

User's Guide to
NIST Fingerprint Image Software

(NFIS)

NISTIR 6813
Michael D. Garris (mgarris@nist.gov)

Craig I. Watson (cwatson@nist.gov)

R. Michael McCabe (mccabe@nist.gov)

Charles L. Wilson (cwilson@nist.gov)

National Institute of Standards and Technology
Bldg. 225, Rm. A216

100 Bureau Drive, Mail Stop 8940
Gaithersburg, MD 20899-8940

ii

ACKNOWLEDGEMENTS
We would like to acknowledge the Federal Bureau of Investigation who provided funding and
resources in conjunction with NIST to support the development of this fingerprint image
software.

NOTE TO READER
This document provides guidance on how the NIST Fingerprint Image Software (NFIS) is
installed and executed. Its content and format is one of user's guide and reference manual. Some
algorithmic overview is provided, but more complete descriptions are found in the cited
references.

Due to the size of this document, it is recommended the reader use the electronic PDF version
provided on the distribution's CD-ROM. The Table of Contents provides the reader a map into
the document, and the hyperlinks in the electronic version enable the reader to effectively
navigate the document and locate desired information. These hyperlinks are unavailable when
using a paper copy of the document.

iii

TABLE OF CONTENTS
1. INTRODUCTION ... 1

2. INSTALLATION GUIDE .. 4
2.1 Software Installation .. 4
2.2 Data and Testing Directories.. 5

3. PACKAGES... 7
3.1 PCASYS � Fingerprint Pattern Classification .. 7
3.2 MINDTCT � Minutiae Detection.. 9

3.2.1 Definition of Minutiae... 9
3.2.2 Latent Fingerprints .. 11

3.3 AN2K � Standard Reference Implementation .. 12
3.4 IMGTOOLS � General Purpose Image Utilities ... 13

4. SYSTEMS .. 15
4.1 PCASYS ... 15

4.1.1 Algorithmic Description.. 16
4.1.1.1 Segmentor [src/lib/pca/sgmnt.c; sgmnt()] ..16
4.1.1.2 Image Enhancement ...19
4.1.1.3 Ridge-Valley Orientation Detector [src/lib/pca/ridge.c; rors(), rgar()]21
4.1.1.4 Registration [src/lib/pca/r92a.c; r92a()] ...23
4.1.1.5 Feature Set Transformation [src/lib/pca/trnsfrm.c; trnsfrm()].......................................26

4.1.1.5.1 Karhunen-Loève Transform..26
4.1.1.5.2 Regional Weights [src/bin/optrws/optrws.c] ..27
4.1.1.5.3 Combined Transform [src/bin/mktran/mktran.c] ..28

4.1.1.6 Probabilistic Neural Network Classifier [src/lib/pca/pnn.c; pnn()]29
4.1.1.7 Multi-Layer Perceptron Neural Network Classifier..31
4.1.1.8 Auxiliary Classifier: Pseudo-ridge Tracer [src/lib/pca/pseudo.c; pseudo()]31
4.1.1.9 Combining the Classifier and Pseudo-ridge Outputs..32

4.1.2 Computing Features .. 33
4.1.2.1 Make the Orientation Arrays ..34
4.1.2.2 Make the Covariance Matrix ..34
4.1.2.3 Make the Eigenvalues and Eigenvectors ..34
4.1.2.4 Run the Karhunen-Loève Transform..34

4.1.3 Training the Neural Networks... 34
4.1.3.1 Optimizing the Probabilistic Neural Network ..35

4.1.3.1.1 Optimize the Regional Weights ..35
4.1.3.1.2 Make the Transform Matrix ..35
4.1.3.1.3 Apply the Transform Matrix ...36
4.1.3.1.4 Optimize the Overall Smoothing Factor..36

4.1.3.2 Training the Multi-layer Perceptron Neural Network...36
4.1.4 Running PCASYS.. 39

4.1.4.1 PCASYS Data Files ..39
4.1.4.2 Commands..39

4.1.4.2.1 Classifier Demos ...39
4.1.4.2.2 Training (Optimization) Commands ...39
4.1.4.2.3 Utility Commands ...40

4.1.4.3 Running the Classifier ..40
4.1.4.3.1 Graphical and Non-graphical Versions ...40
4.1.4.3.2 Default Parameters and Specifying Parameters...40
4.1.4.3.3 Output File ..40

4.1.5 Classification Results .. 41
4.2 MINDTCT... 44

4.2.1 Input ANSI/NIST File [src/lib/an2k/fmtstd.c; read_ANSI_NIST_file()] 45
4.2.2 Generate Image Quality Maps [src/lib/lfs/maps.c; gen_image_maps()] 45

iv

4.2.2.1 Direction Map [src/lib/lfs/dft.c; dft_dir_powers()]..45
4.2.2.2 Low Contrast Map [src/lib/lfs/block.c; low_contrast_block()]49
4.2.2.3 Low Flow Map [src/lib/lfs/maps.c; gen_initial_maps()] ...51
4.2.2.4 High Curve Map [src/lib/lfs/maps.c; gen_high_curve_map()]52
4.2.2.5 Quality Map [src/lib/lfs/quality.c; gen_quality_map()] ...53

4.2.3 Binarize Image [src/lib/lfs/binar.c; binarize_V2()] ... 54
4.2.4 Detect Minutiae [src/lib/lfs/minutia.c; detect_minutiae_V2()]....................... 55
4.2.5 Remove False Minutiae [src/lib/lfs/remove.c; remove_false_minutia_V2()] . 56

4.2.5.1 Remove Islands and Lakes [src/lib/lfs/remove.c; remove_islands_and_lakes()]..56
4.2.5.2 Remove Holes [src/lib/lfs/remove.c; remove_holes()] ...57
4.2.5.3 Remove Pointing to Invalid Block ...57
4.2.5.4 Remove Near Invalid Blocks..58
4.2.5.5 Remove or Adjust Side Minutiae ...59
4.2.5.6 Remove Hooks [src/lib/lfs/remove.c; remove_hooks()] ..60
4.2.5.7 Remove Overlaps [src/lib/lfs/remove.c; remove_overlaps()]60
4.2.5.8 Remove Too Wide Minutiae [src/lib/lfs/remove.c; remove_malformations()]61
4.2.5.9 Remove Too Narrow Minutiae [src/lib/lfs/remove.c; remove_pores_V2()].................62

4.2.6 Count Neighbor Ridges [src/lib/lfs/ridges.c; count_minutiae_ridges()] 63
4.2.7 Assess Minutia Quality [src/lib/lfs/quality.c; combined_minutia_quality()] 63
4.2.8 Output ANSI/NIST file [src/lib/an2k/fmtstd.c; write_ANSI_NIST_file()] 64

5. REFERENCES .. 66

APPENDIX A. MLP TRAINING OUTPUT ... 69
A.1 Explanation of the output produced during MLP training... 69

A.1.1 Pattern-Weights ... 69
A.1.2 Explanation of Output.. 70

A.1.2.1 Header ..70
A.1.2.2 Training Progress..71

A.1.2.2.1 Second progress lines ...71
A.1.2.2.2 First progress lines..72
A.1.2.2.3 Pruning lines (optional) ..75

A.1.2.3 Confusion Matrices and Miscellaneous Information (Optional)...76
A.1.2.4 Final Progress Lines ...79
A.1.2.5 Correct-vs.-Rejected Table (Optional)..79
A.1.2.6 Final Information..81

APPENDIX B. REFERENCE MANUAL.. 82

LIST OF TABLES
Table 1. NFIS utilities listed by package ... 5
Table 2. PNN Confusion matrix... 43
Table 3. MLP Confusion matrix .. 43

v

LIST OF FIGURES
Figure 1. Hierarchical organization of testing directory. ... 6
Figure 2. Example fingerprints of the six pattern-level classes.. 8
Figure 3. Minutiae: bifurcation (square marker) and ridge ending (circle marker).. 9
Figure 4. Minutiae orientation. .. 10
Figure 5. Latent fingerprint (left) with matching tenprint (right)... 11
Figure 6. Fingerprint used to demonstrate the fingerprint classification process (s0025236.wsq)....................... 16
Figure 7. Steps in the fingerprint segmentation process. ... 17
Figure 8. The sample fingerprint after segmentation. .. 19
Figure 9. Sample fingerprint after enhancement. ... 21
Figure 10. Pattern of slits (i = 1-8) used by the orientation detector. ... 21
Figure 11. Array of local average orientations of the example fingerprint .. 23
Figure 12. Left: Orientation array Right: Registered orientation array. .. 26
Figure 13. Absolute values of the optimized regional weights. ... 28
Figure 14. PNN output activations for the example fingerprint. .. 30
Figure 15. MLP output activations for the example fingerprint... 30
Figure 16. Left: Pseudo-ridges traced to find concave-upward lobe. Right: Concave-upward lobe that was found. 32
Figure 17. Error versus reject curves for PNN and MLP classifiers and hybrid combinations.................................. 43
Figure 18. Minutiae detection process. .. 44
Figure 19. Adjacent blocks with overlapping windows. .. 46
Figure 20. Window rotation at incremental orientations.. 47
Figure 21. DFT waveform frequencies. ... 48
Figure 22. Direction map results. ... 49
Figure 23. Low contrast map results. ... 50
Figure 24. Low flow map results. .. 51
Figure 25. High curve map results. .. 52
Figure 26. Quality map results. .. 53
Figure 27. Rotated grid used to binarize the fingerprint image.. 54
Figure 28. Binarization results. .. 54
Figure 29. Pixel pattern used to detect ridge endings... 55
Figure 30. Pixel patterns used to detect minutiae... 56
Figure 31. Removal of islands and lakes.. 56
Figure 32. Removal of holes. ... 57
Figure 33. Removal of minutia pointing to an invalid block. .. 57
Figure 34. Removal of minutia near invalid blocks. .. 58
Figure 35. Removal or adjustment of minutiae on the side of a ridge or valley. ... 59
Figure 36. Removal of hooks. .. 60
Figure 37. Removal of overlaps. .. 61
Figure 38. Removal of too wide minutiae.. 61
Figure 39. Removal of too narrow minutiae. ... 62
Figure 40. Minutiae results. ... 65

vi

1

User's Guide to NIST Fingerprint Image Software (NFIS)
M. D. Garris, C. I. Watson, R. M. McCabe, and C. L. Wilson

ABSTRACT
This report documents a public domain fingerprint image software distribution developed by the
National Institute of Standards and Technology (NIST) for the Federal Bureau of Investigation
(FBI). The software technology contained in this distribution is a culmination of a decade�s
worth of work for the FBI at NIST. Provided are a collection of application programs, utilities,
and source code libraries. These are organized into four major packages: 1. PCASYS is a neural
network based fingerprint pattern classification system; 2. MINDTCT is a fingerprint minutiae
detector; 3. AN2K is a reference implementation of the ANSI/NIST-ITL 1-2000 "Data Format for
the Interchange of Fingerprint, Facial, Scar Mark & Tattoo (SMT) Information" standard; and
4. IMGTOOLS is a collection of image utilities, including encoders and decoders for Baseline and
Lossless JPEG and the FBI�s WSQ specification. This public domain source code distribution is
written in �C�, and has been developed to compile and execute under the Linux operating system
using the GNU gcc compiler and gmake utility. The source code may also be installed to run on
Win32 platforms that have the Cygwin library and associated tools installed. A Reference
Manual describing each program in the distribution is included at the end of this document.

Keywords: ANSI/NIST, FBI, fingerprint, image, JPEG, minutiae detection, neural network,
pattern classification, public domain software, WSQ, wavelet scalar quantization

1. INTRODUCTION

This report documents a public domain fingerprint image software distribution developed by the
National Institute of Standards and Technology (NIST) for the Federal Bureau of Investigation
(FBI). Its content and format is one of user's guide and reference manual. While some
algorithmic overview is provided, the cited references contain more complete descriptions of
how fingerprint software technologies work.

As background, the FBI has been utilizing computer technology to help capture, store, and
search fingerprint records since the late 70's. In the early 90's, they began developing a system to
enable the electronic exchange of fingerprint records and images by law enforcement agencies
and to handle electronic transactions with these agencies. This new system is called the
Integrated Automated Fingerprint Identification System (IAFIS) and it is currently in operation
in Clarksburg, West Virginia.

IAFIS has been primarily designed to process fingerprints that have been captured at a booking
station of a jail or that are being submitted for a civilian background check. These types of
fingerprints are typically taken by inking and rolling the fingertip onto a paper fingerprint card or
captured from the surface of a live scan device. Traditionally these fingerprints have been
referred to as tenprints, as all ten fingers are typically captured.

Over the years, the FBI has accumulated more than 40,000,000 fingerprint cards on file, and they
handle up to 60,000 fingerprint-related requests a day. This demand originated from the need to
support criminal investigations, but through the successful development and deployment of
technology to meet this demand, legislation continues to be passed progressively increasing the

2

demand for conducting civilian checks and clearances. The workload, which was once 80 %
criminal and 20 % civilian, is quickly approaching 50 % criminal and 50 % civilian, and demand
is projected to rapidly grow. In light of this situation, the FBI must continue to pursue the
development and exploitation of new technologies, and NIST is partnered with the FBI in
support of this pursuit.

NIST has a long-standing relationship with the FBI. Researchers at NIST began work on the
first version of the FBI's AFIS system back in the late 60's. Over the years, NIST has conducted
fingerprint research, developed fingerprint identification technology and data exchange
standards, developed methods for measuring the quality and performance of fingerprint scanners
and imaging systems, and produced databases containing a large repository of FBI fingerprint
images for public distribution.[1]-[30]

The software technology contained in this distribution is a culmination of a decade�s worth of
work for the FBI at NIST. Provided are a collection of application programs, utilities, and
source code libraries. These are organized into four major packages (PCASYS, MINDTCT, AN2K,
and IMGTOOLS). The first two are software systems.

The first package, PCASYS, is a pattern classification system designed to automatically
categorize a fingerprint image as an arch, left or right loop, scar, tented arch, or whorl.
Identifying a fingerprint�s class effectively reduces the number of candidate searches required to
determine if a fingerprint matches a print on file. For example, if the unknown fingerprint is an
arch, it only needs to be compared against all arches on file. These types of �binning� strategies
are critical for the FBI to manage the searching of its fingerprint repository. Section 3.1
describes this package in greater detail, and Section 4.1 provides an algorithmic overview and
functional description of the PCASYS system.

The second package, MINDTCT, is a minutiae detection system. It takes a fingerprint image and
locates features in the ridges and furrows of the friction skin, called minutiae. Points are
detected where ridges end or split, and their location, type, orientation, and quality are stored and
used for search. There are 100 to 200 minutiae on a typical tenprint, and matching takes place on
these points rather than the 250,000 pixels in the fingerprint image. Section 3.2 describes this
package in greater detail, and Section 4.2 provides an algorithmic overview and functional
description of the MINDTCT system.

Techniques of fingerprint pattern classification and minutiae detection typically share some
functionality. For example, both applications typically derive and analyze ridge flow within a
fingerprint image.[31] This is true of PCASYS and MINDTCT, and both conduct image
binarization of the fingerprint as well. It should be noted that these systems were developed
independently of each other, so although these processing steps are in common, different
algorithms are applied in each. Further study is required to determine if one system's algorithmic
approach is better than the other.

The most significant contribution NIST has made to the FBI, and to the fingerprint and law
enforcement communities at large, is the development of the ANSI/NIST-ITL 1-2000 "Data
Format for the Interchange of Fingerprint, Facial, Scar Mark & Tattoo (SMT) Information"
standard.[30] This standard defines a common file format, available to law enforcement
agencies in the U.S. since 1986, for the electronic exchange of fingerprint images and related
data.[9] Today, it supports other types of images as well, including palmprints, mugshots, scars,

3

and tattoos. This standard has been adopted by all major law enforcement agencies in the U.S.,
including the FBI, and has strong support and use internationally. IAFIS is implemented on this
data interchange standard. For the purposes of abbreviation, this standard will be referred to in
this documentation as the "ANSI/NIST" standard.

The third package, AN2K, contains a suite of utilities linked to a reference library implementation
of the ANSI/NIST-ITL 1-2000 standard. These utilities facilitate reading, writing, manipulating,
editing, and displaying the contents of ANSI/NIST files. Section 3.3 describes this package in
greater detail.

The last package, IMGTOOLS, is a large collection of general-purpose image utilities. Included
are image encoders and decoders supporting Baseline JPEG, Lossless JPEG, and the FBI�s
specification of Wavelet Scalar Quantization (WSQ). There are utilities supporting the
conversion between images with interleaved and non-interleaved color components; colorspace
conversion between RGB and YCbCr; and the format conversion of legacy files in NIST
databases. Section 3.4 describes this package in greater detail.

The source code in this distribution has been developed using the GNU project's gcc compiler
and gmake utility.[32] The software has been tested under LINUX, SGI Irix, and under
Windows NT using the Cygwin library [33] and associated tools.1

The baseline JPEG code in src/lib/jpegb uses the Independent JPEG Group�s
compression/decompression code. For details on its copyright and redistribution, see the
included file src/lib/jpegb/README. All other code is public domain, and any portion of it
may be used without restrictions because it was created with U.S. government funding. This
software was produced by NIST, an agency of the U.S. government, and by statute is not subject
to copyright in the United States. Recipients of this software assume all responsibilities
associated with its operation, modification, and maintenance. To request a copy of this software
free of charge on CD-ROM, please send an email request to the authors.

In this document, Section 2 provides instructions for installing and compiling the distribution�s
source code(); Section 3 discusses each package in greater detail; Section 4 presents an overview
of the algorithms used in the PCASYS and MINDTCT systems; and manual pages are included in
the Reference Manual in APPENDIX B. Source code references have been provided throughout
this document to direct the reader to specific files and routines in the distribution. The source
code should be considered the ultimate documentation. Technical questions are welcomed and
any problems with this distribution should be directed to the authors via email. Any updates to
this software will be posted for downloading at http://www.itl.nist.gov/iad/894.03.

1 Specific software products and equipment identified in this paper were used in order to adequately support the
development of the technology described in this document. In no case does such identification imply
recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the
software or equipment identified is necessarily the best available for the purpose.

4

2. INSTALLATION GUIDE

This section describes the organization and installation of the distribution. This distribution
contains a combination of software, documentation, and testing data all stored in a hierarchical
collection of directories stored on CD-ROM. The top-level directories containing source code
and used to support compilation are bin, include, lib, and src; documentation is provided in
the doc and man directories; precomputed runtime files used by PCASYS are in the top-level
directory pcasys; and testing scripts, input data files, and example results are provided in test.

2.1 Software Installation
The distributed source code has been written in �C,� and compilation scripts compatible with the
UNIX make utility are provided. The source code and compilation scripts have been designed
and tested to work with the free, publicly available Linux operating system and GNU gcc
compiler and gmake utility.[34][32] The software may also be compiled to run on computers
running the family of Win32 operating systems by first installing the free, publicly available
Cygwin library and associated tools.[33] The porting of the software to other operating systems,
compilers, or compilation environments is the responsibility of the recipient.

The software can be installed and compiled by first copying the contents of the CD-ROM to a
read/writable disk partition on your computer. The directory to which you copy is referred to as
the installation directory. Please note that if the installation directory is other than
/usr/local/nfis, then the header file include/little.h will need to be edited prior to
compilation. Specifically, the definition for INSTALL_DIR must be changed.

Copying only the top-level file makefile.mak and bin, include, lib, and src directories is
required to successfully compile the software. The permissions on the copied subdirectories and
the compilation scripts (named "makefile.mak") should then be changed to read/writable.
Once copied and permissions changed, the software can be compiled by executing the following
commands in the top-level installation directory on a Linux machine:

% make -f makefile.mak PROJDIR=<install_dir> depend
% make -f makefile.mak PROJDIR=<install_dir> install

where the text <install_dir> is replaced by your specific installation directory path.
Alternatively, on a Win32 machine with the Cygwin library and utilities installed, type the
following commands:

% make -f makefile.mak PROJDIR=<install_dir> \
X11_EXST=0 EXEEXT=.exe depend

% make -f makefile.mak PROJDIR=<install_dir> \
X11_EXST=0 EXEEXT=.exe install

Successful compilation under Linux will produce 51 executable files stored in the top-level bin
directory. To invoke these utilities you can specify a full path to these files, or you may add the
top-level bin directory to your environment's execution path. Table 1 lists these utilities broken
out by package. The fifth package listed, IJG, contains utilities provided with the Independent
JPEG Group�s compression/decompression source code library.[35] To learn more about the
utilities in this package, refer to the Reference Manual in Appendix B.

5

Table 1. NFIS utilities listed by package

NFIS Package Utilities
PCASYS MINDTCT AN2K IMGTOOLS IJG
asc2bin mindtct an2k2iaf cjpegb cjpeg
bin2asc an2k2txt cjpegl djpeg
chgdesc an2ktool cwsq jpegtran
cmbmcs dpyan2k diffbyts rdjpgcom
datainfo iaf2an2k djpegb wrjpgcom
eva_evt txt2an2k djpegl
fixwts djpeglsd
kltran dpyimage
lintran dwsq
meancov dwsq14
mkoas intr2not
mktran not2intr
mlp rdwsqcom
mlpfeats rgb2ycc
oas2pics sd_rfmt
optosf wrwsqcom
optrws ycc2rgb
optrwsgw
pcasys
pcasysx
rwpics
stackms

A manual page is provided for each utility in the top-level man directory. To view a man page
on a Linux machine or a Win32 machine running a Cygwin shell, type:

% man -M <install_dir>/man <executable>

where the text <install_dir> is replaced by your specific installation directory path and
<executable> is replaced by the name of the utility of interest. These manual pages are also
included at the end of this document in the Reference Manual in Appendix B.

2.2 Data and Testing Directories

As already mentioned, the top-level directory pcasys contains various runtime files required by
the non-graphical utility bin/pcasys and the graphical X Window version bin/pcasysx.
The graphical version utilizes the image files provided in pcasys/images, while both utilities
require the parameters files and precomputed feature vectors and weights in pcasys/parms and
pcasys/weights. For more information see Section 4.1.4.

The top-level directory test is provided to give examples of how each of the utilities in the
distribution are invoked. A simple csh script is provided for each utility along with sample
input data and resulting output. It should be noted that some utilities may, when run on other
computer architectures, produce slightly different results due to small differences in floating
point calculations and round off.

6

Figure 1. Hierarchical organization of testing directory.

The test directory is organized hierarchically as illustrated in Figure 1. The utilities are
organized by packages within the test directory, one subdirectory for each package. Within
each package, there are two directories. The data directory contains sample input files for the
utilities in the package. The execs directory contains one subdirectory for each utility in the
package. Within each utility subdirectory under execs, there is a simple script (with extension
"src") and example output files produced by the script. Note that the scripts can be executed
from within a csh shell by using the source command.

Included among the input data files used for testing are color and grayscale versions of a face
image stored as an uncompressed pixmap, compressed using Baseline JPEG, and compressed
using Lossless JPEG. Similarly, versions of a grayscale fingerprint image are provided
uncompressed, compressed using Lossless JPEG, and compressed using WSQ. In addition, a set
of 2700 WSQ compressed grayscale fingerprint images are included to support the testing of
PCASYS.

test

<package n>

data

… input files …

execs

<exec 2>

…

… output files …

<exec 1>

<exec 1>.src

……

7

3. PACKAGES

3.1 PCASYS – Fingerprint Pattern Classification

Automatic fingerprint classification is a subject of interest to developers of an Automated
Fingerprint Identification System (AFIS). In an AFIS system, there is a database of file
fingerprint cards, against which incoming search cards must be efficiently matched. Automatic
matchers now exist that compare fingerprints based on their patterns of ridge endings and
bifurcations (the minutiae). However, if the file is very large, then exhaustive matching of
search fingerprints against file fingerprints may require so much computation as to be
impractical. In such a case, the efficiency of the matching process may be greatly increased by
partitioning the file based on classification of fingerprints. Once the class for each fingerprint of
the search card has been determined, the set of possible matching file cards can be restricted to
those whose 10-tuple (one for each finger) of classes matches that of the search card. This
reduces the number of comparisons that must be performed by the minutiae-matcher.

Some fingerprint identification systems use manual classification followed by automatic
minutiae matching; the standard Henry classification system, or a modification or extension of it,
is often used. The handbook [36] provides a complete description of a manual classification
system. Automating the classification process would improve its speed and cost-effectiveness.
However, producing an accurate automatic fingerprint classifier has proved to be a very difficult
task. The object of the research leading to PCASYS is to build a prototype classifier that
separates fingerprints into basic pattern-level classes known as arch, left loop, right loop, scar,
tented arch, and whorl. Figure 2 shows example fingerprints of the several classes. The system
performs these steps: image segmentation and enhancement; feature extraction, registration, and
dimensionality reduction; running of a main classifier, either a Probabilistic or Multi-Layer
Perceptron Neural Network and an auxiliary whorl-detector that traces and analyzes pseudo-
ridges; and finally, creation of a hypothesized class and confidence level.

PCASYS is a prototype/demonstration pattern-level fingerprint classification program. It is
provided in the form of a source code distribution and is intended to run on a desktop
workstation. The program reads and classifies each of a set of fingerprint image files, optionally
displaying the results of several processing stages in graphical form. This distribution contains
2700 fingerprint images that may be used to demonstrate the classifier; it can also be run on user-
provided images.

The basic method used by the PCASYS fingerprint classifier consists of, first, extracting from the
fingerprint to be classified an array (a two-dimensional grid in this case) of the local orientations
of the fingerprint�s ridges and valleys. Second, comparing that orientation array with similar
arrays made from prototype fingerprints ahead of time. The comparisons are actually performed
between low-dimensional feature vectors made from the orientation arrays, rather than using the
arrays directly, but that can be thought of as an implementation detail.

8

Figure 2. Example fingerprints of the six pattern-level classes.

Going left-right, top-bottom, arch [A], left loop [L], right loop [R], scar [S],
tented arch [T], and whorl [W]. These are NIST Special Database 14
images s0024501.wsq, s0024310.wsq, s0024304.wsq, s0026117.wsq,
s0024372.wsq, and s002351.wsq, and they are among the fingerprint
images included on the CD-ROM in test/pcasys/data/images.

9

Orientation arrays or matrices like the ones used in PCASYS were produced in early fingerprint
work at Rockwell, CALSPAN, and Printrak. The detection of local ridge slopes came about
naturally as a side effect of binarization algorithms that were used to preprocess scanned
fingerprint images in preparation for minutiae detection. Early experiments in automatic
fingerprint classification using these orientation matrices were done by Rockwell, improved
upon by Printrak, and work was done at NIST (formerly NBS). Wegstein, of NBS, produced the
R92 registration algorithm that is used by PCASYS and did important early automatic
classification experiments.[8]

The algorithms used in PCASYS are described further in Section 4.1 and in References [17] and
[22]-[24].

3.2 MINDTCT – Minutiae Detection

Another software system provided in this distribution is a minutiae detection package called,
MINDTCT. This section first describes what fingerprint minutiae are, and then some background
is provided as to why this package was developed for the FBI.

3.2.1 Definition of Minutiae
Traditionally, two fingerprints have been compared using discrete features called minutiae.
These features include points in a finger's friction skin where ridges end (called a ridge ending)
or split (called a ridge bifurcation). Typically, there are on the order of 100 to 200 minutiae on a
tenprint. In order to search and match fingerprints, the coordinate location and the orientation of
the ridge at each minutia point are recorded. Figure 3 shows an example of the two types of
minutiae. The minutiae are marked in the right image, and the tails on the markers point in the
direction of the minutia's orientation.

Figure 3. Minutiae: bifurcation (square marker) and ridge ending (circle marker).

10

The location of each minutia is represented by a coordinate location within the fingerprint's
image. Different AFIS systems represent this location differently. The ANSI/NIST standard
specifies units of distance in terms of 0.01 mm from an origin in the bottom left corner of the
image. For example, a 500×600 pixel image scanned at 19.69 ppmm has dimensions
25.39×30.47 mm which in standard units of 0.01 mm is

01.069.19
600

01.069.19
50030472539

∗
×

∗
=×

Thus, the pixel coordinate (200, 192) will be represented in standard units at

() �
�

�
�
�

�

∗
−−

∗
=

01.069.19
19213047,

01.069.19
2002071,1016

where the Y-coordinate is measured from the bottom of the image upward.

The orientation of the minutiae is represented in degrees, with zero degrees pointing horizontal
and to the right, and increasing degrees proceeding counter-clockwise. The orientation of a ridge
ending is determined by measuring the angle between the horizontal axis and the line starting at
the minutia point and running through the middle of the ridge. The orientation of a bifurcation is
determined by measuring the angle between the horizontal axis and the line starting at the
minutia point and running through the middle of the intervening valley between the bifurcating
ridges.

The minutiae plotted in Figure 4 illustrate the line to which the angle of orientation is measured.
Each minutia symbol is comprised of a circle or square, marking the location of the minutia
point, and the line or tail proceeding from the circle or square is projected along either the ridge
ending�s ridge, or the bifurcation�s valley. The angle of orientation as specified by the
ANSI/NIST standard is marked as angle �A� in the illustration.

Figure 4. Minutiae orientation.
A. standard angle, B. FBI/IAFIS angle

A B
A B

11

3.2.2 Latent Fingerprints
In addition to tenprints, there is a smaller population of fingerprints also important to the FBI.
These are fingerprints captured at crime scenes that can be used as evidence in solving criminal
cases. Unlike tenprints, which have been captured in a relatively controlled environment for the
expressed purpose of identification, crime scene fingerprints are by nature incidentally left
behind. They are often invisible to the eye without some type of chemical processing or dusting.
It is for this reason that they have been traditionally called latent fingerprints.

As one would expect, the composition and quality of latent fingerprints are significantly different
from tenprints. Typically, only a portion of the finger is present in the latent, the surface on
which the latent was imprinted is unpredictable, and the clarity of friction skin details are often
blurred or occluded. All this leads to fingerprints of significantly lesser quality than typical
tenprints. While there are 100 to 200 minutiae on a tenprint, there may be only a dozen on a
latent. Figure 5 shows a "good" quality latent on the left and its matching tenprint on the right.

Figure 5. Latent fingerprint (left) with matching tenprint (right).

Due to the poor conditions of latent fingerprints, today's AFIS technology operates poorly when
presented a latent fingerprint image. It is extremely difficult for the automated system to
accurately classify latent fingerprints and reliably locate the minutiae in the image.
Consequently, human fingerprint experts, called latent examiners, must analyze and manually
mark up each latent fingerprint in preparation for matching. This is a tedious and labor intensive
task.

To support the processing of latent fingerprints, the FBI and NIST collaboratively developed a
specialized workstation called the Universal Latent Workstation (ULW). This workstation has
been designed to aid the latent examiner in preparing a latent fingerprint for search. In addition,
the workstation provides for interoperability between different AFIS systems by functioning as a
vendor-independent font-end interface. These two aspects of the ULW contribute significantly
to the advancement of the state-of-the-art in latent fingerprint identification and law enforcement

12

in general. As such, the FBI has chosen to distribute the ULW freely upon request. To receive
more information regarding ULW, please contact:

Tom Hopper (thopper@leo.com)
FBI, JEH Bldg.
CJIS Div / Rm 11192E
935 PA Ave., NW
Washington, DC 20537-9700
202-324-3506

The successful application of the ULW is primarily facilitated by its use of the ANSI/NIST-ITL
1-2000 standard. NIST also developed some its underlying core technology, including the
minutiae detection package in this software distribution. MINDTCT takes a fingerprint image and
locates all minutiae in the image, assigning to each minutia point its location, orientation, type,
and quality. The command, mindtct, reads a fingerprint image from an ANSI/NIST file,
detects the minutiae in the image, encodes the results into a Type-9 minutiae record [30],
combines the record with the input data, and writes it all out to a new ANSI/NIST file.

An algorithmic description of MINDTCT is provided in Section 4.2.

