
Planning with Incrementally
Created Graphs

NISTIR 6895

Balakirsky, S.

Otthein, H.

U. S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Intelligent Systems Division

Gaithersburg, MD 20899-8230

QC,
/oo
UuSCo

nist
National Institute off Standards
and Technology
Technology Administration

U.S. Department of Commerce

NISTIR 6895

Planning with Incrementally

Created Graphs

Balakirsky, S.

Otthein, H.

U. S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Intelligent Systems Division

Gaithersburg, MD 20899-8230

July 25, 2002

U.S. DEPARTMENT OF COMMERCE
Donald L. Evans, Secretary

TECHNOLOGY ADMINISTRATION
Phillip J. Bond, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arden L Bement, Jr., Director

Planning with Incrementally Created Graphs
Stephen Balakirsky

1

Otthein Herzog"

Abstract

A framework for planning algorithms that is both optimal and complete will be presented.

The algorithm allows for the planning of optimal paths through a multi-level hierarchy of

annotated graph spaces. A rich world model that contains multi-resolution attributes,

costs, and predicates controls the integrated incremental construction and evaluation of

the planning graph in dynamic environments. The properties of this framework are

proven and a number of example problem domains are presented that show how this

framework can incorporate both hard and soft constraints during both graph construction

and arc evaluation.

Keywords
Planning graph; world model; optimal plan; robotic planning

Introduction

Many of today’s challenging planning problems may be solved through the use of

discrete representations. These include such diverse problems as robotic vehicle planning,

parts assembly planning, and domain independent planning systems. These problems may
also include dynamic environments in which real time replanning is required and in

which novel planning and multi-resolution data requirements exist. The problem space

for these tasks may be flat (single level) or may involve multilevel hierarchies.

Once the problem has been mapped to a discrete form, a planning graph may be created

and evaluated in order to plan sequences of actions that allow the system to meet specific

goals. In traditional graph planning techniques, this planning graph is fully constructed

beforehand and stored for use during the planning cycle. In this paper, a new framework

is presented that incorporates and extends existing graph planning and search techniques

and that allows for the incremental construction and evaluation of the planning graph

during the execution of the planning cycle. A rich world model that may contain data at

multiple resolutions and in multiple formats controls this incremental construction and

evaluation.

It will be shown that this framework allows for significant savings in both time and

memory requirement for the planning system. In addition, the plans created will be able

to take into account both constraints on the possible state space and the cost/benefit of

state transitions. Constraints on the planning space strictly prohibit certain state

transitions, while cost/benefit analysis allows the system to prefer certain classes of state

transitions to others.

1

NIST, stepheirgnist.gov
2 Work performed while guest researcher at NIST from Center for Computing Technologies. University of

Bremen. Germany, herzog@;tzi.de

1

In addition to finding a set of state transitions that allow the system to transition from the

current state to the goal state, later sections will show that this framework finds plans that

are the optimal set of transitions (optimal path) necessary to traverse from the system’s

current state to the goal state with respect to a dynamic cost function and system

constraints. In this case, optimality refers to the property that given a set of discrete states

and possible state transitions, no lower cost walk of state transitions exists than the

solution provided by this system for a given cost function. The properties of this

framework are proven and a number of example problem domains are presented that

show how this framework can incorporate hard and soft constraints during both graph

construction and arc evaluation.

Framework Definitions

It is desired to define a planning space S that will allow for a cost optimal sequence of

transitions to be enumerated for the task of transitioning from one element of S to

another. In order to sequence the members of S, an ordered sequence T of points (ti,

...,tm) in time and the node space ND will now be defined. The space S over N n
, is a

basic structure such that s^ e S where k = (kp ...,k
n), ki,...,kn e N.

Definition 1: The node space ND is defined by (SxT) and nd e ND = (s^tj)
, ti e T.

Figure 1: Depiction of spaces and sets from problem formulation.

The space S for n = 2 is depicted as a plane in Figure 1 . The space ND is depicted as the

partially filled spheres that lie in several time indexed planes.

Before one can discuss the optimality of a path, there must exist attributes with which to

compute the cost/benefit of the path. Under the current construction of the node space,

the only cost/benefit measure that can exist (and hence the only measure with which to

compute optimality) is the number of node transitions that make up a plan. An additional

objective of the planning system is to provide the infrastructure necessary to develop a

2

more complex notion of cost. In order to accomplish this, the notion of attributes will be

introduced. These attributes capture all of the static and time varying features that can be

associated with sr at time t.
k

Definition 2: Define the set ofpossible node general attributes NGATT = {ngatt
|

ngatt

is a possible feature of nd^
t

g ND}.

It is possible that a specific node ndj-
(

will not contain all of the possible general

attributes. Therefore the set of actual node attributes NATT c; NGATT will be defined.

ATT is defined as a set of sets, where each member att r is the set NATT of all features
k,t

that can possibly be associated with s^ at time t.

Definition 3: Define the set of actual node attributes NATT = {natt
|

natt is a feature of

nd-
1

g ND} and the set of attribute sets as ATT = { NATT^
1

1

k = (k
x
,...,kn), ki,...,kn g

N.feT}.

The set of attributes ATT is represented in Figure 1 as a collocated plane (the shaded

regions) where each shaded rectangle represents a set of attributes NATT. To simplify

future notation, an annotated node space AND may be defined that combines the node

space ND and the set of attribute sets ATT.

Definition 4: An annotated node space AND is defined as AND = (NDxATT) where

and r g AND.
k,t

If the planning space is feature rich, NATT may be quite large. Computing the

cost/benefit ratio by utilizing all of the features in this potentially large set will needlessly

increase the computational burden. Instead of utilizing NATT, a new set of node relevant

features NRATT will be defined that only includes the features that are relevant for the

current instantiation of the cost/benefit evaluation at a given time, and is a subset of

NATT. RATT is then defined as the set of sets consisting of the feature sets NRATT and

is a subset of ATT.

Definition 5: Define the set NRATT = { nratt r I nratt,- <z natt r } to be the set of all

domain dependent node relevant attributes for node nd^
t

and the set of relevant

attribute sets as RATT = {NRATT
tt |

k = (kj,...,k
n), ki,...,kn g N, f g T }.

