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Abstract

This is the second in a series of articles describing

a wide variety of projects at NIST that synergistically

combine physical science and information science. It de-

scribes, through examples, how the Scientific Applica-

tions and Visualization Group (SAVG) at NIST has uti-

lized high performance parallel computing, visualization,

and machine learning to accelerate research. The exam-

ples include scientific collaborations in the following ar-

eas: (1) High Precision Energies for few electron atomic

systems, (2) Flows of suspensions, (3) X-ray absoiption.

(4) Molecular dynamics of fluids, (5) Nanostructures, (6)

Dendritic growth in alloys, (7) Screen saver science, (8)

genetic programming.

Keywords: discovery science; FEFF: FeffMPI; genetic

programming: Hylleraas-Configuration Interaction; im-

mersive environments; Fennard-Jones fluids; nanostruc-

tures screen saver science: parallel computing; QDPD;
scientific visualization.

1 Introduction

The process of research may be abstracted into three

major components as shown in Figure 1 . Increasingly ex-

Theory

/ \
Analysis Experiment

Fig. 1. Abstraction of research loop.

periment means computational experiment as computers

increase in speed and memory. Parallel computing as-

sists in this by providing access to more processors and

more memory. Consequently more complex models that

run in feasible times become possible. Faboratory exper-

iments as well are becoming parallel as combinatorial ex-

periments become more common. Both of these lead to

large datasets where analysis benefits greatly from visual-

ization.

In this paper we describe research collaborations, be-

tween members of the Scientific Applications and Visual-

ization Group (SAVG) and scientists in other labs at NIST,

that incorporate parallel computing and visualization as

integral parts of the research process. The paper is orga-

nized as follows. First, in Section 2 we describe our im-
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mersive environment. 3D immersion greatly assists in un-

derstanding data by literally puting the viewer inside their

data. It is used in almost every project we do. In Sec. 3

we describe a computational measurement that is not only

the most accurate in the world but also extensible to larger

systems. Following, Sec. 4 describes computer simula-

tions of complex fluids like suspensions. We present re-

sults for concrete. Parallel computations of the near' edge

structure of clusters of atoms are given in Sec. 5. Repli-

cated data parallelizations of molecular dynamics simula-

tions of fluids are presented in Sec. 6. We describe par-

allel algorithms for constructing nanostructures as well as

visualization of these structures in Sec. 7. Sec. 8 details

our simulation of the solidification process of a binary al-

loy. Screen saver science. Sec. 9, is our name for our

distributed computing project, designed to harvest the cy-

cles of computers across NIST when they are in screen

saver mode. Lastly, in Sec. 10, we discuss the NIST ge-

netic programming system. Currently it is being used to

automatically generate functional forms for measurement

errors.

2 Immersive Scientific Visualization

The Immersive Visualization (IV) laboratory plays a key

role in accelerating scientific discovery. The NIST scien-

tist views their serial/parallel computation results or ex-

perimental data with our IV system. The advanced visu-

alization provided by virtual reality techniques in our IV

environment provides greater insight into large, complex

data sets by allowing the scientist to interactively explore

complex data by literally putting the scientist inside the

data.

Fully immersive scientific visualization includes: one

or more large rear' projection screens to encompass pe-

ripheral vision, stereoscopic display for increased depth

perception, and head tracking for realistic perspective

based on the user’s viewing direction. The NIST IV labo-

ratory is configured as an immersive corner with two 2.44

m x 2.44 m (8 ft. x 8 ft.) screens flush to the floor and

oriented 90 degrees to form a corner. The large corner

configuration provides a very wide field of peripheral vi-

sion. It is also important for the sense of immersion for

the screens to be flush with the floor. The system fulfills

the other immersive characteristics with stereoscopic dis-

plays and head/wand tracking hardware.

Large and complex data sets are becoming more com-

monplace at NIST, as high performance parallel comput-

ing is used to develop high fidelity simulations, and com-

binatorial experimental techniques are used in the labora-

tory. IV is significantly different from traditional desktop

visualization and significantly more effective at illuminat-

ing such data sets [I], One analogy for describing this

difference is to consider the difference between viewing

the fish in a fish bowl and swimming with the fish at their

scale. However, the benefits of IV can only be gained

when scientists use it. The key ingredient to making IV

accessible to scientists is to provide the ability to simply

and quickly move their data into the immersive environ-

ment.

The primary software controlling the NIST IV environ-

ment is an open source system named DIVERSE (De-

vice Independent Virtual Environments - Reconfigurable.

Scalable, Extensible) [2, 3], The DIVERSE API (Ap-

plication Programming Interface) facilitates the creation

of immersive virtual env ironments and asynchronous dis-

tributed simulations by handling the details necessary to

implement the immersive environment. The software runs

on a variety of display devices from desktop systems to

multi-wall stereographies displays with head tracking.

Included with DIVERSE is an extensible application

called Diversifly that allows various techniques for navi-

gation through user data loaded from a variety of external

data formats. On top of this DIVERSE/Diversifly infras-

tructure. SAVG has developed additional tools and tech-

niques for quickly moving research data into the IV envi-

ronment, often with little or no special-purpose graphics

programming. The approach used is to apply the clas-

sic L^NIX 1 philosophy [4] of creating small and reusable

tools that fit into the immersive environment and which

lend themselves to combination in a variety of ways to

perform useful tasks such as moving the results of a nu-

merical simulation into the immersive environment.

Using this philosophy, SAVG is providing the key in-

gredient to making IV accessible to NIST scientists by:

• developing simple and reusable graphics file formats

'Certain commercial equipment, instruments, or materials are iden-

titied in this paper to foster understaning. Such identification does not

imply endorsement or recommendation by the National Institute of Stan-

dards and Technology, nor does it imply dial the materials or equipment

identified are necessarily the best available for the purpose.
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implemented as Diversify file loaders;

• developing application-specific files that are easily

transformed into existing or newly created graphics

file formats;

• developing filters (scripts, small programs, etc.) to

connect data transformation pipelines.

Diversifly is extensible. Distributed Shared Objects

(DSOs) can be written for it to implement a new input

graphics data format. These DSOs are much like subrou-

tines (C/C++ functions). However, they are linked into the

executable code at run time and the main Diversifly appli-

cation need not be modified or recompiled. For the vi-

sualization of ellipsoidal objects (e.g., concrete particles)

in suspension discussed in Sec. 4. a file loader DSO was

created. This DSO implemented the animation as a time

sequence of 3D data. For this new .seq file type, each time

step of the sequence was made general in order to allow

all other possible graphics file types to be used. Thus, not

only were the requirements for this application met. but a

w ide variety of other applications involving animation as

a time series of 3D data can be quickly implemented by

reusing this DSO.

Fig. 2. Cloud example.

The development of an application-specific file format

doesn't always require a DSO extension to Diversify. For

Fig. 3. Click to turn on streamlines.

example, an application that required the display of col-

ored spheres at random locations was satisfied by defin-

ing an ASCII file to simply list the x. y. z sphere loca-

tions. the sphere diameters, and the corresponding sphere

colors. Using a simple scripting language, a filter named

sphereliv was created to convert the sphere list format to

an Open Inventor [5] file (,/v) which is one of the many

file formats compatible with DIVERSE. While it is pos-

sible for a user to directly write the .iv file, the approach

followed here allows a user to concentrate on their appli

cation by simplifying the graphics data format to essen-

tially what they are already doing. Again, the simplicity

of this approach provides quick access to the IV environ-

ment for a range of applications requiring the display of

colored spheres. Now that this tool has been added to the

tool box, it can be combined with the .seq file format to

produce other types of time series animations.

In addition to using DSOs for adding new graphics file

loaders, they can also be used to extend the functionality

of Diversifly. Using this capability, interactive features

can be added. For example. Fig. 2 shows a visualization

of a cloud water dataset (cloudwater.dx) derived from a

sample dataset and program provided by the Open Visu-

alization Data Explorer (OpenDX) software package [6],

With the addition of a file switcher DSO. an interactive

user click can be used to turn on (or off) streamlines as
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illustrated in Fig. 3. In this case, the feature is used as a

simple on/off switch. The most appropriate graphics file

type can be used for each view of the visualization. Thus

very complex immersive visualizations can be created at

run time with the addition of this very simple tool.

