
NAT'L INST. OF STAND & TECH R.I.C.

A 11 ID 5 bD032b

<4 reference
PUBLICATIONS

N I STIR 6868

Comparative Statistical Analysis

of Test Parts Manufactured in

Production Environments

David E. Gilsinn

U.S. DEPARTMENT OF COMMERCE
Technology Administration

Mathematical and Computational

Sciences Division

National institute of Standards

and Technology

Gaithersburg, MD 20899-8910

Alice V. Ling

AFRL/DEX

3550 Aberdeen Ave SE

Kirtland AFB, NM 87117-5776

Q.d
J&o

• LuS (p

*68t>8
2-603U

NU5T
National Institute off Standards
and Technology
Technology Administration

U.S. Department of Commerce





Comparative Statistical Analysis

of Test Parts Manufactured in

Production Environments

David E. Gilsinn

U.S. DEPARTMENT OF COMMERCE
Technology Administration

Mathematical and Computational

Sciences Division

National Institute of Standards

and Technology

Gaithersburg, MD 20899-8910

Alice V. Ling

AFRL/DEX

3550 Aberdeen Ave SE
Kirtland AFB, NM 87117-5776

June 2002

U.S. DEPARTMENT OF COMMERCE
Donald L. Evans, Secretary

TECHNOLOGY ADMINISTRATION
Phillip J. Bond, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arden L. Bement, Jr., Director



Certain commercial software products are identified in this paper in order to adequately

specify the computational procedures. Such identification does not imply

recommendation or endorsement by the National Institute of Standards and Technology,

nor does it imply that the software products identified are necessarily the best available

for the purpose.
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Abstract

Estimating error uncertainties arising in parts produced on machine tools in production

machine shops is not a well understood process. The current study details a process of

estimating these error uncertainties. A part with significant features was defined and a

vertical turning center was selected in a production shop to make multiple copies of the

part. Machine tool error components were measured using a laser ball bar instrument.

Twenty-one copies of the part were produced and measured on a coordinate measuring

machine. A machine tool error model based on the measurements of the vertical turning

center machine tool errors was developed. Uncertainty estimates of the errors in the

working volume were calculated. From coordinate measuring machine data error

uncertainties at points on the part were developed. Distances between hole centers were

computed and uncertainty estimates of these lengths generated. Many of the hole centers

were designed to fall along orthogonal lines. Uncertainty estimates were computed of the

orthogonality of these lines. All of these estimated uncertainties were compared against

uncertainties computed from the measured parts. The main conclusion of the work is that

the Law of Propagation of Uncertainties can be used to estimate machining uncertainties

and that predicted uncertainties can be related to actual part error uncertainties.

Keywords: coordinate measuring machine, drilling, error uncertainties, laser ball bar,

machine tools, machine tool errors, milling, Monte Carlo, propagation of uncertainty,

vertical turning center.
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Glossary

ASME American Society of Mechanical Engineers

CMM Coordinate Measuring Machine

ISO International Organization for Standardization

LBB Laser Ball Bar

NC Numerical Controlled
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1.0 Introduction
1

In the production of machined parts a major problem can face a parts designer. Given a

particular machine tool, how does one estimate beforehand the errors in features for the

parts produced by that machine? Although there are general guides for reporting

uncertainties in experiments (see ISO [1], Taylor and Kuyatt [2], American National

Standards Institute [3]) there have been no published practical case studies on how to

estimate uncertainties of errors of machined part features. Producing such a guide on the

basis of case studies for a wide range of machine tools would be a large undertaking. This

report can be regarded as an attempt at one chapter of such a guide.

A project was defined in which a part was specified and given to a production machine

shop with an order to make twenty one copies of the part on the same machine. A three-

axis machining center on the shop floor was selected (See Figure 1). The part designed

had drilled and milled holes and a circular slot (See Figure 2). The error components of

the machine tool were measured multiple times by a laser ball bar (LBB). An error model

of the machining center was developed and axis error uncertainties estimated by using the

propagation of error formula from the ISO Guide [1]. An analytic formula was developed

that could be used to estimate the variation in distance between features, such as hole

centers. For orthogonal and circular features, Monte Carlo techniques had to be

developed in order to estimate uncertainties. The parts themselves were measured on a

coordinate measuring machine (CMM) and an analysis of variance technique was used to

separate the measurement and manufacturing uncertainties of the measured hole centers

and inner and outer radii of the circular slot. The various techniques employed are

documented in this report in order to form a basis for estimating the uncertainties

involved in producing parts on machine tools.

The measurement of the machine tool (described in Section 3) was done by an instrument

that measured machine tool errors at points on a plane above the parts production surface.

Estimates of this height were not obtained at the time the machine tool error

measurements were made. Therefore, the model as finally used in this report does not

contain terms that include the errors due to this height difference. In future error

measurements of similar machine tools these terms should be included. Since the object

of this report was to develop a methodology, the authors feel that this oversight does not

invalidate the overall procedures developed.

A review of the related research literature is given in Section 2. Section 3 briefly

describes the machine tool measurement procedure and the part design. Section 4

describes the kinematic model of a three axis machine tool along with the methods of

estimating errors for point location, linear distances, orthogonalities and circularities.

The uncertainty estimates for CMM measurements of the parts are given in Section 5.

The comparative results are given in Section 6 with some final conclusions given in

section 7.

1

The term “error” used in this report is used in the machining sense to refer to axis errors, e.g. linear axis

errors, straightness errors, or orthogonality errors, rather than in the statistical sense.
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2.0 Related Research

Various authors discuss different aspects of the problem of machining uncertainties.

Under a controlled set of experiments Wilhelm, Srinivasan and Farabaugh [4] have

demonstrated that the measured behavior of the machine tool could be related to

variations found in prismatic part features cut on that machine tool. The machining and

metrology conditions were tightly controlled. A horizontal machining center was used.

Parts, with features similar to those in the current study were cut. The results indicated

that most part errors fell within two standard deviations of the machine errors. However,

under uncontrolled conditions, a recent study by Chatteijee [5] has shown that there is a

significant deviation in machine tool performance between static and operating

conditions, where machine parameters are likely to vary due to cutting and thermal loads.

Shin and Wei [6] developed a kinematic model for a multi-axis machine tool in order to

predict deterministic errors. They added stochastic terms to the predicted errors and

theoretically estimated the means and variances of the kinematic errors, but provide no

experimental data comparison

The inaccuracies that relate to drilling operations have been studied by a number of

authors. These results, however, are in general experimental or analytic in nature and are

not formulated in terms of uncertainties. Kaminski and Crafoord [7] state that drilling

operations give rise to forces in the X, Y and Z directions as well as torque. They found

that the tool deflects more under dynamic cutting conditions than under static simulated

force loads. Lehtihet and Gunasena [8] use a simulation to show the influence of

tolerance specification, size of the tolerance zone, hole size density, and production errors

on the probability of producing an acceptable hole. Lee, Eman and Wu [9] discuss a

mathematical model for drill wandering motion to explain the formation of odd-sided

polygonal holes during initial penetration. Fujii, Marui and Ema [10, 11, 12] find that the

drill point deflects along an elliptical orbit during whirling vibration. Magrab and Gilsinn

[13] model a drill bit as a twisted Euler beam under axial loading that is clamped at both

ends. The representative set of modes obtained exhibit a complex out-of-plane twisting-

type motion that suggests a possible explanation for the out-of-roundness of certain

drilled holes.

In a work that relates to the current report Shen and Duffie [14, 15] develop an

uncertainty analysis method that allows the modeling and computation of component

error uncertainty sources that lead to coordinate transformation uncertainties. They show

how uncertainties propagate in the homogeneous transformations of points, products of

transformations and inverse transformations. They characterize the uncertainties

associated with workpiece positions and orientations in terms of two components, a bias

and a precision uncertainty component. They demonstrate that the bias and precision

components can be propagated independently and combined to represent the uncertainties

of the coordinate transformation relations. They validate the method by using Monte

Carlo simulation (Bauer [16]).
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Several recent papers relate measurement uncertainties in CMM measurements to the

sampling strategy. Yau [17] proposes a general mathematical basis for representing

vectorial tolerances. He develops a nonlinear, best-fit algorithm to evaluate vector

tolerances for both analytic geometric elements and free-form surfaces. He then studies

the uncertainty of the best-fit result caused by the sampling strategy and dimensional

errors. Phillips et al. [18] examine the uncertainty of small circular features as a function

of sampling strategy, i.e. the number and distribution of measurement points. They study

the effect of measuring a circular feature using a three-point sampling strategy and show

that the measurement uncertainty varies by four orders of magnitude as a function of the

angular distribution of the measurement points.
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3.0

Parts Manufacturing and Machine Metrology3.1

Milling Machine Specifications

The milling machine used to manufacture the test parts (Figure 1) is a three-axis vertical

machining center with an X-axis (Longitudinal table) travel of 1020 mm (40 in), a Y-axis

(Cross table) travel of 762 mm (30 in), and a Z-axis (Vertical head) travel of 560 mm (22

in). The programming resolution for all three axes is 0.001 mm (0.0001 in). The
repeatability is reported by the machine manufacturer as 0.005 mm (0.0002 in) by the

VDI 3441 method and +/- 0.0025 mm (+/- 0.0001 in) by the JIS 6330 method.

Figure 1: Three-Axis Machining Center

3.2

Parts Design

The part, shown in Figure 2, was designed to illustrate several characteristics of the

machining center. The holes around the outer edge have several purposes. First, drilled

holes in the center were used to compute uncertainties in drilled hole center positioning.

The “squared” outer holes allowed comparison of milled hole centers to the drilled hole

centers. The large square with 150mm sides was machined to check the orthogonality or

perpendicularity of the machine’s X and Y axes. This property is sometimes called

squareness. The large internal circular features were cut in order to test the contouring

performance of the machine.

10
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Figure 2: Test Part Specifications. Dimensions are in millimeters

3.3 Measuring the Vertical Machining Center

The dimensional accuracy of the work piece is affected by the errors of the various

positioning elements of the machine tool which contribute to the positioning accuracy of

the cutting tool. Each machine element normally has one degree of freedom of nominal

motion. But, there are six error components associated with each axis of motion. These

six error components consist of three translations along, and three rotations about the

three coordinate axes(roll, pitch and yaw). They are referred to as parametric errors, and

in general are functions of axis position. For a three-axis machine tool there are twenty-

one error components (six for each axis and three axis orthogonality errors).
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ASME B5.54 [19] outlines techniques for performing parametric error measurements of

machine tools using instruments such as laser interferometers, precision straight edges,

capacitance gauges, and electronic levels. The use of these devices to perform error

component measurements requires care and considerable time. Kakino, Ihara and

Nakatsu [20] report the results of using a telescoping magnetic ball bar to measure

circular motion errors of NC machines. They develop a formula that relates the radial

displacement errors of the telescoping magnetic ball bar to the machine position error

vector at a nominal point in the NC machine tool work volume. However, direct

measurements of the spatial position of the tool are made feasible by using a metrology

device that measures spatial positions by trilateration, called a laser ball bar (LBB) (see

Figure 3). Trilateration is a technique in which a tetrahedron is formed with three base

points (vertices) attached to the machine table, and the fourth attached to the tool holder.

The three base points define a coordinate system. Simple geometric relationships allow

the spatial coordinates of the fourth point or tool to be determined relative to this

coordinate system. As the tool moves through space relative to the table, the lengths of

the edges change causing the tetrahedron to deform. The LBB uses interferometry to

measure the lengths of the tetrahedron edges and thus the tool position. The resulting

measurement includes all effects which can cause positioning error: geometric, thermal

and elastic. For a detailed discussion of the LBB and a comparison of the results of LBB
measurements with ASME B5.54 measurements see Ziegert and Mize [21]. For a

discussion of the use of a LBB in dynamic path measurements see Schmitz and Ziegert

[22] and in modeling and predicting thermally induced errors see Srinivasa and Ziegert

[23]

,

Various error components of the machine tool are measurable by the LBB. For example,

when a single axis of a machine is actuated, the tool point is intended to move from the

starting point to the ending point in a straight line. The distance between the starting and

ending points should be exactly the displacement commanded. If it is not, then the

machine is said to exhibit a linear displacement error. In general, the amount of the linear

displacement error is a function of the axis position and direction of motion. Due to

imperfections in the guideway system, the actual motion deviates from a perfect straight

line. These deviations are termed straightness errors. The individual axes of a machine

tool are constructed to provide axis motions which are perpendicular to each other. Due

to imperfections in the machine construction, the actual motions of the axes are not

exactly perpendicular. These errors are called axis alignment errors or squareness errors.

Besides measuring displacement, straightness and squareness errors the LBB can

measure the angular errors exhibited by the axes during motions. These are called roll,

pitch and yaw. The measurement of these angular errors is accomplished by replacing the

single tool socket with a fixture which holds three sockets, one of which is on the spindle

centerline. The center socket is used to determine the linear displacement and straightness

errors. Due to orientation changes, the displacement of the other two sockets will not be

the same as the first. The LBB uses the difference in displacements of the three sockets to

determine roll, pitch and yaw errors of the machine axis at each point along its travel.

12



The machine measurements were made by the following procedure. Five passes in both a

forward and reverse direction were made in a large work volume that contained the

smaller work volume enclosing the machined parts. This provided ten sets of data as a

basis to model each of the error components of the milling machine. The LBB measured

all twenty-one error components that define the errors for a three-axis mill. The data was

used to develop regression models of the error components as functions of the positions

along each machine axis. All five passes by the LBB were performed consecutively over

a period of eight hours.

13



4.0 Part Uncertainty through Model Prediction

Predicting part uncertainty by using a kinematic machine tool model requires a number of

approximations. The first approximation assumes that the various error components

combining to form a kinematic model of the machine tool errors enter in a linear fashion

only. This is reasonable when the order of magnitude of the error components is

examined. Any higher powers of the components become negligible. Second, the

measurement of the machine error components indicate thermal drift of the errors

between measurement repetitions as will be shown below. The authors recognize that the

drift existed but could not control it during the measurement process. Thus for the

purpose of this study the drift curves are treated as bona fide repeat curves and the

resulting analysis will be assumed to be overly conservative. Finally, in order to estimate

such quantities as circularity that are not defined in an analytical form, Monte Carlo

simulation must be used in which an approximation to the distribution of the coverage

factor for point uncertainties must be made. This will be discussed further below.

In this section, a kinematic model of the machine tool, described in Section 3.1, will first

be constructed. The error components entering into this kinematic model will then be

shown to exhibit a linear trend over the workspace of the manufactured parts. A general

analysis of point location uncertainties, based on this model, will then be given. Using the

point uncertainty estimates an analytic method will be developed to estimate length

uncertainties between feature points. Both analytic and Monte Carlo methods will then be

used to estimate orthogonality uncertainties. Finally a Monte Carlo procedure will be

used to estimate circularity uncertainty.

4.1 Kinematic Model for a Milling Machine

The following notation will be used to describe the kinematic model for the three axis

mill.

1. ax (y) Angle between the X and Y axes

2. a
x (z) Angle between the X and Z axes

3. a
y
(z) Angle between Y and Z axes

4. Sx (x) X-Axis Scale Error

5- S
y (y)

Y-Axis Scale Error

6. S
z
(z) Z-Axis Scale Error

7. S
y
(x) Y Straightness of X

8. S.(x) Z Straightness of X

9. Sx (y) X Straightness of Y

10. S
z (y) Z Straightness of Y

11. S
x (z)

X Straightness of Z

12. S
y
(z) Y Straightness of Z

13. £x (x)
X Rotation of X (roll of X)

14



14. £
y

(x)

15. £.(x)

16. £x (y)

17. £
y (y)

18. £
z (y)

19. £x (z)

20 . £
y
(z)

21. £
;
(z)

Y Rotation of X (pitch of X)

Z Rotation of X (yaw of X)

X Rotation of Y (pitch of Y)

Y Rotation of Y (roll of Y)

Z Rotation of Y (yaw of Y)

X Rotation of Z (pitch of Z)

Y Rotation of Z (yaw of Z)

Z Rotation of Z (roll of Z)

Three of the straightness errors must be modified to form generalized straightness errors

due to the angular errors between axes. In particular

1. A generalized X-straightness error of Y motion is given by Sx (y) + ax (y)Ay .

2. A generalized X-straightness error of Z motion is given by Sx (z) + oc
x (z)Az .

3. A generalized Y-straightness error of Z motion is given by 8
y
(z) + oc

y
(z)Az .

In these formulas Ay and Az represent incremental steps along the Y and Z axes.

The construction of the kinematic model along the lines of Donmez [24] begins by

assuming that a reference axis system is established by setting the part zero at the lower

left comer of the part. The vertical, or Z, axis system is initialized vertically over the part

zero but offset from it by a tool offset, z 0 • To model a drilling operation three steps are

performed. First, the Y slide is moved forward, or in the negative Y direction. This slide

carries the X slide along and holds the Z slide fixed. The second step is to move the X
slide to the left and hold both the Y and Z slide fixed. Finally the Z slide is moved in a

downward or negative Z direction to produce the drilled hole (See Figure 4 below).

