projects with one project for system,
manager, core files, and ADPU. This discussion will use these names to indicate the project name for the
corresponding component of ASSET. The output of each project is discussed in the next section.

Note: Users MUST use the JDK version 1.3.0_01 or later as attempting to compile any component of
ASSET without this JDK will result in compile errors. See the next figure for an example of compile
errors with the incorrect JDK.

5

Figure 2 - Incorrect JDK Compile Errors

2.4.1 Project Output

This section describes the required configurations for the output files of each project. Visual Café
compiles its projects into JAR files. The following table lists the JAR file and corresponding ASSET
component included in version 1.0 of ASSET. Although these JAR file names are arbitrary, these names
will be used here as examples.

Jar File Name ASSET Component

asset.jar ASSET System

asset_admin.jar ASSET Manager

asset_core.jar ASSET Core files

ASSETPassword.jar ASSET Change Database Password Utility

Table 1 - JAR file names in ASSET 1.0

Each ASSET project uses third party component libraries such as the Swing, and Xerces XML APIs, and
even makes use of each other. The required third party JAR files are discussed in the next section. Due to
this, certain classes from these third party libraries will exist in the output JAR file for each project. Each
JAR file must be configured as a stand-alone archive in the Project Options section or only those classes
that are directly referenced with instantiation or import statements will be inserted into the JAR file (all of
the parent and dependent classes won’t be inserted). This configuration option is shown in Figure 3
below.

Figure 3 - Create stand-alone archive Project option

If this configuration option is not set, then ASSET users will receive a java.lang.NoClassDefFoundError.
This means that a required class existed at compile time, but no longer exists at run time. This next
configuration option applies only the ADPU project. Once the ADPU project JAR file is built, the Main-
Class option must be set in the ADPU JAR manifest file manifest.mf. This configuration option
determines which class is run when the JAR is double-clicked. In this case, the main class must be set to
ChangePassword, the main class for the ADPU. To set this option, users can open the ADPU JAR file
with WinZip 8.1 and manually edit the file manifest.mf to appear as shown in line two of the following
Figure 4. Once edited, the file must be reinserted back into the JAR file.

7

Figure 4 - MainClass attribute of ADPU project

2.4.2 Third Party JAR Files

This section describes the third party JAR file requirements necessary for ASSET to compile. All required
JAR files listed below are available free of charge. The following table lists the JAR files necessary to
compile system and manager.

JAR Name URL Belongs To

jdom.jar http://www.jdom.org/ System, Manager, Core

xercesImpl.jar http://gump.covalent.net/jars/latest/xml-xerces2/ System, Manager, Core

xmlParserAPIs.jar http://gump.covalent.net/jars/latest/xml-xerces2/ System, Manager, Core

calendar.jar Manager

Table 2 - Required third party JAR files for ASSET

JARs 2 and 3 comprise the Xerces XML parser from the Apache Software foundation. Users must
download version 2.0.1 of Xerces or later. Versions prior to 2.0.1 had difficulty during the XML
assessment export process in system and manager. It is very important to verify that previous versions of
Xerces are NOT installed on the development machine and NOT inserted into the classpath.

NOTE: Previous versions of the Xerces XML parser are called xerces.jar. Users will receive
unpredictable behavior if an incorrect version of Xerces is used.

These JARs must be manually inserted into the classpath of each project, system, manager, and core or
they will not compile. This process is described in the next section. If the JAR files are not inserted into
the project classpath, you may receive an error similar to the one shown in the Figure 5 below.

Figure 5 - Missing Xerces JAR files compile time error.

2.4.3 Classpath Settings

This section describes the classpath settings and required JAR files for each project, system, manager, and
core. ADPU has no special classpath requirements. It is recognized that setting project specific classpaths
is not the only method to allow the Java compiler to find required files. System needs the following JAR
files in its project classpath:

• xmlParserAPIs.jar
• asset_core.jar
• xercesImpl.jar

Manager needs the following JAR files in its project classpath:

• asset.jar
• asset_core.jar
• xmlParserAPIs.jar
• xercesImpl.jar
• calendar.jar

Core needs the following files in its project classpath

• xmlParserAPIs.jar
• xercesImpl.jar

2.4.4 Folder Configuration

This section describes the necessary folder configurations for each project. The two main projects, system
and manager, require certain sub-directories and files in their respective project directory in order to
compile and execute successfully. The core and ADPU projects, on the other hand, have no specific
folder requirements. System requires the following directories in order to execute:

• Help
• Images

9

• data
• sql

The Help directory contains the HTML help files for system, the images directory contains all of the
images for the buttons within system and images for the help files, and the data directory is where
backups of the current assessment are saved every three minutes. The following image shows a sample of
what the system project directory must look like. It should be noted that manager has the same folder
requirements as system.

NOTE: Not all of the files seen in the image are required. Particular attention should be paid to the
directories mentioned above.

Figure 6 - Sample system project directory

While manager will have the same folder requirements, the contents of these folders differ. The specific
file requirements of each folder are discussed in the next section. In addition to this, both manager and
system require the sql folder. This folder contains project/database specific SQL scripts to set up and
maintain the underlying database. The database specific files are discussed later in the document.

2.4.5 File Requirements

This section addresses the non-source code file requirements for each project. Without these necessary
files, the projects may compile, but execution errors will almost certainly result. Both core and ADPU
have no external file requirements other than their source code.

2.4.5.1 System File Requirements

This section addresses the non-source code file requirements of system. The data folder of System has no
contents until the first time the program is executed. This is the directory where temporary active
assessment backups are stored. To clear this directory, a batch script named clear_asset_backups.bat is
included. The configuration file for System is named sat.conf; this is required in the root of the System
project directory. This filename is hard coded and cannot change. As discussed in the folder requirements
section, system requires the following folders

• Help
• Images
• data
• sql

The following HTML files compose the Help directory for System:

• GettingStarted.html
• HelpFilesForClient.html
• Index.html
• Performing.html
• Questions.html
• Terms.html

The following files compose the images directory for System:

• about.gif
• checkbox.gif
• completed.gif
• connection_error.gif
• copy.gif
• cut.gif
• default.gif
• delete.gif
• flagged.gif
• folder.gif
• help.gif
• mbsa_example.gif
• minimize_selfassessment.gif
• msde_busy_error.gif
• msde_delete_files_example.gif
• new.gif
• next.gif
• open.gif
• paste.gif
• plus.gif
• previous.gif
• print.gif
• props.gif

11

• refresh.gif
• report.gif
• save.gif
• SplashScreen.jpg
• sqllog_question.gif
• system_tray_connection_error.gif

The following files compose the sql directory for System:

• 1_assessments.sql
• 29_assessment_questions.sql
• 31_sat_users.sql
• 3_assessment_question_responses.sql
• 42_assessors.sql
• 6_publications.sql
• 7_pubReferences.sql
• 8_components.sql
• 91_conn_components.sql
• 9_component_criticality.sql
• dbmanager.bat
• sp_CurrentControlAreas.sql
• sp_CurrentQuestionMap.sql
• sp_CurrentQuestionSet.sql
• sp_DeleteSavedQuestion.sql
• sp_getAllComponentInformation.sql
• sp_getAssessorReviewersPerAssessment.sql
• sp_getAssessorsPerAssessment.sql
• sp_getComponentCriticalities.sql
• sp_getConnectedSystems.sql
• sp_getConnectedSystemsPerAssessment.sql
• sp_getCriticalListing.sql
• sp_getCriticalResults.sql
• sp_getNAQuestions.sql
• sp_getPolicyResults.sql
• sp_getPolicyResultsQuestionText.sql
• sp_getPrimaryAssessor.sql
• sp_GetQuestionCount.sql
• sp_getQuestionResults.sql
• sp_getQuestionResultsPerPolicy.sql
• sp_getQuestionResultsPerSection.sql
• sp_getRBDMQuestions.sql
• sp_GetSavedAssessments.sql
• sp_getSingleConnectedSystems.sql
• sp_GetSingleSavedAssessment.sql
• sp_GetSingleSavedAssessmentByAssessmentID.sql
• sp_GetStoredAssessors.sql
• sp_getSubmittedQuestionCount.sql
• sp_getSummaryQuestionResults.sql

• sp_InsertAssessmentQuestionResponse.sql
• sp_SaveAnsweredQuestion.sql
• sp_SaveAssessment.sql
• sp_SaveBookmark.sql
• sp_SaveComponent.sql
• sp_SaveComponentCriticalities.sql
• sp_SaveConnectedComponents.sql
• sp_SaveNewAssessor.sql
• sys_Component_Types.sql
• sys_controlareas.sql
• t_action_fillPublications.sql
• u_action_fillassess_ques.sql
• v_action_fillComponentTypes.sql
• w_action_fillControlAreas.sql
• x_action_fillPublicationReferences.sql

2.4.5.2 Manager File Requirements

This section addresses the non-source code file requirements of Manager. The data folder of System has
no contents until the first time the program is executed. This is the directory where temporary active
assessment backups are stored. To clear this directory, a batch script named clear_asset_backups.bat is
included. The configuration file for Manager is named admin.conf and is required in the root of the
Manager project directory. This filename is hard coded and cannot change. As discussed in the folder
requirements section, Manager requires the following folders

• Help
• Images
• data
• sql

The following HTML files compose the Help directory for Manager:

• asset.html
• createassessment.html
• glossary.html
• index.html
• processassessments.html
• reporting.html
• userinterface.html

The following files compose the ASSET System sub-folder of the Help directory for Manager:

• GettingStarted.html
• HelpFilesForClient.html
• Index.html
• Performing.html
• Questions.html
• Terms.html

13

The following files compose the images directory for Manager:

• about.gif
• checkbox.gif
• checkmark.gif
• completed.gif
• connection_error.gif
• copy.gif
• cut.gif
• default.gif
• delete.gif
• examine.gif
• find16.gif
• flagged.gif
• folder.gif
• help.gif
• mbsa_example.gif
• minimize_selfassessment.gif
• msde_busy_error.gif
• msde_delete_files_example.gif
• new.gif
• next.gif
• open.gif
• paste.gif
• plus.gif
• previous.gif
• print.gif
• props.gif
• refresh.gif
• report.gif
• save.gif
• SplashScreen.jpg
• sqllog_question.gif
• system_tray_connection_error.gif
• userinterface.gif

The following files compose the sql directory for Manager:

• 1_assessments.sql
• 29_assessment_questions.sql
• 31_sat_users.sql
• 3_assessment_question_responses.sql
• 42_assessors.sql
• 6_publications.sql
• 7_pubReferences.sql
• 8_components.sql
• 91_conn_components.sql

• 9_component_criticality.sql
• dbmanager.bat
• sp_CountSensitivities.sql
• sp_CurrentControlAreas.sql
• sp_CurrentQuestionMap.sql
• sp_CurrentQuestionSet.sql
• sp_DeleteAssessmentInformation.sql
• sp_DeleteAssessorAccountability.sql
• sp_DeleteComponentCriticality.sql
• sp_DeleteComponentInformation.sql
• sp_DeleteConnectedComponents.sql
• sp_DeleteQuestionResponses.sql
• sp_DeleteSavedAssessment.sql
• sp_DeleteSavedQuestion.sql
• sp_getAllAssessmentInformation.sql
• sp_getAllComponentInformation.sql
• sp_getAllQuestions.sql
• sp_GetAssessmentCount.sql
• sp_getAssessorReport.sql
• sp_getAssessorReviewersPerAssessment.sql
• sp_getAssessorsPerAssessment.sql
• sp_getComponentCriticalities.sql
• sp_getComponents.sql
• sp_getConnectedSystems.sql
• sp_getConnectedSystemsPerAssessment.sql
• sp_getCriticalListing.sql
• sp_getCriticalResults.sql
• sp_getNAQuestions.sql
• sp_getPolicyResults.sql
• sp_getPolicyResultsQuestionText.sql
• sp_getPrimaryAssessor.sql
• sp_GetQuestionCount.sql
• sp_getQuestionResults.sql
• sp_getQuestionResultsPerPolicy.sql
• sp_getQuestionResultsPerSection.sql
• sp_getQuestions.sql
• sp_getRBDMQuestions.sql
• sp_GetSavedAssessments.sql
• sp_getSingleConnectedSystems.sql
• sp_GetSingleSavedAssessment.sql
• sp_GetSingleSavedAssessmentByAssessmentID.sql
• sp_GetStoredAssessors.sql
• sp_getSubmittedQuestionCount.sql
• sp_getSummaryQuestionResults.sql
• sp_getSummarySystemOrganizations.sql
• sp_getSummarySystemSensitivity.sql
• sp_getSystemsByType.sql
• sp_getSystemTypes.sql

15

• sp_InsertAssessmentQuestionResponse.sql
• sp_QuerySingleSavedAssessment.sql
• sp_ResetActiveAssessments.sql
• sp_SaveAnsweredQuestion.sql
• sp_SaveAssessment.sql
• sp_SaveBookmark.sql
• sp_SaveComponent.sql
• sp_SaveComponentCriticalities.sql
• sp_SaveConnectedComponents.sql
• sp_SaveNewAssessor.sql
• sp_SearchSavedAssessments.sql
• sp_SearchSavedAssessmentsPartial.sql
• sp_SetActiveAssessments.sql
• sp_SetActiveComponents.sql
• sys_Component_Types.sql
• sys_controlareas.sql
• t_action_fillPublications.sql
• u_action_fillassess_ques.sql
• v_action_fillComponentTypes.sql
• w_action_fillControlAreas.sql
• x_action_fillPublicationReferences.sql

2.5 Java Command Line Compilation

This section addresses users who wish to compile ASSET from the Java command line. Although
possible to do, this process is complicated due to the number of required JAR files that are necessary to
prevent the compiler from complaining. The process of implementing modifications to the user interface
becomes harder when using the command line tools to compile ASSET since developers cannot see the
approximate changes in the interface before the code executes as they can within an IDE like Visual Café.
There are two possible methods of compiling ASSET on the command line, using the Symantec/WebGain
compiler sj.exe (wjc.exe) and using the normal Sun Java compiler javac.exe.

2.5.1 Compile ASSET with Symantec/WebGain Compiler

This section discusses the necessary arguments to supply to the Symantec/WebGain compiler to compile
ASSET. These sample commands require Visual Café installed in order to function. The command line
examples here are taken directly from the ASSET Visual Café project settings (View>Messages>Build)
for each respective ASSET component. The syntax to wjc takes the following form:

C:\>wjc –sysclasspath <Insert System classpath here> -O <for optimize class files> -d <Sets the working
directory for the current project> -classpath <Includes the project specific classpath settings, and
operating system classpath values> -make <Builds out of date files> -cdb <Specify compilation
database> <List of files to compile>

The following example command line syntax will compile ASSET System (line breaks are indicated by
the ‘à’ character):

C:\>wjc -sysclasspath à
E:\WebGain\VCafe\bin\..\JDK13\JRE\LIB\RT.JAR;E:\WebGain\VCafe\bin\..\JDK13\LIB\TOOLS.JAR -O -d
E:\WebGain\VCafe\Projects\SelfAssessment2\ -classpath à

E:\WebGain\VCafe\Projects\SelfAssessment2\xmlParserAPIs.jar;E:\WebGain\VCafe\Projects\ASSETLogger
\asset_core.jar;E:\WebGain\VCafe\Projects\SelfAssessment2\xercesImpl.jar;:\WebGain\VCafe\jdk13\jr
e\lib\rt.jar;E:\WebGain\VCafe\jdk13\lib\tools.jar;E:\WebGain\VCafe\java\lib\collections.zip;E:\We
bGain\VCafe\java\lib\jaxp.jar;E:\WebGain\VCafe\java\lib\xalan.jar;E:\WebGain\VCafe\java\lib\crims
on.jar;E:\WebGain\VCafe\java\lib\jspengine.jar;E:\WebGain\VCafe\java\lib\xml.jar;E:\WebGain\VCafe
\java\lib\symtools.jar;E:\WebGain\VCafe\bin\components\templates.jar;e:\jdom-b7\build\jdom.jar -
make -cdb SAT_Proj.cdb E:\WebGain\VCafe\Projects\SelfAssessment2\ASSETChild.java à
E:\WebGain\VCafe\Projects\SelfAssessment2\ASSETClientPropertyManager.java à
E:\WebGain\VCafe\Projects\SelfAssessment2\DATFilter.java à
E:\WebGain\VCafe\Projects\SelfAssessment2\ClientReportingFrame.java à
E:\WebGain\VCafe\Projects\SelfAssessment2\ClientAssessmentChooser.java à
E:\WebGain\VCafe\Projects\SelfAssessment2\QuestionCellRender.java à
E:\WebGain\VCafe\Projects\SelfAssessment2\AddAssessorDialog.java à
E:\WebGain\VCafe\Projects\SelfAssessment2\QuestionResponse.java à
E:\WebGain\VCafe\Projects\SelfAssessment2\SplashScreen.java à
E:\WebGain\VCafe\Projects\SelfAssessment2\loadDialog.java à
E:\WebGain\VCafe\Projects\SelfAssessment2\HybridTreeNode.java à
E:\WebGain\VCafe\Projects\SelfAssessment2\LoginDialog.java à
E:\WebGain\VCafe\Projects\SelfAssessment2\SATUI.java à
E:\WebGain\VCafe\Projects\SelfAssessment2\AssessmentWindow.java à
E:\WebGain\VCafe\Projects\SelfAssessment2\AboutDialog.java à
E:\WebGain\VCafe\Projects\SelfAssessment2\AddSystemDialog.java à
E:\WebGain\VCafe\Projects\SelfAssessment2\SystemtoAssess.java

The following example command line syntax will compile ASSET Core (line breaks are indicated by the
‘à’ character):

wjc -sysclasspath à
E:\WebGain\VCafe\bin\..\JDK13\JRE\LIB\RT.JAR;E:\WebGain\VCafe\bin\..\JDK13\LIB\TOOLS.JAR -O -d
E:\WebGain\VCafe\Projects\ASSET Logger\ -classpath à
E:\WebGain\VCafe\Projects\xmlParserAPIs.jar;E:\WebGain\VCafe\Projects\xercesImpl.jar;E:\WebGain\V
Cafe\Projects\ASSETLogger\;E:\WebGain\VCafe\java\lib\jaxp.jar;E:\WebGain\VCafe\java\lib\xalan.jar
;E:\WebGain\VCafe\java\lib\crimson.jar;E:\WebGain\VCafe\java\lib\jspengine.jar;E:\WebGain\VCafe\j
ava\lib\xml.jar;E:\WebGain\VCafe\java\lib\symtools.jar;E:\WebGain\VCafe\bin\components\templates.
jar;e:\jdom-b7\build\jdom.jar -make -cdb ASSET Logger_proj.cdb à E:\WebGain\VCafe\Projects\ASSET
Logger\AssessmentXMLGenerator.java à E:\WebGain\VCafe\Projects\ASSET Logger\XMLFilter.java à
E:\WebGain\VCafe\Projects\ASSET Logger\ChooseBrowserWizard.java à
E:\WebGain\VCafe\Projects\ASSET Logger\ASSET.java à E:\WebGain\VCafe\Projects\ASSET
Logger\TXTFilter.java à E:\WebGain\VCafe\Projects\ASSET Logger\EXEFilter.java à
E:\WebGain\VCafe\Projects\ASSET Logger\CheckBoxRenderer.java à E:\WebGain\VCafe\Projects\ASSET
Logger\Assessor.java à E:\WebGain\VCafe\Projects\ASSET Logger\TableSorter.java à
E:\WebGain\VCafe\Projects\ASSET Logger\SortableTableModel.java à E:\WebGain\VCafe\Projects\ASSET
Logger\ProgressDialog.java à E:\WebGain\VCafe\Projects\ASSET Logger\SortButtonRenderer.java à
E:\WebGain\VCafe\Projects\ASSET Logger\BlankIcon.java à E:\WebGain\VCafe\Projects\ASSET
Logger\BevelArrowIcon.java à E:\WebGain\VCafe\Projects\ASSET Logger\ASSETPropertyManager.java à
E:\WebGain\VCafe\Projects\ASSET Logger\AssessmentImporter.java à
E:\WebGain\VCafe\Projects\ASSET Logger\CSVFilter.java à E:\WebGain\VCafe\Projects\ASSET
Logger\HTMLLabel.java à
E:\WebGain\VCafe\Projects\ASSET Logger\LogWindow.java à E:\WebGain\VCafe\Projects\ASSET
Logger\saveLogDialog.java à E:\WebGain\VCafe\Projects\ASSET Logger\OpenLogDialog.java

The following example command line syntax will compile ASSET Manager (line breaks are indicated by
the ‘à’ character):

wjc -sysclasspath à
E:\WebGain\VCafe\bin\..\JDK13\JRE\LIB\RT.JAR;E:\WebGain\VCafe\bin\..\JDK13\LIB\TOOLS.JAR -g -d
E:\WebGain\VCafe\Projects\ASSET Manager\ -classpath à
E:\WebGain\VCafe\Projects\SelfAssessment2\asset.jar;E:\WebGain\VCafe\Projects\ASSET
Logger\asset_core.jar;E:\WebGain\VCafe\Projects\ASSET à
Manager\xmlParserAPIs.jar;E:\WebGain\VCafe\Projects\ASSET à
Manager\xercesImpl.jar;E:\WebGain\VCafe\Projects\ASSET Manager\calendar.jar;à
E:\WebGain\VCafe\java\lib\xml.jar;E:\WebGain\VCafe\java\lib\symtools.jar;E:\WebGain\VCafe\bin\com
ponents\templates.jar;e:\jdom-b7\build\jdom.jar -make
-cdb ASSETManager_proj.cdb E:\WebGain\VCafe\Projects\ASSET à Manager\AssessmentFrame.java
E:\WebGain\VCafe\Projects\ASSET à Manager\AddSystemTypeDialog.java
E:\WebGain\VCafe\Projects\ASSET à

17

Manager\QuestionFrame.java E:\WebGain\VCafe\Projects\ASSET à
Manager\ASSETManagerPropertyManager.java E:\WebGain\VCafe\Projects\ASSET à
Manager\ReportingFrame.java E:\WebGain\VCafe\Projects\ASSET à
Manager\AdminLoginDialog.java E:\WebGain\VCafe\Projects\ASSET à Manager\HybridTreeNode.java
E:\WebGain\VCafe\Projects\ASSET à Manager\EditQuestionDialog.java
E:\WebGain\VCafe\Projects\ASSET à
Manager\AdminSplashScreen.java E:\WebGain\VCafe\Projects\ASSET à Manager\AssessmentChooser.java
E:\WebGain\VCafe\Projects\ASSET à Manager\TextAreaRenderer.java E:\WebGain\VCafe\Projects\ASSET
à
Manager\AboutDialog.java E:\WebGain\VCafe\Projects\ASSET à Manager\SATAdmin.java
E:\WebGain\VCafe\Projects\ASSET à Manager\QuestionResponse.java E:\WebGain\VCafe\Projects\ASSET
à Manager\DateChooser.java E:\WebGain\VCafe\Projects\ASSET à Manager\TextAreaEditor.java
E:\WebGain\VCafe\Projects\ASSET à Manager\MenuCellRenderer.java E:\WebGain\VCafe\Projects\ASSET
à Manager\AssessmentInfoDialog.java

2.5.2 Compile ASSET with Sun Java Compiler

This section describes the use of the Sun Java compiler javac.exe to compile ASSET. As stated in section
2.4, ASSET requires version 1.3.0_01 or later of the JDK to compile successfully. The following syntax
shows what the input to javac.exe looks like:

C:\>javac –cp <operating system and project specific classpath> <Java classes to compile>

3. ASSET Components

This section explains the components of ASSET, ASSET System, and ASSET Manager in greater detail.
There are several key issues that influenced the development of ASSET, and a lack of understanding of
these development issues can hinder future ASSET development. ASSET development issues include
user interface (UI) needs such as screen layouts or common Java UI “quirks,” class design (object
representation) and data flow, and finally, component specific issues.