Another DSO that extends the user interface is a vir-

tualflashlight. Figure 4 shows the user view of the virtual

flashlight which is attached to the wand. It operates like

a hand held flashlight to explore and highlight the virtual

world. This capability is extremely useful both for a sin-

gle user to focus attention on specific areas of the data and

for multiple users in a collaborative session. Just like the

real world, a flashlight belongs in everyone’s tool box.

Fig. 4. Flashlight DSO enables the user to shine a

flashlight on a spot within the immersive visualization by

merely pointing to it.

The flow diagram in Fig. 5 illustrates how SAVG inte-

grates IV into a research collaboration with NIST scien-

tists which takes the process from numbers to visualiza-

tion to insight. A typical example will start with a scientist

who has developed a model for some scientific research

purposes. Often this is implemented as a serial program

on a desktop workstation.

Working in collaboration with SAVG staff who special-

Nwubers to Visualization to Insight

Numerical Simula tior

(Parallel Programming

J

7
( Parallel Computation

J

1

^ Data Transformation ^

\

0
Immersive Environment

3

C Graphics CRT J

I
Video Display ExtensionG. ion ^

CGraphics File T>oader3

10020413 SGS

T
^ Graphics Compnter

^

Fig. 5. Collaboration process.

ize in parallel programming, the model is converted to a

portable parallel code that can run on a variety of par-

allel computing platforms. These parallel systems may

be shared memory parallel machines, non-shared memory

clusters or a combination of both. One obvious advantage

of parallelizing the code is that it will typically execute

much faster. However, the experience is that scientists

have a certain turn-around tolerance, meaning, they are

willing to wait a certain amount of time for their results.

Rather than using the parallel version to run the research

problem quicker, the scientists often use the same amount

of time to run a bigger, more complex problem that pro-

duces more data.

Once numerical results are obtained, the appropriate

tools (described above) are pulled out of the tool box

to transform the results into data compatible with Diver-

sifly. As necessary, a new tool or application protocol

may be developed in order to minimize the impact on the

researcher. A very straight forward definition for User

Friendly is what the user already knows. The advantage

of the software tools approach is that combinations of ex-

isting tools with occasional small additions can frequently

match the user’s natural data to the visualization data re-

quirements.

After the data is properly transformed, it is then loaded

into the Diversifly application which executes on the
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graphics systems. Since the NIST graphics system is

physically located in a secure computer room environ-

ment. video display extension hardware is required to

transmit the graphics video to the user area where the IV

system is located. At this point, the final and most impor-

tant link in the process is completed when the researcher

experiences data in the immersive environment. Here the

researcher visually interacts with the data (swims with the

fish) and gains some new insight into the research which

may then require another loop around the process.

Utilizing a tool box philosophy allows SAVG to visual-

ize large numbers of applications with no programming.

For these applications, a toolbox of reusable utilities, data

filters, generalized application protocols and data formats

that feed into a single, well understood viewing environ-

ment can provide almost immediate access to the virtual

environment. The potential of immersive visualization to

accelerate scientific discovery is realized not only by its

ability to provide new insights but also by providing a

quick and easy interface to bring science into the immer-

sive environment.

3 High Precision Energies for Few-

Electron Atomic Systems

Impressive advances have been made throughout the years

in the study of atomic structure, at both the experimen-

tal and theoretical levels. For atomic hydrogen and other

equivalent two-body systems, exact analytical solutions to

the nonrelativistic Schrodinger equation are known. It is

now possible to calculate essentially exact nonrelativistic

energies for helium (He) and other three-body systems as

well. Even for properties other than the nonrelativistic en-

ergy. the precision of the calculation has been referred to

as “essentially exact for all practical purposes" [7], i.e.,

the precision goes well beyond what can be achieved ex-

perimentally. Once the Bethe logarithm for He, long re-

garded as an unsolved problem, was calculated accurately

by Drake and Goldman [8], helium reached the same sta-

tus as hydrogen in that the lowest order energy and rela-

tivistic corrections became essentially exact for all prac-

tical purposes. Nevertheless, the scarcity of information

on atomic energy levels is overwhelming, especially for

highly ionized atoms. The availability of high precision

results tails off as the state of ionization and the angu-

lar momentum state increases. In addition, atomic anions

have more diffuse electronic distributions, and therefore

represent more challenging computational targets.

In going from He (two elections) to Li (lithium, three

electrons) to Be (beryllium, four electrons), the situation

vis a vis high precision calculations degrades to the point

that already at four electrons (Be) there are no calcula-

tions of the ground or excited states with an error of less

than 10
-6

a.u.
2

. The challenge for computational scien-

tists is to extend the phenomenal accomplishments on He

to three, four, and more electron atomic systems.

One might wonder why nonrelativistic energies uncer-

tainties of 10 2" or better might be desirable. There are

essentially two reasons for this.

The first is that the physical energies of interest, e.g., a

transition energy or familial' chemical ionization poten-

tials and election affinities involve these nonrelativistic

energies. So the nonrelativistic energies need to be cal-

culated exceedingly accurately to guarantee the accuracy

of the result. As one example, consider the first ionization

potential for lithium. The first ionization potential. I\, for

the process Li —> Li+ + e
_

, can be determined from [9]

h = Emr{Li+ )
— Enr(Li)

+AEreL + AEmaSS + AEqeo (1)

where the first two terms are the nonrelativistic energies

of Li+ and Li, respectively, and the remaining three terms

refer to the relativistic correction, nuclear mass dependent

correction, and quantum electrodynmics (QED) shift, re-

spectively. See King [9] for a more detailed discussion of

these terms and for a discussion of transition energies in

general. The dominant terms are the nonrelativistic ener-

gies. Hence these nonrelativistic energies can be regarded

as fundamental atomic data. Once they have been com-

puted “exactly”, they can be used to obtain more and more

accurate ionization potentials, electron affinities, etc., as

the other (correction) terms become known to increasing

precision.

The other reason for seeking a high precision nonrel-

ativistic energy is that when a nonrelativistic energy is

obtained, a wave function is also obtained which can be

4
2The atomic unit of energy is chosen as = 1 a.u. (of energy),

where /r = m em^r/(m e + m/v).
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used to compute other physical properties like oscillator

strengths, electric polarizabilities, Fermi contact terms, or

nuclear' mass polarization corrections. Quantum theory

tells us that a hrst order error in the wave function mani-

fests itself as a second order error in the energy [10]. An-

other way to put this is that the properties are accurate as

the square root of the uncertainties of the energy. This

can be understood from the fact that the energy is a sum

of kinetic and potential energy contributions, so there can

be cancellation of errors between the two energy contri-

butions leading to a precision in the energy determination

that does not cany over to other properties. Hence the

drive for high accuracy calculations.

Modern computing power drastically changes our atti-

tudes towards the variational methods employed. In the

case of He, the choices for high precision calculations are

the following:

1 . One that employs a variational expansion in products

of exponentials in the problem interparticle distances [11,

12, 13];

2. Standard Hylleraas (Hy) technique [14] calculations

as best exemplified by the work of Drake and collabora-

tors [15, 16, 17], which employ factors of powers of the

interparticle distance r,
3

in the wave function;

3. The combined Hylleraas-Configuration-Interaction

(Hy-CI) method [18] in which the wave function is ex-

panded as a linear' combination of configurations, each of

which contains at most one rl3 to some power.