The motion of the Y slide with respect to the reference axis system is modeled by the

product of an ideal motion matrix and the motion error matrix. This is given by

'
1 0 0 0" f 1 -£

z (y) £
y (y)

8x(y)-ax (y)dy

'

0 1 0 y £
z (y) l -£

x (y) S
y {y)

0 0 1 0 -£
y (y)

ex (y) i 8
z (y)

1° 0 0 b V
0 0 0 1

J

The motion of the X slide with respect to the Y slide is modeled by the product of an

ideal motion matrix and the motion error matrix. This is given by

15



"1 0 0 *1 f 1 ~ £
z (x) £y(x) S

x
(x)

0 1 0 0 £
z
(x) 1 -£

x (x) 8y(x)

0 0 1 0 ~
£yW £X (X) 1 S

x
(x)

1
° 0 0 1

J \
0 0 0 1

The work piece point with respect to the X slide involves only a translation matrix so

that

(1 0 0

0 0 0

-y

y

l

(3)

The motion of the Z slide with respect to the reference axis system is given by the

product of the ideal motion matrix and the motion error matrix as

(1 0 0 0Y 1

0 10 0

0 0 1 Z

1
° 0 0 u

e
t
(z)

~£y(z)

0

-£-(z) £
y
(z) Sx (z)-ax (z)dz

'

1 ~£
x (z) S

y
(z) - a

y
(z)dz

£x (z) 1 S
:
(z)

0 0 1

(4)

Finally the tool point with respect to the Z slide involves only an identity matrix as

''1
0 0 0

'

0 10 0

0 0 10
0 0 *,

(5)

The matrix relating the work piece point relative to the reference axis,
RTW , is given by

the matrix product

*T = rT yT XT (6)w y x w v/

16



and the matrix relating the tool tip to the reference axis,
RT

t
, is given by the matrix

product

(7)

The error matrix relating the tool point to the workpiece, E, is then given by

(8)

Using a symbol manipulator, such as MACSYMA, it is possible to compute the

displacement errors of the work point with respect to the zero reference point (see

Appendix E). These errors , ignoring cross-products and higher-order terms, are given by

Ex = ys
z (y) + ze

y (y) + Sx (y) + ye
z
(x) + Sx (x)

- Sx (z) - yax (y) + za
x (z) + ze

y
(x)

E
y
= S

y (y)
- xe

z
(x) + S

y
(x)

- Z£x (y) -Sy
(z) + za

y
{z) - z£x (x) , (9)

E. = ~y£
x (y) + Sz (y) + x£

y
(x) - y£x (x) + Sz

(x) - S, (z)

.

Equation (9) provides a formula for combining individual machine error components to

estimate the resultant positioning error between the tool and the work piece. Individual

error components can be obtained using machine tool metrology characterization

procedures outlined in the literature ASME B5.54 [19]. However, in this study the LBB
methods described in Section 3.3 were used. Although most of these errors are

repeatable, there is always a measurable amount of variation in the machine behavior due

to various factors influencing the machine performance. These variations result in the

variation of the estimates obtained by the kinematic equations given in equation (9) as

well as the variation in the machined part dimensions and form.

Since only planar errors are to be studied in this report any terms in equations (9) that

involve a z coordinate value are dropped so that the final equations used to analyze the

data are given by the following equations.

e
x = yMy)+<^(y)+yM*) +<^(*)~y^My)

E
y
= £

y
(y)-x£.(x) + <^(x)

(10)

In order to evaluate these formulas the first task was to develop equations for each of the

components that relate the component errors to the coordinates x and y.

17



Axis System for the Three Axis Machining Center

X - Slide Y - Slide

Z - Slide

Reference Axis

Figure 4: Kinematic Model Axes Systems

4.2 Regression Models for the Component Errors

In order to compare the results obtained from modeling machine tool errors with those

measured on parts produced on the machine the strategy was to align the coordinate

systems so that the origins and axes overlap. The data taken by the LBB was measured

relative to the machine’s coordinate axis. The first step in modeling the data was to locate

the part origin for measurements within the machine coordinate system. This was the

point used as the part origin when the parts were measured on a CMM. Although the part

origin for machining was taken as the center of the part shown in Figure 2, the part origin

for measurements was taken as the lower left comer of the inner 150 by 150 mm square.

The component error data on the machine tool was taken by the LBB relative to the

machine coordinate system in steps of 25.4 mm in both the x and the y direction, with

twenty-five steps in the x direction and twenty-six steps in the y direction. For each of

these points there were ten data values. The part origin for measurement in the machine

coordinate system was located within one of these intervals for x and one for y. The

mean values of the ten data values for each of the error components were computed and

their values were interpolated to find the values of the components at the part origin for

measurement. The data and the x and y scales were then shifted so that the part origin for

measurement became the zero in the x and y coordinate system and the mean component

errors at the part origin for measurement also became zero. This process aligned the on-

machine measurements by the LBB with the part measurements made on the CMM.

18



Figures 5 through 10 below show the shifted data values recorded by the LBB for six of

the seven critical error components. The figures show linear trends in the error

components over the work volume of the test parts. Simple linear regression models

were fit to each of the six data sets. Since eight of the measurement steps fell within the

work volume of the part being milled, only the data from those eight entered the

regression analysis. In that case n = 80 observations were made for each of the six error

components

S
x
(x), S

y
(x), S

y (y),
Sx (y), £

z
(x), e

z (y )

These observations were comprised of ten observations at each of eight locations in each

of the x and y coordinates. The measurements have been normalized to part zero so that

the zero point on the horizontal axis represents the part zero. Both forward measurement

beginning from the left in the figures below and reverse measurement show backlash

error.

The figures show a definite effect of thermal conditions. There is a general tendency of

the graphs for the displacement and straightness errors to rise as the number of runs

increases. The angular error components rise through the third pass, with retreat

indicating a reversal of rotation after about five hours of continual running. This thermal

effect introduces a nonstationarity in the data so that traditional assumptions of the

distribution of sample repetitions can not be applied, but for the purpose of this study

they can be considered as legitimate repeats and the resulting analysis accepted as overly

conservative.

X displacement

,
- Run 1 f—

1
— Run 1 r

—e— Run 2 f

—e— Run 2 r—•— Run 3 f

—

—

Run 3 r

—

—

Run 4 f

— — Run 4 r

—B— Run 5 f

B— Run 5 r— Upper Uncertainty— Mean— Lower Uncertainty

Figure 5: LBB Measurements of X Displacement Errors

Showing the Mean Least Squares Trend Line with

Uncertainty Band Using a Coverage Factor of 2
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Y straightness o» X

_+_ Run 1 f—
1
— Run 1 r

—e— Run2f
—e— Run 2 r—•

—

Run 3f—

—

Run 3 r—

—

Run 4 f—

—

Run 4 r

—B— Run 5 f

—B— Run 5 r— Upper Uncertainty— Mean— Lower Uncertainty

Figure 6: LBB Measurements of Y Straightness of X Errors

Showing the Mean Least Squares Trend Line with

Uncertainty Band Using a Coverage Factor of 2

, Run 1 f

1 Run 1 r—e— Run 2 t—e— Run 2 r

—•

—

Run 3

1

—•— Run 3 r—.

—

Run 4 f—

—

Run 4 r

—B— Run 5 f

— -S

—

Run 5 r— Upper Uncertainty— Mean— Lower Uncertainty

Figure 7: LBB Measurements of Y Displacement Errors

Showing the Mean Least Squares Trend Line with

Uncertainty Band Using a Coverage Factor of 2
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6

X straightness of Y

-6l
-50 0 50 100

y mm

h

—

Run 1 f

-t— Run 1 r

-e— Run 2 f

-e— Run2r
-*— Run 3 f

-*— Run 3 r

—— Run4f
-*— Run 4 r

-b

—

Run 5 f

-a— Run 5 r

Upper Uncertainty

Mean
Lower Uncertainty

200

Figure 8: LBB Measurements of Y Straightness of X Errors

Showing the Mean Least Squares Trend Line with Uncertainty

Band Using a Coverage Factor of 2
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Figure 9: LBB Measurements of Rotation About Z with X
Motion Errors Showing the Mean Least Squares Trend Line

with Uncertainty Band Using a Coverage Factor of 2
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Figure 10: LBB Measurements of Rotation About Z with Y
Motion Errors Showing the Mean Least Squares Trend Line with

Uncertainty Band Using a Coverage Factor of 2

The LBB measurement of the angular error between the x and y axes is independent of

coordinate position. Table 1 gives the errors measured by the LBB in arc seconds and

radians. The mean error in radians, estimated standard deviation and degrees of freedom

are also given. These are used to estimate the confidence interval of a future observation

of the angular error.

Angular Error Between X and Y Axes

Pass # Error (arcsec) Error(radians)

1 -6.99 -3.39-05

2 -6.43 -3.12E-05

3 -7.39 -3.58E-05

4 -6.76 -3.27E-05

5 -6.79 -3.29E-05

Mean -3.33E-05

Est. Std. Dev. 1.67E-06

Deg. Of Freedom 4

Table 1: LBB Measurements of the Angular

Errors Between the X and Y axes

Table 2 gives the slope and intercept values for the linear trend equations describing the

error components shown in Figures 5 through 10.
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Kinematic Error component Coefficients

Displacement Errors

Slope Intercept

Nondim. mm

8AX)
-1.89E-05 1.04E-04

8y(X)
-3.78E-06 5.16E-04

8y(y) -1.823E-05 1.38E-03

8Ay) -3.88E-06 8.55E-04

Rotational Errors

Slope Intercept

Nondim. radians

eM) -2.87E-08 5.73E-06

e
z (y)

-5.62E-08 3.52E-06

X-Y Axes Angle Error

Slope Intercept

Nondim. radians

a
*y

0.0000E+00 -3.33E-05

Table 2: Error Component
Coefficients

4.3 General Propagation of Uncertainties Using the Kinematic Model

In order to estimate the uncertainties associated with the resultant errors a preliminary

assumption is made that the individual error terms are uncorrelated since it is difficult to

estimate the cross correlation of the different dimensional errors.

According to the Law of Propagation of Uncertainty, outlined in the ISO Guide [1],

Taylor and Kuyatt [2], Coleman and Steele [25] and Wheeler and Ganji [26], if a variable

E, such as those in equation (9), is a function of N stochastic components that are

uncorrelated

E = f(y„-,yN ) (ID

then the combined uncertainty of E, u
c
(E ) , can be estimated in terms of the uncertainties

of the components, ignoring second order terms, by

N f Y
«?<*)-2 f u\y.) ( 12)
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The variances of the positioning errors in equation (9) can be computed from the

propagation of uncertainties law by taking the appropriate partial derivatives as

K (Ex ) = y
2
u

2

(£ z ( y)) + z
2
u

2

(£
y (y))

+ u
2
(Sx (y)) + y

2
u

2
(£z

(x))

+ u
2
(Sx (x)) + u

2
(Sx (z)) +

y

2
u

2
(a

xy ) +

z

2
u

2
(a

x: ) +

z

2
u

2
(£

y
(x))

u) (Ey
)=u 2

(S
y (y))

+ x
2
u

2
(£. (x)) + u

2
(S

y
(x)) + z

2
u

2
(£x (y)) + u

2
(S

y (z))

2 2 , , (13)

+ z~u (a
yz ) + z u

2
(£x (x))

u) (Ez ) = y
2
u

2

(£x ( y)) + u
2
(S, (y)) + x

2
u

2
(£

y
(x)) + y

2
u

2
(£x (*)) + u

2
(S

z
(jc))

+ u
2
(S.(z))

To evaluate the uncertainties u
r
(Ex ),u r

(E
y
),u

c
(E

z )
one has to determine the

uncertainties of individual error components using machine characterization data.

For completeness, equation (13) gives the error vector at any given point (jt, y, z) in the

workspace, but since only uncertainties associated with planar features are of interest

here the uncertainty equations reduce to

u;(E
x
(x, y)) = y

^2
u

2

(£ „ (y)) + u
2
(S

x (y))+y
2
u

2

(£, (x)) + u
2
(Sx (x)) + y

2
u

2

(ax (y))
(14 )

m
2

(Ey
(x, y )) = u

2

(5
y (y )) + x

2
u

2

(£z
(x)) + u

2
(S

y
(x))

The approximation here is that the components are taken to be uncorrelated. Since the

measurement instrumentation used did not allow simultaneous measurements of all

#
component errors the assumption is necessary but simultaneous measurement is

considered a standard in scientific work.

The uncertainties of the components can be estimated from their equations. The methods

are described in Montgomery and Peck [27]. Since the component errors are modeled as

linear equations their regression equations take the form

y = X/3 + £ ( 15 )

where £ refers to the regression error, not to be mistaken for the rotational errors above,

and

24



?!

y.

G
e

2

In general, y is an n x 1 vector of observations. X is an n x 2 matrix of the regressor

variables. /? is a 2 x 1 vector whose components are: /?, the line intercept and /?2 the

line slope. £ is an n x 1 vector of random errors.

The least squares estimator of /? is given by the well known formula

/? = (X r X)
_1 X r

y (17)

1 x,

1 x
2

1

Given a coordinate jc, , which could be along the jc or y coordinate axis depending on the

approximate error component equation that is being evaluated, the predicted value is

computed as

y = x
T
P (18)

where x
T = [l jc,

]
is the regressor variable.

The regression model (15) can be used to predict a particular value of y0
corresponding

to a specified level of regressor variable of Jt
0

. In particular, let x^ = [l jc
01 ], then a

point estimate of the future observation y0
is given by (18) as

>>0 = 4P (19)

Under the conditions that the repetition samples and their standard errors satisfy certain

strict probability distribution requirements a confidence interval for this predicted

observation is

y,-kJ&
2
a + xl(X

TXr'x0 )

(2m

< y„ s yt +k p
i]<7

2
(l + x

T„(X r xy'x0 )
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where k
p

is the coverage factor, taken here as k
p
= 2 [ 2], This interval is referred to as

a prediction interval for a future observation of y0 [27]. It is more conservative than the

confidence interval for the mean, but it is more meaningful for of parts production. For
the rest of this report the use of the term confidence interval will mean the prediction

interval. Also for the rest of this report the term -yj&
2

( l + x^ (X
T
X)~'x

0
will be referred

to as the standard uncertainty with the understanding that it is the standard error of a new
observation given a value of the regressor variable. The expanded standard uncertainty is

then

u(x0 ) =2^[&
T
(i+Il(X

Fxy\) (21 )

where

cr = y
Ty-p TX T

y

n-2
(22)

with y being the data used in (16).

Figures 5 through 10 show the linear equation fit to the data as well as the upper and

lower uncertainty bands based on the interval (20) with a coverage factor of 2. The
coefficients of the fitted linear equations are given in Table 2.

At this point we will show how the formulas above, used to estimate an uncertainty

interval for the next observation for a linear regression problem, can also be used to

estimate an uncertainty interval for the next sample of the angular error given in Table 1.

Although the angular error model is considered be a constant, the representation we select

is given by equation (15) with the y vector given by the five angular errors in Table 1 and

the X matrix given by [l 1

equation (17). In this case

1 if . The parameter estimates are then given by

1

5

(X T X)
-1 X t

Y =-^T . Thus the least squares

5 ,= i

model in this case is the mean of the samples. Furthermore x0 = [l], so that

jCq (X r X) 1

jc
0
= —

.

The coverage factor will again be selected as 2. In this case, the

confidence interval for a future sample of the angular error between the x and y axes is

given by

a
xy

< a
xy
< a

xy
(23)

where
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(24)

which for the data in Table 1 is 2.88849e-12 radian squared. Therefore the uncertainty

interval for a future angular error observation in radians is

- 3.70355*? - 5 < av < - 2.95885e - 5 (25 )

where the estimated standard deviation for a future sample is 1.86177e-6 radians.

From the entries in Table 2 above one can substitute estimates into the component error

equations of the form

^x(X) = 0uX+ 0\2

S
y
(jf) —02

\X 022

3y(y)=03\y+Pn

s
x (y)=04ly+042 (26)

£
z
(x) —

/?5i
X + 0^2

£;(y) = 06\y + 062

K=0T2

Where the hat notation indicates that these equations are taken as estimates for the

variables on the left. The degree of freedom of each of the first six estimates is seventy

eight, since there are eighty samples used to estimate the linear error component

functions, and the degree of freedom of the last is four. The estimates of <7
2
for each of

the equations in (26) are given by
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With these one can now estimate the variance of the variables on the left of (26) at a

specific point Cx0 ,y0 ) in the workspace. These are given by

u
2
(Sx (x0 )) = <(„— +

«
2

(^y(X0))

«
2

(^v(>7

o))
=^ 2

<5y(>)

i

,

(y. - y)

80
80

i=i

u
2
(Sx (y0 )) = crSr(y)

i (y 0 -y)

80
80

So--?)
2

i=i
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"
2

<A> =< 7

The combined standard uncertainties of the estimated errors about the mean at a given

regressor point are given by the square roots of

Kp (Ex (*0 . To )) = ylu
2

(To )) + u 2
(To )) + To

2
«

2

(£ z (*o ))

+ u
2
(Sx (x0 ))+y

2
u

2
(a

xy ) (29)

KP
(Ex (x0 , y0 )) = u

2

(Sy (y0 )) + x
2
w

2
(i

z
(x0 )) + u

2
(S

y
(x0 ))

where the subscript cp indicates the combined standard uncertainty about the mean at a

point (jc
0 , y0 )

.

However, in order to estimate a confidence interval of a future error

response one must include the fact that the actual observed errors vary about their true

means with estimated variances given by

Ucm (Ex C*0 ’ To )) To^f.(y) ~y^Sx (y) To &e. ( jc )

U cm (Ey (xqi To )) ~ ^

S

y (y)
+ e,(x) &8

y
(x)

+ <u) + To<
(30)

where the subscript cm refers to the combined standard uncertainty about the mean E .

The combined standard uncertainty for a future error response is then computed by the

square root of

Ko (Ex
(x0 , To )) = uL (E

xU0 > To )) +KP
(Ex

(x
0 , y0 ))

Ko (Ey
(x0 , To» = uL(Ey

(x0 , To )) +KP
(E

yU0 . To ))

where the subscript co refers to a future observation of the errors. These estimated

variances are given in tables A1 to A3 in Appendix A for the peripheral hole centers and

for thirty-six evenly spaced points around the inner and outer rings of the circular slot on

the part in Figure 2.
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The prediction error at (x
0 , y0 ) can be estimated by substituting (27) through (30) into

(31) and using a coverage factor of 2 to write

E
x (*0 > ?<) )±2yl

U ro(Ex (*0 ’ 3>0 ))

(32)

A table of the expanded confidence intervals given by equation (32) is given in appendix

A for all of the peripheral holes numbered in Figure 5 below. Tables A4 to A6 give the

prediction intervals for the peripheral hole centers and the evenly spaced points on the

inner and outer rings.

