
DME Driver Interface Comparison
A Comparison of
the CMM-driver Specification Release #1.9

with the I++ DME-Interface Release 0.9

T. Kramer and J. Horst

Intelligent Systems Division

National Institute of Standards and Technology (NIST)

March 13, 2002

NISTIR 6863
1

DME Driver Interface Comparison
Disclaimer
Commercial equipment and materials are identified in order to specify certain
procedures adequately. In no case does such identification imply recommendation or
endorsement by the National Institute of Standards and Technology, nor does it imply
that the materials or equipment identified are necessarily the best available for the
purpose.

Acknowledgements
Partial funding for the writing of this paper was provided to Catholic University by the
National Institute of Standards and Technology under cooperative agreement Number
70NANB7H0016.

Abstract
This is a comparison of (1) the entire contents of CMM-driver Specification Release
#1.9 and (2) the parts of I++ DME-Interface Release 0.9 that deal with the interface to

a driver for dimensional measuring equipment.

Keywords
CMM, dimensional, DMIS, I++, inspection, metrology, NIST, standard
2

DME Driver Interface Comparison
1 Introduction

This comparison focuses on the interface between high-level inspection instruction execution and

low-level inspection instruction execution. This interface is used between an executor of a high-

level language (such as DMIS1) and a CMM2 motion controller, for example. It would also be

used between a CMM user interface and a CMM motion controller. This interface is called the

“DME driver interface” in this report. The receiver of DME (dimensional measuring equipment)

driver interface commands will be called the DME driver. The sender of DME driver interface

commands will be called the application.

The items being compared are: (1) the entire contents of CMM-driver Specification Release #1.9
and (2) the parts of I++ DME-Interface Release 0.9 that deal with the DME driver interface. In

the remainder of this report the version numbers are usually omitted for brevity, but all references

to these documents mean these specific versions.

Much of I++ DME-Interface deals with matters that are not part of the interface. These are

summarized below but are not analyzed.

The perspective of this report is that one or both documents being compared may become

standards of a standards body (such as the International Organization for Standardization (ISO))

or may become de facto standards. In this event, the documents will have to stand on their own.

To insure interoperability, the documents will have to be complete and unambiguous. Thus, this

report does not take into account anything the authors or sponsors of the documents have said

about their meaning and intent unless it is also written in the documents.

1.1 Contents of this Report

The remainder of this report includes:

1. general descriptions of the two documents.

2. a presentation of the important issues.

3. a broad comparison of the two documents.

4. a detailed comparison of the two documents.

1.2 Other NIST Documents

Other NIST documents relevant to this comparison (available on request to T. Kramer) include:

1. Analysis of Dimensional Metrology Standards; NISTIR 6847.

2. a proposed revision (from December 2000) of an earlier version of the CMM-driver
Specification.

3. a comparison (from December 2000) of the low-level command set used in the NIST.

DMIS interpreter with the commands from the CMM-driver Specification
4. an eight-page set of detailed comments (from November 2000) on the CMM-driver

Specification.

1. DMIS = Dimensional Measuring Interface Standard

2. CMM = Coordinate Measuring Machine
3

DME Driver Interface Comparison
2 General Descriptions

2.1 General Description of CMM-driver Specification

The CMM-driver Specification Release #1.9 is a 44-page document that was developed by

representatives (Lutz Karras [Carl Zeiss], Michel Penlae [Xygent], David Smith [LK], and Bill

Wilcox [Brown & Sharpe]) of four companies working the area of metrology hardware and

software.

The entire text of the CMM-driver Specification deals with a DME driver interface.

The CMM-driver Specification specifies a method of communicating and a set of commands.

Implementations of the CMM-driver Specification have been built and tested.

2.2 General Description of I++ DME-Interface

The I++ DME-Interface Release 0.9 is a 62-page document that was developed by representatives

(Hans-Martin Biedenbach [Audi], Josef Brunner [BMW], Kai Gläsner [DaimlerChrysler], Günter

Moritz [Messtechnik Wetzlar], Jörg Pfeifle [DaimlerChrysler], and Josef Resch [Zeiss IMT]) of

three automobile companies and two companies working the area of metrology hardware and

software.

The I++ DME-Interface document specifies an object-oriented system. The focus of the

document is on an object called the DME-Interface. This is an object, not an interface; to avoid

confusion, we will call this object the DME-I. Page 9 of the document shows a system layout with

the DME-I at the center. The layout includes a line joining the DME-I to an application. This line

is the DME driver interface in which we are interested. The DME-I is responsible for all

subsystems of the DME, so all commands and responses flow through the DME-I. Thus, almost

all of the contents of the document deal with the interface in which we are interested.

The DME-I is modeled as an instance of an object class in a class hierarchy including the classes

Server, DME, Cartesian CMM, and Cartesian CMM with Rotary Table. The DME-I has

associated objects, the most important of which are tool changers, tools, and axes.

For the most part, the details of the how the DME-I is modeled can be ignored without creating

any misunderstanding about the commands and responses the DME-I can handle. This report will

say nothing further about the object modeling of the DME-I unless it is essential.

The I++ DME-Interface document appears to be incomplete. A number of DME methods which

are on the diagrams (Picture 10 and Picture 11) are not included in the section (6.3.2) on DME

methods, or in any other methods section, and, thus, are presumably not among the commands

that may be sent by the application. These methods are: ChangeTool, FindTool, Tool, GoToPar,

ABCGoToPar, PtMeasPar, and ABCPtMeasPar. Judging from the names (“Par” means

parameter), the missing methods include, among other things, all the methods for setting and

getting parameters. The examples of exchanges between application and DME driver (section 7.7
4

DME Driver Interface Comparison
in particular) include calls to some of the missing methods. It may be that the authors

intentionally deleted the methods from section 6.3.2 and did not get around to updating the rest of

the document, but it seems much more likely that they simply did not complete section 6.3.2. In

any event, in the absence of a description of what a command does, it is hard to compare its

meaning to anything.

At NIST, we have not heard of any implementations of the I++ DME-Interface having been built.