While the exponential products approach of Ko-

robov [11] leads to a more compact wave function than

either of the r tJ techniques for the He ground state and

is straightforward to implement, it is not clear' how useful

it will be for atoms with more than two electrons. From

the theoretical work on Li published to date,
3

it appears

essential to incorporate r,
3
terms in the wave function, if

the highest possible precision is desired. This is not sur-

prising given the monumental two electron calculations

of Drake and collaborators [15, 16, 17, 7, 8, 20, 21], But

where Li has been done essentially as accurately as He, it

has only been with a 6000 fold increase in CPU require-

ments to reach spectroscopic accuracy. This may have

been what led Clementi and Corongiu [22], in a review

article on Computational Chemistry in 1996, to state that

3 See King [9] for a review, and Godefroid, Froese Fischer and

Jonsson [19] for (he most recent work.

using an Hy-CI [18. 23] expansion to solve the dynami-

cal correlation is nearly impossible for more than three or

four electrons. While that may have been true in 1996.

its validity today is being challenged by the availibi lity

of cheap CPUs which can be connected in parallel to en-

hance by orders of magnitude both the CPU power and the

memory that can be brought to bear on the computational

task.

For He, the close connection between Hy-iy
y
and Hy-

CI has been pointed out in a recent article [24], It seems

to us that the Hy-CI method selects the important term

types in a more natural manner. Also, the calculation, at

least for He, is easier. This, in conjunction with modem
computing power, might explain the renewed interest in

Hy-CI techniques [25, 26, 27, 28. 29, 30], It was the im-

petus for our attempt to come up with a good technique for

obtaining very accurate energies for few electron atomic

systems using the Hy-CI formalism.

In any attempt to get very accurate energies, large basis

sets have to be employed, which means that linear
- depen-

dence in the basis set is never very far
- away. To proceed

to several thousand terms in a wave function, extended

precision arithmetic is needed to obviate the linear depen-

dence problem, which in turn leads to higher CPL1 costs.

The use of several thousand terms in a wave function leads

to memory problems arising from storage of the matrix el-

ements prior to the matrix diagonal ization step at least for

dense matrices that result from the introduction of inter-

electronic coordinates into the wave function.

The solution to these problems, for both CPU speed

and memory needs, is to parallelize the calculation. We
now have a working computer program for high preci-

sion Hy-CI calculations for the ground state of He and

He-like ions [24], As far as we know, this is the first high

accuracy calculation for few electron atomic systems to

employ parallel computing. Using the Message Passing

Interface (MPI). the problem scales almost perfectly on

the 16 node NIST NT cluster where all the parallel runs

were done, i.e, 3 hour runs complete in about 10 minutes

to 15 minutes.

This working computer program employs a novel wave

function, namely, a wave function consisting of at most a

single ri 2 raised to the first power combined with a con-

ventional configuration interaction (Cl) basis. We believe

that this technique can be extended to multielectron sys-

tems [24], where the use of at most a single rtJ (to the

6



first power) retains the power of rtJ in the wave func-

tion without making the integral evaluation overly com-

plicated. We used this technique to determine the nonrel-

ativistic ground state energies for the following members

of the He isoelectronic sequence. Li+ , Be++ , and B f 3
.

Table 1 contains our final energy values in atomic units

(a.u.) and compares them with the best previous calcula-

tions [31. 20],

The parallel calculations reported here were carried out

at the National Institute of Standards and Technology on

the instaNT.nist.gov NT Cluster, a 16 node cluster of Pen-

tium II systems running Microsoft Windows NT [Server

4.0] with 100-Mbit Fast Ethernet for interconnection. We
used our Microsoft ASM (MASM) extended precision

48 digits) package for all of the calculations.

We found that the processing speed could be predicted,

as a function of cluster size, by the simple scaling law T
= constant (s + ( 1 - .s) /Npr0 c X where T is the runtime

in s, constant = 6419 in this case, and s is the inherently

sequential part of the calculation. This function is plotted

in Fig. 6. We find that the sequential fraction s = 0.022,

indicating that the scaling is excellent and we could go to

a larger number of processors (if we had them).

Fig. 6. Hy-CI Scaling with Cluster Size.

As we move on to larger systems, computational times

Table 1: Comparison with previous explicitly correlated

calculations for 1
1

S He-like ions

Li

will increase greatly, as well as memory requirements, so

it is imperative to program these routines using parallel

programming techniques and MPI (for portability). If one

restricts the wave function to a single rl3 in each term

(the rij power n < 1 ) then the most difficult integrals are

already dealt with at the four electron level and the cal-

culation is greatly simplified. Hence, our goal is to see

how well we can do in the four electron case of Be and

the isoelectronic Be-like anion. Li
-

.

Li
-

is interesting because atomic anions have more dif-

fuse electronic distributions (more “open-shell" like char-

acter), and therefore represent more challenging compu-

tational targets. For example, the He-like isoelectronic

anion H-
is more difficult than He for this reason. In

addition, in the four election case the “open-shell" like

nature of the anion would make the “inter'shell r,
;
terms

more important than for closed shell atoms like Be.

Li
-

also is the key to calculating the electron affin-

ity (EA) of the ground state of Li. The EA of Li is the

negative of the energy associated with the process Li +

e
- —> Li

-
. Its calculation requires several factors which

include the nonrelativistic energy of the neutral and an-

ion ground states, specific mass shifts. Breit-Pauli rela-

tivistic corrections, and QED corrections. For the neutral

atom all of these quantities are known [32, 9, 33]. For

the anion, if we can determine the nonrelativistic energy

to high precision, we can make reasonable estimates for

7



the rest. Since Breit-Pauli and QED are smaller than the

other terms, reasonable estimates should give satisfactory

results. Hy-CI calculations have been done previously

for Li
-

[34], This result represented for more than 15

years the best upper bound for the ion considered. This

result has been considerably improved by Chung and Ful-

bright [35] and others, culminating in the recent deter-

mination by Koinasa, Rychlewski, and Jankowski [36],

These authors treat other members of the Be isoelectronic

sequence as well, and are the best results for four electron

atoms so far. The overall accuracy can be claimed to be

on the order of 10~ 4
a.u. for the correlation energies with

a nonrelativistic energy uncertainty of 10
-6

a.u., clearly

suggesting the need for higher accuracy calculations. To

this end, we have converted our Microsoft ASM (MASM)
extended precision (~ 48 digits) package to IBM AIX as-

sembler language so that we can run on the IBM Teraflop

SP System at Indiana University (616 processors). We
are also redoing our integral package [23] so that we can

bring the power of modern parallel and extended precision

techniques to bear
- on this resear ch.

4 Computational Modeling of the

Flow of Suspensions

The computer simulation of complex fluids like suspen-

sions (e.g., colloids, ceramic slurries and concrete) can

be greatly limited by computational costs (such as com-

puter speed and memory), frequently restricting studies

to simpler fluids and/or two dimensional systems. To

obviate these computational difficulties, we have devel-

oped a quaternion-based dissipative particle dynamics

(QDPD) approach suitable for a parallel computing en-

vironment. The parallelization of the algorithm was done

using MPI [37, 38], The technique, a conventional spa-

tial domain decomposition using a parallel link cell al-

gorithm, has some fairly novel features to accomodate

the DPD formalism (which forces some tricky bookkeep-

ing to satisfy Newton's third law), the use of arbitrarily

shaped rigid body inclusions, and the requirement of a

sheared boundary condition. A detailed discussion of our

implementation will be presented elsewhere [39], The

calculation and subsequent visualization of a shear ed sus-

pension in different flow environments is one of the appli-

cations treated by this technique.

Fig. 7. Motion of a suspension of ellipsoids subject to

shear. The single ellipsoid rotation is a well known phe-

nomenon called Jeffery’s Orbits.

While various quantitative tests are used to help vali-

date our algorithms, visualization plays an important role

in the testing and validation of programs. Even simple vi-

sual checks to make sure the rigid bodies satisfy boundary

conditions can be helpful.

Fig. 7 shows the motion of a suspension of ellipsoids

subject to shear'. The shearing boundary conditions were

obtained by applying a constant strain rate to the right at

the top of the figure and to the left at the bottom. Note that

all the ellipsoids rotate. This is a well known phenomena

seen in experiments called Jeffery's Orbits. The period of

rotation was derived by Jeffery, and our simulations were

found to be consistent with this theory, hence serving as a

form of validation of our numerical approach.

