Software for Viewing and Converting Digital Cinema Materials

Charles Fenimore
Alexei Nikolaev
U.S. DEPARTMENT OF COMMERCE
Technology Administration
Convergent Information Systems Division
National Institute of Standards and Technology
Gaithersburg, MD 20899-8951
Software for Viewing and Converting Digital Cinema Materials

Charles Fenimore
Alexei Nikolaev
U.S. DEPARTMENT OF COMMERCE
Technology Administration
Convergent Information Systems Division
National Institute of Standards
and Technology
Gaithersburg, MD 20899-8951

December 2001

U.S. DEPARTMENT OF COMMERCE
Donald L. Evans, Secretary
TECHNOLOGY ADMINISTRATION
Phillip J. Bond, Under Secretary for Technology
NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arden L. Bement, Jr., Director
Software for viewing and converting
digital cinema materials

Charles Fenimore
and
Alexei Nikolaev

Abstract

Digital cinema (d-cinema) is the highest quality electronic motion imagery for entertainment. The cinema is presented in a theatrical environment, with high brightness projectors, high rate data transfer, and high resolution color imagery. The entertainment industry uses formats that are specific to film-based electronic imagery. This report describes software tools for viewing digital cinema specific imagery (DPX format) and converting it to and from other common image formats, such as TIFF, BMP, and JPG. It includes sample test imagery, which has been generated in connection with recent d-cinema system tests. The d-cinema viewer/converter is available on line.

Keywords
digital cinema evaluation, DPX, format conversion, image format, test patterns, viewer

1. Introduction

The introduction of digital projection as an alternative to film for entertainment cinema raises a number of challenging issues: transfer of large data files, maintaining the security of the digital movie, its storage and preservation, and the quality of the imagery, among others. The DC2001 Conference Proceedings (http://digitalcinema.nist.gov/agenda.html) provides an introduction to these challenges. This report describes one part of the quality puzzle for electronic projection systems. We present software tools for viewing and manipulating d-cinema test imagery. In addition, example software is included for generating the patterns. A viewer/ converter that runs on PC-platforms is available for download, as are a number of test patterns.

The test materials are intended for use in characterizing electronic systems used to project imagery. The measurements are based on the IEC [1] and VESA [2] projector display measurement standards. The characteristics of the systems may depend on the projectors, the storage system, interfaces, and converters. In the June 2001 MPEG digital cinema compression tests, two display systems were used with differing interfaces and image formats. We used the IEC and VESA display measurement standards to characterize the display systems, not simply the projectors. The test patterns were stored and played out using the same components as for the subjective viewing tests. A more detailed report on these measurements is available [3].
Test imagery intermediates are generated in 10-bit per sample TIFF format. DPX and YUV formats are required for presentation. This report describes the basic characteristics of d-cinema image formats and presents ImageViewer for viewing and converting d-cinema materials on PCs.

2. Image Characteristics

For the recent MPEG projection system characterization [3], the characteristics of the test patterns are the same as those of the materials for the subjective tests. While the patterns described in Electronic Projection [1] are given by analog specifications, the present patterns are the corresponding digital signals as specified in the relevant SMPTE standard [3]. The digital characteristics of the test patterns for the two projectors used in the MPEG d-cinema tests are detailed in Table 1. The NIST software supports conversion of color imagery at either 8- or 10-bits per color sample.

<table>
<thead>
<tr>
<th>Image Attribute</th>
<th>DLP Projection system</th>
<th>CRT Projection System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image file format</td>
<td>DPX [5]</td>
<td>YUV (SIF)</td>
</tr>
<tr>
<td>Sampling structure</td>
<td>4:4:4</td>
<td>4:2:2</td>
</tr>
<tr>
<td>Addressable active pixels per frame</td>
<td>1280 X 1024</td>
<td>1920 X 1080</td>
</tr>
<tr>
<td>Stored pixels per frame</td>
<td>1920 X 1080</td>
<td>1920 X 1080</td>
</tr>
<tr>
<td>Bits per color sample</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

3. Test Images

Each projection system requires multiple test patterns for the measurements reported to MPEG. The patterns, together with illustrative images of the active image area, are summarized in this section. Most patterns appear in two versions, one with and one without circles. Circle patterns are used to align the measurement apparatus. Measurements are made on patterns without alignment circles.