3.1 User interface

This section describes the UI issues of ASSET. UI issues become important when considering the
possibility of compiling ASSET for the Linux/Unix platform. ASSET System, ASSET Manager, and the
ADPU use the Swing/Java Foundation Classes (JFC) version 1.1 API as distributed with Visual Café to
provide the UI functionality. The UI design for System follows a tabbed format using the JTabbedPane
component (javax.swing.JTabbedPane). The UI design for Manager models the Microsoft Management
Console (MMC) due to its “advanced” nature. The user design for each ASSET component is discussed
later in the document. Swing API specific issues are discussed in the next section.

Some unique graphical ‘quirks’ exist with ASSET and are a result of a common Java UI “quirk.” Java
was designed as a multi-threaded environment but the threads responsible for executing program code are
not the same threads responsible for painting screens and drawing pictures that the user can see. The
priority for what actions get executed first in most cases goes to the execution threads, not the graphical
ones. As with many Java programs, users may experience situations where text appears written over top
of other text or form components drawn over top of others. If this occurs, it usually is a result of the
graphical threads’ request for screen updates being cached to allow execution threads to execute first.
Simply waiting a few seconds, or minimizing and then maximizing the screen, can solve this problem.

3.1.1 Swing 1.1

As stated in the previous section, ASSET uses the Swing API for its UI. The main reason for the use of
Swing is the common appearance of the UI across versions of the Java Virtual Machine (JVM), Java
Runtime Environment (JRE), and more importantly, across multiple operating systems. Specifically, of
the three available “flavors” of Swing, ASSET uses the Java or “Metal” pluggable look and feel (PLAF).
The full class name of the Metal PLAF is javax.swing.plaf.metal.MetalLookAndFeel. This version of
Swing aims for a common appearance across all JVMs with Swing support. ASSET was designed with
maximum functionality in mind; assessments were meant to be only one service that ASSET provides. To
allow future services to be added to ASSET to supplement self-assessments, all services such as
open/save/report on assessments in System and search/delete/report on assessments in Manager were
designed as layered components called JInternalFrames (javax.swing.JInternalFrame).

3.1.1.1 Metal PLAF and System Question Map

The use of the Metal PLAF can be tied to very specific components of ASSET System and Manager. Due
to the length of some of the questions, on the ASSET System question map, it was desirable to have the
question text span multiple lines to avoid forcing the user to use a horizontal scroll bar to read the entire
question. The next figure shows an example of a multi-line question on the System question map.

19

Figure 7 – ASSET System question map shows multi-line questions

Without the Metal PLAF, multi-line questions would have been impossible to implement. The image
below shows the same question map using the Windows PLAF
(com.sun.java.swing.plaf.windows.WindowsLookAndFeel). The following URLs provide additional
resources for Swing PLAFs:

• http://developer.java.sun.com/developer/techDocs/hi/jlf-home.html
• http://www.gargoylesoftware.com/papers/plafdiff.html
• http://java.sun.com/docs/books/tutorial/uiswing/misc/plaf.html

In the figure below, note the original multi-line questions are now cut off, and only the first line of each
question is visible. Also note that the highlight color has changed to a darker, less visible shade of blue.

Figure 8 - ASSET System question map using incorrect PLAF

3.1.1.2 Keyboard Navigation

This section addresses keyboard navigation of ASSET as it relates to Section 508 compliancy. As stated
in the requirements specification for ASSET, System and Manager will make every effort to conform to
Section 508. The following URL is the homepage for Section 508 compliancy:

http://www.section508.gov/

Version 1.1 of the Swing API introduced a new method of navigating a Java user interface via the
keyboard. Normal keyboard navigation uses the TAB key (to move forward) and SHIFT-TAB keys (to
move backwards) to change the focus of the currently selected item on-screen. The ability to navigate an
application without the need of a mouse is a requirement of Section 508 Accessibility standards. The
Swing API requires the use of the CTRL-TAB key (to move forward) and CTRL-SHIFT-TAB (to move
backwards) keys to change focus. The following excerpt of Java code (line 3) from ASSET System shows
a “textbook” example of how to override the default key pressed for a text component to capture the TAB
key being pressed.

1 private void obj_fieldTabKeyPressed(java.awt.event.KeyEvent event) {
2 try {
3 if (event.getKeyChar() == KeyEvent.VK_TAB) {
4 this.id_panel_proceed_button.requestFocus();
5 }
6 }catch (Exception e) {
7 e.printStackTrace();
8 }
9 }/* end method obj_fieldTabKeyPressed(event) */

When first implemented, this method resulted in no response from the system, but using the CTRL-TAB
key combination instead to navigate forward results in the correct operation (the selection focus moves to
the next component on-screen). Those components that do not already have an action handler for the TAB
key will permit the above code, yet components such as the policy definition table (javax.swing.JTable)

21

and the assessment objective field (javax.swing.JTextPane) of System already have actions defined for
when the TAB key is pressed; therefore the CTRL-SHIFT-TAB key combination is required.

In addition to the ability to navigate throughout an entire active assessment using the keyboard, users
need the ability to use the keyboard Enter key to trigger the actions of the various buttons within the
assessment tabs. The JButton (javax.swing.JButton) does not capture a KeyPressed event by default, and
so each button need a key listener class attached to it. The following source code snippet shows the key
listening class from the Add Assessor Dialog of System:

1 class SymKey extends java.awt.event.KeyAdapter
2 {
3 public void keyTyped(java.awt.event.KeyEvent event)
4 {
5 Object object = event.getSource();
6 if (object == email_field)
7 emailField_keyTyped(event);
8 else if (object == add_assessor_button)
9 addAssessorButton_keyTyped(event);
10 else if (object == cancel_button)
11 cancelButton_keyTyped(event);
12 else if (object == existing_assessors)
13 existingAssessors_keyTyped(event);
14 }
15 }

Line 9 from the source code above shows the method that is executed if the OK button captures a
KeyPressed event. The following source code snippet from the same class is the action handler method
for line 9 from the previous example.

1 private void proceedKeyEnterPressed(java.awt.event.KeyEvent event) {
2 try {
3 if (event.getKeyChar() == KeyEvent.VK_ENTER) {
4 if (this.JTabbedPane1.getSelectedIndex() == 0) {
5 this.addAssessor();
6 }else {
7 this.usePreExistingAssessor(null);
8 this.addAssessor();
9 }
10 }
11 }catch (Exception e) {
12 e.printStackTrace();
13 }
14 }

This action handler uses the KeyEvent class as a parameter just as the TAB navigation action handler did
from a previous example. Line 3 shows the if/then conditional that compares the key character with the
appropriate static variable from the KeyEvent class. Every keyboard action event throughout both System
and Manager are implemented in this same fashion.

The only other caveat regarding keyboard navigation pertains to ASSET System. When a user is
answering questions for an active assessment and decides to change the currently selected tab to the
Critical Element table, the quickest way to do so is with the mouse selecting the last tab at the top of the
System window. Ordinarily the focus of System is on the question next/back/clear buttons when a user is
answering assessment questions. In order for a user to navigate to the critical element tab, they would
need to use the SHIFT-CTRL-TAB combination to cycle the selection focus backwards until they reached
the tab strip which has the default focus of the question tab. In an effort to streamline this process, the
Next button on System recognizes the capital ‘S’ character as the keyboard command to shift the focus to
the Summary table from the Question tab.

3.1.2 MDI Interface

As stated in section 3.1, ASSET components are developed as JInternalFrame objects. The use of an
JInternalFrame object enables a multiple document interface (MDI) design. The idea behind an MDI
design was that any future services developed for System or Manager would be presented as
JInternalFrame objects. Within the Swing architecture, JInternalFrame objects are hosted inside of
JDesktopPane (javax.swing.JDesktopPane) objects; otherwise the JInternalFrame objects would not be
visible when added to a JPanel or JFrame. The following URL describes the operation of adding a
JInternalFrame object to a JDesktopPane:

http://java.sun.com/docs/books/tutorial/uiswing/components/internalframe.html

This article also includes several best practice rules for using internal frames. The ASSET System
AssessmentWindow class inherits from the JInternalFrame object. When a new assessment is created, an
instance of AssessmentWindow is created and added to the JDesktopPane object. The use of an MDI
interface influences several areas of ASSET including the display of system and error messages, and
custom operations when the internal windows are closed. Both of these references deal with the interface
design of ASSET, and this is discussed further later in the document.

3.1.2.1 System and Error Messages in an MDI Interface

The Swing API introduced a new method of displaying messages graphically called a JOptionPane
(javax.swing.JOptionPane). Previous methods of displaying messages or “alert boxes” to users within
Java included the Dialog (java.awt.Dialog) class within the Abstract Window Toolkit (AWT) of the JDK
version 1.1.x, and the JDialog (javax.swing.JDialog) component within Swing API. These methods are
all considered “heavyweight” when compared to the JOptionPane class. Because the JDesktopPane object
is a layered component, it was necessary to tie any system messages displayed to the JDesktopPane parent
object or run the risk of having a dialog box be tied to a layer of parent that wouldn’t necessarily be
visible. To accomplish this, the ASSET interface ASSET defined two methods called
dispalyErrorDialog(String) and displayStatusDialog(String). These methods represented instances of the
JOptionPane class tied to the parent class (System, Manager). The error method code is shown in the
following example:

1 public void displayErrorDialog(String msg) {
2 try {
3 JOptionPane.showMessageDialog(this, msg, "Error:", à JOptionPane.ERROR_MESSAGE);
4 }catch (Exception e) {
5 e.printStackTrace();
6 }
7 }

3.1.2.2 Custom Closing Actions for Internal Windows

This section addresses the actions that occur when internal windows are closed in System and Manager.
Within System, there are two types of JInternalFrames that can be open, an active assessment
(AssessmentWindow) and the reporting window (ClientReportingFrame). When a user clicks the close
icon of an active assessment, they could lose active question response data if this action is not properly
caught and processed. With this scenario in mind, each JInternalFrame object implements the
ASSETChild interface. This interface is discussed in detail in the next section. When a user tries to close
an active assessment in System, they are met with the following dialog:

23

Figure 9 - Closing action for active assessment in System

When a user attempts to close the parent ASSET System SATUI class with “x” button, the same prompt
occurs. What happens is the parent class SATUI calls the method getAllFrames() of JDesktopPane. This
allows SATUI to deal with each open frame individually showing this prompt. The following code
excerpt from the SATUI method exitApplication() handles this specific operation:

1 Toolkit.getDefaultToolkit().beep();
2 opened_frames = this.JDesktopPane1.getAllFrames();
3 for (int i = 0; i < opened_frames.length; i++) {
4 this.JDesktopPane1.setPosition(opened_frames[i], 0);
5 child = (ASSETChild) opened_frames[i];
6 {
7 if (child != null) {
8 child.parentApplicationClosing();
9 }
10 }
11 }
12 System.exit(0);

Line 8 shows the actual method of the ASSETChild interface that gets called, parentApplicationClosing(
), as this is the method that displays the dialog shown in Figure 9 - Closing action for active assessment in
System. When a user tries to close the reporting window only after they have run a report, they are met
with the following dialog:

Figure 10 - Closing action for active report window in System

The same action handling code from the active assessment example Figure 10 - Closing action for active
report window in System, applies for the reporting window. The next section addresses the class and
interface design of ASSET.

3.2 Class design

This section addresses the class design of ASSET components with focus on the Java interfaces that the
components may implement as mentioned in previous sections. ASSET makes use of the following Java
interfaces:

• ASSET
• ASSETChild

These interfaces are packaged/distributed within Core and System components of ASSET to promote
object reuse. It is the components of ASSET that implement these interfaces that are the focus of this
section. The ASSET interface defines the following methods:

1 public interface ASSET {
2 public void log(String buffer);
3 public void setServiceName(String name);
4 public void saveLogOnException();
5 public void setStatusModeMsg(String msg);
6 public void setStatusMsg(String msg);
7 public void displayErrorDialog(String msg);
8 public void displayStatusDialog(String msg);
9 public Connection connectionGenerator();
10 public void openDefaultHelpFile();
11 public String getAbsolutePath(String local_path);
12 public void defineAction(String action);
13 public void defineTerm(String term);
14 public void setActiveTextComponent(JTextComponent component);
15 public void startNewAssessment();
16 public ASSETPropertyManager getPropertyManager();
17 public void openOldAssessment(String id, String name);
18 public void openReportingFrame();
19 }

The System SATUI class and Manager SATAdmin classes implement the ASSET interface. To
demonstrate the power of the ASSET interface, the method setActiveTextComponent(JTextComponent) is
designed to inform SATUI when the currently selected text component changes. This allows the Edit
menu to provide Windows clipboard Cut/Copy/Paste capabilities. The ASSETChild interface defines the
following methods:

1 public interface ASSETChild {
2 public boolean getSupportsSave();
3 public void store();
4 public void saveLocally();
5 public void parentApplicationClosing();
6 }

The AssessmentFrame and ReportingFrame classes of Manager and the ClientReportingFrame and
AssessmentWindow classes of System implement the ASSETChild interface.

3.3 ASSET System

This section describes the operation and design of ASSET System. Users should note that the ASSET
user manual provides a detailed description on the operation and installation of System. The intended
purpose of System was the major influence behind its design. The following figure shows a new
assessment created in System.

25

Figure 11 - ASSET System User Interface

As described earlier, when a new assessment is created, a new instance of the AssessmentWindow
component is created and added to the JDesktopPane of SATUI with the add() command. From this
figure, it is evident that ASSET System uses the JTabbedPane component (javax.swing.JTabbedPane)
to provide the five tabs shown: Assessment Identification, System Identification, Policy, Assessment
Questions, and Summary. The parent class SATUI uses a BorderLayout for a layout manager as shown in
the following figure:

Figure 12 - ASSET System Main Layout

The menu bar is positioned in the north, the JDesktopPane and JInternernalFrame(s) are positioned in the
Center, and the status bar is positioned in the south. The status bar is implemented as a single component

with a border layout of its own. The leftmost panel is designed to show the current mode operation, the
center panel is designed to display general messages similar to the status bar of common web browsers,
and the rightmost component displays the user that is currently logged in. The JTabbedPane component
must be added to a JScrollPane (javax.swing.JScrollPane) in order to be visible. The following figure
describes the AssessmentWindow layout:

Figure 13 - ASSET System AssessmentWindow layout

The AssessmentWindow class uses a BoxLayout. The two panels shown in the figure above are displayed
inside of a JSplitPaneWrapper (com.symantec.itools.javax.swing.JSplitPaneWrapper), where the
question map is the left panel and the JTabbedPane is the right panel. The construction and management
of the question map is discussed later in this section. Each JPanel of the JSplitPaneWrapper is displayed
inside of a JScrollPane component to allow the use of scroll bars to view the entire pane. Java refers to
this as a “virtual desktop.”

3.3.1 ASSET System Operation

This section describes the operation of System. This information summarizes the content of the ASSET
user manual and the ASSET requirements specification in that the operation of System need only be
understood from a user needs perspective. Once developers understand what is expected from System,
they will understand its operation better, including how to improve upon it.

System is designed to gather the individual responses to the NIST Self-Assesment checklist. These
responses are then imported into Manager. Because System tracks responses to questions, it should be
considered as a finite state machine. A response to a checklist question in System has 16 parts and,
therefore, a unique state. Each question should be available to be changed an infinite number of times at
the user’s discretion. There are two parts to assessment completion, assessment identification and
question answering. Assessment identification itself has two subsections, assessor/purpose identification
and componentidentification and classification. During question answering, users have the ability to view
the results of the current critical element. Users have the ability to bookmark their current progress by
saving assessment responses to the database or local file.

3.3.2 What happens when an assessment is created?

The process of creating a new assessment is initiated by the System parent class SATUI. Within SATUI,
the following actions are performed when a new assessment is created:

27

1. Instantiate new instance of AssessmentWindow class (execute AssessmentWindow constructor).
2. Set primary assessor or new assessment.
3. Add new assessment to JDesktopPane and set visible.

Within the AssessmentWindow constructor, the following steps occur:

1. Initialize graphical components within AssessmentWindow.
2. Initialize action handlers for graphical components.
3. Set column headers for assessor and connected system table.
4. Initialize file chooser dialogs for exporting assessment data.

3.3.3 How do users navigate questions?

This section addresses how users navigate the questions within an assessment. The System Question Map
was introduced in section 3.1.1.1. Within the SAT_Client database, questions are stored in a separate
database table. These questions are extracted from the database by the stored procedure
current_question_map. Each question in the self-assessment process is numbered in a three-part
fashion. As an example, the last question in the assessment checklist is 17.1.9. The first part of this
number 17 is the major section the user is in. There are 17 possible major sections in the checklist. The
second number 1 is the minor section. There are 36 possible minor sections in the checklist. This number
also indicates the critical element being computed at the time. The last number 9 is the question number.
Due to the number of required questions within the checklist, it was not feasible to allow System to visit
the database more than a limited number of times. System solves this method by holding all of the
question information within the nodes of the question map. There are a total of 278 questions within the
question table:

• 17 questions from the checklist are policy-related. These take the form of 1.0.0, 2.0.0, 3.0.0, etc.
• 36 of the questions are critical elements. These questions take the form of 1.1.0, 1.2.0, 2.1.0, etc.
• The other 225 are subordinate questions that the user is required to complete. These questions take the

form of 1.1.1, 1.1.2, 1.1.3, etc.

The initial attempt of constructing the question map was to use basic SQL SELECT statements, selecting
the control areas first followed by the major section, then the critical element sections, and finally the
subordinate questions. This took the appearance of a three-level loop evaluated asymptotically at O(n^3).
The SQL syntax to create the question map is discussed in detail later in the document. Figure 7 – ASSET
System question map shows multi-line questions,” shows the appearance of the questions within System.
The following figure shows an example of the question tab of System. Those questions in the map below
that a user is permitted to answer are indicated with an icon. Those questions indicated by the icon
are critical element questions that are computed by the system.

Figure 14 – Example of System Question Tab

The component on the left side of the JSplitPaneWrapper is referred to as the question map in System.
This is a JTree component (javax.swing.JTree). The right side of the JSplitPaneWrapper is the question
display panel. Users are permitted to navigate the questions within an assessment in one of three ways:

• Backwards
• Forwards
• Randomly

The Back and Forward buttons permit backwards and forwards navigation, and the question tab listens for
selection events of various questions. To allow users to click the map with their mouse, System
implements the Swing TreeSelectionListener interface. This method requires the
valueChanged(TreeSelectionEvent) method. When a user clicks on one of the available questions, this
method displays the corresponding question in the display panel.

NOTE: Within the class definition for AssessmentWindow, all possible question navigation methods,
backwards, forwards, and random (using question map) actually call the same method in the end,
displayQuestion(String). This was done to promote a uniform display process.

The questions are designed for the user to navigate forwards using the Next button until they reach the
final question, 17.1.9. When they reach this final question, their progress is automatically saved within the
database. The other two methods of navigation are provided for the user’s benefit should they wish to
change an answer.

29

3.3.4 What happens when an assessment is completed?

When a user answers all of the questions within System, their assessment is considered completed. The
integer variable ques_progress tracks the number of completed questions as a percentage completed.
Once this percentage reaches 100, the assessment is automatically saved to the database and the user has
several options:

1. Open/Edit new assessment
2. Generate reports
3. Export assessment information to submit to another System installation or to Manager

It is the export process that is the focus of this section. The user has two options for exporting assessment
results from System. Their first option is to export an active assessment as shown in the following figure.