2.3 Events and Daemons

The I++ DME-Interface includes (in section 4) the notion of an “event”, used in a different sense

from the usual meaning in computer programs that deal with events. The usual meaning is

“anything of interest that happened”. In the I++ DME-Interface, an event is a command or

response of high priority. In connection with events, the I++ DME-Interface uses the notion of a

“daemon”. A daemon is a thread or subprocess in the DME driver that triggers events.

The CMM-driver Specification does not use events or daemons, but it does provide that some

commands and responses have higher priority than others.

The I++ DME-Interface contains many commands whose names end with an upper case E. It

seems intended (although nothing explicit regarding command names could be found in the text)

that these commands are event commands and the DME driver is expected to generate events in

response.

In several cases, the I++ DME-Interface contains pairs of commands whose names differ only by

one having an E at the end and the other not. The descriptions of these commands are identical. It

seems intended that the command without the E is a normal command, while the command with

the E is an event command.

The remainder of this report does not discuss events. Daemons are not described in detail in this

report but are mentioned where the I++ DME-Interface uses them.
5

DME Driver Interface Comparison
3 Issues

This section presents issues involved with the DME driver interface. All but the last two of these

are used in section 4 for comparing the CMM-driver Specification with the I++ DME-Interface.

3.1 Scope

Every interface specification should include a statement of scope describing the domain of

activity to which the specification is intended to apply. The scope should indicate the types of

equipment with which the specification is expected to be usable.

It will be helpful if the scope includes mention of the execution models the standard is intended to

support, since some execution models may require more information than others.

For a DME driver interface, the scope should include at a minimum:

1. the activity of dimensional inspection by probing points.

2. the control of CMMs.

3. touch trigger probes.

Other types of dimensional measuring activities and equipment might also be covered, such as:

1. scanning probing.

2. control of non-contact optical metrology systems, such as laser scanners, theodolites,

and photogrammetry equipment.

3. non-contact capacitance probes.

3.2 Purpose

Every interface specification should include a statement of purpose describing what capabilities

the specification is intended to support. If the interface specification does not state its goals, it is

impossible to determine if it achieves its goals.

For a DME driver interface, the purpose should include supporting interoperability and supporting

DMIS.

3.3 Communications

A DME driver interface specification might include a specification of communications methods,

or communications methods might be the subject of a separate specification. If a communications

method is included, it should be one that is readily available.

3.4 Messaging Protocol and DME Driver States

A messaging protocol (for any message-based interface specification) is a set of rules for

conducting conversations between the sender and receiver of interface commands and responses.

This protocol governs which party can send which commands or responses when and what the
6

DME Driver Interface Comparison
other party should do about it. Very different behavior may occur in systems using the same

commands and responses (with well-defined semantics) but a different messaging protocol.

A messaging protocol is not provided by a specification of communications methods. Rather, the

messaging protocol must be built on top of communications methods. A messaging protocol

should be included in a DME driver interface specification.

Most provisions of a messaging protocol may be expected to be involved with startup, shutdown,

and error handling. Normal steady state operations are likely to be covered by a small portion of

the protocol.

For a messaging protocol to be specified, some method is required for characterizing the condition

of the receiver. The most straightforward way of doing this is to have receiver state variables and

possible values for those variables. Different sets of messages may be sent according to the values

of the receiver’s state variables. State variables of a DME driver might include, for example:

readiness (with values of unready, ready, paused, or erred) and probe_inhibited (with [boolean]

values of true or false).

3.5 Execution Model

The execution models that a DME driver interface intends to support need to be explicitly stated

in a DME driver interface specification. Two separate aspects of execution models that should be

covered are:

1. whether the DME driver (a) accepts only one command at a time or (b) accepts

multiple commands, puts them in a queue, and manages the queue. If queue

management is expected, commands for queue management are needed.

2. whether the DME driver and application (a) use one-time messaging or (b) use cyclic

messaging.

The first of these is necessarily reflected materially in the messaging protocol. For example,

typically, in case (a) the application should not send a new command until the DME driver returns

a response saying the last command is done, while in case (b) the application may send a new

command as soon as the last command is acknowledged as having been received.

The second of these is also reflected in the messaging protocol, but may be handled simply. In

cyclic messaging, the application and the DME driver run on a fixed clock cycle and each sends a

message every cycle. A message may often be identical to the preceding one, except possibly for

an id number. A messaging protocol for one-time messaging may readily be used in a cyclic

messaging system by considering only messages that are not identical to their predecessors.

There may be other aspects of execution models that are also important; this is not presented as an

exhaustive list.

3.6 Responsibility for Accuracy

A very important issue for users is: who is responsible for the accuracy of measurements taken on

a DME. Is it the DME vendor (who would implement the DME driver), or is it the vendor of the
7

DME Driver Interface Comparison
high-level language executor (the application). If the interface allows enough data to pass across

it, compensations for point data can be made by the application. If the application makes the

compensations, the application vendor is primarily responsible for the accuracy of point data. If

the interface does not allow enough data to pass across it to support compensations,

compensations can only be made on the DME driver side, and the DME vendor is responsible.

The two major types of compensation (not regarding calibration as compensation) are volumetric

compensation (for measured machine imperfections in specific parts of the work volume) and

thermal compensation (for changes in the machine shape from thermal expansion or contraction).

Other types of compensation exist, and some systems may use them.

This issue is also important for third-party software vendors whose software performs corrections

on data points. If the DME driver interface does not support the exchange of the data they need,

they cannot market their products as third parties. They can still attempt to sell their products to

vendors to work hidden in the DME driver, but they cannot sell their products directly to users.

Additionally, this issue is important for certain non-contact metrology systems which are known

to put uncompensated point data on the interface. This is particularly important in systems where

contact and non-contact CMMs work together.

It is important to realize that this issue only regards point data. It does not regard analyzed data,

such as feature data (the center and diameter of a circle, for example). The creation of feature data

is outside the scope of the DME driver interface. Feature data is normally created either by the

application (which may well call on third party software) or by a separate analysis package. If the

accuracy of feature data is an issue, both point data and the software used to fit features to points

must be examined.

3.7 Command Set (Coverage and Support for DMIS)

The command set provide by a DME driver interface should be complete within its stated scope

and purpose.

DMIS is the only standard high-level language for control of dimensional measuring equipment.