4.4 Linear Distance Uncertainties

Estimating distances between hole centers is a planar problem so we will only be

concerned with the x and y errors at the hole centers. Suppose then that two points,

(jc,
, y, ) and (x

2 , y 2 ) , are given on a part, such as the centers of two drilled holes. Each of

these points has an error associated with it, given by (^(x^y^E^jCpy,)) and

(Ex
(x

2 , y 2 ), E (x2 , y 2 )) • The length, L , is then computed from

and the nominal length, L
0 , is computed from

Ll = (*, -x2 )

2

+ (y, -y 2 )

2
. (34)

Since the variance of the actual length is approximately the variance of the estimated

length, i.e. u
l

co
(L

a ) ~ u
0̂
(L), then, using equations (33) and (34), the estimated variance

of the actual length is given by (see Appendix D)

'0

'0

The validity of this equation depends on the independence of the errors

Ex (-^i ^ X (-*"2 > 3^2 )’ ^y (-^i 1 3^ )» Ey
(x

2 , y 2 ).
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Using equation (35) three length uncertainties are estimated. These uncertainties are

compared with uncertainties obtained from measuring the parts on a CMM. More
distance uncertainties could be computed but the authors felt that the lengths chosen

reflect the essential nature of the part uncertainties in general. The lengths chosen are the

center-to-center lengths from hole number three (3) to hole number nine (9), from hole

nine (9) to hole fifteen (15), and finally from hole three (3) to hole fifteen (15). The
predicted point uncertainties for each of the three points are taken from Table A1 in the

appendix, along with the nominal center locations. The estimated length is then

computed using equation (33). The error uncertainties are also taken from Table A1 and

the length uncertainty is computed by equation (35). The expanded prediction interval is

computed using a coverage factor of two. The results are given in Tables 3 and 4 below.

X Axis

Hole

Number
Nominal

(mm)
Error

(/jm)

Variance

(jum)
2

Uncertainty

(P*n)

Expanded

Uncertainty

(ium)

3 10 1.15 6.86 2.62 5.24

9 10 5.04 20.96 4.58 9.16

15 140 2.07 20.83 4.56 9.12

Y Axis

Hole

Number
Nominal

(mm)
Error

(fim)

Variance

(/mi)
1

Uncertainty

(Hm)

Expanded

Uncertainty

(jum)

3 10 1.63 22.60 4.75 9.50

9 140 -0.75 22.55 4.75 9.50

15 140 -1.43 31.23 5.59 11.18

Table 3: Line End-Point Uncertainties

Length Uncertainty

Nominal

(mm)
Estimated

(mm)
Error (mm) Variance

(jum)
2

Uncertainty

(jum)

Expanded

Uncertainty

(m)
3-9 130 129.998 -0.002 45.1 6.72 13.44

9-15 130 129.997 -0.003 41.8 6.47 12.94

3 - 15 183.848 183.846 -0.002 40.7 6.38 12.76

Table 4: Line Length Uncertainties

These tables are consistent in that the uncertainties squared of the lengths between hole

centers is less than the sum of the squares of the component uncertainties.
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4.5 Orthogonality Uncertainties

If the part shown in Figure 2 and Figure 1 1 were ideal then the line through holes 9

through 15 would lie at right angles to the lines through holes 9 through 3. However, real

parts seldom, if ever, satisfy this property. In general there is a small angular difference

between the actual angle that the two lines form and a right angle. This is termed an

orthogonality error. Each copy of the same part will have a slightly different

orthogonality error. The uncertainty in the distribution of these orthogonality errors is the

topic of this section.

Since each of the hole centers has a point uncertainty this means that there is error in both

the x and y positions of the center. This fact introduces a problem with finding the best

line through the centers of the holes. Assume that we are given points

(jc,
, y, ),

• •
•
,
(jcw , yN ) and we wish to find the least squares line through the points. The

assumption behind the least squares estimation of coefficients is that the linear first order

model can be written as y = J30 + f3 ]

x + £ where the e term represents the deviation in

the y variable from the line. Thus all of the error in the approximation is assumed to be

relegated to the y variable and the x variable is assumed to have no error. The problem of

fitting equations to data in which both variables are subject to error, see e.g. Mandel [28].

The relevant methods are called errors in variables.

In this report we will use two different approaches. The first is a technique suggested by

Coleman and Steele[25] in which the uncertainties in the least squares coefficients

are connected to the uncertainties in the data points themselves. The second is a Monte

Carlo approach in which the x and y distributions of the hole centers are sampled a large

number of times, horizontal and vertical lines fit to the resulting points, and angular

differences from right angles computed. The uncertainty in this large sample of

orthogonality errors can then be computed.

In the first of the two methods (Coleman and Steele[25] ) the assumption is made that the

points (Jr,
, y,),••• , (xN , yN ) are given data points and the usual least squares estimates of

the slope and intercept are given by

N N

N'Z xi yi-'Z xi'Zyi
O _ 1= 1 1 = 1 1 = 1

' N f N \ 2

V 1=1

N N N N

'Z(xfj%y i
-'j[,x

i 'E(xi y i )

/30
=J=! ,=1 ^

(36)

N f N \ 2

i=i v 1=1 )

Each of these coefficients can be thought of as functions of the data points so that
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fio = Po (*p—,*A,,y, ,••,?*)

Using the propagation of uncertainties formula one gets

(37)

Uco(Pl) = 'Z
i=i

«i(A) =E

f^a Vdj,

dx
<

)

(Ml ^
2

"(OB V
.*,)) + £'

P'

1=1

1=1

Wo

K
dx‘( dy

V y
' )

Kn (E y
(x,.,$,.))

(38)

i=i

where we assume that each point is the sum of a nominal point plus an error term of the

form

x
i

= X
,

+E
x (xl ,y l )

y, =y,+Ey
(x

l >y l )

(39)

To get the uncertainties on the right hand side of (38) one uses the fact that

ul (*, ) = Ko

(

x
,
+ Ex (x,

, S’, )) = u
2

co
(E

x (i, ,
y. ))

K (y, ) = Ko (y, + E
y
(x,

, y, )) = u
2

co (Ey (*,. ,
y. ))

(40)

The orthogonality errors only require computing slope differences so that we only need to

compute the partial derivatives of the slope /?, . These are given by

dp, _

N±(x?)~
( N Y~

2>. Ny
t -±y, -2

iV N N

Nx
k M*

i

1=1 l'-=i ) .
L i=i J L /=! i=i i=i JL i=i j

dx. N ( N \ 2

5>i

-i2

i=l i=l (41)

dy
k

NX
k ~Tj X1

1=1

( N Y
WS^.

2 )-
1=1 V

,=1 J

where (jc,
, y t

) are given by (39). For the case of the vertical lines between hole centers

one fits x against y and the roles of jc and y in (41) reverse.

The fitted horizontal and vertical lines will take the form
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y fio.h "* P\,hX

X = P0 ,v +fr. v y
(42)

Since the slopes are small and the tangent of a small angle is approximately the angle in

radians one may equate the slopes with angles. But in order to preserve the sign

convention with respect to the horizontal axis the slope of the vertical line in (42) must
have its sign changed. Thus the two angles are given by

= A,*

A = -A,
(43)

and the difference, or orthogonality error, is given by

A6> = 0
2
-0, (44)

The uncertainty of the orthogonality is computed as

*£ (Ad) = ui (d
2 ) + u

2

co (0, )
= M

2

„ (A, ) + ul (A.* ) (45)

where the last two uncertainties are computed using (38), (39) and (41).

The uncertainty of the orthogonality of the part was estimated using the horizontal holes

3, 26, 25, 24, 23, 22, 21 and the vertical holes 3, 4, 5, 6, 7, 8, 9 shown in Figure 5. No
expansion factor is used here.

Analytic Estimate of Orthogonality Standard Uncertainty

-5.10 11.09

Table 5: Analytic Estimates of Orthogonality Uncertainty in arc sec. The
Uncertainty is not Expanded.

A second approach to estimating the uncertainty of the orthogonality error is by means of

a Monte Carlo simulation. To generate an orthogonality error angle twenty eight (28)

random samples were selected from a normal distribution with zero mean and unit

standard deviation, since there were fourteen holes used to estimate orthogonality. There

were then two random numbers associated with each hole, one for x and one for y,

designated by R
x
,R

y
. For each of the fourteen hole centers the following simulated points

were computed

x = x+Ex (x,y) + Rx
uco

(Ex (x,y))
(46)

y = y + E (x,y) + R
v
u co (E (x, y))
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The horizontal and vertical least squares lines through the appropriate new hole centers

were computed using (36) for the horizontal lines and the appropriate equations for the

vertical lines. For each horizontal and vertical line combination A# was computed using

(42) through (44). This process was repeated a large number of times, M, and the

estimated standard deviation 6 was computed. The prediction uncertainty was given by

u:(A6) = 6 2
1 +
—

'

M
;

(47)

The results from a simulation with M =1000 is given in the table below.

Mean Orthogonality

(arc sec)

Sample Standard

Deviation (arc sec)

Standard

Uncertainty (arc sec)

-4.68 11.02 11.03

Table 6: Orthogonality Uncertainty. The Uncertainty is not

Expanded.

The figure below shows the distribution of the orthogonality samples.

Distribution of Orthogonality

120 1
1 1 1 1 1 1 r

Orthogonality (arc sec)

Figure 12: Distribution of the Orthogonalities for 1000 samples.
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4.6 Circularity Uncertainties

In ISO 230-4 [29] on circular tests for numerically controlled machine tools circular

deviation is defined as the minimum radial separation of two concentric circles

enveloping the path produced by the machine tool when programmed to move on the

circular path defined by its diameter (or radius), the position of its center and its

orientation in the working zone. Optionally the circular deviation may be evaluated as the

maximum radial range around the least squares circle. The first definition requires

computing the minimum zone circles which can be formulated as a linearly constrained

optimization problem. The algorithm for computing the minimum zone circles is

sufficiently complex that, for practical purposes, the approach of selecting a least squares

circle provides a tool that can be used in a Monte Carlo simulation to estimate the

uncertainty of the circular deviation or circularity. The algorithm used here to fit the least

squares circle is the Marquardt-Levenberg, based on an algorithm described in Nash [30].

A discussion of the algorithm is given in Appendix F.

In order to compare the estimated uncertainties with the results of measurements of the

parts on a CMM, the same nominal points on the inner and outer walls of the circular slot

feature of the parts were selected. There were thirty six points (36) selected on each wall

around the circular profile. This meant ten degrees between each nominal point. The

nominal points were designated as (Jc,
, y, ),

• •
•
,
(

x

36 , y 36 ) . The estimated circularity and its

uncertainty were calculated by a Monte Carlo simulation. First one thousand random

numbers were sampled for each point from a normal distribution with a mean of zero and

standard deviation of one and designated Rx (/,1), -,R
X ((,1000) for / = 1,— ,36 . Another

one thousand samples were selected from the same distribution for each point and were

designated R
y (/, 1), -,R

y
(i,1 000) for i = 1, • •

• ,36 . For each group of thirty-six random

numbers, new x and y points were generated using (46). Thus, for the kth Monte Carlo

simulation from one to a thousand the new points were computed as

= *,• + E* (*, . y t ) + R* *)“« (Ex (*,•

»

5
s

, ))

y, = y, + Ey (*, , y, ) + Ry O', k)u co
(E

y (*, , y, ))

Next, a least squares circle was fit through these points using the Marquardt-Levenberg

nonlinear optimization procedure. This produced the best fit center for the data. The

distance from this point to each of the thirty-six new points was computed and the

circularity was computed as the maximum of these distances minus the minimum. This

procedure was repeated a thousand times. The distribution of the circularities is given in

the histograms in Figures 13 and 14. The corresponding prediction uncertainty for a

future sample is given by

u
2
(C) = d\1 +

1000
(49)

where <7
2

is the sample variance
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Mean Circularity (mm) Standard Uncertainty (mm)
0.0179 0.0031

Table 7: Circularity Uncertainty for Inner Circle Feature

Using a coverage factor of two the prediction interval for the inner circular slot edge,

based on the simulation results is

0.01 17 = 0.0179 - 2(0.003 1) < c < 0.0 1 79 + 2(0.003 1) = 0.024 1 (50)

Mean Circularity (mm) Standard

Uncertainty (mm)
0 . 0180 0.0031

Table 8: Circularity Uncertainty for Outer Circle Feature

Using a coverage factor of two the prediction interval for the outer circular slot edge,

based on the simulation results is

0.01 18 = 0.0 1 80 - 2(0.003 1) < c < 0.0 1 80 + 2(0.003 1) = 0.0242 (51)

These results are in millimeters. The next sample taken would be expected to fall within

the range (50) or (51) with a 95% confidence.
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Figure 13: Histogram of the Sampled Circularity for 1000 Samples

of the Inner Circle Feature Circularity.
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Figure 14: Histogram of the Sampled Circularity for 1000 Samples

of the Outer Circle Feature Circularity.
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5.0 Part Uncertainties by Coordinate Measuring Machine Measurements

Twenty one parts made according to Figure 2 were measured on a CMM. The following

point locations were measured: the hole center locations for the drilled portion of the

holes, the hole centers of the milled portion of the holes, thirty six evenly spaced points

along the edge of the outer ring of the circular slot and thirty six evenly spaced points

along the edge of the inner circle. Five repeat measurements for each of these points were

made on part numbers one through four, while two repeats were performed on the other

parts.

In this section an analysis of variance procedure is explained that isolates the

manufacturing error from the coordinate measuring machine error. Manufacturing and

measurement uncertainties are estimated. The analysis of variance procedure is applied

to estimate the uncertainties of the locations of the hole centers for both drilled and

milled holes as well as to estimate the orthogonality and circularity. An estimate of the

uncertainty of the distance between features is also developed

5.1 Hole Center Location Uncertainties for Manufactured Part

The following notation will be used to estimate the manufactured part uncertainties:

1. Em
, E

m
- Measured Hole Location Errors along the X and Y axes.

x y

2. E "
, E“ - Actual Hole Location Errors along the X and Y axes.

3. T]x ,r]
y

- Hole Location Measurement Process Errors along the X and Y axes.

The main assumption made here is that the actual hole location errors due to the

manufacturing process and the measurement process errors are uncorrelated. Therefore,

their corresponding variances can be added to estimate the variances of the measured

hole location errors.

V(E:) = V(E a

x ) + V(rj
x )

V(E;) = V(Ea

y ) + V(rj
y )

If the variances of the measurement process errors can be shown to be small relative to

the variances of the measured hole location errors then it is reasonable to suppose that the

measured error variance is a good approximation of the actual manufactured hole error

variance. That is if V(r]
x
)«V(Ex ) then V(E

X )
~ V(E

X ) and similarly for y.

For each machined part, the errors in hole positions are measured by the CMM relative to

a part coordinate system located at the lower left comer of the inner 150 mm X 150 mm
square shown in Figure 2. The X and Y locations of the centers of each drilled and milled

hole on each of the twenty-one parts were measured a multiple number of times.
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Associated with each hole center one can form two analysis of variance tables, as shown

below, one for the X measurements and one for the Y measurements. The table represents

all of the location measurement errors for the same hole on each of the parts. The
columns representing the repeated measurements are the errors from the nominal

measured by the CMM. The column of measurement means is the column of row means

for the repeated error measurements for the part number of that row. The degrees of

freedom are then listed in a column. Finally, the column of measurement uncertainties is

the column of standard deviations of the repeated hole location error measurements for

that row. The column of measurement means itself has a grand mean and a variance.

These will be taken as the manufacturing error and its variance for the X error for that

hole. That is, these give estimates of the manufacturing process uncertainties. The

column of measurement standard deviations has a variance, called the pooled variance,

which will be taken as an estimate of the uncertainty of the measurements. This

uncertainty gives an estimate of the measurement process uncertainty. Once the

manufacturing and measurement uncertainties have been estimated, the part uncertainties

can be computed from the previous formulas.

Repeat Measurements

Part # Ri Rn Mean
(Manufacturing

Error)

Degrees

of

Freedom

Standard

Deviations

(Metrology

Uncertainties)

1 mn W
ln, /“>

-1 s
i

2 m
i 1

min2
n

2
-1 S

2

21 m
2l ,n2l 21

«
2 ,

-1 S
2\

M 5>,-«
<=i

F Vp(/G Vp(s)

Table 9: Analysis of Variance Table for CMM Measurements

This analysis of variance template will be used for estimating uncertainties for the hole

centers, the part orthogonalities and circularities. The analysis of variance techniques

used are based on the discussions in Dixon and Massey [31] and Mood and Graybill [32],

The notation used in Table 9 is as follows:

m
tJ

- The y-th repetition of measurement of the /-th part for under consideration.

jt

u

i

- The mean of the repeated measurements for part i.
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5
(

. - Standard Deviation of the repeated measurements for part i.

21

df =^(«, -1) - Total degrees of freedom.

i=\

£(«,)(//,
-

JU )

2

Vp(// )
= — —— - Estimate of the between part uncertainty.

-ds
,

2

V
p
(s) = - Estimate of the within part uncertainty.

df

The ratio F = V
p (//)/ Vp (5 ) is used to determine whether there is a significant difference

between the two variance estimates (Montgomery and Peck [27], Chapter 2). For the

cases of concern here, the test value for the F distribution at the 95% level with 20

degrees of freedom for V
p (n) and 34 (i.e., 54 - 20) degrees of freedom for V

p
(s ) , since

there are 54 total measurements for each hole center, over all of the parts, is

approximately 1.89. Since most tables give values for 30 and 40 degrees of freedom for

V
p
(s) the value above is an interpolation. The reader is referred to Dixon and Massey

[31] for a discussion of the analysis of variance for a one-way fixed effects classification

model.

At this point we need to introduce some further terminology. Let

(i4>

1=1

be the total number of measurements over all the parts. Then the pooled mean, called the

mean manufacturing error or grand mean, is given by

M =
. (15)

The pooled standard deviation is

(16)

An estimate of the standard uncertainty of the grand mean is given by
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(17)u =
Va

An estimate of the uncertainty of a future measurement sample is given by

(18)u
f = 1 +—

N
J

The corresponding expanded uncertainty of a future measurement will then be taken as

U
f = 2u

f (19)

Summary tables of these quantities are given in Tables B1 through B4 in Appendix B for

the measurement uncertainties of each of the peripheral holes for all of the parts. Tables

B1 and B2 summarize the results for the X and Y measurements of the drilled holes and

Tables B3 and B4 summarize the results for the X and Y measurements of the milled

holes. Both the drilled and milled holes have the same nominal centers. The first column

of the tables gives the estimates in micrometers of the mean manufacturing error of the

hole center. The second column gives the standard uncertainties of the error. The third

column gives the uncertainty of a new measurement of the hole center and finally the

fourth column gives an expanded uncertainty of this measurement.

Tables B.5 through B.8 in Appendix B give a summary of the analysis of variance tables

for all of the manufacturing errors of all holes for all of the parts. The hole numbers are

given in Figure 11.