Figure 15 - Export Active Assessment Button

The export button for an active assessment is located at the bottom of the summary tab. When a user
presses this button, they invoke the AssessmentXMLGenerator class to export the active assessment
results to XML. This class extends the Thread class (java.lang.Thread) to allow it to run in the
background. The AssessmentXMLGenerator calls the database independently from System or Manager.
To properly initialize the AssessmentXMLGenerator class, it must be passed a vector of assessment
identifiers to export in addition to an instance of the ASSETPropertyManager class.

The second option for exporting assessments is to use the Load Assessment dialog accessible from the
Start menu. This option is preferred for users who wish to send multiple assessments to Manager. This
dialog box is shown in the next figure.

Figure 16 - Multiple Assessment Export Dialog

Users will note in the previous figure that the fifth column “Export” is a checkbox to indicate which
assessment to export. This design was implemented using the custom cell rendering process for JTables.
This process is outlined further at the following URL:

http://javaalmanac.com/egs/javax.swing.table/CustRend.html

Completed assessment export information is stored in a well-formed XML file format. The document
type definition (DTD) for an assessment export file is as follows:

<!ELEMENT answeredby (#PCDATA) >
<!ELEMENT ar (#PCDATA) >
<!ELEMENT assessment (location, system, assessmentname, startdate, completed, bookmark,
primary_assessor, progress, assessors, criticalities, connectedsystems, policy, critical,
questions) >
<!ELEMENT assessment_obj (#PCDATA) >
<!ELEMENT assessmentname (#PCDATA) >
<!ELEMENT assessments (assessment+) >
<!ELEMENT assessor (fullname, email, phone) >
<!ELEMENT assessors (assessor) >
<!ELEMENT availability (#PCDATA) >
<!ELEMENT bce (#PCDATA) >
<!ELEMENT bookmark (#PCDATA) >
<!ELEMENT cmnts EMPTY >
<!ELEMENT completed (#PCDATA) >
<!ELEMENT component (name, bce, pain) >
<!ELEMENT confidentiality (#PCDATA) >
<!ELEMENT connectedsystems (component) >
<!ELEMENT critical (element+) >
<!ELEMENT criticalities (confidentiality, integrity, availability) >
<!ELEMENT element (number, policy, procedures, implemented, tested, integrated, rbdm, na) >
<!ELEMENT email (#PCDATA) >
<!ELEMENT fullname (#PCDATA) >
<!ELEMENT implemented (#PCDATA) >
<!ELEMENT integrated (#PCDATA) >
<!ELEMENT integrity (#PCDATA) >
<!ELEMENT location (#PCDATA) >

31

<!ELEMENT na (#PCDATA) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT num (#PCDATA) >
<!ELEMENT number (#PCDATA) >
<!ELEMENT objective (number, state) >
<!ELEMENT pain (#PCDATA) >
<!ELEMENT phone EMPTY >
<!ELEMENT policy (#PCDATA | objective)* >
<!ELEMENT primary_assessor (#PCDATA) >
<!ELEMENT procedures (#PCDATA) >
<!ELEMENT progress (#PCDATA) >
<!ELEMENT question (number, policy, procedures, implemented, tested, integrated, rbdm, cmnts,
ar, na, reviewer, completed, answeredby) >
<!ELEMENT questions (question+) >
<!ELEMENT rbdm (#PCDATA) >
<!ELEMENT reviewer (#PCDATA) >
<!ELEMENT startdate (#PCDATA) >
<!ELEMENT state (#PCDATA) >
<!ELEMENT system (name, num, location, type, assessment_obj) >
<!ELEMENT tested (#PCDATA) >
<!ELEMENT type (#PCDATA) >

Figure 17 shows an example of an assessment export file opened within Internet Explorer.

NOTE: Users experienced with XML can edit the information contained within this file before importing
it into Manager, but care should be taken as there is risk in destroying the referential integrity of the
assessment.

Figure 17 - Sample XML Assessment Export

The assessment import process is discussed in detail in the Manager section.

3.3.5 Question map construction

Within System, the question map construction is a two-step process. The map is not constructed during an
assessment until the user completes the identification process, the first and second tabs. Due to its
complexity, the question map is serialized to a local outfile named map.dat as shown by the following
folder listing for System.

33

Figure 18 - System question map cache file

The first step in the build process is to check for the presence of the cached question map. This is done by
checking for the existence of the file from the figure above. If the map cache file is not located, the
second step is to rebuild the map from scratch. The following code snippet performs this first step:

1 try {
2 File check_exists = new
3 File(this.parent.getPropertyManager().getProperty("sat.map.path"));
4 if (check_exists.exists()) {
5 FileInputStream fis = new

FileInputStream(this.parent.getPropertyManager().getProperty("sat.map.path"));
6 ObjectInputStream ois = new ObjectInputStream(fis);
7 cache_data = (Vector) ois.readObject();
8 this.progress_model = (DefaultTreeModel) cache_data.elementAt(0);
9 this.progress_tree.setCellRenderer(custom_renderer);
10 this.progress_tree.setModel(this.progress_model);
11 this.setMapStatus(true);
12 this.node_map = (Hashtable) cache_data.elementAt(1);
13 this.progress_tree.setVisible(true);
14 this.root_node = (DefaultMutableTreeNode)
15 this.progress_model.getRoot();
16 }else {
17 this.rebuildTree();
18 }
19 this.prgMonitor.setVisible(false);
20 }catch (Exception e) {
21 this.parent.log(e.toString());
22 }

Lines 2-4 show the conditional check for the existence of the file “map.dat.” This property is represented
by the System property sat.map.path. Lines 16-18 are the alternative of this conditional; if the cache is

not located, then the method rebuildTree() is executed. The rebuildTree() method takes the following
form:

1. Create root tree node
2. Insert policy node
3. Extract current control areas
4. Loop through current control areas

a. Extract questions for specific control area
b. Loop through questions for specific control area

i. Insert question into tree
ii. Insert question into node hashtable (enables lookups)

5. Serialize tree to local file map.dat.

The loop that processes questions examines the question number (major section, minor section, and
question number) and based on a conditional, inserts a critical element or a normal question. Users should
also note that this is the spot where the policy table is computed as well. When a question is extracted
from the database that has a minor section of 0 and a question number of 0, this question is inserted into
the policy table model. The policy table model is an instance of the DefaultTableModel class defined as
follows:

DefaultTableModel criticalElementModel = new DefaultTableModel() {
 public boolean isCellEditable(int row, int column) {
 return false;
 }
};

This definition of the DefaultTableModel class redefines the isCellEditable(int, int) method to prevent
any of the cells within the table from being modified by a mouse event. When each question is inserted
into the tree, they are inserted into the root node of the JTree as follows:

this.progress_model.insertNodeInto(question, critical_element, question_count);

Each question is wrapped within an instance of the HybridTreeNode class, which extends the
DefaultMutableTreeNode class. The node hashtable node_map is the data structure that is searched when
a user moves to a new question. The method displayQuestion() calls the findQuestionNode(String)
method. This method definition is as follows:

private HybridTreeNode findQuestionNode(String question_num) {
 HybridTreeNode node = null;
 try {
 node = (HybridTreeNode) this.node_map.get(question_num);
 }catch (Exception e) {
 this.parent.log("ERROR: node does not exist");
 this.parent.log(e.toString());
 }
 return node;
}

This search method was implemented because there is no feasible method to access the elements in the
question map as the user moves forward in an assessment. The valueChanged(TreeSelectionEvent) method
of the TreeSelectionListener interface publishes what the currently selected node is. When a user moved
forwards or backwards, they didn’t generate a TreeSelectionEvent by default. With the question map,
once the correct node to be displayed is located, this node is selected with a TreeSelectionEvent by the
following method from AssessmentWindow:

private void selectNode(HybridTreeNode node) {

35

 try {
 if (node != null) {

 this.progress_tree.scrollPathToVisible(new TreePath(node.getPath()));
 this.progress_tree.setSelectionPath(new TreePath(node.getPath()));
 }else {
 }
 }catch (Exception e) {
 this.parent.log(e.toString());
 }
}

3.3.6 ASSET System Configuration File

This section describes the System configuration file sat.conf. ASSET was designed to be extensible,
conforming to the Open-closed principle where the elements of System or Manager that were
configurable are abstracted to a property file. Within System, this property file controls such things as the
username/password combination that is used to authenticate to MSDE. The System property file is shown
in the following folder listing of the System program folder. This property file must always be located in
this spot or System will not load successfully.

Figure 19 - System property file

The properties contained within sat.conf follow the standard UNIX property file format of
NAME=VALUE. The following table describes the properties contained within sat.conf and their
corresponding purposes within System.

Property Name Default Value Description

sat.data.username Sa

The user name used to connect through
ODBC to the MSDE system. This
defaults to the standard ‘sa’ account
within MSDE. Provided that customized
account creation procedures are
provided, this may be changed to a new
value.

sat.data.sqldirectory sql The folder where the SQL files are
located to build the database.

sat.help.definitiondocument .\\Help\\Terms.html

The help document used to define terms
within System This relates to those
components of System with
corresponding help buttons.

sat.data.driver sun.jdbc.odbc.JdbcOdbcDriver
The JDBC driver used to connect to the
MSDE system. This was done to allow
different database drivers to be used.

sat.map.path map.dat The local path where the question map
is serialized.

sat.help.actiondocument .\\Help\\Performing.html
The help document that contains the
descriptions for each action that has an
associated help button within System.

sat.assessment.save.path \\data The local path where the active
assessment backups are stored.

sat.data.password System dependent

This is the corresponding password to
the property value sat.data.username
which again is used to authenticate to
the MSDE system.

sat.help.defaultdocument .\\Help\\index.html This is the default Help document for
System.

sat.assessment.save.interval 3

This is interval of minutes that System
will wait to back up the currently active
assessment. Within System, this is
translated into milliseconds for the
Thread.sleep() method call.

sat.help.defaultbrowser
C\:\\Program Files\\Internet
Explorer\\iexplore.exe

This is the system-independent path to
the user’s web browser which they will
use to view the help files. This option
can be configured within the system
Help menu using the Change default
browser option.

sat.data.dsn LocalServer
The ODBC DSN that is used to connect
to MSDE. This can be changed to a
valid DSN.

sat.data.connstring jdbc\:odbc\:LocalServer

The connection string supplied to the
JDBC connection process. NOTE here
that the JDBC/ODBC bridge is being
used.

sat.help.rootpath .\\Help

The root location for the help files of
System. This value is used to assemble
a file object with which to open a help
file.

Table 3 - System property file contents

37

Within System, these properties were accessible from the ASSETClientPropertyManager object. These
properties were inherited from the ASSETPropertyManager object. The ASSETPropertyManager object
essentially is a convenience wrapper for the Java Properties class (java.util.Properties). The core class
ASSETPropertyManager contains the property access and modification methods from which System and
Manager inherit.

The ASSETPropertyManager contains the ability to add new properties as well. This allows a user to
change the default browser used to view help files. This also is the reason why when the property file is
saved, the properties are printed with escape characters denoted with the ‘\’ character. This is a function
of the save(OutputStream, String) method of the Properties class. The following figure shows an
example of the System property file. Note that all properties that refer to the path for a particular resource
are denoted as a relative path (relative to the parent path of C:\Program Files\NISTASSET\ASSET
System).

Figure 20 - Example System Property File

3.3.7 ASSET System reports

This section describes the possible reports for System. The reporting functionality offered within System
was meant to provide a supplementary view of assessment data for only one system at a time . Because
System reports deal with one system at a time, the System reporting process requires that a single
assessment be chosen in order to run a report. The reporting functionality offered by Manager was meant
to provide an organization-wide view of assessment results. The following table describes each report
offered by System and its corresponding purpose, and the stored procedure that implements this report
within the database. The stored procedures are discussed later in the document.

Report Purpose Stored Procedure

Summary of topic areas by levels of
effectiveness

Lists the ITSAF level reached for
each of the 17 topic areas of a single
assessment.

get_policy_results_and_text

List of non-applicable questions Lists those questions marked as Not-
applicable for a specific assessment.

get_na_questions

List of risk-based decisions Lists those questions marked as
Risk-based decision made for a
specific assessment

get_rbdm_questions

System Summary Liists the applicable response
elements for all of the questions for a
particular assessment.

get_summary_question_results

Table 4 - Available System Reports

The following figure shows the user interace of the System reporting frame. When System reporting is
open, the status bar mode indicator reads “RPRT.” Note that similar to an active assessment, this interface
is also implemented as a JInternalFrame. This allows a user to switch back and forth between an active
assessment and the reporting frame should both windows be minimized on the virtual deskop.

Figure 21 - System reporting interface

39

The user interface of System reporting follows the same format of an active assessment, using the
JTabbedPane to separate choosing a report from seeing its output. Within the previous figure, the labels
on the right panel are instances of the ASSET class HTMLLabel. This figure follows the same user
interface design as the active assessment window described in section 3.1 User interface using a
JSplitPaneWrapper to separate the report choice panel from the active assessment choice panel. This class
extends the Swing JLabel (javax.swing.JLabel) class to capture the MouseEnter and MouseExit events.
This allows for the text of the label to dynamically change font as is the case with many web browsers
today. As with the Tool tips throughout both System and Manager, the text of an instance of HTMLLabel
is HTML itself. The following image shows an example of a completed report.

Figure 22 - Complete System Report

The structure of this interface is a border layout with the label panel placed north and the table panel
placed center. The table panel is placed within a JScrollPane to allow scrolling to records that cannot fit
on-screen. The label panel uses a grid layout with two columns and five rows. The table that holds the
report results is a Jtable, which uses an instance of the DefaultTableModel class as its table model. Each
time a report is run, the results table is cleared before being reset with new data. The following figure
shows the layout of the report results tab within the Visual Café designer. The dotted lines in the figure
show the edges of the invisible components in the panel.

Figure 23 - System Report Screen Layout

Each report within System has the same report headers, whereas the column headers differ as shown in
the previous figure. The following table describes the report headers for System and their meaning.

Header Meaning

Report Lists the title of a particular report. The possible titles are listed in Table 4
- Available System Reports.

System Name Lists the name of the system in question as specified in the System Name
field during the assessment idenfitication. This is a arbitrary user field.

System Number Lists the number of the system in ques tion as specified in the System
Number field during the assessment idenfitication. This is a arbitrary user
field.

Primary Assessor Lists the primary assessor of the selected assessment. This is the person
that was logged into System when the assessment was created.

Today’s Date Lists the current date and time that the report was run. This is provided by
the Date().toString() method call.

Confidentiality Lists the confidentiality level of the selected system as chosen by the user
during the assessment identification.

Integrity Lists the integrity level of the selected system as chosen by the user
during the assessment identification.

Availability Lists the availability level of the selected system as chosen by the user
during the assessment identification.

Location Lists the location of the system as determined by the user during the
assessment identification.

Totals Lists the number of records returned.

41

Table 5- System Report Headers

The column headers for each report are as follows, the report headers for the System Summary report are:

• Question #
• Question Text
• Level Reached
• N/A
• Risk-Based Decision?
• Comments
• Answered By
• Completed?
• Refer To

The report headers for the Topic Area summary report are:

• Topic #
• Topic Area
• Level

The report headers for the Non-applicable and Risk-based decision reports are:

• Question Number
• Question Text
• Comments

These headers are encapsulated within a Vector object, which is passed to the table model of the results
table. Each report can be exported to a tab-delimited file using the save function on the reporting tool bar.
The following figure shows the JFileChooser export dialog.

Figure 24 - System Reporting Export Dialog

3.4 ASSET Manager

This section describes the operation and design of Manager. Users should note that the ASSET User
Manual provides a detailed description on the operation and installation of Manager. The intended
purpose of Manager was the major influence behind its design, even more so than System. In short,
Manager is designed to aggregate the results from one or more instances of System. Since not all
organizations have a widespread enterprise or the necessary manpower to need multiple instances of
System, Manager offers the same functionality as System in both assessments gathering and reporting.

3.4.1 ASSET Manager Operation

The primary function of Manager is importing and searching imported assessments. In an effort to
promote component reuse, the same code that provides importing functionality in System is used in
Manager. As stated previously, Manager also has the ability to create/open/export assessments in a similar
method to System. The following syntax (taken from ASSETManager.bat) launches Manager. Note the
presence of the System archive file in the classpath; this file is required for Manager to execute:

java -cp "..\calendar.jar;..\ASSET à
System\asset.jar;..\xercesImpl.jar;..\xmlParserAPIs.jar;..\asset_core.jar;asset_admin.jar"
SATAdmin

Within Manager, users have the option to open a previously saved assessment or create a new assessment.
The following code excerpt from the main Manager class ASSETManager shows the action of creating a
new assessment:

1 public void startNewAssessment() {
2 try {
3 this.assessment = null;
4 this.setStatusModeMsg(" AIP ");
5 this.setStatusModeMsg("Creating new assessment window now, please hold.");
6 this.assessment = new AssessmentWindow(this);
7 this.assessment.setClosable(true);
8 this.assessment.setPrimaryAssessor(this.primary_assessor,à

this.primary_assessor.getDataVector());
9 workspace.add(this.assessment);
10 this.assessment.setMaximum(true);
11 this.assessment.setVisible(true);
12 }catch (Exception e) {
13 e.printStackTrace();
14 }
15 }/* end method startNewAssessment() */

The ability to create a new assessment forced the structure of the Manager database to match the System
database. The only real difference between the two databases is the stored procedures. When a new
assessement is saved within Manager, the assessment information is saved within the Manager database,
not the System database. This difference is discussed further in the database section. The following figure
shows an example of a new assessment created with Manager. Note the use of JInternalFrames similar to
System’s user interface.

43

Figure 25 - Create New Assessment in Manager

The AssessmentImporter class, a part of the ASSET core package, provides import functionality to
System and Manager. Similar to the AssessmentXMLGenerator class, the AssessmentImporter class also
extends the Thread class to allow an import to run in the background. Once assessments have been
imported, Manager can generate reports on these assessments.

3.4.2 Manager User Interface

This section discusses the Manager user interface. As shown in the previous figure, the Manager user
interface model is an active assessment within System. Microsoft system administrators might recognize
the inherent design of Manager as it relates to the Microsoft Management Console (MMC). The design of
the MMC is similar to the design in Figure 13 - ASSET System AssessmentWindow layout, where the
naivation menu occupies the left side of the screen and the Search and Reporting window occupy the right
side. The Searching and Reporting windows are both instances of JInternalFrame.

3.4.3 ASSET Manager Configuration File

This section describes the Manager configuration file admin.conf. The structure of admin.conf is similar
to System’s property file sat.conf as described in section 3.3.6, ASSET System Configuration File . This
property file is located in the root of the Manager directory as shown in the following figure.

Figure 26 – Manager property file

The properties contained within admin.conf follow the standard UNIX property file format of
NAME=VALUE. The following table describes the properties contained within admin.conf and their
corresponding purposes within Manager.

45

Property Name Default Value Description
sat.help.defaultdocument .\\Help\\ASSETSystem\\index.html This is the default Help document for System.
sat.help.rootpath .\\Help\\ASSETSystem The root location for the help files of System.

This value is used to assemble a file object
with which to open a help file.

sat.manager.help.assessment
document

.\\Help\\processassessments.html The help document that describes how to
process assessments.

sat.data.username sa The user name used to connect through
ODBC to the MSDE system. This defaults to
the standard ‘sa’ account within MSDE.
Provided that customized account creation
procedures are provided, this may be changed
to a new value.

sat.data.sqldirectory sql The folder where the SQL files are located to
build the database.

sat.data.connstring jdbc\:odbc\:MSDE_SAT_Admin_Da
ta

The connection string supplied to the JDBC
connection process. NOTE here that the
JDBC/ODBC bridge is being used.

sat.data.driver sun.jdbc.odbc.JdbcOdbcDriver The JDBC driver used to connect to the MSDE
system. This was done to allow different
database drivers to be used.

sat.splashscreen.imagepath images/SplashScreen.jpg The file name of the Manager splash screen
image.

sat.manager.help.defaultdocu
ment

.\\Help\\index.html The default Help document for Manager.

sat.assessment.save.interval 3 The time interval in minutes for the local save
of an active assessment.

sat.display.defaultplaf javax.swing.plaf.metal.MetalLookA
ndFeel

The default look and feel (PLAF) for Manager.

sat.help.defaultbrowser C\:\\Program Files \\Internet
Explorer\\iexplore.exe

This is the system -independent path to the
user’s web browser which they will use to view
the help files. This option can be configured
within the system Help menu using the
Change default browser option.

sat.splashscreen.delay 6 The amount of time in seconds that the splash
screen is displayed.

sat.help.actiondocument .\\Help\\ASSETSystem\\Performing.
html

The help document that contains the
descriptions for each action that has an
associated help button within System.

sat.data.dsn LocalServer The ODBC DSN that is used to connect to
MSDE. This can be changed to a valid DSN.

admin.menu.path adminmenu.dat The file name where the menu information for
Manager is serialized and stored.

sat.assessment.save.path data The local path where the active assessment
backups are stored.

sat.help.definitiondocument .\\Help\\ASSETSystem\\Terms.html The Help document that defines terms and
actions within Manager.

sat.map.path map.dat The local path where the question map is
serialized.

sat.manager.help.reportingdoc
ument

.\\Help\\reporting.html The help document that describes the
reporting process in Manager

sat.data.password System dependent This is the corresponding password to the
property value sat.data.username which again
is used to authenticate to the MSDE system.

Table 6 - Manager Property File Contents

3.4.4 ASSET Manager Menu

This section discusses the Manager menu tree. This menu was designed in a similar method to the System
question map discussed in the System section. The Manager menu tree functions in place of a file menu
or “tool bar” as is common to many office productivity applications such as Microsft Office. The
Manager menu is shown in the figure contained within the section entitled “ASSET Manager
Operations,” and shown again as a cutout of greater detail in the following figure.