A DME driver interface should support that standard. In particular, a DME driver interface should

include functionality that makes it possible to carry out all DMIS commands.

Where equipment vendors believe DMIS functionality is unreasonable (there are such areas), and

where I++ members find DMIS in need of improvement, proposals for modifying DMIS should

be considered. Consideration of proposals for changes to DMIS should have full international

participation.

3.8 Message Syntax

The syntax of messages should be completely and unambiguously defined down the individual

character level. By syntax we mean what characters may be used, how they may be combined to

form tokens (words, numbers, etc.) and how tokens and punctuation may be combined to form

messages.
8

DME Driver Interface Comparison
3.9 Semantics

The meaning (semantics) of the commands and responses must be fully described in a DME

driver interface specification. If the meanings are not fully specified, the behavior of different

implementations cannot be expected to be very similar.

Semantics cannot yet be captured fully in any formal language. Unambiguous natural language

descriptions of meaning are required to accompany any formal specification.

3.10 Language

It is useful if an interface specification is written in a standard information modeling language

rather than in some ad hoc format. The information model (including the accompanying text)

contains all the semantics of the interface. Tools exist for compiling information models written in

standard languages, providing a valuable check on model syntax and completeness. Three

standard information modeling languages are: EXPRESS, CORBA IDL (Common Object

Request Broker Architecture Interface Definition Language), and XML (eXtensible Markup

Language) schema. C++ classes may also be considered to be an information modeling language.

If a specification is written in an ad hoc format, it cannot be checked automatically for syntax and

completeness errors.

If an information modeling language is used, a method of writing instances of the entities in the

model is needed. The STEP (STandard for the Exchange of Product model data) standard and

XML both provide a file format. With C++ classes, no standard method of writing instances is

provided, and the user must invent one. Here again, a standard language has a large advantage

over an ad hoc language, in that automatic tools exist that will read and write files of instances and

will check syntax.

3.11 Interoperability

A DME driver interface should support interoperability of dimensional measuring equipment.

In particular, a DME driver interface should make it possible for a high-level controller to control

similarly constructed dimensional measuring equipment using different low-level controllers

without changing more than configuration files and operating parameters. Standardizing the DME

driver interface and conforming to that standard will provide this capability.

Also in particular, a DME driver interface should make it possible, under the same conditions as

above (same high-level controller, similar equipment, different low-level controllers), to get

nearly identical behavior and inspection results when executing the same high-level program.

Standardizing the DME driver interface and conforming to that standard will also provide this

capability.

As described in section 3.9 and section 3.4, having clear semantics and a clearly defined

messaging protocol in the DME driver interface specification is required for interoperability.

It is desirable that it be possible to execute the same high-level program on different high-level

controllers and get nearly identical behavior and inspection results. Standardizing the DME driver
9

DME Driver Interface Comparison
interface and conforming to that standard will make achieving this capability much easier but is

not sufficient. Conformance of the high-level controller to the high-level language is also

required; that is out of the scope of this document.

3.12 Specification Development

Single Specification

The world-wide market for dimensional measuring equipment is too small to benefit from

competing DME driver interface specifications. Competing specifications lead, obviously, to

reduced interoperability. This seems likely to be bad for both users and vendors of dimensional

measuring equipment. Vendors and users worldwide should work towards agreement on a single

standard DME driver interface specification.

To be an international standard, the DME driver interface should be made an ISO standard. If the

DME driver interface is made a national standard of two or more countries before being

considered by ISO, differences in the national versions will inevitably arise that will make it more

difficult to agree on a single ISO version.

Specification Validation

Like a computer program, a technical standard such as the DME driver interface cannot be

expected to be correct until it is thoroughly tested and debugged. If anyone suggested writing a

large new computer program by committee consensus and then selling it without compiling it and

without testing it, he or she would be considered marginally insane. Nevertheless, standards are

usually developed by committee consensus and often become national or international standards

with little or no testing.

Any DME driver interface should be thoroughly tested and debugged before it is agreed to use it

commercially and before it becomes a standard of any sort.

Conformance

After a DME driver interface is standardized, the issue of conformance to the standard becomes

important, but that is outside the scope of this report.
10

DME Driver Interface Comparison
4 Comparison of Broad Areas

This section provides a broad comparison of the CMM-driver Specification and the I++ DME-
Interface.

In the tables in this report, section numbers of the CMM-driver Specification and the I++ DME-
Interface are included inside parentheses, (3.2.5) for example. An X in a table means the item

does not exist. Comments in the tables are given in helvetica type.

4.1 Scope

The scope of the CMM-driver Specification is given on five lines. These lines provide that touch

trigger sensors, spherical probe tips, 3 axes CMMs, and 2 axes probe heads are in scope.

The scope of the I++ DME-Interface is cartesian coordinate CMMs.

Neither document discusses what execution models are intended to be supported.

4.2 Purpose

Both the CMM-driver Specification and the I++ DME-Interface give no purpose at all. Neither

makes any explicit commitment to supporting interoperability and neither makes any commitment

to supporting the functionality available within DMIS or any other high-level language.

Both need to have an explicit statement of purpose added.

4.3 Communications

The CMM-driver Specification states briefly that sockets should be used.

The I++ DME-Interface states that TCP/IP sockets will be used for communications. Section 3 of

the document (e.g., picture 4 in section 3.1), however, indicates that communications is a layer

separate from the client (application) and server (DME driver), so that communications might be

changed in the future.

The two documents agree on communications.

It might be preferable if specifying the method for communicating were separate from the rest of

the DME driver interface specification. This would allow one to be changed without affecting the

other. A specification of both is needed in order to build a working system, of course, so this is not

a major consideration. Since communications is an area of agreement between the two

documents, it may be best to leave it alone.

4.4 Responsibility for Accuracy

The two documents differ regarding the responsibility for accuracy.
11

DME Driver Interface Comparison
The CMM-driver Specification provides commands that allow compensation to be made on either

side of the interface. We have not tried to determine if these are adequate to serve the needs of

third-party software vendors.