Figures 15a and 15b below show the mean measured errors for the centers of the three

drilled holes numbered 3, 9 and 15. These three holes represent the lower left hole, the

upper left hole and the upper right hole respectively. These holes will be used in the next

section to evaluate uncertainties in length measurements. The first thing that can be noted

about the measurements is that part 13 shows a significant negative x mean error for all

three drilled holes compared to the other parts. This appears to be reflected in the y mean

errors for that part also. These plots reflect the numbers in tables Cl, C2, C5, C6, C9 and

CIO in Appendix C. Notice also the significant center location errors for parts 3, 19, 21

and 27 (whose stamped part blank was mistakenly machined in place of part 20).

Figure 16b shows sharp error difference for the Y measurements of milled holes 9 and 15

on parts 6 and 21. This is confirmed by looking at tables C8 and C12.

43



Figure 15a: Mean X Errors for the Centers of the Drilled Holes.

Vertical Axis represents Errors in mm. Horizontal Axis represents

Part Numbers.

Figurel5b: Mean Y Errors for the Centers of the Drilled Holes.

Vertical Axis represents Errors in mm. Horizontal Axis represents

Part Numbers.
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5.2 Estimating the Uncertainty of a Machined Length Feature from CMM
Measurements

The lengths and uncertainties of these lengths will be examined for the distances between
three holes on the parts machined. The summary statistics of the measured errors and
uncertainties are given for the three hole center features in Tables 10 and 11. The error

variance estimates given in Tables 10 and 1 1 are computed as the pooled variance of the

mean (V
p
(ju) ). The measurement variance estimates are computed as the pooled variance

of the estimated measurement variances ( Vp
(s) ). The uncertainty estimates are

computed as the square roots of the variance estimates. Table 10 gives the results for the

drilled hole centers for feature holes 3, 9, and 15, while Table 1 1 gives the results for the

milled square hole centers for the same feature holes. The tables give the nominal
coordinates of the hole centers, relative to the part origin in the lower left comer. Since

the measurement of the feature errors are composed of both manufacturing and CMM
measurement errors, the tables then give the manufacturing error, variance and

uncertainty of the part feature as well as the CMM measurement variance and uncertainty

for each feature. The data show that the CMM measurement uncertainties are one to two
orders of magnitude less than the manufacturing uncertainties. This verifies the

assumption that V(jj
x

)« V(E x

m ) , and similarly for the Y errors. Thus measured

variances of hole location errors and variances of actual location errors can taken as the

same. For the purpose of this study, then, the measurement mean for each hole will be

taken as an estimate of the manufacturing error for that hole and the measurement

uncertainty in Table 9 above will be taken as the measurement uncertainty for each hole.

Summary Drilled Hole Statistics

X Axis Location CMM Measurement

Hole Nominal Error Variance Uncertainty Variance Uncertainty

Number (mm) (m) (jum )

2 (Mm) (Mm )

2 (Mm)

3 10 2.73 641 25.3 1.10 1.05

9 10 4.99 511 22.61 1.19 1.09

15 140 -4.52 566 23.79 0.710 0.843

Y Axis Location CMM Measurement

Hole Nominal Error Variance Uncertainty Variance Uncertainty

Number (mm) (jum) (Mm )

2 (Mm) (Mm)' (Mm)

3 10 2.70 1371 37.03 0.743 0.862

9 140 2.70 1925 43.87 0.678 0.823

15 140 2.70 2410 49.09 0.982 0.991

Table 10: Uncertainty Statistics for Drilled Holes 3, 9, and 15. The
Uncertainties are not Expanded Uncertainties.
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Summary Milled Hole Statistics

X Axis Location CMM Measurement

Hole Nominal Error Variance Uncertainty Variance Uncertainty

Number (mm) (m) Cum)
2 (pm) (pm)

2 (pm)

3 10 11.23 86.92 9.32 1.39 1.18

9 10 14.79 158.37 12.58 0.834 0.91

15 140 3.63 202.31 14.22 1.92 1.39

Y Axis Location CMM Measurement

Hole Nominal Error Variance Uncertainty Variance Uncertainty

Number (mm) (jum) (pm)
2 (pm) (pm)

2 (pm)

3 10 12.84 80.80 8.99 0.30 0.55

9 140 12.84 274.91 16.58 0.19 0.44

15 140 12.84 417.45 20.43 0.33 0.57

Table 11: Uncertainty Statistics for Milled Holes 3, 9, and 15. The
Uncertainties are not Expanded Uncertainties.

Tables 12 and 13 give the actual lengths and variances of the three hole center to hole

center lengths for the three line lengths for the drilled and milled holes. These are

computed using equations (33) and (35) and the values from tables 10 and 11.

Manufactured Length between Drilled Holes

Nominal Actual Actual Actual Actual

Hole-Hoie Length Length Error Variance Uncertainty

(mm) (mm) (pm) (pm)
2 (pm)

3 to 9 130 130.0000 0.00 3296 57.41

9 to 15 130 129.9905 -9.51 1077 32.82

3 to 15 183.84776 183.8426 -5.12 2494 49.94

Table 12: Manufactured Length Uncertainties Between Drilled

Hole Centers. The Uncertainties are not Expanded Uncertainties.

These tables indicate that the uncertainties associated with drilling operations tend to be

larger than those for milling operations. A possible explanation for this may be the fact

that a drill bit has a tendency to hop slightly before the flutes bite into the material being

machined.
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Nlanufactured Length between Milled Hole Centers

Nominal Actual Actual Actual Actual

Hole-Hole Length Length Error Variance Uncertainty

(mm) (mm) (Mm) (//m)
2

i/Jtn)

3 to 9 130 130.0000 0.00 355.71 18.86

9 to 15 130 129.9888 -11.16 360.68 18.99

3 to 15 183.84776 183.8424 -5.40 393.74 19.84

Table 13: Manufactured Length Uncertainties Between Milled Hole
Centers. The Uncertainties are not Expanded Uncertainties.

5.3 Estimating the Uncertainty of Machined Part Orthogonality from CMM
Measurements

From Tables B5 through B8 it is clear that the center locations of milled holes have lower

manufacturing errors. The peripheral milled hole centers were selected as points to be

used for estimating orthogonality. The milled holes were designed to have their nominal

centers form lines parallel to the edges of the parts. Two nominally orthogonal lines of

holes (the bottom row and left side row) were selected to estimate the uncertainties in the

orthogonality of these two lines of holes. All of the twenty-one parts had the milled hole

centers measured on a high precision CMM with repeated measurements of each part.

The first four parts had five repeated center measurements and the rest of the parts had

two repeated measurements. The procedure of estimating orthogonality was as follows:

For the centers of the holes along the Y-axis a least squares fit of the line form y = mx +

b was made for each of the repetitions for each of the parts. This produced a table of

slope values for m. Since the deviation of m from 0 was small the values of m could be

used as angle estimates since for small angles tan(a) ~ a in radians and m is the tangent of

the slope angle. Next the vertical line of hole centers was fit with an equation of the form

x = my + b. The sign of the resulting slope had to be reversed and then it could be added

to the horizontal slope to determine the orthogonality error. This calculation is similar to

that leading to equations (42) to (44). Table G1 was produced. The grand mean

represents the mean of all of the orthogonality estimates, including repetitions and is

properly weighted by the degrees of freedom. The uncertainty of the means is the

manufacturing uncertainty and the uncertainty of the standard deviations is the CMM
measurement uncertainty.

We will summarize the results in Table 14 below. The error means and variances come

from Table Gl, while the other entries are based on the formulas in Section 5.1.
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Mean
Manufacturing

Error (arc sec)

Variance of the

Manufacturing

Error (arc sec)
2

Variance of the

Metrology

Uncertainties

(arc sec)
2

-1.059 80.285 8.768

Pooled Standard

Deviation of the

Manufacturing

Error (arc sec)

Pooled Standard

Uncertainty

(arc sec)

Uncertainty of a

Future

Orthogonality

Estimate

(arc sec)

Expanded

Uncertainty of

a Future

Orthogonality

Estimate

(arc sec)

8.96 1.22 9.05 18.10

Table 14: Summary of the Orthogonality Statistics from CMM
Measurements

Note that the variance of the metrology uncertainties is an order of magnitude less than

the variance of the manufacturing error so that the measured and manufacturing variances

can be considered approximately equal.

5.4 Estimating the Uncertainty of a Machined Part Circularity from CMM
Measurements

On each of the parts a circular slot was milled with an inner and outer radius (see Figure

2). The inner surface of the slot was milled counterclockwise and the outer surface was
milled clockwise. Thirty seven equally space points on each surface were measured on

the CMM and the resulting radii from the best fit center were reported. Again five

repeated measurements were made on the first four parts and two on each of the others.

Based on the thirty seven measured points on each surface a value for the circularity

could be computed as the difference between the largest and the smallest radius of the

thirty seven points. From these calculations Table HI and Table H2 were prepared.

Tables 15 and 16 below summarize the statistics. Terminology is given in Section 5.1.

Note that there are fifty four circularity estimates for each table.

Mean Manufacturing

Error (jUm)

Variance of the

Manufacturing Errors

(pm)
2

Variance of the

Metrology

Uncertainties (pm)~

20.986 7.378 3.130

Pooled Standard

Deviation of the

Manufacturing Errors

(pm)

Pooled Standard

Uncertainty (pm)

Uncertainty of a New
Circularity Estimate

(m)

Expanded

Uncertainty of a New
Circularity Estimate

(pm)

2.716 0.370 2.743 5.486

Table 15: Summary Statistics for Inner Circle of Slot
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Mean Manufacturing

Error (jUm)

Variance of the

Manufacturing Errors

(//m)
2

Variance of the

Metrology

Uncertainties (/.Un)~

26.018 35.836 2.556

Pooled Standard

Deviation of the

Manufacturing Errors

(jum)

Pooled Standard

Uncertainty (jLWl)

Uncertainty of a New
Circularity Estimate

(jum)

Expanded

Uncertainty of a New
Circularity Estimate

(JLWl)

5.986 0.815 6.046 12.092

Table 16: Summary Statistics for Outer Circle of Slot

Note that the variance of measurements of the inner wall of the circular wall is less than

the variance of the manufacturing errors in Table 15. Several factors could have

accounted for this. The inner and outer walls of the circular slot were cut in opposite

directions. Direction of cut may have had an effect in leaving small debris. The inner

walls might not have been cleaned sufficiently. Table 16 shows the measurement

variance to be an order of magnitude less than the variance of the manufacturing errors.
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6.0 Comparative Results

6.1 Comparison of Hole Location Errors and Uncertainties

When we compare the predicted errors computed from LBB measurements for the

peripheral holes given in Table Al, the mean errors measured by the CMM shown in

Tables B1 through B4 tend to be larger. The manufacturing uncertainties for a given

feature measurement shown in Tables B5 through B8 are significantly greater than those

predicted by the LBB measurements. These latter are the square roots of the variances

given in the last two columns of Table Al.

The signs of the errors for both the predicted errors and the measured errors tend to be

consistent for the drilled holes. This does not mean that they are all the same but that they

in general cluster in the same groups. For the x-machine errors the signs cluster

negatively between holes twenty-five and fourteen, whereas for the y-machine errors they

cluster between nineteen and six. The consistency does not seem to hold for the milled

holes.

From Table Al, the range of the predicted variances x-errors based upon the LBB
measurements falls between 6.81 ^tm~ and 20.96 /urn'

.

For the y-errors the predicted

variances fall between 22.37 jum
2
and 31.29 fun

2
. For the parts measured by the CMM

the variances are significantly higher. These are given in column two of Tables B5
through B8. For the x-machine errors for the drilled holes the error variances fall

between 511.40 fum
2
and 1279.0 jum

2
. For the milled holes the center x-machine errors

range from 86.92 jum
2
to 211.42 jum

2
. The y-machine error variances tend to be larger.

For the drilled holes the y-machine error variances fall between 1310.32 /urn
2
and

2489.1 1 /jm
2

. For the milled holes the y-machine error variances fall between 78.77

/jm
2
and 427.54 fim

2
. We can note here that the y-machine error variances are in

general greater than the x-machine error variances in both the model prediction and

CMM measurement cases.

A question arises at this point. If we only knew the variances (uncertainties) from the

model predictions is there some multiple that could be used to estimate conservatively the

actual manufacturing variances (uncertainties) of the parts for the given machining

center? In order to estimate this relation we can start by considering the ratios between

the lower limits of the manufacturing error variances and the model predicted variances.

For the drilled holes the lower limit ratio for x-machine errors (511.40/6.81) gives 75.1.

The upper limit ratio (1279.0/20.96) gives 61.0. For the milled holes the lower x-machine

error ratio is 12.76 and the upper ratio is 10.1. For the y-machine error variances for the

drilled holes the lower limit ratio (1310.32/22.37) is 58.57 and the upper ratio (2489.1 1)

is 79.55. Similarly for the milled holes the lower ratio is 3.52 and the upper is 13.66.

These ratios are not immediately revealing. However, since we are looking for relations

between the uncertainties which are the square roots of the variances we wish to examine
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the square roots of these ratios. Taking square roots we can see that for the x-errors in

the drilled case the ratios fall between 7.81 and 8.67 whereas in the milled case they fall

between 3.17 and 3.57. Similarly in the y-error cases they fall between 7.65 and 8,91 for

the drilled holes and 1.88 and 3.70 for the milled holes. These ranges suggest that, if we
wished to estimate the actual machining operation uncertainties for the machining center

used, then, to be conservative, we could take an uncertainty multiple of 9 for drilling

operations and 4 for milling operations.

6.2 Comparison of Length Uncertainties

The uncertainties associated with the three hole center-to-center lengths are summarized
in Table 17 below. The drilled hole uncertainty range is computed from Table 12 by
expanding the uncertainties in that table. The mean length error is obtained by
subtracting the nominal length from the actual length given in the table. Twice the length

uncertainty given in Table 12 was then added and subtracted from the mean length error

to give the uncertainty range. The table shows the upper and lower bounds for the

uncertainty range. The uncertainties for the milled hole center-to-center lengths are also

given in Table 17. These have been computed by expanding uncertainty data given in

Table 4. The average ratio of the drilled hole-to-hole range to the comparable model
range is 7.2 while the average for the similar ratios for the milled holes is 2.96.

Drilled Hole Expanded Uncertainty Range

Center-to-Center Lower Uncertainty Mean Length Upper Uncertainty Range

Lines
Bound (jUtn) Error (/Mfl) Bound (JM71 ) (jum)

3 to 9 -114.82 0.00 114.82 229.64

9 to 15 -75.15 -9.51 56.13 131.28

3 to 15 -105.00 -5.12 94.76 199.76

Milled Hole Expanded Uncertainty Range

Center-to-Center Lower Uncertainty Mean Length Upper Uncertainty Range Width

Lines Bound (jUlfl) Error (JLWl ) Bound (jum)

3 to 9 -37.72 0.00 37.72 75.44

9 to 15 -49.14 -11.16 26.82 75.96

3 to 15 -45.08 -5.40 34.28 79.36

Expanded Uncertainty Estimates Based on LBB Machine Metrology

Center-to-Center Lower Uncertainty Mean Length Upper Uncertainty Range Width

Lines Bound (/.Ml ) Error (JJm ) Bound (]Um) (m)
3 to 9 -15 -2 11 26

9 to 15 -16 -3 10 26

3 to 15 -15 -1.8 11 26

Table 17: A Comparison of the Upper and Lower Expanded Uncertainty

Limits for the Hole-to-Hole Lengths based on the CMM Measurements and

the Model Estimates Based on the LBB Machine Measurements.
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The next observation relates to the ratio of the measured length uncertainties to the

computed length uncertainties. The work of Wilhelm, Srinivasan and Farabaugh [4]

showed that the position errors of the test part holes fell in general within two standard

deviations of the measured machine errors. Their work however was conducted under

controlled laboratory conditions. In terms of expanded uncertainties this would allow for

approximately four standard deviations. The parts in this study were not milled under

controlled conditions, but under ordinary shop environment conditions. The results of this

study suggest that for the machining center used the potential length errors of

manufactured parts could fall as far away as seven standard deviations of the measured

machine errors for drilled holes and three for milled holes. This conclusion can only be

considered tentative.

6.3 Comparison of Orthogonality Uncertainties.

The mean orthogonality error from Tables 5 and 6 is -4.89 arc sec and the average

expanded uncertainty is 22.12 arc sec. These are based on the analytic and Monte Carlo

methods of estimating orthogonality from the machine tool model and LBB
measurements. From Table 14 the mean manufacturing orthogonality error from the

CMM measurements is -1.06 arc sec with an expanded uncertainty of 18.1 arc sec. In this

case the model estimates over-predicted the orthogonality error but did produce the same

direction of error. Similarly the model results over-predicted the expanded uncertainty.

Note that both the errors and uncertainties were both discrepant by about 4 arc sec.

6.4 Comparison of Circularity Uncertainties

The first circularity errors and uncertainties to be considered are those predicted by the

machine model. The mean circularity error for the inner circle feature from Table 7 is

17.9 nm while the expanded uncertainty if 6.2 /m . For the outer circle Table 8 shows

these to be 18.1 fim and 6.2 /m respectively. The results from the CMM measured

parts show that for the inner circle the mean circularity error is 20.99 /Jm and the

expanded uncertainty is 5.49 /m . For the outer circle the circularity error is 26.02 jum

and the expanded uncertainty is 12.09 fmi . From these results it appears that the values

from the model are closer to the CMM measurements for the inner circle, at least in terms

of uncertainty. There is one fact that might have some relevance here although it would

be hard to determine the actual effect. The inner circle was milled in a counterclockwise

fashion, whereas the outer circle was milled in a clockwise fashion.
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7.0 Conclusions

There are a number of conclusions that can be drawn from this study. The first and
foremost is that machining uncertainties can be estimated for production machines. These
estimates of course only apply to the individual machine being studied, however it would
be interesting to do a parallel study on a production machine in the same family and
determine whether there are any commonalities.

The law of Propagation of Uncertainties provides a means of estimating both point

location and length uncertainties when combined with an adequate kinematic model of

the machine tool under study. There are uncertainties, such as for circularity, where the

law cannot be applied directly. These uncertainties occur in cases where there are no
clearly understood functional relationships between quantities that would allow the law to

be applied. In these cases some form of simulation or Monte Carlo technique must be

applied to estimate the uncertainties.