Certain commercial products are mentioned in this report. Such mention is not an endorsement of the products by NIST, nor is it meant to imply they are the best for the purpose of the reported research.
<table>
<thead>
<tr>
<th>Pattern identifier (1280x1024 = Small and 1920x1080 = Big images.)</th>
<th>Reference: IEC [1] or VESA [2]; Pattern shown.</th>
<th>Illustrative image (Small pattern.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Pattern shown: Blue with circles</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue with alignment circles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red with alignment circles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green with alignment circles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray64</td>
<td>VESA [2] section 302-5: Used for gray scale, gamma, sequential contrast, and uniformity.</td>
<td>Pattern shown: Gray439 + circles</td>
</tr>
<tr>
<td>Gray189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray314</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray439</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray564</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray689</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray815</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray940</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With/without alignment circles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hor_1x1, Vert_1x1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hor_2x2, Vert_2x2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hor_3x3, Vert_3x3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hor_4x4, Vert_4x4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hor_5x5, Vert_5x5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chess</td>
<td>IEC [1] Figure A.3 Used for "ANSI" contrast.</td>
<td>Pattern shown: Chess</td>
</tr>
<tr>
<td>Chess with alignment circles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grille64</td>
<td>IEC [1] Figure A-1. VESA [2] section 501.</td>
<td>Pattern shown: Grill Circle</td>
</tr>
<tr>
<td>GrilleMid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grille940</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GrilleCircle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GrilleMultiCircles</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Image viewing and conversion.

The NIST ImageViewer supports conversion of the patterns to 32-bit DPX. Conversions from YUV to RGB are presented briefly in Section 5.1. YUV uses subsampled color and has lower resolution than DPX or TIFF. The test patterns were generated as 48-bit TIFF RGB (packed 10-bit color samples) using MatLab software.

4.1 Image Viewing and Conversion

The viewer/converter, ImageViewer, is adapted from a viewer distributed with the Borland C++ Builder package. This section describes the use of ImageViewer including Figure 1 showing the graphical user interface and a Manual Page. Because the native display format for PCs is 24-bit RGB, the 10-bit per sample d-cinema imagery is displayed at 8-bits per sample, which is at less than the available bit depth.

![ImageViewer GUI](image.png)

Figure 1: The GUI for ImageViewer includes windows for file viewing, file access, and display/output controls.
4.1.1 Manual page for ImageViewer

FUNCTION: ImageViewer displays and converts images in several electronic cinema formats. While the viewer supports the reading of imagery that is compressed (JPEG) or sub-sampled (YUV), the outputs are in uncompressed TIFF or DPX. ImageViewer reads images with 8 or 10 bits per sample. Down conversion to reduced bit-depth is supported.

FORMATS (for details see Section 5):
Input: DPX (8- and 10-bit/sample, RGB)
 TIFF (8- and 10-bit/sample, RGB)
 YUV (8- and 10-bit/sample, YUV in 4:2:2 sampling)
 BMP (8-bit/sample, RGB)
 JPEG

Conversion (output) formats
 DPX and TIFF (both at 8- and 10-bit/sample, RGB)

Display formats
The images are displayed on a PC in 8-bit per sample RGB.

GUI BUTTONS AND SUB-WINDOWS: The GUI has a split Read/Write panel.
 a Viewing panel, and an ImageViewer tobar as follows.
TopBar
 The ImageViewer top bar displays the image name, dimensions, and bits per pixel.
Reading
 Single click on a filename, or scroll up and down, to load an image in one of the
 supported input formats. The image will appear in the right side viewing panel.
Writing with >DPX and >TIFF
 Select the bit depth of the image to be written, and then click on the appropriate output
 format button to convert and write a new image file. The GUI only activates buttons that
 will convert to DPX or TIFF from another image format. RGB Depth permits the user to
 convert the format at a reduced bit depth. Increasing the bit depth is not supported.
ReRead
 Update the directory listing in the left side windows.
Viewing
 Imagery is displayed in the right side panel, which is 480 X 360 pixels in size. For
 images larger than the window, a central portion is displayed.
Stretch
 Click on Stretch to scale the image to the window.
FullView
 Click on FullView, or double click on the right side image panel, to open a full
 resolution window.

AUTHOR: Alex Nikolaev, alexei.nikolaev@nist.gov, phone (301) 975-8265
4.2 Matlab test pattern generation

The Appendix, Section 7, lists sample Matlab image generation code for the Chess with alignment circles pattern. The simplicity of the test patterns permits straightforward coding. Circles are generated as annular regions of points \((i,j)\) satisfying an inequality:

\[
\text{abs}((i-X\text{Center})^2 + (j-Y\text{center})^2 - R^2) < \text{Thickness}^2
\]

The output of 48-bit TIFF imagery is handled by a Matlab function call that packs each 10-bit color sample into a 16-bit word.

```matlab
imwrite(uint16(65535*pattern1),'chess.tif','tif','Compression','none');
```

While there are a variety of picture editors that can be used to generate the patterns, doing so for d-cinema requires output at 10-bit color sampling, which is supported by the TIFF library.

5. Image Formats

The NIST ImageViewer supports conversion of imagery with linearly scaled RGB into TIFF and DPX at both 10 and 8 bits per color sample. For the most part, these conversions reformat without a change of color space. The conversions from YUV to RGB involves mapping from one of two possible YUV spaces, the different color spaces of digital standard definition television [7] and that for HDTV production [5]. In addition, YUV uses subsampled \(P_R\) and \(P_B\) and so has lower resolution than DPX or TIFF. The ImageViewer can be found on the web site http://www.itl.nist.gov/div895/TestPatterns/index.html. The source code for these conversions is available from the authors.