Figure 27 - Manager Menu Tree Example

Similar to the System question map, the Manager menu is an instance of JTree, which uses instances of
DefaultMutableTreeNodes for each of its tree nodes. The difference from the System question map is that
the Manager menu uses a custom cell render for each of its nodes, MenuCellRenderer. Similar to the
System question map, the Manager menu uses local seralization to cache the contents of this JTree and its
data model. This cache file is named menu.dat and is shown in the following figure.

Figure 28 - ASSET Manager Menu Cache File

47

If users delete this file, the administration menu will be rebuilt each time and resaved to this local file.

NOTE: Users may also experience a situation where the Menu options are obviously incorrect. When the
menu items are things like fruit and sports, these are items that Java uses as the default menu to a JTree.
This is caused by the table model becoming corrupted. Users can rectify this situation if they delete the
menu cache file and restart Manager.

3.4.5 Searching in ASSET Manager

This section describes searching in ASSET Manager. Searching is the primary function of Manager. The
Manager user interface revolves around users querying the Manager database and generating reports from
the search results. After a user has performed a search of the Manager database, they can select an
arbitrary subset of their search results to develop a report. The search window is shown in the following
figure:

Figure 29 - Manager Search Interface

This user design follows both System’s AssessmentWindow class discussed in the System section and the
ClientReportingFrame class for Manager reporting. The only exception is the design of the parameters tab
in the middle of the figure above. This tab is managed by a GridLayoutManager with three columns and
four rows making a total of 12 cells. Those cells that appear empty are actually filled with empty JLabels.

Users have the option with the Choose Field dropdown box to choose which field from the database they
wish to search. The default option is All Fields. This means that if a user enters a ‘*’ in the search text
box they will return all records from the database. Searching the manager database feeds into the next
section on Manager Reporting.

3.4.6 ASSET Manager Reporting

This section details ASSET Manager reporting. The design of the Manager reporting user interface
closely follows that of System reporting user interface. Manager reporting also contains the ability to run
all of the reports of System. The following table lists the reports that Manager can run and their associated
stored procedures that implement the reporting code within the database.

Report Purpose Stored Procedure

Summary of all Systems

This report lists all of the systems
within the Manager database and the
associated level that each system
has reached for each of the control
areas within the Manager.

get_all_assessment_information

Summary of System Types
This system lists all of the systems
within the Manager database and
their associated system type.

get_systems_by_type

Summary of Systems by Sensitivity

This system lists all of the systems
within the Manager database and
their associated System sensitivity
levels for confidentiality, integrity,
and availability.

get_system_sensitivity

Summary of Systems by
Organization

This system lists all of the systems
within the Manager database and
their associated organization/location
within an enterprise.

get_system_organization

Table 7 – Available Manager Reports

The following headings are used for the System Summary Report: (Note that 17 of these headings are the
17 major control areas from the initial version of the NIST SP 800-26. This number may change in the
future.)

• Name
• Number
• Type
• Organization
• Primary Assessor
• Confidentiality
• Integrity
• Availability
• Risk Management
• Review of Security Controls
• Life Cycle
• Authorize Processing (Certification and Accreditation)
• System Security Plan
• Personnel Security
• Physical Security

49

• Production, Input/Output Controls
• Contingency Planning
• Hardware and Systems Software Maintenance
• Data Integrity
• Documentation
• Security Awareness, Training, and Education
• Incident Response Capability
• Identification and Authentication
• Logical Access Controls
• Audit Trails
• Completed?

The following headers are used for the System Type report:

• Name
• Number
• Type

The following report headers are used for the System Sensitivity report:

• Name
• Number
• Confidentiality
• Integrity
• Availability

Manager reporting contains the ability to draw its reporting data from an arbitrary subset of the entire
Manager database. After a user searches the Manager database for arbitrary assessments, they can mark a
subset of their search results as ‘active.’ Once they mark a subset of the search results, they can open the
Manager reporting from the Search window tool bar. Once opened, any of the reports that they generate
will be drawn from the subset of assessments.

3.5 Sorting in ASSET

This section addresses the option of sorting data in System and Manager. It is important to note that
sorting was not an initial requirement of ASSET; it was proposed as a convenience to System and
Manager. Specifically, the data models for the each of the JTables within System and Manager initially
contained the ability to sort data in two directions. The sorting method proposed was based on
information from the follwing URL:

http://www2.gol.com/users/tame/swing/examples/JTableExamples5.html

This method utilized the following classes:

• SortableTableModel.java
• TableSorter.java
• SortButtonRenderer.java
• BevelArrowIcon.java
• BlankIcon.java

These classes are contained within the Core project. This sorting method used the SortButtonRenderer
(extends CellRender class) class to enable the column headers to act like JButtons. The
SortableTableModel extends the DefaultTableModel to enable the table model data vectors to be sorted.
The following code snippet shows how this sorting method is implemented:

1 SortButtonRenderer renderer = new SortButtonRenderer();
2 TableColumnModel model = table.getColumnModel();
3 int n = headerStr.length;
4 for (int i = 0; i < n; i++) {
5 model.getColumn(i).setHeaderRenderer(renderer);
6 model.getColumn(i).setPreferredWidth(columnWidth[i]);
7 }
8 JTableHeader header = table.getTableHeader();
9 header.addMouseListener(new HeaderListener(header,renderer));

Lines 5 and 6 show how the SortButtonRenderer object is attached to the table columns. The problem
with this sorting process as it relates to ASSET is that it is not an in-memory sort, only graphical. For
instance, the loadDialog class uses a JTable to list the available assessments to load from the database. To
do this, when a user chooses an assessment and then presses the load assessment button, the action
handling method uses the currently selected row on the JTable to determine which assessment was
selected. If this sorting method were implemeneted, and the user was to sort the table columns, then the
assessments that were displayed on-screen would be different from the actual contents in memory.

Sorting also played a part in the reporting for System and Manager. If a report was sorted after it was
executed, and then saved to an outfile, the order in which the report contents were displayed on-screen
was different from the the order in which the data was written to the outfile. In addition, certain columns
within the various SAT reports did not accept the sorting feature in testing. Because sorting was not an
initial requirement of ASSET, it was abandoned in place of other more important requirements. Sorting is
an important feature to have in ASSET and therefore may be considered in a future release of ASSET.

3.6 ASSET Help

This section addresses the ASSET help files for both System and Manager. The specific file names of the
help files for System and Manager were named in the File Requirements section earlier in the document.
The help content for System and Manger is presented in HTML format viewable by any common web
browser that is HTML 3.2 compliant. The structure of System help is designed to be viewed in one of two
ways:

• Pressing associated help button for specific action
• Accessing help files from Help menu option on SATUI

The help files for System are reproduced within Manager because of the ability of Manager to interact
with assessments directly. Manager’s help files and hyperlink interactivity are structured in the same way
as System. The method by which System and Manager communicate with the help files is through
anchors within the HTML source code for the help pages. Initially the help files were intended to do
things like explain each of the ITSAF levels that a question has achieved, or define confidentiality,
integrity, and availability in terms of NIST SP 800-26. So as shown in the following snippet of HTML
from System help (taken from terms.html), an HTML anchor defines the location of the term “boundary
controls.”

<P><I>Boundary
 Controls</I>- the security measures that protect an interconnected system
 from unauthorized access.</P>

51

The structure of the anchor text is that the anchor is comprised of the lower case concatenation of the
word or action it is defining without any whitespace, so in the case of the previous example, if a user
wanted to define what “boundary controls” meant, they would need to search for an anchor
“boundarycontrols.” Lines 12 and 13 of ASSET.java show the two methods that open help files for
system, defineTerm(String) and defineAction(String). The parameter for each of these
methods is the HTML anchor to display in the associated help file. The following snippet of Java code
shows how defineTerm(String) is coded within System.

public void defineTerm(String term) {
 this.execute(this.props.getProperty("sat.help.defaultbrowser") + " " +
this.getFullPath(this.props.getProperty("sat.help.definitiondocument"))+ "#" + term);
}

This method uses two properties from System’s configuration file, sat.help.defaultbrowser, and
sat.help.definitiondocument. Refer to the section describing the System configuration file for more
information. With regards to the previous example, the inclusion of the '#' character means that the
hyperlink that is going to be opened by the user's default browser will be to a named anchor on the HTML
page of term definitions.

NOTE: Normally, interacting in Java source with the underlying OS causes platform dependencies.
The execute method of SATUI, however, does not use Windows-specific commands to excute the
system’s web browser and can work the same way under Unix/Linux.

The property sat.help.defaultbrowser can be changed to match whatever web browser the user prefers.
Users change this through the Change default browser option on the System help menu. The
ChangeBrowserWizzard class performs this change; all it does is use a JFileChooser to search for a file
with a .exe extension that the user chooses. Once they choose a browser, this property is reset in the
System config file. Because all installations of Windows contain Internet Explorer by default, this was the
default value to set this property. If the property was not set to Internet Explorer’s executeable and instead
to Netscape, and users did not have this browser installed, they would think there was a problem with
ASSET when it complained about not being able to launch a binary that was not present. The following
dialog is displayed when a user attempts to change their default browser.

Figure 30 - Choose Browser Wizard

If the user presses “Yes,” they are next presented with a JFileChooser to choose the browser to view the
help files. This JFileChooser uses a file filter to display files with an .exe extension only. If the user
presses “No” at the previous dialog, they are presented with the following warning dialog.

Figure 31 - Cancel Choose Browser Wizard

3.7 ASSET Core

This section discusses the Core project of ASSET. The concept behind the core project was to package all
of the components that are used by both System and Manager within a single JAR, asset_core.jar.
Because both System and Manager then require this JAR file in their runtime classpaths, the startup
scripts for both applications included this in their classpath. The following command line syntax launches
System (taken from ASSETSytem.bat):

C:\>java -cp ..\asset_core.jar;asset.jar;..\xercesImpl.jar;..\xmlParserAPIs.jar SATUI

This syntax shows asset_core.jar included within the runtime classpath of System. The following table
lists and describes the source code files that comprise Core:

File Description

AssessmentImporter.java Class that provides assessment import functionality to both System and
Manager

AssessmentXMLGenerator.java Class that provides assessment export to System and Manager

Assessor.java Class that encapsulates assessor information

ASSET.java Parent interface implemented by System and Manager

ASSETPropertyManager.java Parent property manager class for System and Manager

BevelArrowIcon.java Class used to provide sorting

BlankIcon.java Class used to provide sorting

CheckBoxRenderer.java Enables checkbox actions within JTable columns

ChooseBrowserWizard.java Allows user to chose default browser for help files

CSVFilter.java File filter for JFileChooser

EXEFilter.java File filter for JFileChooser

HTMLLabel.java Label used for reporting user interface

LogWindow.java Logging class

OpenLogDialog.java Logging class

ProgressDialog.java Dialog that displays JProgressBar

saveLogDialog.java Logging class

SortableTableModel.java Class used to provide sorting

SortButtonRenderer.java Class used to provide sorting

TableSorter.java Class used to provide sorting

TXTFilter.java File filter for JFileChooser

XMLFilter.java File filter for JFileChooser

53

To build Core within Visual Café, these files were added to the Core project window and compiled. No
special configurations were necessary. Once deployed to asset_core.jar, System and Manager’s project
settings were modified to include this JAR in their project classpaths.

3.8 ASSET Change Password Utility

The ADPU is a utility application that interacts with the MSDE osql.exe utility to change the password of
the MSDE ‘sa’ account as recommended by the following CERT bulletin:

http://www.kb.cert.org/vuls/id/635463

The ADPU project is composed of the following files:

• ChangePassword.java
• ConfFilter.java
• PasswordGenerator.java

The PasswordGenerator class generates random password strings using the java SecureRandom
(java.security.SecureRandom) class. The ADPU is distributed within the JAR ASSETPassword.jar.
This file has its main class specified within the JAR manifest file (manifest.mf) to allow the ADPU to be
launched with javaw.exe. To launch the ADPU, users need to double click on the JAR file. The password
change happens during the installation of ASSET. The process happens in two steps to add a layer of
complexity. First the password is set to an arbitrary value of ‘nis7@ss3t.’ Then the ADPU utilty is run.
The interface of the utility is shown in the following figure. Due to the size of the window, no layout
manager was used to manage the user interface of ADPU; all of the components on the ADPU are placed
statically.

Figure 32 - ADPU User Interface

There are two options on how to set the password within this interface. Users can choose a password and
enter it into the text box shown above, or they may choose the “Suggest a password” link. If users choose
to enter their own password, they will be prompted to re-enter the password a second time for validation.
The “Suggest a password” link launches the PasswordGenerator object. The options for the APDU are
configured on the advanced tab. Here users can control how big of a password the automated generator
can produce, and which configuration files to store the new password in, System, Manager or both. The
maximum size password that MSDE can support is 128 characters. Also, if the MSDE is installed to a
drive other than C:\, the advanced tab will allow the user to specify the exact path name to the osql.exe
utilty. Users have the option to reload the configuration files on the advanced tab. The advanced tab of the
ADPU is shown in the following figure.

55

Figure 33 - ADPU Advanced tab

3.9 Procedure Flow Diagram for each Component

This section presents a process diagram for the intended operation of System and Manager. The system
procedural flow diagram is presented in the following figure. This figure details the possible operations
that a user can perform at a high level while system is active.

Start ASSET
System

Interact with
Assessments/

Generate Reports

Open System
Report Window

Generate Reports

Open
Assessment

Create
Assessment

Export
Assessments To

XML

Save Reports to
Disk

Interact with
assessment
questions

Save active
assessment to

database

Build/Uncache
Assesment
Questions

Figure 34 - System Procedure Flow

The procedural flow diagram for Manager is shown in the following figure. This diagram indicates the
possible operations that a user can perform while Manager is active.

Start ASSET
Manager

Import/Search/Interact
with Assessments or

Generate Reports

Generate Reports

Import
assessment

Search
assessments

Create new
assessment

Export results to
disk

Open saved
assessment

Build/Uncache
questions

Interact with
assessment
questions

Save active
assessment to

database

Export active
assessment to

disk

Figure 35 - Manager Procedure Flow

57

4. ASSET Database

4.1 Database Design

This section discusses the the ASSET database design for System and Manager. It is important to note
that the inherent design of the System and Manager database are exactly alike with the exception of the
stored procedures. The relational database technology used within ASSET has been implemeneted by the
relational database management system (RDBMS) MSDE 1.0. ASSET communicates with the MSDE
through the Java database connectivity open database connectivity (JDBC/ODBC) API version 2.0. The
actual SQL statements that implement the ASSET databases are presented in Appendix B of the
document. This section discusses why the tables were implemented in the way they were and the method
by which the databases are construcuted during the ASSET installation process.

Initially to promote a simple deployment process, the ASSET database was intended to be implemented
over Microsoft Access. Access does not promote the advanced SQL processing that MSDE does with
Transact-SQL (T-SQL). The use of T-SQL permitted the use of stored procedures to perform the most
common storage and processing actions of System and Manager during active assessments and reporting.
For example, the action of saving an active assessment required saving each of the questions that had
been answered. This action would then have to be performed as many times as there are subordinate
questions in the checklist. The use of the stored procedure insert_assessment_question_response allowed
for a significant performance gain over supplying SQL strings to the JDBC/ODBC bridge and on to
MSDE each time the question was to be saved. Even with the argument that a sophisticated RDBMS like
MSDE can cache the first SQL statement supplied to it and execute each repeated call to the same SQL
from its cached version, when System or Manager was closed, this cached execution plan would be lost.

4.2 Extensibility of Question Content

One of the intial requirements of System was the ability for system administrators to add their own
questions to the checklist and customize other questions for their own enterprise. The customization of the
checklist was intended to be initiated by ASSET Manager who would then publish updated checklist
versions, in XML format similar to assessment exports, to each installation of ASSET System within its
enterprise. Managers would also have the ability to delete questions from the checklist but only those
questions that they added or customized. In a sense the operation would be a rollback instead of delete
operation. Readers will note that the assessment_questions table contains an integer field version. This
field is designed to track the version of a question, indicating the number of versions of the same question
there are in the database. When Manager publishes a new set of questions to System, System inserts the
questions contained in this checklist into the assessment_questions table and updates the version number
of the current question with the same question number.

Within this version of System and Manager, each time a new assessment was to be created, the questions
asked would only reflect a version equal to 0. This would require that the question map be checked
against the database each time an assessment was opened/created. This is still a performance benefit over
the failed design of the question map as discussed earlier in the document. The difficult question to
answer when considereing multiple versions of the questions within the checklist was the method in
which a user would open a saved assessment which was completed with a version of the checklist that is
no longer current. The user of System would have updated the checklist questions after they completed
this assessment.

4.3 Asessment Rollups

The “assessment rollup” process describes the operation where output from System is exported to XML
format and then imported into Manager. Because most organizations are organized in a hierarchical
format, to properly perform a rollup of all of the assessment data within an enterprise, Manager would
need some notion to distinguish where assessment data originated.

It was decided that the location identification within Manager would be performed manually in version
1.0 of ASSET. However, as shown in the following snippet of XML from a sample assessment export,
future versions of System will be able to identify their place within a distributed organization.

<?xml version="1.0"?>
<!--NIST Self-Assessment Tool Auto-generated Assessment Results-->
<!--Generated on: Wed Apr 17 09:10:35 EDT 2002-->
<!--This file contains the results of 4 assessments-->
<assessments>
 <assessment>
 <location>
 blank
 </location>
 <system>
…

The location tag included in the example above is meant to indicate the location where this assessment
was performed. Future versions of Manager could then be able to perform searches of the Manager
databases on this field.

4.4 Dbmanager

This section describes the creation of the System and Manager databases. It was envisioned that these
databases would be created and destroyed several times in the life cycle of ASSET on a user’s computer.
Because of this, the database creation logic was packaged as a Windows batch script and accessible from
every installation of System and Manager within the SQL directory of each component of ASSET. This
script is named dbmanager.bat for both System and Manager. Dbmanager uses the osql.exe utility
provided with MSDE to interact with the MSDE system. Readers should note that osql.exe communicates
with MSDE through ODBC. Because of this dependency on the osql.exe utility, the script needs to know
where to locate the script if it is not within the System path.

Dbmanager uses the osql.exe utility in a trusted manner as indicated by the –E command flag. This allows
any user to execute the script without having to authenticate to the MSDE system. The following options
are available to MSDE:

• Script usage
• Adding new stored procedure
• Deleting stored procedure
• Deleting the entire database
• Creating the entire database (including the stored procedures)

The following syntax shows how to create the System database from the command line:

C:\Program Files\NISTASSET\Asset System\sql\>dbmanager createdb

The following syntax shows how to clear the entire System database and any saved data:

59

C:\Program Files\NISTASSET\Asset System\sql\>dbmanager deletedb

These commands can be executed by ASSET users to restore database integrity by deleting the existing
database and then reinstalling it.

NOTE: Users must first save assessment data in the database to a file, since deleting the database will
remove all trace of a user’s assessment data (stored in the database) from their computer.

The design of Dbmanager allows organizations to customize the ASSET databases to suit their own needs
They can add new stored procedures and change the structure of the ASSET tables as needed. Users
simply need to note that this operation must be performed at their own risk.

4.5 MSDE Data Backup

This section addresses the ability of ASSET to utilize the backup procedures provided by the MSDE
system. Several users have requested instructions on how to perform this. Officially the backup
procedures endorsed by NIST are utilizing System and Manager to export assessment data to XML
format. The following URLs describe backup procedures for MSDE:

http://www.swynk.com/sqlscripts/backuprest7.asp

http://www.richmondsys.co.uk/richmond-products/kb/supportdesk/database/DB00000008.htm

http://nsupport.elronsoftware.com/support/wi6web.nsf/d6bd51df55a92eb8852566e2005bb596/da17fc1e0
0f9d26085256b8a007d7692?OpenDocument

5. Security of ASSET

5.1 Introduction

This section describes the security considerations of ASSET. The security of the systems on which
ASSET was installed, and the data that it gathers, have been primary concerns influencing ASSET
development from the start. Much of the security of ASSET revolves around the MSDE system. The
following Microsoft URL lists vulnerabilities associated with MSDE:

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp?productid=31&
servicepackid=0&submit1=go&isie=yes

Components of ASSET such as the ADPU and custom network configurations serve to strengthen the
security of the machine on which ASSET is installed. Actual procedures for performing the security
options mentioned in this section are detailed in the ASSET user manual and are not discussed here.

5.2 MSDE Network Vulnerability

A default installation of MSDE opens a network port, TCP port 1433 that leaves a machine vulnerable to
exploitation. A malicious user can connect to a vulnerable MSDE installation through ODBC, ADO,
MDAC, or some other database connectivity API and execute the stored procedure xp_cmdshell. This SP
gives MSDE users access to an operating system command shell executing at the permissions of the user
account that started the MSDE service sqlservr.exe, which is normally the LocalSystem account. This by
itself is not as critical as the notion that Microsoft recommends that if users want SQL Server to be able to
use network shares to save data, then they must start the services with an account of higher privilege like
the Administrator account.