Setting up and calibrating the particular LBB for measuring the machine tool component
errors was cumbersome, but it did provide measurements for all of the components

necessary to model the machine tool. It was possible to take all of the measurements in a

reasonably short time without changing fixtures for each component measurement.

Although the original plan was to cut a larger number of parts, the twenty-one parts that

were finally produced provided adequate data to estimate uncertainties in the machining.

This makes it feasible to consider developing a procedure to estimate the uncertainties of

a new machine tool by performing a machine tool characterization, cutting a reasonably

small set of reference parts, measuring the parts and then developing an uncertainty table

for that machine. This table could be used by a part designer as a tool in any parts

designed for production on that machine. This possibility is reinforced by the fact that

there seem to be computable relations between uncertainties estimated from

characterization and the actual production uncertainties.
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APPENDIX A: Model Based Estimates of Point Error Variances and Confidence

Intervals

This appendix contains tables of uncertainty estimates of the machine tool errors for the

peripheral hole centers and selected points on the inner and outer radii of the circular slot

based on the prediction formulas (31) and (32). Table A1 contains the predicted machine

errors using equation (13) and the error component regression models with coefficients

from Table 2. Table A2 and A3 contain the same information for the inner and outer

radii points of the circular slot. Tables A4, A5, and A6 give the 95% prediction interval

estimates for the location of the points.

Hole Center Error Uncertainty Estimates for the Next Center Sample

Hole

Number

Hole

Center

x (mm)

Hole

Center

y(mm)

Machine x-

Error

(pm)

Machine y-

Error

(pm)

Prediction

Variance

x-Error

(pm sqr.)

Prediction

Variance

y-Error

(pm sqr.)

X y E
x u

2„{E
x ) u

2
(E )co V y J

1 3 10 10 1.15 1.63 6.86 22.60

2 26 28 10 0.80 1.47 6.84 22.84

3 25 43 10 0.52 1.36 6.83 23.26

4 24 68 10 0.04 1.20 6.82 24.45

5 23 92 10 -0.42 1.09 6.81 26.15

6 22 120 10 -0.96 0.99 6.82 28.85

7 21 140 10 -1.34 0.95 6.84 31.29

8 20 140 28 -0.76 0.62 7.29 31.18

9 19 140 43 -0.30 0.35 8.03 31.12

10 18 140 68 0.41 -0.11 9.99 31.06

11 17 140 92 1.03 -0.55 12.74 31.06

12 16 140 120 1.67 -1.06 17.03 31.13

13 15 140 140 2.07 -1.43 20.83 31.23

14 14 120 140 2.53 -1.39 20.76 28.79

15 13 92 140 3.17 -1.29 20.72 26.09

16 12 68 140 3.72 -1.17 20.74 24.39

17 11 43 140 4.29 -1.01 20.80 23.21

18 10 28 140 4.63 -0.90 20.86 22.78

19 9 10 140 5.04 -0.75 20.96 22.55

20 8 10 120 4.57 -0.38 17.13 22.45

21 7 10 92 3.83 0.13 12.81 22.37

22 6 10 68 3.12 0.57 10.04 22.37

23 5 10 43 2.32 1.02 8.06 22.43

24 4 10 28 1.80 1.30 7.32 22.50

Table Al: This Table Contains the Nominal Locations in Part Measurement Coordinates,

the Predicted Machine Error at the Hole Centers, and the Prediction Variances for the

Next Sample.
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Point Error Uncertainty Estimates for the Next Inner Circle Point Sample

Point

x (mm)

Point

y (mm)

Machine

x-Error

(pm)

Machine

y-Error

(pm)

Prediction

Variance

x-Error

(pm sqr.)

Prediction

Variance

y-Error

(pm sqr.)

X y E
x E

1 119.5 75 1.03 -0.20 10.68 28.56

2 118.82 82.73 1.25 -0.34 11.54 28.48

3 116.82 90.22 1.48 -0.47 12.47 28.27

4 113.54 97.25 1.73 -0.59 13.41 27.93

5 109.09 103.6 1.98 -0.69 14.32 27.49

6 103.6 109.09 2.23 -0.77 15.15 26.98

7 97.25 113.54 2.47 -0.83 15.86 26.41

8 90.22 116.82 2.70 -0.86 16.40 25.83

9 82.73 118.82 2.92 -0.86 16.74 25.26

10 75 119.5 3.11 -0.83 16.87 24.73

11 67.27 118.82 3.26 -0.78 16.76 24.24

12 59.78 116.82 3.38 -0.70 16.43 23.82

13 52.75 113.54 3.46 -0.60 15.89 23.47

14 46.4 109.09 3.49 -0.47 15.19 23.19

15 40.91 103.6 3.47 -0.33 14.36 22.98

16 36.46 97.25 3.40 -0.19 13.45 22.83

17 33.18 90.22 3.28 -0.03 12.51 22.73

18 31.18 82.73 3.11 0.12 11.59 22.67

19 30.5 75 2.90 0.27 10.71 22.65

20 31.18 67.27 2.66 0.40 9.93 22.68

21 33.18 59.78 2.39 0.52 9.25 22.74

22 36.46 52.75 2.10 0.63 8.69 22.85

23 40.91 46.4 1.81 0.71 8.24 23.01

24 46.4 40.91 1.52 0.77 7.90 23.22

25 52.75 36.46 1.24 0.81 7.65 23.51

26 59.78 33.18 1.00 0.83 7.49 23.86

27 67.27 31.18 0.78 0.82 7.40 24.28

28 75 30.5 0.61 0.79 7.37 24.77

29 82.73 31.18 0.47 0.74 7.39 25.30

30 90.22 33.18 0.39 0.67 7.48 25.87

31 97.25 36.46 0.36 0.58 7.64 26.45

32 103.6 40.91 0.37 0.48 7.88 27.01

33 109.09 46.4 0.43 0.36 8.22 27.52

34 113.54 52.75 0.53 0.23 8.66 27.95

35 116.82 59.78 0.67 0.09 9.22 28.28

36 118.82 67.27 0.83 -0.05 9.90 28.49

Table A2: This Table Contains the Same Data as Table A1 for Inner Circle Points.
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Point Error Uncertainty Estimates for the Next Outer Circle Point Sample

Point

x (mm)

Point

y (mm)

Machine

x-Error

(pm)

Machine

y-Error

(pm)

Prediction

Variance

x-Error

(pm sqr.)

Prediction

Variance

y-Error

(pmr sqr.)

X y Ex E
, <o(Ex ) u

2
(E )CO V y /

1 130.5 75 0.80 -0.22 10.69 29.84

2 129.66 84.64 1.07 -0.40 11.79 29.74

3 127.15 93.98 1.35 -0.56 12.98 29.45

4 123.06 102.75 1.65 -0.71 14.21 28.99

5 117.52 110.67 1.96 -0.84 15.42 28.39

6 110.67 117.52 2.27 -0.95 16.54 27.70

7 102.75 123.06 2.57 -1.02 17.49 26.95

8 93.98 127.15 2.85 -1.06 18.23 26.19

9 84.64 129.66 3.12 -1.07 18.69 25.45

10 75 130.5 3.35 -1.04 18.86 24.78

11 65.36 129.66 3.55 -0.97 18.71 24.18

12 56.02 127.15 3.71 -0.87 18.26 23.68

13 47.25 123.06 3.81 -0.73 17.54 23.28

14 39.33 117.52 3.85 -0.58 16.59 22.97

15 32.48 110.67 3.83 -0.40 15.48 22.75

16 26.94 102.75 3.75 -0.21 14.27 22.60

17 22.85 93.98 3.60 -0.02 13.04 22.51

18 20.34 84.64 3.40 0.17 11.84 22.46

19 19.5 75 3.13 0.36 10.74 22.45

20 20.34 65.36 2.82 0.52 9.77 22.47

21 22.85 56.02 2.48 0.67 8.96 22.53

22 26.94 47.25 2.12 0.80 8.31 22.63

23 32.48 39.33 1.74 0.90 7.82 22.78

24 39.33 32.48 1.38 0.98 7.47 23.01

25 47.25 26.94 1.03 1.02 7.24 23.32

26 56.02 22.85 0.72 1.04 7.10 23.73

27 65.36 20.34 0.45 1.03 7.02 24.23

28 75 19.5 0.23 0.99 7.00 24.83

29 84.64 20.34 0.08 0.93 7.02 25.50

30 93.98 22.85 -0.02 0.84 7.09 26.23

31 102.75 26.94 -0.06 0.73 7.23 26.99

32 110.67 32.48 -0.04 0.61 7.46 27.73

33 117.52 39.33 0.04 0.46 7.80 28.42

34 123.06 47.25 0.17 0.30 8.28 29.01

35 127.15 56.02 0.34 0.13 8.92 29.46

36 129.66 65.36 0.56 -0.04 9.73 29.75

Table A3: This Table Contains the Same Data as Table A1 for Outer Circle Points.

59



Expanded Prediction Intervals for Hole Center Errors With Coverage Factor 2

Hole

Number

Hole

Center

x (mm)

Hole

Center

y (mm)

Machine

x-Error

(pm)

Machine

y-Error

(pm)

Lower Limit

x-Error

(pm)

Upper Limit

x-Error

(pm)

Lower Limit

y-Error

(pm)

Upper Limit

y-Error

(pm)

X y E
x E,

1 3 10 10 1.15 1.63 -4.09 6.39 -7.88 11.13

2 26 28 10 0.80 1.47 -4.43 6.03 -8.08 11.03

3 25 43 10 0.52 1.36 -4.71 5.74 -8.29 11.01

4 24 68 10 0.04 1.20 -5.19 5.26 -8.69 11.09

5 23 92 10 -0.42 1.09 -5.64 4.80 -9.14 11.31

6 22 120 10 -0.96 0.99 -6.18 4.26 -9.75 11.73

7 21 140 10 -1.34 0.95 -6.57 3.89 -10.24 12.14

8 20 140 28 -0.76 0.62 -6.16 4.64 -10.55 11.79

9 19 140 43 -0.30 0.35 -5.96 5.37 -10.81 11.50

10 18 140 68 0.41 -0.11 -5.91 6.74 -11.26 11.03

11 17 140 92 1.03 -0.55 -6.11 8.17 -11.70 10.60

12 16 140 120 1.67 -1.06 -6.59 9.92 -12.22 10.10

13 15 140 140 2.07 -1.43 -7.06 11.20 -12.60 9.75

14 14 120 140 2.53 -1.39 -6.59 11.64 -12.12 9.35

15 13 92 140 3.17 -1.29 -5.94 12.27 -11.51 8.93

16 12 68 140 3.72 -1.17 -5.39 12.82 -11.05 8.71

17 11 43 140 4.29 -1.01 -4.83 13.41 -10.65 8.62

18 10 28 140 4.63 -0.90 -4.50 13.77 -10.45 8.64

19 9 10 140 5.04 -0.75 -4.11 14.20 -10.25 8.75

20 8 10 120 4.57 -0.38 -3.71 12.85 -9.86 9.09

21 7 10 92 3.83 0.13 -3.33 10.98 -9.33 9.59

22 6 10 68 3.12 0.57 -3.22 9.46 -8.89 10.03

23 5 10 43 2.32 1.02 -3.36 8.00 -8.45 10.49

24 4 10 28 1.80 1.30 -3.61 7.21 -8.19 10.78

Table A4: 95% Prediction Intervals for the Peripheral Holes.
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Expanded Prediction Intervals for Inner circle Point Errors With Coverage Factor 2

Point

Index

Point

x (mm)

Point

y (mm)

Machine

x-Error

(pm)

Machine

y-Error

(pm)

Lower Limit

x-Error

(pm)

Upper Limit

x-Error

(pm)

Lower Limit

y-Error

(pm)

Upper Limit

y-Error

(pm)

X y E
x E,

1 119.5 75 1.03 -0.20 -5.50 7.57 -10.89 10.49

2 118.82 82.73 1.25 -0.34 -5.55 8.04 -11.01 10.34

3 116.82 90.22 1.48 -0.47 -5.58 8.55 -11.10 10.17

4 113.54 97.25 1.73 -0.59 -5.59 9.05 -11.16 9.98

5 109.09 103.6 1.98 -0.69 -5.59 9.55 -11.18 9.80

6 103.6 109.09 2.23 -0.77 -5.56 10.01 -11.16 9.62

7 97.25 113.54 2.47 -0.83 -5.49 10.44 -11.11 9.45

8 90.22 116.82 2.70 -0.86 -5.40 10.80 -11.02 9.31

9 82.73 118.82 2.92 -0.86 -5.27 11.10 -10.91 9.19

10 75 119.5 3.11 -0.83 -5.11 11.32 -10.78 9.11

11 67.27 118.82 3.26 -0.78 -4.92 11.45 -10.63 9.07

12 59.78 116.82 3.38 -0.70 -4.72 11.49 -10.46 9.06

13 52.75 113.54 3.46 -0.60 -4.51 11.43 -10.29 9.09

14 46.4 109.09 3.49 -0.47 -4.31 11.28 -10.10 9.16

15 40.91 103.6 3.47 -0.33 -4.11 11.05 -9.92 9.25

16 36.46 97.25 3.40 -0.19 -3.94 10.73 -9.74 9.37

17 33.18 90.22 3.28 -0.03 -3.80 10.35 -9.57 9.50

18 31.18 82.73 3.11 0.12 -3.70 9.92 -9.40 9.64

19 30.5 75 2.90 0.27 -3.64 9.45 -9.25 9.79

20 31.18 67.27 2.66 0.40 -3.64 8.96 -9.12 9.93

21 33.18 59.78 2.39 0.52 -3.70 8.47 -9.01 10.06

22 36.46 52.75 2.10 0.63 -3.79 7.99 -8.93 10.19

23 40.91 46.4 1.81 0.71 -3.93 7.55 -8.88 10.30

24 46.4 40.91 1.52 0.77 -4.10 7.14 -8.87 10.41

25 52.75 36.46 1.24 0.81 -4.29 6.78 -8.88 10.51

26 59.78 33.18 1.00 0.83 -4.48 6.47 -8.94 10.60

27 67.27 31.18 0.78 0.82 -4.66 6.22 -9.03 10.68

28 75 30.5 0.61 0.79 -4.82 6.03 -9.16 10.74

29 82.73 31.18 0.47 0.74 -4.96 5.91 -9.32 10.80

30 90.22 33.18 0.39 0.67 -5.08 5.86 -9.50 10.84

31 97.25 36.46 0.36 0.58 -5.17 5.89 -9.71 10.87

32 103.6 40.91 0.37 0.48 -5.24 5.98 -9.92 10.87

33 109.09 46.4 0.43 0.36 -5.31 6.16 -10.14 10.85

34 113.54 52.75 0.53 0.23 -5.36 6.41 -10.35 10.80

35 116.82 59.78 0.67 0.09 -5.41 6.74 -10.55 10.73

36 118.82 67.27 0.83 -0.05 -5.46 7.13 -10.73 10.62

Table A 5: 95% Prediction Intervals for Inner Circle Points
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Expanded Prediction Intervals for Outer circle Point Errors With Coverage Factor 2

Point

x (mm)

Point

y (mm)

Machine

x-Error

0/m)

Machine

y-Error

0/m)

Lower Limit

x-Error

(//m)

Upper Limit

x-Error

(pm)

Lower Limit

y-Error

(pm)

Upper Limit

y-Error

(pm)

X y Ex E
>

1 130.5 75 0.80 -0.22 -5.74 7.34 -11.15 10.70

2 129.66 84.64 1.07 -0.40 -5.80 7.93 -11.30 10.51

3 127.15 93.98 1.35 -0.56 -5.85 8.56 -11.42 10.29

4 123.06 102.75 1.65 -0.71 -5.89 9.19 -11.48 10.05

5 117.52 110.67 1.96 -0.84 -5.89 9.81 -11.50 9.81

6 110.67 117.52 2.27 -0.95 -5.87 10.40 -11.47 9.58

7 102.75 123.06 2.57 -1.02 -5.80 10.93 -11.40 9.36

8 93.98 127.15 2.85 -1.06 -5.69 11.39 -11.30 9.17

9 84.64 129.66 3.12 -1.07 -5.53 11.76 -11.16 9.02

10 75 130.5 3.35 -1.04 -5.33 12.04 -10.99 8.92

11 65.36 129.66 3.55 -0.97 -5.10 12.20 -10.80 8.87

12 56.02 127.15 3.71 -0.87 -4.84 12.25 -10.60 8.87

13 47.25 123.06 3.81 -0.73 -4.57 12.18 -10.38 8.92

14 39.33 117.52 3.85 -0.58 -4.29 12.00 -10.16 9.01

15 32.48 110.67 3.83 -0.40 -4.03 11.70 -9.94 9.14

16 26.94 102.75 3.75 -0.21 -3.80 11.31 -9.72 9.30

17 22.85 93.98 3.60 -0.02 -3.62 10.83 -9.51 9.47

18 20.34 84.64 3.40 0.17 -3.49 10.28 -9.31 9.65

19 19.5 75 3.13 0.36 -3.42 9.69 -9.12 9.83

20 20.34 65.36 2.82 0.52 -3.43 9.08 -8.96 10.01

21 22.85 56.02 2.48 0.67 -3.50 8.47 -8.82 10.17

22 26.94 47.25 2.12 0.80 -3.65 7.88 -8.71 10.31

23 32.48 39.33 1.74 0.90 -3.85 7.34 -8.64 10.45

24 39.33 32.48 1.38 0.98 -4.09 6.84 -8.62 10.57

25 47.25 26.94 1.03 1.02 -4.35 6.41 -8.64 10.68

26 56.02 22.85 0.72 1.04 -4.61 6.05 -8.70 10.78

27 65.36 20.34 0.45 1.03 -4.85 5.75 -8.82 10.87

28 75 19.5 0.23 0.99 -5.06 5.52 -8.97 10.96

29 84.64 20.34 0.08 0.93 -5.22 5.37 -9.17 11.03

30 93.98 22.85 -0.02 0.84 -5.35 5.30 -9.40 11.09

31 102.75 26.94 -0.06 0.73 -5.44 5.32 -9.66 11.12

32 110.67 32.48 -0.04 0.61 -5.50 5.43 -9.93 11.14

33 117.52 39.33 0.04 0.46 -5.54 5.63 -10.20 11.12

34 123.06 47.25 0.17 0.30 -5.58 5.93 -10.47 11.07

35 127.15 56.02 0.34 0.13 -5.63 6.32 -10.72 10.99

36 129.66 65.36 0.56 -0.04 -5.68 6.79 -10.95 10.86

Table A6: 95% Prediction Intervals for the Outer Circle Points.
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APPENDIX B: Uncertainty Estimates for Hole Centers Based on CMM
Measurements of Parts

Tables B.l.and B.2. contain the uncertainty estimates for all of the drilled hole center

errors. Tables B.3. and B.4. contain the uncertainty estimates for all milled hole center

errors. The computations are described in Section 5.1. The results are based on pooled

estimates over all of the manufactured parts.