In contrast, we found that when many ellipsoidal in-

clusions were added to the system, and the solid fraction

(ratio of solid volume to total volume of the system) of el-

lipsoids was increased to about 15% to 20% (Fig. 8), the

Jeffery's Orbits were suppressed and the ellipsoids had a

tendency to align as their relative motion was partly sta-

blized by mutual hydrodynamic interactions. An interest-

ing consequence of this alignment is that the viscosity of

the suspension is lower than that of an equivalent sphere

system (same number and volume of spheres). Note that

in a dilute concentration regime (Fig. 7). an equivalent



Fig. 8. Dense suspension of ellipsoids similar to typical

aggregate contribution in concrete. Jeffery’s Orbits are

suppressed and the alignment between ellipsoids is en-

hanced.

suspension of spheres has a lower viscosity. One way to

think about it is that once the ellipsoids align it is “easier”

for them to get around each other. Hence, the viscosity

decreases.

Not only does the visualization of data play an impor-

tant role in the validation of computer algorithms and the

correctness of the physical ideas used, but visualization

can lead to ideas about new phenomena that might not

be deduced from the enormous data sets created during

a simulation. Also, visualization can help the researcher

design better numerical tests or come up with other, bet-

ter ways to evaluate the physical behavior of systems. For

example, the strong ordering seen in the simulation of el-

lipsoids under shear (Fig. 8 above) at high solid fractions

was unexpected and led to improved ways of quantify ing

such phenomena.

In the flow and placement of concrete, it is important

that the fluid concrete have the capability to move around

barriers such as steel concrete reinforcements, known as

rebars. Figures 9 and 10 show the flow of spherical ag-

gregates around stationary cylinders which represent steel

rebars. In one case (Fig. 9) the diameter of the spheres is

on the order of one-half that of the gap between the rebars.

Here the sphere becomes “jammed" as a bridge of spheres

forms across the rebars obstructing the flow. For compar-

Fig. 9. Spherical aggregates subject to a downward ap-

plied force. Sphere diameter is approximately one-half

the gap spacing between reinforcing rebars. The “jam-

ming” of the aggregates between cylindrical rebars (in

black) is observed.

ison (Fig. 10), when the sphere diameter is about one fifth

the gap spacing (and the same volume fraction of spheres

is maintained), the suspension continuously flows. No ev-

idence of the jamming is found over the course of the sim-

ulation.

Figure 1 1 shows the motion of a suspension of spheres

in a coaxial geometry. The motion of spheres is driven

by the rotation of the inner cylinder. The viscosity of

a suspension is often determined in a coaxial rheometer

where an inner cylinder rotates as it is subject to an ap-

plied torque. Normally, knowing the torque and the subse-

quent rotation rate of the inner cylinder, one can derive the

viscosity of the fluid in this flow geometry. However, we

found that the numerical determination of viscosity can be

influenced by the flow geometry in subtle ways. As can be

seen in Fig. 1 1 , the spheres had a tendency to move away

from the inner cylinder. As a result the coupling between

9



Fig. 10. Spherical aggregates moving around stationary

cylindrical rebars (in black). Sphere diameter is one-fifth

the gap spacing. No "jamming” is observed.

the inner cylinder and the sphere suspension was weaker

so that the measurement of the viscosity was lower than

anticipated. Such information can help an experimental-

ist better interpret measurements made with rheometers

using a similar geometry and can lead to improvements in

their design.

The combination of parallel processing and high end

visualization (including virtual environments) has al-

lowed us to systematically explore regions of parameter

space (e.g., different solid fractions, broader particle size

and shape distributions) that would be prohibitive on sin-

gle processor computers.

Fig. 1 1. Coaxial Rheometer. An inner cylinder (in black)

subject to an applied torque rotates, causing the motion of

the spheres.

5 Rapid Computation of X-ray Ab-

sorption Using Parallel Computa-

tion; FeffMPI

Multiple scattering (MS) theory is widely used to calcu-

late physical properties of solids, ranging from electronic

structure to optical and x-ray response. X-ray absorption

spectroscopy (XAS) uses energy-dependent modulations

of photoelectron scattering to probe excited states and

thus is important for determining electronic and chemi-

cal information from x-ray spectra [40]. XAS is usually

divided into the extended x-ray absorption fine structure

(EXAFS) with photoelectron energies above ~ 70 eV. and

the x-ray absorption near edge structure (XANES) in the

0 eV to 70 eV range. Theoretical calculations of photo-

electron scattering are now an integral part of both EX-

AFS and XANES analysis. These theoretical calculations

have grown in sophistication and complexity over the past

twenty years. Fortunately computing power has increased

dramatically (in accordance with Moore's law [41]) dur-
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Table 2: FeffMPI 87 atom GaN test case on various sys-

tems. Time is in minutes: seconds

System MHz N time

IBM SP II nighthawk 32 :27

IBM SP NERSC R6K proc 32 1:20

SGI 0rigin2000 R10K 250 8 2:04

Athalon 1000 4 3:09

CRAY T3E alpha EV-4 proc 8 4:12

Apple G4 533 8 4:14

Dual ALPHA EV-6 500 2 4:43

ALPHA EV-6 500 1 7:23

Dual Athlon SMP 860 2 7:51

SGI Octane R10K 250 1 14:46

Dual686 P3 Linux 450 2 15:31

Mac G4 linux 400 1 22:40

Dual686 P3 linux 450 1 27:00

ing the same time period, and as a result EXAFS calcula-

tions are now fast, accurate and easily executed on inex-

pensive desktop computers [42. 43]. However. XANES
calculations are even today time consuming for many ma-

terials. The photoelectron mean free path is large at the

low photoelectron energies of the XANES region, so ac-

curate XANES calculations require large atomic clusters

and remain challenging on even the fastest single proces-

sor machines. Furthermore, the photoelectron scattering

is strong for low energies, so that full multiple scatter-

ing calculations are required. These calculations require

repeated inversions of large matrices which scale as the

cube of the size of the atomic cluster [44], Fortunately,

parallel processing using MPT combined with modern

Lanczos type MS algorithms [45], can speed real-space

XANES and electonic structure calculations by about two

orders of magnitude. In particular, FEFF [46], one of the

most commonly used programs for XAS analysis (devel-

oped at the University of Washington) has been improved

in this manner, leading to a parallel version. FeffMPI [47],

To evaluate how well the parallel algorithm succeeds,

we conducted tests on a number of systems. The results,

on various systems, are tabulated in Table 2 for an 87 atom

GaN test case (

N

is the number of processors, times are

min).

With the improved efficiency of FeffMPI now in hand,

it is feasible to cany out XANES calculations which oth-

erwise would have been impractical. For example, a few

days of calculations on a 48 processor Linux cluster can

now complete a calculation that would take a year on a

current single processor. Systems such as complex min-

erals, oxide compounds, biological structures and other

nano-scale systems are obvious targets for this type of

improved capability. The improved speed should be very

useful, for example, for magnetic materials, which often

have a large number of inequivalent sites of absorbing

atoms, requiring many separate calculations to produce a

full XANES or XMCD (X-ray magnetic circular
-

dichro-

ism) spectrum. Finally, the availibility of rapid calcula-

tions now permits closed loop fitting of XANES spectra

both to physical and chemical phenomena.

One interesting set of numbers are the Apple results.

FeffMPI runs on PCs running Windows and Linux as well

as most commercial UNIX vendor machines. The list

of machines supported has recently been extended to in-

clude the Apple Macintosh running the new OS X oper-

ating system. Apple's flagship G4 PowerMacs are power-

ful number-crunchers, and since its new operating system

is based on UNIX, it has been attracting a lot of interest

in the scientific community. Naturally there is interest in

building clusters of these machines, and the needed tech-

nology has just become available with the development

of Mac OS X Rack systems. For software, one can use

either MacMPI [48]. or a portable MPI library such as

LAM [49] or MPICH [50], The eight node G4 533 MHz
results above were obtained using FeffMPI on an Apple-

seed cluster.