3

Figure 2 depicts the attribute set relationships NRATT <z NATT c: NGATT and the node

relationships RAND c: AND c: S along with the functional relationships between

attributes and nodes.

Figure 2: Concentric areas showing the set relationships between the attribute sets and

nodes, with arcs showing the relationships between them.

It is possible that a given s- at time t will not posses any relevant features and

nratt
k t

will be empty. The nodes corresponding to members ofRATT that contain non-

empty NRATT sets are depicted as the white rectangles in Figure 1, i.e. RATT is used as

a constraint on the node space AND in order to create a set of relevant annotated nodes.

Definition 6: The set of relevant annotated nodes RAND cz AND is defined by RAND =

{rand
k t

e RAND, rand
kt = (and

£ t

,nratt
£ t) |

||nratt
£ t ||

> 0, k = (k 19 . .
.
,k

n) , ki,...,kn

G N, I = (l
1
,...,ln), li,...,ln G N, t, G T }.

The following definitions on graphs are based on definitions from Aho and Ullman [1].

In order to form a graph, a set of connections between nodes must be established. This

connection is from a start node to an end node, and may be viewed as a binary relation

between the two nodes. These binary relations, or arcs are depicted as black arrows in

Figure 3.

Figure 3: A path through a planning graph and the spanning set for each node in the path.

The path origin is the black circle, the goal is the white circle, and the intermediate nodes

are the gray circles.

4

Definition 7: An arc e ARC is defined as a binary relation r on RAND. A directed graph

consists of a set of nodes RAND and a set of arcs ARC.

Given a set of attributed nodes, a domain dependent spanning function may be defined

that specifies which nodes are reachable from a given node in a single transition. These

nodes are called the node’s successors and are connected with an arc.

Definition 8: Define the spanning set SP of a node rand- as the set of all successor
k.tj

nodes SP(rand
£

)={sp
£

|||nratt
£

||>0}.

The spanning set of each black node at time t is shown for the next consecutive time slice

in Figure 3. The series of black nodes and the arcs that connect them form a path through

the graph. The path in Figure 3 is of length 3. It should be noted that the spanning set is

time dependent, and therefore the graph topology may change on a planning cycle to

planning cycle basis. In addition the spanning set for node nd- at time t may not be equal

to the spanning set for node nd^ at time t+1.

Definition 9: Given a directed graph GR = (RAND, ARC), a path prand(rand- ,

rand,), k = (k
1
,...,kn), ki,...,kn e N, I = (lls ...,ln), li ln e N, t, e T, is defined as

a list of nodes (v
1>t

,v
2>t

,...,vm) such that = k
,
vm = 1 and there is an arc from each

node to the next. The length m of the path is defined as the number of arcs along the path.

Definition 10: A graph is defined as an acyclic graph if no path begins and ends at the

same node.

Lemma 1: The graph GR is an acyclic graph.

Proof: Assume that the path prand(rand, , rand
T), k = 1 exists. Then by Definition 9

Mo 1 -»t o

there must exist an arc r(rand, , rand T) such that d > 0 and rand T is a successor ofv
J.t^d ’ Mo' Mo

rand, . However, by Definition 8, rand, g SP(rand,), d > 0, and t + d > t.
J>*0+d Mo J»*o+d

Therefore r(rand, , rand.) does not exist and prand(rand- , rand,), k = 1

,

J’^0+d Mo Mo

cannot exist which contradicts the basic assumption.

As previously stated, one of the objectives of this system is not to find simply any path

from a given start node to a given goal node, but to find a cost optimal path. Since a path

5

is a series of arcs, a function for computing the cost of an arc must first be defined. As
stated by Fernandez and Gonzalez [6], this function is known as a cost function and may
be defined as:

Definition 11: The mapping c:ARC— is called the cost function of an arc.

The set of costs C must be at least a partially ordered set, but may also be a totally

ordered set and must have the “plus” (+) operator defined. One typical specification for

the set (C is C = 91
+

.

Once the cost of individual arcs is known, it is a simple matter to compute the cost

associated with an entire path.

Definition 12: The cost associated to a path prand is defined as pc = ^c(r(v
i
,v

i+1))

i=l

The system objective of finding the cost optimal path between two nodes may now be

achieved by finding the minimum cost path.

Definition 13: Define the minimum cost path prandmm between the nodes rand^
t

and

rand
f t+m

where m^Oand k =(k!,...,kn), ki,...,kn e N, I = (l15 ...,ln) , li,...,ln e N such

that pc(prandmm) < pc(prand), prand e {q e PRAND
| q = prand(rand

]
. t

,rand
f

)}.

Integrated Incremental Graph Generation and Planning

Algorithm

In a traditional graph planning approach, a graph that represents the entire discrete

problem space is constructed prior to a search [2,3,1 1,13,15], The problem constraints are

then encoded as weights on the individual arcs, and a graph search is performed to

determine the minimum cost path through the planning space. As will be shown, this has

potentially unrealizable memory requirements to store the graph structure and

unrealizable computational time requirements to determine graph node connections and

arc costs. In addition, as stated by Russell ([14], p. 92), the only place where knowledge

can be applied once the graph has been constructed is in the choice of which node to

expand next.

An algorithm will now be presented that incrementally builds and evaluates a planning

graph in order to find the minimum cost path prandmm between the nodes rand— and
start,

t

0

6

rand—
(m

. Unlike traditional graph search techniques such as breadth first, depth first,

and A* [12,14], this technique provides for knowledge to be applied in both the graph

construction and planning step. Only as much of the graph as is necessary to perform the

task at hand will be constructed, and this construction will be interleaved with the arc cost

evaluation and graph search. Through the use of this technique, both hard and soft

constraints on the planning space are supported. As will be shown, this integrated

incremental graph construction leads to a potentially significant reduction in the size of

the graph by constraining the branching factor and the total number of nodes that must be

instantiated while the arc cost function allows the soft constraints to elicit a variety of

different planning behaviors from the system.

The algorithm consists of the steps illustrated in Figure 4.

1) Insert rand—- into open list O that contains all visited nodes.
7

start ,t0

2) Insert one or more goal nodes rand— into the goal list G.
goal,t 0

°

3) Using the graph search technique of your choice, select and remove a node

rand - from O.
k.t,

4) If rand^
t

e G, and re-planning is desired go to (1) else if rand^
t

e G finished,

else go to (5).