Summary Table

Drilled Hole X-Measurement Uncertainties (//m)

CMM Measurements (All Parts)

Hole #

Manufacturing

Error

Standard

Uncertainty

Uncertainty

of a new
Measurement

Expanded

Uncertainty

of a new
Measurement

3 2.73 0.14 1.06 2.12

26 0.10 0.16 1.21 2.42

25 -0.43 0.12 0.89 1.78

24 -1.88 0.16 1.19 2.38

23 -5.33 0.31 2.32 4.64

22 -6.31 0.14 1.05 2.09

21 -8.13 0.12 0.93 1.85

20 -6.85 0.10 0.74 1.48

19 -6.94 0.09 0.70 1.41

18 -4.86 0.13 0.93 1.86

17 -4.88 0.09 0.69 1.37

16 -2.94 0.12 0.87 1.74

15 -4.52 0.11 0.85 1.70

14 -2.05 0.11 0.85 1.71

13 1.61 0.67 4.99 9.98

12 1.23 0.54 4.04 8.07

11 3.02 0.15 1.11 2.22

10 5.49 0.17 1.28 2.56

9 4.99 0.15 1.10 2.20

8 6.46 0.17 1.25 2.49

7 1.30 0.14 1.04 2.08

6 3.83 0.17 1.25 2.50

5 3.60 0.17 1.24 2.49

4 2.70 0.17 1.24 2.48

Table B.l: Summary of Uncertainty Estimates for Drilled Hole X-

Errors. These are based on pooled estimates over all parts.
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Summary Table

Drilled Hole Y-Measurement Uncertainties (//m)

CMM Measurements (All Parts)

Hole#
Manufacturing

Error

Standard

Uncertainty

Uncertainty

of a new
Measurement

Expanded
Uncertainty

of a new
Measurement

3 8.05 0.12 0.87 1.74

26 6.32 0.12 0.87 1.74

25 9.14 0.13 0.94 1.87

24 9.33 0.11 0.81 1.62

23 12.29 0.39 2.90 5.80

22 5.90 0.16 1.17 2.34

21 6.10 0.13 0.98 1.96

20 0.99 0.09 0.64 1.28

19 -2.05 0.10 0.71 1.41

18 -5.61 0.12 0.92 1.85

17 -9.61 0.10 0.74 1.48

16 -13.97 0.13 0.96 1.92

15 -16.45 0.13 1.00 2.00

14 -14.26 0.13 0.95 1.91

13 -13.09 1.18 8.74 17.49

12 -12.01 0.93 6.91 13.82

11 -11.51 0.16 1.19 2.39

10 -9.56 0.15 1.13 2.25

9 -13.58 0.11 0.83 1.66

8 -8.68 0.15 1.10 2.21

7 -4.57 0.14 1.03 2.05

6 -0.63 0.14 1.00 2.00

5 2.45 0.13 0.93 1.87

4 2.86 0.13 1.00 1.99

Table B.2: Summary of Uncertainty Estimates for Drilled Hole

Y-Errors. These are based on pooled estimates over all parts.
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Summary Table

Milled Hole X-Measurement Uncertainties (//m)

CMM Measurements (All Parts)

Hole#
Manufacturing

Error

Standard

Uncertainty

Uncertainty

of a new
Measurement

Expanded
Uncertainty

of a new
Measurement

3 11.23 0.16 1.19 2.38

26 9.79 0.18 1.33 2.66

25 7.63 0.14 1.07 2.13

24 5.62 0.21 1.56 3.12

23 2.99 0.14 1.03 2.06

22 0.72 0.12 0.92 1.85

21 -1.38 0.14 1.05 2.10

20 -1.52 0.14 1.02 2.05

19 -1.66 0.13 0.94 1.88

18 -2.36 0.15 1.11 2.23

17 -0.12 0.13 0.98 1.96

16 2.43 0.16 1.17 2.33

15 3.62 0.19 1.40 2.80

14 6.10 0.14 1.03 2.07

13 8.22 0.16 1.18 2.35

12 10.50 0.15 1.09 2.19

11 12.37 0.54 4.00 7.99

10 13.69 0.16 1.22 2.44

9 14.79 0.12 0.92 1.84

8 14.90 0.14 1.02 2.04

7 15.28 0.18 1.31 2.63

6 15.91 0.18 1.33 2.67

5 14.04 0.15 1.14 2.28

4 12.84 0.21 1.59 3.18

Table B.3: Summary of Uncertainty Estimates for Milled Hole

X-Errors. These are based on pooled estimates over all parts.
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Summary Table

Milled Hole Y-Uncertainties in //m

CMM Measurements (All Parts)

Hole#
Manufacturing

Error

Standard

Uncertainty

Uncertainty

of a new
Measurement

Expanded

Uncertainty

of a new
Measurement

3 11.15 0.07 0.55 1.10

26 11.08 0.07 0.54 1.09

25 10.45 0.07 0.49 0.98

24 9.70 0.14 1.05 2.09

23 9.87 0.29 2.12 4.24

22 8.68 0.12 0.91 1.82

21 7.90 0.10 0.74 1.48

20 6.45 0.08 0.56 1.12

19 6.25 0.09 0.68 1.37

18 7.03 0.08 0.59 1.18

17 7.44 0.06 0.46 0.92

16 6.67 0.07 0.54 1.08

15 4.67 0.08 0.58 1.16

14 5.88 0.16 1.21 2.42

13 8.45 1.45 10.74 21.48

12 8.08 0.08 0.61 1.21

11 8.71 0.07 0.52 1.04

10 8.72 0.12 0.87 1.73

9 9.57 0.06 0.43 0.87

8 11.13 0.07 0.52 1.05

7 12.01 0.10 0.78 1.55

6 11.23 0.11 0.81 1.62

5 9.56 0.09 0.65 1.29

4 9.20 0.08 0.59 1.18

Table B.4: Summary of Uncertainty Estimates for Milled Hole

Y-Errors. These are based on pooled estimates over all parts.
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The next four tables are analysis of manufacturing variance tables for all of the drilled

and milled holes.

Analysis of Variance Summary

Drilled Hole, X-Error

Hole#

Manufacturing

Error

Variance

(//m sqr.)

Metrology

Error

Variance

(//m sqr.)

F Statistic

Future

Manufacturing

Uncertainty

(//m)

Expanded

Future

Manufacturing

Uncertainty

0/m)

3 640.89 1.10 581.09 25.91 51.82

26 777.13 1.44 540.77 28.53 57.07

25 702.47 0.78 904.63 27.13 54.26

24 692.02 1.39 498.33 26.93 53.85

23 1279.90 5.28 242.25 36.62 73.24

22 706.44 1.08 656.09 27.20 54.41

21 626.32 0.84 742.98 25.62 51.23

20 661.73 0.54 1225.84 26.33 52.66

19 640.13 0.49 1314.85 25.90 51.79

18 673.04 0.85 792.55 26.55 53.11

17 576.07 0.46 1250.15 24.57 49.13

16 597.47 0.74 805.18 25.02 50.04

15 566.00 0.71 797.18 24.35 48.70

14 574.13 0.71 804.51 24.52 49.05

13 622.42 24.46 25.44 25.54 51.07

12 563.77 15.99 35.26 24.30 48.61

11 606.99 1.21 500.87 25.22 50.43

10 634.77 1.61 393.10 25.79 51.57

9 511.44 1.19 430.00 23.15 46.29

8 638.22 1.53 417.98 25.86 51.72

7 736.93 1.06 696.80 27.79 55.57

6 624.16 1.54 406.18 25.57 51.14

5 613.85 1.52 404.15 25.36 50.72

4 716.56 1.51 473.73 27.40 54.80

Table B.5.: Summary Analysis of Variances for X-Errors for all Peripheral Drilled Holes

along with Manufacturing Uncertainties.
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Analysis of Variance Summary

Drilled Hole, Y-Error

Hole#
Manufacturing

Error

Variance

(jjm sqr.)

Metrology

Error

Variance

(//m sqr.)

F Statistic

Future

Manufacturing

Uncertainty

(*/m)

Expanded

Future

Manufacturing

Uncertainty

(//m)

3 1371.01 0.74 1844.87 37.90 75.80

26 1376.53 0.75 1846.50 37.97 75.95

25 1299.86 0.86 1507.01 36.90 73.80

24 1585.27 0.64 2464.64 40.75 81.50

23 2489.11 8.26 301.28 51.07 102.13

22 1456.46 1.34 1084.26 39.06 78.12

21 1583.96 0.94 1682.07 40.74 81.47

20 1388.55 0.40 3461.30 38.14 76.28

19 1399.56 0.49 2863.77 38.29 76.58

18 1959.60 0.84 2338.42 45.31 90.62

17 1691.96 0.53 3167.08 42.10 84.20

16 1983.36 0.91 2186.34 45.58 91.17

15 2410.27 0.98 2455.54 50.25 100.50

14 1950.38 0.89 2186.49 45.20 90.40

13 1985.83 75.08 26.45 45.61 91.22

12 1819.30 46.86 38.82 43.66 87.31

11 1576.95 1.40 1127.49 40.65 81.29

10 1695.11 1.25 1359.27 42.14 84.28

9 1924.78 0.68 2840.90 44.90 89.81

8 1765.56 1.19 1477.68 43.01 86.01

7 1445.01 1.03 1397.68 38.91 77.82

6 1429.39 0.99 1449.70 38.70 77.39

5 1310.32 0.86 1530.73 37.05 74.10

4 1539.39 0.98 1578.21 40.16 80.32

Table B.6.: Summary Analysis of Variances for Y-Errors for all Peripheral Drilled

Holes along with Manufacturing Uncertainties.
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Analysis of Variance Summary

Milled Hole, X-Error

Hole#

Manufacturing

Error

Variance

0/m sqr.)

Metrology

Error

Variance

0/m sqr.)

F Statistic

Future

Manufacturing

Uncertainty

0/m)

Expanded

Future

Manufacturing

Uncertainty

0/m)

3 86.92 1.39 62.72 9.54 19.08

26 102.83 1.74 59.15 10.38 20.76

25 110.68 1.12 99.11 10.77 21.54

24 132.55 2.39 55.52 11.78 23.57

23 142.90 1.04 137.71 12.24 24.47

22 179.14 0.84 213.70 13.70 27.40

21 186.62 1.08 172.20 13.98 27.97

20 166.98 1.03 162.65 13.23 26.45

19 191.99 0.87 220.33 14.18 28.36

18 168.87 1.22 138.57 13.30 26.60

17 196.49 0.95 207.73 14.35 28.69

16 189.82 1.34 141.98 14.10 28.20

15 202.31 1.92 105.31 14.56 29.12

14 176.59 1.05 168.53 13.60 27.20

13 189.78 1.36 139.68 14.10 28.20

12 171.24 1.17 145.87 13.39 26.79

11 211.42 15.68 13.48 14.88 29.76

10 172.01 1.46 117.85 13.42 26.85

9 158.37 0.83 189.96 12.88 25.76

8 166.44 1.02 163.41 13.20 26.41

7 136.10 1.70 80.22 11.94 23.88

6 109.39 1.75 62.60 10.71 21.41

5 102.46 1.27 80.62 10.36 20.72

4 118.15 2.48 47.70 11.13 22.25

Table B.7.: Summary Analysis of Variances for X-Errors for all Peripheral Milled

Holes along with Manufacturing Uncertainties.
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Analysis of Variance Summary

Milled Hole, Y-Error

Hole#

Manufacturing

Error

Variance

(pm sqr.)

Metrology

Error

Variance

(pm sqr.)

F Statistic

Future

Manufacturing

Uncertainty

(pm)

Expanded

Future

Manufacturing

Uncertainty

(pm)

3 80.80 0.30 270.04 9.20 18.40

26 78.77 0.29 270.10 9.08 18.17

25 91.95 0.24 387.66 9.81 19.63

24 104.62 1.07 97.51 10.47 20.94

23 125.93 4.42 28.50 11.49 22.97

22 114.74 0.82 140.68 10.96 21.93

21 128.85 0.54 239.85 11.62 23.24

20 168.60 0.31 550.40 13.29 26.58

19 183.26 0.46 400.33 13.86 27.71

18 167.01 0.34 490.36 13.23 26.45

17 211.27 0.21 1020.07 14.88 29.75

16 288.84 0.29 1010.57 17.40 34.79

15 417.45 0.33 1269.35 20.91 41.82

14 371.76 1.43 259.19 19.73 39.47

13 427.54 113.29 3.77 21.16 42.33

12 262.69 0.36 726.60 16.59 33.18

11 255.97 0.27 960.45 16.38 32.75

10 270.35 0.74 367.71 16.83 33.66

9 274.91 0.19 1483.63 16.97 33.94

8 224.23 0.27 833.03 15.33 30.65

7 157.35 0.59 266.11 12.84 25.68

6 106.69 0.64 166.11 10.57 21.14

5 99.46 0.41 242.57 10.21 20.42

4 108.00 0.34 316.19 10.64 21.27

Table B.8.: Summary Analysis of Variances for Y-Errors for all Peripheral Milled Holes

along with Manufacturing Uncertainties.
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APPENDIX C: Analysis of Variance for Selected Hole Centers

This appendix contains the analysis of variance tables for the CMM measurements of the

centers of the three drilled and milled holes number 3, 9 and 15.

Analysis of Variance Table

Drilled Hole # 3

Part

#

X-Measurement Replications

(Am)

Mean

(Manufacturing

Error, pm)

Degrees-of-

Freedom

Standard

Deviation

(Metrology

Uncertainty,

pm)

1 8.388 6.124 4.94 5.996 6.177 6.325 4 1.25925

2 -3.861 -3.593 -3.191 -1.589 -3.945 -3.236 4 0.966609

3 21.613 22.459 19.837 20.361 21.42 21.138 4 1.042298

4 5.404 4.218 5.734 4.302 4.889 4.91 4 0.665768

5 0.88 2.705 1.792 1 1.29003

6 -0.417 -0.191 -0.304 1 0.159821

7 -11.848 -12.696 -12.272 1 0.599499

8 -21.173 -21.07 -21.122 1 0.072832

9 -8.784 -11.428 -10.106 1 1 .869298

10 -6.097 -4.546 -5.322 1 1 .096493

11 5.164 2.433 3.798 1 1.931337

12 17.726 18.735 18.23 1 0.713464

13 -51.234 -52.277 -51.755 1 0.73706

14 6.463 6.073 6.268 1 0.275809

15 2.642 1.146 1.894 1 1.05738

16 -0.773 1.325 0.276 1 1 .483569

17 -2.42 -1.887 -2.154 1 0.376961

18 8.539 10.633 9.586 1 1.480194

19 29.596 29.434 29.515 1 0.114643

27 17.431 19.826 18.629 1 1.693294

21 13.722 14.055 13.889 1 0.235346

Mean Manufacturing Error (Grand Mean) = 2.729 pm

Variance of the Manufacturing Error (Variance of the Means) = 640.886701 pm sqr.

Variance of the Metrology Uncertainty (Variance of the Standard Deviations) = 1 .102909

pm sqr.

F Statistic = 581 .0877

Table Cl: Analysis of Variance Table for X-Measurements of Drilled Hole # 3
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Analysis of Variance Table

Drilled Hole # 3

Part

#

Y-Measurement Replications

(Am)

Mean

(Manufacturing

Error, pm)

Degrees-of-

Freedom

Standard

Deviation

(Metrology

Uncertainty, pm)

1 -0.941 -3.353 -2.301 -2.669 -0.876 -2.028 4 1.089608

2 -9.501 -10.194 -11.457 -9.764 -9.837 -10.151 4 0.771403

3 37.701 38.017 36.3 36.283 37.251 37.11 4 0.795814

4 2.655 2.774 1.986 2.177 2.482 2.415 4 0.328698

5 -9.683 -11.212 -10.448 1 1.081658

6 21.033 19.897 20.465 1 0.803153

7 -2.003 -1.093 -1.548 1 0.643329

8 8.962 7.121 8.041 1 1.301495

9 -3.531 -2.63 -3.081 1 0.63726

10 -7.676 -8.471 -8.074 1 0.562407

11 4.149 2.168 3.159 1 1.401298

12 15.865 16.32 16.093 1 0.321663

13 -39.299 -36.961 -38.13 1 1.653506

14 1.155 2.139 1.647 1 0.695928

15 -1.648 -2.092 -1.87 1 0.314247

16 -3.873 -3.423 -3.648 1 0.318293

17 4.239 6.168 5.204 1 1.364209

18 3.655 3.67 3.663 1 0.010115

19 43.345 42.935 43.14 1 0.289299

27 48.849 50.143 49.496 1 0.915088

21 65.651 63.91 64.78 1 1.231363

Mean Manufacturing Error (Grand Mean) = 2.696 /jm

Variance of the Manufacturing Error (Variance of the Means) =

Variance of the Metrology Uncertainty (Variance of the Standard Deviations)

1371.01391 fim sqr.

0.74315

fjm sqr.