The I++ DME-Interface states specifically in section 1.4 that “the DME vendor is responsible for

the accuracy of his measurement equipment, in the sense that all necessary functions related to the

equipment accuracy have to be implemented in the [DME-I]”. This implies that there should be

no interface functions intended to support making accuracy compensations outside the DME-I,

and none are provided.

One way the difference between the two documents might be resolved is to provide in the

specification that there should be two conformance classes, one that includes the commands

necessary to do compensation in the application, and one that does not. A DME vendor would

declare in which conformance class the vendor’s system lies. The user could decide which class to

buy.

4.5 Command Set (Coverage and Support for DMIS)

The command set provided by the CMM-driver Specification appears to be adequate to support

almost all of the functionality expected of a CMM with a touch trigger probe. It also appears to be

adequate to support a large portion of DMIS.

As noted earlier, the command set provided by the I++ DME-Interface appears to be incomplete.

Even if all the methods mentioned anywhere in the document were added to the protocol (section

6), important pieces would be missing, such as access to almost all configuration data.

If and when other types of equipment and sensors are added to the scope, additional commands

will be needed to support them.

4.6 Messaging Protocol and DME Driver States

The messaging protocols of the CMM-driver Specification and the I++ DME-Interface are

similar. Neither one, however, is adequately defined. Neither one has DME driver states or any

other method of specifying which messages may be sent under what conditions.

In both messaging protocols, the usual exchange starts when the application sends a command,

the application must then wait for an acknowledgement from the DME driver that the command

has been received before sending another command. On receiving a command, the DME driver

sends an acknowledgement and puts the command on its queue of commands to execute. When it

finishes executing a command, the DME driver sends a done message. In the CMM-driver
Specification, the done message often includes returned data. In the I++ DME-Interface, the done

message contains no data (done is just plain done), and if data is to be returned, it is returned in a

separate message sent before the done message. The name of the done message in the I++ DME-
Interface is “ready”, but all it means is that execution of the indicated command is over (either

because it was completed successfully or because it was aborted). In the CMM-driver
Specification, done means completed successfully.
12

DME Driver Interface Comparison
Both documents provide that some messages have higher priority than others. Dealing with

commands of different priority in a queuing system is very tricky. Both documents are quite vague

about how this is to be done and need major improvement. Defining DME driver states should be

useful in connection with handling commands with different priorities.

The I++ DME-Interface specifies that, except for responses identified as events, the DME driver

must handle commands in the order received, and must send all messages responding to one

before sending any data, error, or done messages responding to the next one. Acknowledgement

messages, however, may be sent at any time, and actual execution of commands may overlap.

The CMM-driver Specification specifies only that the application must wait until it receives an

acknowledgement or error message from the DME driver before sending another command.

Additional responses to a command may be sent in any order, and commands are not required to

be carried out in order. The CMM-driver Specification may intend that certain commands (such as

MOVE_AXIS) be carried out in order. If so, it should be changed to make such cases explicit. If

not, it should include a warning to application builders.

The handling of command identifiers differs between the two documents. In the CMM-driver
Specification, the DME driver assigns them. In the I++ DME-Interface, they are assigned by the

application. Having them assigned by the application is preferable, stemming from the fact that

the application is the party that creates the command.

The I++ DME-Interface goes a little beyond the CMM-driver Specification in the case of

commands for which multiple responses are expected. For such commands, the I++ DME-
Interface specifies that a daemon should be created that causes messages to be sent periodically.

Commands for stopping daemons are provided.

The I++ DME-Interface provides a number of examples of message “conversations” between the

application and the DME driver. This is a very useful feature of the I++ DME-Interface. The

CMM-driver Specification provides no examples.

4.7 Message Syntax

The CMM-driver Specification syntax specification is loose and needs tightening. It allows

characters that are not recognized in the syntax to be included in messages. This is very unwise in

that it allows errors to slip through and allows implementations to hide proprietary messages

inside DME driver interface messages. The occurrence of an unrecognized character should

always be considered an error. The CMM-driver Specification does not define types of data and

how data of each type should be written in messages; it should do that.

The I++ DME-Interface syntax specification does not explicitly allow characters not in the

syntax, but is otherwise slightly looser. In addition to not defining data types, it provides no

description at all of numbers or command arguments, which the CMM-driver Specification does

provide.
13

DME Driver Interface Comparison
A good syntax specification would be written in a syntax specification language such as Extended

Backus Naur Format (EBNF). That would prevent arguments about what syntax is legal, since

such languages specify syntax down to the individual character level.

4.8 Semantics

As noted in the issues, complete semantics are essential for interoperation. Both specifications

need improvement in semantics.

The CMM-driver Specification is very weak on semantics. It rarely devotes more than a phrase to

the meaning of a command. Descriptions of other items are often sketchy. Some important items

are given no description at all.

The I++ DME-Interface is fair on semantics. Certain commands, such as PtMeas, are thoroughly

described, while others, such as Abort, have brief, incomplete descriptions.

4.9 Language

The notation used in the CMM-driver Specification for describing syntax is non-standard. The

document does not explicitly describe the notation. It would be useful if it did so.

The I++ DME-Interface uses an ad hoc method of describing the format of messages, but uses

C++ function format for most of the contents of messages.

Neither document takes full advantage of modern information modeling techniques, but it may

make reaching agreement on a single standard easier if ad hoc methods continue to be used.

4.10 Execution Model

Neither the CMM-driver Specification nor the I++ DME-Interface describes explicitly the

execution models that it intends to support. Both clearly expect the DME driver to maintain a

queue of pending commands, but neither says much about queue management. Neither mentions

cyclic messaging.
14

DME Driver Interface Comparison
KEY: In this table and all other tables in this report, section numbers of the CMM-driver
Specification and the I++ DME-Interface are included inside parentheses, (3.2.5) for example. An

X in a table means the item does not exist. Comments in the tables are given in helvetica type.