3.3 AN2K – Standard Reference Implementation

The AN2K package is a reference implementation of the ANSI/NIST-ITL 1-2000 standard.[30]
This package contains utilities for reading, writing, and manipulating the contents of ANSI/NIST
data files. These files are comprised of a sequence of data fields and image records. Source
code is provided to parse ANSI/NIST files into memory, manipulate designated fields, and write
the sequence back to file. The utility an2ktool does this in batch mode. Logical data units are
referenced on the command line, and the specified contents may be printed, inserted, substituted,
or deleted from the file.

Alternatively, two other utilities are provided to support interactive editing of the contents of an
ANSI/NIST file. The command an2k2txt converts the textual content of an ANSI/NIST file
into a formatted text report, and any binary data (including images) are stored to temporary files
and externally referenced in the text report. In this way, the text report can then be loaded into
any common text editor and ASCII information can be added, deleted, or changed. When all
edits are complete, the command txt2an2k is run on the edited version of the text report,
externally referenced binary data files are incorporated, and a new ANSI/NIST file is written.

One of the many types of records in an ANSI/NIST file is the Type-9 record designed to hold
minutiae data for fingerprint matching. Currently there is no global consensus on how
fingerprint minutiae should be numerically represented. Different fingerprint systems use
different sets of attributes and representation schemes. To manage this, the fields of the Type-9
record have been divided into blocks, where each block is assigned to a registered vendor, and
the vendor defines how he will represent his minutiae data. In the standard, the first 4 fields of
the Type-9 record are mandatory and must always be filled. Fields 5 through 12 are fields in the
standard defined by NIST to hold among other things, the fingerprint�s core, delta, and minutiae
locations, along with neighbors and intervening ridge counts. The FBI's IAFIS is assigned fields
13 through 23. The definition of these fields is specified in the FBI's Electronic Fingerprint
Transmission Specification (EFTS), Reference [37].

13

Unfortunately, these two blocks of fields are different. Two utilities are provided in the AN2K
package to facilitate the conversion between these blocks of fields in a Type-9 record. The
command an2k2iaf translates the minutiae data stored in NIST fields 5-12 into the FBI/IAFIS
fields 13-23. The command iaf2an2k reverses the process. An X Windows ANSI/NIST file
image previewer is included in the package. The utility dpyan2k is designed to parse an
ANSI/NIST file, locating and displaying each image in the file to a separate window. In
addition, if any minutiae are included in a corresponding Type-9 record, then the minutia points
are plotted on top of the fingerprint image.

3.4 IMGTOOLS – General Purpose Image Utilities

NIST has distributed several fingerprint databases [14],[18]-[20] over the past decade for use in
evaluating fingerprint matching systems. The images in these databases are formatted as NIST
IHead [14], [18] files using either Lossless JPEG or WSQ compression. The IHead format uses
a 296 byte header to store basic information about the image (i.e. pixel width, height, depth,
compression type, compressed length, etc.). Displaying these images is problematic as common
image viewing utilities do not support this format. Using utilities in the IMGTOOLS package,
users are able to take NIST legacy database files and convert them into standard compliant
formats, including Baseline JPEG which is widely supported.

Another issue is that these legacy files are not standard compliant. The utility sd_rfmt takes a
legacy database file and reformats it. For example, legacy IHead WSQ files are converted so
that they can be decoded with an FBI compliant WSQ decoder. The command dwsq14
decompresses fingerprint images distributed with NIST Special Database 14, while the command
djpeglsd decompresses images distributed with NIST Special Database 4, 9, 10, & 18.[25]

IMGTOOLS also contains a collection of standard compliant and certifiable image encoders and
decoders. The utilities cjpegb and djpegb encode and decode Baseline JPEG files
respectively. The utilities cjpegl and djpegl encode and decode Lossless JPEG files. This
represents one of the only publicly available implementations of the standard Lossless JPEG
algorithm. Finally, the utilities cwsq and dwsq encode and decode FBI WSQ files. An X
Window application, dpyimage, is provided to view these different file compression formats,
including IHead images and raw pixmaps.

Users should exercise caution when using these encoders and decoders in succession. The
decoders generate uncompressed, reconstructed image pixmaps that can be subsequently re-
encoded. Both Baseline JPEG and WSQ are lossy compression schemes, so taking their decoded
pixmaps and re-encoding them may produce undesirable results. The amount of image
degradation caused by lossy compression can be analyzed using the utility diffbyts to
compare the pixels in an original image to those returned by one of the decoders.

All three compression algorithms in this distribution support internal comment blocks.
Applications typically need easy access to various image attributes. These attributes include
generic statistics such as pixel width, height, depth, and scan resolution, but often it is desirable
to store and retrieve application-specific information such as fingerprint type, mugshot pose, or
age/sex of the individual. To support applications, a structure called a NISTCOM has been
defined, containing a text-based attribute list of (name, value) pairs. The encoders in IMGTOOLS
accept an optional NISTCOM file, and if provided, embed its contents into a comment block

14

within the encoded bytestream. The decoders on the other hand, search the encoded bytestream
for the presence of a NISTCOM, and if found, merge its contents with those attributes the decoder
derives itself and writes the resulting attribute list to a separate text file with extension "ncm.�
For more information on the NISTCOM convention, please refer to the Reference Manual in
Appendix B. A NISTCOM stored in a JPEG or WSQ file does not interfere with other standard
compliant decoders because it is contained in a standard comment block.

Several commands are provided to support NISTCOM and comment blocks in general. The
utilities rdjpgcom and wrjpgcom read and write comments blocks to and from both Baseline
and Lossless JPEG files. Similarly, rdwsqcom and wrwsqcom read and write comment blocks
to and from WSQ files.

Two other capabilities are included in IMGTOOLS. The first handles the interleaving and non-
interleaving of color components in an image. The command intr2not takes an interleaved
color image and separates the components into individual planes, whereas the command
not2intr reverses the process. The second capability handles converting between RGB and
YCbCr colorspaces. The command rgb2ycc converts from RGB to YCbCr, and ycc2rgb
reverses the process.

15

4. SYSTEMS

In this section, the algorithms used in the PCASYS and MINDTCT packages are described. The
source code in this distribution is the ultimate documentation for these systems; therefore, source
code references are provided in the subheadings below for the various steps in these systems.
Each reference is listed within square brackets, and they point to a specific file in the source code
followed by the name of the subroutine primarily responsible for executing the process step.
These references are provided as a road map into the source code distribution.

4.1 PCASYS

NIST released its first version of PCASYS to the public in 1995. The two main changes in this
new distribution are the addition of the multi-layer perceptron (MLP) classifier and replacing
EISPACK routines with more stable CLAPACK routines [47] for computing eigenvalues and
eigenvectors. Section 4.1.3.2 discusses the details of the MLP classifier. The CLAPACK
routines have proven more stable and reliable across different operating systems.

A large portion of the code has also been modified to be more general with the parameters of the
input data. For example, the original version required fingerprints to be at least 512×480 pixels,
six output-classes in the classifier, and a 28×30 array of ridge directions. The new code allows
for variations in these sizes. While most of the code is more general, the core detection
algorithm still requires a 32×32 array of ridge directions and several parameters are tuned based
on the old fixed dimensions that were used. For this reason many of the old �hard coded�
dimensions are still used, but they are defined in include files that the user could easily change
and then retune other parameters as needed.

An adjustment was also made to the enhancement/ridge flow detection. Previously, the
enhancement algorithm did local enhancement over the image every 24×24 pixels, starting at a
preset location (near top-left of image). Similarly, the ridge flow algorithm used 16×16 pixel
averages starting at a different preset location. The enhancement has been adjusted to work on
16×16 pixel windows that are aligned with the window used in ridge flow averaging. This helps
minimize the effect of enhancement artifacts when computing ridge flow averages, which occur
on the borders of the 16×16 window, causing erroneous ridge flow points in the final orientation
array.

Interpolation was added to the final segmentation process but there was no improvement in the
over all system performance, just an increase in preprocessing time. The old method of rounding
to the nearest pixel was kept when doing segmentation. The interpolation routine is included in
the source code (sgmnt.c) but not used.

Finally, given the changes that were made to the feature extraction process, the parameters for
the PNN classifier, mainly the regional weights and overall smoothing factor, were optimized to
the new feature set.

16

4.1.1 Algorithmic Description
This section describes the details of feature extraction and classification for each fingerprint.
Sections 4.1.1.1 and 4.1.1.2 are preprocessing steps to prepare the fingerprint image for feature
extraction covered in Sections 4.1.1.3 - 4.1.1.5. Sections 4.1.1.6 - 0 discuss details of the neural
network classifiers. Figure 6 is an example print of the whorl class and will be used for
subsequent figures illustrating the stages of processing.

Figure 6. Fingerprint used to demonstrate the fingerprint classification process
(s0025236.wsq).

4.1.1.1 Segmentor [src/lib/pca/sgmnt.c; sgmnt()]
The segmentor routine performs the first stage of processing needed by the classifier. It reads
the input fingerprint image. The image must be an 8-bit grayscale raster of width at least 512
pixels and height at least 480 pixels (these dimensions can be changed in the file
include/pca.h), and scanned at about 19.69 pixels per millimeter (500 pixels per inch). The
segmentor produces, as its output, an image that is 512×480 pixels in size by cutting a
rectangular region of these dimensions out of the input image. The sides of the rectangle that is
cut out are not necessarily parallel to the corresponding sides of the original image. The
segmentor attempts to position its cut rectangle on the impression made by the first joint of the
finger. It also attempts to define the rotation angle of the cut rectangle and remove any rotation
that the finger impression had to start with. Cutting out this smaller rectangle is helpful because
it reduces the amount of data that has to undergo subsequent processing (especially the compute-
intensive image enhancement). Removing rotation may help since it removes a source of
variation between prints of the same class.2

2 The images produced by the segmentor are similar to those of NIST Special Database 4 in which the corrections
for translation and rotation were done manually.

17

(1) (2) (3) (4) (5) (6) (7)

Figure 7. Steps in the fingerprint segmentation process.

The segmentor decides which rectangular region of the image to snip out by performing a
sequence of processing steps. This and all subsequent processing will be illustrated using the
fingerprint from Figure 6 as an example. Figure 7 shows the results of the segmentor�s
processing steps.

First, the segmentor produces a small binary (two-valued or logical-valued) image. The binary
image pixels indicate which 8×8-pixel blocks of the original image should be considered the
foreground. Foreground is the part of the image that contains ink, whether from the finger
impression itself or from printing or writing on the card. To produce this foreground-image, it
first finds the minimum pixel value for each block and the global minimum and maximum pixel
values in the image. Then, for each of a fixed set of factor values between 0 and 1, the routine
produces a candidate foreground-image based on factor as follows:

threshold = global_min + factor × (global_max – global_min)
Set to true each pixel of candidate foreground-image whose corresponding pixel of the
array of block minima is ≤ threshold, and count resulting true pixels.
Count the transitions between true and false pixels in the candidate foreground-image,
counting along all rows and columns. Keep track of the minimum, across candidate
foreground-images, of the number of transitions.

Among those candidate foreground-images whose number of true pixels is within predefined
limits, pick the one with the fewest transitions. If threshold is too low, there tend to be many
white holes in what should be solid blocks of black foreground; if threshold is too high, there
tend to be many black spots on what should be solid white background. If threshold is about
right, there are few holes and few spots, hence few transitions. The first frame in Figure 7 shows
the resulting foreground-image.

Next, the routine performs some cleanup work on the foreground-image, the main purpose of
which is to delete those parts of the foreground that correspond to printing or writing rather than
the finger impression. The routine does three iterations of erosion3 then deletes every connected
set of true pixels except the one whose number of true pixels is largest. The final cleanup step
sets to true, in each row, every pixel between the leftmost and rightmost true pixels in that row,
and similarly for columns. The routine then computes the centroid of the cleaned-up foreground-
image, for later use. The second frame in Figure 7 shows the result of this cleanup processing.

Next, the routine finds the left, top and right edges of the foreground, which usually has a
roughly rectangular shape. Because the preceding cleanup work has removed noise true pixels
caused by printed box lines or writing, the following very simple algorithm is sufficient for

3 Erosion consists of changing to false each true pixel that is next to a false pixel.

18

finding the edges. Starting at the middle row of the foreground-image and moving upward, the
routine finds the leftmost true pixel of each row and uses the resulting pixels to trace the left
edge. To avoid going around the corner onto the top edge, the routine stops when it encounters a
row whose leftmost true pixel has a horizontal distance of more than 1 from the leftmost true
pixel of the preceding row. The routine finds the bottom part of the left edge by using the same
process but moving downward from the middle row; and it finds the top and right edges
similarly. The third, fourth, and fifth frames in Figure 7 depict these edges.

Next, the routine uses the edges to calculate the overall slope of the foreground. First, it fits a
straight line to each edge by linear regression. The left and right edges, which are expected to be
roughly vertical, use lines of the form x = my + b and the top edge use the form y = mx + b. The
next to last frame in Figure 7 shows the fitted lines. The overall slope is defined to be the
average of the slopes of the left-edge line, the right-edge line, and a line perpendicular to the top-
edge line.

Having measured the foreground slope, the segmentor now knows the angle to which it should
rotate its cutting rectangle to nullify the existing rotation of the fingerprint; but it still must
decide the location at which to cut. To decide this, it first finds the foreground top, in a manner
more robust than the original finding of the top edge and resulting fitted line. It finds the top by
considering a tall rectangle, whose width corresponds to the output image width, whose center is
at the previously computed centroid of the foreground-image, and is tilted in accordance with the
overall foreground slope. Starting at the top row of the rectangle and moving downward, the
routine counts the true pixels of each row. It stops at the first row which both fits entirely on the
foreground-image and has at least a threshold number of true pixels. The routine then finishes
deciding where to cut by letting the top edge of the rectangle correspond to the foreground top it
has just detected. The cut out image will be tilted to cancel out the existing rotation of the
fingerprint, and positioned to hang from the top of the foreground.

The last frame in Figure 7 is the (cleaned-up) foreground with an outline superimposed on it
showing where the segmentor has decided to cut. The segmentor finishes by actually cutting out
the corresponding piece of the input image; Figure 8 shows the resulting segmented image. (The
routine also cuts out the corresponding piece of the foreground-image, for use later by the
pseudo-ridge analyzer.)

19

Figure 8. The sample fingerprint after segmentation.

4.1.1.2 Image Enhancement
[src/lib/pca/enhnc.c; enhnc(), src/lib/fft/fft2dr.c; fft2dr()]

This step enhances the segmented fingerprint image. The algorithm used is basically the same as
the enhance-merit algorithm described in [38], and pp. 2-8 - 2-16 of [39] provide a description of
other research that independently produced this same algorithm. The routine goes through the
image and snips out a sequence of squares each of size 32×32 pixels, with the snipping positions
spaced 16 pixels apart in each dimension to produce overlapping. Each input square undergoes a
process that produces an enhanced version of its middle 16×16 pixels, and this smaller square is
installed into the output image in a non-overlapping fashion relative to other output squares.
(The overlapping of the input squares reduces boundary artifacts in the output image.)

The enhancement of an input square is done by first performing the forward two-dimensional
fast Fourier transform (FFT) to convert the data from its original (spatial) representation to a
frequency representation. Next, a nonlinear function is applied that tends to increase the power
of useful information (the overall pattern, and in particular the orientation, of the ridges and
valleys) relative to noise. Finally, the backward 2-d FFT is done to return the enhanced data to a
spatial representation before snipping out the middle 16×16 pixels and installing them into the
output image.

The filter's processing of a square of input pixels can be described by the following equations.
First, produce the complex-valued matrix A + iB by loading the square of pixels into A and
letting B be zero. Then, perform the forward 2-d discrete Fourier transform, producing the
matrix X + iY defined by

() ()��
= =

�
�

�
�
�

� +−+=+
31

0

31

0 32
2exp

m n
mnmnjkjk nkmjiiBAiYX π

Change to zero a fixed subset of the Fourier transform elements corresponding to low and high
frequency bands which, as discussed below, can be considered to be noise. Then take the power

20

spectrum elements Xjk + Yjk of the Fourier transform, raise them to the 0.3 power, and multiply
them by the Fourier transform elements, producing a new frequency-domain representation U +
iV:

() ()jkjkjkjkjkjk iYXYXiVU ++=+ 3.022

Return to a spatial representation by taking the backward Fourier transform of U + iV,

() ()��
= =

�
�

�
�
�

� ++=+
31

0

31

0 32
2exp

j k
jkjkmnmn knjmiiVUiDC π

then finish up as follows: find the maximum absolute value of the elements of C (the imaginary
matrix D is zero), and cut out the middle 16×16 pixels of C and install them in the output image,
but first applying to them an affine transform that maps 0 to 128 (a middle gray) and that causes
the range to be as large as possible without exceeding the range of 8-bit pixels (0 through 255).
The DC component of the Fourier transform is among the low-frequency elements that are
zeroed out, so the mean of the elements of C is zero; therefore it is reasonable to map 0 to the
middle of the available range.

However, for greater efficiency, the enhancer routine actually does not simply implement these
formulas directly. Instead, it uses fast Fourier transforms (FFTs), and takes advantage of the
purely real nature of the input matrix by using 2-d real FFTs. The output is no different than if
the above formulas had been translated straight into code.

We have found that enhancing the segmented image with this algorithm, before extracting the
orientation features, increases the accuracy of the resulting classifier. The table and graphs on
pp. 24-6 of [24] show the accuracy improvement caused by using this filter (localized FFT
filter), as well as the improvements caused by various other features. The nonlinear function
applied to the frequency-domain representation of the square of pixels has the effect of
increasing the relative strength of those frequencies that were already dominant. The dominant
frequencies correspond to the ridges and valleys in most cases. So the enhancer strengthens the
important aspects of the image at the expense of noise such as small details of the ridges, breaks
in the ridges, and ink spots in the valleys. This is not simply a linear filter that attenuates certain
frequencies, although part of its processing does consist of eliminating low and high frequencies.
The remaining frequencies go through a nonlinear function that adapts to variations as to which
frequencies are most dominant. This aspect of the filter is helpful because the ridge wavelength
can vary considerably between fingerprints and between areas within a single fingerprint.4

Figure 9 shows the enhanced version of the segmented image. At first glance, a noticeable
difference seen between the original and enhanced versions is the increase in contrast. The more
important change caused by the enhancer is the improved smoothness and stronger ridge/valley
structure of the image, which are apparent upon closer examination. Discontinuities are visible
at the boundaries of some output squares despite the overlapping of input squares, but these
apparently have no major harmful effect on subsequent processing, due to alignment of the
enhanced tiles with the orientation detection tiles.

4 A different FFT-based enhancement method, the directional FFT filter of [24], uses global rather than local FFTs
and uses a set of masks to selectively enhance regions of the image that have various ridge orientations. This
enhancer was more computationally intensive than the localized FFT filter, and did not produce better classification
accuracy than the localized filter.

21

Figure 9. Sample fingerprint after enhancement.

4.1.1.3 Ridge-Valley Orientation Detector [src/lib/pca/ridge.c; rors(), rgar()]
This step detects, at each pixel location of the fingerprint image, the local orientation of the
ridges and valleys of the finger surface, and produces an array of regional averages of these
orientations. This is the basic feature extractor of the classification.

Figure 10. Pattern of slits (i = 1-8) used by the orientation detector.

The routine is based on the ridge-valley fingerprint binarizer described in [40]. That binarizer
uses the following algorithm to reduce a grayscale fingerprint image to a binary (black and white
only) image. For each pixel of the image, denoted C in Figure 10, the binarizer computes slit
sums si,i = 1... 8, where each si, is the sum of the values of the slit of four pixels labeled i (i.e., 1-
8) in the figure. The binarizer uses local thresholding and slit comparison formulas. The local
thresholding formula sets the output pixel to white if the value of the central pixel, C, exceeds
the average of the pixels of all slits, that is, if

�
=

>
8

132
1

i
isC (1)

7 8 1 2 3

6 7 8 1 2 3 4
6 4

5 5 C 5 5
4 6

4 3 2 1 8 7 6

3 2 1 8 7

22

Local thresholding such as this is better than using a single threshold everywhere on the image,
since it ignores gradual variations in the overall brightness. The slit comparison formula sets the
output pixel to white if the average of the minimum and maximum slit sums exceeds the average
of all the slit sums, that is, if

() �
=

>+
8

1
maxmin 8

1
2
1

i
isss (2)

The motivation for this formula is as follows. If a pixel is in a valley, then one of its eight slits
will lie along the (light) valley and have a high sum. The other seven slits will each cross ridges
and valleys and have roughly equal lower sums. The average of the two extreme slit sums will
exceed the average of all eight slit sums and the pixel will be binarized correctly to white.
Similarly, the formula causes a pixel lying on a ridge to be binarized correctly to black. This
formula uses the slits to detect long structures (ridges and valleys), rather than merely using their
constituent pixels as a sampling of local pixels as formula 1 does. It is able to ignore small ridge
gaps and valley blockages, since it concerns itself only with entire slits and not with the value of
the central pixel.

The authors of [40] found that they obtained good binarization results by using the following
compromise formula, rather than using either (1) or (2) alone: the output pixel is set to white if

�
=

>++
8

1
maxmin 8

34
i

isssC (3)

This is simply a weighted average of (1) and (2), with the first one getting twice as much weight
as the second.

This binarizer can be converted into a detector of the ridge or valley orientation at each pixel. A
pixel that would have been binarized to black (a ridge pixel) gets the orientation of its minimum-
sum slit, and a pixel that would have been binarized to white (a valley pixel) gets the orientation
of its maximum-sum slit. However, the resulting array of pixel-wise orientations is large, noisy,
and coarsely quantized (only 8 different orientations are allowed). Therefore, the pixel-wise
orientations are reduced to a much smaller array of local average orientations, each of which is
made from a 16×16 square of pixel-wise orientations. The averaging process reduces the volume
of data, decreases noise, and produces a finer quantization of orientations.

The ridge angle θ is defined to be 0° if the ridges are horizontal and increasing towards 180o as
the ridges rotate counterclockwise (0

o
 =< θ < 180

o
). When pixel-wise orientations are averaged,

the quantities averaged are not actually the pixel-wise ridge angles θ, but rather the pixel-wise
orientation vectors (cos 2θ, sin 2θ). The orientation finder produces an array of these averages
of pixel-wise orientation vectors.5 Since all pixel-wise vectors have length 1 (being cosine, sine
pairs), each average vector has a length of at most 1. If a square of the image does not have a
well-defined overall ridge and valley orientation, then the orientation vectors of its 256 pixels
will tend to cancel each other out and produce a short average vector. This can occur because of

5 Averaging a set of local orientation angles can produce absurd results, because of the non-removable point of
discontinuity that is inherent in an angular representation, so it is better to use the vector representation. Also, the
resulting local average orientation vectors are an appropriate representation to use for later processing, because these
later steps require that Euclidean distances between entire arrays of local average orientations produce reasonable
results. Note: The R92 registration program requires converting the vectors into angles of a different format.

23

blurring or because the orientation is highly variable within the square. The length of an average
vector is thus a measure of orientation strength. The routine also produces as output the array of
pixel-wise orientation indices, to be used by a later routine that produces a more finely spaced
array of average orientations. Figure 11 depicts the local average orientations that were detected
in the segmented and filtered image from the example fingerprint.

Figure 11. Array of local average orientations of the example fingerprint
Each bar, depicting an orientation, is approximately parallel to the local
ridges and valleys.

4.1.1.4 Registration [src/lib/pca/r92a.c; r92a()]
Registration is a process that the classifier uses in order to reduce the amount of translation
variation between similar orientation arrays. If the arrays from two fingerprints are similar
except for translation, the feature vectors that later processing steps will produce from these
orientation arrays may be very different because of the translation. This problem can be
improved by registering each array (finding a consistent feature and essentially translating the
array, bringing that feature to standard location).

To find the consistent feature that is required, we use the R92 algorithm of Wegstein [8]. The
R92 algorithm finds, in an array of ridge angles, a feature that is used to register the fingerprint.
The feature R92 detects in a loop and whorl fingerprint is located approximately at the core of
the fingerprint. The algorithm also finds a well-defined feature in arch and tented arch
fingerprints although these types of prints do not have true cores. After R92 finds this feature,
which will be denoted the registration point, registration is completed by taking the array of
pixel-wise orientations produced earlier and averaging 16×16 squares from it to make a new
array of average orientations. The averaging is done the same way it was done to make the first
array of average orientations (which became the input to R92). In addition, the squares upon
which averaging is performed are translated by the vector that is the registration point minus a

24

standard registration point defined as the component-wise median of the registration points of a
sample of fingerprints. The result is a registered array of average orientations.6

The R92 algorithm begins by analyzing the matrix of angles in order to build the �K-table.� R92
processes the orientations in angular form. It defines angle ranges from 0° to 90° as a ridge
rotates from horizontal counterclockwise to vertical, and 0° to �90° for clockwise rotation.
These angles differ from the earlier range 0° to 180° as the ridge rotates counterclockwise from
horizontal. This table lists the first location in each row of the matrix where the ridge orientation
changes from positive slope to negative slope to produce a well-formed arch. Associated with
each K-table entry are other elements that are used later to calculate the registration point. The
ROW and COL values are the position of the entry in the orientation matrix. The SCORE is how
well the arch is formed at this location. The BC SUM is the sum of this angle with its east
neighbor, while the AD SUM is BC SUM plus the one angle to the west and east of the BC
SUM. SUM HIGH and SUM LOW are summations of groups of angles below the one being
analyzed. For these two values, five sets of four angles are individually summed, and the lowest
and highest are saved in the K-table.

With the K-table filled in, each entry is then scored. The score indicates how well the arch is
formed at this point. The point closest to the core of the fingerprint is intended to get the largest
score. If scores are equal, the entry closest to the bottom of the image is considered the winner.
Calculating a score for a K-table entry uses six angles and one parameter, RK3. RK3 is the
minimum value of the difference of two angles. For this work, the parameter was set at 0
degrees, which is a horizontal line. The six angles are the entry in the K-table, the two angles to
its left and the three angles to its right. So if the entry in the K-table is (i,j), then the angles are at
positions (i,j - 2), (i,j - 1), (i,j), (i,j + 1), (i, j + 2), and (i, j + 3). These are labeled M, A, B, C, D,
and N, respectively. For each of the differences, M - B, A - B, C - N, and C - D, greater than
RK3, the score is increased by one point. If A has a positive slope, meaning the angle of A is
greater than RK3, or if M - A is greater than RK3, the score is increased by one point. If D has a
negative slope, meaning the angle of D is less than RK3, or if D - N is greater than RK3, then the
score is increased by one point. If N has a negative slope, then the score is increased by one
point. All these comparisons form the score for the entry.

Using the information gathered about the winning entry, a registration point is produced. First, it
is determined whether the fingerprint is possibly an arch; if so, the registration point (x, y) is
computed as:

()
() () βα +��

�

�
��
�

� −+
+−

= 1
1,,

, C
CRACRA

CRAx

() () ()() () ()() ()
() () ()11

1211
−+++

−+−++−+++=
ktsktskts

ktsRktsRktsRy βαβαβα

where A is the angle at an entry position, R is the row of the entry, C is the column of the entry, k
is the entry number, ts is a sum of angles, α is 16 (the number of pixels between orientation loci),

6 The new array is made by re-averaging the pixel-wise orientations with translated squares, rather than just
translating the first average-orientation array. This is done because the registration point found by R92, and hence
the prescribed translation vector, is defined more precisely than the crude 16-pixel spacing corresponding to one step
through the average orientation array.

25

and β is 8.5. The ts value is calculated by summing up to six angles. These angles are the
current angle and the five angles to its east. While the angle isn�t greater than 99°, its absolute
value is added to ts. For angles 89, 85, 81, 75, 100, and 60, the sum would be 330 (89 + 85 + 81
+ 75). Since 100 is greater than 99, the summation stops at 75.

For an image that is possibly something other than an arch, the computation of the registration
point is slightly more complex:

() ()1,,1 +−= CRACRAdsp

() ()1,1,12 ++−+= JLRAJLRAdsp

�
�
� ≥

=
otherwisedsp
dsp

dh
901

901
1

α
α

()
�
�
� >−

=
otherwise
dspdsp

dh
0

90290902
2

α

() 221 dhdhdh +=

()
() () βα +��

�

�
��
�

�
−+

+−
×= 1

1,,
,1 C

CRACRA
CRAxx

() βα +��
�

�
��
�

� −++= 1
2
,12 JL

dsp
JLRAxx

() 221 xx
ds

xxxxdhx +−=

dhRy −= α

Where A, R, C, α, and β are as before and JL is the cross-reference point column.
The left picture in Figure 12 shows the orientation array of the example fingerprint with its
registration point, and the standard registration point is marked; the right picture shows the
resulting registered version of the orientation array. Obviously some lower and left areas of the
registered array are devoid of data, which would have had to be shifted in from undefined
regions. Likewise, data that were in upper and right areas have fallen off the picture and are lost;
but the improved classification accuracy that we have obtained as a result of registration shows
that this is no great cause for concern. The optimal pattern of regional weights, discussed later,
also shows that outer regions of the orientation array are not very important. The test results in
[24] show that registration improves subsequent classification accuracy.

26

Figure 12. Left: Orientation array Right: Registered orientation array.

The plus sign is registration point (core) found by R92, and plus sign in
square is standard (median) registration point.

4.1.1.5 Feature Set Transformation [src/lib/pca/trnsfrm.c; trnsfrm()]
This step applies a linear transform to the registered orientation array. Transformation
accomplishes two useful processes. First, the reduction of the dimensionality of the feature
vector from its original 1680 dimensions to 64 dimensions (PNN) and 128 dimensions (MLP).
Second, the application of a fixed pattern of regional weights (PNN only) which are larger in the
important central area of the orientation array.

4.1.1.5.1 Karhunen-Loève Transform

The size of the registered orientation array (oa) representing each fingerprint is 1680 elements
(28×30 orientation vectors × two components per orientation vector). The size of these arrays
makes it computationally impractical to use them as the feature inputs into either of the neural
network classifiers (PNN/MLP).

It would be helpful to transform these high-dimensional feature vectors into much lower-
dimensional ones in such a way that would not be detrimental to the classifiers. Fortunately, the
Karhunen-Loève (K-L) transform [41] does exactly that. To produce the matrix that implements
the K-L transform, the first step is to make the sample covariance matrix of a set of typical
original feature vectors, the registered orientation arrays in our case. Then, a routine is used to
produce a set of eigenvectors of the covariance matrix, corresponding to the largest eigenvalues;
let m denote the number of eigenvectors produced. Then, for any n < m, the matrix w can be
defined to have as its columns the first n eigenvectors; each eigenvector has as many elements as
an original feature vector, 1680 in the case of orientation arrays. A version of a K-L transform7,

7 Usually the sample mean vector is subtracted from the original feature vector before applying Ψt, but we omit this
step because doing so simplifies the computations and has no effect on the final results of either classifier. If the user
needs it, a full version, that subtracts the mean vector from each feature vector, is included in src/bin/kltran.

27

which reduces an original feature vector u (an orientation array, thought of as a single 1680-
dimensional vector) to a vector w of n elements, can then be defined as follows:

uΨw t=

The K-L transform thus may be used to reduce the orientation array of a fingerprint to a much
lower-dimensional vector, which may be sent to the classifier. This dimension reduction
produces approximately the same classification results as would be obtained without the use of
the K-L transform but with large savings in memory and compute time. A reasonable value of n,
the number of eigenvectors used and hence number of elements in the feature vectors produced,
can be found by trial and error; usually n can be much smaller than the original dimensionality.
We have found 64 to be a reasonable n for PNN and 128 for MLP.

In earlier versions of our fingerprint classifier, we produced low-dimensional feature vectors in
this manner, using the arrays of (28 × 30) orientation vectors as the original feature vectors.
However, later experiments revealed that significantly better classification accuracy could be
obtained by modifying the production of the feature vector. The modification allows the
important central region of the fingerprint to have more weight than the outer regions; what we
call regional weights. This is discuss in the next section.