F Statistic = 1844.868

Table C2: Analysis of Variance Table for Y-Measurements of Drilled Hole #3
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Analysis of Variance Table

Milled Hole # 3

Part

#

X-Measurement Replications

Cum)

Mean

(Manufacturing

Error, pm)

Degrees-of-

Freedom

Standard

Deviation

(Metrology

Uncertainty, pm)

1 10.925 12.514 14.288 14.256 11.326 12.662 4 1.581885

2 13.556 12.913 11.694 12.823 11.41 12.479 4 0.89792

3 11.841 14.149 15.154 14.161 14.668 13.994 4 1.273478

4 10.459 9.008 8.763 7.597 8.788 8.923 4 1.020844

5 15.985 15.51 15.747 1 0.335826

6 1 1 .404 12.2 11.802 1 0.563083

7 5.749 5.278 5.513 1 0.333129

8 -14.611 -14.951 -14.781 1 0.24007

9 11.294 10.412 10.853 1 0.623767

10 10.541 10.89 10.715 1 0.246816

11 11.078 13.796 12.437 1 1.921895

12 8.509 12.653 10.581 1 2.930723

13 20.172 18.027 19.1 1 1.51661

14 13.281 13.848 13.565 1 0.401234

15 14.088 12.43 13.259 1 1.172022

16 10.036 1 1 .259 10.648 1 0.864516

17 12.031 14.395 13.213 1 1.671714

18 10.742 10.573 10.658 1 0.11936

19 15.688 14.681 15.184 1 0.712113

27 13.666 12.669 13.167 1 0.705367

21 11.56 11.072 11.316 1 0.345266

Mean Manufacturing Error (Grand Mean) = 1 1 .227 /vm

Variance of the Manufacturing Error (Variance of the Means) =

Variance of the Metrology Uncertainty (Variance of the Standard Deviation) :

86.919903 pmsqr.

1.385941

pmsqr.

F Statistic = 62.71543

Table C3: Analysis of Variance Table for X-Measurements of Milled Hole #3
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Analysis of Variance Table

Milled Hole #3

Part

#

Y-Measurement Replications

>/m)

Mean

(Manufacturing

Error, pm)

Degrees-of-

Freedom

Standard

Deviation

(Metrology

Uncertainty, pm)

1 10.974 11.803 1 1 .292 12.208 11.489 11.553 4 0.473984

2 10.464 10.304 11.124 10.35 9.867 10.422 4 0.453149

3 11.358 10.515 10.819 11.335 11.759 11.157 4 0.489981

4 11.982 11.381 11.349 11.707 11.567 11.597 4 0.259562

5 6.149 6.483 6.316 1 0.236022

6 11.189 11.07 11.129 1 0.083622

7 11.958 11.473 11.715 1 0.343244

8 -13.513 -12.861 -13.187 1 0.460581

9 12.036 11.498 1 1 .767 1 0.381003

10 13.702 14.645 14.174 1 0.666257

11 16.416 15.868 16.142 1 0.387077

12 12.733 12.709 12.721 1 0.017536

13 18.048 19.018 18.533 1 0.685809

14 14.497 14.514 14.505 1 0.012141

15 12.851 11.301 12.076 1 1.095818

16 1 1 .425 12.569 1 1 .997 1 0.80922

17 10.257 12.566 11.411 1 1 .632596

18 12.564 11.773 12.168 1 0.559039

19 11.751 12.123 11.937 1 0.263001

27 11.97 12.856 12.413 1 0.626468

21 13.651 13.42 13.535 1 0.163193

Mean Manufacturing Error (Grand Mean) = 12.838 pm

Variance of the Manufacturing Error (Variance of the Means) = 80.800102 pm sqr.

Variance of the Metrology (Variance of the Means) = 0.29921

1

pm sqr.

F Statistic = 270.0435

Table C4: Analysis of Variance Table for Y-Measurements of Milled Hole #3.

74



Analysis of Variance Table

Drilled Hole # 9

Part

#

X-Measurement Replications

(pm)

Mean

(Manufacturing

Errors, pm)

Degrees-of-

Freedom

Standard

Deviation

(Metrology

Uncertainty, pm)

1 7.837 7.521 7.277 8.075 6.667 7.475 4 0.544309

2 4.903 5.352 5.411 4.946 6.571 5.437 4 0.674551

3 21.018 20.875 19.423 22.19 22.438 21.189 4 1.205255

4 3.952 2.542 3.057 1.662 3.372 2.917 4 0.867943

5 7.962 9.512 8.737 1 1.095818

6 4.37 5.79 5.08 1 1.004106

7 3.724 3.736 3.73 1 0.008092

8 -13.96 -14.961 -14.461 1 0.708068

9 3.099 1.667 2.383 1 1.012873

10 -2.782 -3.345 -3.064 1 0.398541

11 2.476 3.744 3.11 1 0.896884

12 -16.38 -15.505 -15.943 1 0.619051

13 -43.098 -41.484 -42.291 1 1.141673

14 4.272 2.942 3.607 1 0.940718

15 7.968 8.286 8.127 1 0.224558

16 3.741 -0.134 1.803 1 2.740556

17 10.651 5.971 8.311 1 3.30903

18 0.651 -0.635 0.008 1 0.909698

19 29.827 30.695 30.261 1 0.613656

27 27.004 26.467 26.736 1 0.37966

21 15.547 16.31 15.928 1 0.53948

Mean Manufacturing Error (Grand Mean) = 4.985 pm

Variance of the Manufacturing Error (Variance of the Means) = 511.44179 fjm sqr.

Variance of the Metrology Uncertainty (Variance of the Standard Deviations) = 1 .189403

*ym sqr.

F Statistic = 429.9987

Table C5: Analysis of Variance Table for X-Measurements of Drilled Hole #9
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Analysis of Variance Table

Drilled Hole # 9

Part

#

1 -22.324 -21.057 -21.072 -19.226 -20.386 -20.813 4 1.130235

2 -31.57 -30.167 -30.869 -31.296 -30.045 -30.789 4 0.673669

3 11.154 10.971 12.375 10.559 10.239 11.06 4 0.817194

4 -16.266 -18.173 -18.234 -17.868 -18.555 -17.819 4 0.901909

5 -25.635 -24.704 -25.169 1 0.658168

6 -12.039 -12.024 -12.032 1 0.010783

7 -14.557 -15.717 -15.137 1 0.820011

8 -20.05 -21.637 -20.844 1 1.122115

9 -8.072 -8.621 -8.347 1 0.388426

10 -22.614 -22.064 -22.339 1 0.388428

11 -20.279 -19.73 -20.004 1 0.388428

12 -27.634 -27.481 -27.557 1 0.107897

13 -60.486 -61.722 -61.104 1 0.873956

14 -14.465 -14.954 -14.709 1 0.345266

15 -22.202 -19.867 -21.034 1 1.650811

16 -20.508 -21.286 -20.897 1 0.55027

17 -24.429 -22.263 -23.346 1 1.532124

18 -24.612 -24.902 -24.757 1 0.204997

19 23.926 24.246 24.086 1 0.226585

27 26.855 27.435 27.145 1 0.410002

21 45.532 44.968 45.25 1 0.399218

Mean Manufacturing Errpr (Grand Mean) = 2.696 /ym

Variance of the Manufacturing Error (Variance of the Means) =

Variance of the Metrology Uncertainty (Variance of the Standard Deviations)

F Statistic = 2840.895

Table C6: Analysis of Variance Table for Y-Measurements of Drilled Hole #9.

1924.78242 sqr.

0.677527

^/m sqr.

Mean

(Manufacturing

Error, pm)

Degrees-of-

Freedom

Standard

Deviation

(Metrology

Uncertainty, pm)

Y-Measurement Replications

(Am)
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Analysis of Variance Table

Milled Hole # 9

Part

#

X-Measurement Replications

(Am)

Mean

(Manufacturing

Error, pm)

Degrees-of-

Freedom

Standard

Deviation

(Metrology

Uncertainty, pm)

1 16.844 17.036 15.541 14.392 17.315 16.226 4 1.230574

2 12.421 11.37 11.843 10.819 11.881 1 1 .667 4 0.60236

3 13.545 13.164 14.556 12.291 12.893 13.29 4 0.842547

4 16.253 14.369 17.07 17.63 17.078 16.48 4 1.278243

5 20.363 21.506 20.935 1 0.808548

6 20.476 19.172 19.824 1 0.922513

7 5.013 6.687 5.85 1 1.184158

8 -9.427 -10.124 -9.776 1 0.492952

9 16.628 17.302 16.965 1 0.476088

10 9.825 9.42 9.623 1 0.285924

11 13.21 15.644 14.427 1 1.720935

12 -1.594 -0.473 -1.033 1 0.792361

13 25.29 26.453 25.871 1 0.822705

14 23.735 23.692 23.714 1 0.030349

15 21.171 22.602 21.886 1 1.012195

16 6.42 6.26 6.34 1 0.113291

17 19.974 19.786 19.88 1 0.132844

18 17.862 16.369 17.116 1 1 .056029

19 25.863 25.488 25.675 1 0.265017

27 20.897 19.802 20.349 1 0.774155

21 17.456 17.815 17.635 1 0.253561

Mean Manufacturing Error (Grand Mean) 14.794 /ym

Variance of the Manufacturing Error (Variance of the Means) =

Variance of the Metrology Uncertainty (Variance of the Standard Deviations) =

158.373624 sqr.

sqr.

0.833741

F Statistic = 189.9553

Table C7: Analysis of Variance Table for X-Measurements of Milled Hole #9.
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Analysis of Variance Table

Milled Hole # 9

Part

#

Y-Measurem<

(Micron

snt Replications

neters)

Mean

(manufacturing

Error)

Degrees-of-

Freedom

Standard

Deviation

(Metrology

Uncertainty)

1 7.141 6.897 7.538 7.477 7.736 7.358 4 0.335069

2 10.406 10.59 10.773 10.62 10.559 10.59 4 0.131265

3 5.493 5.768 4.791 5.249 5.005 5.261 4 0.386382

4 5.997 5.905 6.027 6.058 5.783 5.954 4 0.111295

5 3.815 5.219 4.517 1 0.992643

6 31.799 31.219 31.509 1 0.410009

7 6.012 5.325 5.669 1 0.485532

8 -17.7 -18.738 -18.219 1 0.733687

9 8.392 8.667 8.53 1 0.194213

10 10.101 9.567 9.834 1 0.377637

11 10.559 10.681 10.62 1 0.086317

12 20.325 20.081 20.203 1 0.172633

13 17.807 17.67 17.738 1 0.097107

14 10.452 9.583 10.017 1 0.615006

15 11.505 10.101 10.803 1 0.992644

16 6.744 6.561 6.653 1 0.129475

17 7.355 8.057 7.706 1 0.496322

18 3.754 3.937 3.845 1 0.129475

19 6.668 7.523 7.095 1 0.604217

27 9.964 10.91 10.437 1 0.668952

21 38.91 38.086 38.498 1 0.582635

274.906987 micrometer sqr.

0.185294

micrometer sqr.

Table C8: Analysis of Variance Table for Y-Measurements of Milled Hole #9.

Mean Manufacturing Error (Grand Mean) = 12.838 micrometers

Variance of the Manufacturing Error (Variance of the Means) =

Vanance of the Metrology Uncertainty (Variance of the Standard Deviations) =

F Statistic = 1483.63
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Analysis of Variance Table

Drilled Hole # 15

Part

#

X-Measurement Replications

(Micrometers)

Mean

(Manufacturing

Error)

Degrees-of-

Freedom

Standard

Deviation

(Metrology

Uncertainty)

1 -6.454 -5.341 -6.47 -6.836 -7.233 -6.467 4 0.705577

2 -11.902 -12.115 -11.948 -12.573 -12.07 -12.122 4 0.267049

3 14.191 15.244 14.542 14.221 14.74 14.587 4 0.432258

4 -3.479 -3.326 -3.448 -1.862 -1.556 -2.734 4 0.943976

5 2.106 3.082 2.594 1 0.690534

6 -3.998 0.458 -1.77 1 3.150561

7 -5.31 -5.249 -5.28 1 0.043159

8 -20.523 -19.455 -19.989 1 0.755268

9 -2.289 -2.167 -2.228 1 0.086317

10 -16.19 -15.945 -16.068 1 0.17264

11 -3.433 -3.22 -3.326 1 0.151055

12 -12.405 -13.046 -12.726 1 0.453156

13 -54.016 -55.862 -54.939 1 1.305545

14 -7.813 -9.613 -8.713 1 1.273172

15 -10.727 -9.644 -10.185 1 0.766062

16 -9.827 -9.415 -9.621 1 0.291319

17 -6.699 -8.011 -7.355 1 0.927905

18 -2.914 -2.045 -2.48 1 0.615007

19 19.821 20.325 20.073 1 0.356057

27 23.59 23.376 23.483 1 0.151059

21 2.96 3.616 3.288 1 0.463953

Mean Manufacturing Error (Grand Mean) = -4.521 micrometers

Variance of the Manufacturing Error (Variance of the Means) = 565.99933 micrometer sqr.

Variance of the Metrology Error (Variance of the Standard Deviations) = 0.710005

micrometer sqr.

F Statistic = 797.1762

Table C9: Analysis of Variance Table for X-Measurements of Drilled Hole #15.
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Analysis of Variance Table

Drilled Hole #15

Part

#

Y-Measurement Replications

(Micrometers)

Mean

(Manufacturing

Error)

Degrees-of-

Freedom

Standard

Deviation

(Metrology

Uncertainty)

1 -30.075 -29.633 -28.046 -27.893 -28.793 -28.888 4 0.958113

2 -29.053 -29.404 -29.099 -29.022 -29.221 -29.16 4 0.155985

3 25.436 25.787 21.469 26.031 24.796 24.704 4 1.867158

4 -31.54 -31.403 -31.769 -31.174 -31.418 -31.461 4 0.217243

5 -29.968 -29.343 -29.655 1 0.442373

6 -20.737 -21.133 -20.935 1 0.28053

7 -25.879 -25.055 -25.467 1 0.582642

8 -19.318 -19.867 -19.592 1 0.388421

9 -27.069 -27.847 -27.458 1 0.55027

10 -25.62 -25.803 -25.711 1 0.129471

11 -23.239 -23.651 -23.445 1 0.291314

12 -6.256 -7.462 -6.859 1 0.852378

13 -63.965 -61.783 -62.874 1 1 .542907

14 -18.021 -18.478 -18.25 1 0.323685

15 -20.981 -22.766 -21.873 1 1.262384

16 -22.064 -21.805 -21.935 1 0.183423

17 -28.229 -28.076 -28.152 1 0.107897

18 -30.289 -26.321 -28.305 1 2.805298

19 22.583 23.163 22.873 1 0.410002

27 31.479 32.15 31.815 1 0.474744

21 23.407 24.048 23.727 1 0.453164

Mean Manufacturing Error (Grand Mean) = 2.696 micrometers

Variance of the Manufacturing Error (Variance of the Means) = 2410.274 micrometer sqr.

Variance of the Metrology Uncertainty (Variance of the Standard Deviations) = 0.981564

micrometer sqr.

F Statistic = 2455.544

Table CIO: Analysis of Variance Table for Y-Measurements of Drilled Hole #15.
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Analysis of Variance Table

Milled Hole# 15

Part

#

X-Measurement Replications

(Micrometers)

Mean

(Manufacturing

Error)

Degrees-of-

Freedom

Standard

Deviation

(Metrology

Uncertainty)

1 6.775 7.523 8.041 8.575 6.927 7.568 4 0.75504

2 -3.799 -4.959 -3.51 -2.777 -2.258 -3.461 4 1.033854

3 5.371 7.416 7.553 6.409 5.737 6.497 4 0.976229

4 11.719 9.857 13.184 13.245 12.405 12.082 4 1.392083

5 12.36 10.254 11.307 1 1.488962

6 7.477 10.925 9.201 1 2.438446

7 -0.534 -1.404 -0.969 1 0.615007

8 -31.204 -27.39 -29.297 1 2.697393

9 6.104 5.188 5.646 1 0.647376

10 -2.747 -3.357 -3.052 1 0.431584

11 5.157 6.485 5.821 1 0.938694

12 -8.911 -7.706 -8.308 1 0.852378

13 5.188 6.5 5.844 1 0.927905

14 9.964 9.521 9.743 1 0.312898

15 13.519 15.442 14.481 1 1.359483

16 0.198 0.58 0.389 1 0.26974

17 8.362 1.709 5.035 1 4.704263

18 2.35 2.426 2.388 1 0.053947

19 9.628 8.759 9.193 1 0.615007

27 8.118 6.287 7.202 1 1.294751

21 -3.769 -3.174 -3.471 1 0.420794

Mean Manufacturing Error (Grand Mean) = 3.625 micrometers

Variance of the Manufacturing Error (Variance of the Means) =

Variance of the Metrology Uncertainty (Variance of the Standard Deviations) =

202.311028 micrometer sqr.

1.921037

micrometer sqr.

F Statistic : 105.3134

Table Cll: Analysis of Variance Table for X-Measurements of Milled Hole #15.

81



Analysis of Variance Table

Milled Hole# 15

Part

#

Y-Measurem«

(Microm

jnt Replications

eters)

Mean

(Manufacturing

Error)

Degrees-of-

Freedom

Standard

Deviation

(Metrology

Uncertainty)

1 2.579 3.448 3.128 3.418 3.784 3.271 4 0.451696

2 3.296 3.601 3.723 3.555 3.448 3.525 4 0.161484

3 3.326 3.937 3.448 3.845 3.784 3.668 4 0.265521

4 2.319 2.197 2.06 1.74 1.282 1.92 4 0.417099

5 0.153 0.793 0.473 1 0.453163

6 22.552 21.576 22.064 1 0.690532

7 1.282 -0.702 0.29 1 1 .402647

8 -24.628 -24.048 -24.338 1 0.410009

9 0.977 -0.153 0.412 1 0.79843

10 3.967 3.479 3.723 1 0.345267

11 3.983 2.686 3.334 1 0.917115

12 22.064 22.217 22.141 1 0.107897

13 11.52 14.008 12.764 1 1 .758702

14 5.478 5.737 5.608 1 0.183423

15 2.838 2.075 2.457 1 0.53948

16 -0.793 -0.916 -0.854 1 0.086317

17 -1.495 -0.732 -1.114 1 0.539479

18 2.426 2.747 2.586 1 0.226582

19 6.561 7.523 7.042 1 0.679745

27 7.904 7.584 7.744 1 0.226582

21 31.128 30.426 30.777 1 0.496318

Mean Manufacturing Error (Grand Mean) = 12.838 micrometers

Variance of the Manufacturing Error (Variance of the Means) =

Variance of the Metrology Uncertainty (Variance of the Standard Deviations) =

417.453169 micrometer sqr.

0.328871

micrometer sqr.