5.1 Results on Parallel Processing Clusters

As one example of these calculations, we show how

XANES calculations can be used in the study of amor-

phous germanium (aGe). It is well known that the struc-

ture of amorphous tetrahedral semiconductors can be

modeled well by an approach called a continuous random

network (CRN). In this method, the amorphous semicon-

ductor retains the parent structure of the crystal, but vari-

ous degrees of freedom, the interatomic distance, the bond

angle and the dihedral angle, are allowed to become statis-

tically disordered [51], Originally built by hand with ball-

and-stick models. CRNs have been generated by com-
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Fig. 12. (a) The 87 atom cluster used to calculate the

XANES of crystalline Ge. (b) A similar cluster of 87

atoms of aGe from the CRN displayed with the same

length scale.

puter, and the degree of disorder in the structural parame-

ters is determined by energy minimization methods.

Comparisons of CRN models with EXAFS data have

been done, but these comparisons were not extended into

the XANES region because of the inability to perform ab

initio XANES calculations, and even in the EXAFS re-

gion the calculations were limited to a simple single scat-

tering theory [52]. Here we show that we can use FeffMPI

and a CRN model to reproduce the main features in the

XANES of crystalline and amorphous germanium.

XANES calculations of amorphous materials are a

good example of the use of FeffMPI because, in princi-

ple. each atomic site in the CRN is inequivalent to every

other site because of the statistical disorder in the model.

Therefore, accurate calcuations of XANES must explic-

itly include an ensemble average over a number of sites in

the CRN in order to yield meaningful results.

Fig. 13. The full 519 atom cluster of aGe from the contin-

uous random network with a typical cluster of 87 atoms

highlighted in the interior.

As a starting point for the XANES calculation of aGe.

we first modeled the XANES of crystalline germanium to

determine the cluster size needed to accurately reproduce

the XANES. We found that a cluster of 87 atoms, which

includes the first 7 coordination shells, out to a distance of

approximately 0.78 nm is sufficient to reproduce the main

features of the experimental data. The primary feature

that evolves as the cluster size increases is the shoulder

on the high energy side of the “white line”, i.e.. the first
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large peak in the spectra.

The aGe XANES calcuations were then carried out us-

ing similar' clusters of 87 atoms that had nearly the same

size as the crystalline cluster, because the CRN yields a

structure that has the same density as crystalline Ge, to

within a few percent. Amorphous Ge is chemically and

structurally very similar to crystalline Ge. so we made

no adjustments in the potential determination between the

two structures. The CRN model is constructed so that the

atomic coordinates are expressed in multiples of the first

shell bond length. In converting this to absolute distances,

we assumed that the first shell Ge-Ge distance in aGe is

the same as in crystalline Ge; to very high accuracy this

assumption has been shown to be correct [53],

In order to get a good ensemble average over the in-

equivalent sites of the CRN. we ran the same Feff calcu-

lation over a total of 20 sites in the CRN.

We tested the calculation on a single processor desk-

top machine (with a 450 MHz CPU), where a single run

took approximately one hour. We then used a 16 proces-

sor cluster (each processor having a 1 GHz CPU) where

a single run took about 3 minutes. Using FeffMPI and

this fairly modest cluster size thus reduced the total cal-

culation time from 20 hours to 1 hour. We have pre-

viously studied [54] the scaling of Feff with the num-

ber of processors and found that the runtime scales as

0.03 + (0.97/Ap). where Np is the number of processors

in the cluster, and a single processor runtime is normal-

ized to 1.0. Thus, we achieve a factor ~ 11 from the use

of 16 1GHz processors, compared to a single 1 GHz pro-

cessor of the same cluster. The additional factor of two

(relative to the original desktop machine) comes from the

increased clockrate of the processors in the cluster.

In Fig. 12(a) we show the 87 atom cluster used to cal-

culate the XANES of crystalline Ge. In Fig. 12(b) we
show a similar cluster of 87 atoms of aGe from the CRN
displayed with the same length scale. As shown in the

figure, each cluster is about 1.5 nm across. In Fig. 13

we show the full 519 atom cluster of aGe from the CRN
with a typical cluster of 87 atoms highlighted in the in-

terior. Although there are several hundred atoms in the

interior of the 519 atom cluster that are fully coordinated

by 87 atoms, we obtain an accurate ensemble average us-

ing just 20 to 30 atoms near the center of the cluster. The

convergence occurs quickly since averaging over N sites

includes 4Ar
first neighbor atoms. 12A' second neighbor

atoms, etc. The disorder in the CRN is large enough that

the separation of the neighboring atoms into separate co-

ordination shells breaks down by the third or fourth shell

Fig. 14. Results of the crystalline Ge calculation (upper

solid line), the ensemble average over 20 sites in the aGe

CRN (dashed line), and an illustration of the site-to-site

variation in the aGe (five offset solid lines).

In Fig. 14 we show the results of the crystalline Ge cal-

culation (upper solid line), the ensemble average over 20

sites in the aGe CRN (dashed line), and an illustration

of the site-to-site variation in the aGe (five offset solid

lines). The five single sites that are shown from the aGe

calculations illustrate that there is considerable variance

in the snucture at any given site of the CRN. but that the

ensemble-averaged XANES removes much of the struc-

ture from the spectrum, in agreement with what is ob-

served experimentally [55].

6 Replicated Data Parallelizations

of the Dynamics of Fluids

Understanding the atomic and molecular basis of a fluid's

properties has been greatly aided by the use of comput-

ers and is commonly referred to as molecular dynamics

(MD). Often the fluid system is modeled as an assem-

bly of rigid molecules, atoms, or ions: the forces of in-

teraction are derived from continuous potential functions

acting between (usually atomic) sites on each molecule:
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and the dynamics are governed by the classical Newto-

nian equations of motion.

We have written two different sequential programs both

fitting the above model. In both cases, even with very

fast modern computers, there eventually arose a need for

greater speed and memory, i.e.. the computer simulations

were taking on the order of days for small simulations.

It has been predicted since the early 1980s [56] that

parallel computers would offer the very highest perfor-

mance for scientific computing. That vision has been

somewhat slow in coming. Nevertheless, molecular dy-

namics was one of the earliest applications of parallel

computers.

The emergence and widespread adoption of the single

program, multiple data (SPMD) programming model and

the standardization of parallel communications libraries

in the 1 990s have increased the use of parallel comput-

ers and offered the carrot of the very highest performance

for scientific computing. Another significant advance

has been the availability of the message passing interface

standard MPI [37, 38]. A program can now be both par-

allel and sufficiently independent of architectural details

to be portable to a wide range of parallel environments,

including shared-memory and distributed-memory mul-

tiprocessors, networks of workstations, and distributed

cluster computers. We used MPI to parallelize both of

the programs discussed below.

One of the programs is a quaternion-based dissipative

particle dynamics (QDPD) program which is being used

to study the flow of suspensions and is discussed more

thoroughly in Sec. 4.

Another of the programs attempts to model a simple

two-component Lennard-Jones (L-J) fluid, i.e., defined by

a Lennard-Jones potential which will be discussed later.

Among the outputs of the simulation are particle density

profile, potential energy profile, and stress tensor compo-

nents. Since the system has two components, a surface is

formed when the system is allowed to run for some time.

The stress tensor components at equilibrium can be used

to calculate the surface tension over this interface.

Both of the programs were originally written in For-

tran 77 as serial programs. To accelerate scientific dis-

covery, a parallelization of the program was done rela-

tively quickly, in MPI [37, 38], using a simplified version

of the replicated data approach [57], The advantage of

the replicated data approach is, first and foremost, ease

of programming. Most of the par allel program is identi-

cal to the serial program which greatly simplifies program

maintenance. Also, load balancing is much more straight-

forward than with more sophisticated methods. Last, but

not least, communication consists of one global summa-

tion per timestep. Our use of the replicated data approach

is discussed in greater detail below.