4.1.1.5.2 Regional Weights [src/bin/optrws/optrws.c]

During testing, it was noted that the uniform spacing of the orientation measurements throughout
the picture area could probably be improved by using a non-uniform spacing. The non-uniform
spacing concentrated the measurements more closely together in the important central area of the
picture and had a sparser distribution in the outer regions. We tried this [23], keeping the total
number of orientation measurements the same as before (840) in order to make a fair
comparison, and the result was indeed a significant lowering of the classification error rate.

Eventually, we realized that the improved results might not have been caused by the non-uniform
spacing but rather by the mere assignment of greater weight to the central region, caused by
placing a larger number of measurements there. We tested this hypothesis by reverting to the
uniformly spaced array of orientation measurements, but now with a non-uniform pattern of
regional weights applied to the orientation array before performing the K-L transform and
computing distances. The application of a fixed pattern of weights to the features before
computing distances between feature vectors is equivalent to the replacement of the usual
Euclidean distance by an alternative distance. In [42], Specht improves the accuracy of PNN in
about the same manner: pp. 1-765-6 described the method used to produce a separate σ value for
each dimension (feature).

To keep the number of weights reasonably small and thus control the amount of runtime that
would be needed to optimize them, we decided to assign a weight to each 2×2 block of
orientation-vectors. This produced 210 (14×15) weights, versus assigning a separate weight to
each of the 840 orientation-vectors. Optimization of the weights was done using a very simple
form of gradient descent, as discussed in Section 4.1.3.1.1. The resulting optimal (or nearly
optimal) weights are depicted in Figure 13. The gray tones represent the absolute values of the
weights (their signs have no effect), with the values mapped to tones by a linear mapping that
maps 0 to black and the largest absolute value that occurred, to white. These weights can be
represented as a diagonal matrix W of order 1680. Their application to an original feature vector
(orientation array) u, to produce a weighted version ũ, is given by the matrix multiplication

28

Wuu =~

We have tried optimizing a set of weights to be applied directly to the K-L features, but this
produced poor generalization results. The regional weights described here are not equivalent to
any set of weights (diagonal matrix) that could be applied to the K-L features. Their use is
approximately equivalent to the application of the non-diagonal matrix ψψψψtWψψψψ mentioned in
Section 4.1.3.1.1, to the K-L feature vectors. We also have tried optimizing a completely
unconstrained linear transform (matrix) to be applied to the K-L feature vectors before
computing distances; that produced impressive lowering of the error during training but
disastrous generalization results. Among our experiments involving the application of linear
transforms prior to PNN distance computations, we obtained the best results by using regional
weights.

Figure 13. Absolute values of the optimized regional weights.
Each square represents one weight, associated with a 2××××2 block from the
registered orientation array.

4.1.1.5.3 Combined Transform [src/bin/mktran/mktran.c]
Clearly, it is reasonable to apply the optimized regional weights W, and then to reduce
dimensionality with ψψψψt before letting the PNN classifier compute distances. An efficient way to
do this is to make the combined transform matrix T =ψψψψtW then when running the classifier on a
fingerprint, to use

Tuw =

to convert its orientation array directly into the final feature-vector representation.8

8 Alter optimizing the weights W, we could have made new eigenvectors from the covariance matrix of the weighted
original-feature vectors. The ψψψψtW resulting from this new ψψψψt would presumably have then produced a more efficient
dimensionality reduction than we now obtain, allowing the use of fewer features. We decided not to bother with this,
since the memory and time requirements of the current feature vectors are reasonable.

29

4.1.1.6 Probabilistic Neural Network Classifier [src/lib/pca/pnn.c; pnn()]
This step takes as its input the low-dimensional feature vector that is the output of the transform
discussed in Section 4.1.3.1, and it determines the class of the fingerprint. The Probabilistic
Neural Network (PNN) is described by Specht in [43]. The algorithm classifies an incoming
feature vector by computing the value, at its point in feature space, of spherical Gaussian kernel
functions centered at each of a large number of stored prototype feature vectors. These
prototypes were made ahead of time from a training set of fingerprints of known class by using
the same preprocessing and feature extraction that was used to produce the incoming feature
vector. For each class, an activation is made by adding up the values of the kernels centered at
all prototypes of that class; the hypothesized class is then defined to be the one whose activation
is largest. The activations are all positive, being sums of exponentials. Dividing each of the
activations by the sum of all activations produces a vector of normalized activations, which, as
Specht points out, can be used as estimates of the posterior probabilities of the several classes.
In particular, the largest normalized activation, which is the estimated posterior probability of the
hypothesized class, is a measure of the confidence that may be assigned to the classifier's
decision.9

In mathematical terms, the above definition of PNN can be written as follows, starting with
notational definitions:

N = number of classes (6 in PCASYS)
Mi = number of prototype prints of class i (1 < i < N)

)(i
jx = feature vector from jth prototype print of class i (1 < j < Mi)

w = feature vector of the print to be classified
β = a smoothing factor
ai = activation for class i
ãi = normalized activation for class i
h = hypothesized class
c = confidence

For each class i, the PNN computes an activation:

()() ()()()�
=

−−−=
iM

j

i
j

ti
jia

1
exp xwxwβ

It then defines h to be the i for which ai is greatest, and defines c to be the hth normalized
activation:

�
=

==
N

i
ihh aaac

1

~

9 This naive version of PNN must compute the distance of the incoming feature vector from each of the many
prototype feature vectors, possibly many cycles. Various methods have been found for increasing the speed of
nearest-neighbors classifiers, a category PNN may be considered to fall into (see, for example, [44], and [45] for a
very fast tree method). The classification accuracy of fast approximations to the naive PNN may suffer at high
rejection levels. For that reason, and because the naive PNN takes only a small fraction of the total time used by the
PCASYS classification system (image enhancement takes much longer), we have used the naive version.

30

Figure 14 is a bar graph of the normalized activations produced for the example fingerprint.
Although PNN only needs to normalize one of the activations, namely the largest, to produce the
confidence, all 6 normalized activations are shown here. The whorl (W) class has won and so is
the hypothesized class (correctly as it turns out), but the left loop (L) class has also received a
fairly large activation and therefore the confidence is only moderately high.

Figure 14. PNN output activations for the example fingerprint.

Figure 15. MLP output activations for the example fingerprint.

31

4.1.1.7 Multi-Layer Perceptron Neural Network Classifier
[src/lib/pca/mlp_sing.c; mlp_single()]

This alternative classifier takes as input the low-dimensional feature vector, non-optimized, as
discussed in Sections 4.1.1.5 and 4.1.2.4 and a set of MLP weights. The weights are the result of
several training runs of MLP in which the weights are optimized to produce the best results with
the given training data. Section 4.1.3 discusses the training process in more detail. The output
of mlp_single() is a set of confidence levels for each of the possible output classes and an
indication of which hypothetical class had the highest confidence. Figure 15 shows the MLP
output activations for the example fingerprint. The whorl (W) class has the highest activation
and is the correct answer.

4.1.1.8 Auxiliary Classifier: Pseudo-ridge Tracer [src/lib/pca/pseudo.c; pseudo()]
This step takes a grid of ridge orientations of the incoming fingerprint and traces pseudo-ridges
[46], which are trajectories that approximately follow the flow of the ridges. By testing the
pseudo-ridges for concave-upward shapes, the routine detects some whorl fingerprints that are
misclassified by the classifiers. We were motivated to produce a whorl-detector when we
realized, upon examining the prints misclassified by the NN classifiers, that many of them were
whorls.

The routine takes as input an array of local averaged ridge orientations.10 Another input is a
small binary image that shows the region of the segmented image comprising the inked
foreground rather than the lighter background. First, the routine changes to zero vectors any of
the orientation vectors that either are not on the foreground, or are smaller than a threshold in
squared length. (Small squared length indicates uncertainty as to the orientation.) Next, it
performs a few iterations of a smoothing algorithm, which merely replaces each vector by an
average of itself and its four neighbors; this tends to improve anomalous or noisy vectors. Then,
it finds out which vectors are either off the foreground or, in their now smoothed state, smaller
than a threshold in squared length, and it marks these locations as bad, so that they will not be
used later. The program also makes some new representations of the orientation vectors - as
angles, and as step-vectors of specified length - which it uses later for efficient tracing of the
pseudo-ridges (an implementation detail).

Having finished with this preliminary processing, the process then traces pseudo-ridges. Starting
at a block of initial locations in the orientation array, it makes a pseudo-ridge by following the
orientation flow, first in one of the two possible directions away from the initial point and then in
the other direction. For example, if the ridge orientation at an initial point is �northeast-
southwest� then the program starts out in a northeast direction, and later comes back to the initial
point and goes in a southwest direction. If a location has been marked as bad, then no
trajectories are started there. A trajectory is stopped if it reaches a limit of the array of locations,
reaches a bad location, if the turn required in the trajectory is excessively sharp, or if a specified
maximum number of steps have been taken. The two trajectories traced out from an initial point
are joined end to end, producing a finished pseudo-ridge. The pseudo-ridge only approximately
follows the ridges and valleys, and is insensitive to details such as bifurcations or small scars.

10 The array used has its constituent orientation vectors spaced half as far apart as those comprising the arrays used
earlier, and it does not undergo registration.

32

Figure 16. Left: Pseudo-ridges traced to find concave-upward lobe. Right: Concave-

upward lobe that was found.

After the routine has finished tracing a pseudo-ridge, it goes through it from one end to the other
and finds each maximal segment of turns that are either all left (or straight) turns, or all right
turns. These segments can be thought of as lobes, each of which makes a sweep in a constant
direction of curvature. A lobe qualifies as a concave upward shape, if it�s orientation, at the
sharpest point of curvature (vertex), is close to horizontal and concave upward, and it has a
minimum amount of cumulative curvature on each side of it�s vertex. The routine checks each
lobe of the current pseudo-ridge to find out if the lobe qualifies as a concave upward shape. If no
lobe qualifies, it advances to the next location in the block of initial points and makes a new
pseudo-ridge. The routine stops when it either finds a concave upward shape or exhausts all
lobes of all pseudo-ridges without finding one. The final output shows if it did or did not find a
concave upward shape. Figure 16 shows a concave upward shaped lobe that was found.

This pseudo-ridge tracer is useful as a detector of whorls. It rarely produces a false positive,
defined as finding a concave upward lobe in a print that is not a whorl. It is more likely to
produce a false negative, defined as not finding a concave upward lobe although a print is a
whorl. The next section describes a simple rule that is used to combine the pseudo-ridge tracer's
output with the output of the main classifier (PNN or MLP), thereby producing a hybrid
classifier that is more accurate than the main classifier alone.

The ridge tracer has many parameters that may be experimented with if desired as well as the
parameter for combining the classifier and ridge tracing results (Section 0), but reasonable values
are provided in the default parameter file.

4.1.1.9 Combining the Classifier and Pseudo-ridge Outputs
[src/lib/pcs/combine.c; combine()]

This final processing module takes the outputs of the main Neural Network (NN) classifier and
the auxiliary pseudo-ridge tracer, and makes the decision as to what class, and confidence, to
assign to the fingerprint.

33

The NN classifier produces a hypothesized class and a confidence. The pseudo-ridge tracer
produces a single bit of output, whose two possible values can be interpreted as the print is a
whorl and it is not sure whether the print is a whorl. The pseudo-ridge tracer is never sure that a
print is not a whorl. A simple rule was found for combining the NN and pseudo-ridge tracer
results, to produce a classifier more accurate than the NN alone. The rule is described by this
pseudo-code:

if(pseudo-ridge tracer says whorl) {
hypothesized-class = whorl
if(pnn_hypothesized_class == whorl)

confidence = 1.
else

confidence = .9
}
else { /* pseudo-ridge tracer says not clear whether whorl */

hypothesized_class = pnn_hypothesized_class
confidence = pnn_confidence

}

This is a reasonable way to use the pseudo-ridge tracer as a whorl detector, because as noted in
the preceding section, this detector has very few false positives but a fair number of false
negatives. So, if the whorl detector detects a whorl, the print is classified as a whorl even if the
NN disagrees, although disagreement results in slightly lower confidence, since whorl detection
implies that the print is almost certainly a whorl. If the whorl detector does not detect a whorl,
then the NN sets the classification and confidence.

Since the whorl detector detected a whorl for the example print and the NN classified this print
as a whorl, the final output of the classifier had a hypothesized class of whorl and a confidence
of 1. As it turns out, this is the best possible result that could have been obtained for this print,
since it actually is a whorl.

The pseudo-ridge tracer improves the result for some prints the NN would have correctly
classified as whorls anyway (such as the example print), by increasing the classification
confidences. It also improves the result for some whorls that the NN misclassifies, by causing
them to be correctly classified as whorls. The tracer harms the result only for a very small
number of prints, the non-whorls that it mistakenly detects to be whorls. The overall effect of
combining the pseudo-ridge tracer with the main NN classifier is a lowering of the error rate,
compared to the rate obtained using the NN alone.

4.1.2 Computing Features
The following subsections describe the process used to get the features that will be independently
optimized for each classifier. The name of the command is listed for each step. For details on
the arguments and parameter files used, see the Reference Manual in Appendix B. Section 4.1.3
discusses how the features are optimized for each classifier.

34

4.1.2.1 Make the Orientation Arrays
mkoas

This command reads the fingerprint image files and extracts the orientation array (oa). This is
run on the full set of fingerprints that will be used as the �training set� for the neural network
classifier.

4.1.2.2 Make the Covariance Matrix
meancov

This command reads a set of oas and computes their sample mean and sample covariance
matrix.11 Is it typically run on the full set of orientation arrays from mkoas but could be run on
just a reasonably large subset of the training set.

4.1.2.3 Make the Eigenvalues and Eigenvectors
eva_evt

This program reads the covariance matrix and computes the eigenvalues, and the corresponding
eigenvectors. The eigenvalues are not needed in the training process, but may be of theoretical
interest. The program calls a sequence of CLAPACK routines [47].

4.1.2.4 Run the Karhunen-Loève Transform
lintran

This command applies a specified linear transform to a set of vectors. The transform matrix is
the eigenvectors from eva_evt. The set of vectors to which the transform matrix is being
applied is the oas files, from mkoas, for the training fingerprints. This set of the resulting low-
dimensional Karhunen-Loève (K-L) vectors will be used as the training set for the MLP
classifier when optimizing the classifier weights. A subset of the K-L vectors will be used as
data by optrws (optimize regional weights command, below) to help optimize the PNN
classifier. Remember this version of the K-L transform does not subtract the mean vector from
each feature vector. A complete version of the K-L transform is included in the command
kltran.

4.1.3 Training the Neural Networks
This section explains how to optimize the features for the PNN and MLP classifiers.
Optimization for PNN is done using the optrws (regional weights optimization) and optosf
(optimize the overall smoothing factor) commands, described in Section 4.1.3.1. MLP uses the
features from Section 4.1.2 as its input but does a series of �training� runs to optimize its set of
neural network weights. Section 4.1.3.2 discusses the training process for MLP that results in
the set of optimized weights used by the classifier.

11 The mean is not needed for further processing, but is computed because if multiple processors are available, it
may be possible to save time by running several simultaneous instances of meancov on different subsets of the oas.
The resulting output files are combined using the cmbmcs command, but to combine several covariance matrices,
cmbmcs needs the means as wells as the covariance matrices of the subsets.

35

4.1.3.1 Optimizing the Probabilistic Neural Network

Several steps are needed to optimize the feature set for PNN. First a set of regional weights are
computed that place emphasis on the most significant regions of the fingerprint (typically the
core area). These results are combined with the eigenvectors to produce a transform matrix to
use when reducing the dimensionality of the original oa features. Finally, the overall smoothing
factor (osf) for PNN is optimized.

4.1.3.1.1 Optimize the Regional Weights
optrws

This command optimizes the regional weights. First, it finds an optimal single value to set all
the weights. Having thus defined an initial point in weight space, the program finishes the
optimization by a very simple version of gradient descent. It estimates (by secant method) the
gradient of the activation error rate, using the PNN classifier and its prototype features.
Classification on the prototype features is done by excluding the print being classified from the
prototypes (i.e. leave-one-out). Then it searches the line pointing in the anti-gradient direction
from the initial point, using a very simple method to find the minimum (or at least a local
minimum) of the error along this line. The program then estimates the gradient there and does
another downhill search. It stops after a specified number of iterations. A reasonable number of
iterations are three or four, which may take several hours of time to run on a typical workstation,
if using a few thousand prints as the data. If several processors are available, it may be possible
to save optrws runtime by setting its parameters so that, in one of its phases of processing, it
spawns several processes to divide the work. Consult the manual page in Appendix B and the
default parameter file mentioned in the manual page to find about this. If your operating system
does implement fork() and execl(), which are required by the several-processes version of
optrws, then optrws can link properly (i.e., without the fork and execl calls becoming
unresolved references) by adding the argument -DNO_FORK_AND_EXECL to the definition of
CLAGS in src/bin/optrws/makefile.mak. That will cause a different subset of the source
code file to be compiled (conditional compilation).

In order to efficiently evaluate the error function at a point in regional-weights space, optrws
produces the square matrix ΨtWΨ of order NFEATS from the eigenvectors Ψ and the diagonal
matrix W that is equivalent to the regional weights. It then applies this matrix to all the K-L
feature vectors before computing distances. This is only an approximation to the direct use of
the regional weights, because of the use of only a partial set of eigenvectors, which also are not
recomputed each time the weights are changed. The results seem satisfactory, and the total
runtime is much smaller than for direct methods.

4.1.3.1.2 Make the Transform Matrix
mktran

Reads the optimized regional weights made by optrws, and the eigenvectors, and makes the
transform matrix ΨtW used in the next step.

36

4.1.3.1.3 Apply the Transform Matrix
lintran

Lintran should be run on the entire set of prototype oas made earlier, using the transform
matrix made by mktran. The resulting feature vectors will be the prototype feature vectors used
by the finished PNN classifier. The transform matrix applies both the optimal pattern of regional
weights, and uses the eigenvectors to accomplish dimension reduction. When the finished
classifier runs on an incoming print, it applies this same transform matrix to the oa made from
the print and then sends the resulting feature vector to PNN. This approximately duplicates the
effect that would have resulted if PNN had been used on the oas themselves, but with the
optimized regional weights pattern applied before the distance computation.

4.1.3.1.4 Optimize the Overall Smoothing Factor
optosf

Optimizes an overall smoothing factor (osf) used by the PNN classifier. As noted above, the
optimization of the regional weights should be done using the K-L vectors of only a subset of the
prototype prints, to save time. Since the full set of prototypes will be used in the finished
classifier, better accuracy is expected if the classifier uses an osf that is slightly larger than 1,
which is the value used during regional weights optimization. This corresponds to Specht�s
observation [43] that as the number of prototypes increases, the optimal smoothing parameter σ
decreases. Increasing the osf corresponds to decreasing σ. If the full prototype set was used to
optimize the regional weights, then optosf should not be run and the osf set to 1.

Completing the above optimization process results in the finished PNN classifier data, consisting
of prototype feature vectors, a transform matrix that will be applied to the oas of incoming
fingerprints, and the overall smoothing factor. The PNN classification system then consists of a
combination of the PNN classifier and the pseudo-ridge tracer.

4.1.3.2 Training the Multi-layer Perceptron Neural Network
mlp

The program mlp trains a 3-layer feed-forward linear perceptron [48] using novel methods of
machine learning that help control the learning dynamics of the network. As a result, the derived
minima are superior, the decision surfaces of the trained network are well formed, the
information content of confidence values is increased, and generalization is enhanced. As a
classifier, MLP is superior to the PNN classifier in terms of its memory requirements and
classification speed. The theory behind the machine learning techniques used in this program is
discussed in References [49], [50], & [51]. The main routine for this program is found in
src/bin/mlp/mlp.c and the majority of supporting subroutines is located in the library
src/lib/mlp.

Machine learning is controlled through a batch-oriented iterative process of training the MLP on
a set of prototype feature vectors, then evaluating the progress made by running the MLP (in its
current state) on a separate set of feature vectors. Training on the first set of patterns then
resumes for a predetermined number of passes through the training data and then the MLP is
tested again on the evaluation set. This process of training and then testing continues until the
MLP has been determined to have satisfactorily converged. For details on the command line and

37

specfile parameters see the included manual page in the Reference Manual in Appendix B or on
the CD-ROM.

This command trains or tests an MLP neural network suitable for use as a classifier. The
network has an input layer, a hidden layer, and an output layer, each layer comprising a set of
nodes. The input nodes are feed-forwardly connected to the hidden nodes, and the hidden nodes
to the output nodes, by connections whose weights (strengths) are trainable. The activation
function used for the hidden nodes can be chosen to be sinusoid, sigmoid (logistic), or linear, as
can the activation function for the output nodes. Training (optimization) of the weights is done
using either a Scaled Conjugate Gradient (SCG) algorithm [52], or by starting out with SCG and
then switching to a Limited Memory Broyden Fletcher Goldfarb Shanno (LBFGS) algorithm
[53]. Boltzmann pruning [54], i.e. dynamic removal of connections; can be performed during
training if desired. Prior weights can be attached to the patterns (feature vectors) in various
ways.

When mlp is invoked, it performs a sequence of runs. Each run does either training, or testing:

training run: A set of patterns is used to train (optimize) the weights of the network.
Each pattern consists of a feature vector, along with either a class or a target vector. A
feature vector is a tuple of floating-point numbers, which typically has been extracted
from some natural object such as a fingerprint image. A class denotes the actual class to
which the object belongs, for example "whorl.� The network can be trained to become a
classifier: it trains using a set of feature vectors extracted from objects of known classes.
Training runs finish by writing the final values of the network weights as a file. It also
produces a summary file showing information about the run, and optionally produces a
longer file that shows the results the final (trained) network produced for each individual
pattern.

testing run: A set of patterns is sent through a network, after the network weights are
read from a file. The output values, i.e. the hypothetical classes are compared with target
classes or vectors, and the resulting error rate is computed. The program can produce a
table showing the correct classification rate as a function of the rejection rate.

Output files generated from mlp training are provided in
test/pcasys/execs/mlp/mlp_dir. The specfile used by mlp to train the classifier on
fingerprint images is spec. This specfile requires the input files patnames, patwts, priors,
the training set fv1-9mlp.kls, and the testing set sv10mlp.kls, and it invokes 5 sequential
pairs of mlp training/testing sessions. Three files are generated from each training/testing
session. For example, from the first session: trn1.err, trn1l.err, trn1.wts, and
tst1.err are created. Trn1.err is a report of the progressive error rates achieved on the
training set. Trn1l.err is a file containing the output activations for each fingerprint in the
training set. Trn1.wts is the resulting weights trained in the session. Tst1.err is a report of
the error rate achieved on the testing set using the most recent set of weights from training.

For the next training/testing session, training resumes with the MLP network initialized to the
weights contained in trn1.wts. The output files from this session are trn2.err, trn2.err,
trn2.wts, and tst2.err. The weights file trn2.wts is then used as input to the next session
and so on until the final session is complete. The files trn5.err, trn5l.err, and trn5.wts
contain the final results of training and tst5.err contains the error rate achieved by using the

38

final set of weights to classify the testing set contained in sv10mlp.kls. Appendix A gives
more details about the output files of the mlp training process including formulas and sample
data from PCASYS training.

There are numerous parameters (see the manual page for details on all the parameters) to be
specified in the specfile for running the program mlp. A good strategy for training the MLP on a
new classification problem is to first work with a single training/testing session. Try different
combinations of parameter settings until a reasonable amount of training is achieved within the
first 50 iterations, for example. This typically involves using a relatively high value for
regularization (such as 2.0 with fingerprint classification); varying the number of hidden nodes in
the network; and trying different levels of temperature, typically incrementing or decrementing
by powers of 10. For fingerprint classification, the number of hidden nodes is typically set to
equal or greater than the number of input KL features, and a temperature of 1.0e-5 works well.

Once reasonable training is achieved, these parameters should remain fixed, and successive
sessions of training/testing are performed according to a schedule of decreasing regularization.
For fingerprint classification it works well to specify about 50 iterations for each training
session, and to use a regularization factor schedule starting at 2.0 and decreasing to 1.0, 0.5, 0.2,
0.1 for each successive training session. This process of multiple training/testing sessions
initiates MLP training within a reasonable solution space. It also enables the machine learning to
refine its solution so that convergence is achieved while maintaining a high level of
generalization by controlling the dynamics of constructing well �behaved� decision surfaces.
The intermediate testing sessions allow one to evaluate the progress made on an independent
testing set, so that a judgment can be made as to whether incremental gains in training have
reached diminishing returns. The theory behind the control of dynamical changes within the
MLP learning process is discussed in References [49], [50], & [51].

Training the MLP in this fashion generates superior decision surfaces thus providing robust
activations for use as confidence values when rejecting confusing classification. This training
process is of course done once off-line, and then the resulting weight files are reused by the
actual recognition system. In practice, the user could use the mlp command to do a batch run
over a set of test data versus running the PCASYS commands and processing each test image
individually. The PCASYS commands are merely for demonstrating the procedure used to get the
final classification results and when possible allow the user to see graphics of the progress at
each step along the way.

39

4.1.4 Running PCASYS

4.1.4.1 PCASYS Data Files

For the purpose of conveniently storing and transporting data, formats have been defined for
three types of data.

matrix: A matrix of real numbers.
covariance: A covariance matrix of real numbers. This format saves disk space by
storing only the non-strict lower triangle, which is sufficient because a covariance matrix
is symmetric.
classes: A list of classes, thought of as unsigned characters. For use with fingerprints in
PCASYS, class values 0 through 5 denote arch, left loop, right loop, scar, tented arch, and
whorl respectively. A classes file can be used for any classification situation with no
more than 255 classes.

Each type of file can exist in either an ASCII or a binary storage mode. A data file contains
header information followed by the data itself. The header information contains a description
string (can be of any length, but must contain no new lines; or can be left empty), code bytes
indicating the file type and storage mode, and additional information specific to the file type.
Additional information includes: if matrix, the two dimensions; if covariance, the order (i.e.,
what both dimensions of the symmetric matrix are) and the number of vectors used to build the
covariance; and if classes, the number of elements. The datainfo command can be run on any
PCASYS data file. Datainfo writes a report of the header information to the standard output.

4.1.4.2 Commands

Installation of PCASYS provides the following commands, shown here with short descriptions.
For a complete description and usage instructions for any of these commands, consult the manual
pages in Appendix B or on the CD-ROM.

4.1.4.2.1 Classifier Demos

pcasys non-graphical demo
pcasysx graphical demo

4.1.4.2.2 Training (Optimization) Commands

eva_evt finds the eigenvalues and eigenvectors
lintran runs a linear transform on a set of vectors
meancov makes mean and covariance from a set of vectors
kltran runs a Karhunen-Loève transform on a set of vectors
mkoas makes orientation arrays from fingerprints
mktran makes transform matrix incorporating the optimized regional weights
optosf optimizes the overall smoothing factor
optrws optimizes the regional weights

40

4.1.4.2.3 Utility Commands

asc2bin converts an ASCII data file to binary
bin2asc converts a binary data file to ASCII
chgdesc changes the description string of a data file
cmbmcs combines several mean/covariance file pairs
datainfo reports the header info of a data file to standard output
oas2pics makes IHead pictures of orientation arrays
rwpics makes IHead pictures of regional weights or estimated gradients
stackms stacks several matrix files together

4.1.4.3 Running the Classifier

4.1.4.3.1 Graphical and Non-graphical Versions

The classifier has a graphical version (pcasysx) and a non-graphical version (pcasys). The
graphical version, which requires the X Window System, produces windows on the screen
containing graphics showing the results of the phases of processing used to classify each
fingerprint. Many of the illustrations in this report were made from screen dumps of the
graphical demo. The non-graphical version classifies the fingerprints but produces no graphics;
it is suitable if you do not have X Windows, or for greatest running speed. Both versions
optionally produce a stream of messages on the terminal showing which fingerprint the classifier
is working on and what phase of processing it is performing, and both versions produce an
output file.

4.1.4.3.2 Default Parameters and Specifying Parameters

The default files needed by the classifier are located in the distribution's top-level pcasys
directory. The subdirectory pcasys/images contains a set of images used to create the screens
when running the graphics version. The subdirectory pcasys/parms has all the default
parameter files used by the classifier. The pcasys/weights directory is split into two
subdirectories pnn and mlp, which contain the optimized prototypes for each of the classifiers.
The 2700 sample images used by the classifier are located in test/pcasys/data/images. If
the user needed to save disk space this directory could be created as a link to the mounted
CD-ROM.

Please note that if the installation directory is other than /usr/local/nfis, then by default the
PCASYS utilities will not know where the parameter files are located in the distribution. In this
case, the definition for INSTALL_DIR in the header file include/little.h must be changed
prior to compilation. See Section 2.1 for installation instructions.

4.1.4.3.3 Output File

The output file has a line for each of the fingerprints that were classified. Each line shows: the
fingerprint filename; the actual class (A, L, R, S, T, and W stand for the pattern-level classes
arch, left loop, right loop, sear, tented arch, and whorl); the output of the classifier (a
hypothesized class and a confidence); the output of the auxiliary pseudo-ridge tracing whorl

41

detector (whether or not a concave-upward shape, a �conup,� was found); the final output of the
hybrid classifier, which is a hypothesized class and a confidence; and whether this hypothesized
class was right or wrong. The output showing the first and last 10 sample images using the PNN
classifier is:
s0024301.wsq: is W; nn: hyp W, conf 0.59; conup y; hyp W, conf 1.00; right
s0024302.wsq: is R; nn: hyp R, conf 0.88; conup n; hyp R, conf 0.88; right
s0024303.wsq: is R; nn: hyp R, conf 1.00; conup n; hyp R, conf 1.00; right
s0024304.wsq: is R; nn: hyp R, conf 1.00; conup n; hyp R, conf 1.00; right
s0024305.wsq: is R; nn: hyp R, conf 0.99; conup n; hyp R, conf 0.99; right
s0024306.wsq: is L; nn: hyp L, conf 0.99; conup n; hyp L, conf 0.99; right
s0024307.wsq: is L; nn: hyp L, conf 0.94; conup n; hyp L, conf 0.94; right
s0024308.wsq: is L; nn: hyp L, conf 0.99; conup n; hyp L, conf 0.99; right
s0024309.wsq: is L; nn: hyp L, conf 1.00; conup n; hyp L, conf 1.00; right
s0024310.wsq: is L; nn: hyp L, conf 1.00; conup n; hyp L, conf 1.00; right
…
s0026991.wsq: is W; nn: hyp W, conf 1.00; conup y; hyp W, conf 1.00; right
s0026992.wsq: is W; nn: hyp W, conf 1.00; conup y; hyp W, conf 1.00; right
s0026993.wsq: is T; nn: hyp A, conf 0.79; conup n; hyp A, conf 0.79; wrong
s0026994.wsq: is W; nn: hyp W, conf 1.00; conup y; hyp W, conf 1.00; right
s0026995.wsq: is W; nn: hyp W, conf 1.00; conup y; hyp W, conf 1.00; right
s0026996.wsq: is W; nn: hyp W, conf 0.84; conup y; hyp W, conf 1.00; right
s0026997.wsq: is W; nn: hyp W, conf 0.75; conup y; hyp W, conf 1.00; right
s0026998.wsq: is L; nn: hyp L, conf 0.84; conup n; hyp L, conf 0.84; right
s0026999.wsq: is W; nn: hyp W, conf 1.00; conup y; hyp W, conf 1.00; right
s0027000.wsq: is W; nn: hyp W, conf 0.96; conup y; hyp W, conf 1.00; right

pct error: 7.07

A L R S T W
A 41(83.7) 3(6.1) 0(0.0) 0(0.0) 4(8.2) 1(2.0)
L 3(0.4) 784(97.5) 3(0.4) 0(0.0) 5(0.6) 9(1.1)
R 7(1.0) 6(0.8) 699(95.1) 0(0.0) 5(0.7) 18(2.4)
S 0(0.0) 4(80.0) 0(0.0) 0(0.0) 1(20.0) 0(0.0)
T 19(22.6) 26(31.0) 14(16.7) 0(0.0) 25(29.8) 0(0.0)
W 1(0.1) 35(3.4) 27(2.6) 0(0.0) 0(0.0) 960(93.8)

The last part of the output file is a brief summary of the results. First, there is the percent error,
i.e. the percentage of the fingerprints that were classified incorrectly. Following this is a
confusion matrix. It has the same format as Table 2 and Table 3, described in the next section.