5) Define the set to be visited TBV = SPrand£ t
.

6) While TBV * 0, create arc (rand, ,rand
T) and evaluate temporary variable

k,t, Mi+i

P = pc(prand(rand— ,rand-)) where rand- e TBV.
start.to *Ai+i *’4+i

a. Remove rand
7 from the set TBV.
Mi+i

b. If rand
7

marked as VISITED, and R < a
T , set a

7
= fi

, set
Mi+l *,4+1 Mi+l

randy
t

backpointer to rand -

1 ,
and add randy

t

to O.

c. Else if rand
T

not marked as VISITED, mark as VISITED, set a- = B,
Mi+l Mi+l

set randy
t

backpointer to rand
£ t ,

and add randy
t

to O.

d. Remove arc (rand
c ,

, rand
r).

*Mi Mi+l
7

e. End while.

7) Go to 3.

Figure 4: Integrated incremental graph generation and planning algorithm.

Step 1 and 2 of the algorithm depicted in Figure 4 begin the search process by placing the

node that contains the current system state into the list O of open nodes and one or more

goal states into the goal set G. The algorithm will terminate when a minimum cost path

has been found to any of the nodes in the set G. It should be noted that the feature of

being a start or goal node is a relevant attribute and therefore the start and goal nodes are

always relevant and elements of RAND. This assures that the graph will contain the start

and goal nodes even if these nodes have no other relevant features associated with them.

7

In step 3, it is assumed that a search technique that utilizes an open list is used. Many
such techniques exist in the current literature such as breadth first [14], depth first [14],

and A* [8]. A search methodology dependent criterion is used to select the node from the

list O that should be expanded. If the list O is empty, then a plan failure has occurred. At

this point, the system may either return a failed status indicating that no plan was found,

or may relax the selection criteria for the NRATT (i.e. increase the size ofNRAND) and

attempt to find a new plan. Through this technique, a hierarchy of hard constraints may
be established that are gradually relaxed as a result of plan failures.

Step 4 performs a test to determine if the current node is a member of the goal set G. The

goal set is defined as the set of nodes in RAND that will satisfy the objectives of the

system. This set may contain more then one node (e.g. a mobile robot should arrive at a

certain location as soon as possible, with no specific time information given), but should

never be empty.

Definition 14: Define the goal set G as the set of relevant annotated nodes (RAND) such

that G = { gr e RAND
|

ke KcS Ati e ficT}.
k,t,

One integral feature of this algorithm is dynamic re-planning. By returning to step 1 after

a successful plan has been generated, dynamics in the hard constraints, soft constraints,

and environment are easily handled. Additionally, sections of previously constructed

plans are reused when possible in order to speed the re-planning process.

Steps 5 and 6 incrementally expand and evaluate the graph structure. Arcs are

temporarily created to link the current node to all of its successors, and the path cost

function pc evaluates the new potential path to the successor node. The least expensive

path from a given node to the start of the search may be found by following a series of

backpointers, and the least expensive cost from a node to the start of the search is

maintained in the variable
t

.
Since only a single path from each node back to the start

is maintained, the acyclic property of the graph is guaranteed.

Graph Generation for various search strategies

Many different search strategies exist in the literature that could be used in step (3) of

Figure 4 to determine the next node to expand. These searches may be decomposed into

the two broad categories of uninformed and informed search. The main difference

between the two strategies is that uninformed search makes its node expansion decision

based solely on the current node and nodes on the open list, while informed search takes

advantage of domain-specific knowledge such as the properties of the goal node.

Criterion Breadth-

First

Uniform-

Cost

Depth-

First

Depth-

Limited

Iterative

Deepening

Bi-directional

(if applicable)

Time b
d

b
d

b
m

b
1

b
d

b*
2

Space b
d

b
d bm bl bd b^

2

Optimal? Yes Yes No No Yes Yes

Complete? Yes Yes No Yes, if l>d Yes Yes

8

Table 1: Comparison of different search strategies (from Russell and Norvig [14] p. 81).

In this table, b is the number of states yielded from a node expansion or the branching

factor , d is the depth of the tree, 1 is the depth limit for a depth-limited search, and m is

the maximum depth of a graph.

Uninformed Search

Table 1 ([14], p. 81) provides information on various properties about uninformed search

strategies that could be used in step (3) to determine the next node to expand. Information

is provided on completeness (the strategy is guaranteed to find a solution if one exists),

time complexity (how long the search takes to find a solution), space complexity (how

much memory is required to perform the search), and optimality (the strategy is

guaranteed to find the lowest cost path). It should be noted that the memory requirement

shown is the amount of memory required to maintain the list of nodes awaiting node

expansion, and does not include the memory required to store the graph structure itself.

The size of the graph structure is the same for all of the search strategies.

The only precondition that exists for the values given in Table 1 is on the cost function

used for arc evaluation. For the breadth- first, iterative deepening, and bi-directional

(assuming two breadth-first searches) searches, optimality is only guaranteed if this cost

function is a non-decreasing function of the depth of a node in the graph. This condition

is usually satisfied only when all arcs at a given depth have the same cost, and is not

necessarily a feature of the cost of an arc c. However, the breadth-first search can be

modified to become a uniform-cost search that is optimal over the cost of a path pc. For

the uniform-cost search, optimality is guaranteed if the cost function is defined as

c:ARC— Since 9?
+
is a totally ordered set, Definition 1 1 allows this mapping as a

valid cost function.

Uniform Cost Version of Algorithm

Uniform cost search is a modification of the standard breadth-first search that finds the

cheapest goal state independent of its depth in the graph (as computed by the cost

function c). In order to meet the criteria in Table 1, the only constraint on this form of

search is that the cost along a path must never decrease. In other words, Vi g N:

c(r(v,, v
i+1))

> 0 . Once again, the selection of c:ARC—

>

SJT guarantees this condition, and

Definition 11 allows this mapping. Therefore, the only change to the generic graph

generation algorithm presented above for the use of a uniform cost search algorithm is in

step (3) of the algorithm. This step now becomes:

3) Select and remove a node cn from the set O of open nodes such that:

cn e { rand
c |

V rand g O: pc(prand(rand— , rand c))
=

start,

t

0 k,tj

min(pc(prand(rand—
t

,rand))}.