The starting point for “parallelizing" a serial program is

to first determine which par ts of the program are the most

time consuming (sometimes referred to as hot spots). Be-

fore parallelizing the program, tune the hot spots. Then

get the profile of the tuned serial program. On LWIX ma-

chines, standard utilities can be used to identify the hot

spots. For this purpose we used SpeedShop. an SGI in-

tegrated package of performance tools that let you run

performance experiments on programs and examine the

results of those experiments.

As expected on physical grounds, our profiling tests

showed that the loop to compute forces dominates the

time; over 90% of the CPU time is spent inside the loop

for both programs.

The basic technique of parallelizing DO loops is to dis-

tribute iterations among processes and to let each process

do its portion in parallel. Both programs have a forces

calculation which uses a link-cell algorithm. The MD (or

QDPD ) cell is divided into a number of “subcells" and the

linked list structure lists the molecules or atoms belong-

ing to each subcell. The outermost loop of the link-cell

forces calculation inns over all subcells within the simu-

lation cell In the serial case, it has the form

do icell = 1, ncell
. . . evaluate forces on particles

in the cell
enddo

where ncell is the number of cells. In the parallel case,

the iterations of this loop are distributed over processors

by rewriting it as

do icell = this_process+l , ncell , nprocs
. . . evaluate forces on particles

in the cell
enddo

where nprocs is the number of processors. The only

real parallel operation needed is a global sum operation
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to add the separate contributions to the forces and propa-

gate a copy of the complete force array to every processor.

That’s all that is needed!

We have just described the replicated data ap-

proach [58. 57. 59], which gets its name from the fact that

every processor has a complete copy of all the arrays con-

taining dy namical var iables for every particle. The com-

putation of forces is distributed over processors on the

basis of either cell indices (as above) or particles. This

is a very efficient way of implementing parallelism since

the forces must be summed over processors only once per

timestep. thus minimizing interprocessor communication

costs. On shared-memory machines like an SGI Origin

2000. this approach is very attractive, since all processors

can share the arrays containing dynamical variables.

The biggest disadvantage of the replicated data strat-

egy is that every processor must maintain a copy of all of

the data, and therefore the data must be updated on each

processor at the end of each time step. This is not a prob-

lem in the shared-memory multiprocessor version if the

MPI implementation is smart enough to take advantage

of the shared memory (which is the case on the SGI Ori-

gins). Using this technique, there is no need to distribute

panicle data since each processor has a copy of all of the

data and updates them all; this approach has worked well

for small to medium sized problems (tens-of-thousands of

panicles) on the shared-memory SGIs. An example is our

Lennard-Jones fluid program which uses MD simulation

to gain insight into the choice of various order parame-

ters and correlation functions which are associated with

fluid-fluid interfaces, liquid films on solid substrates, and

surface-tethered monolayers of chain molecules.

Dynamics of interfaces are challenging because the

wide variety of rate phenomena that are encountered at in-

terfaces requires a high level of sophistication in dealing

with them. But the payoff in understanding these phase

changes and fluctuations is a better understanding of rates

of evaporation, condensation, absorption and desorption,

dissolution, and precipitation, among other things.

Our two-component fluid-fluid interface system con-

sists of 2000 (1000 per component) particles interacting

by a Lennard-Jones potential

VLj =4* e[(er/r)
12 - (cr/r)

6
)] (2)

where e and a are the energy depth and range param-

eters respectively. In addition to the Lennard-Jones po-

tential, there are three interactions which contribute to

surface or interfacial formation, two for the two different

like-particle attractions and one for unlike particle repul-

sion. The system, which could be, for example, oil and

water (or any two relatively immiscible fluids), has pe-

riodic boundary conditions and is initially configured as

a lattice as shown in Figure 15. The two components are

evenly distributed throughout their separate volumes prior

to mixing.

Fig. 15. Snapshot of initial configuration of a two-

component fluid-fluid interface system. One component

is shown in blue and the other component is shown in yel-

low.

Though the figure shows particles of distinct size, in

the program the particles are simulated as points. This

is equivalent to particle interaction distances being mea-

sured from particle centers for panicles of distinct size.

Once the system is "turned on’’, it is allowed to run until

thermal equilibrium is reached (Fig. 16). In our calcula-

tions, we consider the system at equilibrium if the kinetic

energy fluctuation is small. At that point (equilibrium),

we collect data on the system. Since the interaction is on

the femtosecond ( 10
-1 ° s) scale, we consider a run of 10

picoseconds (
10“ 12

s) to be a long one.

In addition to determining the microscopic surface den-

sity profiles of various atomic species, we would like

to be able to extract the components of the molecular-

level Kirkwood stress tensor [60] from the simulation of

a small selected set of hydrophobic-hydrophilic interfaces

and make comparisons of their relative surface tensions.

Our reason for doing this is that Kirkwood stress tensor

integration is a way to determine surface tension (another

technique is density functional theory [61]). In Fig. 17

the stress tensor profile is shown at equilibrium. Fig. 18

shows a density profile at equilibrium. A density profile
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Fig. 16. Two-component fluid-fluid interface system at

equilibrium. As seen in the figure, equilibrium is charac-

terized by two distinct interfaces.

in the initial configuration (Fig. 15) of two separate com-

ponents would be flat, since the two separate components

are completely mixed (and at equilbrium) prior to bring-

ing them together and allowing them to attain the new

equilibrium of the two-component system. In contrast, in

Fig. 18 the fact that unlike particles do not like to mix is

evident from the distinct decrease (the dips in the curve)

in the particle density in the interfacial regions, and pro-

vides a quantitative measure of what the visualization in

Fig. 16 shows.

Kirkwood stess tensors and density functional theory

are two ways to determine surface tension. Our plans are

to investigate the use of a third method, a thermodynamic

titration method (a process to connect heat flow for in-

terfacial production or destruction to surface tension) to

derive the surface tension. This should result in a flexible,

convenient, and reliable method to check experimental as

well as theoretical approaches to surface tension studies.

It should also help expand the current data of this area of

surface science.

By parallelizing the program, the L-J fluid simulation

run time decreases by a factor greater than six. This al-

lows more flexibility in starting, checking, and analyzing

runs. It also provides a means for more accurately de-

termining the behavior of surface tension, pressure, and

potential profiles.

In the case of QDPD, the parallelization using the

above replicated data has been the workhorse for some

time now. However, it has had its disadvantages. The

biggest disadvantage of the replicated data approach is

that it tends to get communication bound as the number

of processors increases. Scaling to very large numbers of

processors in a shared-memory environment is poor (24

Fig. 17. Plot of the x, y , and 2 components of the stress

tensor. As can be seen from the distinct dips in the curves,

the greatest change in these components occurs in the in-

terfacial regions.

is the practical limit for us), and it has turned out to be al-

most unusable on distributed memory systems including

those with high speed interconnects like the IBM SP2/SP3

systems.

The solution to these problems is to do a spatial de-

composition as we will describe fully in a future publica-

tion [39],

7 Nanotechnology and Parallel

Computing

Accurate atomic-scale quantum theory of nanostructures

and nanosystems fabricated from nanostructures enables

precision metrology of these nanosystems and provides

the predictive, precision modeling tools needed for engi-

neering these systems for applications including advanced

semiconductor lasers and detectors, single photon sources

and detectors, biosensors, and nanoarchitectures for quan-

tum coherent technologies such as quantum computing.

The tight-binding model [62] based upon the Linear Com-

16



Fig. 18. Plot of the particle density. The fact that the un

like panicles do not like to mix is evident from the distinct

decrease (the dips in the curve) in the particle density in

the interfacial regions.

bination of Atomic Orbitals (LCAO) method provides an

atomistic theory for nanostructures which is accurate and

easy to implement [63], The tight-binding method is ideal

for modeling small nanostructures [64], for example the

pyramid shown in Fig. 19. However, for modeling nanos-

tructures with more than 25 000 atoms, the method is im-

practical on sequential computers due to long run times.

Significant improvements in run time can be achieved

through parallelization.

Fig. 19. Pyramid structure.

7.1 Parallelization

There are two par ts to par allelizing this problem: creating

the structure: and solving the Hamiltonian equation.