ASSET mitigates this vulnerability in two ways. First, ADPU application resets the ‘sa’ password to a
user-defined value. The second way is to disable MSDE network communications, closing the TCP port
that is opened during the MSDE installation (described in the ASSET user manual). Many “script kiddie”
tools that attempt to attack SQL Server and MSDE depend upon a blank ‘sa’ password. This security
process is not foolproof in that the password of the ‘sa’ account is stored on the hard drive in the ASSET
installation directory. Users must work with these security procedures to provide host-based security for
their machine. The following output from the nmap port scanner shows TCP port 1433 as being open on a
default installation of MSDE.

nmap (V. 2.54BETA15) scan initiated Wed Sep 11 10:21:06 2002 as: nmap -sT -oN msde1.out
10.0.0.26
Interesting ports on CLIENT (10.0.0.26):
(The 1529 ports scanned but not shown below are in state: filtered)
Port State Service
13/tcp open daytime
37/tcp open time
135/tcp open unknown
139/tcp open unknown
427/tcp open unknown
445/tcp open unknown
1025/tcp open listen
1032/tcp open iad3
1433/tcp open unknown

Nmap run completed at Wed Sep 11 10:27:33 2002 -- 1 IP address (1 host up) scanned in 387
seconds

61

The following output from nmap shows TCP port 1433 as closed after executing the instructions for
disabling network communications as specified in the ASSET User manual.

nmap (V. 2.54BETA15) scan initiated Wed Sep 11 10:33:38 2002 as: nmap -sT -oN msde2.out
10.0.0.26
Interesting ports on CLIENT (10.0.0.26):
(The 1530 ports scanned but not shown below are in state: filtered)
Port State Service
13/tcp open daytime
37/tcp open time
135/tcp open unknown
139/tcp open unknown
427/tcp open unknown
445/tcp open unknown
1025/tcp open listen
1032/tcp open iad3

Nmap run completed at Wed Sep 11 10:40:05 2002 -- 1 IP address (1 host up) scanned in 387
seconds

5.3 MSDE Service Packs

ASSET has been tested with service pack 3 of MSDE. This did not affect the operation of System or
Manager in any adverse manner. After the release of the ASSET tool in June 2002, service pack 4 for
MSDE was published by Microsoft. The following URL describes the fixes that service pack 3 provides:

http://support.microsoft.com/default.aspx?scid=KB;EN-US;Q274797&

Service pack 3 is a cumulative fix that includes all of the fixes that service pack 1 and 2 provided. If users
run vulnerability scanners against a machine with ASSET installed, they will note that the scanner lists
several vulnerabilities for the MSDE system. An explanation of these fixes is provided in the Help FAQ
for System and Manager. Service pack 4 for MSDE has not been tested yet. The download URL for
service pack 4 is as follows:

http://www.microsoft.com/sql/downloads/sp4.asp

In addition to MSDE service packs, future version of ASSET will include the MSDE version 2000 instead
of version 1.0.

5.4 MSDE Hotfixes

Users that have not installed any of the MSDE service packs or the latest service pack should absolutely
consider installing the MSDE hotfixes. The URL presented earlier in this section describes the patch
information for MSDE:

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp?productid=31&
servicepackid=0&submit1=go&isie=yes

Similar to many other Microsoft products, patches will be continually available as new vulnerabilities are
discovered. The Microsoft security site is a suitable download location for future patches for the MSDE
system.

6. ASSET Installer and Deployment

6.1 Windows NT Issues

This section addresses installer issues for Windows NT. Even though ASSET was developed on Windows
2000 Professional, it will not run on Windows NT Workstation 4.0 by default. To be specific, it is the
MSDE that cannot be installed on NT. The following table of requirements is for users who wish to install
ASSET on Windows NT Workstation 4.0:

Component Download Location

Service Pack 6a
(All applicable
hotfixes)

http://www.microsoft.com/ntserver/nts/downloads/recommended/SP6/allSP6.asp

Windows Installer
2.0

http://www.microsoft.com/downloads/release.asp?ReleaseID=32832&area=search&ordinal=2

MDAC 2.6.1 http://www.microsoft.com/data/download_270RTM.htm

Table 8 - Windows NT Workstation 4.0 Requirements

NT workstations do not have these components installed by default. If installing ASSET on Windows NT,
the items listed above must be installed before attempting to install ASSET. The ASSET installer will fail
when trying to install the MSDE without these components installed. Microsoft Office 2000 Premium
includes an install of the MSDE on disc 2. If Office 2000 Premium or later is installed, it includes the
requirements listed in the previous table and will allow ASSET to install.

NOTE: Deployment testing revealed that Windows NT installations took at least 1-3 minutes longer
than Windows 2000 Professional and Windows XP. Users should exercise patience when installing on
Windows NT and should not press the Cancel button to attempt to abort. Instead, they should use the
uninstallation procedures defined in the ASSET user manual if they are sure the installation has failed.

6.2 Windows 9x Issues

ASSET cannot install on the Windows 9x family of operating systems (e.g., Windows 95/98/ME) due to
an incompatibility in the operation of MSDE. MSDE uses TCP/IP to communicate with clients under the
9x kernel because it cannot support named pipes. In theory, if a user was to install MSDE manually and
configure the ASSET databases by hand (because the dbmanager.bat script will not run under Windows
9x), then they can reconfigure the ASSET configuration files to point to a new ODBC DSN. As discussed
in the security section, ASSET uses MSDE configured with named pipes to communicate with clients as
shown in the following figure.

63

Figure 36 - ASSET MSDE Communications Configuration

6.3 Windows Command Prompt

This section addresses why the Windows command prompt appears when System or Manager is started,
but not ADPU. Sun recommends that console applications be configure to start with the virtual machine
javaw.exe instead of java.exe. This version of the JVM closes the command window after the application
is started. System and Manager use classes from the Xerces and JDOM XML parsers to import and export
assessment information. Visual Café’s stand-alone archive configuration option (Project Options window)
does not import all of the required classes from these JAR files and therefore requires these JARs be
accessible at runtime. Using javaw.exe throws ClassNotFound (sun.tools.java.ClassNotFound)
exceptions for these classes. Because of this, System and Manager are started with batch scripts. The
following syntax from ASSETSystem.bat starts System:

C:\>java -cp ..\logger.jar;asset.jar;xercesImpl.jar;xmlParserAPIs.jar SATUI

The following syntax from ASSETManager.bat starts Manager:

java -cp "..\calendar.jar;..\ASSET à
System\asset.jar;..\xercesImpl.jar;..\xmlParserAPIs.jar;..\asset_core.jar;asset_admin.jar" à
SATAdmin

These batch scripts cause the command prompt to remain open after each application is started. In theory,
if one was to copy all of the classes from the JAR files listed in the commands above, they could
configure the JAR manifest files to launch with javaw instead of java.exe. This would cause the archive

files to be several MB in size. ADPU, on the other hand, does not require java.exe to start because all of
its required classes are contained within the JAR file ASSETPassword.jar.

NOTE: The main class attribute for ASSETPassword.jar must be set manually each time it is rebuilt
because Visual Café does not properly set the main class of the JAR file, even though it may be
specified in the project settings window.

A-1

Appendix A—Source Code and Class Diagrams

A.1 ASSET System Source Code

The source code for ASSET System, Manager, Core, and Change Password Utility can be found at the
NIST ASSET website, http://csrc.nist.gov/asset.

A.2 Class Diagrams

This section presents the Unified Modeling Language (UML) class diagrams for System, Manager, and
ADPU. No diagram is necessary for the Core project, since Visual Café copies the required contents of
Core into System and Manager where appropriate. These class diagrams were created using Object
Insight’s JVision. These diagrams do not include all subclasses (e.g., those denoted with a $ in Visual
Café), only the most important classes. Each diagram will be presented on a separate page and will not
include discussion; they are meant to allow developers to understand how the classes within each project
relate to one another.

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

A-1

Figure A-1 - System UML Class Diagram

A-2

Figure A-2 - Manager UML Class Diagram

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-1

Appendix B—Database

B.1 ER Diagram

This section presents the ER digram for the System and Manager databases. This ER digram was created
using ERWin 4. The ER digram in this section does not show the relationship of stored procedures to the
Manager or System database, only the referential integrity of the involved tables. The ER diagram is
presented on the next page.

B-2

assessment_question_responses

D:R
I:R
U:R

assessment_question_responses
D:R
I:R
U:R

assessors

D:R
I:R
U:R

assessors

D:R
I:R
U:R

assessors

D:R
I:R
U:R

component_criticality

D:R
I:R
U:R

components

D:R
I:R
U:R

conn_components

D:R
I:R
U:R

pubReferences

D:R
I:R
U:R

pubReferences

D:R
I:R
U:R

assessment_question_responses

assessment_id: varchar(100)
major_section: int
minor_section: int
question_number: int
version: int

level1: int
level2: int
level3: int
level4: int
level5: int
rbdm: int
cmnts: text(2147483647)
ar: int
na: int
reviewer: varchar(50)
completed: int
active: int

assessment_questions

major_section: int
minor_section: int
question_number: int
version: int

question_text: text(2147483647)
control_area: int
itsaf_level1: int
itsaf_level2: int
itsaf_level3: int
itsaf_level4: int
itsaf_level5: int

assessments

assessment_id: varchar(100)

start_timestamp: varchar(40)
completed: int
bookmark: varchar(15)
primary_assessor: varchar(50)
progress: int
active: int

assessors

full_name: varchar(50)
assessment_id: varchar(100)
major_section: int
minor_section: int
question_number: int
version: int

active: int

component_criticality

assessment_id: varchar(100)
component_num: varchar(100)

confidentiality: char(30)
integrity: char(30)
availability: char(30)
active: int

components

component_num: varchar(100)
assessment_id: varchar(100)

location: varchar(100)
component_name: varchar(50)
component_type: varchar(50)
assessment_obj: varchar(255)
active: int

conn_components

assessment_id: varchar(100)
conn_component: varchar(50)
component_num: varchar(100)

bce: int
active: int
planned_action: varchar(255)

publications

pub_number: int

pub_name: varchar(40)
pub_url: varchar(40)

pubReferences

major_section: int
minor_section: int
question_number: int
version: int
pub_number: int

SAT_Users

full_name: varchar(50)

email: varchar(40)
phone: varchar(20)
code: varchar(25)

sys_Component_Types

component_type: varchar(30)sys_controlareas

area_name: varchar(30)

area_index: int

Figure B-1 - ER Diagram for System and Manager

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-3

B.2 SQL Source Code

This section presents the SQL statements for the creation of the ASSET databases. The ASSET databases
are written using Transact-SQL (T-SQL), the dialect of SQL understood by the MSDE and SQL Server.
The statements include both table creation statements and stored procedure creation statements. They will
each be presented on a separate page. Many of the SQL scripts included with System also apply to
Manager since Manager needs the ability to act as System. Where applicable, if a script has been included
with System and it applies to Manager, only a reference to the System copy of the script will be added
rather than duplicating the SQL statement twice.

The SQL presented in this section is distributed with ASSET System and Manager, and can be executed
after ASSET has been installed if needed. Provided that any assessment information that was entered into
System is saved to XML, the System database can be deleted and restored again. For more information,
see the dbmanager.bat operation section in the body of the document. The SQL for System and Manager
is located in the SQL directory underneath the respective parent directories (ASSET System and ASSET
Manager) within the C:\Program Files\NISTASSET install location. The following figure shows a partial
listing of the SQL directory contents for System.

Figure B-2 - System Database Scripts Install Location

B.2.1 ASSET System SQL Table Statements

The following series of SQL statements presents the table creation statements for ASSET System and
their corresponding file names within the ASSET distribution. These statements are executed by the

B-4

dbmanager script during the installation of System, and if the System database is ever rebuilt, then they
are executed by the user from the command line. These files are located in:

C:\ProgramFiles\NISTASSET\ASSETSystem\sql\

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-5

-- This SQL statement creates the assessments table for ASSET System.
-- Note the primary key of this table is the string 'assessment_id'. This
-- field is a concatenation of the System name, primary assessor, and start
-- date of component being assessed through ASSET System.
-- Author - Mark McLarnon
create table assessments (
 assessment_id varchar(100) unique,
 start_timestamp varchar(40),
 completed integer,
 bookmark varchar(15),
 primary_assessor varchar(50),
 progress integer,
 primary key (assessment_id)
);

Included from file 1_assessments.sql

B-6

-- This SQL statement creates the table assessment_questions for the ASSET
-- System database. Note in this case that the question number as listed in
-- the 800-26 checklist is broken into three parts, major_section,
-- minor_section, and question_number. Both the assessment_question_responses
-- table and the assessors table will reference this table through
-- referential integrity.
-- Author - Mark McLarnon
create table assessment_questions (
 major_section integer,
 minor_section integer,
 question_number integer,
 version integer,
 question_text text,
 control_area integer,
 itsaf_level1 integer,
 itsaf_level2 integer,
 itsaf_level3 integer,
 itsaf_level4 integer,
 itsaf_level5 integer,
 primary key (major_section, minor_section, question_number, version)
);

Included from file 29_assessment_questions.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-7

-- This SQL statement creates the assessment_question_responses table for
-- ASSET System. This table holds a response to a checklist question. THe
-- checklist questions are contained within the assessment_questions table,
-- this table holds a foreign key reference to questions table.
-- The second foreign key is to the assessors table, this table is designed
-- to track who answered what question. Assessors holds a foreign key
-- reference to the SAT_Users table.
-- Author - Mark McLarnon
create table assessment_question_responses (
 assessment_id varchar(100),
 major_section integer,
 minor_section integer,
 question_number integer,
 version integer,
 level1 integer,
 level2 integer,
 level3 integer,
 level4 integer,
 level5 integer,
 rbdm integer,
 cmnts text,
 ar integer,
 na integer,
 reviewer varchar(50),
 completed integer
 primary key (assessment_id, major_section, minor_section,
question_number, version),
 constraint asID foreign key (assessment_id) references assessments
(assessment_id),
 constraint qmv1 foreign key (major_section, minor_section,
question_number, version) references assessment_questions (major_section,
minor_section, question_number, version)
);

Included from file 3_assessment_question_responses.sql

B-8

-- This SQL statement creates the SAT_Users table. This table is
-- referenced by the assessors table. Note that the fields here are
-- all stored as strings, the phone number is meant only as a
-- convience, not to be used in some type of numerical computation or
-- complex sort.
-- Author - Mark McLarnon
create table SAT_Users (
 full_name varchar(50) not null,
 email varchar(40),
 phone varchar(20),
 code varchar(25),
 primary key (full_name)
);

Included from file 31_sat_users.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-9

-- This SQL statement creates the assessor table. This table is responsible
-- for storing which assessor answered which question for an active
-- assessment. Note the three foreign key references here to the
-- assessment_questions, SAT_Users table, and the
-- assessment_question_responses table.
-- Author - Mark McLarnon
create table assessors (
 full_name varchar(50) not null,
 assessment_id varchar(100),
 major_section integer,
 minor_section integer,
 question_number integer,
 version integer,
 primary key (full_name, assessment_id, major_section, minor_section,
question_number, version),
 constraint asID2 foreign key (assessment_id) references assessments
(assessment_id),
 constraint email foreign key (full_name) references sat_users
(full_name),
 constraint qmv2 foreign key (major_section, minor_section,
question_number, version) references assessment_questions (major_section,
minor_section, question_number, version)
);

Included from file 42_assessors.sql

B-10

-- This SQL statement creates the publications table. This table is designed
-- to store a publication reference for a particular reference.
-- In version 1.00 of ASSET, this table is not currently used. It was
-- designed to hold the references that a particular question had to a
-- particular reference source.
-- Author - Mark McLarnon
create table publications (
 pub_number integer not null,
 pub_name varchar(40),
 pub_url varchar(40),
 primary key (pub_number)
);

Included from file 6_publications.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-11

-- This SQL statement creates the pubReferences table. This table holds a 1
-- to many relationship with the publications table. This setup allows a
-- single question to reference more than one publication without violating
-- 3NF.
-- Author - Mark McLarnon
create table pubReferences (
 major_section integer unique,
 minor_section integer unique,
 question_number integer unique,
 version integer,
 pub_number integer,
 primary key (major_section,minor_section,version,question_number,
pub_number),
 constraint pNum foreign key pub_number) references publications
(pub_number),
 constraint qmv3foreign key (major_section, minor_section,
question_number, version)references assessment_questions (major_section,
minor_section, question_number, version)
);

Included from file 7_pubReferences.sql

B-12

-- Purpose - ASSET System database script
-- This SQL script creates the components table. The context is
-- straightforward except for the component_num field. This field is designed
-- to hold the contents of the Component Number field from the ASSET System
-- user interface. Initially this field was a number but was changed to allow
-- alphanumeric characters. To make this change, 9 edits to the SQL scripts
-- were required.
-- Author - Mark McLarnon
create table components (
 component_num varchar(100),
 assessment_id varchar(100),
 location varchar(100),
 component_name varchar(50),
 component_type varchar(50),
 assessment_obj varchar(255),
 primary key (component_num, assessment_id),
 constraint asID4 foreign key (assessment_id) references assessments
(assessment_id)
);

Included from file 8_components.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-13

-- This SQL statement creates the component_criticality table. This table
-- references the components table with the asID9 foreign key reference.
-- Author - Mark McLarnon
create table component_criticality (
 assessment_id varchar(100),
 component_num varchar(100),
 confidentiality char(30),
 integrity char(30),
 availability char(30),
 primary key (component_num, assessment_id),
 constraint asID9 foreign key (component_num, assessment_id) references
components(component_num, assessment_id),
);

Included from file 9_component_criticality.sql

B-14

-- This SQL statement creates the conn_components table. This table holds a
-- foreign key reference to the components table through the asID14 foreign
-- key.
-- Author - Mark McLarnon
create table conn_components (
 assessment_id varchar(100),
 component_num varchar(100),
 conn_component varchar(50),
 bce integer,
 planned_action varchar(255),
 primary key (assessment_id, component_num, conn_component),
 constraint asID14 foreign key (component_num, assessment_id) references
components (component_num, assessment_id),
);

Included from file 91_conn_components.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-15

-- This table holds the component types for when a user starts a new
-- assessment and has to choose what type of component it is.
-- Author - Mark McLarnon
create table sys_Component_Types (
 component_type varchar(30),
 primary key (component_type)
);

Included from file sys_Component_types.sql

B-16

-- This table holds the control areas for the checklist. It is used to build
-– the question map because on the map, the questions are organized by
control -- area
-- Author - Mark McLarnon
create table sys_controlareas (
 area_name varchar(30) unique,
 area_index integer,
 primary key (area_name)
);

Included from file sys_controlareas.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-17

B.2.2 ASSET System SQL Stored Procedure Statements

This section lists the stored procedures (SPs) from System exactly as contained within the database
creation scripts. Both System and Manager rely heavily on stored procedures for their performance
benefits over supplying SQL strings through JDBC to MSDE. The use of stored procedures also promotes
the extensibility of ASSET to work on alternate RDBMS platforms because no platform-specific SQL
code is contained within the ASSET source. These files are found in the following directory:

C:\Program Files\NISTASSET\ASSET System\sql\

B-18

-- Stored Procedure - current_control_areas
-- ASSET Component - ASSET System
-- Purpose - This stored procedure extracts the current control areas from
-- the sys_controlareas table within System. It is called in the
-- rebuildMap() method of System to rebuild the System question map when
-- needed.
-- Author - Mark McLarnon
create procedure current_control_areas AS
SELECT sys_controlareas.area_name, sys_controlareas.area_index
FROM sys_controlareas
GO

Included from file sp_CurrentControlArea.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-19

-- Stored Procedure - current_question_map
-- ASSET Component - ASSET System
-- Purpose - This stored procedure extracts all of the relevant question info
-- from the assessment_questions table to build the question map. The reason
-– that the question text is extracted as well is that when a new question is
-- to be displayed, while System is running, it simply asks the data
-- structure that holds the map contents what the new question number and
-- text are rather than having to call the database each time.
--
-- The variable cntrlarea is a string that represents the current control
-- area being mapped. This means that this stored procedure is only
-- called as many times as there are control areas.
-- Author - Mark McLarnon
create procedure current_question_map
(
 @cntrlarea varchar(25)
)
AS
SELECT
 assessment_questions.major_section,
 assessment_questions.minor_section,
 assessment_questions.question_number,
 assessment_questions.question_text,
 assessment_questions.itsaf_level1,
 assessment_questions.itsaf_level2,
 assessment_questions.itsaf_level3,
 assessment_questions.itsaf_level4,
 assessment_questions.itsaf_level5
FROM
 assessment_questions
WHERE
 ((
 (
 assessment_questions.control_area
)
 =
 @cntrlarea))
GO

Included from file sp_CurrentControlAreas.sql

B-20

-- Stored Procedure - current_question_set
-- ASSET Component - ASSET System
-- Purpose - This stored procedure extracts all of the relevant question info
-- from the question table where the version number matches 0. Although the
-- version flag is not used in version 1.00 of ASSET, it’s intent is to only
-- extract questions that match version 0 each time, these are the most
-- current versions of the questions in the checklist. The intent for future
-- releases of ASSET is to allow users to add new questions to the checklist
-- using ASSET Manager.
-- Author - Mark McLarnon
create procedure current_question_set
AS
SELECT assessment_questions.*
FROM assessment_questions
WHERE assessment_questions.version = 0
GO

Included from file sp_CurrentQuestionSet.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-21

-- Stored Procedure - delete_saved_question
-- ASSET Component - ASSET System
-- Purpose - This stored procedure is called when a user presses the clear
-- button within ASSET System for a question that they have previously
-- answered. If they have saved their progress to the database, then without
-- this information although the answer in memory is reset to empty, when the
-- database was loaded again, it would extract the old answer from the
-- assessment_question_responses table and list that as the correct response
-- for this supposedly deleted question.
--
-- The assessment_id variable dictates which assessment the question
-- corresponds to. The remaining three variables, major_section,
-- minor_section, and question_number, compose the three-part question number
-- as listed in the NIST Special Pub 800-26.
-- Author - Mark McLarnon
create procedure delete_saved_question
(
 @assessment_id varchar(100),
 @major_section integer,
 @minor_section integer,
 @question_number integer
)
AS
IF (EXISTS (SELECT major_section, minor_section, question_number FROM
assessment_question_responses WHERE assessment_id = @assessment_id))
BEGIN
 DELETE from
 assessment_question_responses
 WHERE
 assessment_id = @assessment_id
 AND
 major_section = @major_section
 AND
 minor_section = @minor_section
 AND
 question_number = @question_number
END
GO