Table 1: Broad Areas

Issue CMM-driver Specification I++ DME-Interface

Scope (3.1)

touch trigger sensors,
spherical probe tips, 3 axes
CMMs, and 2 axes probe
heads are in scope

Not explicit, but implied by

figures and C++ code, particularly

Pictures 10 and 11.

cartesian coordinate CMMs
are in scope

Purpose none explicitly stated none explicitly stated

Communications (3.2.1)

use sockets
(3.1)

use TCP/IP sockets

Responsibility for

Accuracy

(no specific section)

allows either application side
or DME driver side (DME
vendor) to be responsible for
accuracy

(1.4)

only DME vendor may be
responsible for accuracy

Command Set

(Coverage and

Support for DMIS)

(4) twenty-one pages.

complete or almost complete
for CMMs with touch trigger
probes, supports much of
DMIS

(6) twenty pages.

incomplete

Messaging Protocol

and DME Driver

States

(3.2)

messaging protocol not clearly
described.
no DME driver states provided.

(6.1 & 6.2)

messaging protocol not clearly
described.
no DME driver states provided.

Message Syntax syntax needs tightening syntax needs tightening

Semantics needs major improvement needs improvement

Language ad hoc ad hoc with C++

Execution Model not explicit, queuing expected not explicit, queuing expected
15

DME Driver Interface Comparison
5 Detailed Comparisons

This section provides a detailed comparison of the CMM-driver Specification and the I++ DME-
Interface. Each subsection focuses on one topic. Most of the topics are types of commands. Each

subsection has text at the beginning and a table at the end.

In several cases, the I++ DME-Interface contains pairs of commands with identical names but

one has an empty argument list and the other has a non-empty argument list. This (alas) is

standard practice in object-oriented languages. These are different commands. The command with

the empty argument list is generally a “get” command that gets the value of something, while the

one with the non-empty argument list is a “set” command that assigns a value to the same thing.

5.1 Administrative Commands

Administrative commands deal with starting to use the DME driver interface, stopping using it,

dealing with errors, and dealing with a queue of unfinished commands, some of which may be

executing, and others of which have not yet been started.

Both documents assume that the DME driver may maintain a queue of accepted commands.

The CMM-driver Specification is weak regarding queue handling. The I++ DME-Interface is

better but needs further tightening.

The I++ DME-Interface defines the notion of a session. The CMM-driver Specification does not.

Session is a useful notion and should be defined.
16

DME Driver Interface Comparison
Table 2: Administrative Commands

What Command Does CMM-driver Specification I++ DME-Interface

stops executing one

currently executing

command

ABORT (4.1.1) StopDaemon (6.3.1.3)

stops executing all

currently executing

commands

StopAllDaemons (6.3.1.4)

removes pending

commands from the

queue

Abort (6.3.1.5)

It is not clear whether
commands that have been
started are considered
pending, or only commands
that have not been started, or
both.

clears any and all errors CLEAR_ERROR (4.1.2) ClearAllErrors (6.3.1.6)

stops accepting DME

driver interface

commands

CLOSE_DRIVER (4.1.3) Disconnect (6.3.1.2)

pauses or resumes

accepting DME driver

interface commands

CMM_DRVR (4.1.4)

Proprietary commands may
be sent while accepting DME
driver interface commands is
paused.

X

obtains status of DME

driver

GET_STATUS (4.1.6) ErrStatus (6.3.2.11)

ErrStatusE (6.3.2.12)

obtains more detailed

status of DME driver

X XtdErrStatus (6.3.2.13)

begins accepting DME

driver interface

commands

INIT_DRIVER (4.1.5) Connect (6.3.1.1)

resets all parameters to

default values

RESET (4.1.7) X
17

DME Driver Interface Comparison
5.2 Commands that Change Responses

The CMM-driver Specification has mostly fixed specifications for what information should be

included in responses to commands and provides few commands that change what should be

included.

The I++ DME-Interface has more modifiable specifications for what information should be

included in responses to commands and provides more commands that change what should be

included.

5.3 Free Space Motion Commands

The free space motion commands of the two documents are very similar, except that the I++
DME-Interface provides a command to ask if the machine is homed, which is not provided by the

CMM-driver Specification.

Table 3: Commands that Change Responses

What Command Does CMM-driver Specification I++ DME-Interface

specifies what should be

reported after executing

GoTo

X OnEndOfGoToReport

(6.3.2.6)

types of “properties
and “methods” need to
be better described

specifies what should be

reported on executing

PtMeas

SET_PARAMETER

(TOUCH_REPORT)

(4.9.10)

OnPtMeasReport

(6.3.2.7)

specifies what should be

reported while executing

GoTo

SET_PARAMETER

(TIMED_POSITION_REPORT)

(4.9.9)

OnMoveReportE

(6.3.2.8)

specifies what should be

reported when the joystick is

enabled and the user uses the

joystick to move the

machine

OnManualMoveReportE

(6.3.2.9)
18

DME Driver Interface Comparison
5.4 Probing Commands

As noted earlier, commands for activating tools have been omitted (apparently inadvertently)

from the I++ DME-Interface. It is not clear why there is no explicit command to measure a point

manually. The EnableUser command (6.3.2.3) is certainly intended to allow manual

measurements, but the OnManualMoveReportE command (6.3.2.9) does not seem to provide a

means to distinguish way points from hit points.

Table 4: Free Space Motion Commands

What Command Does CMM-driver Specification I++ DME-Interface

gets the current position

of axes

GET_POS (4.3.1) Get (6.3.3.13)

GetE (6.3.3.14)

moves to home position HOME (4.3.2) Home (6.3.2.1)

moves to specified

position

MOVE_AXIS (4.3.3) GoTo (6.3.3.15)

determines if the

machine is homed

X IsHomed (6.3.2.2)

It is not clear whether a machine
is considered to be homed only
when it is at home position or at
all times during a session
following successful execution of
the Home command.

Table 5: Probing Commands

What Command Does CMM-driver Specification I++ DME-Interface

manually measures a point PROBE_MAN (4.4.1) X

automatically measures a

point

PROBE_TO (4.4.2)

Weak semantics.
PtMeas (6.3.3.16)

Strong semantics.

activates named probe tip ACTIVATE_SENSOR (4.5.1) X

activates or deactivate

current probe tip

INHIBIT_PROBE (4.5.2) X
19

DME Driver Interface Comparison
5.5 Multiple Carriage Commands

The I++ DME-Interface does not deal with multiple carriages. Section 1.6 says they will be

added between releases 1.0 and 1.1.