5.1 YUV

YUV or SIF is a headerless image file format that carries \(YP_RP_B\) at 8- or 10-bits per sample. For each 4 \(Y\) samples there are 2 \(P_R\) and 2 \(P_B\) samples, designated as 4:2:2 sampling. Conversion to RGB at 4:4:4 sampling involves upsampling and a linear conversion.

YUV has different colorimetry for 8- and 10-bit formats. For most imagery of interest, 10-bit YUV conforms to the colorimetry of ITU’s high definition Recommendation 709 [5]. The conversion to RGB is given by the system of equations:

\[
\begin{align*}
R &= 0.999685*Y + 0.000130416*(P_B-512) + 1.57516*(P_R-512) \\
G &= 0.999907*Y - 0.187054*(P_B-512) - 0.4167983*(P_R-512) \\
B &= 1.00186*Y + 1.85562*(P_B-512) + 0.00100598*(P_R-512)
\end{align*}
\]
Similarly, almost all of the 8-bit YUV imagery conforms to Rec. 601 colorimetry [7].

\[R = 1.16438356 \cdot (Y-16) + 1.59602679 \cdot (P_r-128) \]
\[G = 1.16438356 \cdot (Y-16) - 0.39176652 \cdot (P_r-128) - 0.812971875 \cdot (P_b-128) \]
\[B = 1.16438356 \cdot (Y-16) + 2.01723214 \cdot (P_b-128) \]

5.2 DPX
DPX is a flexible image format. The header is about 2K bytes and specifies characteristics of the image including image format, film-related information, television-related information, and user-defined data. The format accommodates various color systems including RBG and YUV (or YPrPb) in 8-, 10-, and 12-bit color sample size. Image Viewer supports input and output of DPX in 24- and 32-bits per RGB pixel.

5.3 TIFF packing of RGB
TIFF is a flexible tagged image file format. In the present implementation, the test patterns are in 48-bit per pixel formats. The TIFF library is large and is available on line from a number of sources, including http://www.libtiff.org/. Image Viewer supports reading and writing of TIFF in 24- and 48-bit RGB files.

6. Conclusions
The present tool set for generating, viewing, and converting digital cinema imagery is PC-based and freely available. The Matlab pattern generators and the C++-based Image Viewer are two pieces in a number of elements needed to explore the interchange of visual information across platforms ranging from the very highest available quality down to television, computers, and even lower resolution devices. The interfaces for image I/O are available from the authors. In its present form Image Viewer should enable users to convert small clips of digital cinema in a flexible manner.

7. References

Chessboard test pattern

clear all;
close all;

hor_pix = 1921; % Horizontal number of pixels
ver_pix = 1081; % Vertical number of pixels

hor_win = 1920; % 1280; % large and small patterns
ver_win = 1080; % 1024;

Y_win = round((ver_pix-ver_win)/2);
X_win = round((hor_pix-hor_win)/2);

squareX = 4;
squareY = 4;
depth_D = 0;
depth_L = 1;

dY = round(ver_win/squareY);
dX = round(hor_win/squareX);

R = min(dX,dY)/4;
thickness = 12;

%--
% Creation of frame, 100%
pattern(1:ver_pix,1:X_win) = 1;
pattern(1:ver_pix,X_win+hor_win:hor_pix) = 1;
pattern(1:Y_win,X_win:X_win+hor_win) = 1;
pattern(Y_win+ver_win:ver_pix,X_win:X_win+hor_win) = 1;

%patternD(1:dY,1:dX)=depth_D;
%patternL(1:dY,1:dX)=depth_L;

% Creating circles for light (L) and dark (D) board squares
for i = 1:1:dX
 for j = 1:1:dY
 patternD(j,i) = depth_D;
 if(abs((i-dX/2)^2 + (j-dY/2)^2 - R^2)) < thickness^2
 patternD(j,i) = depth_L;
 end
 end
end
for i = 1:1:dX
 for j = 1:1:dY
 patternL(j,i) = depth_L;
 if(abs((i-dX/2)^2 + (j-dY/2)^2 - R^2)) < thickness^2
 patternL(j,i) = depth_D;
 end
 end
end
Creation of chessboard pattern
for i=1:2:squareX
 for j=1:2:squareY
 pattern(1+(j-1)*dY+Y_win;j*dY+Y_win, 1+(i-1)*dX+X_win;i*dX+X_win) =
 patternL(1:dY,1:dX);
 end;
 end;
end;
end

Y_win:Y_win+ver_win-1, X_win:X_win+hor_win-1
pattern1(:,:,1)= pattern(:,:,1) %converting to rgb, red
pattern1(:,:,2)= pattern(:,:,2) %converting to rgb, green
pattern1(:,:,3)= pattern(:,:,3) %converting to rgb, blue

imwrite(uint16(65535*pattern1), 'pattern_chess.tif', 'tif', 'Compression', 'none');

imshow(pattern1, 65535);