Included from file sp_DeleteSavedQuestion.sql

B-22

-- Stored Procedure - get_all_component_information
-- ASSET Component - ASSET System
-- Purpose - This stored procedure extracts all of the relevant component
-- info from both the components table and the component_criticality table.
--
-- The variable component_number is used to identify which component info to
-– extract from the components table. The variable assessment_id is used to
-- extract only the component info that corresponds to a particular
-- assessment. This operates under the theory that if the same component is
-- assessed twice, the information could change between the time of the two
-- assessments.
-- Author - Mark McLarnon
create procedure get_all_component_information
(
 @component_num varchar(100),
 @assessment_id varchar(100)
)
AS
SELECT
 *
FROM
 components
INNER JOIN
 component_criticality
ON
 components.component_num = component_criticality.component_num
AND
 components.assessment_id = component_criticality.assessment_id
WHERE
 components.component_num = @component_num
AND
 components.assessment_id = @assessment_id
GO

Included from file sp_getAllComponentInformation.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-23

-- Stored Procedure - get_assessorreviewers_per_assessment
-- ASSET Component - ASSET System
-- Purpose - This stored procedure is used to extract all of the assessors
-- that contributed to a specific assessment. This information is used to
-- populate the Assign to Alternate Reviewer box on the question tab in
-- System. The variable assessment_id indicates which assessment to extract
-- assessors for.
-- Author - Mark McLarnon
create procedure get_assessorreviewers_per_assessment
(
@assessment_id varchar(100)
)
AS
SELECT
 DISTINCT(SAT_Users.full_name),
 SAT_Users.email,
 SAT_Users.phone
FROM
 SAT_Users
INNER JOIN
 assessment_question_responses
ON
 SAT_Users.full_name = assessment_question_responses.reviewer
WHERE
 assessment_question_responses.assessment_id = @assessment_id
GO

Included from file sp_getAssessorReviewersPerAssessment.sql

B-24

-- Stored Procedure - get_assessors_per_assessment
-- ASSET Component - ASSET System
-- Purpose - This stored procedure extracts the assessors from the SAT_Users
-– table inner-joined with the assessors table to fill the Answered By choice
-- box on the question tab within System.
--
-- The variable assessment_id is used to determine which assessment to
-- extract assessors information for.
-- Author - Mark McLarnon
create procedure get_assessors_per_assessment
(
@assessment_id varchar(100)
)
AS
SELECT
 DISTINCT(SAT_Users.full_name),
 SAT_Users.email,
 SAT_Users.phone
FROM
 assessors
INNER JOIN
 SAT_Users
ON
 SAT_Users.full_name=assessors.full_name
WHERE
 assessors.assessment_id = @assessment_id
GO

Included from file sp_getAssessorsPerAssessment.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-25

-- Stored Procedure - get_component_criticalities
-- ASSET Component - ASSET System
-- Purpose - This stored procedure extracts the component criticality choices
-- from the component_criticality table for a specific component and a
-- specific assessment. It is used when an assessment is opened again as its
-- values set the Confidentiality, Integrity, Availability drop-down boxes on
the System
-- identification tab.
-- Author - Mark McLarnon
create procedure get_component_criticalities
(
 @component_num varchar(100),
 @assessment_id varchar(100)
)
AS
SELECT
 *
FROM
 component_criticality
WHERE
 component_num = @component_num
AND
 assessment_id = @assessment_id
GO

Included from file sp_getComponentCriticalities.sql

B-26

-- Stored Procedure - get_conn_systems
-- ASSET Component - ASSET System
-- Purpose - This stored procedure extracts the connected systems for a
-- particular System. It is used when the systems assessment information is
-- loaded from the database.
-- Author - Mark McLarnon
create procedure get_conn_systems
AS
SELECT
 DISTINCT component_num,
 conn_component,
 bce,
 planned_action
FROM conn_components
GO

Included from file sp_getConnectedSystems.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-27

-- Stored Procedure - get_conn_systems_per_assessment
-- ASSET Component - ASSET System
-- Purpose - This stored procedure extracts the connected systems for a
-- particular assessment. It inner-joins the components and conn_components
-- table to do so using the variables component_num (which component are they
-- connected to) and assessment_id
-- (for which assessment).
-- Author - Mark McLarnon
create procedure get_conn_systems_per_assessment
(
 @component_num varchar(100),
 @assessment_id varchar(100)
)
AS
SELECT
 *
FROM
 conn_components
WHERE
 component_num = @component_num
AND
 assessment_id = @assessment_id
GO

Included from file sp_getConnectedSystemsPerAssessment.sql

B-28

-- Stored Procedure - get_critical_listing
-- ASSET Component - ASSET System
-- Purpose - This stored procedure extracts the critical element question
-- response from the assessment_question_reponses table for a particular
-- assessement. Recall that these responses are computed automatically.
-- Author - Mark McLarnon
create procedure get_critical_listing
(
 @assessment_id varchar(100)
)
AS
SELECT
 major_section,
 minor_section,
 question_number
FROM
 assessment_question_responses
WHERE NOT
 minor_section = 0
AND
 question_number = 0
AND
 assessment_id = @assessment_id
GO

Included from file sp_getCriticalListing.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-29

-- Stored Procedure - get_critical_results
-- ASSET Component - ASSET System
-- Purpose - This stored procedure extracts the critical element question
-- response from the assessment_question_reponses table for a particular
-- assessment. Recall that these responses are computed automatically.
-- It is similar to the get_critical_listing SP except this one extracts all
-- of the information instead of just the question number.
-- Author - Mark McLarnon
create procedure get_critical_results
(
 @assessment_id varchar(100)
)
AS
SELECT *
FROM
 assessment_question_responses
WHERE NOT
 minor_section = 0
AND
 question_number = 0
AND
 assessment_id = @assessment_id
GO

Included from file sp_getCriticalResults.sql

B-30

-- Stored Procedure - get_na_questions
-- ASSET Component - ASSET System
-- Purpose - This stored procedure extracts the Non-Applicable questions for
-- a particular assessment. It is used to generate one of the reports for
-- System.
-- Author - Mark McLarnon
create procedure get_na_questions
(
 @assessment_id varchar(100)
)
AS
SELECT
 assessment_questions.question_text,
 assessment_question_responses.major_section,
 assessment_question_responses.minor_section,
 assessment_question_responses.question_number,
 cmnts
FROM
 assessment_questions
 INNER JOIN
 assessment_question_responses
 ON
 assessment_question_responses.major_section =
assessment_questions.major_section
 AND
 assessment_question_responses.minor_section =
assessment_questions.minor_section
 AND
 assessment_question_responses.question_number =
assessment_questions.question_number
WHERE
 assessment_question_responses.assessment_id=@assessment_id
AND
 assessment_question_responses.na = 1
AND NOT
 assessment_question_responses.question_number = 0
ORDER BY
 assessment_question_responses.major_section
GO

Included from file sp_getNAQuestions.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-31

-- Stored Procedure - get_policy_results
-- ASSET Component - ASSET System
-- Purpose - This stored procedure extracts the policy results from the
-- database for a particular assessment. All that this really corresponds to
-- is the questions within the assessment_question_responses table that have
-- a minor number of 0 and a question number of 0 and for which level 1 was
-- marked as 1 (achieved policy).
-- Author - Mark McLarnon
create procedure get_policy_results
(
 @assessment_id varchar(100)
)
AS
SELECT *
FROM assessment_question_responses
WHERE minor_section = 0 AND question_number = 0 AND assessment_id =
@assessment_id
GO

Included from file sp_getPolicyResults.sql

B-32

-- Stored Procedure - get_policy_results_and_text
-- ASSET Component - ASSET System
-- Purpose - This procedure extracts the policy questions from the
-- assessment_question_responses table including the text of the question. It
-- is used to generate a report for System.
-- Author - Mark McLarnon
create procedure get_policy_results_and_text
(
 @assessment_id varchar(100)
)
AS
SELECT
 assessment_questions.question_text,
 assessment_question_responses.major_section,
 assessment_question_responses.minor_section,
 assessment_question_responses.question_number,
 assessment_question_responses.level1
FROM
 assessment_questions
 INNER JOIN
 assessment_question_responses
 ON
 assessment_question_responses.major_section =
assessment_questions.major_section
 AND
 assessment_question_responses.minor_section =
assessment_questions.minor_section
 AND
 assessment_question_responses.question_number =
assessment_questions.question_number
WHERE
 assessment_question_responses.assessment_id=@assessment_id
AND
 assessment_question_responses.minor_section = 0
AND
 assessment_question_responses.question_number = 0
GO

Included from file sp_getPolicyResultsQuestionText.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-33

-- Stored Procedure - get_primary_assessor
-- ASSET Component - ASSET System
-- Purpose - This SP extracts the primary assessor for a particular
-- assessment; it is used to load a particular assessment.
-- Author - Mark McLarnon
create procedure get_primary_assessor
(
@assessment_id varchar(100)
)
AS
SELECT DISTINCT(SAT_Users.full_name), SAT_Users.email, SAT_Users.phone
FROM
 assessments
INNER JOIN
 SAT_Users
ON
 SAT_Users.full_name = assessments.primary_assessor
WHERE
 assessments.assessment_id = @assessment_id
GO

Included from file sp_getPrimaryAssessor.sql

B-34

-- Stored Procedure - get_question_count
-- ASSET Component - ASSET System
-- Purpose - THis procedure extracts the number of questions from the
-- database. It is used to compute the progress for a particular assessment.
-- Author - Mark McLarnon
create procedure get_question_count
AS

SELECT count(*) AS QuestionCount FROM assessment_questions WHERE
 (
 assessment_questions.minor_section = 0
 AND
 assessment_questions.question_number = 0
)
OR
 (
 NOT assessment_questions.question_number = 0
)
GO

Included from file sp_GetQuestionCount.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-35

-- Stored Procedure - get_question_results
-- ASSET Component - ASSET System
-- Purpose - This stored procedure extracts the question results information
-- for a particular question. Note that it inner-joins the
-- assessment_question_responses table with the assessors table to also
-- extract which assessor answered the question.
-- Author - Mark McLarnon
create procedure get_question_results
(
 @assessment_id varchar(100)
)
AS
SELECT
 assessment_question_responses.major_section,
 assessment_question_responses.minor_section,
 assessment_question_responses.question_number,
 level1,
 level2,
 level3,
 level4,
 level5,
 rbdm,
 cmnts,
 ar,
 na,
 reviewer,
 completed,
 assessors.full_name
FROM
 assessment_question_responses
 INNER JOIN
 assessors
 ON
 assessment_question_responses.assessment_id =
assessors.assessment_id
 AND
 assessment_question_responses.major_section =
assessors.major_section
 AND
 assessment_question_responses.minor_section =
assessors.minor_section
 AND
 assessment_question_responses.question_number =
assessors.question_number
WHERE
 assessment_question_responses.assessment_id = @assessment_id
GO

Included from file sp_getQuestionResults.sql

B-36

-- Stored Procedure - get_question_results_per_policy
-- ASSET Component - ASSET System
-- Purpose - This stored procedure extracts the question result information
-- for a set of questions based on which parent policy item it resides under.
-- It is used to generate a report for System.
-- Author - Mark McLarnon
create procedure get_question_results_per_policy
(
 @assessment_id varchar(100),
 @critical_major integer
)
AS
SELECT
 assessment_question_responses.major_section AS major_section,
 assessment_question_responses.minor_section AS minor_section,
 assessment_question_responses.question_number AS question_number,
 assessment_question_responses.level1 AS level1,
 assessment_question_responses.level2 AS level2,
 assessment_question_responses.level3 AS level3,
 assessment_question_responses.level4 AS level4,
 assessment_question_responses.level5 AS level5,
 na
FROM
 assessment_question_responses
 WHERE
 assessment_question_responses.assessment_id = @assessment_id
 AND
 assessment_question_responses.major_section = @critical_major
 AND NOT
 assessment_question_responses.minor_section = 0
 AND NOT
 assessment_question_responses.question_number = 0
GO

Included from file sp_getQuestionResultsPerPolicy.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-37

-- Stored Procedure - get_question_results_per_section
-- ASSET Component - ASSET System
-- Purpose - This question extracts the subbordinate question results from
-- the assessment_question_responses table for a particular critical
-- element. This stored procedure is used to load an assessment from the
-- database.
-- Author - Mark McLarnon
create procedure get_question_results_per_section
(
 @assessment_id varchar(100),
 @critical_major integer,
 @critical_minor integer,
 @critical_number integer
)
AS
SELECT
 assessment_question_responses.major_section AS major_section,
 assessment_question_responses.minor_section AS minor_section,
 assessment_question_responses.question_number AS question_number,
 assessment_question_responses.level1 AS level1,
 assessment_question_responses.level2 AS level2,
 assessment_question_responses.level3 AS level3,
 assessment_question_responses.level4 AS level4,
 assessment_question_responses.level5 AS level5,
 rbdm,
 cmnts,
 ar,
 na,
 reviewer,
 completed,
 assessors.full_name AS full_name
FROM
 assessment_question_responses
 INNER JOIN
 assessors
 ON
 assessment_question_responses.assessment_id =
assessors.assessment_id
 AND
 assessment_question_responses.major_section =
assessors.major_section
 AND
 assessment_question_responses.minor_section =
assessors.minor_section
 AND
 assessment_question_responses.question_number =
assessors.question_number
 WHERE
 assessment_question_responses.assessment_id = @assessment_id
 AND
 assessment_question_responses.major_section = @critical_major
 AND
 assessment_question_responses.minor_section = @critical_minor
GO

Included from file sp_getQuestionResultsPerSection.sql

B-38

-- Stored Procedure - get_rbdm_questions
-- ASSET Component - ASSET System
-- Purpose - This stored procedure extracts the Risk-Based Decision questions
-- for a particular assessment. It is used to generate one of the reports for
-- System.
-- Author - Mark McLarnon
create procedure get_rbdm_questions
(
 @assessment_id varchar(100)
)
AS
SELECT
 assessment_questions.question_text,
 assessment_question_responses.major_section,
 assessment_question_responses.minor_section,
 assessment_question_responses.question_number,
 cmnts
FROM
 assessment_questions
 INNER JOIN
 assessment_question_responses
 ON
 assessment_question_responses.major_section =
assessment_questions.major_section
 AND
 assessment_question_responses.minor_section =
assessment_questions.minor_section
 AND
 assessment_question_responses.question_number =
assessment_questions.question_number
WHERE
 assessment_question_responses.assessment_id=@assessment_id
AND
 assessment_question_responses.rbdm = 1
AND NOT
 assessment_question_responses.question_number = 0
GO

Included from file sp_getRBDMQuestions.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-39

-- Stored Procedure - get_saved_assessments
-- ASSET Component - ASSET System
-- Purpose - This stored procedure extracts a list of the saved assessments
-- from the database table assessments. It is used to populate the load
-- assessment dialog.
-- Author - Mark McLarnon
create procedure get_saved_assessments
AS
SELECT
 components.component_name AS component_name,
 components.component_num AS component_num,
 components.location AS component_location,
 components.component_type AS component_type,
 components.assessment_obj AS component_assessment_obj,
 assessments.assessment_id AS id,
 assessments.start_timestamp,
 assessments.completed,
 assessments.bookmark,
 assessments.primary_assessor
FROM
 assessments
INNER JOIN
 components
ON
 assessments.assessment_id=components.assessment_id
ORDER BY components.component_name
GO

Included from file sp_GetSavedAssessments.sql

B-40

-- Stored Procedure - get_connected_systems
-- ASSET Component - ASSET System
-- Purpose - This stored procedure extracts the connected system for a
-- particular system from the get_connected_systems table. It is used during
-- the assessment load process.
-- Author - Mark McLarnon
create procedure get_connected_systems
(
 @component_num varchar(100)
)
AS
SELECT *
FROM conn_components
WHERE component_num = @component_num
GO

Included from file sp_getSingleConnectedSystems.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-41

-- Stored Procedure - get_single_saved_assessments
-- ASSET Component - ASSET System
-- Purpose - This stored procedure extracts the information for a particular
-- assessment based on a component name and assessment start time. It is used
-- during the assessment export process.
-- Author - Mark McLarnon
create procedure get_single_saved_assessment
(
 @component_name varchar(50),
 @start_timestamp varchar(40)
)
AS
SELECT
 components.component_name AS component_name,
 components.component_num AS component_num,
 components.location AS component_location,
 components.component_type AS component_type,
 components.assessment_obj AS component_assessment_obj,
 assessments.assessment_id AS assessment_id,
 assessments.start_timestamp AS start_timestamp,
 assessments.completed, assessments.bookmark,
 assessments.primary_assessor,
 assessments.progress
FROM
 assessments
INNER JOIN
 components
ON
 assessments.assessment_id=components.assessment_id
WHERE
 components.component_name = @component_name
AND
 assessments.start_timestamp = @start_timestamp
ORDER BY components.component_name
GO

Included from file sp_GetSingleSavedAssessment.sql

B-42

-- Stored Procedure - get_single_saved_assessment_by_id
-- ASSET Component - ASSET System
-- Purpose - This procedure extracts all of the assessment information
-- for a particular component based on the assessment_id variable.
-- Author - Mark McLarnon
create procedure get_single_saved_assessment_by_id
(
 @assessment_id varchar(100)
)
AS
SELECT
 components.component_name AS component_name,
 components.component_num AS component_num,
 components.location AS component_location,
 components.component_type AS component_type,
 components.assessment_obj AS component_assessment_obj,
 assessments.assessment_id,
 assessments.start_timestamp,
 assessments.completed,
 assessments.bookmark,
 assessments.primary_assessor,
 assessments.progress
FROM
 components
INNER JOIN
 assessments
ON
 components.assessment_id = assessments.assessment_id
WHERE
 assessments.assessment_id = @assessment_id
GO

Included from file sp_GetSingleSavedAssessmentByAssessmentID.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-43

-- Stored Procedure - get_stored_assessors
-- ASSET Component - ASSET System
-- Purpose - This SP extracts the user information from the SAT_Users table.
-- It is used in the add_assessor dialog for existing assessors.
-- Author - Mark McLarnon
create procedure get_stored_assessors
AS
SELECT SAT_Users.full_name, SAT_Users.email, SAT_Users.phone, SAT_Users.code
FROM SAT_Users
GO

Included from file sp_GetStoredAssessors.sql

B-44

-- Stored Procedure - get_submitted_question_count
-- ASSET Component - ASSET System
-- Purpose - This SP extracts the question count for a particular assessment
-– by assessment_id.
-- Author - Mark McLarnon
create procedure get_submitted_question_count
(
 @assessment_id varchar(100)
)
AS
SELECT count (major_section) AS 'count' FROM assessment_question_responses
WHERE assessment_id = @assessment_id
GO

Included from file sp_getSubmittedQuestionCount.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-45

-- Stored Procedure - get_summary_question_results
-- ASSET Component - ASSET System
-- Purpose - This SP extracts the question response information for a
-- particular question for a particular assessment. It inner-joins the
-- assessment_question, assessment_question_responses, and assessors table.
-- Author - Mark McLarnon
create procedure get_summary_question_results
(
 @assessment_id varchar(100)
)
AS
SELECT
 assessment_questions.question_text,
 assessment_question_responses.major_section,
 assessment_question_responses.minor_section,
 assessment_question_responses.question_number,
 level1,
 level2,
 level3,
 level4,
 level5,
 rbdm,
 cmnts,
 ar,
 na,
 reviewer,
 completed,
 assessors.full_name
FROM
(
 assessment_questions
INNER JOIN
 assessment_question_responses
ON
 assessment_question_responses.major_section =
assessment_questions.major_section
AND
 assessment_question_responses.minor_section =
assessment_questions.minor_section
AND
 assessment_question_responses.question_number =
assessment_questions.question_number
)
INNER JOIN
 assessors
ON
 assessment_question_responses.assessment_id = assessors.assessment_id
AND
 assessment_question_responses.major_section = assessors.major_section
AND
 assessment_question_responses.minor_section = assessors.minor_section
AND
 assessment_question_responses.question_number =
assessors.question_number

WHERE
 assessment_question_responses.assessment_id = @assessment_id

B-46

ORDER BY
 assessment_question_responses.major_section,
 assessment_question_responses.minor_section,
 assessment_question_responses.question_number
GO

Included from file sp_getSummaryQuestionResults.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-47

-- Stored Procedure - insert_assessment_question_response
-- ASSET Component - ASSET System
-- Purpose - This SP saves the assessment question response for a single
-- question during a particular assessment. It is called once for each
-- question that is saved.
-- Author - Mark McLarnon
create procedure insert_assessment_question_response
(
@assessment_id varchar(100),
@major_section integer,
@minor_section integer,
@question_number integer,
@version integer,
@level1 integer,
@level2 integer,
@level3 integer,
@level4 integer,
@level5 integer,
@rbdm integer,
@cmnts text,
@ar integer,
@na integer,
@reviewer varchar(50),
@completed integer
)
AS
IF (NOT EXISTS (SELECT * FROM assessment_question_responses WHERE
assessment_id = @assessment_id AND major_section = @major_section AND
minor_section = @minor_section AND question_number = @question_number))
BEGIN
 INSERT INTO assessment_question_responses
 (
 [assessment_id],
 [major_section],
 [minor_section],
 [question_number],
 [version],
 [level1],
 [level2],
 [level3],
 [level4],
 [level5],
 [rbdm],
 [cmnts],
 [ar],
 [na],
 [reviewer],
 [completed]
)
 VALUES
 (
 @assessment_id,
 @major_section,
 @minor_section,
 @question_number,
 @version,
 @level1,