5.6 Calibration Commands

The CMM-driver Specification provides three calibration commands. These make it possible to

implement DMIS commands for calibration.

The I++ DME-Interface provides no calibration commands. Calibration commands do not make

it possible to perform compensations outside the DME driver, but their existence would be a little

contrary to the notion that the DME vendor should be responsible for accuracy (see section 3.6

and section 4.4). Presumably, the DME driver is expected not to be ready to go until all

calibrations are complete. It would be pointless to include a command to do something that must

already have been done.

Table 6: Multiple Carriage Commands

What Command Does CMM-driver Specification
I++ DME-
Interface

turns on or off the automatic coupling of

carriages

COUPLING (4.2.1) X

gets the transformation that controls how

two carriages will be coupled when they

are coupled

GET_COUPLING_DATA (4.2.3)

Semantics unclear.
X

sets the transformation that controls how

two carriages will be coupled when they

are coupled

SET_COUPLING_DATA (4.2.2)

Semantics unclear.
X

Table 7: Calibration Commands

What Command Does CMM-driver Specification
I++ DME-
Interface

calibrates a tip on the current sensor

assembly

CALIBRATE (4.5.3) X

defines the shape of the artifact used for

calibrating sensors

DEF_CALIB_ARTIFACT (4.5.5) X

starts a calibration sequence START_CALIB_SEQUENCE

(4.5.4)

X

20

DME Driver Interface Comparison
5.7 Miscellaneous Commands

This section includes those commands for which there is only one or two of a type.

5.8 Coordinate Systems

The CMM-driver Specification requires the use of machine coordinates at all times (corrected if

correction is available). The point whose coordinates are given, however, may always be either (a)

a point in a fixed location with respect to the ram or (b) the point at the center of the probe tip. The

CMM-driver Specification does not allow any other coordinate systems for axis data in commands

or responses. The CMM-driver Specification does allow the coordinate system for the digital read

out to be changed and the coordinate system for the joystick to be changed.

The I++ DME-Interface allows the application to select one of three coordinate systems: the

MachineCsy (machine coordinate system), the MultipleArmCsy (multiple arm coordinate

system), or the PartCsy (part coordinate system). Set and get methods are provided for the part

coordinate system.

Table 8: Miscellaneous Commands

What Command Does CMM-driver Specification I++ DME-Interface

loads and activates a sensor

assembly

LOAD_ASSM (4.6.1) X

unloads a sensor assembly UNLOAD_ASSM (4.6.2) X

disables joystick control SET_AUTO_MODE (4.11.1) DisableUser (6.3.2.4)

enables joystick control SET_MAN_MODE (4.11.2)

Control by command works
while in manual mode.

EnableUser (6.3.2.3)

determines whether

joystick control is enabled

X IsUserEnabled (6.3.2.5)

gets data about a rotary

table

GET_TABLE_DATA (4.12.1) X
21

DME Driver Interface Comparison
5.9 Settable Parameters

Settable parameters are parameters that may be set by a DME driver interface command. They are

used by the low-level controller for rates, distances, time intervals, etc. used in its operation.

There is no point in being able to set a parameter if it is not used by the low-level controller. For

interoperability, the meaning of each parameter and the use made of each parameter must be fully

described in the interface specification.

Both documents are extremely inadequate in regard to settable parameters.

For most of the settable parameters, the CMM-driver Specification contains no description of

what they mean and no reference is made to them outside of the description of commands that get

and set them. The parameters for which this is the case include: approach_dist, measuring_force,

moving_accel, probing_accel, retract_dist, and search_dist. In addition the syntax is unclear for

moving_speed, moving_accel, probing_speed, and probing_accel. For all four of those, a phrase

Table 9: Coordinate Systems

What Command Does CMM-driver Specification I++ DME-Interface

sets the coordinate system

with respect to which

digital read-out (DRO)

coordinates are given

SET_DRO_MATRIX

(4.10.1)

X

The PartCsyTransformation
with argument command
presumably has this effect.

sets the coordinate system

with respect to which jog

moves are made

SET_JOG_MATRIX

(4.10.2)

X

The PartCsyTransformation
with argument command
presumably has this effect.

selects one of three

coordinate systems as the

current coordinate system

X CoordSystem

with argument (6.3.3.1)

gets the identity of the

coordinate system

currently in use

X CoordSystem

no argument (6.3.3.2)

sets the transformation

giving the location of the

part coordinate system

X PartCsyTransformation

with argument (6.3.3.4)

gets the transformation

giving the location of the

part coordinate system

X PartCsyTransformation

no argument (6.3.3.3)
22

DME Driver Interface Comparison
such as “percentage of maximum (0.7 is 70%)” is used, which might mean either “use the string

‘0.7’ and that will mean 70 percent”, or “use the string ‘70%’ and that will mean 0.7”.

As noted earlier, the I++ DME-Interface has omitted (apparently unintentionally) available

commands for getting and setting parameters. The I++ DME-Interface does, however, provide a

good description of how approach distance, search distance, and retract distance are used in

executing the PtMeas command.
23

DME Driver Interface Comparison
Table 10: Settable Parameters

Normal Use of Parameter
Name in CMM-driver

Specification
Name in I++ DME-Interface

distance from target point

at which to start probing

move

approach_dist

No semantics.
X

tool()->Approach() method
mentioned, page 42, but no method
defined. _Approach data member
listed in 9.5.6.

distance by which sensor

path may deviate from the

programmed path during

free space moves

fly_mode

Semantics fair.
X

force on probe at which a

hit should be recorded

measuring_force

No semantics.
X

rate of acceleration for

free space moves

moving_accel

No semantics,
Accel for GoTo (5.3 & 9.5.5)

speed at which to move in

free space

moving_speed

Semantics weak.
Speed for GoTo (5.3 & 9.5.5)

rate of acceleration for

probing moves

probing_accel

No semantics.
Accel for PtMeas (5.3 & 9.5.6)

speed at which to move

while probing

probing_speed

Semantics weak.
Speed for PtMeas (5.3 & 9.5.6)

distance to back off after

probe hit

retract_dist

No semantics.
X

tool().Retract() method mentioned,
page 42, but no method defined.
_Retract data member listed in 9.5.6.

distance past target point

at which to stop probing

move if no hit

search_dist

No semantics.
X

tool()->Search() method mentioned,
page 42, but no method defined.
_Search data member listed in 9.5.6.

time interval at which to

report position

timed_pos_report

Semantics OK.
No system parameter, but is
parameter of OnMoveReportE

axes whose position is set

when a touch occurs

touch_report

Semantics OK.
No system parameter, but is
parameter of OnMoveReportE
24

DME Driver Interface Comparison
5.10 Settable Parameter Commands

Settable parameter commands are for obtaining the values of parameters, obtaining the allowed

values of parameters, and setting parameters. The parameters themselves are listed in the

immediately preceding table.