4.1.5 Classification Results

The fingerprint images used to train and test the PCASYS classifier were taken from NIST
Special Database 14 (SD14) [20]. This database consists of images scanned from 2700 pairs of
standard fingerprint cards. Each pair of cards contains fingerprints taken from a single
individual, but captured on two different occasions. One card is the card stored in the FBI file
for this person and is denoted the file card. The other card was sent in to be searched against the
database and is denoted the search card. Each card was scanned at 19.69 pixels per millimeter
(500 pixels per inch), then parsed into individual fingerprint images, by cutting out rectangles of
predefined locations and dimensions, corresponding to the printed boxes in which the rolled
finger impressions were made.

42

We trained (optimized) the main classifiers using file prints f0000001.wsq through
f0024300.wsq of SD14. Then, the finished classification system was made by adding to the
classifier the pseudo-ridge tracer, with its parameters set to values that had been arrived at much
earlier as a result of testing. With all aspects of the classification system settled, we then tested
its accuracy on search prints s0024301.wsq through s0027000.wsq of SD14. The test set
that was used is provided on the CD-ROM in directory test/pcasys/data/images, in the
form of the original fingerprint images. The classifier may be run on this entire set if desired, to
duplicate the test results, or it may be run on a subset of these prints or on other prints provided
by the user. The 24,300 prints from which the NN training feature vectors are derived are not
provided on the CD-ROM because there would not be enough space, but the prototype feature
vectors themselves are provided (test/pcasys/data/oas).

The result of the test was an error rate (fraction of the test prints misclassified) of 7.07 % for
PNN and 8.19 % for MLP. More insight into the behavior of the classifiers can be obtained by
examining the confusion matrix of Table 2 and Table 3. This matrix has a row for each actual
class and a column for each hypothesized class, and it shows, as the non-parenthesized numbers,
how many test prints fell into each (actual class, hypothetical class) cell. For example, it shows
that 784 of the L (left loop) prints were classified as L and that 4 of them were classified as R
(right loop). Each parenthesized number is the percentage that its corresponding count
comprises of the sum of the counts in that row. For example, the parenthesized numbers show
that 97.4 % of the L prints were classified as L, and that 0.5 % of them were classified as R. The
entries shown in boldface correspond to correct classifications.

The 7.07 % (or 8.19 %) error rate and confusion matrix, pertain to the use of the classifier
without rejection: it is required to produce a hypothesized class for every print. However, if the
classifier is allowed to reject some prints, indicating it is uncertain about the hypothesized class,
it can achieve an error rate much lower than 7.07 % (or 8.19 %) on the prints that it accepts. The
confidence number produced by the classifier is used to provide an adjustable rejection level. To
implement rejection, it is sufficient to set a confidence threshold, then reject all prints for which
the classifier produces a confidence below the threshold. The larger a threshold is used, the
greater is the percentage of the prints that are rejected (obviously), but also the smaller is the
percentage of the accepted prints that are misclassified. The curves in Figure 17 are error vs.
reject curves that summarize this behavior, produced from the results of the test runs. Curves are
included for a classifier consisting of PNN or MLP alone or with the help of the pseudo-ridge
analyzer; clearly the hybrid classifier is more accurate than the PNN or MLP alone, at all
rejection levels.

43

Table 2. PNN Confusion matrix
Non-parenthesized: Actual count that occurred for that cell.
Parenthesized: Percentage of total row sums.

Table 3. MLP Confusion matrix
Same layout as Table 1.

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80

Reject Percentage

Er
ro

r P
er

ce
nt

ag
e

mlp_ntrc
mlp_trc
pnn_ntrc
pnn_trc

Figure 17. Error versus reject curves for PNN and MLP classifiers and hybrid

combinations.

Actual Hypothesized Class
Class A L R S T W

A 41 (83.7) 3 (6.1) 0 (0.0) 0 (0.0) 4 (8.2) 1 (2.0)
L 3 (0.4) 784 (97.5) 3 (0.4) 0 (0.0) 5 (0.6) 9 (1.1)
R 7 (1.0) 6 (0.8) 699 (95.1) 0 (0.0) 5 (0.7) 18 (2.4)
S 0 (0.0) 4 (80.0) 0 (0.0) 0 (0.0) 1 (20.0) 0 (0.0)
T 19 (22.6) 26 (31.0) 14 (16.7) 0 (0.0) 25 (29.8) 0 (0.0)
W 1 (0.1) 5 (3.4) 27 (2.6) 0 (0.0) 0 (0.0) 960 (93.8)

Actual Hypothesized Class
Class A L R S T W

A 10 (20.4) 20 (40.8) 18 (36.7) 0 (0.0) 0 (0.0) 1 (2.0)
L 0 (0.0) 783 (97.4) 4 (0.5) 0 (0.0) 0 (0.0) 17 (2.1)
R 0 (0.0) 9 (1.2) 704 (95.8) 0 (0.0) 0 (0.0) 22 (3.0)
S 0 (0.0) 3 (60.0) 2 (40.0) 0 (0.0) 0 (0.0) 0 (0.0)
T 0 (0.0) 43 (51.2) 40 (47.6) 0 (0.0) 0 (0.0) 1 (1.2)
W 0 (0.0) 29 (2.8) 12 (1.2) 0 (0.0) 0 (0.0) 982 (96.0)

44

4.2 MINDTCT

The algorithms used in MINDTCT were inspired by the Home Office�s Automatic Fingerprint
Recognition System; specifically the suite of algorithms commonly referred to as "HO39."[55]
The NIST software is an entirely original implementation exceeding the capabilities of HO39. It
incorporates new algorithms, a modular design, dynamic allocation, and flexible parameter
control, which provide a framework for supporting future enhancement and adaptation of the
technology. It should be noted that the algorithms and software parameters have been designed
and set to optimally process images scanned at 19.69 pixels per millimeter (ppmm) (500 pixels
per inch) and quantized to 256 levels of gray.

Figure 18. Minutiae detection process.

Once the software is successfully installed and compiled, the program, mindtct, is available for
detecting minutiae in a fingerprint image. This section describes each of the major steps in the
minutiae detection process. It should be noted that two generations of minutiae detection have
been developed prior to the public release of this software. Thus, mindtct calls second

1. Input ANSI/NIST File

2. Generate Image Maps

3. Binarize Image

4. Detect Minutiae

5. Remove False Minutiae

6. Count Neighbor Ridges

7. Assess Minutiae Quality

8. Output ANSI/NIST File

45

generation (or Version 2) routines. Version 1 routines are included in the libraries for
comparison, but in general, they will perform less satisfactorily. Figure 18 lists the functional
steps executed.

The software has been designed in a modular fashion so that each of the steps listed in Figure 18
is primarily executed by a single subroutine. This permits other alternative approaches to be
implemented and substituted into the process, and the overall impact on performance can be
evaluated. To support the many required operating parameters, a single global control structure
is used to record sizes, tolerances, and thresholds. This structure, lfsparm_V2, is automatically
constructed and initialized in the file src/lib/lfs/globals.c and the values of its members
are defined in src/include/lfs.h. Many of the principal control parameters are discussed in
this section.

4.2.1 Input ANSI/NIST File [src/lib/an2k/fmtstd.c; read_ANSI_NIST_file()]

Mindtct inputs a fingerprint image and automatically detects minutiae on the fingerprint. The
algorithms and parameters have been developed and set for images scanned at 19.69 ppmm and
quantized to 256 levels of gray. The application reads in an ANSI/NIST formatted file and
searches the file structure for a grayscale fingerprint record. Once found, the fingerprint image
in this record is processed. The application is capable of processing ANSI/NIST Type-4, Type-
13, and Type-14 fingerprint image records.[30] Currently, only the first grayscale fingerprint
record in the ANSI/NIST file is processed, but the application could be changed to process all
grayscale fingerprints in the file.

4.2.2 Generate Image Quality Maps [src/lib/lfs/maps.c; gen_image_maps()]
Because the image quality of a fingerprint may vary, especially in the case of latent fingerprints,
it is critical to be able to analyze the image and determine areas that are degraded and likely to
cause problems. Several characteristics can be measured that are designed to convey information
regarding the quality of localized regions in the image. These include determining the
directional flow of ridges in the image and detecting regions of low contrast, low ridge flow, and
high curvature. These last three conditions represent unstable areas in the image where minutiae
detection is unreliable, and together they can be used to represent levels of quality in the image.
Each of these characteristics is discussed below.

4.2.2.1 Direction Map [src/lib/lfs/dft.c; dft_dir_powers()]
One of the fundamental steps in this minutiae detection process is deriving a directional ridge
flow map, or direction map. The purpose of this map is to represent areas of the image with
sufficient ridge structure. Well-formed and clearly visible ridges are essential to reliably
detecting points of ridge ending and bifurcation. In addition, the direction map records the
general orientation of the ridges as they flow across the image.

To locally analyze the fingerprint, the image is divided into a grid of blocks. All the pixels
within a block are assigned the same results. Therefore, in the case of the direction map, all the
pixels in a block will be assigned the same ridge flow direction. Several considerations must be
made when using a block-based approach. First, it must be determined how much local
information is required to reliably derive the desired characteristic. This area is referred to as the
window. The characteristic measured within the window is then assigned to each pixel in the

46

block. It is typically desirable to share data used to compute the results assigned to neighboring
blocks. This way some of the image that contributed to one block�s results is included in the
neighboring block�s results as well. This helps minimize the discontinuity in block values as you
cross the boundary from one block to its neighbor. This �smoothing� can be implemented using
a system where a block is smaller than its surrounding window, and windows overlap from one
block to the next. This is illustrated in Figure 19.

Figure 19. Adjacent blocks with overlapping windows.

The large frame at the top of the figure depicts a window (in white) surrounding a smaller block
(in gray). Assuming that neighboring blocks are adjacent and non-overlapping, this scenario is
defined by three parameters: the window size �L,� the block size �M� and the offset of the block
from the window�s origin �N.� In the global control structure, lfsparms_V2, these parameters
are defined as MAP_WINDOWSIZE_V2=24, MAP_BLOCKSIZE_V2=8, and MAP_WINDOWOFFSET_V2=8
respectively. As a result, the image is divided up into a grid of 8×8 pixel blocks with each block
being assigned a result from a larger surrounding 24×24 pixel window, and the area for windows
of neighboring blocks overlap by up to 2/3.

The bottom row of frames in the Figure 19 illustrates how this works in practice. Designating
the address of a block by its (row index, column index), the left frame shows the first block (1,1)
being computed. The next frame advances to the next adjacent block to the right, block (1,2).
Correspondingly, its window is shifted 8 pixels, and the new block receives its results. Note that
there are two copies of the image being used. Each window operates on the original image data,

N

LM
N

L

M

L = 24 M = 8 N = 8

1,1 1,2

2,1 2,2

1,1 1,1 1,2 1,1 1,2

2,1

47

while block results are written to a separate output image. The third frame in the illustration
depicts the window configuration for block (2,1), and the fourth frame shows its right neighbor
being computed.

One additional consideration must be made when using blocks. It must be determined how to
handle the edges of the image. The dimensions of the image will likely not be an even multiple
of blocks, and the windows surrounding blocks along the perimeter of the image may extend off
the image. In this software, the image is padded by a margin of medium gray pixels (set to
intensity 128). This margin is sufficiently large to contain the perimeter windows in the image.
The processing of partial blocks is also accounted for at the right and bottom of the image. This
blocking scheme is implemented in src/lib/lfs/block.c; block_offsets().

Given the above approach for computing block results with an overlapping window, the
technique used for determining ridge flow direction in the image can be described. For each
block in the image, the surrounding window is rotated incrementally and a Discrete Fourier
Transform (DFT) analysis is conducted at each orientation. Figure 20 illustrates the incremental
rotation of the window. The top left box in the figure depicts a window with its rows rotated 90°
counterclockwise so that they are aligned vertically. This is considered orientation �0� in the
software. The parameter NUM_DIRECTIONS in the global control structure, lfspars_V2,
specifies the number of orientations to be analyzed in a semicircle. This parameter is set to 16,
creating an increment in angle of 11.25° between each orientation. These orientations are
depicted on the circle in the figure. The bottom row in the figure illustrates the incremental
rotation of the window�s rows at each defined orientation.

Figure 20. Window rotation at incremental orientations.

When determining the direction of ridge flow for a block, each of its window orientations is
analyzed. Within an orientation, the pixels along each rotated row of the window are summed
together, forming a vector of 24 pixel row sums. The 16 orientations produce 16 vectors of row
sums. Each vector of row sums is convolved with 4 waveforms of increasing frequency. These
are illustrated in Figure 21. The top waveform in the figure has a single period extending across
the length of the entire vector. The second waveform�s frequency is doubled from the first; the
third is doubled from the second, and so forth. Discrete values for the sine and cosine functions
at the 4 different frequencies are computed for each unit along the vector. The row sums in a
vector are then multiplied to their corresponding discrete sine values, and the results are

�

 1. 11.25° 2. 22.5° 3. 33.75° 8. 90° 15. 168.75°

�

24

24

 0. 0°

0 1 2 3
4

5
6
7
8
9

10
11

12
131415

∆ = 11.25°

48

accumulated and squared. The same computation is done between the row sums in the vector
and their corresponding discrete cosine values. The squared sine component is then added to the
squared cosine component, producing a resonance coefficient that represents how well the vector
fits the specific waveform frequency.

Figure 21. DFT waveform frequencies.

The spatial frequency of the top waveform in Figure 21 discretely represents ridges and valleys
with a width of approximately 12 pixels. The second waveform represents 6 pixel wide ridges
and valleys. The third waveform represents 3 pixel wide ridges and valleys. Finally, the fourth
waveform represents 1.5 pixel wide ridges and valleys. Given an image scanned at 19.69 ppmm,
these waveforms cover ridges and valleys ranging in width from 0.6 mm down to 0.075 mm.

The resonance coefficients produced from convolving each of the 16 orientation�s row sum
vectors with the 4 different discrete waveforms are stored and then analyzed. Generally, the
dominant ridge flow direction for the block is determined by the orientation with maximum
waveform resonance. The details are in the source code.

49

In Figure 22, an original fingerprint image is shown on the left. The image on the right, is the
same fingerprint image annotated with the ridge flow directions recorded in the resulting
direction map. Each direction in the map is represented as a rotated line segment centered within
its corresponding 8×8 pixel image block.

Figure 22. Direction map results.

4.2.2.2 Low Contrast Map [src/lib/lfs/block.c; low_contrast_block()]

It is difficult, if not impossible, to accurately determine a dominant ridge flow in certain portions
of a fingerprint image. This is true of low contrast areas that contain image background and
smudges. It is desirable to detect these areas and prevent artificially assigning ridge flow
directions where there really are no clearly defined ridges. To derive an arbitrary ridge flow
strictly from the data within these areas is problematic.

An image map called the low contrast map is computed where blocks of sufficiently low contrast
are flagged. This map separates the background of the image from the fingerprint, and it maps
out smudges and lightly-inked areas of the fingerprint. Minutiae are not detected within low
contrast blocks in the image.

One way to distinguish a low contrast block from a block containing well-defined ridges, is to
compare their pixel intensity distributions. By definition, there is little dynamic range in pixel
intensity in a low contrast area, so the distribution of pixel intensities will be very narrow. A
block containing well-defined ridges will, on the other hand, have a considerably broader range
of pixel intensities as there will be pixels ranging from very light in the middle of valleys to very
dark in the middle of ridges.

In order to determine if a block is low contrast, this software computes the pixel intensity
distribution within the block's surrounding window. A specified percent of the distribution�s
high and low tails are trimmed, and the width of the remaining distribution is measured. If the
measured width is sufficiently small, then the block is flagged in the map as having low contrast.
In the global control structure, lfsparms_V2, the parameter PERCENTILE_MIN_MAX=10

50

causing the lowest and highest 10 % of pixel intensities in the distribution to be trimmed. By
trimming the tails, the subsequent width measurement is made in a much more stable portion of
the distribution. The parameter MIN_CONTRAST_DELTA=5 is the pixel intensity threshold less
than which indicates a low contrast block. This threshold was derived empirically from a
training sample of low and high contrast blocks extracted from real fingerprint images. The
image maps are actually computed in this software on a 6-bit pixel intensity image with 64 levels
of gray. The threshold here of 5 actually corresponds to a threshold of 10 shades of gray in the
original 8-bit pixel intensity image with 256 levels of gray. In other words, if the dynamic range
of the center 80 % of a block�s pixel intensity distribution is not larger than 10 shades of gray, it
is determined to be low contrast.

The white cross marks in the corner of the fingerprint image in Figure 23 label blocks with
sufficiently low contrast.

Figure 23. Low contrast map results.

51

4.2.2.3 Low Flow Map [src/lib/lfs/maps.c; gen_initial_maps()]
It is possible, when deriving the initial direction map, for some blocks to have no dominant ridge
flow. These blocks typically correspond to low-quality areas in the image. Initially these blocks
are not assigned an orientation in the direction map, but subsequently some of these blocks may
be assigned an orientation by interpolating the ridge flow of neighboring blocks. The low flow
map marks the blocks that could not initially be assigned a dominant ridge flow.

In the event that minutiae are detected in these blocks, their assigned quality is reduced because
they have been detected within a less reliable part of the image. The white cross marks in the
fingerprint image in Figure 24 label blocks with no dominant ridge flow.

Figure 24. Low flow map results.

52

4.2.2.4 High Curve Map [src/lib/lfs/maps.c; gen_high_curve_map()]
Another part of fingerprint image that is problematic when it comes to detecting minutiae
reliably is in areas of high curvature. This is especially true of the core and delta regions of a
fingerprint.[36] The high curve map marks blocks that are in high-curvature areas of the
fingerprint. Two different measures are used. The first called, vorticity, measures the
cumulative change in ridge flow direction around all the neighbors of a block. The second
called, curvature, measures the largest change in direction between a block�s ridge flow and the
ridge flow of each of its neighbors. The details are in the source code.

In the event that minutiae are detected in these blocks, their assigned quality is reduced because
they have been detected within a less reliable part of the image. The white cross marks in the
fingerprint image in Figure 25 label blocks with high-curvature ridges.

Figure 25. High curve map results.

53

4.2.2.5 Quality Map [src/lib/lfs/quality.c; gen_quality_map()]
The final image map produced by this package is a quality map. As discussed, the low contrast
map, low flow map, and the high curve map all point to different low quality regions of the
image. The information in these maps is integrated into one general map, as shown in Figure 26,
and contains 5 levels of quality. The quality assigned to a specific block is determined based on
its proximity to blocks flagged in these various maps. The details are in the source code.

Figure 26. Quality map results.

0 0
0 1 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 2 1 1 0 0 0 0 0 0
0 1 1 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3 3 4 4 4 3 3 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 2 2 1 1 1 0 0 0 0
0 1 1 2 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 2 2 1 1 1 0 0 0
0 1 1 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 2 1 1 1 0 0
0 1 2 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 3 4 3 3 3 2 1 1 1 0
0 1 2 3 3 4 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 4 3 3 3 2 2 1 0
0 1 2 3 4 4 3 3 3 3 3 2 3 2 2 2 2 2 2 3 3 2 3 3 3 3 3 4 3 3 3 2 1 0
0 1 2 4 4 4 3 3 3 3 3 3 3 3 2 2 3 2 3 3 3 3 3 3 3 4 2 1 0
0 1 2 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 4 4 4 4 4 4 4 4 2 1 0
0 1 2 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 4 3 3 3 3 3 4 4 4 4 4 4 4 4 2 1 0
0 1 2 4 3 3 2 3 3 4 4 4 4 4 4 4 4 2 1 0
0 1 2 4 3 3 3 3 3 4 4 4 4 4 4 4 4 2 1 0
0 1 2 4 3 3 3 3 3 4 4 4 4 4 4 4 4 2 1 0
0 1 2 4 2 1 0
0 1 2 4 3 3 3 3 3 3 3 3 4 4 4 4 4 4 2 1 0
0 1 2 4 3 3 3 3 3 3 3 3 3 4 4 4 4 4 2 1 0
0 1 2 4 3 3 2 3 3 2 3 3 3 3 3 3 4 4 2 1 0
0 1 2 4 3 3 3 3 3 3 2 3 3 3 3 3 4 4 2 1 0
0 1 2 4 3 3 3 3 3 3 3 3 3 2 3 3 4 4 2 1 0
0 1 2 4 3 3 3 3 3 3 3 3 4 4 2 1 0
0 1 2 4 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 4 4 2 1 0
0 1 2 4 3 3 3 3 3 3 4 2 1 0
0 1 2 4 3 3 3 2 3 3 4 2 1 0
0 1 2 4 3 3 2 2 3 3 4 2 1 0
0 1 2 4 3 3 2 2 3 3 4 2 1 0
0 1 2 4 3 3 2 2 3 3 4 2 1 0
0 1 2 4 3 3 3 3 3 3 4 2 1 0
0 1 2 4 3 3 3 3 3 3 4 2 1 0
0 1 2 4 2 1 0
0 1 2 4 2 1 0
0 1 2 4 2 1 0
0 1 2 4 2 1 0
0 1 2 4 2 1 0
0 1 2 4 2 1 0
0 1 2 4 2 1 0
0 1 2 4 2 1 0
0 1 2 4 2 1 0
0 1 2 4 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 2 1 0
0 1 2 3 3 4 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 2 1 0
0 1 2 3 3 4 3 3 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 2 1 0
0 1 1 3 3 4 3 3 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 2 1 0
0 1 2 3 3 4 4 4 4 4 3 3 3 3 3 4 3 3 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 2 1 0
0 1 2 3 3 4 4 4 4 4 3 3 3 3 3 4 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 2 1 0
0 1 2 3 4 4 4 4 4 4 3 3 2 3 3 4 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 2 1 0
0 1 2 3 4 4 4 4 4 4 3 3 3 3 3 3 3 4 3 3 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 2 1 0
0 1 2 3 3 4 4 4 4 4 3 3 3 3 3 3 3 4 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 2 1 0
0 1 2 3 3 4 4 4 4 4 4 4 3 3 2 3 3 4 3 3 3 3 3 4 4 4 4 3 3 3 3 3 4 4 4 2 1 0
0 1 1 3 3 3 4 4 4 4 3 3 3 3 3 3 3 4 3 3 3 3 3 4 4 4 2 1 0
0 1 1 3 3 3 4 4 4 4 3 3 3 3 3 3 3 4 3 3 2 3 3 4 4 4 2 1 0
0 1 1 2 3 3 4 4 4 3 3 3 2 3 3 3 3 4 3 3 3 3 3 4 4 4 2 1 0
0 1 1 2 3 3 3 3 3 3 3 3 2 2 3 3 3 3 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 4 4 4 4 4 4 4 4 3 3 3 3 3 4 4 4 2 1 0
0 1 1 2 3 3 3 3 3 3 3 2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 1 0
0 1 1 3 3 3 3 3 2 3 2 2 3 2 3 2 3 3 4 4 4 4 4 4 4 4 4 3 3 2 3 3 3 2 2 3 3 3 3 3 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 1 0
0 1 1 1 3 3 3 3 3 3 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 3 3 3 3 3 2 2 2 2 2 3 3 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 1 0
0 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 3 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 1 0
0 0 1 1 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 4 3 3 3 3 2 3 3 3 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 1 0
0 0 1 1 1 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 1 0
0 0 2 1 1 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 2 2 3 3 3 4 4 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 1 0
0 0 0 1 1 1 2 1 2 1 0
0 0 0 1 0
0 0

54

4.2.3 Binarize Image [src/lib/lfs/binar.c; binarize_V2()]
The minutiae detection algorithm in this system is designed to operate on a bi-level (or binary)
image where black pixels represent ridges and white pixels represent valleys in a finger's friction
skin. To create this binary image, every pixel in the grayscale input image must be analyzed to
determine if it should be assigned a black or white pixel. This process is referred to as image
binarization.

A pixel is assigned a binary value based on the ridge flow direction associated with the block the
pixel is within. If there was no detectable ridge flow for the current pixel's block, then the pixel
is set to white. If there is detected ridge flow, then the pixel intensities surrounding the current
pixel are analyzed within a rotated grid as illustrated in Figure 27.

Figure 27. Rotated grid used to binarize the fingerprint image.

This grid is defined in the global control structure, lfsparms_V2, with column width
(DIRBIN_GRID_W) set to 7 pixels and row height (DIRBIN_GRID_H) set to 9 pixels. With the
pixel of interest in the center, the grid is rotated so that its rows are parallel to the local ridge
flow direction. Grayscale pixel intensities are accumulated along each rotated row in the grid,
forming a vector of row sums. The binary value to be assigned to the center pixel is determined
by multiplying the center row sum by the number of rows in the grid and comparing this value to
the accumulated grayscale intensities within the entire grid. If the multiplied center row sum is
less than the grid's total intensity, then the center pixel is set to black; otherwise, it is set to white.

Figure 28. Binarization results.

7

9

Ridge Flow
Direction

C

55

The results of binarization are shown in the Figure 28. The original grayscale image is on the
left, and its binarization results are on the right.

It should be noted that the binarization step is critical to the successful detection of minutiae in
this approach. The binarization results need to be robust in terms of effectively dealing with
varying degrees of image quality and reliable in terms of rendering ridge and valley structures
accurately. These are challenging, and at times conflicting goals. It is desirable to preserve as
much image information and ridge/valley structure as possible so that minutiae are not missed,
and yet it is undesirable to accentuate degraded areas in the image to the point of introducing
false minutiae. Significant effort has been invested to promote both robust and reliable binary
images, and yet the current system tends to produce a considerable number of false minutiae.
This is particularly troublesome when processing latent fingerprint images.

4.2.4 Detect Minutiae [src/lib/lfs/minutia.c; detect_minutiae_V2()]
This step methodically scans the binary image of a fingerprint, identifying localized pixel
patterns that indicate the ending or splitting of a ridge. The patterns searched for are very
compact as illustrated in Figure 29. The left-most pattern contains six binary pixels in a 2×3
configuration. This pattern may represent the end of a black ridge protruding into the pattern
from the right. The same is true for the next 2×4 pattern. The only difference between this
pattern and the first one is that the middle pixel pair is repeated. In fact, this is true for all the
patterns depicted. This "family" of ridge ending patterns can be represented by the right-most
pattern, where the middle pair of pixels (signified by �*�) may repeat one or more times.

Figure 29. Pixel pattern used to detect ridge endings.

Candidate ridge endings are detected in the binary image by scanning consecutive pairs of pixels
in the image looking for sequences that match this pattern. Pattern scanning is conducted both
vertically and horizontally. The pattern as illustrated is configured for vertical scanning as the
pixel pairs are stacked on top of each other. To conduct the horizontal scan, the pixel pairs are
unstacked, rotated 90° clockwise, and placed back in sequence left to right.

Using the representation above, a series of minutiae patterns are used to detect candidate minutia
points in the binary fingerprint image. These patterns are illustrated in Figure 30. There are two
patterns representing candidate ridge endings, the rest represent various ridge bifurcations. A
secondary attribute of appearing/disappearing is assigned to each pattern. This designates the
direction from which a ridge or valley is protruding into the pattern. All pixel pair sequences
matching these patterns, as the image is scanned both vertically and horizontally, form a list of
candidate minutia points.

*

2×3
2×4

2×5

...

2×N

Pattern

56

Figure 30. Pixel patterns used to detect minutiae.

4.2.5 Remove False Minutiae [src/lib/lfs/remove.c; remove_false_minutia_V2()]
Using the patterns in Figure 30, candidate minutiae points are detected with as few as six pixels.
This facilitates a particularly greedy detection scheme that minimizes the chance of missing true
minutiae; however, many false minutiae are included in the candidate list. Because of this, much
effort is spent on removing the false minutiae. These steps include removing islands, lakes,
holes, minutiae in regions of poor image quality, side minutiae, hooks, overlaps, minutiae that
are too wide, and minutiae that are too narrow (pores). A short description of each of these steps
is provided in the order in which they are executed.

4.2.5.1 Remove Islands and Lakes [src/lib/lfs/remove.c; remove_islands_and_lakes()]

Figure 31. Removal of islands and lakes.

In this step, ridge ending fragments and spurious ink marks (islands) along with interior voids in
ridges (lakes) are identified and removed. These features are somewhat larger than the size of
pores in the friction skin and they are often elliptical in shape; therefore, they typically will have
a pair of candidate minutia points detected at opposite ends. An illustratrion of these types of
features is shown in Figure 31.

** * *

* * * * *

*

1. Ridge Ending
(appearing)

4. Bifurcation
(appearing)

2. Ridge Ending
(disappearing)

3. Bifurcation
(disappearing)

5. Bifurcation
(disappearing)

6. Bifurcation
(disappearing)

7. Bifurcation
(appearing)

8. Bifurcation
(appearing)

9. Bifurcation
(disappearing)

10. Bifurcation
(appearing)

ISLAND

BA

LAKE

A B

1. If (distance(A,B) <= 16 pixels) Then
2. If (direction_angle(A,B) >= 123.75°) Then

3. If (on_loop(A) && on_loop(B)) Then
4. If (loop_length <= 60 pixels) Then

5. remove(A,B)
6. fill_loop()

57

Included at the bottom of the figure are the criteria used to detect islands and lakes. A pair of
minutia must be within 16 pixels (MAX_RMTEST_DIST_V2) of each other. If so, then the
directions of the two minutiae must be nearly opposite (≥ 123.75°) each other. Next, both
minutiae must lie on the edge of the same loop, and the perimeter of the loop must be ≤ 60 pixels
(MAX_HALF_LOOP_V2 × 2). If all these criteria are true, then the pair of candidate minutiae are
removed for the list and the binary image is altered so that the island/lake is filled. Note that this
is the only removal step that modifies the binary fingerprint image.

4.2.5.2 Remove Holes [src/lib/lfs/remove.c; remove_holes()]

Figure 32. Removal of holes.

Here a hole is defined similarly to an island or lake, only smaller, and the loop need only have
one minutia point on it. The criteria for removing a hole are illustrated in Figure 32. If a
candidate minutia point lies on the edge of a loop with perimeter length ≤ 15 pixels
(SMALL_LOOP_LEN), then the point is removed from the candidate list.

4.2.5.3 Remove Pointing to Invalid Block
[src/lib/lfs/remove.c; remove_pointing_invblock_V2()]

This step and the next identify and remove candidate minutiae that are located near blocks that
contain no detectable ridge flow. These blocks are referred to as containing invalid ridge flow
direction and represent low-quality areas in the fingerprint image.

Figure 33. Removal of minutia pointing to an invalid block.

HOLE

A

1. If (on_loop(A)) Then
2. If (loop_length <= 15 pixels) Then

3. remove(A)

1. B = translate(A, 4 pixels, direction(A))
2. D = direction(block(B))
3. If (D == Invalid) Then

4. remove(A)

Current
Block

Neighbor
Block

A
B

Direction = 7 Direction = Invalid

58

This step is illustrated in Figure 33. A minutia point is translated 4 pixels
(TRANS_DIR_PIX_V2) in the direction the minutia is pointing. If the translated point lies within
a block with invalid ridge flow direction, then the original minutia point is remove from the list.

4.2.5.4 Remove Near Invalid Blocks
[src/lib/lfs/remove.c; remove_near_invblocks_V2()]

Figure 34. Removal of minutia near invalid blocks.