9

Informed Search

In addition to the search strategies mentioned in Table 1, many search strategies that take

advantage of problem specific knowledge exist in the literature (e.g. Dijkstra search [4],

A* [14,17], bi-directional A* [10], and D* [16]). This class of search strategies is known
as informed search. The class of informed strategies that utilize parameters ofthe goal

node is known as best-first search. This name originates from the fact that these

algorithms utilize an evaluation function that returns the estimated desirability of

expanding a node, and hence the “best” node is expanded first. As in the uninformed

search, there are informed search strategies that are optimal and guaranteed to find a

solution if one exists and those that are not. One basic best-first search technique that is

guaranteed optimal and complete [14] is the A* search. A* search may be written as a

function f(n) = g(n) + h(n) where g(n) is a function that computes the cost of reaching

node n from the start node and h(n) is a heuristic function that estimates the cost of

achieving the goal node from n. To be optimal and complete, this search requires that the

function h(n) that estimates the desirability of expanding a node n never underestimates

the desirability of the goal (or never overestimates the remaining cost to the goal) and a

search using only g(n) is optimal and complete. The uniform cost search strategy was

shown to be optimal and complete and may be used for g(n). Therefore, if h(n) is an

admissible heuristic (never overestimates the cost to reach the goal) A* will be optimal

and complete for the graph structure defined above.

A* Version of Algorithm

A* search is a modification of the uniform cost search presented in Figure 4. Rather then

expanding the cheapest node from the open list, it expands the node whose cost plus the

estimated remaining cost to the goal is cheapest. Therefore, the only change to the

generic graph generation algorithm presented above for the use of an A* search algorithm

is in step (3). This step now becomes:

3) Select a node cn to open from the set O of open nodes such that:

cn = rand- : V rand: e O, pc(prand(rand— , rand-) + h(randc)
<

k,t, j ,tj start,

t

0
k,t, k,tj

pc(prand(rand—
- , rand^) + h(rand)), where h() is an admissible heuristic function.

start, tg J»H J?tj

Example of framework applied to Towers of Hanoi
In order to illustrate the integrated incremental graph generation and evaluation

algorithm, let us examine the basic game of “Towers of Hanoi” as a simple component

assembly problem. In this game, the player is given three towers, one of which contains n

different sized stacked rings (the sub-assembly inventory). The objective of the game is

to move all of the rings to the rightmost tower (the final product). The only rules are that

you may only move one ring at a time, and must never allow a ring to rest upon a smaller

ring. Typically, the starting configuration is to have all of the rings on the leftmost tower.

However, this starting configuration may be varied.

10

Figure 5: Illustration of Towers of Hanoi with four rings.

As shown in Figure 5, a system that contains at most n rings will have three towers each

containing n ring positions. In the naive system, where the exact number of rings (in both

total quantity and number of each type) is not known, all possible combinations of rings

must be mapped into nodes. The reason for this is that a minimum set of basic rules is

assumed for the creation of the planning graph, and all remaining game knowledge is

contained in the arc evaluation. This produces (» + Impossible different individual tower

configurations or (n + if" nodes for the entire system. Using traditional graph approaches,
o

this will produce a graph that contains *2.4x10 nodes for a system of up to four rings.

The branching factor for such a naive system will be (3n-l)(2n)+n or 92. This number

comes from the fact that each ring can move to 1 of 1 1 different positions (3n- 1), each

ring may be added in each of 1
1
positions (3n-l), and each ring may be deleted (n). As

shown in Table 1, this branching factor directly impacts both the time and memory
complexity of the search algorithms. Even in this simple example the problem of an

unreasonable number of possible graph nodes and connections is quickly reached. Yet

given this unreasonable number of nodes and connections, the system is still unable to

cope with unexpected environmental changes. The reason for this is that the graph is built

before the planning process begins and only anticipated actions are built into the graph.

Figure 6: Description of various attribute sets.

11

In order to reduce the number of nodes and edges to a reasonable level, the integrated

incremental graph generation and evaluation algorithm will be applied. It will be shown

that this algorithm may significantly reduce the number of instantiated nodes and will

reduce the branching factor to 3, regardless of the number of rings. This algorithm will

also allow environmental dynamics to be represented and evaluated in the planning

graph.

Before the graph generation and evaluation algorithm can be applied, the members of the

attribute sets must be defined. For this particular problem, NGATT contains the four

attributes of obeying gravity (spaces are not allowed between the rings on a tower), total

number of rings, number of size i rings, and obeying the rules of the game (the plan is not

allowed to cheat). As shown in Figure 6, NGATT contains all possible subsets of the

attributes. This set corresponds to the set of nodes that would be found in a traditional

planning graph. The set NATT c= NGATT restricts the node space to obey gravity and to

contain one each of three different sized rings. The set NRATT cz NATT further restricts

the node space to force compliance with the rules of the game.

Optimal Path

AjIA'I iIS'1 A
Figure 7: Optimal path found using uniform cost function and nodes RAND. In the

diagram, a single line (|) separates successors of a given node and a double line (||)

separates one node’s successors from another’s. Arcs are shown as a dotted line.

Figure 7 illustrates the optimal path found by the graph generation and evaluation

algorithm. It should be noted that a traditional graph would contain 262,144 nodes. These

nodes would also have to be connected by arcs. Even if there was only one arc per node

(making graph search unnecessary) there would be 262,144 arcs. By using relevant

attributes, the number of nodes can be reduced to only 27 nodes and 64 arcs. This low

number is due to the branching factor being reduced to 3 by the constraints imposed by

NRATT. In addition to this low branching factor, many of the arcs are never created due

to their evaluated cost being higher or equal to an existing arc. This provides a savings of

at least 4 orders of magnitude of the memory required to store the graph. In addition to

the memory savings, the only nodes that need to be evaluated for arc generation are the

12

27 nodes that were touched by the search. In the traditional search approach, all 262,144

of the nodes would have been evaluated for arc connections before the search begins.

£ I l-AA l-l £4-1 1^-1 I &
Figure 8: Towers of Hanoi solution where the rules of the game were not considered

relevant.