The structure is created geometrically. We parallelize

this [65] by dividing the str ucture into layers. See Fig. 20.

Communication is across layers. The starting point is a

cubic structure that encompasses the desired nanostruc-

ture; the structure shape is created by pruning away the

excess.

Fig. 20. A distribution of the computation via layers.

Once the atom positions are determined, then the

Hamiltonian is determined. Once the Hamiltonian is

known, it is diagonalized to find the electron eigen ener-

gies and eigen states, i.e. the electron energies and charge

distribution at each atom site. This is parallelized with

PARPACK [66],

We ran the code on the NIST NBS Cluster of 500Mhz

Pentium III processors. Each processor has a Gibibyte.

i.e., 2
3" bytes of memory. Figure 21 shows performance

data for three concentric spheres with diameters 3, 4. and

5 lattice units. This data matches closely the formula:

T = 655.7 + 31 16.0/iV. T is execution time (in s). and

N is the number of processors. The non-parallelizable

computation time is 655.7 s; while the parallelizable por-

tion of the computation uses 3116.0 s. Thus the portion of

the code that was directly parallelizable with PARPACK
is almost 83 %.
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Fig. 21 . Execution time versus number of processors for

concentric spheres problem.

7.2 Visualization

See Figure 22 for a visualization of a cross section of a

nanostructure (top) with orbitals (bottom). The program

output is transferred to the NIST immersive environment

where the structure is studied interactively. This provides

a detailed visualization of the structures and the atomic

scale variation of calculated nanostructure properties that

is not possible with any static graphical representation.

We save the interaction with the structure in the immer-

sive environment as a quicktime movie. The parallel im-

plementation can handle arbitrary nanostructure shapes

through an input file specification procedure.

8 Dendritic Growth in Alloys

Our simulation of the solidification process for a binary

alloy is implemented as a parallel C program, using MPI
for interprocessor communication. The output from this

simulator consists of a series of snapshots of a volume of

material, consisting of two metals, taken as it solidifies.

This material is initially in a supersaturated liquid state

except for a small seed of solid required to initiate the

solidification process. Detailed descriptions of this simu-

lator have been previously published [67, 68].

Thanks to recent updates to our available computing re-

Fig. 22. A section of a nanostructure (top) with orbitals

(bottom).

sources we are now able to extend our simulations to uni-

form finite-difference grids of size 1000 x 1000 x 1000

using 70 or more compute nodes from our 128-node Be-

owulf cluster. This has been a goal of this project since

smaller simulations do not reveal sufficient detail or pro-

duce dendrites sufficiently developed to fully exhibit rel-

evant properties. Also, prior 2D dendritic growth simula-

tions on grids of size 1000 x 1000 can be directly com-

pared to these results.

At this point, the limiting factor in this project is the

visualization of the resulting 3D snapshots. Currently

available commercial and open source visualization soft-

ware has so far been incapable of processing these snap-

shots, mostly due to internal array indexing limitations
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and memory addressing issues, especially while comput-

ing isosurfaces. Also, interactive display of full resolu-

tion rendered images of the dendrites from simulations on

grids of 3003 or larger has been too slow for practical use.

As par t of our research effort, we are exploring techniques

to enhance our capabilities in these areas, for this partial

lar application as well as other large simulations.

To date, the largest dendrite that we have rendered has

been from a simulation over a uniform finite-difference

grid of 5003
points. Figure 23 shows one image of this

dendrite taken near the end of the simulation. Typically

the raw data from the snapshots are reflected across all

three physical dimensions to produce a 6-pointed object.

However, because of limitations of the visualization soft-

ware. this image has been reflected across only the x and y

axes, yielding the 5-pointed object shown. The surface of

the dendrite is colored according to the relative concentra-

tion of the two metals that comprise the alloy, copper and

nickel. This aspect of the alloy, the relative concentration

of the constituent metals, is an important factor in deter-

mining the final properties of the alloy. The key in Fig. 23

indicates the mapping of surface color to the percentage

of copper in the material.

By taking 2D slices through the dendrite, the internal

structure of the dendrite can be inspected. Figures 24

and 25 show some of the detail of the dendrite, specifi-

cally the distribution of the constituent materials, with 2D
slices taken at several points along the 2 axis. Although

the images in Fig. 25 are of different sizes, they are all

shown at the same scale as Fig. 24. only the surrounding

area, which is still in the liquid phase, has been clipped to

save space.

Further efforts should enable us to render the output

from these simulations on 10003
grids and to interac-

tively display these images on systems ranging from high-

performance graphical workstations to 3D immersive en-

vironments.

9 Screen Saver Science

The Screen Saver Science (SSS) project is a research

project to develop a parallel computing environment us-

ing any existing personal computers and scientific work-

stations connected to the local network as the compute

nodes. Each compute node would perform computations.

Fig. 23. A simulated copper-nickel dendrite computed

over a uniform 3D grid of 5003
points. Two of the axes

have been mirrored resulting in this image of 1000 x

1000 x 500 (x, y. z
)

points. The physical dimensions

of this dendrite are approximately 35 ym by 35 ym by

17.5 ym. The color of the dendrite indicates the concen-

tration of copper in the copper-nickel alloy at each point

on the surface.

as part of this computing resource, only when it would

normally be idle or running a screen saver program. Op-

tionally. the screen saver could still be running in addition

to the computation.

In contrast to well known distributed computing

projects, such as SETI@Home [69] (Search for Extrater-

restrial Intelligence). Folding@Home [70. 71] (protein

folding), Distributed.net [72] (finding prime factors, ci-

pher cracking), and others, the clients of this system, that

is. the part that runs on the user's workstation, will not

consist of a dedicated scientific application. In the SSS

system, the client will have no particular calculation em-

bedded in it at all. but instead will be capable of per-

forming any computation, subject to local resource con-

straints such as the amount of memory available. This
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Fig. 24. A 2D (x, y) slice near the base of the dendrite

shown in Fig. 23.

is made possible through the use of applications com-

piled to portable Java bytecode along with the Jini and

JavaSpaces technologies [73] that have been enabled by

the Java environment. Another fundamental difference

between SSS and other distributed computing projects is

that SSS clients can communicate with each other dur-

ing the computation in order to coordinate the computa-

tion. rather that simply exchanging data with a central job

manager, thus presenting a distributed parallel computing

model to the SSS application programmer.

This parallel coordination between the compute nodes

is feasible only because the pool of participating com-

pute nodes will all reside within the local (NIST) net-

work, which spans the two main campuses at Gaithers-

burg, Maryland and Boulder, Colorado. This also greatly

simplifies the design of SSS with respect to security since

interprocessor communication will not need to cross any

network firewalls. Compared to other distributed comput-

ing projects which can potentially utilize millions of per-

sonal computers connected to the Internet, this will limit

the number of available compute nodes to a more modest

value, possibly up to 3000 nodes.

The basic design for this form of a generic distributed

compute server has been described by Freeman, Hupfer,

and Arnold in the text JavaSpaces Principles, Patterns,

Fig. 25. Several more 2D slices of the dendrite in Fig. 23.

Each 2 value indicates by an integer the position of the

slice along the 2 axis.

and Practice [73]. The SSS project seeks to expand on

this basic idea to produce a robust production quality dis-

tributed computing environment. This environment will

also be used as a testbed for the study of parallel dis-

tributed algorithms for scientific applications.

The high-level design of SSS is shown in Fig. 26. SSS

clients access the shared objects (data and programs) held

in the JavaSpace services and also have access to file

servers for input and output of large data sets. The ba-

sic idea is that tasks (requested computations) are placed

in a JavaSpace. Clients take these tasks, one at a time,

and complete them. As each task is completed, the client

writes the results back to the JavaSpace. Because these

shared object spaces are not suitable for holding large

amounts of data, one or more file servers are also avail-

able for use during these computations.