Here, the proximity of a candidate minutia to a number of surrounding blocks with invalid ridge
flow direction is evaluated. Given a minutia point, the blocks sufficiently close to the minutia
(details left to the source code), and immediately neighboring the block in which the minutia
resides, are tested in turn. If one of these neighboring blocks has invalid ridge flow direction,
then its surrounding 8 neighbors are tested. The number of surrounding blocks with valid ridge
flow direction are counted, and if the number of valid blocks is < 7 (RM_VALID_NBR_MIN), then
the original minutia point is removed from the candidate list. Figure 34 illustrated this step.

1. Nbrs = block_neighbors(A)
2. InvNbrs = invalid_directions(Nbrs)
3. Foreach Ni in InvNbrs

4. Ni_Nbrs = neighbors(Ni)
5. Ci = count_valid_directions(Ni_Nbrs)
6. If (Ci < 7) Then

7. remove(A)

Current
Block

Neighbor
Block 1

Neighbor
Block 2

Neighbor
Block 3

Direction = 9

Direction = 9

Direction =
Invalid

A

Neighbor
Block 2

? ? ?

?

??

?

?

59

4.2.5.5 Remove or Adjust Side Minutiae
[src/lib/lfs/remove.c; remove_or_adjust_side_minutiae_V2()]

Figure 35. Removal or adjustment of minutiae on the side of a ridge or valley.

This step accomplishes two purposes. The first is to fine-tune the position of a minutia point so
that it is more symmetrically placed on a ridge or valley ending. In the process, it may be
determined that there is no clear symmetrical shape to the contour on which the candidate
minutia lies. This is often the case with points detected along the side of a ridge or valley instead
of the ridge or valley's ending. In this case, the misplaced minutia point is removed. In Figure
35, the illustration on the left depicts the adjustment of a minutia point from point A1 to A2. The
illustration on the right depicts the removal of a side point, B.
To accomplish this, starting at the candidate minutia point, the edge of either the ridge or valley
is traced to the right and to the left 7 pixels (SIDE_HALF_CONTOUR), producing a list of 15
contour points. The coordinates of these contour points are rotated so that the direction of the
candidate minutia is pointing vertical. The rotated coordinates are then analyzed to determine
the number and sequence of relative maxima and minima in the rotated y-coordinates. If there is
only one y-coordinate minima, then the point of the minimum is assumed to lie at the bottom of a
bowl-shaped rotated contour, and the candidate minutia is moved to correspond to this position
in the original image. If there are more than one y-coordinate minima, then a specific sequence
of minima-maxima-minima must exist, in which case the candidate minutia is moved to the point
in the original image corresponding to the lowest y-coordinate minima. Again, this is assumed
to be the bottom of a relatively bowl-shaped rotated contour. If there is more than one y-
coordinate minima and there is not an exact minima-maxima-minima sequence along the rotated
contour, then the minutia point is determined to lie along the side of a ridge or valley, and it is
removed from the candidate list.

1. Pts = trace_contours(A, 7 pixels)
2. R_Pts = rotate_points_vertical(Pts, direction(A))
3. {Min_Ys,Max_Ys} = min_and_max_Ys(R_Pts)
4. If (#Min_Ys == 1) Then

Adjust(A, Pts[Min_Y1])
5. Else If ({Min_Ys,Max_Ys} ==

{Min_Y1,Max_Y1,Min_Y2}) Then
Min_Y = point_at_min_Y(R_Pts, Min_Ys)
Adjust(A, Pts[Min_Y])

6. Else revove(A)

Removed

B

Adjusted

A1A2

60

4.2.5.6 Remove Hooks [src/lib/lfs/remove.c; remove_hooks()]

Figure 36. Removal of hooks.

A hook is a spike or spur that protrudes off the side of a ridge or valley. An example is
illustrated in Figure 36. This feature typically has two minutiae of opposite type, one on a small
piece of ridge and the other in a small valley, that are relatively close to each other. The two
points must be within 16 pixels (MAX_RMTEST_DIST_V2) of each other, their directions must be
nearly opposite (≥ 123.75°), they must be of opposite type, and they must lie on the same
ridge/valley edge within 30 contour pixels (MAX_HOOK_LEN_V2) from each other. If all these
are true, then the two minutia points are removed from the candidate list.

4.2.5.7 Remove Overlaps [src/lib/lfs/remove.c; remove_overlaps()]
In this step, an overlap is a discontinuity in a ridge or valley. These artifacts are typically
introduced by the fingerprint impression process. A break in a ridge causes 2 false ridge endings
to be detected, while a break in a valley causes 2 false bifurcations. The criteria for detecting an
overlap are illustrated in Figure 37. Two minutia points must be within 8 pixels
(MAX_OVERLAP_DIST) of each other, and their directions must be nearly opposite (≥ 123.75°).
If so, then the direction of the line joining the two minutia points is calculated. If the difference
between the direction of first minutia and the joining line is (≤ 90°), then the two minutiae are
removed from the cadidate list. Otherwise, if the minutiae are within 6 pixels
(MAX_OVERLAP_JOIN_DIST) of each other, and there are no pixel value transitions along the
joining line, then the points are removed from the candidate list.

1. If (distance(A,B) <= 16 pixels) Then
2. If (direction_angle(A,B) >= 123.75°) Then

3. If (type(A) != type(B)) Then
4. Pts = trace_contours(A, 30 pixels)
5. If (in_points(Pts, B)) Then

6. remove(A,B)

HOOK

B

A

61

Figure 37. Removal of overlaps.

4.2.5.8 Remove Too Wide Minutiae [src/lib/lfs/remove.c; remove_malformations()]

The next two steps identify false minutiae that lie on malformed ridge and valley structures. A
generalized ridge ending is comprised of a Y-shaped valley enveloping a black rod. The inverse
is true for a generalized bifurcation. Simple tests are applied to evaluate the quality of this Y-
shape.

Figure 38. Removal of too wide minutiae.

This step evaluates whether the structure enveloping a ridge or valley ending is relatively Y-
shaped and not too wide. Figure 38 illustrates the criteria applied. The edge of the ridge or
valley is traced to the left and to the right 20 pixels (MALFORMATION_STEPS_2), producing 2

1. If (distance(A,B) <= 8 pixels) Then
2. If (direction_angle(A,B) >= 123.75°) Then

3. If(type(A) == type(B)) Then
4. J = join_direction(A,B)
5. If(direction_angle(180°-A,J) <= 90° Then

6. remove(A,B)
7. Else If (distance(A,B) <= 6 pixels &&

free_path(A,B)) Then
8. remove(A,B)

OVERLAP

A
B

1. Pts1 = trace_contour(A, 20 pixels)
2. Pts2 = trace_contour(A, -20 pixels)
3. B = Pts1[10]; C = Pts1[20]
4. E = Pts2[10]; F = Pts2[20]
5. D10 = distance(B,E)
6. D20 = distance(C,F)
7. If ((D20/D10) > 2.0) Then

8. remove(A)

TOO WIDE?

A D10

D20

B
C

E F

62

lists of contour points. On each contour, coordinates at pixel index 10 (B&E) and at pixel index
20 (C&F) are stored. The distance between pixels at index 10 (MALFORMATION_STEPS_1) is
computed as is the distance between pixels at index 20. The ratio of these two distances is then
calculated (D20/D10), and if the ratio is larger than 2.0 (MIN_MALFORMATION_RATIO), then the
minutia point is removed from the candidate list. It should be noted that based on these criteria
the bifurcation in the illustration would not be removed.

4.2.5.9 Remove Too Narrow Minutiae [src/lib/lfs/remove.c; remove_pores_V2()]

Figure 39. Removal of too narrow minutiae.

The previous step tests for candidate minutiae that are too wide. This step tests for points that
are on structures that are too narrow. This is typical, for example, of pores in the friction skin.
Figure 39 illustrates this test. Starting with the candidate minutia point, F, its coordinates are
translated 3 pixels (PORES_TRANS_R) opposite the minutia's direction. The top edge and bottom
edges of the enveloping structure are then located at (Q&P). From these two points, the edge is
traced to the left 10 pixels (PORES_STEP_FWD) and to the right 8 pixels (PORES_STEP_BWD).
The points at the end of the 10 pixel contours are stored (A&B), and the points at the end of the
8-pixel contours are stored (C&D). Next, distances are computed between these pairs of points,

1. T = 180° - direction(F)
2. R = translate(F, 3 pixels, T)
3. Q = find_edge(R, Up, 12 pixels)
4. P = find_edge(R, Down, 12 pixels)
5. Pts = trace_contour(Q, 10 pixels)
6. A = Pts[10]
7. Pts = trace_contour(Q, -8 pixels)
8. C = Pts[8]
9. Pts = trace_contour(P, 10 pixels)
10. B = Pts[10]
11. Pts = trace_contour(P, -8 pixels)
12. D = Pts[8]
13. D1 = distance(A,B)
14. D2 = distance(C,D)
15. If ((D1/D2) <= 2.25) Then

16. remove(F)

TOO NARROW?

FD1

10

A

B

C

D

R

Q

P10

8

8
D2

63

and the ratio (D1/D2) is computed. If the ratio is ≤ 2.25 (PORES_MAX_RATIO), then the minutia
point is removed from the candidate list. In fact, if the process fails to find any of the points in
the illustration, then the candidate minutia is removed. It should be noted that, mindtct, only
searches for minutiae that are too narrow within high-curvature regions or regions where ridge
flow direction is non-determinable.

4.2.6 Count Neighbor Ridges [src/lib/lfs/ridges.c; count_minutiae_ridges()]
Fingerprint minutiae matchers often use information in addition to just the points themselves.
Ancillary information usually includes the minutia's direction, its type, and it may include
information pertaining to minutiae neighbors. Beyond a minutia's position, direction, and type,
there are no standard neighbor schemes. Different AFIS systems use different neighbor
topologies and attributes. One common attribute is the number of intervening ridges (called
ridge crossings) between a minutia and each of its neighbors. For example, the FBI's IAFIS uses
ridge crossings between a minutia and its 8 nearest neighbors, where each neighbor is the closest
within a specified octant.[37]

The neighbor scheme distributed with this system has been directly inherited from HO39.[55]
Up to 5 nearest neighbors (MAX_NBRS) are reported. Given a minutia point, the closest
neighbors below (in the same pixel column), and to the right (within entire pixel columns) in the
image are selected. These nearest neighbors are sorted in order of their direction, starting with
vertical and working clockwise. Using this topology, ridge counts are computed and recorded
between a minutia point and each of its nearest neighbors.

4.2.7 Assess Minutia Quality [src/lib/lfs/quality.c; combined_minutia_quality()]
One of the goals of developing this software package was to compute a quality/reliability to be
associated with each detected minutia point. Even with the lengthy list of removal steps above,
false minutiae potentially remain in the candidate list. A robust quality measure can help
manage this in that false minutiae should be assigned a lower quality than true minutiae.
Through dynamic thresholding, a trade off between retaining false minutiae and throwing away
true minutiae may be determined. To this end, mindtct, computes and reports minutiae
qualities.

Two factors are combined to produce a quality measure for each detected minutia point. The
first factor, L, is taken directly from the location of the minutia point within the quality map
described in Section 4.2.2.5. One of five quality levels is initially assigned, with 4 being the
highest quality and 0 being the lowest.

The second factor is based on simple pixel intensity statistics (mean and standard deviation)
within the immediate neighborhood of the minutia point. The size of the neighborhood is set to
11 pixels (RADIUS_MM). This is sufficiently large to contain generous portions of an average
ridge and valley. A high quality region within a fingerprint image will have significant contrast
that will cover the full grayscale spectrum. Consequently, the mean pixel intensity of the
neighbor hood will be very close to 127. For similar reasons, the pixel intensities of an ideal
neighborhood will have a standard deviation ≥ 64.

64

Using this logic, the following reliability measure, R, is calculated given neighborhood mean, µ,
and standard deviation, σ:

()σµ

σ

µ

σ
σ

µ

FFR

otherwise

if
F

F

,min
64

640.1
127

127
0.1

=

��

�
�

� >
=

−
−=

Minutia quality, Q, is calculated using quality map level, L, and reliability, R, as:

�
�
�

�

��
�

�

�

=
=∗+
=∗+
=∗+
=∗+

=

001.
1)04(.05.
2)14(.10.
3)24(.25.
4)49(.50.

Lif
LifR
LifR
LifR
LifR

Q

This results in a quality value on the range .01 to .99. A low quality value represents a minutia
detected in a lower quality region of the image, whereas a high quality value represents a minutia
detected in a higher quality region.

4.2.8 Output ANSI/NIST file [src/lib/an2k/fmtstd.c; write_ANSI_NIST_file()]

Upon completion, mindtct, takes the contents of the input ANSI/NIST formatted file and
inserts two new records. A Type-9 record, holding the detected minutiae, is constructed and
inserted along with a Type-13 or Type-14 record, holding the image binarization results. If the
input image is of a latent fingerprint, then the binarization results are stored in a Type-13 record;
otherwise, the image results are stored in a Type-14 record. It should be noted that the minutiae
in the Type-9 record are formatted in the NIST-assigned fields 5-12 according to the ANSI/NIST
standard.[30] The utilities, an2k2iaf and iaf2an2k, as described in the Reference Manual of
this document may be used to convert between these fields and the FBI/IAFIS-assigned fields
13-23.[37]

A number of other files are produced in addition to the output ANSI/NIST file. These include a
file for each of the image maps described in Section 4.2.2 and a log file listing all the detected
minutiae and their associated attributes. All of these are text files and are created by mindtct in
the current working directory with fixed file names. The direction map is stored in dmap.txt;
the low contrast map is stored in lcmap.txt; the low flow map is stored in lfmap.txt; the
high curve map is stored in hcmap.txt; and the quality map is stored in qmap.txt. The maps
are represented by a grid of numbers, each corresponding to a block in the fingerprint image.
The last text output file, min.txt, contains a formatted listing of attributes associated with each
detected minutiae in the fingerprint image. Among these attributes are the minutia's pixel
coordinate location, its direction, and type. The format and all the attributes reported in this file
are described within the mindtct manual page in the Reference Manual. Output files generated
from mindtct are provided in test/mindtct/execs/mindtct.

65

Figure 40 displays the detected minutiae for the example fingerprint.

Figure 40. Minutiae results.

66

5. REFERENCES
(A number of the references listed can be downloaded at http://www.itl.nist.gov/iaui/894.03.)

[1] J.H. Wegstein, �A Semi-automated Single Fingerprint Identification System,� NBS
Technical Note 481, April 1969.
[2] J.H. Wegstein, �Automated Fingerprint Identification,� NBS Technical Note 538, August
1970.
[3] J.H. Wegstein, �Manual and Computerized Footprint Identification,� NBS Technical Note
712, February 1972.
[4] R.T. Moore, �The Influence of Ink on The Quality of Fingerprint Impressions,� NBS
Technical Report NBSIR 74-627, December 1974.
[5] J.H. Wegstein, �The M40 Fingerprint Matcher,� NBS Technical Note 878, July 1975.
[6] J.H. Wegstein, and J.F. Rafferty, �The LX39 latent Fingerprint Matcher,� NBS Special
Publication 500-36, August 1978.
[7] R.T. Moore, �Results of Fingerprint Image Quality Experiments,� NBS Technical Report
NBSIR 81-2298, June 1981.
[8] J.H. Wegstein, �An Automated Fingerprint Identification System,� NBS Special Publication
500-89, February 1982.
[9] R.M. McCabe, and R.T. Moore, �Data Format for Information Interchange,� American
National Standard ANSI/NBS-ICST 1-1986, August 1986.
[10] R.T. Moore, �Automated Fingerprint Identification Systems - Benchmark Test of
Relative Performance,� American National Standard ANSI/IAI 1-1988, February 1988.
[11] R.T. Moore, �Automated Fingerprint Identification Systems � Glossary of Terms and
Acronyms,� American National Standard ANSI/IAI 2-1988, July 1988.
[12] R.T. Moore, R.M. McCabe, and R.A. Wilkinson, �AFRS Performance Evaluation Tests,�
NBS Technical Report NBSIR 88-3831, August 1988.
[13] �Minimum Image Quality Requirements for Live Scan, Electronically Produced
Fingerprint Cards,� Technical Report for the Federal Bureau of Investigation � Identification
Division, November 1988.
[14] C. Watson, "NIST Special Database 4: 8-bit Gray Scale Images of Fingerprint Image
Groups," CD-ROM & documentation, March 1992.
[15] C.L. Wilson, G.T. Candela, P.J. Grother, C.I. Watson, and R.A. Wilkinson, "Massively
Parallel Neural Network Fingerprint Classification System," Technical Report NISTIR 4880,
July 1992.
[16] R. McCabe, C. Wilson, and D. Grubb, �Research Considerations Regarding FBI-IAFIS
Tasks & Requirements,� NIST Technical Report NISTIR 4892, July 1992.
[17] G.T. Candela and R. Chellappa, "Comparative Performance of Classification Methods for
Fingerprints," Technical Report NISTIR 5163, April 1993.
[18] C. Watson, "NIST Special Database 9: 8-Bit Gray Scale Images of Mated Fingerprint
Card Pairs," Vol. 1-5, CD-ROM & documentation, May 1993.
[19] C. Watson, "NIST Special Database 10: Supplemental Fingerprint Card Data (SFCD) for
NIST Special Database 9," CD-ROM & documentation, June 1993.

67

[20] C. Watson, "NIST Special Database 14: Mated Fingerprint Card Pairs 2," CD-ROM &
documentation, September 1993.
[21] R.M. McCabe, �Data Format for the Interchange of Fingerprint Information,� American
National Standard ANSI/NIST-CSL 1-1993, November 1993.
[22] J.L. Blue, G.T. Candela, P.J. Grother, R. Chellappa, C.L. Wilson, "Evaluation of Pattern
Classifiers for Fingerprint and OCR Application," in Pattern Recognition, 27, pp. 485-501, 1994.
[23] C.L. Wilson, G.T. Candela, C.I. Watson, " Neural Network Fingerprint Classification," in
Journal for Artificial Neural Networks, 1(2), 203-228, 1994.
[24] C.I. Watson, J. Candela, P. Grother, "Comparison of FFT Fingerprint Filtering Methods
for Neural Network Classification," Technical Report NISTIR 5493 September 1994.
[25] C. Watson, "NIST Special Database 18: Mugshot Identification Database of 8 bit gray
scale images," CD-ROM & documentation, December 1994.
[26] G.T. Candela, P.J. Grother, C.I. Watson, R.A. Wilkinson, C.L. Wilson, "PCASYS - A
Pattern-level Classification Automation System for Fingerprints," Technical Report NISTIR
5647 & CD-ROM, April 1995.
[27] R.M. McCabe, "Data Format for the Interchange of Fingerprint, Facial & SMT
Information," American National Standard ANSI/NIST-ITL 1a-1997, April 1997.
[28] C. Watson, "NIST Special Database 24: Digital Video of Live-Scan Fingerprint Data,"
CD-ROM & documentation, July 1998.
[29] M.D. Garris and R.M. McCabe, "NIST Special Database 27: Fingerprint Minutiae From
Latent and Matching Tenprint Images," CD-ROM & documentation, June 2000.
[30] R.M. McCabe, "Data Format for the Interchange of Fingerprint, Facial, Scar Mark &
Tattoo (SMT) Information," American National Standard ANSI/NIST-ITL 1-2000, July 2000.
Available from R.M. McCabe at NIST, 100 Bureau Drive, Stop 8940, Gaithersburg, MD 20899-
8940.
[31] l. Hong, Y. Wan, and A. Jain, "Fingerprint Image Enhancement: Algorithm and
Performance Evaluation," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 20,
no. 8, pp. 777-789, August 1998.
[32] GNU project - free UNIX-like utilities. Learn more at http://www.gnu.org.
[33] Cygwin tools - free GNU utility port for Win32 machines. Learn more at
http://sources.redhat.com/cygwin.
[34] Linux - a freely available clone of the UNIX operating system. Learn more at
http://www.linux.org.
[35] Independent JPEG Group (IJG) - learn more at http://www.ijg.org.
[36] "The Science of Fingerprints," Rev. 12-84, U.S. Department of Justice, Federal Bureau of
Investigation. Available from U.S. Government Printing Office, Washington D.C. 20402.
[37] "Electronic Fingerprint Transmission Specification," CJIS-RS-0010 (V7). Available
from Criminal Justice Information Services Division, Federal Bureau of Investigation, 935
Pennsylvania Avenue, NW, Washington D.C. 20535.
[38] Automated classification system reader project (ACS), Technical report, DeLaRue
Printrak Inc., February 1985.

68

[39] Automated Fingerprint Classification Study, Phase I Final Report, Technical report,
Ektron Applied Imaging, May 1985.
[40] R.M. Stock and C.W. Swonger, �Development and evaluation of a reader of fingerprint
minutiae,� Cornell Aeronautical Laboratory, Technical Report CAL No. XM-2478-X-l:13-17,
1969.
[41] A.K. Jain, Fundamentals of Digital Image Processing, chapter 5.11, pages 163-174.
Prentice Hall Inc., prentice hall international edition, 1989.
[42] D.F. Specht, �Enhancements to Probabilistic Neural Networks,� In International Joint
Conference on Neural Networks, pages 1-761 - 1-768, June 1992.
[43] D.F. Specht, �Probabilistic neural networks,� Neural Networks, 3(1):109-118, 1990.
[44] B.V. Dasarathy, editor, �Nearest Neighbor (NN) Norms: NN Pattern Classification
Techniques,� IEEE Computer Society Press, 1991.
[45] P.J. Grother, G.T. Candela, and J.L. Blue, �Fast Implementations of Nearest Neighbor
Classifiers,� IEEE Transaction on Pattern Analysis and Machine Intelligence, 1995.
[46] W.R. Smith, �Improved Feature Set for Fingerprint Image Classification,� In
Proceedings from the Research in Criminal Justice Information Services Technology
Symposium, pages C-111 - C-127, September 1993.
[47] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbau S.
Hammarling, A. McKenney, S. Ostrouchov and D. Sorensen. C translation by J. Demmel and
Xiaoye Li, LAPACK Users Guide, SIAM, Philadelphia, 1992.
[48] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, Parallel Distributed Processing, Volume
1: Foundations, edited by D.E. Rumelhart, J.L. McClelland, et al., MIT Press, Cambridge, pp.
318-362, 1986.
[49] C.L. Wilson, J.L. Blue, O.M. Omidvar, "The Effect of Training Dynamics on Neural
Network Performance," Technical Report NISTIR 5696, August 1995.
[50] C.L. Wilson, J.L. Blue, and O.M. Omidvar, �Improving Neural Network Performance for
Character and Fingerprint Classification by Altering Network Dynamics,� Technical Report
NISTIR 5695, National Institute of Standards and Technology, 1995.
[51] C.L. Wilson, J.L. Blue, and O.M. Omidvar, �Improving Neural Network Performance for
Character and Fingerprint Classification by Altering Network Dynamics,� In World Congress on
Neural Networks Proceedings II, pages 151 - 158, Washington DC, July 1995.
[52] J. L. Blue and P. J. Grother, "Training Feed Forward Networks Using Conjugate
Gradients," Technical Report NISTIR 4776, February 1992, and in Conference on Character
Recognition and Digitizer Technologies, Vol. 1661, pp. 179-190, SPIE, San Jose, February 1992.
[53] D. Liu and J. Nocedal, "On the Limited Memory BFGS Method for Large Scale
Optimization," Mathematical Programming B, Vol. 45, 503-528, 1989.
[54] O.M. Omidvar and C.L. Wilson, "Information Content in Neural Net Optimization,"
Technical Report NISTIR 4766, February 1992, and in Journal of Connection Science, 6:91-103,
1993.
[55] Home Office Automatic Fingerprint Recognition System (HOAFRS), License 16-93-
0026, Science and Technology Group, Home Office, London, 1993.

69

APPENDIX A. MLP TRAINING OUTPUT

Explanation of the output produced during MLP training

When the program mlp does a training run, it writes output to the standard error and writes the
same output to the short_outfile specified in the specfile. The purpose of this appendix is to
explain the meaning of this output. Mlp produces similar output for a testing run except that the
"training progress" part is missing.

Pattern-Weights

As a preliminary, it will be helpful to discuss the "pattern-weights" which mlp uses, since they
are used in the calculations of many of the values shown in the output. The pattern-weights are
"prior" weights, one for each pattern;12 they remain constant during a training (or testing) run,
although it is possible to do a training "meta-run" that is a sequence of training runs and to
change the pattern-weights between the runs. The setting of the pattern-weights is controlled by
the priors value set in the specfile and may be affected by provided data files, as follows (in all
cases, the division by N is merely a normalization that slightly reduces the amount of calculation
needed later):

allsame: if priors is allsame, then each pattern-weight is set to (1/N), where N is the number of
patterns.

class: a file of given class-weights must be supplied; each given class-weight is divided by the
actual class-weight of the input data set and the new class-weights are normalized so their
sum is 1.0. Then each pattern-weight is set to the new class-weight of the class of the
corresponding pattern, divided by N (number of patterns). The end result is that if the
actual distribution of the data set does not equal that of the given class-weights, class-
weights are adjusted so the final results approximate what the scores would be if the
distribution were the same as the given class-weights. If the user is only concerned about
the unadjusted score for the given data, set the given class-weights equal to the actual
class-weights.

pattern: a file of (original) pattern-weights must be supplied; each of them is divided by N to
produce the corresponding pattern-weight.

both: files of class-weights and (original) pattern-weights must both be supplied; each pattern-
weight is then set to the class-weight (class-weights are adjusted as discussed in the class
portion of this list) of the class of the corresponding pattern, times the corresponding
(original) pattern-weight, divided by N.

The pattern-weights are used in the calculation of the error value that mlp attempts to minimize
during training. When the training patterns are sent through the network, each pattern produces
an error contribution, which is multiplied by the pattern-weight for that pattern before being
added to an error accumulator (Section A.1.1.2.2). The pattern-weights are also involved in the
calculations of several other quantities besides the error value; all these uses are described below.
References [49] discuss the use of class-based prior weights (Section 5.4, pages 10-11) which
correspond to the class setting of priors.

12 A pattern is a feature-vector/class or feature-vector/target-vector pair

70

Explanation of Output

A.1.1.1 Header
The first part of the output is a "header" showing the specfile parameter values. Here is the
header of the short_outfile test/pcasys/execs/mlp/mlp_dir/trn1.err produced by the
first training run of a sequence of runs used to train the fingerprint classifier:

Classifier MLP
Training run
Patterns file: fv1-9mlp.kls; using all 24300 patterns
Final pattern-wts: made from provided class-wts and pattern-wts,
files priors and patwts

Error function: sum of squares
Reg. factor: 2.000e+00
Activation fns. on hidden, output nodes: sinusoid, sinusoid
Nos. of input, hidden, output nodes: 128, 128, 6
Boltzmann pruning, thresh. exp(-w^2/T), T 1.000e-05
Will use SCG
Initial network weights: random, seed 12347
Final network weights will be written as file trn1.wts
Stopping criteria (max. no. of iterations 50):
(RMS err) <= 0.000e+00 OR
(RMS g) <= 0.000e+00 * (RMS w) OR
(RMS err) > 9.900e-01 * (RMS err 10 iters ago) OR
(OK - NG count) < (count 10 iters ago) + 1. (OK level: 0.000)

Long outfile: trn1l.err

Given and Actual Prior Weights
A => 0.036583 0.038025
L => 0.338497 0.319506
R => 0.316920 0.306584
S => 0.000000 0.005597
T => 0.029482 0.030123
W => 0.278518 0.300165

Given/Actual = New Prior Weights
A -> 0.193897
L -> 0.213518
R -> 0.208333
S -> 0.000000
T -> 0.197247
W -> 0.187005

SCG: doing <= 50 iterations; 17286 variables.

71

A.1.1.2 Training Progress
The next part of the output lists a running update on the training progress. The first few lines of
training progress reported are:
pruned 80 6 86 C 1.67872e+05 H 2.40068e+04 R 85.70 M -0.00 T 0.0841

Iter Err (Ep Ew) OK UNK NG OK UNK NG
0 0.474 (0.240 0.289) 6564 0 17736 = 27.0 0.0 73.0 %

0.0 0 4 19 0 0 70
pruned 108 3 111 C 1.75555e+05 H 2.54052e+04 R 85.53 M -0.00 T 0.0836
pruned 124 5 129 C 1.84026e+05 H 2.58204e+04 R 85.97 M -0.00 T 0.0824
pruned 129 6 135 C 2.20275e+05 H 2.72642e+04 R 87.62 M -0.00 T 0.0814
pruned 138 3 141 C 1.73226e+05 H 2.76075e+04 R 84.06 M -0.00 T 0.0803
pruned 138 5 143 C 1.78328e+05 H 2.99593e+04 R 83.20 M -0.00 T 0.0762
pruned 152 4 156 C 1.74579e+05 H 3.03576e+04 R 82.61 M -0.00 T 0.0745
pruned 167 5 172 C 1.81337e+05 H 3.14710e+04 R 82.65 M -0.00 T 0.0681
pruned 149 7 156 C 1.89832e+05 H 3.95510e+04 R 79.17 M -0.00 T 0.0536
pruned 178 7 185 C 1.78410e+05 H 3.90489e+04 R 78.11 M -0.00 T 0.0526
pruned 184 7 191 C 2.19716e+05 H 3.99658e+04 R 81.81 M -0.00 T 0.0490

10 0.328 (0.103 0.220) 19634 0 4666 = 80.8 0.0 19.2 %
0.0 2 90 99 0 1 68

The line
Iter Err (Ep Ew) OK UNK NG OK UNK NG

comprises column headers that pertain to those subsequent lines that begin with an integer ("first
progress lines"); each first progress line is followed by a "second progress line,� and there are
"pruning lines" if Boltzmann pruning is used. These three types of lines are discussed below,
second progress lines first because some of the calculations used to produce them are later used
to make the first progress lines.

A.1.1.2.1 Second progress lines
These are the lines that begin with fractional numbers; the first of them in the above example is

0.0 0 4 19 0 0 70

Ignoring for a moment the first value in such a line, the remaining values are the "percentages"
right by class, which mlp calculates as follows. It maintains three pattern-weight-accumulators
for each class:

()r
ia = right pattern-weight-accumulator for correct class i
()w
ia = wrong pattern-weight-accumulator for correct class i
()u
ia = unknown (rejected) pattern-weight-accumulator for correct class i

When mlp sends a training pattern through the network the result is an output activation for each
class; the hypothetical class is, of course, whichever class receives the highest activation. If the
highest activation equals or exceeds the rejection threshold oklvl set in the specfile, then mlp
accepts its result for this pattern, and adds its pattern-weight (Section 0) to either ()r

ia or ()w
ia

(where i is the correct class of the pattern) according to whether the network classified the
pattern rightly or wrongly. Otherwise, (i.e. if the highest activation is less then oklvl) mlp adds
the pattern-weight to ()u

ia . These accumulators reach their final values after all of the training

72

patterns are sent through the network. Mlp then defines the right "percentage" of correct class i
to be

()

() () ()u
i

w
i

r
i

r
i

aaa
a

++
100

It shows these values, rounded to integers, in the second progress lines, as the values after the
first one. For example, the second progress line above shows that the right "percentages" of
correct classes 0 and 1 are 0 and 4.13

If priors is allsame then the pattern-weights are all equal and so ()r
ia , etc. are the numbers

classified rightly, etc. times this single pattern-weight; the pattern-weight cancels out between
the numerator and denominator of the above formula, so that the resulting value really is the
percentage of the patterns of class i that the network classified rightly. If priors has a value other
than allsame (i.e. class, pattern, or both) then the right "percentages" of the classes are not the
simple percentages but rather are weighted quantities, which may make more sense than the
simple percentages if some patterns should have more impact than others, as indicated by their
larger weights.14

As for the first value of a second progress line, this is merely the minimum of the right
"percentages" of the classes, but shown rounded to the nearest tenth rather than to the nearest
integer. This minimum value shows how the network is doing on its "worst" class.15

A.1.1.2.2 First progress lines
These are the lines that begin with an integer. The column headings, which pertain to these lines,
and the first of these lines in the example, are:

Iter Err (Ep Ew) OK UNK NG OK UNK NG
0 0.474 (0.240 0.289) 6564 0 17736 = 27.0 0.0 73.0 %

The values in a first progress line have the following meanings:

Iter: Training iteration number, numbering starting at 0. A first progress line (and second
progress line) are produced every nfreq'th iteration (set in the specfile).