Figure 9: Towers of Hanoi solution where the rules of the game concerning which rings

may be moved became relevant, but the legality of the actual tower configuration was

ignored.

Rule

4 I 1-4 I 1-4 A I-'"4 I 1-4 I 1-4 A 1-44 I

(-1 1,4-1 A4-I 1 4— | 14

Figure 10: Towers of Hanoi solution where the rules of the game became relevant after

the start of plan execution, and existing illegal tower configurations were discouraged.

As shown in Figure 8 through Figure 10, the behavior of the system may be altered

through the selection of the relevant attributes. In Figure 8, NRATT = NATT and arcs

representing all possible moves (both legal and illegal) are created to connect the

members ofNRAND as the graph is expanded. Figure 9 displays the case where the

relevant rules were changed in the middle of plan execution, and a replanning cycle

occured. NRATT started as NRATT = NATT and was changed after two moves were

executed to the reduced set which requires ATT4 to be
kk
true”. In this case, the only arcs

that are created represent legal future moves. Since the current state of the system is an

illegal state (by the new NRATT definition) NRAND will contain illegal states.

However, all planned ring moves will be legal. In contrast, NRATT in Figure 10 provides

for only legal arcs to be generated and has the additional constraint implemented in the

cost function that illegal states are more expensive then legal states. Upon replanning

with the new rules and cost function, this causes the system to quickly undo the illegal

move and put the system in a legal state before proceeding with the problem solution. It

should be noted that while the system plans the optimal set of node transitions from the

current time forward, dynamics might cause the global path from the initial state to be

sub-optimal. As shown in Figure 10, previously performed moves must be undone thus

creating a longer, sub-optimal final path.

The rule changes depicted in Figure 9 and Figure 10 occurred after the system had

executed two moves. If these rule changes could have been anticipated through the use of

13

the time dimension ofNRATT, then the plan for Figure 9 would remain unchanged, and

the plan for Figure 10 would be the same as the plan from Figure 7. The reason for this is

that the system would be able to anticipate the need to undo moves and therefore would
not make them in the first place.

Parallel planning in partitioned problem spaces
While the set of possible general node attributes (NGATT) is the same over the entire

node space ND, in many practical applications the possibility of certain node attributes

occurring may be tied to local phenomena. It is also possible that the location of these

local phenomena is tied to a subset of the possible general node attributes

NATTr cz NATT c NGATT . The set of relevant attributes that are selected for use in

graph construction will still be of the form NRATTr c= NATTr . A region may then be

defined as a subset of the nodes in RAND that share certain relevant attributes.

Definition 15: A region R! is defined as a subset Rn of the relevant annotated nodes

RAND where R, = { rand t (|

||nratt£‘
t ||

> 0, k = (k15 ...,kn), ki,...,kn e N, 1 = (l1; ...,ln)

,

li In e N, t, e T }.

To complete the definition of a region, a set of regions that contains all ofthe nodes form

RAND will be defined as a complete set of regions.

n

Definition 16: The set of n regions R = {Ri,...,Rn } is complete iff [JR ;

= RAND

.

i=l

It can be shown that any node, nd e RAND is also a member of the complete set of

regions R.

Lemma 2: If nd e RAND and R = {Ri, ..., Rn } is a complete set of regions, then nd e R.

n

Proof: Assume nd g R, then by Definition 16, R = (JR, = RAND and nd € RAND
i=l

which contradicts the original assumption.

One common occurrence of regions is in the decomposition of a planning space into a

hierarchy. Figure 1 1 shows one possible technique for forming a hierarchy that was

presented by Fernandez and Gonzalez [5,7] where high-resolution nodes are abstracted to

form a smaller number of lower resolution super nodes. Each super node is then

connected to form a planning graph and planning is performed on this low-resolution

representation of the space. Fernandez and Gonzalez present a technique for connecting

and searching these graph structures that is based on the classic refinement method.

However, the authors state that this technique is not guaranteed to find the cost optimal

path ([7], p. 106). In the refinement method, a path is first found through the low-

resolution graph. In time-constrained environments, this path may be executed as a sub-

optimal plan. If more time is available, individual super nodes that are part of this path

14

are expanded and a new refined plan is constructed that is a refinement of the previous

path. Any number of hierarchical levels, referred to as a multi-hierarchy, may be

imbedded in such a representation and the multi-hierarchy may act as an anytime

algorithm [18].

(c)

Figure 11: Example from Fernandez and Gonzalez ([7], p.104) of a graph-based

abstraction hierarchy, (a) world view of a room, (b) hierarchical graph model with levels

represented by shaded regions as keyed by (c).

Another way to view the above hierarchy [5] and multi-hierarchy [7] is through the use of

regions as defined above and shown in the left hand side of Figure 14. Under this view,

the set RAND would contain all of the Level 0 nodes and would be defined by the set of

node relevant attributes NRATT. A super node is then defined as a region c= RAND
such that NRATTr c= NRATT . For planning purposes, individual nodes may then

represent these regions, and a regional spanning distance may then be defined according

to Definition 8 that could be used in the integrated incremental graph creation and

evaluation algorithm. Modifications to the integrated incremental graph creation and

evaluation algorithm that will guarantee that the cost optimal path is found are presented

below.

Another view of hierarchical planning is presented by Lacaze [9] for mobile robot

applications. In this paper, the planning space is viewed as having a high node density

near the robot with decreasing density as the distance to the robot increases. Forming

regions of equal node count as shown in Figure 12 creates the hierarchy. A region of high

node density exists around the robot’s current location where high-resolution sensor

information is available. Further from the robot, the sensors are only able to detect large

objects and the corresponding node density decreases. Finally, once the limits of the

sensors have been exceeded, the node density drops to correspond to the feature density

represented in the a priori dataset.

15

Figure 12: Example of node density for 2-D mobile robot application based on Lacaze

[9]. Rings represent regions of equal node count.

The general approach of regions can once again be specialized to account for this form of

hierarchy. As an example of this, examine the mobile robot application with NGATT
composed of high-resolution sensed feature information and low-resolution a priori

feature information. The high-resolution information's availability is tied to the local

phenomena of distance from the location of the robot’s sensors, while the low-resolution

features are available over the entire map extents. This problem may be naturally

partitioned into a region that contains high-resolution information (Ri) and a region that

does not (R2) where NATTR 2 NATTR . Since NATTR id NATTr ,
it is possible that

more attributes are available for selection as members of NRATT, and that the

composition ofRAND in the region Ri defined by RATTr will be different than in the

region R2 defined by RATTR2 .