The CMM-driver Specification is a little odd regarding command settable parameters. Eight of the

eleven parameters can be set and obtained and their allowable values can be obtained.

Probing_acceleration can be obtained and its allowable values can be obtained, but it cannot be

set. Fly_mode and touch_report can be set but not obtained and their allowable values cannot be

obtained. No explanation is given for this oddity, and it may simply be an oversight.

As noted earlier, the I++ DME-Interface has omitted (apparently unintentionally) available

commands for getting and setting parameters, except in the case of parameters relating to the

GoTo, EnableUser, and PtMeas commands.

5.11 Commands for Getting Configuration Data

Configuration items are pieces of information that can be obtained but not set by DME driver

interface commands. This is information about the physical machine or the software being used or

some aspect of the current mode of use.

The CMM-driver Specification provides one command, GET_CONFIG, to get configuration data.

This command may take the name of any of twenty configuration items as an argument.

The I++ DME-Interface provides one command that gets one of the twenty items of configuration

data specified in the CMM-driver Specification.

The CMM-driver Specification provides many more types of configuration data, most or all of

which appear to be useful, so its provisions appears preferable.

Table 11: Settable Parameter Commands

What Command Does CMM-driver Specification
I++ DME-
Interface

gets the value of a named parameter GET_PARAMETER (4.7) X

gets the allowable values for a named

parameter

GET_PARAMETER_INFO (4.8) X

sets the value of a named parameter SET_PARAMETER (4.9) X
25

DME Driver Interface Comparison
Table 12: Commands for Getting Configuration Data

Configuration Item CMM-driver Specification
I++ DME-
Interface

word size of controller

(8 bit, 16 bit, 32 bit, or other)

GET_CONFIG(CONTR_TYPE)

(4.13.1)

X

CNC capability of DME

(manual or CNC)

GET_CONFIG(CNC_TYPE)

(4.13.2)

X

control panel type GET_CONFIGC(PANEL_TYPE)

(4.13.3)

X

double column mode

(on or off)

GET_CONFIG(DCOL_MODE)

(4.13.4)

X

double column number

(number of current column)

GET_CONFIG(DCOL_NUMBER)

(4.13.5)

X

type of head

(fixed, indexed, or servoed

GET_CONFIG(HEAD_TYPE)

(4.13.6)

X

CMM type GET_CONFIG(MACHINE_TYPE)

(4.13.7)

Type

(6.3.2.10)

number of probe changers

(may be zero or positive)

GET_CONFIG(NUM_PRB_CHANGERS)

(4.13.8)

X

data for one probe changer GET_CONFIG(PRB_CHANGER_DATA)

(4.13.9)

X

code number of product provider GET_CONFIG (PROVIDER)

(4.13.10)

Only choices are B&S, LK, Zeiss.

X

26

DME Driver Interface Comparison
5.12 Tool and Tool Changer Data Commands

Tool data commands create or remove data about tips, sensors, and tool assemblies. These

commands produce no motion of the tools. The CMM-driver Specification provides a large

number of tool data commands. As mentioned earlier, the I++ DME-Interface, probably

inadvertently, provides none.

The CMM-driver Specification provides three commands for dealing with tool changer data. The

I++ DME-Interface provides none. Commands for actually changing tools, not just getting and

setting data, are covered in section 5.7 of this report.

revision number of product GET_CONFIG (REV_NUMBER)

(4.13.11)

Does not specify what product the
number is for when no product name
is given.

X

whether the machine has a rotary

table (0 or 1)

GET_CONFIG (ROTARY_TABLE)

(4.13.12)

X

whether switching to scale

coordinates is possible (0 or 1)

GET_CONFIG(SCALE_COORDINATES)

(4.13.13)

X

current sensor type GET_CONFIG(SENSOR_TYPE)

(4.13.14)

X

whether temperature

compensation is enabled (0 or 1)

GET_CONFIG(TEMP_COMP)

(4.13.15)

X

whether the CMM being

controlled is real or simulated

GET_CONFIG(USE_MODE)

(4.13.16)

X

whether a direction vector is

returned with touch points (0 or 1)

GET_CONFIG(TOUCH_VECTOR)

(4.13.17)

X

total number of machine axes GET_CONFIG(NUM_AXES)

(4.13.18)

X

detailed information about one

axis

GET_CONFIG(AXIS_DATA)

(4.13.19)

X

order in which axis moves are

made

GET_CONFIG(AXIS_SYNCH_GROUPS)

(4.13.20)

X

Table 12: Commands for Getting Configuration Data

Configuration Item CMM-driver Specification
I++ DME-
Interface
27

DME Driver Interface Comparison
Table 13: Tool Data Commands

What Command Does CMM-driver Specification
I++ DME-
Interface

gets a list of the names of all available

sensor assemblies

GET_ALL_ASSM (4.14.1) X

gets a list of the names of all available tips

in one named sensor assembly

GET_ALL_TIP (4.14.2) X

gets a list of the names of all calibration

positions of one named tip in one named

sensor assembly

GET_ALL_SENSOR (4.14.3) X

gets whether an assembly is analog,

trigger, or hard

GET_ASSM_DATA (4.14.4) X

gets data on one named tip in one named

sensor assembly

GET_TIP_DATA (4.14.5) X

gets data on one named tip and sensor in

one named sensor assembly

SET_SENSOR_DATA (4.14.6) X

gets data on a named sensor assembly GET_TOOL_ASSM (4.14.7) X

sets calibration data for an existing

nominal sensor in a named sensor

assembly for a named tip (thereby creating

an actual sensor)