Err, Ep, Ew: The calculations leading to these values are as follows.

13 In this case the classes �index numbers� are 0 through 5 and the classes are fingerprint types Arch (A), Left Loop
(L), Right Loop (R), Tented Arch (T), Scar (S), and Whorl (W). In this discussion, �class i� merely means the
class whose index number, number starting at 0, is i. Note also that although the software uses class index numbers
that start at 0, the class index numbers it writes to long_outfile start at 1.
14 In particular, if the training patterns set is such that the proportions of the patterns belonging to the various classes
are not approximately equal to the natural frequencies of the classes, then it may be a good idea to use class-weights
(priors set to class, and class-weights provided in a file) to compensate for the erroneous distribution. See [49].
15 When mlp uses hybrid SCG/LBFGS training rather than only SCG (it does this only if pruning is not specified) it
switches from SCG to LBFGS when the minimum reaches or exceeds a specified threshold, scg_earlystop_pct.

73

Mlp prints the Err, Ep and Ew values as defined above. Note that the value mlp attempts to
minimize is E, but presumably the same effect would be had by attempting to minimize Err,
since it is an increasing function of E.

N

n

aij

tij

()pat
iw

()msepat
iE ,

()mseE1

()1,typepat
iE

()1
1

typeE

()possumpat
iE ,

()1
1

typeE

1E

Ep
()wsqs

Ew

E

Err

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

number of patterns

number of classes

activation produced by pattern i at output node j (i.e. class j)

target value for aij

pattern-weight of pattern i (Section A.1.1)

()�
−

=

−
1

0

2
n

j
ijij ta , error contribution for pattern i if errfunc is mse

() ()
�

−

=

1

0

,

2
1 N

i

msepat
i

pat
i Ew

n

()()� ≠
−−+

−
kj ijik aaαexp1

11 , where k is correct class of pattern i,

error contribution for pattern i if errfunc is type_1 (α is alpha)

() ()
�

−

=

1

0

1,1 N

i

typepat
i

pat
i Ew

n

()�
−

=

−+−
1

0

110
n

j
ijijijij tata , error contribution for pattern i if

errfunc is pos_sum

() ()
�

−

=

1

0

,1 N

i

possumpat
i

pat
i Ew

n

()mseE1 , ()mseE1 , or ()mseE1 , according to errfunc

1E if errfunc is pos_sum, 12E otherwise

half of mean squared network weight

()wsqs2
()wsqsE ×+ regfac1

E2

74

OK, UNK, NG, OK, UNK, NG: "Numbers" of patterns OK (classified correctly), UNKnown
(rejected), and wroNG or No Good (classified incorrectly), then the corresponding
"percentages.� Mlp calculates these values as follows. It adds up the by-class
accumulators ()r

ia , ()w
ia , and ()u

ia defined earlier to make overall accumulators, where n is
the number of classes:

() ()
�

−

=

=
1

0

n

i

r
i

r aa

() ()
�

−

=

=
1

0

n

i

w
i

w aa

() ()
�

−

=

=
1

0

n

i

u
i

u aa

It computes "numbers" right, wrong, and unknown -- the first OK, NG, and UNK values of a
first progress line -- as follows, where N is the number of patterns and square brackets denote
rounding to an integer:

() () () ()uwrrwu aaaa ++=
() () ()][rwurr aNan = = �number� right

() () ()][rwuww aNan = = �number� wrong
() () ()wru nnNn −−= = �number� unknown

From these "numbers,� mlp computes corresponding "percentages" -- the second OK, NG, and
UNK values -- as follows:

() ()][100 Nnp rr =

() ()][100 Nnp ww =

() ()][100 Nnp uu =

If priors is allsame then since the pattern-weights are all equal, cancellation of the single
pattern-weight occurs between the numerators and denominators of the formulas above for ()rn
and ()wn , so that they really are the numbers of patterns classified rightly and wrongly. Then it is
obvious that ()un really is the number unknown and that ()rp , etc. really are the percentages
classified rightly, etc.

75

A.1.1.2.3 Pruning lines (optional)
These lines, which begin with "pruned,� appear if Boltzmann pruning is specified (boltzmann
set to abs_prune or square_prune in specfile, and a temperature set). The first pruning line of
the example is

pruned 80 6 86 C 1.67872e+05 H 2.40068e+04 R 85.70 M -0.00 T 0.0841

Regardless of nfreq, mlp writes a pruning line every time it performs pruning. The first three
values of a pruning line are the numbers of network weights that mlp pruned (temporarily set to
zero) in the first weights layer, in the second layer, and in both layers together. The remaining
values announced by the letters C, H, R, and M, are calculated as follows (the value announced
by T actually is not calculated correctly, and should be ignored):

()wtsn
()prunedn

()unprunedn
() ()minmax , ww

C
()abss log

()12ws

H

R

M

=

=

=

=

=

=

=

=

=

=

number of network weights (both layers)

number of weights pruned
() ()prunedwts nn −

maximum & minimum absolute values of unpruned weights
() () ()() ()()12logloglog minmax +− wwn unpruned = capacity

sum of logarithms of absolute values of unpruned weights
() () () ()() ()()2loglog12log minlog wns unprunedabs −+

C- ()12ws = entropy
() () C1212100 ww ss×

mean of unpruned weights

76

A.1.1.3 Confusion Matrices and Miscellaneous Information (Optional)
If do_confuse is set to true in the specfile, the next part of the output consists of two "confusion
matrices" and some miscellaneous information:

oklvl 0.00
Highest two outputs (mean) 0.784 0.145; mean diff 0.639

key name
A A
L L
R R
S S
T T
W W

key: A L R S T W
row: correct, column: actual
A: 333 315 267 0 0 9
L: 12 7522 86 0 0 144
R: 21 148 7128 0 0 153
S: 0 0 0 0 0 0
T: 60 346 323 0 0 3
W: 2 798 509 0 0 5985
unknown
* 0 0 0 0 0 0

percent of true IDs correctly identified (rows)
36 97 96 0 0 82

percent of predicted IDs correctly identified (cols)
78 82 86 0 0 95

mean highest activation level
row: correct, column: actual
key: A L R S T W
A: 35 43 43 0 0 38
L: 32 83 41 0 0 48
R: 32 43 83 0 0 49
S: 88 4666 4042 0 0 317
T: 33 49 48 0 0 38
W: 29 61 58 0 0 85

unknown
* 0 0 0 0 0 0

Histogram of errors, from 2^(-10) to 1
15899 5322 10477 14278 15596 22398 16728 16005 13376 9364 6357
10.9 3.7 7.2 9.8 10.7 15.4 11.5 11.0 9.2 6.4 4.4%

The first line of this optional section of the output shows the value of the rejection threshold
oklvl set in the specfile (this was already shown in the header). The next line shows the mean
values, over the training patterns as sent through the network at the end of training, of the highest
and second-highest output node values, and the mean difference of these values. Next is a table
showing the short classname ("key") and long classname ("name") of each class. In this example
the keys and names are the same, but in general the names can be quite long whereas the keys
must be no longer than two characters in length: the short keys are used to label the confusion
matrices.

77

Next are the confusion matrices of "numbers" and of "mean highest activation level.� Mlp has
the following accumulators:

()patwts
ija = pattern-weight accumulator for correct class i and hypothetical class j

()highac
ija = high-activation accumulator for correct class i and hypothetical class j

()uhighac
ija , = high-activation unknown accumulator for correct class i

If a pattern sent through the network produces a highest activation that meets or exceeds oklvl
(so that mlp accepts its result for this pattern), then mlp adds its pattern-weight to ()patwts

ija and

adds the highest activation to ()highac
ija ; where i and j are the correct class and hypothetical class of

the pattern. Otherwise, i.e. if mlp finds the pattern to be unknown (rejects the result), it adds its
pattern-weight to ()u

ija (Section A.1.1.2.1) and adds the highest activation to ()uhighac
ija , , where i is

the correct class of the pattern. After it has processed all the patterns, mlp calculates the
confusion matrix of "numbers" and its "unknown" line; some additional information concerning
the rows and columns of that matrix; and the confusion matrix of "mean highest activation level"
and its "unknown" line, as follows.

78

First define some notation:

Mlp calculates the values as follows, where ()r
ia , ()w

ia , ()u
ia and are as defined in Section

A.1.1.2.1 and square brackets again denote rounding to an integer:16

()
() ()

() () �
�

�

�

�
�

�

�

+
=

�
−

=

1

0

n

j
patwts

ij
u

i

patwts
ij

pats
iconfuse

ij
aa

aN
n

()
() ()

() () () �
�

�
�
�

�

++
= u

i
w

i
r

i

u
i

pats
iuconfuse

i aaa
aNn ,

()
()

() () �
�

�
�
�

�

−
= uconfuse

i
pats

i

confuse
iirowr

i nN
np ,

, 100

()
()

() �
�

�

�

�
�

�

�
=
�

−

=

1

0

, 100
n

i
confuse

ij

confuse
jjcolr

j
n

n
p

()
()

()
�
�
�

�

�
�
�

�
= confuse

ij

highac
ijconfuse

ij n
a

h
100

()
()

() �
�

�
�
�

�
= uconfuse

i

uhighac
iuconfuse

i n
ah ,

,
, 100

If priors is allsame, the pattern-weights are all equal, and cancellation of the single pattern-
weight between numerator and denominator causes ()confuse

ijn above to be the number of patterns

of correct class i and hypothetical class j; similarly, ()uconfuse
in , really is the number of patterns of

16 The denominators of the expression shown here for ()confuse

ijn and ()uconfuse
in , are equal, but these expressions show

what the software actually calculates.

()pat
iN

()confuse
ijn

()uconfuse
in ,

()rowr
ip ,

()colr
jp ,

()confuse
ijh

()uconfuse
ih ,

=

=

=

=

=

=

=

number of patterns of correct class i

value in row i and column j of first confusion matrix (of �numbers�)

ith value of �unknown� line at bottom of first confusion matrix

ith value of �percent of true IDs correctly identified (rows)� line

jth value of �percent of predicted IDs correctly identified (cols)� line

value in row i and column j of second confusion matrix

jth value of �unknown� line at bottom of second confusion matrix

79

correct class i that were unknown; ()rowr
ip , and ()colr

jp , really are the percentages that the on-
diagonal (correctly classified) numbers in the matrix comprise of their rows and columns
respectively; ()confuse

ijh really is the mean highest activation level (multiplied by 100 and rounded

to an integer) of the patterns of correct class i and hypothetical class j; and ()uconfuse
ih , really is the

mean highest activation level of the patterns of correct class i that were unknown. If priors has
one of its other values, the printed values are weighted versions of these quantities.

The final part of this optional section of the output is a histogram of errors. This pertains to the
absolute errors between output activations and target activations, across all output nodes (6 nodes
in this example) and all training patterns (24,300 patterns in this example), when the patterns are
sent through the trained network. Of the resulting set of absolute error values (243,000 values in
this example), this histogram shows the number (first line) and percentage (second line) of these
values that fall into each of the 11 intervals (-∞, 2-10], (2-10, 2-9], �, (2-1, 1].

A.1.1.4 Final Progress Lines
The next part of the output consists of a repeat of the column-headers line, final first-progress-
line, and final second-progress-line of the training progress part of the output, but with an F
prepended to the final first-progress-line:

Iter Err (Ep Ew) OK UNK NG OK UNK NG
F 50 0.098 (0.081 0.040) 21211 0 3089 = 87.3 0.0 12.7 %
0.0 36 97 96 0 0 82

A.1.1.5 Correct-vs.-Rejected Table (Optional)
If do_cvr is set to true in the specfile, the next part of the output is a correct-vs.-rejected table;
the first and last few lines of this table, from the example output, are:

thresh right unknown wrong correct rejected
1tr 0.000000 21211 0 3089 87.29 0.00
2tr 0.050000 21211 0 3089 87.29 0.00
3tr 0.100000 21211 0 3089 87.29 0.00
4tr 0.150000 21211 0 3089 87.29 0.00
5tr 0.200000 21211 0 3089 87.29 0.00

...

48tr 0.975000 3777 20521 2 99.95 84.45
49tr 0.980000 3230 21068 2 99.94 86.70
50tr 0.985000 2691 21607 2 99.93 88.92
51tr 0.990000 2141 22158 1 99.95 91.19
52tr 0.995000 1509 22791 0 100.00 93.79

80

Mlp produces these table values as follows. It has a fixed array of rejection-threshold values,
which have been set in an unequally-spaced pattern that works well, and it uses three pattern-

weight-accumulators for each threshold:

As mlp sends each pattern through the finished network,17 it loops over the thresholds tk: for
each k, it compares the highest network activation produced for the pattern with tk to decide
whether the pattern would be accepted or rejected. If accepted, it adds the pattern-weight of that
pattern either to ()rcvr

ka , or to ()wcvr
ka , according to whether it classified the pattern rightly or

wrongly; if rejected, it adds the pattern-weight to ()ucvr
ka , . After all the patterns have been

through the network, mlp finishes the table as follows. For each threshold tk it calculates the
following values:

Mlp then writes a line of the table. The values of the line are the threshold index k plus 1 with
"tr"18 appended, tk ("thresh"), ()rcvrn , ("right"), ()ucvrn , ("unknown"), ()wcvrn , ("wrong"), ()corrcvrp ,
("correct"), and ()rejcvrp , ("rejected"). If priors is allsame then, since all pattern-weights are the
same, cancellation of the single pattern-weight occurs between numerator and denominator in the
above expressions for ()rcvrn , and ()wcvrn , , so they really are the number of patterns classified
rightly and wrongly if threshold tk is used. Also, it is obvious that ()ucvrn , really is the number of
patterns unknown for this threshold, ()corrcvrp , really is the percentage of the patterns accepted at
this threshold that were classified correctly, and ()rejcvrp , really is the percentage of the N patterns
that were rejected at this threshold. If priors has one of its other values, then the tabulated
values are weighted versions of these quantities.

17 If do_cvr is true then mlp calculates a correct vs. reject table, but only for the final state of the network in the
training run.
18 for �training�; the correct vs. reject table for a test run uses �ts�

tk
()rcvr
ka ,

()wcvr
ka ,

()ucvr
ka ,

=

=

=

=

kth threshold

right pattern-weight-accumulator for kth threshold

wrong pattern-weight-accumulator for kth threshold

unknown pattern-weight-accumulator for kth threshold

()rwucvra ,

()rcvrn ,

()wcvrn ,

()ucvrn ,

()corrcvrp ,

()rejcvrp ,

=

=

=

=

=

=

() () ()ucvr
k

wcvr
k

rcvr
k aaa ,,, ++

() ()][,, rwucvr
k

rcvr
k aNa = �number right�

() ()][,, rwucvr
k

wcvr
k aNa = �number wrong�

() ()wcvrrcvr nnN ,, −− = �number unknown� (rejected)
() () ()()wcvrrcvrrcvr nnn ,,,100 + = �percentage correct�
() Nn ucvr,100 = �percentage rejected�

81

A.1.1.6 Final Information
The final part of the output shows miscellaneous information:

Iter 50; ierr 1 : iteration limit
Used 51 iterations; 154 function calls; Err 0.098; |g|/|w| 1.603e-04
Rms change in weights 0.289

User+system time used: 3607.3 (s) 1:00:07.3 (h:m:s)
Wrote weights as file trn1.wts

The first line here shows what iteration the training run ended on, and the value and meaning of
the return code ierr, which indicates why mlp stopped its training run: in the example, the
specified maximum number of iterations (niter_max), 50, had been used. This training run was
actually the first run of a sequence; its initial network weights were random, but each subsequent
run used the final weights of the preceding run as its initial weights. The only parameter varied
from one run to the next was the regularization factor regfac, which was decreased at each step:
successive regularization. Each run was limited to 50 iterations, and it was assumed that this
small iteration limit would be reached before any of the other stopping conditions were satisfied.
When sinusoid activation functions are used, as in this case, best training requires that successive
regularization be used. If sigmoid functions are used, it is just as well to do only one training
run, and in that case one should probably set the iteration limit to a large number so that training
will be stopped by one of the other conditions, such as an error goal (egoal).

The next line shows: how many iterations mlp used (counting the 0'th iteration; yes, this is stupid
after it already said what iteration it stopped on); how many calls of the error function it made;
the final error value; and the final size of the error gradient vector (square root of sum of
squares), normalized by dividing it by the final size of the weights. The next line shows the root-
mean-square of the change in weights, between their initial values and their final values. The
next line shows the combined user and system time used by the training run.19 The final line
merely reports the name of the file to which mlp wrote the final weights.

19 Setting the initial network weights, reading the patterns file, and other (minor) setup work, are not timed.

82

APPENDIX B. REFERENCE MANUAL

This appendix contains manual pages describing the invocation and use of the utilities provided
in this software distribution. The utilities are listed in alphabetical order. Those belonging to the
PCASYS package are designated as belonging to command set (1A), MINDTCT as (1B), AN2K as
(1C), IMGTOOLS as (1D), and IJG utilities are designated as (1E).

The manual pages listed in this section are included on the CD-ROM. To view a man page from
CD-ROM on a Linux machine or a Win32 machine running a Cygwin shell, type:

% man -M <install_dir>/man <executable>

where the text <install_dir> is replaced by your specific installation directory path and
<executable> is replaced by the name of the utility of interest.

AN2K2IAF(1C) NFISReference Manual AN2K2IAF(1C)

NAME
an2k2iaf − Modifies minutiae and fingerprint image records in an ANSI/NIST 2000 file to meet FBI/IAFIS
specifications.

SYNOPSIS
an2k2iaf <file in> <file out>

DESCRIPTION
An2k2iaf parses a standardcompliant ANSI/NIST-ITL 1-2000 file and, if necessary, converts specific
records and fields to meet FBI/IAFIS specifications.Please note that this utility does not exhaustively vali-
date the output to ensure compliant FBI/IAFIS transactions, rather it focuses on the format of minutiae and
image records.

Minutiae fields:
When a Type-9 record is encountered in the input file, this utility checks to see which fields are populated.
If the NIST-assigned fields 5-12 are populated, but the FBI/IAFIS-assigned fields 13-23 are empty, then the
FBI/IAFIS fields are populated by translating the data recorded in the NIST fields, and the NIST fields are
removed.

Image records:
FBI/IAFIS specifications (EFTS V7) require binary field images; therefore, this utility looks for tagged
field fingerprint records and converts them appropriately. If a Type-13 or Type-14 record is encountered, it
is inspected to determine if the image is bi-level or grayscale and to see what scan resolution and image
compression was used.Records containing bi-level images scanned at 19.69 ppmm (500 ppi) and either
WSQ-compressed or uncompressed are converted to Type-6 records; records containing grayscale images
scanned at 19.69 ppmm and either WSQ-compressed or uncompressed are converted to Type-4 records;
otherwise, the tagged field image record is ignored.

OPTIONS
<file in>

the ANSI/NIST file to be converted

<file out>
the resulting ANSI/NIST file

EXAMPLES
From test/an2k/execs/an2k2iaf/an2k2iaf.src:

% an2k2iaf ../../data/nist.an2 iafis.an2

SEE ALSO
iaf2an2k(1C),mindtct (1B)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 83

AN2K2TXT(1C) NFISReference Manual AN2K2TXT(1C)

NAME
an2k2txt − Converts an ANSI/NIST 2000 file to a formatted text file.

SYNOPSIS
an2k2txt <ansi_nist in> <fmttext out>

DESCRIPTION
An2k2txt parses a standardcompliant ANSI/NIST-ITL 1-2000 file and writes its contents to a new file in a
textually viewable and editable format.The contents of binary image fields are stored to temporary files
and externally referenced in the output file.

OPTIONS
<ansi_nist in>

the ANSI/NIST file to be converted

<fmttext out>
the output text file

OUTPUT FORMAT
Every line in the output text represents a single information item from the ANSI/NIST file.These lines are
formatted as follows:

r.f.s.i [t.n]=value{US}

r.f.s.i references the information item with

r the item’s positionalrecord index in the file

f the item’s positionalfield index in the record

s the item’s positionalsubfield index in the field

i the item’s positionalitem index in the subfield

Note that all indices start at 1.

t.n references the Record Type and Field ID from the standard.

t the record’s type

n the field’s ID number

value is the textual content of the information item, unless the information item contains binary
image data, in which case, the value is the name of an external file containing the binary
data.

{US} is the non-printable ASCII character 0x1F. This separator character is one of 4 used in
the standard.In VIM, this non-printable character may be entered using the ˆv command
and entering the decimal code "31".In Emacs, this non-printable character may be
entered using the ˆq command and entering the octal code "037".

Example Output Lines

1.5.1.1 [1.005]=19990708•

This is the information item corresponding to the Date (DAT) field in the standard.It is the 5th
field in a Type-1 record, and the Type-1 record is always the first record in the ANSI/NIST file;
therefore, its record index is 1, its field index is 5, its subfield index is 1, and its item index is 1.
The value of this information item represents the date of July 8, 1999.The ’•’ at the end of the
line represents the non-printable {US} character.

1.3.4.1 [1.003]=14•

This information item is part of the File Content (CNT) field.The CNT field is the 3rd field in a

NIST 02April 2001 84

AN2K2TXT(1C) NFISReference Manual AN2K2TXT(1C)

Type-1 record, so this information item’s record index is 1 and its field index is 3. This informa-
tion item is in the 4th subfield of the CNT field, and has an item index of 1; therefore, its value 14
signifies that the 4th record (the subfield index) in this ANSI/NIST file is a Type-14 record.

4.14.1.1 [14.999]=fld_2_14.tmp•

This information item corresponds to an Image Data field of a Type-14 record.This field always
has numeric ID 999 and is always the last field in the image record.This Type-14 record is the 4th
record in this ANSI/NIST file, so the Image Data information item has record index 4, and it is in
the 14th field (field index 14) in the record.This information item in the ANSI/NIST file contains
binary pixel data, so the output value "fld_2_14.tmp" references an external filename into which
an2k2txt stored the item’s binary data.

EXAMPLES
From test/an2k/execs/an2k2txt/an2k2txt.src:

% an2k2txt ../../data/nist.an2 nist.fmt

SEE ALSO
an2ktool(1C), txt2an2k(1C)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 85

AN2KTOOL(1C) NFISReference Manual AN2KTOOL(1C)

NAME
an2ktool − Parses, manipulates, and/or writes the results to an ANSI/NIST 2000 file in batch mode.

SYNOPSIS
an2ktool <option>
-print <all|r[.f[.s[.i]]]> <file in> [file out]
-deleter[.f[.s[.i]]] <file in> [file out]
-substitute r.f.s.i <new value> <file in> [file out]
-substitute r[.f[.s]] <fmttext file> <file in> [file out]
-insert r.f.s.i <new value> <file in> [file out]
-insert r[.f[.s]] <fmttext file> <file in> [file out]

DESCRIPTION
An2ktool parses a standardcompliant ANSI/NIST-ITL 1-2000 file, manipulates its contents, and writes
the results back out.Batch operations may be conducted at the level of record, field, subfield, or informa-
tion item. Possible operations include printing, deleting, substituting, or inserting data.

OPTIONS
All switch names may be abbreviated; for example,-print may be written-p.

PRINT OPTION
-print <all|r[.f[.s[.i]]]> <file in> [file out]

Prints the contents of the specified structure {file, record, field, subfield, or information item} to either the
specified output file or to standard output.

Option settings:

all The entire contents of the input file is printed.Any binary image fields in the file are
stored to temporary files, and their file names are externally referenced in the printed out-
put. Thisoption setting is equivalent to runningan2k2txt on the input file.

r The contents of the record at positionr in the file is printed.

r.f The contents of the field at positionf within recordr is printed.

r.f.s The contents of the subfield at positions within field f within recordr is printed.

r.f.s.i The contents of the information item at positioni within subfields within field f within
recordr is printed.

<file in>
The ANSI/NIST file whose content is to be printed.

[file out]
The optional output file.If omitted, results are printed to standard output.

DELETE OPTION
-deleter[.f[.s[.i]]] <file in> [file out]

Deletes the contents of the specified structure {record, field, subfield, or information item} from the
ANSI/NIST file, writing the results to either the specified output file or to standard output.

Option settings:

r The contents of the record at positionr in the file is deleted.

r.f The contents of the field at positionf within recordr is deleted.

NIST 02April 2001 86

AN2KTOOL(1C) NFISReference Manual AN2KTOOL(1C)

r.f.s The contents of the subfield at positions within field f within recordr is deleted.

r.f.s.i The contents of the information item at positioni within subfields within field f within
recordr is deleted.

<file in>
The ANSI/NIST file whose content is to be modified.

[file out]
The optional output file.If omitted, results are printed to standard output.

SUBSTITUTE OPTION 1
-substitute r.f.s.i <new value> <file in> [file out]

Substitutes the contents of the specified information item in an ANSI/NIST file with the string value pro-
vided on the command line, writing the results to either the specified output file or to standard output.

r.f.s.i The position indices of the information item to be substituted.

<new value>
The new string value.

<file in>
The ANSI/NIST file whose content is to be modified.

[file out]
The optional output file.If omitted, results are printed to standard output.

SUBSTITUTE OPTION 2
-substitute r[.f[.s]] <fmttext file> <file in> [file out]

Substitutes the contents of the specified structure {record, field, or subfield} in an ANSI/NIST file with the
contents of a formatted text file consistent in format to those produced byan2k2txt. The results are written
to either the specified output file or to standard output.

Option settings:

r The contents of the record at positionr in the file is substituted.

r.f The contents of the field at positionf within recordr is substituted.

r.f.s The contents of the subfield at positions within field f within recordr is substituted.

r.f.s.i The contents of the information item at positioni within subfields within field f within
recordr is substituted.

<fmttext file>
The formatted text file containing the new values.

<file in>
The ANSI/NIST file whose content is to be modified.

[file out]
The optional output file.If omitted, results are printed to standard output.

INSERT OPTION 1
-insert r.f.s.i <new value> <file in> [file out]

Inserts an information item at the specified position within an ANSI/NIST file, assigning the new item the
string value provided on the command line.The results are written to either the specified output file or to
standard output.

NIST 02April 2001 87

AN2KTOOL(1C) NFISReference Manual AN2KTOOL(1C)

r.f.s.i The position indices where the new information item is to be inserted.

<new value>
The new information item’s string value.

<file in>
The ANSI/NIST file whose content is to be modified.

[file out]
The optional output file.If omitted, results are printed to standard output.

INSERT OPTION 2
-insert r[.f[.s]] <fmttext file> <file in> [file out]

Inserts a structure {record, field, or subfield} at the specified position within an ANSI/NIST file.The new
structure is assigned the contents of a formatted text file consistent in format to those produced by
an2k2txt. The results are written to either the specified output file or to standard output.

Option settings:

r A record at positionr is inserted.

r.f A field at positionf within recordr is inserted.

r.f.s A subfield at positions within field f within recordr is inserted.

r.f.s.i An information item at positioni within subfield s within field f within record r is
inserted.

<fmttext file>
The formatted text file containing the new values.

<file in>
The ANSI/NIST file whose content is to be modified.

[file out]
The optional output file.If omitted, results are printed to standard output.

EXAMPLES
From test/an2k/execs/an2ktool/an2ktool.src:

% an2ktool -d 2.12.1.4 ../../data/nist.an2 delete.an2
deletes the information item recording the first minutia’s type.

% an2ktool -i 2.12.1.4 A delete.an2 insert.an2
inserts an information item setting the first minutia’s type to "A".

% an2ktool -s 2.12.1.4 A ../../data/nist.an2 subitem.an2
replaces the information item recording the first minutia’s type with the value "A".

% an2ktool -s 2.12.1 subfld.fmt ../../data/nist.an2 subfld.an2
replaces the subfield containing all the attributes related to the first minutia with the contents of the format-
ted text file subfld.fmt.

SEE ALSO
an2k2iaf(1C),an2k2txt(1C),dpyan2k(1C), iaf2an2k(1C), txt2an2k(1C)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 88

ASC2BIN(1A) NFISReference Manual ASC2BIN(1A)

NAME
asc2bin − converts a PCASYS data file from ascii to binary form.

SYNOPSIS
asc2bin<ascii_data_in> <binary_data_out>

DESCRIPTION
Asc2bin reads a PCASYS ascii data file of any type, or the standard input, and produces a corresponding
PCASYS binary data file.

OPTIONS
<ascii_data_in>

Ascii data file to be read.

<binary_data_out>
Binary data file to be written.If this file already exists, asc2bin overwrites it.

EXAMPLE(S)
From test/pcasys/execs/asc2bin/asc2bin.src:

% asc2bin ../../data/oas/fv1.cls fv1.bin
Converts the class file from ascii to binary data.

SEE ALSO
bin2asc (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 89

BIN2ASC(1A) NFISReference Manual BIN2ASC(1A)

NAME
bin2asc − converts a PCASYS data file from binary to ascii form.

SYNOPSIS
bin2asc<binary_data_in> <ascii_data_out>

DESCRIPTION
Bin2asc reads a PCASYS binary data file of any type, and produces a corresponding PCASYS ascii data
file or writes the ascii data to the standard output.

OPTIONS
<binary_data_in>

Binary data file to be read.

<ascii_data_out>
Ascii data file to be written. If the file already exists, bin2asc overwrites the file.

EXAMPLE(S)
From test/pcasys/execs/bin2asc/bin2asc.src:

% bin2asc ../asc2bin/fv1.bin fv1.cls
Converts the class file from binary to ascii data.

SEE ALSO
asc2bin (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 90

CHGDESC(1A) NFISReference Manual CHGDESC(1A)

NAME
chgdesc − changes the description string of a PCASYS data file.

SYNOPSIS
chgdesc<datafile> <new_desc>

DESCRIPTION
Chgdescreplaces the existing description string of a PCASYS data file with the provided string.

The new description can be of any length, but it must not contain embedded newline characters.If it con-
tains spaces, tabs, or shell metacharacters that are not to be expanded, then it should be quoted.To delete a
file’s description string, i.e. to replace it with the empty string, use ’’ (quoted empty string) as the string
argument.

The command makes, and then removes, a temporary version of the data file, in the same directory as the
original file; its filename is the original filename with _chgdesc<pid> appended, where <pid> is the process
id of the chgdesc command instance.(In the unlikely event that a file of this name already exists, chgdesc
exits with an error message, rather than replacing that file.)If the original data file is large, then make sure,
before running chgdesc, that the disk partition where the original file lives has enough room for the tempo-
rary copy.

OPTIONS
<datafile>

Data file whose description field is to be changed.

<new_desc>
The new description string.

EXAMPLE(S)
From test/pcasys/execs/chgdesc/chgdesc.src:

% chgdesc fv1.acl ’fv1.cls’
Puts the string fv1.cls in the description field of the file fv1.acl.

SEE ALSO
datainfo (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 91

CJPEG(1E) NFISReference Manual CJPEG(1E)

NAME
cjpeg − compress an image file to a JPEG file

SYNOPSIS
cjpeg [options] [filename]

DESCRIPTION
cjpeg compresses the named image file, or the standard input if no file is named, and produces a JPEG/JFIF
file on the standard output.The currently supported input file formats are: PPM (PBMPLUS color format),
PGM (PBMPLUS gray-scale format), BMP, Targa, and RLE (Utah Raster Toolkit format). (RLE is sup-
ported only if the URT library is available.)