Once a density pattern such as the one in Figure 12 has been detected, the node space

may be naturally partitioned into regions where the predicted node count and graph

search complexity will be approximately equal. Responsibility for planning in each

region may then be partitioned to separate processes, and these processes communicate

through the use of a graph construction technique such as the one presented by Lacaze

[9]-

Lacaze [9] describes this technique for use in hierarchical planning where regions of

decreasing node density exist in concentric areas that originate at the system's current

location (much as the concentric circles depicted in Figure 12) and the levels of the

hierarchy plan at different rates. The only additional precondition for the use of this

technique is that the reverse arc cost function c' must exist.

Definition 17: Define the reverse arc cost function c' as the mapping c': ARC—>tR
+

1

c(

arc(rand^
t

, rand
r t+d)

)

= c'(arc(rand
T t+d , rand^)), k = (k1? ...,kn), ki,...,kn e N,

16

1 = (lj,...,l n) , li, ,ln e N, d e N, f e T. Also, define the reverse cost associated to a

m

path prand as pc' =Z c'wvi’
vw»-

i=l

This cost function is necessary in the algorithm implemented by Lacaze [9] because he

plans from the goal node to the start node. In the following sections, Lacaze’s technique

[9] will be formalized, and it will be shown that a generalization of this technique may be

viewed as a specific implementation of the planning framework described in this paper.

Lacaze's technique will then be extended to apply to the more general case of an arbitrary

number of regions with arbitrary boundaries.

The algorithm described below plans from the start node to the goal node, however goal

to start planning may be performed by exchanging the start and goal nodes and using the

cost function pc'. The path obtained through this exchange will have the same minimum
cost, but may contain different nodes. The reason for this is that the search algorithm is

complete and optimal and will give a path with a cost equivalent to the minimum cost

path from start to goal. However, if more then one equivalent minimum cost path exists

from start to goal, different paths may be found by the two approaches.

During the operation of the planning algorithm that is described in Figure 13, it is

important to know if a node is on the boundary or in the interior of a given region. A
node will be defined to be on the boundary of regions Ra and Rb if it is a member of both

regions and its spanning set includes at least one node that is an exclusive member of

each region.

Definition 18: Given the set ofn regions Ri,...,Rn ,
the boundary> set of any two regions

i,j is defined as By = { rand
k t

e R„Rj
|

3 node randy
t

e SP(rand-
1
) such that randy

t
£ R,

and randy
(

e R, A 3 node randy
t

e SP(rand
k t

) such that randy
t

e Rj and randy
t
g Rj }.

Two regions Ri, Rj will be denoted as shared boundary regions if their intersection is

equal to the boundary region between the two sets. Shared boundary regions have

“shallow” boundary regions that minimize the region overlap.

Definition 19: Two regions Ri, Rj are called shared boundary’ regions SBR! and SBRj iff

R, n Rj = By = Bj
i

.

In order to specialize the integrated incremental graph generation and planning algorithm

from Figure 4, a new notion of a spanning set that is specialized for regions must be

defined. It will be shown that the union of these regional spanning sets is equal to the

spanning set defined in Definition 8.

17

Definition 20: Define the regional spanning set SPR, of a node rand-
1

as the set of all

successor nodes SPRj (rand-
1
) = { sp^ t+] | |j

nratt-
||
> 0 a sp- e Rj}.

Lemma 3: V rand^
t

e RAND, SP(rand^
t
) = (JSPR^rand^

t
) where R= {Ri, Rn } is

a complete region.

Proof:

Definition 20 may be rewritten as [JSPRy (rand-
1
) = { sp^ t M | ||

nratt-
1 x ||

> 0 a sp- e

IjR, }. From Definition 16 and the fact that R is complete, (^JSPRy (rand^) = { sp£ |

i i

||
nratt-

1+1 1|
> 0 a sp^

t+1
e RAND}. By Definition 6, the condition sp- e RAND is

redundant, and the definition reduces to (^JSPR
1

(rand^
t
) = { sp- t+l | ||

nratt^
(+1 1|

> 0}
=

i

SP(rand-
1
) by Definition 8.

Planning algorithm for SBRr where R={Ri, ..., Rn }. All nodes start as not VISITED.

1) If region contains rand— , insert this into region's open list Or that contains all VISITED nodes.
start,

t

0

2) If region contains one or more goals, rand—- , insert them into Gr .

goal,t 0

a) Form the set G* = Gr u B(rj), j g {1, ..., n}.

3) Using the graph search technique of your choice, select and remove a node rand-
1

from the Or .

4) If randy
t

g Gr, go to (2).

a) Else, if randy
t

g G*, remove randy
t

from G*. IfG* = 0, go to (2).

5) Define the set to be visited, TBV r
= SP

rand y t .

6) While TBVr ^ 0. create arc (rand- ,rand-) and evaluate temporary variable
Mi , »ti+2

P = pc(prand(rand—
(

,rand
ft)) where randy

t

g TBVr .

a. Remove rand
T

from the set TBVr .

* »li+l

b. If rand
T

marked as VISITED, and p < a
T ,

set a
T = p, set rand

T
backpointer to

1 1 ,tj+i
I ,tj+ i

1 ,tj +1

randy
t

,
and add randy

t

to Or . If randy
t

g B(r,j), r * j, j e { 1, ..., n}, add randy
(|

to Oj.

c. Else if rand, not marked as VISITED, mark as VISITED, set a
T = p, set

rand
r

backpointer to rand.- , and add rand
T

to Or .

d. Remove arc (rand,- ,rand
T)Mi Mi+i

e. End while.

7) Go to 3.

Figure 13: Integrated incremental graph generation and planning algorithm specialized

for planning in partitioned spaces. Each SBR executes its own version of the algorithm.

18

Definition 21: Define a complete cycle as the execution of step 6 of the algorithm of

Figure 13 without changing any a values.