CREATE_SENSOR_ACTUAL

(4.14.8)

X

sets data for a nominal sensor not already

in a named sensor assembly for a named

tip, and adds the nominal sensor to the

assembly

CREATE_SENSOR_NOMINAL

(4.14.9)

X

sets data for a tip not already in a named

sensor assembly, and adds the tip to the

assembly

CREATE_TIP (4.14.10) X

sets data for a new sensor assembly CREATE_ASSM (4.14.11) X

deletes data for a named sensor assembly DELETE_ASSM (4.14.12) X

deletes a named tip from a named sensor

assembly

DELETE_TIP (4.14.13) X

deletes a named sensor from a named

sensor assembly for a named tip

DELETE_SENSOR (4.14.14) X
28

DME Driver Interface Comparison
5.13 Multiple Messages, Unsolicited Messages, and Error Messages

In both the CMM-driver Specification and the I++ DME-Interface, multiple messages may be

sent by the DME driver in response to a DME driver command requiring an unspecified number

of response messages. The CMM-driver Specification calls these “unsolicited” messages; the I++
DME-Interface does not call them unsolicited. The multiple shot commands of the I++ DME-
Interface all lead to multiple responses.

Both the CMM-driver Specification and the I++ DME-Interface, provide that the DME driver

may at any time send an error message. An error message may or may not identify a command. If

the error cannot be identified with the execution of a command, the error message does not

identify a command; both documents regard the error message as unsolicited in this case.

The CMM-driver Specification but not the I++ DME-Interface provides that unsolicited messages

TOUCH, POSITION, and KEY may be sent “by the DME driver when teaching an inspection

program” (and not under control of the application). The CMM-driver Specification does not

explain how the application is informed that teaching is in progress.

Both documents identify errors that may occur and assign codes to them. The CMM-driver
Specification provides a list of assigned codes. The I++ DME-Interface does not. Both documents

need improvement in identifying all errors that may occur in executing each command. For many

commands where errors may occur, the CMM-driver Specification does not list any possible

errors.

In the following table, the I++ DME-Interface data response message (denoted by #) is listed as

being equivalent to various specific CMM-driver Specification messages. This equivalence is only

Table 14: Tool Changer Data Commands

What Command Does CMM-driver Specification
I++ DME-
Interface

gets data regarding the relationship

between a tool changer and a tool

assembly

GET_CHANGER_DATA (4.15.1) X

adds data establishing a relationship

between a tool changer and a tool

assembly

CREATE_CHANGER (4.15.2) X

deletes data regarding a relationship

between a tool changer and a tool

assembly, thereby removing the

relationship

DELETE_CHANGER (4.15.3) X
29

DME Driver Interface Comparison
rough. The I++ DME-Interface is definitely the weaker of the two in regard to reporting data

generated by a user on the DME driver side. It does not, for example, provide any explicit method

of reporting which key has been hit. It is also not clear how to distinguish a user-generated touch

point from a user-generated way point.

Table 15: Multiple Messages and Error Messages

What Message Does CMM-driver Specification I++ DME-Interface

reports a touch point TOUCH (5.2) # (6.2.2.2 & 6.2.2.3)

reports current

position while in

manual mode

POSITION (5.3) # (6.2.2.2 & 6.2.2.3)

reports the state of a

control panel key

pressed by the user

KEY (5.4) # (6.2.2.2 & 6.2.2.3)

reports current

position at fixed time

and/or distance

intervals

DRO_POS (5.5) # (6.2.2.2 & 6.2.2.3)

reports that an error

has occurred

ERROR (6.2) ! (6.2.2.2 & 6.2.2.3)
30

	A Comparison of the CMM-driver Specification Release #1.9 with the I++ DME-Interface Release 0.9
	T. Kramer and J. Horst
	Intelligent Systems Division
	National Institute of Standards and Technology (NIST)
	March 13, 2002
	NISTIR 6863

	1 Introduction
	1.1 Contents of this Report
	1.2 Other NIST Documents

	2 General Descriptions
	2.1 General Description of CMM-driver Specification
	2.2 General Description of I++ DME-Interface
	2.3 Events and Daemons

	3 Issues
	3.1 Scope
	3.2 Purpose
	3.3 Communications
	3.4 Messaging Protocol and DME Driver States
	3.5 Execution Model
	3.6 Responsibility for Accuracy
	3.7 Command Set (Coverage and Support for DMIS)
	3.8 Message Syntax
	3.9 Semantics
	3.10 Language
	3.11 Interoperability
	3.12 Specification Development

	4 Comparison of Broad Areas
	4.1 Scope
	4.2 Purpose
	4.3 Communications
	4.4 Responsibility for Accuracy
	4.5 Command Set (Coverage and Support for DMIS)
	4.6 Messaging Protocol and DME Driver States
	4.7 Message Syntax
	4.8 Semantics
	4.9 Language
	4.10 Execution Model
	Table 1: Broad Areas

	5 Detailed Comparisons
	5.1 Administrative Commands
	Table 2: Administrative Commands

	5.2 Commands that Change Responses
	Table 3: Commands that Change Responses

	5.3 Free Space Motion Commands
	Table 4: Free Space Motion Commands

	5.4 Probing Commands
	Table 5: Probing Commands

	5.5 Multiple Carriage Commands
	Table 6: Multiple Carriage Commands

	5.6 Calibration Commands
	Table 7: Calibration Commands

	5.7 Miscellaneous Commands
	Table 8: Miscellaneous Commands

	5.8 Coordinate Systems
	Table 9: Coordinate Systems

	5.9 Settable Parameters
	Table 10: Settable Parameters

	5.10 Settable Parameter Commands
	Table 11: Settable Parameter Commands

	5.11 Commands for Getting Configuration Data
	Table 12: Commands for Getting Configuration Data

	5.12 Tool and Tool Changer Data Commands
	Table 13: Tool Data Commands
	Table 14: Tool Changer Data Commands

	5.13 Multiple Messages, Unsolicited Messages, and Error Messages
	Table 15: Multiple Messages and Error Messages