OPTIONS
All switch names may be abbreviated; for example,−grayscalemay be written−gray or −gr. Most of the
"basic" switches can be abbreviated to as little as one letter. Upper and lower case are equivalent (thus
−BMP is the same as−bmp). British spellings are also accepted (e.g.,−greyscale), though for brevity
these are not mentioned below.

The basic switches are:

−quality N
Scale quantization tables to adjust image quality. Quality is 0 (worst) to 100 (best); default is 75.
(See below for more info.)

−grayscale
Create monochrome JPEG file from color input.Be sure to use this switch when compressing a
grayscale BMP file, becausecjpeg isn’t bright enough to notice whether a BMP file uses only
shades of gray. By saying −grayscale, you’ll get a smaller JPEG file that takes less time to pro-
cess.

−optimize
Perform optimization of entropy encoding parameters.Without this, default encoding parameters
are used.−optimize usually makes the JPEG file a little smaller, but cjpeg runs somewhat slower
and needs much more memory. Image quality and speed of decompression are unaffected by
−optimize.

−progressive
Create progressive JPEG file (see below).

−targa Input file is Targa format. Targa files that contain an "identification" field will not be automatically
recognized bycjpeg; for such files you must specify−targa to make cjpeg treat the input as Targa
format. For most Targa files, you won’t need this switch.

The−quality switch lets you trade off compressed file size against quality of the reconstructed image: the
higher the quality setting, the larger the JPEG file, and the closer the output image will be to the original
input. Normallyyou want to use the lowest quality setting (smallest file) that decompresses into something
visually indistinguishable from the original image.For this purpose the quality setting should be between
50 and 95; the default of 75 is often about right.If you see defects at−quality 75, then go up 5 or 10
counts at a time until you are happy with the output image.(The optimal setting will vary from one image
to another.)

−quality 100 will generate a quantization table of all 1’s, minimizing loss in the quantization step (but there
is still information loss in subsampling, as well as roundoff error). This setting is mainly of interest for
experimental purposes.Quality values above about 95 arenot recommended for normal use; the com-
pressed file size goes up dramatically for hardly any gain in output image quality.

In the other direction, quality values below 50 will produce very small files of low image quality. Settings
around 5 to 10 might be useful in preparing an index of a large image library, for example. Try −quality 2
(or so) for some amusing Cubist effects. (Note:quality values below about 25 generate 2-byte quantization
tables, which are considered optional in the JPEG standard.cjpeg emits a warning message when you give
such a quality value, because some other JPEG programs may be unable to decode the resulting file.Use

IJG 20March 1998 92

CJPEG(1E) NFISReference Manual CJPEG(1E)

−baselineif you need to ensure compatibility at low quality values.)

The −progressive switch creates a "progressive JPEG" file. In this type of JPEG file, the data is stored in
multiple scans of increasing quality. If the file is being transmitted over a slow communications link, the
decoder can use the first scan to display a low-quality image very quickly, and can then improve the display
with each subsequent scan.The final image is exactly equivalent to a standard JPEG file of the same qual-
ity setting, and the total file size is about the same --- often a little smaller. Caution: progressive JPEG is
not yet widely implemented, so many decoders will be unable to view a progressive JPEG file at all.

Switches for advanced users:

−dct int
Use integer DCT method (default).

−dct fast
Use fast integer DCT (less accurate).

−dct float
Use floating-point DCT method.The float method is very slightly more accurate than the int
method, but is much slower unless your machine has very fast floating-point hardware. Alsonote
that results of the floating-point method may vary slightly across machines, while the integer
methods should give the same results everywhere. Thefast integer method is much less accurate
than the other two.

−restart N
Emit a JPEG restart marker every N MCU rows, or every N MCU blocks if "B" is attached to the
number. −restart 0 (the default) means no restart markers.

−smoothN
Smooth the input image to eliminate dithering noise.N, ranging from 1 to 100, indicates the
strength of smoothing.0 (the default) means no smoothing.

−maxmemoryN
Set limit for amount of memory to use in processing large images.Value is in thousands of bytes,
or millions of bytes if "M" is attached to the number. For example,−max 4m selects 4000000
bytes. Ifmore space is needed, temporary files will be used.

−outfile name
Send output image to the named file, not to standard output.

−verbose
Enable debug printout. More −v’s giv e more output. Also, version information is printed at
startup.

−debug
Same as−verbose.

The−restart option inserts extra markers that allow a JPEG decoder to resynchronize after a transmission
error. Without restart markers, any damage to a compressed file will usually ruin the image from the point
of the error to the end of the image; with restart markers, the damage is usually confined to the portion of
the image up to the next restart marker. Of course, the restart markers occupy extra space.We recommend
−restart 1 for images that will be transmitted across unreliable networks such as Usenet.

The −smooth option filters the input to eliminate fine-scale noise.This is often useful when converting
dithered images to JPEG: a moderate smoothing factor of 10 to 50 gets rid of dithering patterns in the input
file, resulting in a smaller JPEG file and a better-looking image.Too large a smoothing factor will visibly
blur the image, however.

Switches for wizards:

−baseline
Force baseline-compatible quantization tables to be generated.This clamps quantization values to
8 bits even at low quality settings.(This switch is poorly named, since it does not ensure that the

IJG 20March 1998 93

CJPEG(1E) NFISReference Manual CJPEG(1E)

output is actually baseline JPEG.For example, you can use−baselineand−progressive together.)

−qtablesfile
Use the quantization tables given in the specified text file.

−qslotsN[,...]
Select which quantization table to use for each color component.

−sampleHxV[,...]
Set JPEG sampling factors for each color component.

−scansfile
Use the scan script given in the specified text file.

The "wizard" switches are intended for experimentation with JPEG.If you don’t know what you are doing,
don’t use them. These switches are documented further in the file wizard.doc.

EXAMPLES
This example compresses the PPM file foo.ppm with a quality factor of 60 and saves the output as foo.jpg:

cjpeg −quality 60 foo.ppm> foo.jpg

HINTS
Color GIF files are not the ideal input for JPEG; JPEG is really intended for compressing full-color (24-bit)
images. Inparticular, don’t try to convert cartoons, line drawings, and other images that have only a few
distinct colors. GIF works great on these, JPEG does not.If you want to convert a GIF to JPEG, you
should experiment withcjpeg’s −quality and−smoothoptions to get a satisfactory conversion. −smooth
10or so is often helpful.

Av oid running an image through a series of JPEG compression/decompression cycles. Imagequality loss
will accumulate; after ten or so cycles the image may be noticeably worse than it was after one cycle. It’s
best to use a lossless format while manipulating an image, then convert to JPEG format when you are ready
to file the image away.

The−optimize option tocjpeg is worth using when you are making a "final" version for posting or archiv-
ing. It’s also a win when you are using low quality settings to make very small JPEG files; the percentage
improvement is often a lot more than it is on larger files. (At present,−optimize mode is always selected
when generating progressive JPEG files.)

ENVIRONMENT
JPEGMEM

If this environment variable is set, its value is the default memory limit. The value is specified as
described for the−maxmemory switch. JPEGMEM overrides the default value specified when
the program was compiled, and itself is overridden by an explicit −maxmemory.

SEE ALSO
djpeg(1), jpegtran(1), rdjpgcom(1), wrjpgcom(1)
ppm(5), pgm(5)
Wallace, Gregory K. "The JPEG Still Picture Compression Standard", Communications of the ACM, April
1991 (vol. 34, no. 4), pp. 30-44.

AUTHOR
Independent JPEG Group

BUGS
Arithmetic coding is not supported for legal reasons.

GIF input files are no longer supported, to avoid the Unisys LZW patent.Use a Unisys-licensed program if
you need to read a GIF file.(Conversion of GIF files to JPEG is usually a bad idea anyway.)

Not all variants of BMP and Targa file formats are supported.

The−targa switch is not a bug, it’s a feature. (Itwould be a bug if the Targa format designers had not been
clueless.)

IJG 20March 1998 94

CJPEG(1E) NFISReference Manual CJPEG(1E)

Still not as fast as we’d like.

IJG 20March 1998 95

CJPEGB(1D) NFISReference Manual CJPEGB(1D)

NAME
cjpegb − compresses a grayscale or color (RGB) image usinglossyBaseline JPEG (JPEGB).

SYNOPSIS
cjpegb<q=20=95> <outext> <image file>

[-raw_in w,h,d,[ppi]
[-nonintrlv]]

[comment file]

DESCRIPTION
Cjpegb takes as input a file containing an uncompressed grayscale or color (RGB) image.Tw o possible
input file formats are accepted, NIST IHead files and raw pixmap files. If a raw pixmap file is to be com-
pressed, then its image attributes must be provided on the command line as well.Once read into memory,
the grayscale or color pixmap is thenlossycompressed to a specified level of reconstruction quality using
the Independent JPEG Group’s (IJG) library for Baseline JPEG (JPEGB).The JPEGB results are then writ-
ten to an output file.

Note thatcjpegb calls the IJG library in a default color mode where one of the compression steps includes
a colorspace conversion from RGB to YCbCr, and then the Cb & Cr component planes are downsampled
by a factor of 2 in both dimensions.Due to this colorspace conversion,cjpegb should only be used to com-
press RGB color images.

The color components of RGB pixels in a raw pixmap file may be interleaved or non-interleaved. By
default, cjpegb assumes interleaved color pixels. (SeeINTERLEAVE OPTIONS below.) Reg arding color
pixmaps, the NIST IHead file format only supports interleaved RGB images.

OPTIONS
All switch names may be abbreviated; for example,-raw_in may be written-r .

<q=20-95>
specifies the level of quality in the reconstructed image as a result of lossy compression.The inte-
ger quality value may range between 20 and 95.The lower the quality value, the more drastic the
compression.

<outext>
the extension of the compressed output file.To construct the output filename,cjpegb takes the
input filename and replaces its extension with the one specified here.

<image file>
the input file, either an IHead file or raw pixmap file, containing the grayscale or color (RGB)
image to be compressed.

-raw_in w,h,d,[ppi]
the attributes of the input image.This option must be included on the command line if the input is
a raw pixmap file.

w the pixel width of the pixmap

h the pixel height of the pixmap

d the pixel depth of the pixmap

ppi the optional scan resolution of the image in integer units of pixels per inch.

-nonintrlv
specifies that the color components in aninput raw pixmap file image are non-interleaved and
stored in separate component planes.(See INTERLEAVE OPTIONS below).

comment file
an optional user-supplied ASCII comment file.(See COMMENT OPTIONS below.)

NIST 02April 2001 96

CJPEGB(1D) NFISReference Manual CJPEGB(1D)

INTERLEA VE OPTIONS
The color components of RGB pixels in a raw pixmap file may be interleaved or non-interleaved. Color
components are interleaved when a pixel’s (R)ed, (G)reen, and (B)lue components are sequentially adjacent
in the image byte stream, ie. RGBRGBRGB... .If the color components are non-interleaved, then all (R)ed
components in the image are sequentially adjacent in the image byte stream, followed by all (G)reen com-
ponents, and then lastly followed by all (B)lue components.Each complete sequence of color components
is called aplane. The utilitiesintr2not andnot2intr convert between interleaved and non-interleaved color
components. Bydefault, cjpegb assumes interleaved color components, and note that all color IHead
images must be interleaved.

COMMENT OPTIONS
Upon successful compression, this utility generates and inserts in the compressed output file a specially for-
matted comment block, called a NISTCOM.A NISTCOM is a text-based attribute list comprised of
(name, value) pairs, one pair per text line. The first line of a NISTCOM always has name = "NIST_COM"
and its value is always the total number of attributes included in the list.The utility rdjpgcom scans a
JPEG compressed file for any and all comment blocks.Once found, the contents of each comment block is
printed to standard output.Using this utility, the NISTCOM provides easy access to relevant image
attributes. Thefollowing is an example NISTCOM generated bycjpegb:

NIST_COM 12
PIX_WIDTH 768
PIX_HEIGHT 1024
PIX_DEPTH 24
PPI -1
LOSSY 1
COLORSPACE YCbCr
NUM_COMPONENTS 3
HV_FACTORS 2,2:1,1:1,1
INTERLEAVE 1
COMPRESSION JPEGB
JPEGB_QUALITY 50

Cjpegb also accepts an optional comment file on the command line.If provided, the contents of this file
are also inserted into the compressed output file.If the comment file is a NISTCOM attribute list, then its
contents are merged with the NISTCOM internally generated bycjpegb and a single NISTCOM is written
to the compressed output file.Note thatcjpegb gives precedence to internally generated attribute values. If
the user provides a non-NISTCOM comment file, then the contents of file are stored to a separate comment
block in the output file.Using these comment options enables the user to store application-specific infor-
mation in a JPEG file.

EXAMPLES
From test/imgtools/execs/cjpegb/cjpegb.src:

% cjpegb 50 jpb face08.raw -r 768,1024,8
compresses a grayscale face image in a raw pixmap file.

% cjpegb 50 jpb face24.raw -r 768,1024,24
compresses a color face image in a raw pixmap file.

SEE ALSO
cjpeg(1E), cjpegl(1D), djpegb(1D), dpyimage(1D), intr2not (1D), jpegtran(1E), not2intr (1D), rdjpg-
com(1E),wrjpgcom(1E)

NIST 02April 2001 97

CJPEGB(1D) NFISReference Manual CJPEGB(1D)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 98

CJPEGL(1D) NFISReference Manual CJPEGL(1D)

NAME
cjpegl − compresses a grayscale or color image using Lossless JPEG (JPEGL).

SYNOPSIS
cjpegl <outext> <image file>

[-raw_in w,h,d,[ppi]
[-nonintrlv]
[-YCbCr H0,V0:H1,V1:H2,V2]]

[comment file]

DESCRIPTION
Cjpegl takes as input a file containing an uncompressed grayscale or color image.Tw o possible input file
formats are accepted, NIST IHead files and raw pixmap files. If a raw pixmap file is to be compressed, then
its image attributes must be provided on the command line as well.Once read into memory, the grayscale
or color pixmap is then compressed using Lossless JPEG (JPEGL).The JPEGL results are then written to
an output file.

The color components of RGB pixels in a raw pixmap file may be interleaved or non-interleaved. By
default, cjpegl assumes interleaved color pixels. Infact cjpegl’s internal encoder requires non-interleaved
components planes; therefore, interleaved pixmaps are automatically converted prior to encoding and
results are stored accordingly. (See INTERLEAVE OPTIONS below.)

Cjpegl also supports the compression of raw pixmap files containing YCbCr images with potentially down-
sampled component planes.By default, this utility assumes no downsampling of component planes.(See
YCbCr OPTIONS below.) Reg arding color pixmaps, the NIST IHead file format only supports interleaved
RGB images.

OPTIONS
All switch names may be abbreviated; for example,-raw_in may be written-r .

<outext>
the extension of the compressed output file.To construct the output filename,cjpegl takes the
input filename and replaces its extension with the one specified here.

<image file>
the input file, either an IHead file or raw pixmap file, containing the grayscale or color image to be
compressed.

-raw_in w,h,d,[ppi]
the attributes of the input image.This option must be included on the command line if the input is
a raw pixmap file.

w the pixel width of the pixmap

h the pixel height of the pixmap

d the pixel depth of the pixmap

ppi the optional scan resolution of the image in integer units of pixels per inch.

-nonintrlv
specifies that the color components in aninput raw pixmap file image are non-interleaved and
stored in separate component planes.(See INTERLEAVE OPTIONS below.)

-YCbCr H0,V0:H1,V1:H2,V2
denotes aninput raw pixmap file containing a YCbCr colorspace image and whether any compo-
nent planes have beenpreviously downsampled. H,Vfactors all set to 1 represent no downsam-
pling. (SeeYCbCr Options below.)

NIST 02April 2001 99

CJPEGL(1D) NFISReference Manual CJPEGL(1D)

comment file
an optional user-supplied ASCII comment file.(See COMMENT OPTIONS below.)

INTERLEA VE OPTIONS
The color components of RGB pixels in a raw pixmap file may be interleaved or non-interleaved. Color
components are interleaved when a pixel’s (R)ed, (G)reen, and (B)lue components are sequentially adjacent
in the image byte stream, ie. RGBRGBRGB... .If the color components are non-interleaved, then all (R)ed
components in the image are sequentially adjacent in the image byte stream, followed by all (G)reen com-
ponents, and then lastly followed by all (B)lue components.Each complete sequence of color components
is called aplane. The utilitiesintr2not andnot2intr convert between interleaved and non-interleaved color
components. Bydefault,cjpegl assumes interleaved color components, and all color IHead images must be
interleaved. Note that cjpegl’s internal encoder requires non-interleaved component planes; therefore,
interleaved pixmaps are automatically converted prior to encoding and results are stored accordingly.

YCbCr OPTIONS
Cjpegl compresses color images with 3 components per pixel, including RGB and YCbCr colorspaces.A
common compression technique for YCbCr images is to downsample the Cb & Cr component planes.
Cjpegl supports a limited range of YCbCr downsampling schemes that are represented by a list of compo-
nent plane factors. Thesefactors together represent downsampling ratios relative to each other. The
comma-separated list of factor pairs correspond to the Y, Cb, and Cr component planes respectively. The
first value in a factor pair represents the downsampling of that particular component plane in the X-dimen-
sion, while the second represents the Y-dimension. Compressionratios for a particular component plane
are calculated by dividing the maximum component factors in the list by the current component’s factors.
These integer factors are limited between 1 and 4.H,V factors all set to 1 represent no downsampling. For
complete details,cjpegl implements the downsampling and interleaving schemes described in the following
reference:

W.B. Pennebaker and J.L. Mitchell, "JPEG: Still Image Compression Standard," Appendix A -
"ISO DIS 10918-1 Requirements and Guidelines," Van Nostrand Reinhold, NY, 1993, pp. A1-A4.

For example the option specification:

-YCbCr 4,4:2,2:1,1

represents a YCbCr image with non-downsampled Y component plane (4,4 are the largest X and Y factors
listed); the Cb component plane is downsampled in X and Y by a factor of 2 (maximum factors 4 divided
by current factors 2); and the Cr component plane is downsampled in X and Y by a factor of 4 (maximum
factors 4 divided by current factors 1).Note that downsampling component planes is a form oflossycom-
pression, sowhile cjpegl enables the image byte stream associated with an input YCbCr image to be
reconstructed perfectly, if any of i ts component planes were previously downsampled, then image loss has
already taken place.The utility rgb2yccconverts an RGB image to the YCbCr colorspace, and it will con-
duct component plane downsampling as specified.Note that IHead images can only have RGB color com-
ponents, so YCbCr options only pertain to raw pixmap files.

COMMENT OPTIONS
Upon successful compression, this utility generates and inserts in the compressed output file a specially for-
matted comment block, called a NISTCOM.A NISTCOM is a text-based attribute list comprised of
(name, value) pairs, one pair per text line. The first line of a NISTCOM always has name = "NIST_COM"
and its value is always the total number of attributes included in the list.The utility rdjpgcom scans a
JPEG compressed file for any and all comment blocks.Once found, the contents of each comment block is
printed to standard output.Using this utility, the NISTCOM provides easy access to relevant image
attributes. Thefollowing is an example NISTCOM generated bycjpegl:

NIST 02April 2001 100

CJPEGL(1D) NFISReference Manual CJPEGL(1D)

NIST_COM 11
PIX_WIDTH 768
PIX_HEIGHT 1024
PIX_DEPTH 24
PPI -1
LOSSY 0
NUM_COMPONENTS 3
HV_FACTORS 1,1:1,1:1,1
INTERLEAVE 0
COMPRESSION JPEGL
JPEGL_PREDICT 4

Cjpegl also accepts an optional comment file on the command line.If provided, the contents of this file are
also inserted into the compressed output file.If the comment file is a NISTCOM attribute list, then its con-
tents are merged with the NISTCOM internally generated bycjpegl and a single NISTCOM is written to
the compressed output file.Note thatcjpegl gives precedence to internally generated attribute values. If
the user provides a non-NISTCOM comment file, then the contents of file are stored to a separate comment
block in the output file.Using these comment options enables the user to store application-specific infor-
mation in a JPEG file.

EXAMPLES
From test/imgtools/execs/cjpegl/cjpegl.src:

% cjpegl jpl face.raw -r 768,1024,24
compresses a color face image in a raw pixmap file.

SEE ALSO
cjpegb(1D), djpegl(1D), dpyimage(1D), intr2not (1D), not2intr (1D), rdjpgcom(1E), rgb2ycc(1D),
wrjpgcom(1E)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 101

CMBMCS(1A) NFISReference Manual CMBMCS(1A)

NAME
cmbmcs − combines PCASYS mean/covariance data file pairs.

SYNOPSIS
cmbmcs <meanfile_in[meanfile_in...]> <covfile_in[covfile_in...]> <meanfile_out> <meanfile_out_desc>
<covfile_out> <covfile_out_desc> <ascii_outfiles>

DESCRIPTION
Cmbmcs combines pairs of PCASYS mean vector and covariance matrix data files, to produce a
mean/covariance pair that is approximately the same as would have resulted if all the vectors that were used
to make the input means and covariances had been given to the meancov function in one large set.So, if
the sample covariance matrix needs to be made from a large set of vectors, and several processors are avail-
able, it may be possible to save run time by, first, running several simultaneous instances of meancov, each
on a subset of the vectors, and second, running cmbmcs to combine the means and covariances made by the
meancov instances. (Even if only the covariance is ultimately needed, i.e. not the mean, it is necessary for
the meancov instances to compute the means and for cmbmcs to use them, to compute the overall covari-
ance.)

OPTIONS
<meanfile_in[meanfile_in...]>

Input files each containing a mean vector. These files must be in PCASYS "matrix" format, each
with first dimension 1 and all having the same second dimension. (Usually the output ofmean-
cov.)

<covfile_in[covfile_in...]>
Input files each containing a covariance matrix.These files must be in PCASYS "covariance" for-
mat. Thei’ th input covariance file goes with the i’th input mean file.These covariances must all
have the same order, which must be the second dimension of the input mean vector files. (Usually
the output ofmeancov.)

<meanfile_out>
Mean file to be written, in PCASYS "matrix" format.

<meanfile_out_desc>
A string to be written into the mean output files description string.This string can be of any
length, but must not contain embedded newline characters.If it contains spaces, tabs, or shell
metacharacters that are not to be expanded, then it should be quoted.To leave the description
empty, use ’’ (two single quotes, i.e.single−quoted empty string).To let cmbmcs make a descrip-
tion (stating that this is a mean vector made by cmbmcs and listing the names of the input files),
use − (hyphen).

<covfile_out>
Covariance file to be produced, in PCASYS "covariance" format. Its "number of vectors" field
will be set to the sum of the values of that field across the input covariances.

<covfile_out_desc>
Description string for output covariance file or - to let cmbmcs make the description (as for output
mean file description).

<ascii_outfiles>
If y, makes ascii output files; if n, binary. Binary is recommended, unless the output files must be
portable across different byte orders or floating_point formats.

EXAMPLE(S)
From test/pcasys/execs/cmbmcs/cmbmcs.src:

% cmbmcs ../meancov/fv1.men ../meancov/fv2.men ../meancov/fv1.cov ../meancov/fv2.cov
fv_tst.men - fv_tst.cov - n
Combines the mean/covariance files for fv1 and fv2 into a mean/covariance set of files.

NIST 02April 2001 102

CMBMCS(1A) NFISReference Manual CMBMCS(1A)

SEE ALSO
meancov (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 103

CWSQ(1D) NFISReference Manual CWSQ(1D)

NAME
cwsq − WSQ compresses grayscale fingerprint images.

SYNOPSIS
cwsq<r bitr ate> <outext> <image file>

[-raw_in w,h,d,[ppi]] [comment file]

DESCRIPTION
Cwsq takes as input a file containing an uncompressed grayscale fingerprint image.Tw o possible input file
formats are accepted, NIST IHead files and raw pixmap files. If a raw pixmap file is to be compressed, then
its image attributes must be provided on the command line as well.Once read into memory, the pixmap is
lossycompressed using Wav elet Scalar Quantization as described in the FBI’s Criminal Justice Information
Services (CJIS) document, "WSQ Gray-scale Fingerprint Compressions Specification," Dec. 1997.The
results are then written to an output file in a format dictated by this document.This is the only fingerprint
compression format accepted by the FBI IAFIS system.

OPTIONS
All switch names may be abbreviated; for example,-raw_in may be written-r .

<r bitr ate>
determines the amount of lossy compression.
Suggested settings:

r bitrate= 2.25 yields around 5:1 compression
r bitrate= 0.75 yields around 15:1 compression

<outext>
the extension of the compressed output file.To construct the output filename,cwsq takes the input
filename and replaces its extension with the one specified here.

<image file>
the input file, either an IHead file or raw pixmap file, containing the fingerprint image to be com-
pressed.

-raw_in w,h,d,[ppi]
the attributes of the input image.This option must be included on the command line if the input is
a raw pixmap file.

w the pixel width of the pixmap

h the pixel height of the pixmap

d the pixel depth of the pixmap

ppi the optional scan resolution of the image in integer units of pixels per inch.

comment file
an optional user-supplied ASCII comment file.(See COMMENT OPTIONS below.)

COMMENT OPTIONS
Upon successful compression, this utility generates and inserts in the compressed output file a specially for-
matted comment block, called a NISTCOM.A NISTCOM is a text-based attribute list comprised of
(name, value) pairs, one pair per text line. The first line of a NISTCOM always has name = "NIST_COM"
and its value is always the total number of attributes included in the list.The utility rdwsqcomscans a
WSQ compressed file for any and all comment blocks.Once found, the contents of each comment block is
printed to standard output.Using this utility, the NISTCOM provides easy access to relevant image
attributes. Thefollowing is an example NISTCOM generated bycwsq:

NIST_COM 9
PIX_WIDTH 500
PIX_HEIGHT 500

NIST 02April 2001 104

CWSQ(1D) NFISReference Manual CWSQ(1D)

PIX_DEPTH 8
PPI 500
LOSSY 1
COLORSPACE GRAY
COMPRESSION WSQ
WSQ_BITRATE 0.750000

Cwsq also accepts an optional comment file on the command line.If provided, the contents of this file are
also inserted into the compressed output file.If the comment file is a NISTCOM attribute list, then its con-
tents are merged with the NISTCOM internally generated bycwsqand a single NISTCOM is written to the
compressed output file.Note thatcwsq gives precedence to internally generated attribute values. If the
user provides a non-NISTCOM comment file, then the contents of file are stored to a separate comment
block in the output file.Using these comment options enables the user to store application-specific infor-
mation in a WSQ file.

EXAMPLES
From test/imgtools/execs/cwsq/cwsq.src:

% cwsq .75 wsq finger.raw -r 500,500,8,500
compresses a raw fingerprint pixmap.

SEE ALSO
dpyimage(1D), dwsq(1D), rdwsqcom(1D), wrwsqcom(1D)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 105

DATAINFO(1A) NFISReference Manual DATAINFO(1A)

NAME
datainfo − shows the header information of a PCASYS data file.

SYNOPSIS
datainfo <datafile>

DESCRIPTION
Datainfo reads the header information from a PCASYS data file and writes a short report of this informa-
tion to the standard output.

The file must be in one of the official PCASYS data file formats, which are "matrix" (matrix of floating
point numbers), "covariance" (covariance matrix of floating point numbers, with only the nonstrict lower
triangle stored since a covariance matrix is symmetric), and "classes" (classes, represented as unsigned
characters, which are thought of as being integers in the range 0 through 255).PCASYS data files come in
these three types, and can be either "ascii" or "binary", so there are really 6 types in all.

Datainfo reports the description string of the data file, its type (matrix, etc.), whether it is ascii or binary,
and then some final information specific to the file type: if matrix, the two dimensions; if covariance, the
order (of the symmetric covariance matrix, i.e. the number that both dimensions equal) and the number of
input vectors used to make the covariance; if classes, the number of elements.

OPTIONS
<datafile>

Data file whose header information is to be reported.

EXAMPLE(S)
From test/pcasys/execs/datainfo/datainfo.src:

% datainfo ../../data/oas/fv1-9.cls >& fv1-9cls.dat

% datainfo ../../data/oas/fv1.oas >& fv1oas.dat

% datainfo ../meancov/fv1-9.cov >& f v1-9cov.dat
Prints out the file header information for the various types of files, class (fv1-9.cls), orientation
arrays (fv1.oas), and covariance (fv1-9.cov).

SEE ALSO
chgdesc (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 106

DIFFBYTS(1D) NFISReference Manual DIFFBYTS(1D)

NAME
diffbyts − takes two binary data files and compares them byte for byte, compiling a cumulative histogram of
differences.

SYNOPSIS
diffbyts <file1> <file2>

DESCRIPTION
Diffbyts takes as input two binary files of equal length and compares the contents between the two files
byte for byte. The differences between corresponding pairs of bytes are accumulated into a histogram,
where each bin in the histogram represents the integer difference between the byte pairs.Therefore, the
first bin in the histogram contains the count of all those byte pairs that are exactly the same (a difference of
0); the next bin contains the count of all those byte pairs that are different by exactly 1; and so on.

Upon completion, this utility prints a formatted report of the accumulated histogram to standard output.
Each difference bin in the histogram is listed on separate line in the report and formatted at follows:

d[b] = c : p
where

b is the current bin’s byte pair difference.

c is the number of corresponding byte pairs with difference equal tob.

p is the cumulative percentage of corresponding pairs of bytes counted in all the bins up to
and including the current bin.

OPTIONS
<file1> a binary file to be compared byte for byte tofile2.

<file2> a binary file to be compared byte for byte tofile1.

EXAMPLES
From test/imgtools/execs/diffbyts/diffbyts.src:

% diffbyts ../../data/finger/gray/raw/finger.raw ../dwsq/finger.raw > finger.hst
compiles and stores a byte-difference histogram reporting the amount of image degradation due to
lossy WSQ compression.

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 107

DJPEG(1E) NFISReference Manual DJPEG(1E)

NAME
djpeg − decompress a JPEG file to an image file

SYNOPSIS
djpeg [options] [filename]

DESCRIPTION
djpeg decompresses the named JPEG file, or the standard input if no file is named, and produces an image
file on the standard output.PBMPLUS (PPM/PGM), BMP, GIF, Targa, or RLE (Utah Raster Toolkit) out-
put format can be selected.(RLE is supported only if the URT library is available.)

OPTIONS
All switch names may be abbreviated; for example,−grayscalemay be written−gray or −gr. Most of the
"basic" switches can be abbreviated to as little as one letter. Upper and lower case are equivalent (thus
−BMP is the same as−bmp). British spellings are also accepted (e.g.,−greyscale), though for brevity
these are not mentioned below.

The basic switches are:

−colorsN
Reduce image to at most N colors.This reduces the number of colors used in the output image, so
that it can be displayed on a colormapped display or stored in a colormapped file format.For
example, if you have an 8-bit display, you’d need to reduce to 256 or fewer colors.

−quantizeN
Same as−colors. −colors is the recommended name,−quantize is provided only for backwards
compatibility.

−fast Select recommended processing options for fast, low quality output. (The default options are cho-
sen for highest quality output.)Currently, this is equivalent to −dct fast −nosmooth −onepass
−dither ordered.

−grayscale
Force gray-scale output even if JPEG file is color. Useful for viewing on monochrome displays;
also,djpeg runs noticeably faster in this mode.

−scaleM/N
Scale the output image by a factor M/N. Currently the scale factor must be 1/1, 1/2, 1/4, or 1/8.
Scaling is handy if the image is larger than your screen; also,djpeg runs much faster when scaling
down the output.

−bmp Select BMP output format (Windows flavor). 8-bit colormapped format is emitted if−colors or
−grayscale is specified, or if the JPEG file is gray-scale; otherwise, 24-bit full-color format is
emitted.

−gif Select GIF output format.Since GIF does not support more than 256 colors,−colors 256 is
assumed (unless you specify a smaller number of colors).

−os2 Select BMP output format (OS/2 1.x flavor). 8-bit colormapped format is emitted if−colors or
−grayscale is specified, or if the JPEG file is gray-scale; otherwise, 24-bit full-color format is
emitted.