B-48

 @level2,
 @level3,
 @level4,
 @level5,
 @rbdm,
 @cmnts,
 @ar,
 @na,
 @reviewer,
 @completed
)
END
ELSE
 UPDATE assessment_question_responses
 SET level1 = @level1,
 level2 = @level2,
 level3 = @level3,
 level4 = @level4,
 level5 = @level5,
 rbdm = @rbdm,
 cmnts = @cmnts,
 ar = @ar,
 na = @na,
 reviewer = @reviewer,
 completed= @completed
 WHERE assessment_id = @assessment_id
 AND major_section = @major_section
 AND minor_section = @minor_section
 AND question_number= @question_number
GO

Included from file sp_InsertAssessmentQuestionResponse.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-49

-- Stored Procedure - save_answered_question
-- ASSET Component - ASSET System
-- Purpose - This SP saves accountability information for a question, who
-- answered the question drawn from the SAT_Users table.
-- Author - Mark McLarnon
create procedure save_answered_question
(
 @full_name varchar(50),
 @assessment_id varchar(100),
 @major_section integer,
 @minor_section integer,
 @question_number integer,
 @version integer
)
AS
IF (NOT EXISTS (SELECT * from assessors where assessment_id = @assessment_id
AND major_section = @major_section AND minor_section = @minor_section AND
question_number = @question_number AND version = @version))
BEGIN
 INSERT INTO assessors
 (
 [full_name],
 [assessment_id],
 [major_section],
 [minor_section],
 [question_number],
 [version]
)VALUES
 (
 @full_name,
 @assessment_id,
 @major_section,
 @minor_section,
 @question_number,
 @version
)
END
ELSE
 UPDATE assessors
 SET full_name = @full_name,
 version = @version
 WHERE assessment_id = @assessment_id
 AND major_section = @major_section
 AND minor_section = @minor_section
 AND question_number = @version
GO

Included from file sp_SaveAnsweredQuestion.sql

B-50

-- Stored Procedure - save_assessment
-- ASSET Component - ASSET System
-- Purpose - This SP saves assessment identification for a particular
-- assessment. It is called during the question map construction procedure,
-- after the assessment id process is complete.
--
-- NOTE the IF/THEN conditional it checks for the existence of the assessment
-- information before being saved to the database. If the information exists,
-- then it is merely updated instead of a new INSERT statement.
-- Author - Mark McLarnon
create procedure save_assessment
(
@assessment_id varchar(100),
@start_timestamp varchar(40),
@completed integer,
@bookmark varchar(15),
@primary_assessor varchar(50),
@progress integer
)

AS

IF (NOT EXISTS (SELECT * from assessments WHERE assessment_id =
@assessment_id))
BEGIN
 INSERT INTO assessments
 (
 [assessment_id],
 [start_timestamp],
 [completed],
 [bookmark],
 [primary_assessor],
 [progress]
)
 VALUES
 (
 @assessment_id,
 @start_timestamp,
 @completed,
 @bookmark,
 @primary_assessor,
 @progress
)
END
ELSE
 UPDATE assessments
 SET completed = @completed,
 bookmark = @bookmark,
 progress = @progress
 WHERE assessment_id = @assessment_id
GO

Included from file sp_SaveAssessment.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-51

-- Stored Procedure - save_bookmark
-- ASSET Component - ASSET System
-- Purpose - This SP saves the bookmark information for a particular
-- assessment. It is a string that represents the question that a user will
-- proceed to next.
-- Author - Mark McLarnon
create procedure save_bookmark
(
@bkmark varchar(15),
@assessment_id varchar(100)
)
AS
UPDATE assessments SET bookmark = @bkmark
WHERE assessment_id = @assessment_id
GO

Included from file sp_SaveBookmark.sql

B-52

-- Stored Procedure - save_component
-- ASSET Component - ASSET System
-- Purpose - This SP saves component information for a particular assessment.
-- It is called when the assessment identification process completes.
--
-- See SP save_assessment for explanation of IF/THEN conditional.
-- Author - Mark McLarnon
create procedure save_component
(
@component_num varchar(100),
@assessment_id varchar(100),
@location varchar(100),
@component_name varchar(50),
@component_type varchar(50),
@assessment_obj varchar(255)
)
AS
IF (NOT EXISTS (SELECT * from components WHERE component_num = @component_num
AND assessment_id = @assessment_id))
BEGIN
 INSERT INTO components
 (
 [component_num],
 [assessment_id],
 [location],
 [component_name],
 [component_type],
 [assessment_obj]
)
 VALUES
 (
 @component_num,
 @assessment_id,
 @location,
 @component_name,
 @component_type,
 @assessment_obj
)
END
ELSE
 UPDATE components
 SET location = @location,
 component_name = @component_name,
 component_type = @component_type,
 assessment_obj = @assessment_obj
 WHERE component_num = @component_num
 AND assessment_id = @assessment_id
GO

Included from file sp_SaveComponent.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-53

-- Stored Procedure - save_component_criticalities
-- ASSET Component - ASSET System
-- Purpose - This SP saves the component criticality information for a
-- particular component and assessment. It is called when the assessment
-- identification process completes.
--
-- See SP save_assessement for explanation of IF/THEN conditional.
-- Author - Mark McLarnon
create procedure save_component_criticalities
(
 @assessment_id varchar(100),
 @component_num varchar(100),
 @confidentiality char(30),
 @integrity char(30),
 @availability char(30)
)

AS

IF (NOT EXISTS (SELECT * FROM component_criticality WHERE assessment_id =
@assessment_id AND component_num = @component_num))
BEGIN
 INSERT INTO component_criticality
 (
 [assessment_id],
 [component_num],
 [confidentiality],
 [integrity],
 [availability]
)
 VALUES
 (
 @assessment_id,
 @component_num,
 @confidentiality,
 @integrity,
 @availability
)
END
ELSE
 UPDATE component_criticality
 SET confidentiality = @confidentiality,
 integrity = @integrity,
 availability = @availability
 WHERE assessment_id = @assessment_id
 AND component_num = @component_num
GO

Included from file sp_SaveComponentCriticalities.sql

B-54

-- Stored Procedure - save_connected_components
-- ASSET Component - ASSET System
-- Purpose - This SP saves the connected component information for a
-- particular component and assessment.
--
-- See SP save_assessment for explanation of IF/THEN conditional.
-- Author - Mark McLarnon
create procedure save_connected_components
(
@assessment_id varchar(100),
@component_num varchar(100),
@conn_component varchar(50),
@bce integer,
@planned_action varchar(255)
)
AS
IF (NOT EXISTS (SELECT * FROM conn_components WHERE component_num =
@component_num AND conn_component = @conn_component AND assessment_id =
@assessment_id))
BEGIN
 INSERT INTO conn_components
 (
 [assessment_id],
 [component_num],
 [conn_component],
 [bce],
 [planned_action]
)
 VALUES
 (
 @assessment_id,
 @component_num,
 @conn_component,
 @bce,
 @planned_action
)
END
ELSE
 UPDATE conn_components
 SET bce = @bce,
 planned_action = @planned_action
 WHERE
 component_num = @component_num
 AND
 conn_component = @conn_component
 AND
 assessment_id = @assessment_id
GO

Included from file sp_SaveConnectedComponents.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-55

-- Stored Procedure - save_new_assessor
-- ASSET Component - ASSET System
-- Purpose - This SP saves user information for an assessor that is added to
-- an assessment. It saves the new assessor information to the SAT_Users
-- table.
-- Author - Mark McLarnon
create procedure save_new_assessor
(
@full_name varchar(50),
@email varchar(40),
@phone varchar(20),
@code varchar(25)
)
AS
IF (NOT EXISTS (SELECT * FROM SAT_users WHERE full_name = @full_name))
BEGIN
 INSERT INTO SAT_Users
 (
 [full_name],
 [email],
 [phone],
 [code]
)
 VALUES
 (
 @full_name,
 @email,
 @phone,
 @code
)
END
 UPDATE SAT_Users
 SET email = @email,
 phone = @phone,
 code = @code
 WHERE full_name = @full_name
GO

Included from file sp_SaveNewAssessor.sql

B-56

B.2.3 ASSET Manager SQL Table Statements

The SQL statements used to create the tables of Manager are the same as those to create the tables of
System. Refer to the previos section on ASSET System SQL Table Statements for more information.
These statements can be found in the following folder:

C:\Program Files\NISTASSET\ASSET Manager\sql

B.2.4 ASSET Manager SQL Stored Procedure Statements

The following twenty-four Manager SPs provided are those that are different from System. All other SPs
provided are the same as System.

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-57

-- Stored Procedure - count_sensitivities
-- ASSET Component - ASSET Manager
-- Purpose - This procedure counts the system names from the ASSET Manager DB
-- based on one of the three sensitivity fields, confidentiality, integrity,
-- and availability. This SP uses the sp_executesql SP provided by T-SQL to
-- provide a dynamic nature. Note the use of the IF/THEN conditional.
-- Author - Mark McLarnon
create procedure count_sensitivities
(
 @field varchar(50),
 @value varchar(50)
)
AS
SET QUOTED_IDENTIFIER OFF
DECLARE @buffer nvarchar(1024)

IF (@field = 'confidentiality')
 BEGIN
 SET @buffer = N'SELECT COUNT(*) AS totals from component_criticality
WHERE confidentiality = ''' + CAST (@value AS nvarchar(100)) + ''''
 exec sp_executesql @buffer
 END
IF (@field = 'integrity')
 BEGIN
 SET @buffer = N'SELECT COUNT(*) AS totals from component_criticality
WHERE integrity = ''' + CAST (@value AS nvarchar(100)) + ''''
 exec sp_executesql @buffer

 END
IF (@field = 'availability')
 BEGIN
 SET @buffer = N'SELECT COUNT(*) AS totals from component_criticality
WHERE availability = ''' + CAST (@value AS nvarchar(100)) + ''''
 exec sp_executesql @buffer

 END
GO

Included from file sp_CountSensitivites.sql

B-58

-- Stored Procedure - delete_assessment_information
-- ASSET Component - ASSET Manager
-- Purpose - This SP deletes the assessment information from the assessments
-- table based on the parameter assessment_id supplied. This SP is a part of
-– the parent SP that deletes assessment information from all necessary
-- tables.
-- Author - Mark McLarnon
create procedure delete_assessment_information
(
@assessment_id varchar(100)
)
AS
DELETE from assessments
WHERE assessment_id = @assessment_id
GO

Included from file sp_DeleteAssessmentInformation.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-59

-- Stored Procedure - delete_assessor_accountability
-- ASSET Component - ASSET Manager
-- Purpose - This SP deletes assessment accountability information from
-- the assessors table based on the parameter assessment_id. This SP is a
-- part of a parent SP that deletes assessment information from all necessary
-- tables.
-- Author - Mark McLarnon
create procedure delete_assessor_accountability
(
@assessment_id varchar(100)
)
AS
DELETE from assessors
WHERE assessment_id = @assessment_id
GO

Included from file sp_DeleteAssessorAccountability.sql

B-60

-- Stored Procedure - delete_component_criticality
-- ASSET Component - ASSET Manager
-- Purpose - See SP delete_assessment_information.
-- Author - Mark McLarnon
create procedure delete_component_criticality
(
@assessment_id varchar(100),
@component_num varchar(100)
)
AS
DELETE from component_criticality
WHERE assessment_id = @assessment_id AND component_num = @component_num
GO

Included from file sp_DeleteComponentCriticality.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-61

-- Stored Procedure - delete_component_information
-- ASSET Component - ASSET Manager
-- Purpose - See SP delete_assessment_information.
-- Author - Mark McLarnon
create procedure delete_component_information
(
@assessment_id varchar(100),
@component_num varchar(100)
)
AS
DELETE from components
WHERE component_num = @component_num AND assessment_id = @assessment_id
GO

Included from file sp_DeleteComponentInformation.sql

B-62

-- Stored Procedure - delete_connected_components
-- ASSET Component - ASSET Manager
-- Purpose - See SP delete_assessment_information.
-- Author - Mark McLarnon
create procedure delete_connected_components
(
@assessment_id varchar(100),
@component_num varchar(100)
)
AS
DELETE from conn_components
WHERE component_num = @component_num AND assessment_id = @assessment_id
GO

Included from file sp_DeleteConnectedComponents.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-63

-- Stored Procedure - delete_question_responses
-- ASSET Component - ASSET Manager
-- Purpose - See SP delete_assessment_information.
-- Author - Mark McLarnon
create procedure delete_question_responses
(
@assessment_id varchar(100)
)
AS
DELETE from assessment_question_responses
WHERE assessment_id = @assessment_id
GO

Included from file sp_DeleteQuestionResponses.sql

B-64

-- Stored Procedure - delete_saved_assessment
-- ASSET Component - ASSET Manager
-- Purpose - See SP delete_assessment_information.
-- Author - Mark McLarnon
create procedure delete_saved_assessment
(
@assessment_id varchar(100),
@component_name varchar(50),
@start_timestamp varchar(50)
)
AS
DECLARE @component_num varchar(100)

SET @component_num = (SELECT component_num from components where
component_name = @component_name)

EXECUTE delete_connected_components @assessment_id, @component_num

EXECUTE delete_component_criticality @assessment_id, @component_num

EXECUTE delete_question_responses @assessment_id

EXECUTE delete_assessor_accountability @assessment_id

EXECUTE delete_component_information @assessment_id, @component_num

EXECUTE delete_assessment_information @assessment_id

GO

Included from file sp_DeleteSavedAssessments.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-65

-- Stored Procedure - get_all_assessment_information
-- ASSET Component - ASSET Manager
-- Purpose - This SP extracts all assessment information from the assessments
-- components and component_criticality table as inner-joins.
-- Author - Mark McLarnon
create procedure get_all_assessment_information
AS
SELECT
 assessments.assessment_id,
 assessments.completed,
 assessments.primary_assessor,
 components.component_num,
 components.location,
 components.component_name,
 components.component_type,
 component_criticality.confidentiality,
 component_criticality.integrity,
 component_criticality.availability
FROM
(
 assessments
INNER JOIN
 components
ON
 assessments.assessment_id = components.assessment_id
)
INNER JOIN
 component_criticality
ON
 components.component_num = component_criticality.component_num
AND
 components.assessment_id = component_criticality.assessment_id
AND
 assessments.active = 1
AND
 components.active = 1
GO

Included from file sp_getAllAssessmentInformation.sql

B-66

-- Stored Procedure - get_all_questions
-- ASSET Component - ASSET Manager
-- Purpose - This SP extracts the questions from assessment_questions table
-- inner-joined with the sys_controlareas table.
-- Author - Mark McLarnon
create procedure get_all_questions
AS
SELECT *
FROM
 sys_controlareas
INNER JOIN
 assessment_questions
ON
 sys_controlareas.area_index = assessment_questions.control_area
GO

Included from file sp_getAllQuestions.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-67

-- Stored Procedure - get_assessment_count
-- ASSET Component - ASSET Manager
-- Purpose - This SP extracts the number of assessments stored in the Manager
-- database.
-- Author - Mark McLarnon
create procedure get_assessment_count
AS
select count(*) AS AssessmentCount
from assessments
GO

Included from file sp_GetAssessmentCount.sql

B-68

-- Stored Procedure - get_assessor_report
-- ASSET Component - ASSET Manager
-- Purpose - This SP extracts the assessors that were involved with a
-- specific assessment from the assessors table.
-- Author - Mark McLarnon
create procedure get_assessor_report
(
@assessment_id varchar(100)
)
AS
SELECT *
FROM assessors
WHERE assessment_id = @assessment_id
GO

Included from file sp_getAssessorReport.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-69

-- Stored Procedure - get_components
-- ASSET Component - ASSET Manager
-- Purpose - This SP extracts the list of components from the components
-- table.
-- Author - Mark McLarnon
create procedure get_components
AS
SELECT *
FROM components
GO

Included from file sp_getComponents.sql

B-70

-- Stored Procedure - get_questions
-- ASSET Component - ASSET Manager
-- Purpose - This SP extracts a listing of the current questions from the
-- assessment_questions table.
-- Author - Mark McLarnon
create procedure get_questions
(
 @version integer
)
AS
SELECT *
FROM
 sys_controlareas
INNER JOIN
 assessment_questions
ON
 sys_controlareas.area_index = assessment_questions.control_area
WHERE
 version = @version
GO

Included from file sp_getQuestions.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-71

-- Stored Procedure - get_system_organization
-- ASSET Component - ASSET Manager
-- Purpose - This SP extracts a listing of all of the systems within the
-- Manager database and their associated location.
-- Author - Mark McLarnon
create procedure get_system_organization
AS
SELECT
 components.component_num,
 component_name,
 location
FROM
 components
WHERE
 components.active = 1
GO

Included from file sp_getSummarySystemOrganizations.sql

B-72

-- Stored Procedure - get_system_sentivity
-- ASSET Component - ASSET Manager
-- Purpose - This SP extracts a listing of the systems within the Manager
-- database and their associated sensitivity values, C, I and A.
-- Author - Mark McLarnon
create procedure get_system_sensitivity
AS
SELECT
 components.component_num,
 component_name,
 component_criticality.confidentiality,
 component_criticality.integrity,
 component_criticality.availability
FROM
 components INNER JOIN component_criticality
 ON
 components.component_num = component_criticality.component_num
WHERE
 components.active = 1
AND
 component_criticality.active = 1
GO

Included from file sp_getSummarySystemSensitivity.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-73

-- Stored Procedure - get_systems_by_type
-- ASSET Component - ASSET Manager
-- Purpose - This SP extracts a complete listing of the systems within the
-- Manager database and either associated system type.
-- Author - Mark McLarnon
create procedure get_systems_by_type
AS
SELECT component_num,
 component_name,
 component_type
FROM
 components
WHERE
 components.active = 1
GO

Included from file sp_getSystemsByType.sql

B-74

-- Stored Procedure - get_sys_types
-- ASSET Component - ASSET Manager
-- Purpose - This SP extracts a listing of the systems types from the Manager
-- database.
-- Author - Mark McLarnon
create procedure get_sys_types
AS
SELECT *
FROM sys_Component_Types
GO

Included from file sp_getSystemTypes.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-75

-- Stored Procedure - query_single_saved_assessment
-- ASSET Component - ASSET Manager
-- Purpose - This SP extracts all of the information for a particular
-- assessment of a particular system from the assessments table inner-joined
-- with the components table.
-- Author - Mark McLarnon
create procedure query_single_saved_assessment
(
 @assessment_id varchar(100)
)
AS
SELECT
 components.component_name AS component_name,
 components.component_num AS component_num,
 components.location AS component_location,
 components.component_type AS component_type,
 components.assessment_obj AS component_assessment_obj,
 assessments.assessment_id,
 assessments.start_timestamp,
 assessments.completed,
 assessments.bookmark,
 assessments.primary_assessor
FROM
 assessments
INNER JOIN
 components
ON
 assessments.assessment_id = components.assessment_id
WHERE
 assessments.assessment_id = @assessment_id
ORDER BY
 components.component_name
GO

Included from file sp_QuerySingleSavedAssessment.sql

B-76

-- Stored Procedure - rpt_reset_active_assessments
-- ASSET Component - ASSET Manager
-- Purpose - This SP resets the systems within the Manager database to all
-- being active.
-- Author - Mark McLarnon
create procedure rpt_reset_active_assessments
AS
UPDATE assessments SET assessments.active = 1
WHERE NOT assessments.active = 1

UPDATE assessment_question_responses SET assessment_question_responses.active
= 1
WHERE NOT assessment_question_responses.active = 1

UPDATE assessors SET assessors.active = 1
WHERE NOT assessors.active = 1

UPDATE components SET components.active = 1
WHERE NOT components.active = 1

UPDATE component_criticality SET component_criticality.active = 1
WHERE NOT component_criticality.active = 1

UPDATE conn_components SET conn_components.active = 1
WHERE NOT conn_components.active = 1
GO

Included from file sp_ResetActiveAssessments.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-77

-- Stored Procedure - search_saved_assessments
-- ASSET Component - ASSET Manager
-- Purpose - This procedure searches the manager database based on the string
-- value that the user supplies. The field parameter determines which field
-- the user wishes to search on. The conversion between a string on the
-- Manager UI and the actual field name is accomplished with a hash table.
-- Author - Mark McLarnon
create procedure search_saved_assessments
(
@field varchar(30),
@value varchar(100)
)
AS
SET QUOTED_IDENTIFIER OFF
DECLARE @buffer nvarchar(1024)

IF (@field = 'assessment_id')
 BEGIN
 SET @buffer = N'SELECT components.component_name AS component_name,
components.component_num AS component_num, components.location AS
component_location, components.component_type AS component_type,
components.assessment_obj AS component_assessment_obj,
assessments.assessment_id AS id, assessments.start_timestamp,
assessments.completed, assessments.bookmark, assessments.primary_assessor
FROM assessments INNER JOIN components ON
assessments.assessment_id=components.assessment_id WHERE
assessments.assessment_id = ''' + CAST (@value AS nvarchar(100)) + ''''
 exec sp_executesql @buffer
 END

IF (@field = 'component_num')
 BEGIN
 SET @buffer = N'SELECT components.component_name AS component_name,
components.component_num AS component_num, components.location AS
component_location, components.component_type AS component_type,
components.assessment_obj AS component_assessment_obj,
assessments.assessment_id AS id, assessments.start_timestamp,
assessments.completed, assessments.bookmark, assessments.primary_assessor
FROM assessments INNER JOIN components ON
assessments.assessment_id=components.assessment_id WHERE
components.component_num = ''' + CAST (@value AS nvarchar(100)) + ''''
 exec sp_executesql @buffer
 END

IF (@field = 'component_name')
 BEGIN
 SET @buffer = N'SELECT components.component_name AS component_name,
components.component_num AS component_num, components.location AS
component_location, components.component_type AS component_type,
components.assessment_obj AS component_assessment_obj,
assessments.assessment_id AS id, assessments.start_timestamp,
assessments.completed, assessments.bookmark, assessments.primary_assessor
FROM assessments INNER JOIN components ON
assessments.assessment_id=components.assessment_id WHERE
components.component_name = ''' + CAST (@value AS nvarchar(100)) + ''''
 exec sp_executesql @buffer
 END