This project is in its early stages with initial design and

implementation scheduled for the summer of 2002. Many

issues will need to be considered in designing the appli-

cation programming interface (API) for the applications

programmer to use when, for example, the program needs

to read or write a file, or to return a result to the shared

object space. Many other issues not directly related to the
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implementation of SSS applications need to be addressed

also such as the design of the space objects that will carry

information to and from the clients, the interface between

the SSS client and the native screen saver, and supplemen-

tary applications for monitoring the status of the environ-

ment.

Fig. 26. A high-level view of the Screen Saver Sci-

ence architecture. Clients access a shared object space

(JavaSpace) to retrieve tasks to perform, return results,

send messages to other clients, broadcast status messages

for general use. and exchange other messages as needed.

Large data sets will be stored on disk with client access to

these files coordinated through entries in the shared object

spaces.

The initial application targeted for this environment is a

quantum Monte Carlo (QMC) computation, loosely based

on a Fortran 77 QMC application (Quantum MagiC) [74.

75], This computation was chosen because it can be im-

plemented with a highly parallel algorithm that closely

matches the model presented by the SSS computing en-

vironment. Additionally, the size of the individual tasks

in a parallel QMC computation can easily be tuned to the

memory size and processor speed of the available com-

pute nodes. Also, the large number of floating-point op-

erations required to complete a typical QMC computation

makes this an ideal application for SSS.

10 The NIST Genetic Programming

Project

Genetic Programming (GP) is a technique for the auto-

matic design and implementation of algorithms. We are

building a generic, parallel, genetic programming system

that can be used on a variety of real-world scientific prob-

lems.

The user specifies the problem to be solved and pro-

vides the building blocks; the system determines an algo-

rithm that fits the building blocks together into a solution

to the specified problem.

10.1 Background

Genetic programming is a technique that is inspired by the

processes of biological evolution. A population of pro-

grams evolve toward a solution to a given problem under

the pressure of a survival of the fittest mechanism. Ge-

netic programming may be thought of as a type of ma-

chine learning that automatically can derive an algorithm

from a relatively simple problem specification.

More specifically, an initial population of randomly

constructed programs is created and each individual pro-

gram is evaluated to determine how well it solves the

given problem. In all likelihood, in this initial population,

all of the programs will be very poor solutions to the given

problem, but some will be slightly better than others.

A new population of programs is then derived from the

old population. This is done by creating new individual

programs from the old programs by biologically-inspired

transformations referred to as mutation, crossover, and

survival. Preference in these operations is given to the in-

dividual programs that are judged to be better solutions to
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the given problem. It is this preference for the fittest pro-

grams that causes the population to evolve toward better

solutions.

The new population is called the next generation. This

process of evaluation of the fitness of the individual pro-

grams and the creation of the next generation based on the

best programs from the old generation is then repeated un-

til a satisfactory solution is found.

It should be noted that the process of measuring how
well a program solves a given problem is of critical im-

portance. This fitness measurement procedure embodies

the problem to be solved. It determines the landscape that

the GP search algorithm traverses and applies the force

that causes the population of programs to move toward a

solution.

10.2 The NIST GP Implementation

We have implemented our GP system [76] using a some-

what unconventional representation for individual (evolv-

able) programs. We have used a program representation

that is modeled on the higher level programming lan-

guages typically used by human programmers, such as

C or Fortran. This is in contrast to the LISP-like repre-

sentation that is often used in genetic programming sys-

tems [77, 78, 19}. We describe our program representa-

tion as a procedural representation in order to denote the

structuring of the program into a hierarchy of routines,

each composed of a sequence of calls to other routines.

We expect that this representation, with program struc-

tures that are useful to human programmers, may prove

to be useful in evolved programs. Furthermore, although

the same programs can be expressed in either the LISP-

like syntax or in our procedural structures, the evolu-

tionary characteristics will certainly be different. Hence

the procedural representation could yield better results

for some problems. Of course, by the same token, the

procedural representation could yield worse results in

other cases [80], This suggests that these two represen-

tations (and perhaps others) might be used together in a

single system. We are exploring this idea in a related

project [81],

x

Fig. 27. Results of an example regression run. Values of

the GP-dtscovered function are shown at points that were

used by the GP system to determine fitness.

10.3 Results

We are studying symbolic regression with our GP system.

Figure 27 shows the results of a GP run on one problem.

The function that is being fitted is sin(x 2 +x-|-l). The fig-

ure depicts a portion of the function, and the values of the

fitted function at some of the test points that the GP sys-

tem used during its fitting. Clearly the GP system closely

matched the target function. In fact, our GP system found

the function cos(x
2 + x — 0.570562). Note that the GP

system found and used the constant 0.570562. which is a

close approximation to tt/2 — 1. It then exploits the fact

that sin(a) = cos(a — tt/2) to fit the data from the original

function.

One goal of the regression project is to automatically

find functional forms for measurement errors in combina-

torial experiments.

In conjunction with our procedural program represen-

tation we have also introduced two new operations, re-

pair and pruning , that are designed to work with the pe-

culiar' properties of our program representation. These

operations are used much in the manner of mutation or

crossover to generate new programs from existing pro-

grams in the evolving population of programs. Both of

these operations have had substantial, and sometimes un-

expected effects on the system’s effectiveness.

The repair operation scans selected programs and looks



for cases of unused valuables or results, unset output argu-

ments, and the use of uninitialized variables. When one of

these conditions is found, the program is automatically al-

tered to eliminate the situation. We have found that these

repairs can enable the GP system to more easily evolve a

population toward a solution.

The pruning operation goes through a program and at-

tempts to cut off as many program branches as possible

without hurting the fitness of the program. Pruning was

initially implemented to address the problem of program

bloat. This is a common problem in GP systems; it is

the situation in which program size grows unmanageably

large, causing extreme slow-down of evolution. Tech-

niques for reducing bloat have been studied [82],

Our pruning operation goes through a selected program

and attempts to cut off as many program branches as pos-

sible without hurting the fitness of the program. This form

of pruning seems to be unlike many previous attempts to

control program bloat. We found that this operation was

not only quite effective in controlling program size, but

that it also improves our GP system’s ability to evolve

solutions. We have observed cases in which the pruning

operation has acted as a type of mutation that produces

a program that is substantially more fit than the program

that it started with. At times, pruning has been observed

to produce the most fit individual of the generation. This

is an unexpected and intriguing result and we will be in-

vestigating this effect in more detail.

10.4 Visualization

In order to understand the operation of our GP system we
instrumented the system in a variety of ways. Statistics

are accumulated for program and populations such as the

number of operations and variables used, program ances-

try, and the type of genetic operations used. These data

enabled us to gain an understanding of the operating char-

acteristics of the system, but the volume of data is often

unwieldy.

This motivated the implementation of a visual repre-

sentation of populations and individual programs. These

visualizations do not capture all aspects of the programs

or all of the statistics mentioned above but they do pro-

vide a way of looking at broad characteristics or patterns

within populations.

Figure 28 shows a visualization of a population of 128

Fig. 28. Visualization of a population.

individual programs. Each program is represented by one

vertical column. As indicated in the figure, three aspects

of each program are represented. The upper pan is a vi-

sual representation of the content of the program. Each

block of color in this section corresponds to a procedure

in the program. The basic operations of the system are

each given a different grey level and composite proce-

dures (which assemble sequences of the basic operations)

are assigned a color that indicates ancestry. In the middle

section, the sequence of genetic operations that brought

each individual into existence is presented. Each opera-

tion. such as crossover and mutation, is given a unique

color. Finally, the lower portion of the image presents

a normalized view of the fitness of each individual. In

Fig. 28, the individuals have been sorted by fitness with

the most fit individuals on the left.

These visualizations have proven useful in several

ways. For example. Fig. 29 shows the same population as

that in Fig. 28 but at a later generation. One observes large

numbers of programs that have very similar structures and

very similar genetic histories. This visual representation

clear ly shows a loss of diversity in the population between

the generation represented by Fig. 28 and the generation

shown by Fig. 29. This has prompted us to undertake an

ongoing investigation into the issue of population diver-

sity and its influence on the operation of our GP system.
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