F Statistic = 1269.352

Table 02: Analysis of Variance Table for Y-Measurements of Milled Hole #15.
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APPENDIX D: Derivation of the Variance of Length Equation

In this appendix we derive the formula (35). From equation (33), the quantity L is

implicitly a function of the four error terms E
x (*, , y, ), Ex

(x
2 , y 2 ), Ey

(at,
, y, ), E

y
(x2 , y 2 )

.

L can be expanded as a Taylor series around (0, 0, 0, 0) to the first order as

L(E
X (*, , y , ), Ex (x2 , y 2 ), Ey (*, , y, ), Ey

(x
2 , y 2 ))

= L(0,0,0,0)

,

3L(0,0,0,0)

31(0,0,0,0)

dEx (x2 ,y 2 )

3L(0,0,0,0)

dE
y
(x,

, y,

)

3L(0,0,0,0)

3E (x2 ,y2 )

+

+

+

E
x (x2 ,y 2 ) (Dl)

E
y
ix

x ,y x )

E
y
(x

2 ,y2 )

By implicit differentiation of (33)

dL
L(EX (x, , y, ), Ex (x, , y2 ), £,. (x,

, y, ), £ v
(x,

, y2 ))
—— (E

x
(x,

, y, ), Ex (x2 , y, ), £ v
(x,

, y, ), E v
(x

2 , y 2 )) (D2)
d£

x
(x,,y,) v '

= (x, + £
jr
(x,,y

1

)-x, — E
x
(x

2 ,y 2 ))

Note that, comparing equations (33) and (34), it is clear that L0 = L(0,0,0,0). At (0, 0, 0,

0) equation (D2) becomes

,
3L(0,0,0,0) _ , ,—

t-*i x2

)

dE
x
(x

l ,y { )

(D3)

By repeating this argument for each of the four error terms and dividing by L0 ,

3L _ (x, - x
2 )

3£*(*., y.)

3L _ (x, -x,)

3Ex (x2 ,y 2 ) L
0

3l
^ (y\~y 2 )

3£
v U,,y,) L0

(D4)

3L
= (y,-y 2 )

3E
y
(x

2 ,y 2 ) L0
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Introducing (D4) into (Dl) one gets

L — L0 +
Ui -X2 ) r , U, -X2 )—

7
— £,(*>>)'.)

7

— EAx
2 ^y 2 )

+
( -VJ.

} E
y
(s,

, y, )
- ( ~

V|
-
V:

}

E
v
(x

2 , y 2 )

(D5)

Now, one can apply the sum of variance formula, using the fact that the variance of a

constant is zero in order to get equation (35).
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APPENDIX E: MACSYMA Program to Generate the Kinematic Model Error

Equations

/* Construct the list of error components */

list 1
:
[ezy,eyy,dxy,axy,exy,dyy,dzy]$

list2:[ezx,eyx,dxx,exx,dyx,dzx,ezzl$

list3:[eyz,dxz,axz,exz,dyz,ayz,dzz]$

list:append(list 1 ,list2,list3)$

/* Construct the homogeneous transformation of y relative to reference */

/* Ideal motion along y */

row 1:[ 1,0,0,0]$

row2:[0,l,0,y]$

row3:[0,0,l,0]$

row4: [0,0,0, 1]$

rty:matrix(row 1 ,row2,row3,row4)$

/* Rotational and translational errors along y */

row 1
: [ 1 ,-ezy,eyy,dxy-axy*y]$

row2: [ezy, 1 ,-exy,dyy]$

row3: [-eyy,exy, 1 ,dzy]$

row4:[0,0,0,l]$

errrty:matrix(rowl,row2,row3,row4)$

/* Final y motion relative to reference coordinates */

rty:rty.errrty$

/* Construct the homogeneous transformation of x relative to y */

/* Ideal motion along x */

rowl:[l,0,0,x]$

row2:[0,l,0,0]$

row3:[0,0,1,0]$

row4: [0,0,0, 1]$

ytx:matrix(row 1 ,row2,row3,row4)$

/* Rotational and translational errors along x */

rowl:[l,-ezx,eyx,dxx]$

row2:[ezx,l,-exx,dyx]$

row3: [-eyx,exx, 1 ,dzx]$

row4: [0,0,0, 1]$

errytx:matrix(row 1 ,row2,row3,row4)$

/* Final error matrix of x rlative to y motion */

ytx:ytx.errytx$

/* Construct the relative position of the workpiece relative to x */

rowl:[l,0,0,-x]$

row2:[0,l,0,-y]$

row3:[0,0,l,z]$

row4: [0,0,0, 1]$

xtw:matrix(rowl,row2,row3,row4)$
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/* No rotational and translational error here */

/* Final error matrix of workpiece relative to the reference */

rtw:rty.ytx.xtw$

/* Construct the motion of z relative to the reference system */

/* Ideal motion of z */

row I :[1,0,0,0]$

row2:[0, 1,0,0]$

row3:[0,0,l,z]$

row4:[0,0,0,l]$

rtz:matrix(row 1 ,row2,row3,row4)$

/* Rotational and translational errors of z */

row 1
: [ 1 ,-ezz,eyz,dxz-axz*z]$

row2: [ezz, 1 ,-exz,dyz-ayz*z]$

row3
:
[-eyz,exz, 1 ,dzz]$

row4: [0,0,0, 1]$

errrtz:matrix(rowl,row2,row3,row4)$

/* Final error matrix of z relative to reference */

rtz:rtz.errrtz$

/* Tool relative to z */

ztt:ident(4)$

/* Final error matrix of tool relative to z */

rtt:rtz.ztt$

/* Get the inverse of rtt */

rttinv:rtt
AA-l$

/* Compute the final error matrix */

err:rttinv.rtw$

/* Linearize the displacement error terms by a first order Taylor Series about 0 */

ex :taylor(err[ 1 ,4],list,0, 1 );

ey:taylor(err[2,4],list,0, 1 );

ez:taylor(err[3,4],list,0,l);
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APPENDIX F: Circle Fit Algorithm

Before we describe the algorithm for computing the least squares fitting of a circle we

need to introduce the notion of a symmetric positive definite (SPD) matrix. A real nxn

matrix A is symmetric if it equals its transpose, i.e. A - A T
. It is positive definite if

x
TAx > 0 for all n-vectors x. There are some useful properties of a SPD matrix. First of

all the largest entry in absolute value falls on the main diagonal, all of whose entries are

positive. Furthermore, if the matrix is symmetric and the main diagonal is positive and

the main diagonal entry of each row is larger than the sum of the absolute values of all

the other elements of that row then the matrix is SPD. This means that if we add a large

enough positive multiple of the identity matrix to the original symmetric matrix, then we

can make it SPD. This property plays a part in the algorithm below. Finally a SPD matrix

A can be factored as

A = LLt =R tR (FI)

where L is a lower triangular matrix and R is an upper triangular matrix. Either of these

factorizations is called a Cholesky factorization. In terms of L a matrix equation of the

form

Ax = LLT
x = b (F2)

can be solved in two steps by

Lv = b

Ltx = v

(F3)

where v is an intermediate vector. The algorithm for computing L is relatively simple and

can also be used to detect when A is not SPD. This check is used in the circle fitting

program. The Cholesky algorithm begins by setting

VT <f4>

Then going down the first column

for i = 2 to n

(F5)

For column j = 2 to n
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(F6)for i = j +

1

to n

k=l

The test on the positive definiteness ofA is done by checking whether a quantity under

the square root sign is positive. If not then the main circle fitting algorithm is signaled

that the matrix A is not positive definite. For further discussion of the Cholesky

factorization see Nash [30],

The circle fitting algorithm is a combination of Newton’s Method and that of Marquardt
- Levenberg. For the basic algorithm see Nash [30] and for stopping criteria see Dennis

and Schnabel [33]. Start with a set of points in the plane (>,, y, ),•••, (jc^
, ) . Then

define the residual functions

R
i
(a,b,r) = (x

i
-a) 2

+ (y, -b) 2 - r
2

(F7)

where (a, b) is the center and r is the radius to be determined. In order to simplify

notation let /?,
= a, p 2 = b, p 3

= r. Let p = (p,,p 2 ,p 3 )

r
. Form the sum-of-squares

function

S(p) = £(R,(p))
2

(F8)
1=1

The object is to minimize S over a, b, and r. At its minimum any constant multiple of the

gradient of S is zero. For notation, let

g(p) = ^VS(p) (F9)

The components of g(p) are given by

N XD N
p

Si(F) = X^(P)T^(P) = Zk*, -Pi)
2

+(>/ -P2)
2 -p]\[-^x

i
-/>.)]

i= 1 PPi <=1

N N
p 1

= = -Pi )

2 + (y,~ P2)
2 - -p

2 )l (fio)

1=1 op
2 1=1

N 3d N
p

-|

s 3 (p) =X^ (f) 3
-^ (p) = £[(*, -F1)

2

+(y, -P2)
2

-pIW-^pA
1=1 OP 3 i=I

Let
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(Fll)

f
dR

]

dR
x

dR
x \

dp\ dp2 dp
3

dRN dR„

dp\ dp
2

dp
3

v y

If R is the column vector with components /?, , then from (F10) the three element column

vector g is

g = J
TR (F12)

The next job is to estimate the step length that will take the point p to a new point

p + dp in such a way that g(p + dp) = 0 . This can be done by using the Taylor series to

write

g i
(p+dp) = g i (p)+YJdPk ^~(p) + 0( 2) (F13)

i=l UPk

for i = 1, • • -,3. In order to select dp so that g{p + dp) = 0 one needs to solve

YJ
dPk^J-(p) = -gi(a,b,r) (F14)

k=\ OPk

for i = 3. Now, from (F10)

3p,
(p) = E

1=1 dp
k

dp
j

ap
k
apj

(F15)

Note that

a
2

*,

dp
k
dpj

( P) =

0 k*j
2 k=j =

1

2 k=j =

2

-2 k=j =

3

(F16)

so that (F15) can be written in matrix form as

H=J t
J (F17)
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Now (F14) can be written, using (FI 2), as

Hdp = -g = -J TR (F18)

Although H is symmetric it is not necessarily positive definite and in fact may be
singular. The scaling of (FI 8) may also need adjustment. This is discussed by Marquardt
[1963]. Also, see Nash []. Instead of (F19) consider

(j
T
J +Al)dp = -J TR (F19)

If we scale the parameters by a matrix with only a positive main diagonal then we can
write

p = Dp

R(p) = R(D'p) = R(p)
(F20)

Then, in terms of the scaled parameters, (FI 9) could be written

(j
T
J + Al)dp = -J TR (F21)

where, it is not hard to show that

Then, (F21) becomes

J(p) = J(p)D~
l

dp = Ddp
(F22)

((D-‘)
r
J
TJD X + Al)odp = J

TR (F23)

or

(j
T
J + AD)dp = -J T R (F24)

In Nash [30], D is selected as

D„=(J T
J ),,+<*> (F25)

where 0 is set chosen so that the scale is not too small.

Before describing the algorithm we to select stopping criteria for the final algorithm. For

this we choose criteria suggested by Dennis and Schnabel [33]. These criteria depend on

the fact that near the optimum both the gradient and the difference between succeeding

parameter vectors should be near zero. The relative gradient will be used instead of
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simply the gradient since it is insensitive to scaling and for the parameters the relative

change in the parameters will be used. These criteria are

max
l<i<3

8

i

maxnp41
)

f N

max 2*,‘u
£=1

max
1<(<3

„(*)
p, - Pi

max(

(F26)

where the components of the gradient g are computed in (F12) and £ is the machine

epsilon which is that machine number that when added to 1 returns 1.

The algorithm can be stated as follows.

1. Initialize

Po

\
r
° J

A = 0.0001

0 = 0.5

inc = 10

dec = 0.04

max_ iter = 20

loop _ count = 0

P = P0

(27)

2. While loop _count < ma\_iter perform the following operations

2.1 If loopjcount > 0 set A = A* dec

2.2 f = j^R-
i=

1

2.3 R =

(*i -PiY +(^1 -PiY -p\ ^

{xN - Pxf +{yN - p 2 )

2 ~ pI

2.4 Form the Jacobian matrix J using (FI 1)
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2.5 Form the gradient vector g using (FI 2). This test uses/.

2.6 Perform the gradient test in (F26)

2.7 If the test is true exit with the final parameters p , otherwise continue

2.8 If loop_count > 0 then perform the relative parameter test

2.9 If that test is true exit with the final parameters p , otherwise continue

2.10 Form H = J
T
J

2.11 Set flag = -1 and augmentjcount = 0

2. 12 While flag < 0 perform the following operations

2.12.1 Set augment_count = augmentjcount + 1

2.12.2 If augment_count > 1 then set A = A*inc

2.12.3 Set D = diag(H)

2.12.4 Using (F24) and (F25) form augH = H + A

D

2.12.5 Perform the Cholesky decomposition as given in (F4) to (F6) and return L

and flag, where flag = -1 if not positive definite and +1 if it is.

2.12.6 Continue the while loop. For sufficiently large A the augmented matrix

will become positive definite. When it does exit the loop and continue.

2.13 Solve (augH)dp = -J TR for dp using (F3)

2.14

2.15

PoUl = P

Set / = Pom +

loop _ count = loop _ count +

1

Return to step 2, the beginning of the while loop.
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APPENDIX G: Analysis of Variance for Computed Orthogonalities from CMM
Measurements

Orthogonality Uncertainty Table

Part Measurement Replications (arc sec) Mean df Stand. Dev.

1 2.165 4.387 4.935 9.156 2.116 4.552 4 2.872672

2 11.583 8.341 7.122 10.142 3.885 8.215 4 2.958529

3 2.803 8.321 1.93 7.987 6.22 5.452 4 2.943944

4 -5.523 -5.859 -8.61 -8.631 -8.007 -7.326 4 1.518122

5 -5.834 -3.276 -4.555 1 1 .809033

6 -1.076 0.976 -0.05 1 1 .450953

7 -0.178 -5.235 -2.707 1 3.576137

8 -12.286 -2.569 -7.427 1 6.870819

9 -5.311 -9.561 -7.436 1 3.004845

10 8.835 11.289 10.062 1 1.735044

11 10.31 10.295 10.303 i 0.010287

12 25.389 25.348 25.368 i 0.028781

13 -8.481 -12.965 -10.723 i 3.171258

14 -14.406 -12.813 -13.609 i 1.126567

15 -3.403 -14.142 -8.772 i 7.593938

16 14.823 12.433 13.628 i 1 .690476

17 -7.164 -5.542 -6.353 i 1.146354

18 -6.462 -0.771 -3.617 i 4.024526

19 -13.728 -14.365 -14.047 i 0.450572

27 -9.597 -8.828 -9.213 i 0.543542

21 -6.243 -1.735 -3.989 i 3.188012

Grand Mean = -1.059

Var.of the Means = 80.284741 Unc. Of the Means = 8.960175277

Var. of the Stand. Dev. = 8.768066 Unc. Of the Std. = 2.961092028

Dev.

Table Gl: Orthogonality Uncertainty Table for Parts Manufactured on the Hurco

Machining Center.
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APPENDIX H: Analysis of Variance Tables for Circularities Computed from
CMM Measurements

Inner Circle Circularity Uncertainty Table

Part Measurement Replications (micromet.) Mean df Stand. Dev.

1 18.62 20.25 22.92 21.92 18.11 20.364 4 2.066962

2 19.81 21.39 20.13 18.04 19.25 19.724 4 1.225594

3 19.58 19.35 19.05 20.41 19.64 19.606 4 0.505698

4 20.56 20.58 18.34 17.78 19.5 19.352 4 1.273232

5 30.77 27.03 28.9 1 2.644579

6 22.83 21.47 22.15 1 0.961665

7 25.34 24.16 24.75 1 0.834386

8 21.76 23.03 22.395 1 0.898026

9 17.74 16.46 17.1 1 0.905097

10 18.42 19.3 18.86 1 0.622254

1

1

22.93 22.12 22.525 1 0.572756

12 22.69 17.59 20.14 1 3.606245

13 19.25 24.58 21.915 1 3.768879

14 16.2 22.7 19.45 1 4.596194

15 22.32 19 49 20.905 1 2.001112

16 20.58 18.23 19.405 1 1.661701

17 17.45 18.87 18.16 1 1.004092

18 22.44 21.71 22.075 1 0.516188

19 18.07 16.44 17.255 1 1.152584

27 16.49 16.65 16.57 1 0.113137

21 27.7 30.53 29.115 1 2.001112

Grand Mean

Var. of the Means

20.986

7.378079 Uncer. Of the Means 2.716

Var. of the Stand. Dev. = 3.129735 Uncer. Of the Stand. Dev. 1.769

Table HI: Circularity Results for Inner Slot Surface
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Outer Circle Circularity Uncertainty Table

Part Measurement Replications (micromet.) Mean df Stand. Dev.

1 18.37 17.87 18.02 17.38 19.09 18.146 4 0.63642

2 27.71 28.39 26.09 29.28 29.88 28.27 4 1.474161

3 20.86 19.42 19.2 21.48 21.08 20.408 4 1.029621

4 29.23 22.31 22.57 22.51 23.92 24.108 4 2.933517

5 23.23 24.59 23.91 1 0.961665

6 35.16 36.56 35.86 1 0.989949

7 19.4 16.69 18.045 I 1.916259

8 22.09 22.83 22.46 1 0.523259

9 21.67 23.13 22.4 1 1 .032376

10 28.22 24.04 26.13 I 2.955706

11 24.14 22.81 23.475 1 0.940452

12 31.27 32.18 31.725 1 0.643467

13 30.97 32.28 31.625 1 0.92631

14 26.06 22.94 24.5 1 2.206173

15 23.35 26.32 24.835 1 2.100107

16 19.96 22 20.98 1 1 .442498

17 25.28 25.86 25.57 1 0.410122

18 23.66 24.11 23.885 1 0.318198

19 24.39 26.08 25.235 1 1.19501

27 27.34 26.55 26.945 1 0.558614

21 46.42 49.32 47.87 1 2.05061

Grand Mean

Var. of the Means

26.018

35.83599 Uncer. Of the Means 5.986

Var. of the Stand. Dev. = 2.556287 Uncer. Of the Stand. Dev. 1.599

Table H2: Circularity Results for the Outer Surface
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