B-78

IF (@field = 'component_type')
 BEGIN
 SET @buffer = N'SELECT components.component_name AS component_name,
components.component_num AS component_num, components.location AS
component_location, components.component_type AS component_type,
components.assessment_obj AS component_assessment_obj,
assessments.assessment_id AS id, assessments.start_timestamp,
assessments.completed, assessments.bookmark, assessments.primary_assessor
FROM assessments INNER JOIN components ON
assessments.assessment_id=components.assessment_id WHERE
components.component_type = ''' + CAST (@value AS nvarchar(100)) + ''''
 exec sp_executesql @buffer
 END

IF (@field = 'location')
 BEGIN
 SET @buffer = N'SELECT components.component_name AS component_name,
components.component_num AS component_num, components.location AS
component_location, components.component_type AS component_type,
components.assessment_obj AS component_assessment_obj,
assessments.assessment_id AS id, assessments.start_timestamp,
assessments.completed, assessments.bookmark, assessments.primary_assessor
FROM assessments INNER JOIN components ON
assessments.assessment_id=components.assessment_id WHERE components.location
= ''' + CAST (@value AS nvarchar(100)) + ''''
 exec sp_executesql @buffer
 END

IF (@field = 'start_timestamp')
 BEGIN
 SET @buffer = N'SELECT components.component_name AS component_name,
components.component_num AS component_num, components.location AS
component_location, components.component_type AS component_type,
components.assessment_obj AS component_assessment_obj,
assessments.assessment_id AS id, assessments.start_timestamp,
assessments.completed, assessments.bookmark, assessments.primary_assessor
FROM assessments INNER JOIN components ON
assessments.assessment_id=components.assessment_id WHERE
assessments.start_timestamp = ''' + CAST (@value AS nvarchar(100)) + ''''
 exec sp_executesql @buffer
 END

IF (@field = 'completed')
 BEGIN
 SET @buffer = N'SELECT components.component_name AS component_name,
components.component_num AS component_num, components.location AS
component_location, components.component_type AS component_type,
components.assessment_obj AS component_assessment_obj,
assessments.assessment_id AS id, assessments.start_timestamp,
assessments.completed, assessments.bookmark, assessments.primary_assessor
FROM assessments INNER JOIN components ON
assessments.assessment_id=components.assessment_id WHERE
assessments.completed = ''' + CAST (@value AS nvarchar(100)) + ''''
 exec sp_executesql @buffer
 END

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-79

IF (@field = 'bookmark')
 BEGIN
 SET @buffer = N'SELECT components.component_name AS component_name,
components.component_num AS component_num, components.location AS
component_location, components.component_type AS component_type,
components.assessment_obj AS component_assessment_obj,
assessments.assessment_id AS id, assessments.start_timestamp,
assessments.completed, assessments.bookmark, assessments.primary_assessor
FROM assessments INNER JOIN components ON
assessments.assessment_id=components.assessment_id WHERE assessments.bookmark
= ''' + CAST (@value AS nvarchar(100)) + ''''
 exec sp_executesql @buffer
 END

IF (@field = 'assessment_obj')
 BEGIN
 SET @buffer = N'SELECT components.component_name AS component_name,
components.component_num AS component_num, components.location AS
component_location, components.component_type AS component_type,
components.assessment_obj AS component_assessment_obj,
assessments.assessment_id AS id, assessments.start_timestamp,
assessments.completed, assessments.bookmark, assessments.primary_assessor
FROM assessments INNER JOIN components ON
assessments.assessment_id=components.assessment_id WHERE
components.assessment_obj = ''' + CAST (@value AS nvarchar(100)) + ''''
 exec sp_executesql @buffer
 END

IF (@field = 'primary_assessor')
 BEGIN
 SET @buffer = N'SELECT components.component_name AS component_name,
components.component_num AS component_num, components.location AS
component_location, components.component_type AS component_type,
components.assessment_obj AS component_assessment_obj,
assessments.assessment_id AS id, assessments.start_timestamp,
assessments.completed, assessments.bookmark, assessments.primary_assessor
FROM assessments INNER JOIN components ON
assessments.assessment_id=components.assessment_id WHERE
assessments.primary_assessor = ''' + CAST (@value AS nvarchar(100)) + ''''
 exec sp_executesql @buffer
 END
GO

Included from file sp_SearchSavedAssessments.sql

B-80

-- Stored Procedure - search_saved_assessments_partial
-- ASSET Component - ASSET Manager
-- Purpose - This is a experimental SP that performs the same function as the
-- search_saved_assessments SP except uses partial text searching.
-- Author - Mark McLarnon
create procedure search_saved_assessments_partial
(
@field varchar(30),
@value varchar(100)
)
AS
SET QUOTED_IDENTIFIER OFF
DECLARE @buffer nvarchar(1024)

IF (@field = 'assessment_id')
 BEGIN
 SET @buffer = N'SELECT components.component_name AS component_name,
components.component_num AS component_num, components.location AS
component_location, components.component_type AS component_type,
components.assessment_obj AS component_assessment_obj,
assessments.assessment_id AS id, assessments.start_timestamp,
assessments.completed, assessments.bookmark, assessments.primary_assessor
FROM assessments INNER JOIN components ON
assessments.assessment_id=components.assessment_id WHERE CONTAINS
(assessment_id, ''' + CAST (@value AS nvarchar(100)) + ''')'
 print @buffer
 exec sp_executesql @buffer
 END

IF (@field = 'component_num')
 BEGIN
 SET @buffer = N'SELECT components.component_name AS component_name,
components.component_num AS component_num, components.location AS
component_location, components.component_type AS component_type,
components.assessment_obj AS component_assessment_obj,
assessments.assessment_id AS id, assessments.start_timestamp,
assessments.completed, assessments.bookmark, assessments.primary_assessor
FROM assessments INNER JOIN components ON
assessments.assessment_id=components.assessment_id WHERE CONTAINS
(component_num, ''' + CAST (@value AS nvarchar(100)) + ''')'
 exec sp_executesql @buffer
 END

IF (@field = 'component_name')
 BEGIN
 SET @buffer = N'SELECT components.component_name AS component_name,
components.component_num AS component_num, components.location AS
component_location, components.component_type AS component_type,
components.assessment_obj AS component_assessment_obj,
assessments.assessment_id AS id, assessments.start_timestamp,
assessments.completed, assessments.bookmark, assessments.primary_assessor
FROM assessments INNER JOIN components ON
assessments.assessment_id=components.assessment_id WHERE CONTAINS
(component_name, ''' + CAST (@value AS nvarchar(100)) + ''')'
 print @buffer
 exec sp_executesql @buffer
 END

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-81

IF (@field = 'component_type')
 BEGIN
 SET @buffer = N'SELECT components.component_name AS component_name,
components.component_num AS component_num, components.location AS
component_location, components.component_type AS component_type,
components.assessment_obj AS component_assessment_obj,
assessments.assessment_id AS id, assessments.start_timestamp,
assessments.completed, assessments.bookmark, assessments.primary_assessor
FROM assessments INNER JOIN components ON
assessments.assessment_id=components.assessment_id WHERE CONTAINS
(component_type, ''' + CAST (@value AS nvarchar(100)) + ''')'
 exec sp_executesql @buffer
 END

IF (@field = 'location')
 BEGIN
 SET @buffer = N'SELECT components.component_name AS component_name,
components.component_num AS component_num, components.location AS
component_location, components.component_type AS component_type,
components.assessment_obj AS component_assessment_obj,
assessments.assessment_id AS id, assessments.start_timestamp,
assessments.completed, assessments.bookmark, assessments.primary_assessor
FROM assessments INNER JOIN components ON
assessments.assessment_id=components.assessment_id WHERE CONTAINS (location,
''' + CAST (@value AS nvarchar(100)) + ''')'
 exec sp_executesql @buffer
 END

IF (@field = 'start_timestamp')
 BEGIN
 SET @buffer = N'SELECT components.component_name AS component_name,
components.component_num AS component_num, components.location AS
component_location, components.component_type AS component_type,
components.assessment_obj AS component_assessment_obj,
assessments.assessment_id AS id, assessments.start_timestamp,
assessments.completed, assessments.bookmark, assessments.primary_assessor
FROM assessments INNER JOIN components ON
assessments.assessment_id=components.assessment_id WHERE CONTAINS
(start_timestamp, ''' + CAST (@value AS nvarchar(100)) + ''')'
 exec sp_executesql @buffer
 END

IF (@field = 'completed')
 BEGIN
 SET @buffer = N'SELECT components.component_name AS component_name,
components.component_num AS component_num, components.location AS
component_location, components.component_type AS component_type,
components.assessment_obj AS component_assessment_obj,
assessments.assessment_id AS id, assessments.start_timestamp,
assessments.completed, assessments.bookmark, assessments.primary_assessor
FROM assessments INNER JOIN components ON
assessments.assessment_id=components.assessment_id WHERE CONTAINS (completed,
''' + CAST (@value AS nvarchar(100)) + ''')'
 exec sp_executesql @buffer
 END

B-82

IF (@field = 'bookmark')
 BEGIN
 SET @buffer = N'SELECT components.component_name AS component_name,
components.component_num AS component_num, components.location AS
component_location, components.component_type AS component_type,
components.assessment_obj AS component_assessment_obj,
assessments.assessment_id AS id, assessments.start_timestamp,
assessments.completed, assessments.bookmark, assessments.primary_assessor
FROM assessments INNER JOIN components ON
assessments.assessment_id=components.assessment_id WHERE CONTAINS (bookmark,
''' + CAST (@value AS nvarchar(100)) + ''')'
 exec sp_executesql @buffer
 END

IF (@field = 'assessment_obj')
 BEGIN
 SET @buffer = N'SELECT components.component_name AS component_name,
components.component_num AS component_num, components.location AS
component_location, components.component_type AS component_type,
components.assessment_obj AS component_assessment_obj,
assessments.assessment_id AS id, assessments.start_timestamp,
assessments.completed, assessments.bookmark, assessments.primary_assessor
FROM assessments INNER JOIN components ON
assessments.assessment_id=components.assessment_id WHERE CONTAINS (''' + CAST
(@value AS nvarchar(100)) + ''')'
 exec sp_executesql @buffer
 END

IF (@field = 'primary_assessor')
 BEGIN
 SET @buffer = N'SELECT components.component_name AS component_name,
components.component_num AS component_num, components.location AS
component_location, components.component_type AS component_type,
components.assessment_obj AS component_assessment_obj,
assessments.assessment_id AS id, assessments.start_timestamp,
assessments.completed, assessments.bookmark, assessments.primary_assessor
FROM assessments INNER JOIN components ON
assessments.assessment_id=components.assessment_id WHERE CONTAINS (''' + CAST
(@value AS nvarchar(100)) + ''')'
 exec sp_executesql @buffer
 END
GO

Included from file sp_SearchSavedAssessmentsPartial.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

B-83

-- Stored Procedure - set_active_assessments
-- ASSET Component - ASSET Manager
-- Purpose - This SP sets certain assessments as active as chosen by the
-- user. It uses the sp_executesql SP to execute dynamic SQL; this way the
user can
-- set the list of active assessments in real time.
-- Author - Mark McLarnon
create procedure set_active_assessments
(
@values varchar(1024)
)
AS
DECLARE @buffer nvarchar(1024)
DECLARE @c_values nvarchar(1024)

SET @c_values = CONVERT(nvarchar(1024), @values)

SET @buffer = N'UPDATE assessments SET active = 0 WHERE assessment_id NOT IN
' + @c_values
exec sp_executesql @buffer

SET @buffer = N'UPDATE assessments SET active = 1 WHERE assessment_id IN ' +
@c_values
exec sp_executesql @buffer

SET @buffer = N'UPDATE assessment_question_responses SET active = 0 WHERE
assessment_id NOT IN ' + @c_values
exec sp_executesql @buffer

SET @buffer = N'UPDATE assessment_question_responses SET active = 1 WHERE
assessment_id IN ' + @c_values
exec sp_executesql @buffer

SET @buffer = N'UPDATE assessors SET active = 0 WHERE assessment_id NOT IN '
+ @c_values
exec sp_executesql @buffer

SET @buffer = N'UPDATE assessors SET active = 1 WHERE assessment_id IN ' +
@c_values
exec sp_executesql @buffer
GO

Included from file sp_SetActiveAssessments.sql

B-84

-- Stored Procedure - set_active_components
-- ASSET Component - ASSET Manager
-- Purpose - This procedure works in tandem with the set_active_assessments
-- SP.
-- Author - Mark McLarnon
create procedure set_active_components
(
@values varchar(1024)
)
AS
DECLARE @buffer nvarchar(1024)
DECLARE @c_values nvarchar(1024)

SET @c_values = CONVERT(nvarchar(1024), @values)

SET @buffer = N'UPDATE components SET active = 0 WHERE component_num NOT IN '
+ @c_values
exec sp_executesql @buffer

SET @buffer = N'UPDATE components SET active = 1 WHERE component_num IN ' +
@c_values
exec sp_executesql @buffer

SET @buffer = N'UPDATE conn_components SET active = 0 WHERE component_num NOT
IN ' + @c_values
exec sp_executesql @buffer

SET @buffer = N'UPDATE conn_components SET active = 1 WHERE component_num IN
' + @c_values
exec sp_executesql @buffer

SET @buffer = N'UPDATE component_criticality SET active = 0 WHERE
component_num NOT IN ' + @c_values
exec sp_executesql @buffer

SET @buffer = N'UPDATE component_criticality SET active = 1 WHERE
component_num IN ' + @c_values
exec sp_executesql @buffer
GO

Included from file sp_SetActiveComponents.sql

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

C-1

Appendix C—Advanced Troubleshooting

This section presents all of the advanced troubleshooting procedures for ASSET. It is important to note
that all of these procedures are outlined on the NIST ASSET website. This website will always contain
the latest troubleshooting procedures, and users should check this first for the latest information.

Perhaps the most important troubleshooting point to make is the operating systems on which ASSET will
run successfully:

• Windows 2000 Professional
• Windows XP Professional
• Windows NT Workstation 4.0 (with user action)

C.1 MSDE Interoperability

Other applications that utilize the MSDE system will cause interoperability issues with ASSET.
Specifically, Microsoft’s diagramming tool Visio has known interoperability problems with all other
applications that utilize MSDE. The Auto Discovery and Layout add-on to Visio 2000 Enterprise Edition
utilizes the MSDE. Microsoft has stated that Visio 2000 Enterprise Edition and later expects the ‘sa’
account to have a null password. If the ASSET installation changes the ‘sa’ account, this will cause Visio
to cease to operate as expected.

Multiple laboratory tests have shown that ASSET installs successfully on a system that has all versions of
Visio installed. User reports have shown that although users are not always able to successfully change
the MSDE password during the installation process, they can do so after the installation has completed.
This process is outlined in detail on the ASSET website.

Microsoft Share Point Team Services and Microsoft Project Central both perform the same operation in
changing the ‘sa’ account password and, therefore, will likely not interoperate with ASSET. These
products were not tested together on the same machine because it was not intended for ASSET to coexist
on machines with these products.

The ASSET installation process requires that the MSDE and even ASSET program files be installed to
the C:\ drive. This is referred to by the operating system environment variable %SystemDrive%. Users
that have manipulated the ASSET installer to install files to their locations have reported problems with
ASSET operation. This is outside of the bounds of the intended operation of ASSET.

C.2 Changing the Default Database Password

If users have installed a product that has changed the password for the ‘sa’ account like those mentioned
in the last section, they will need to know this password so that ASSET can function. When the password
is not blank, the password change feature of the ASSET installer will not succeed, and users will have to
edit the configuration files of System and Manager manually. This process is outlined in support
documents on the ASSET website. For products like Share Point Team Services and Project Central, refer
to their documentation on how to obtain the password for the ‘sa’ account. Future versions of ASSET
may utilize an alternate login than the ‘sa’ account to mitigate these problems.

C-2

C.3 ACL/Security Templates

ASSET users that operate on Windows 2000 and Windows XP may notice problems installing and
operating ASSET if their machine has a configured security policy. As stated in the ASSET User manual,
users need to be logged into their machine with Administrative privileges to install ASSET. If they have
used a tool like secedit.exe to custom configure the security of their machine, ASSET will most likely not
install. This has to do with the security permissions placed upon the Program Files directories. Of the
example security policies provided with Windows 2000 Professional, only the basicwk.inf security policy
has been tested to work with ASSET successfully.

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

D-1

Appendix D—Design Considerations

This section outlines the design considerations that have affected the development of ASSET and the
section within this document that users can refer to for more information. The design considerations are
presented in the following table with an associated reference section within the body of the document.

Consideration Associated Section

System UI uses Swing Metal PLAF 3.1
No sorting provided in ASSET 1.0 3.5
Keyboard navigation requires SHIFT-TAB instead of TAB only 3.1.1.2
No partial text searching in Manager 3.4.5
No hierarchical distribution of System and Manager 4.3
ASSET Uses MSDE and T-SQL 4.1
UI delivered via JInternalFrames instead of JFrames 3.1.2

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

E-1

Appendix E—Acronyms

ACL Access Control List
ADPU ASSET Database Password Utility
API Applications Programming Interface
ASSET Automated Security Self-Evaluation Tool
DSN Data Source Name
DTD XML Document Type Definition
ER Entity relationship
GISRA Government Information Security Reform Act
HTML Hyper Text Markup Language
IDE Integrated Development Environment
ITL Information Technology Laboratory
ITSAF IT Security Assessment Framework
JAR Java archive
JDBC Java Database Connectivity
JDK Java Development Kit
ME Windows Millennium Edition
MMC Microsoft Management Console
MSBA Microsoft Security Baseline Analyzer
MSDE Microsoft SQL Server Desktop Engine
NIST National Institute of Standards and Technology
ODBC Open database connectivity
PLAF Pluggable Look and Feel
SAX Simple API for XML Processing
SQL Select Query Language
SP Stored procedure
SP 800-26 NIST Special Publication 800-26
T-SQL Transact SQL
UML Unified Modeling Language
URL Uniform Resource Location
XML Extensible Markup Language
XP Windows XP

 NISTIR 6951, ASSET TECHNICAL DOCUMENTATION V1.03

F-1

Appendix F—References

This section lists the Internet references cited for design considerations made within the ASSET source
code. Readers may also refer to section 1.6 of the document for a listing of the external sources referenced
within this document. The URLs listed here are accompanied by a short description.

URL Description

http://www.jguru.com/faq/view.jsp?EID=316478 Describes method for navigating among components on a
Swing user interface using the TAB key.

http://www2.epocworld.com/kbjava.nsf/ce9a3a52e9d
969788025670e00429dbd/cc18b44bb062199c80256
9e50058aaf1?OpenDocument

Describes the use of getKeyChar() method when
implementing KeyPressedEvent action handler.

http://www2.gol.com/users/tame/swing/examples/JT
ableExamples5.html

Describes method for implementing bidirectional sorting
within Jtables.

http://www.ibiblio.org/xml/books/xmljava/chapters/c
h03s03.html

Describes method for saving XML documents to outfiles
without using XML parsers or preprocessors.

http://pooh.east.asu.edu/Cet427/ClassNotes/Backgro
und/cnBackground-24.html

Provides example on implementing Threads in Java by
extending the Thread class instead of imp lementing the
Runnable interface.

http://dbserv.jinr.ru/js/content/java/New-
tutorial/ui/swing/filechooser.html

Describes method for programming JFileChooser on
Swing.

http://java.sun.com/docs/books/tutorial/uiswing/misc
/plaf.html

Web page describing the Pluggable look and feel (PLAF)
design of Swing.

http://support.microsoft.com/default.aspx?scid=kb;E
N-US;q241397

URL that provides recommendations for backing up
MSDE databases using Transact-SQL.

http://www.xml-
zone.com/articles/pm020101/pm020101-1.asp

Online article that describes parsing XML files.

http://www.xml.com/1999/09/conformance/reports/r
eport-xml4j-val.html

XML article that describes SAX XML processors and
required tag structure.

http://developer.java.sun.com/developer/TechTips/20
00/tt0627.html

JDC TechTips article that provides examples of using the
SAX and DOM API from the jdom.org.

http://www7.software.ibm.com/vad.nsf/Data/Docum
ent2329

Article from IBM that describes the Model-View-
Controller architecture.

http://www.esus.com/javaindex/j2se/jdk1.2/javaxswi
ng/editableatomiccontrols/jtable/jtablesortrows.html

Article that describes alternate method for implementing
sorting procedures within Swing JTable interface.

http://www.codeguru.com/java/articles/141.shtml
Article that describes using JTree to display text across
multiple lines. This URL describes the need to use the
Metal PLAF.

http://www.esus.com/javaindex/j2se/jdk1.2/javaxswi
ng/editableatomiccontrols/jtable/jtabledetectsel.html

Article that describes the use of ActionHandler to detect
the selection of certain cell within JTable using
ColumnModelListener class.

http://www.esus.com/javaindex/j2se/jdk1.2/javaxswi
ng/editableatomiccontrols/jtable/jtablewidthcolumn.h
tml

Article that describes the process to set the width of a
Column within a JTable on Swing.

http://dbserv.jinr.ru/js/content/java/New-
tutorial/ui/swing/filechooser.html

Additional article that describes use of JFileChoose within
Swing application, especially method to set selected file
name.

http://www.esus.com/javaindex/j2se/jdk1.2/javaxswi
ng/editableatomiccontrols/jtable/jtabletextarea.html

Article that describes method to embed JTextArea within
cell of JTable using CustomCellRenderer class.