Figure 13 describes a specialization of the integrated incremental graph generation and

planning algorithm from Figure 4 for operation over a partitioned planning space. A
separate version of this algorithm will be executed for each of the partitions R, e R, i

=

{1, ..., n}. These algorithms may be run serially, or may be executed in parallel with no

effect on the final complete solution as will be shown in Theorem 1 . The only change to

the basic framework that is necessary for operation over partitions concerns the inclusion

of the boundary nodes into the algorithm framework. These boundary nodes are made
part of the goal set for the partition, and must be reached in regions that do not include

the goal before the algorithm can terminate.

In order to include the boundary as part of the goal set, step (2) forms the new goal set G*
that includes the systems goals as well as the boundary regions. One of the main features

of the algorithm is that the path cost from a boundary node nd e B(R1? Rj) to the start

node may be changed by the search algorithm running in either region Rj or Rj. In order

to properly propagate this value to the region not responsible for the value change, the

stopping criterion in step (4) must be changed to cause repeated planning cycles to occur.

The repeated cycle will quickly terminate (no nodes other then the boundary nodes will

be placed on the open list) if no changes have occurred. However, if boundary changes

have occurred, they will propagate through the graph.

Figure 14: Set relationships for partitioned planning space.

The algorithm from Figure 13 may be applied to any configuration of shared boundary

regions. Two possible configurations are shown in Figure 14, where the left hand

drawing represents a hierarchy of the form of Fernandez and Gonzalez [7], and the right

hand drawing represents a hierarchy of the form of Lacaze [9]. In general, these partitions

may exist anywhere in the planning space with a separate graph search system operating

on each partition. If the individual plans constructed in each partition are optimal, then

the final plan constructed by the algorithm of Figure 13 will also be optimal.

Theorem 1: Given the boundary regions R = {Ri, ..., Rn } with a independent version of

the planning algorithm from Figure 13 executing in each region using an algorithm that is

19

complete on a standard planning space for node selection. Further, given the start

node rand-
1 ,

and goal node rand-
t

the path prand(rand^
t ,

rand-
t +m) is produced

once all algorithms have finished a complete cycle. Then prand(rand-
t
,rand

g t +m)
=

prandmm(rand-
1 , rand- 1 +m) is the cost optimal path through the graph in the regions R,

and it is the same path as the cost optimal path through the graph in RAND.

Proof (a): Assume prand(rand-
1
,rand-

t +m) * prandmm(rand-
t
,rand-

1 +m).

Then 3 prandmm*(rand-
1
,randiti+m) :

pc(prandmm*(rand
s t

,rand-
t +m))

<

pc(prandmm(rand-
1 ,

rand-
t . +m)).

By Definition 9 3 node nd : nd g R, nd G prandmm(rand-
1
,rand-

1 +m) a

pc(prandmin*(rand § t ,
nd)) + pc(prandmm*(nd, rand

g t +m))
<

pc(prandmm(rand-
1
,rand

g t)) where nd is the first node from the list V: Vj g

V(prandmm*) a vj G prandmm(rand- 1
,rand

i t +m).

Without loss of generality, assume that vj.) g R,.

Four different situations exist with respect to boundary set membership for the nodes nd

and Vi-i.

Case 1 : vm ^ B(R„ Rj) a nd £ B(R„ Rj).

Case 2: v^i ^ B(R„ Rj) a nd g B(R„ Rj).

Case 3: vi_i g B(R„ Rj) a nd ^ B(R,, Rj).

Case 4: Vj.i g B(R„ Rj) a nd g B(R,, Rj).

For case 1 and case 4, both vm, nd g R„ i g {1, ..., n}. In these cases, both nodes are in

the same region and a cost optimal algorithm is running in that region. The fact that nd is

not included in the final path contradicts the assumption that the individual region’s

algorithm is cost optimal.

For case 2, nd g Rj, nd G SPR (v^) ,
i g j g {1, ..., n}. By Definition 17, 3 arc(vm, nd),

nd g SPRj (Vl).

Therefore either nd is on open list Oj, or nd has already been expanded. Since given that

algorithm cycle complete, all nd
|

pc(prand(rand-
1

,
nd)) <

pc(prand(rand-
1
,rand-

1 +m))GO,. This forces the conclusion that nd has been expanded.

However, if nd has been expanded, then by step 6 of algorithm, prandmm would include

this node. This contradicts the initial assumption.

For case 3, vm g R„ nd g Rj, Rj, nd g SPr (v^) , i ^ j e {1, ..., n}. By Definition 17, 3

arc(vm, nd), nd g SPr (vm) .

Therefore nd on open list or expanded for region R. If nd is expanded in region R„ then

by step 6 of algorithm nd will either be on Oj, or prandmm would include this node.

prandmm including this node contradicts the initial assumption. Therefore nd g O, V 0,.

20

However, since given that algorithm cycle complete, all nd
|

pc(prand(rand-
1 ,

nd)) <

pc(prand(rand
§ t

,rand-
1 +m))£0„ Oj. This forces the conclusion that nd has been

expanded in both regions which contradicts nd e O, V Oj.

Proof (b): From Lemma 2 and

Lemma 3, every node and arc that exist in Gr also exists in Grand-

Therefore all paths that exist in R exist in RAND, and all paths that exist in RAND exist

inR.

As previously detailed, one common form of shared boundary region is a hierarchy. The

hierarchy from the mobile robot example is covered by the general algorithm presented

above by constructing the complete set of regions R such that Ri and Rn have only one

boundary region (with R2 and Rn-i respectively) and all intermediate regions i have two

regions (one with R,_i and one with R1+ 1). A three level hierarchy of this form is shown on

the right hand side of Figure 14.

Example of framework applied to mobile robot

Differences in the availability of environmental data may not be the only difference

between the RAffL subsets for the different levels of a planning hierarchy. Differences in

planning objectives for the levels may dictate that other constraints are to be placed on

the selection of RATT. For example, the highest resolution level of planning may be

concerned with creating the optimal dynamically correct path while a lower resolution

level is concerned with computing the optimal set of roads to traverse to reach the

objective. The fact that a path must be dynamically feasible to be considered is defined as

a hard constraint that is formally defined by Definition 22. These hard constraints may be

seen as not only controlling which attributes are possible for nodes to contain, but also as

shaping the topology of the graph by controlling which nodes, and therefore which node

transitions are possible.

Definition 22: A hard constraint is defined as an element ofNRATT where each

attribute is defined by a predicate.

In addition to the constraints that are placed on the selection criteria for the inclusion of

attributes into NRATT, the inclusion of nodes into a path that contain certain attributes

may be more desirable than the inclusion ofnodes that do not contain these attributes.

This notion of desirability may be formalized by the notion of soft constraints. Soft

constraints are implemented through the arc cost function and control a cost ranking that

signifies which arcs are more desirable.

Definition 23: A soft constraint is defined as an ordering placed on the arcs by the cost

function c.

21

Relevant Attribute Number and

Description

NRATT1: Steering curvature

NRATT2: High-resolution features

NRATT3: Location L
NRATT4: A priori features

NRATT5: Expected congestion

NRATT
NRATT1; e 9?

NRATT2: Obstacles, road edges,

NRATT3: Any
NRATT4: Roads, buildings, ...

NRATT5: 7-9 am high, else low

NRATT ^ NRATT-. x

NRATT3: L2

NRATT4: All

NRATT5: Low

NRATT1: < a
NRATT2: All

NRATT3: Li

Figure 15: Example of attribute subsets used to generate regions for a hierarchical mobile

robot application.

Constraint Set Constraint Set 2

Constraint Cost/Meter Constraint Cost/Meter

NRATT4 = Highway a

NRATT5 * Low
50.0 NRATT4 = (Highway v Minor

Road) a NRATT5 * Low
100.0

NRATT4 = Minor Road 1.0 NRATT4 = Offroad 2.0

NRATT4 - Highway a
NRATT5 = Low

1.5 NRATT4 = (Highway v Minor

Road) a NRATT5 = Low

1.0

NRATT4 * Highway v
Minor Road

200.0

Figure 16: Possible soft constraint sets based on NRATT from Figure 15 for region R2 .

Examples of hard constraints may be seen in Figure 15 while two different sets of soft

constraints for the cost function are shown in Figure 16. The hard constraints for region

R2 will assure that no path is ever considered that contains areas of high traffic

congestion. The soft constraints for constraint set 1 favor travel on minor roads (even if

the path is longer) and severely penalize path segments that lie off-road. For constraint

set 2, off-road is twice as expensive as on-road travel, while travel on congested

roadways is penalized. This combination of hard constraints through planning regions

coupled with soft constraints through the arc cost function provides the integrated

incremental graph creation and evaluation algorithm a large degree of flexibility in how
plans may be constructed to satisfy the system’s objectives.

22

Acknowledgement
The authors would like to acknowledge Alberto Lacaze for his help and discussions in

regard to extending the integrated incremental graph construction and evaluation

algorithm to multi-level hierarchies.

References

1. Aho, A. V. and Ullman, J. D., Foundations ofComputer Science

,

C Edition ed..

Computer Science Press, New York, 1995.

2. Choset, H., Konukseven, I., and Burdick, J., "Mobile Robot Navigation: Issues in

Imlementating the Generalized Voronoi Graph in the Plane," Proceedings

IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration

for Intelligent Systems, 1996, pp. 241-248.

3. Crowley, J. L., "Navigation for an Intelligent Mobile Robot," IEEE Journal of

Robotics and Automation, Vol. RA-1, No. 1, 1985, pp. 31-41.

4. Dijkstra, E. W., "A note on two problems in connexion with graphs," Numerisclne

Mathematik, Vol. 1, 1959, pp. 269-271.

5. Femandez-Madrigal, J.-A. and Gonzalez, J., "Hierarchical Graph Search For

Mobile Robot Path Planning," Proceedings ofthe 1998 International Conference on

Robotics and Automation, Vol. 1, 1998, pp. 656-661.

6. Femandez-Madrigal, J.-A. and Gonzalez, J., Multi-Hierarchical Representation of

Large-Scale Space, Vol. 24, Kluwer Academic Publishers, Boston, 2001.

7. Femandez-Madrigal, J.-A. and Gonzalez, J., "Multihierarchical Graph Search,"

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 1,

2002, pp. 103-113.

8. Hart, P. E., Nilsson, N. J., and Raphael, B., "A Formal Basis for the Heuristic

Determination of Minimum Cost Paths," IEEE Transactions on Systems Science

and Cybernetics, Vol. 4, No. 2, 1968, pp. 100-107.

9. Lacaze, A., "Hierarchical Planning Algorithms," SPIE 16th Annual International

Symposium on Aerospace/Defense Sensing, Simulation, and Controls, 2002.

10. Manzini, G., "BIDA*: An Improved Perimeter Search Algorithm," Artificial

Intelligence, Vol. 75, No. 2, 1995, pp. 347-360.

11. Nagatani, K., Iwai, Y., and Tanaka, Y., "Sensor Based Navigation for Car-Like

Mobile Robots Using Generalized Voronoi Graph," Proceedings ofIEEE/RSJ

International Conference on Intelligent Robots and Systems, Vol. 2, 2001, pp.

1017-1022.

23

12. Nilsson, N. J., Artificial Intelligence : A New Synthesis
,
Morgan Kaufmann

Publishers, Inc., San Francisco, 1998.

13. Nissoux, C., Simeon, T., and Laumond, J.-P., "Visibility Based Probabilistic

Roadmaps," Proceedings 1999 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Vol. 3, 1999, pp. 1316-1321.

14. Russell, S. and Norvig, P., Artificial Intelligence: A Modern Approach, Prentice-

Hall 1995.

15. Saab, Y. and VanPutte, M., "Shortest Path Planning on Topographical Maps,"

IEEE Transactions on Systems Man and Cybernetics, Vol. 29, No. 1, 1999, pp. 139-

150.

16. Stentz, A., "Optimal and Efficient Path Planning For Unknown and Dynamic

Environments," International Journal ofRobotics and Automation, Vol. 10, No. 3,

1995, pp. 89-100.

17. Winston, P. H., Artificial Intelligence, Second ed., Addison-Wesley Publishing

Company, Reding, Massachusetts, 2001.

18. Zilberstein, S., "Using Anytime Algorithms in Intelligent Systems," AI Magazine,
Vol. 17, No. 3, 2002, pp. 73-83.

24