−pnm Select PBMPLUS (PPM/PGM) output format (this is the default format). PGM is emitted if the
JPEG file is gray-scale or if−grayscaleis specified; otherwise PPM is emitted.

−rle Select RLE output format.(Requires URT library.)

−targa Select Targa output format. Gray-scale format is emitted if the JPEG file is gray-scale or if
−grayscaleis specified; otherwise, colormapped format is emitted if−colors is specified; other-
wise, 24-bit full-color format is emitted.

Switches for advanced users:

IJG 22August 1997 108

DJPEG(1E) NFISReference Manual DJPEG(1E)

−dct int
Use integer DCT method (default).

−dct fast
Use fast integer DCT (less accurate).

−dct float
Use floating-point DCT method.The float method is very slightly more accurate than the int
method, but is much slower unless your machine has very fast floating-point hardware. Alsonote
that results of the floating-point method may vary slightly across machines, while the integer
methods should give the same results everywhere. Thefast integer method is much less accurate
than the other two.

−dither fs
Use Floyd-Steinberg dithering in color quantization.

−dither ordered
Use ordered dithering in color quantization.

−dither none
Do not use dithering in color quantization.By default, Floyd-Steinberg dithering is applied when
quantizing colors; this is slow but usually produces the best results.Ordered dither is a compro-
mise between speed and quality; no dithering is fast but usually looks awful. Note that these
switches have no effect unless color quantization is being done.Ordered dither is only available in
−onepassmode.

−map file
Quantize to the colors used in the specified image file.This is useful for producing multiple files
with identical color maps, or for forcing a predefined set of colors to be used.The file must be a
GIF or PPM file. This option overrides−colorsand−onepass.

−nosmooth
Use a faster, lower-quality upsampling routine.

−onepass
Use one-pass instead of two-pass color quantization.The one-pass method is faster and needs less
memory, but it produces a lower-quality image.−onepassis ignored unless you also say−colors
N. Also, the one-pass method is always used for gray-scale output (the two-pass method is no
improvement then).

−maxmemoryN
Set limit for amount of memory to use in processing large images.Value is in thousands of bytes,
or millions of bytes if "M" is attached to the number. For example,−max 4m selects 4000000
bytes. Ifmore space is needed, temporary files will be used.

−outfile name
Send output image to the named file, not to standard output.

−verbose
Enable debug printout. More −v’s giv e more output. Also, version information is printed at
startup.

−debug
Same as−verbose.

EXAMPLES
This example decompresses the JPEG file foo.jpg, quantizes it to 256 colors, and saves the output in 8-bit
BMP format in foo.bmp:

djpeg −colors 256 −bmpfoo.jpg> foo.bmp

IJG 22August 1997 109

DJPEG(1E) NFISReference Manual DJPEG(1E)

HINTS
To get a quick preview of an image, use the−grayscaleand/or−scaleswitches. −grayscale −scale 1/8is
the fastest case.

Several options are available that trade off image quality to gain speed.−fast turns on the recommended
settings.

−dct fast and/or−nosmoothgain speed at a small sacrifice in quality. When producing a color-quantized
image,−onepass −dither ordered is fast but much lower quality than the default behavior. −dither none
may give acceptable results in two-pass mode, but is seldom tolerable in one-pass mode.

If you are fortunate enough to have very fast floating point hardware,−dct float may be even faster than
−dct fast. But on most machines−dct float is slower than−dct int; in this case it is not worth using,
because its theoretical accuracy advantage is too small to be significant in practice.

ENVIRONMENT
JPEGMEM

If this environment variable is set, its value is the default memory limit. The value is specified as
described for the−maxmemory switch. JPEGMEM overrides the default value specified when
the program was compiled, and itself is overridden by an explicit −maxmemory.

SEE ALSO
cjpeg(1), jpegtran(1), rdjpgcom(1), wrjpgcom(1)
ppm(5), pgm(5)
Wallace, Gregory K. "The JPEG Still Picture Compression Standard", Communications of the ACM, April
1991 (vol. 34, no. 4), pp. 30-44.

AUTHOR
Independent JPEG Group

BUGS
Arithmetic coding is not supported for legal reasons.

To avoid the Unisys LZW patent,djpeg produces uncompressed GIF files.These are larger than they
should be, but are readable by standard GIF decoders.

Still not as fast as we’d like.

IJG 22August 1997 110

DJPEGB(1D) NFISReference Manual DJPEGB(1D)

NAME
djpegb − decompresses a Baseline JPEG (JPEGB) grayscale or color image.

SYNOPSIS
djpegb <outext> <image file>

[-raw_out [-nonintrlv]]

DESCRIPTION
Djpegb takes as input a file containing a Baseline JPEG (JPEGB) compressed grayscale or color image.
Once read into memory, the lossy-compressed pixmap is decoded and reconstructed using the Independent
JPEG Group’s (IJG) library for Baseline JPEG.

Upon completion, two different output image file formats are possible, a NIST IHead file (the default) or a
raw pixmap file (specified by the-raw_out flag). Inaddition, a specially formatted text file, called a NIST-
COM, is created with extension ".ncm".The NISTCOM file contains relevant image attributes associated
with the decoded and reconstructed output image.(See NISTCOM OUTPUT below.)

OPTIONS
All switch names may be abbreviated; for example,-raw_out may be written-r .

<outext>
the extension of the decompressed output file.To construct the output filename,djpegb takes the
input filename and replaces its extension with the one specified here.

<image file>
the input JPEGB file to be decompressed.

-raw_out
specifies that the decoded and reconstructed image should be stored to a raw pixmap file.

-nonintrlv
specifies that the color components in the reconstructed image should be organized into separate
component planes.The -raw_out flag must be used with this option, because the IHead format
only supports interleaved color pixels. (SeeINTERLEAVE OPTIONS below.)

INTERLEA VE OPTIONS
For example, given an RGB image, its color components may be interleaved or non-interleaved. Color
components are interleaved when a pixel’s (R)ed, (G)reen, and (B)lue components are sequentially adjacent
in the image byte stream, ie. RGBRGBRGB... .If the color components are non-interleaved, then all (R)ed
components in the image are sequentially adjacent in the image byte stream, followed by all (G)reen com-
ponents, and then lastly followed by all (B)lue components.Each complete sequence of color components
is called aplane. The utilitiesintr2not andnot2intr convert between interleaved and non-interleaved color
components. Bydefault, djpegb uses interleaved color component pixels in the reconstructed output
image. Notethat all color IHead images must be interleaved.

NISTCOM OUTPUT
Upon successful completion,djpegb, creates a specially formatted text file called a NISTCOM file.A
NISTCOM is a text-based attribute list comprised of (name, value) pairs, one pair per text line. The first
line of a NISTCOM always has name = "NIST_COM" and its value is always the total number of attributes
included in the list.These attributes are collected and merged from two different sources to represent the
history and condition of the resulting reconstructed image.The first source is from an optional NISTCOM
comment block inside the JPEGB-encoded input file.This comment block can be used to hold user-sup-
plied attributes. TheJPEGB encoder, cjpegb, by convention inserts one of these comment blocks in each
compressed output file it creates.(The utility rdjpgcom can be used to scan a JPEG file for any and all
comment blocks.)The second source of attributes comes from the decompression process itself.In gen-
eral, attribute values from this second source are given precedence over those from the first.

NIST 02April 2001 111

DJPEGB(1D) NFISReference Manual DJPEGB(1D)

The NISTCOM output filename is constructed by combining the basename of the input JPEGB file with the
extension ".ncm". By creating the NISTCOM file, relevant attributes associated with the decoded and
reconstructed image are retained and easily accessed.This is especially useful when dealing with raw
pixmap files and creating image archives. Thefollowing is an example NISTCOM generated bydjpegb:

NIST_COM 10
PIX_WIDTH 768
PIX_HEIGHT 1024
PIX_DEPTH 24
PPI -1
LOSSY 1
COLORSPACE RGB
NUM_COMPONENTS 3
HV_FACTORS 1,1:1,1:1,1
INTERLEAVE 1

EXAMPLES
From test/imgtools/execs/djpegb/djpegb.src:

% djpegb raw face24.jpb -r
decompresses a JPEGB-encoded RGB face image and stores the reconstructed image to a raw
pixmap file. Note the NISTCOM file,face24.ncm, is also created.

SEE ALSO
cjpegb(1D), dpyimage(1D), intr2not (1D), jpegtran(1E),not2intr (1D), rdjpgcom(1E),wrjpgcom(1E)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 112

DJPEGL(1D) NFISReference Manual DJPEGL(1D)

NAME
djpegl − decompresses a Lossless JPEG (JPEGL) grayscale or color image.

SYNOPSIS
djpegl <outext> <image file>

[-raw_out [-nonintrlv]]

DESCRIPTION
Djpegl takes as input a file containing a Lossless JPEG (JPEGL) compressed grayscale or color image.
Once read into memory, the compressed pixmap is decoded and reconstructed to its original condition prior
to compression.

Upon completion, two different output image file formats are possible, a NIST IHead file (the default) or a
raw pixmap file (specified by the-raw_out flag). Inaddition, a specially formatted text file, called a NIST-
COM, is created with extension ".ncm".The NISTCOM file contains relevant image attributes associated
with the decoded and reconstructed output image.(See NISTCOM OUTPUT below.)

OPTIONS
All switch names may be abbreviated; for example,-raw_out may be written-r .

<outext>
the extension of the decompressed output file.To construct the output filename,djpegl takes the
input filename and replaces its extension with the one specified here.

<image file>
the input JPEGL file to be decompressed.

-raw_out
specifies that the decoded and reconstructed image should be stored to a raw pixmap file.

-nonintrlv
specifies that the color components in the reconstructed image should be organized into separate
component planes.The -raw_out flag must be used with this option, because the IHead format
only supports interleaved color pixels. (SeeINTERLEAVE OPTIONS below.)

INTERLEA VE OPTIONS
For example, given an RGB image, its color components may be interleaved or non-interleaved. Color
components are interleaved when a pixel’s (R)ed, (G)reen, and (B)lue components are sequentially adjacent
in the image byte stream, ie. RGBRGBRGB... .If the color components are non-interleaved, then all (R)ed
components in the image are sequentially adjacent in the image byte stream, followed by all (G)reen com-
ponents, and then lastly followed by all (B)lue components.Each complete sequence of color components
is called aplane. The utilitiesintr2not andnot2intr convert between interleaved and non-interleaved color
components. Bydefault,djpegl uses interleaved color component pixels in the reconstructed output image.
Note that all color IHead images must be interleaved.

NISTCOM OUTPUT
Upon successful completion,djpegl, creates a specially formatted text file called a NISTCOM file.A
NISTCOM is a text-based attribute list comprised of (name, value) pairs, one pair per text line. The first
line of a NISTCOM always has name = "NIST_COM" and its value is always the total number of attributes
included in the list.These attributes are collected and merged from two different sources to represent the
history and condition of the resulting reconstructed image.The first source is from an optional NISTCOM
comment block inside the JPEGL-encoded input file.This comment block can be used to hold user-sup-
plied attributes. TheJPEGL encoder, cjpegl, by convention inserts one of these comment blocks in each
compressed output file it creates.(The utility rdjpgcom can be used to scan a JPEG file for any and all
comment blocks.)The second source of attributes comes from the decompression process itself.In gen-
eral, attribute values from this second source are given precedence over those from the first.

NIST 02April 2001 113

DJPEGL(1D) NFISReference Manual DJPEGL(1D)

The NISTCOM output filename is constructed by combining the basename of the input JPEGL file with the
extension ".ncm". By creating the NISTCOM file, relevant attributes associated with the decoded and
reconstructed image are retained and easily accessed.This is especially useful when dealing with raw
pixmap files and creating image archives. Thefollowing is an example NISTCOM generated bydjpegl:

NIST_COM 9
PIX_WIDTH 768
PIX_HEIGHT 1024
PIX_DEPTH 24
PPI -1
LOSSY 0
NUM_COMPONENTS 3
HV_FACTORS 1,1:1,1:1,1
INTERLEAVE 1

EXAMPLES
From test/imgtools/execs/djpegl/djpegl.src:

% djpegl raw finger.jpl -r
decompresses a JPEGL-encoded grayscale fingerprint image and stores the reconstructed image to
a raw pixmap file. Note the NISTCOM file,finger.ncm, is also created.

% djpegl raw face.jpl -r
decompresses a JPEGL-encoded RGB face image and stores the reconstructed image to a raw
pixmap file. Note the NISTCOM file,face.ncm, is also created.

SEE ALSO
cjpegl(1D), dpyimage(1D), intr2not (1D), not2intr (1D), rdjpgcom(1E),wrjpgcom(1E)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 114

DJPEGLSD(1D) NFISReference Manual DJPEGLSD(1D)

NAME
djpeglsd − decompresses a grayscale image that was compressed using the old Lossless JPEG compression
distributed with Special Databases 4, 9, 10, and 18.Cjpegl should be used in the future to Lossless JPEG
(JPEGL) compress images.

SYNOPSIS
djpeglsd<outext> <image file>

[-sd #] [-raw_out]

DESCRIPTION
Djpeglsd takes as input a file containing a grayscale image that was compressed with the old Lossless
JPEG (JPEGLSD).Specifically the version that is included on the CDROMs with Special Databases 4, 9,
10, and 18.Once read into memory, the compressed pixmap is decoded and reconstructed to its original
condition prior to compression.Cjpegl should be used for any future Lossless JPEG compression of
images.

Upon completion, two different output image file formats are possible, a NIST IHead file (the default) or a
raw pixmap file (specified by the-raw_out flag). Inaddition, a specially formatted text file, called a NIST-
COM, is created with extension ".ncm".The NISTCOM file contains relevant image attributes associated
with the decoded and reconstructed output image. If given a special database number, djpeglsd will put all
the important class, sex, age, and file history information, that may exist for that database, in the NISTCOM
file. (SeeNISTCOM OUTPUT below.)

OPTIONS
All switch names may be abbreviated; for example,-raw_out may be written-r .

<outext>
the extension of the decompressed output file.To construct the output filename,djpeglsd takes
the input filename and replaces its extension with the one specified here.

<image file>
the input JPEGLSD file to be decompressed.

-sd # Specify that the input image is from NIST Special Database #.

-raw_out
specifies that the decoded and reconstructed image should be stored to a raw pixmap file.

NISTCOM OUTPUT
Upon successful completion,djpeglsd, creates a specially formatted text file called a NISTCOM file.A
NISTCOM is a text-based attribute list comprised of (name, value) pairs, one pair per text line. The first
line of a NISTCOM always has name = "NIST_COM" and its value is always the total number of attributes
included in the list. These attributes are collected from information about the decompressed image. Detailed
attributes are collected if the-sd #flag is used.

The NISTCOM output filename is constructed by combining the basename of the input JPEGLSD file with
the extension ".ncm".By creating the NISTCOM file, relevant attributes associated with the decoded and
reconstructed image are retained and easily accessed.This is especially useful when dealing with raw
pixmap files and creating image archives. Thefollowing are example NISTCOMs generated bydjpeglsd
for SD9 and SD18 images (The highlighted items are attributes specific to that database.):

NIST_COM 12
SD_ID 9
HISTORY f0000771.pct ac/dm_fpw:20 tape9.n1125012.01 4096x1536
FING_CLASS W
SEX f

NIST 02April 2001 115

DJPEGLSD(1D) NFISReference Manual DJPEGLSD(1D)

SCAN_TYPE i
PIX_WIDTH 832
PIX_HEIGHT 768
PIX_DEPTH 8
PPI 500
LOSSY 0
COLORSPACE GRAY

NIST_COM 12
SD_ID 18
HISTORY f00117_1.pct
SEX m
AGE 26
FA CE_POS f
PIX_WIDTH 592
PIX_HEIGHT 448
PIX_DEPTH 8
PPI 500
LOSSY 0
COLORSPACE GRAY

EXAMPLES
From test/imgtools/execs/djpeglsd/djpeglsd.src:

% djpeglsd raw sd04.old -sd 4 -r
% djpeglsd raw sd09.old -sd 9 -r
% djpeglsd raw sd10.old -sd 10 -r
% djpeglsd raw sd18.old -sd 18 -r
decompresses JPEGLSD-encoded images from the Special Databases and stores the reconstructed
images to a raw pixmap files. Note the NISTCOM files,sd04.ncm, sd09.ncm, sd10.ncm, and
sd18.ncm, are also created.

SEE ALSO
cjpegl(1D), djpegl(1D), dpyimage(1D),

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 116

DPYAN2K(1C) NFISReference Manual DPYAN2K(1C)

NAME
dpyan2k − display image and minutiae contents of an ANSI/NIST file.

SYNOPSIS
dpyan2k [options] <ANSI_NIST ...>

-a n
-v
-x
-b n
-i
-n
-p n
-W n
-H n
-X n
-Y n
-T title
-d display

DESCRIPTION
Dpyan2k displays in a sequence of X11 windows all the image records and overlays any corresponding
minutiae from Type-9 records contained in an ANSI/NIST-ITL 1-2000 file.

If multiple input files are specified,dpyan2kreads each ANSI/NIST file into memory and displays its con-
tents, one file at a time.Multiple image records within an ANSI/NIST file are displayed simultaneously by
forking background window processes, one for each image record.

If an image is too large to be displayed on the screen, the upper left hand corner will be displayed and the
rest of the image can be moved into view by holding down a mouse button, moving in the direction desired,
and then releasing the button. Buttonpresses when another button(s) is already down and button releases
when another button(s) is still down are ignored.

Users may remove a displayed image window by striking any key within that window. Once all windows
associated with a particular ANSI/NIST file have been removed, the utility proceeds to display the contents
of the next ANSI/NIST file listed on the command line.

OPTIONS
-a n sets drag accelerator ton — changes in pointer position will result inn shifts in the displayed

image [1].

-v turns on verbose output.

-x turns on debug mode, causing a core dump when an X11 error occurs.

-b n sets border width ton pixels [4].

-i directs the utility to use the FBI/IAFIS fields 13-23 in a Type-9 record when overlaying minutiae
on an image.

-n directs the utility to use the NIST fields 5-12 in a Type-9 record when overlaying minutiae on an
image. Thisis the default setting.

-p sets the pixel width of overlayed minutia points [3].

-W n displays image in a window of width n pixels.

-H n displays image in a window of heightn pixels.

-X n positions image window with top-left cornern pixels to the right of the display’s top-left corner
[0].

NIST 02April 2001 117

DPYAN2K(1C) NFISReference Manual DPYAN2K(1C)

-Y n positions image window with top-left cornern pixels below the display’s top-left corner [0].

-T title sets all image window names totitle.

-d display
connects to an alternate X11 display.

<ANSI_NIST ...>
one or more ANSI/NIST files with images and possbily minutiae to be displayed.

EXAMPLES
From test/an2k/execs/dpyan2k/dpyan2k.src:

% dpyan2k ../../data/nist.an2
displays image records and overlays minutia using NIST Type-9 fields.

% dpyan2k -i ../../data/iafis.an2
displays image records and overlays minutia using FBI/IAFIS Type-9 fields.

SEE ALSO
an2ktool(1C),dpyimage(1D), mindtct (1B)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 118

DPYIMAGE(1D) NFISReference Manual DPYIMAGE(1D)

NAME
dpyimage − displays the image contents of Baseline JPEG, Lossless JPEG, WSQ, IHead, and raw pixmap
files.

SYNOPSIS
dpyimage[options] image-file ...

-r w,h,d,wp
-A
-s n
-a n
-v
-x
-b n
-N n
-O
-k
-W n
-H n
-X n
-Y n
-n
-T title
-t
-D dir
-d display

DESCRIPTION
Dpyimage reads various image file formats, decompresses and reconstructs pixmaps as needed, and dis-
plays image contents in an X11 window. Supported file formats include Baseline JPEG (lossy), Lossless
JPEG, WSQ (lossy), NIST IHead, and raw pixmap files. Raw pixmaps containing either grayscale or inter-
leaved RGB color pixels are supported.This utility automatically differentiates between these different for-
mats.

If only one file (or the-n option) is specified on the command line, the image or images are simply read
from disk and then displayed.If multiple files are specified,dpyimage attempts to minimize the display
waiting time by forking a background process to pre-read images from disk.By default, the child transfers
images to the parent via a pipe.This always allows at least one image to be read in from disk while the
user is viewing the current image.Since a process writing on a pipe is blocked (until a read on the other
end of the pipe) after transferring four kilobytes, the child will only be one image ahead of the parent
except when handling smaller images.

If the -t option appears on the command line, the processes use temporary files as the means of exchanging
image data. Therefore, the child is not constrained on the number of images it may pre-read for the parent.
However, the filesystem on which the directory for temporary files resides must have enough space for
copies of all images in uncompressed state or an error may occur. This is the suggested mode for viewing
compressed images for which decompression takes considerably longer than disk I/O.

If the image is too large to be displayed on the screen, the upper lefthand corner will be displayed and the
rest of the image can be moved into view by holding down a mouse button, moving in the direction desired,
and then releasing the button. Buttonpresses when another button(s) is already down and button releases
when another button(s) is still down are ignored.

Users may exit from the program by striking keys ’x’ or ’X’. Advancing to the next image is accomplished
by any other keystroke.

NIST 02April 2001 119

DPYIMAGE(1D) NFISReference Manual DPYIMAGE(1D)

OPTIONS
-r w,h,d,wp

raw pixmap attributes:
w - pixel width,
h - pixel height,
d - pixel depth,
wp - white pixel value

bi-level wp=0|1
grayscale wp=0|255
RGB wp=0(value ignored)

-A automatically advances through images.

-s n in automatic mode, sleepsn seconds before advancing to the next image [2].

-a n sets drag accelerator ton — changes in pointer position will result inn shifts in the displayed
image [1].

-v turns on verbose output.

-x turns on debug mode, causing a core dump when an X11 error occurs.

-b n sets border width ton pixels [4].

-N n the child I/O process is niced to level n.

-O overrides the redirect on windows (no window manager).

-k informs utility that there is no keyboard input.

-W n displays image in a window of width n pixels.

-H n displays image in a window of heightn pixels.

-X n positions image window with top-left cornern pixels to the right of the display’s top-left corner
[0].

-Y n positions image window with top-left cornern pixels below the display’s top-left corner [0].

-n does not fork to display multiple images.

-T title sets window name totitle [file]. -t uses temporary files to transfer multiple images to parent
[via pipe].

-D directory
creates temporary files indirectory[/tmp].

-d display
connects to alternate display.

image-file ...
one or more image files whose pixmaps are to be displayed.

ENVIRONMENT
If the environment variableTMPDIR is set and the-D option is not set on the command line,dpyimage
uses this directory as the location for temporary files.

EXAMPLES
From test/imgtools/execs/dpyimage/dpyimage.src:

% dpyimage -r 500,500,8,255 ../../data/finger/gray/raw/finger.raw
displays a fingerprint image from a raw pixmap file.

% dpyimage ../../data/finger/gray/jpegl/finger.jpl
displays a reconstructed fingerprint image from a Lossless JPEG file.

NIST 02April 2001 120

DPYIMAGE(1D) NFISReference Manual DPYIMAGE(1D)

% dpyimage ../../data/finger/gray/wsq/finger.wsq
displays a reconstructed fingerprint image from a WSQ file.

% dpyimage ../../data/face/gray/jpegb/face.jpb
displays a reconstructed grayscale face image from a Baseline JPEG file.

% dpyimage -r 768,1024,24,0 ../../data/face/rgb/raw/intrlv/face.raw
displays a color face image from a raw pixmap file.

% dpyimage ../../data/face/rgb/jpegb/face.jpb
displays a reconstructed color face image from a Baseline JPEG file.

% dpyimage ../../data/face/rgb/jpegl/face.jpl
displays a reconstructed color face image from a Lossless JPEG file.

SEE ALSO
an2ktool(1C),cjpegb(1D), cjpegl(1D), cwsq(1D), djpegb(1D), djpegl(1D), dpyan2k(1C),dwsq(1D)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 121

DWSQ(1D) NFISReference Manual DWSQ(1D)

NAME
dwsq − decompresses a WSQ-encoded grayscale fingerprint image.

SYNOPSIS
dwsq<outext> <image file> [-raw_out]

DESCRIPTION
Dwsq takes as input a file containing a WSQ-compressed grayscale fingerprint image.Once read into
memory, the lossy-compressed pixmap is decoded and reconstructed using Wav elet Scalar Quantization as
described in the FBI’s Criminal Justice Information Services (CJIS) document, "WSQ Gray-scale Finger-
print Compressions Specification," Dec. 1997.This is the only fingerprint compression format accepted by
the FBI IAFIS system.

Upon completion, two different output image file formats are possible, a NIST IHead file (the default) or a
raw pixmap file (specified by the-raw_out flag). Inaddition, a specially formatted text file, called a NIST-
COM, is created with extension ".ncm".The NISTCOM file contains relevant image attributes associated
with the decoded and reconstructed output image.(See NISTCOM OUTPUT below.)

OPTIONS
All switch names may be abbreviated; for example,-raw_out may be written-r .

<outext>
the extension of the decompressed output file.To construct the output filename,dwsq takes the
input filename and replaces its extension with the one specified here.

<image file>
the input WSQ file to be decompressed.

-raw_out
specifies that the decoded and reconstructed image should be stored to a raw pixmap file.

NISTCOM OUTPUT
Upon successful completion,dwsq, creates a specially formatted text file called a NISTCOM file.A NIST-
COM is a text-based attribute list comprised of (name, value) pairs, one pair per text line. The first line of a
NISTCOM always has name = "NIST_COM" and its value is always the total number of attributes included
in the list. These attributes are collected and merged from two different sources to represent the history and
condition of the resulting reconstructed image.The first source is from an optional NISTCOM comment
block inside the WSQ-encoded input file.This comment block can be used to hold user-supplied attributes.
The WSQ encoder, cwsq, by convention inserts one of these comment blocks in each compressed output
file it creates.(The utility rdwsqcomcan be used to scan a WSQ file for any and all comment blocks.)
The second source of attributes comes from the decompression process itself.In general, attribute values
from this second source are given precedence over those from the first.

The NISTCOM output filename is constructed by combining the basename of the input WSQ file with the
extension ".ncm". By creating the NISTCOM file, relevant attributes associated with the decoded and
reconstructed image are retained and easily accessed.This is especially useful when dealing with raw
pixmap files and creating image archives. Thefollowing is an example NISTCOM generated bydwsq:

NIST_COM 7
PIX_WIDTH 500
PIX_HEIGHT 500
PIX_DEPTH 8
PPI 500
LOSSY 1
COLORSPACE GRAY

NIST 02April 2001 122

DWSQ(1D) NFISReference Manual DWSQ(1D)

EXAMPLES
From test/imgtools/execs/dwsq/dwsq.src:

% dwsq raw finger.wsq -r
decompresses a WSQ-encoded fingerprint image and stores the reconstructed image to a raw
pixmap file. Note the NISTCOM file,finger.ncm, is also created.

SEE ALSO
cwsq(1D), dpyimage(1D), rdwsqcom(1D), wrwsqcom(1D)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 123

DWSQ14(1D) NFISReference Manual DWSQ14(1D)

NAME
dwsq14 − decompresses a WSQ14-encoded grayscale fingerprint image from NIST Special Database 14.

SYNOPSIS
dwsq14<outext> <image file> [-raw_out]

DESCRIPTION
Dwsq14takes as input a file containing a WSQ14-compressed grayscale fingerprint image from NIST Spe-
cial Database 14.The version of WSQ14 used to compress the images on this database is not certified and
produces loss that may be more than permitted by a certified WSQ compression algorithm.Once read into
memory, the lossy-compressed pixmap is decoded and reconstructed using Wav elet Scalar Quantization as
described in the FBI’s Criminal Justice Information Services (CJIS) document, "WSQ Gray-scale Finger-
print Compressions Specification," Dec. 1997.This is the only fingerprint compression format accepted by
the FBI IAFIS system.

Upon completion, two different output image file formats are possible, a NIST IHead file (the default) or a
raw pixmap file (specified by the-raw_out flag). Inaddition, a specially formatted text file, called a NIST-
COM, is created with extension ".ncm".The NISTCOM file contains relevant image attributes associated
with the decoded and reconstructed output image.(See NISTCOM OUTPUT below.)

OPTIONS
All switch names may be abbreviated; for example,-raw_out may be written-r .

<outext>
the extension of the decompressed output file.To construct the output filename,dwsq14takes the
input filename and replaces its extension with the one specified here.

<image file>
the input WSQ14 file to be decompressed.

-raw_out
specifies that the decoded and reconstructed image should be stored to a raw pixmap file.

NISTCOM OUTPUT
Upon successful completion,dwsq14, creates a specially formatted text file called a NISTCOM file.A
NISTCOM is a text-based attribute list comprised of (name, value) pairs, one pair per text line. The first
line of a NISTCOM always has name = "NIST_COM" and its value is always the total number of attributes
included in the list.These attributes are collected from two sources and merged to represent the history and
condition of the resulting reconstructed image.The two sources for the attributes are the IHEAD header of
the compressed image (specific information about the fingerprint itself is contained here) and the decom-
pression process.In general, attribute values from the second source are given precedence over those from
the first.

The NISTCOM output filename is constructed by combining the basename of the input WSQ14 file with
the extension ".ncm".By creating the NISTCOM file, relevant attributes associated with the decoded and
reconstructed image are retained and easily accessed.This is especially useful when dealing with raw
pixmap files and creating image archives. Thefollowing is an example NISTCOM generated bydwsq14
(highlighted items specific to SD14):

NIST_COM 12
PPI 500
SD_ID 14
HISTORY f0000001.wsq 20 tape3.t1116010.01 4096x1536
FING_CLASS R
SEX m
SCAN_TYPE i

NIST 02April 2001 124

DWSQ14(1D) NFISReference Manual DWSQ14(1D)

PIX_WIDTH 832
PIX_HEIGHT 768
PIX_DEPTH 8
LOSSY 1
COLORSPACE GRAY

EXAMPLES
From test/imgtools/execs/dwsq14/dwsq14.src:

% dwsq14 raw sd14.old -r
decompresses a WSQ14-encoded fingerprint image and stores the reconstructed image to a raw
pixmap file. Note the NISTCOM file,sd14.ncm, is also created.

SEE ALSO
cwsq(1D), dwsq(1D), dpyimage(1D),

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 125

EVA_EVT(1) NFISReference Manual EVA_EVT(1)

NAME
eva_evt − finds a desired number of eigenvalues and eigenvectors.

SYNOPSIS
eva_evt <covfile_in> <num_eva_evt_wanted> <evafile> <eva_desc> <evtfile> <evt_desc> <ascii_out-
files>

DESCRIPTION
ev a_evt finds a desired number of eigenvalues, and corresponding eigenvectors, of a covariance matrix (or
really, of any symmetric positive definite real matrix). Uses CLAPACK routines, which were originally in
Fortran but were converted into C using f2c.

ARGUMENTS
<covfile_in>

The covariance matrix (really, symmetric positive definite real matrix) some of whose eigenvalues
and corresponding eivenv ectors are to be found.Must be a PCASYS "covariance" file. (Usually
the output ofmeancov.)

<num_eva_evt_wanted>
Specifies how many eigenvalues and eigenvectors to return for the given covariance matrix.

<evafile>
File to be written containing the eigenvalues that are found; will be a PCASYS "matrix" file, with
first dimension equal to 1 and second dimension equal to the number of eigenvalues found.The
eigenvalues will be stored in decreasing order.

<eva_desc>
A string to be written into the eigenvalues output file as its description string.This string can be of
any length, but must not contain embedded newline characters.If it contains spaces, tabs, or shell
metacharacters that are not to be expanded, then it should be quoted.To leave the description
empty, use ’’ (two single quotes, i.e.single-quoted empty string).To let eva_evt make a descrip-
tion (stating that this is an eigenvalues file made by eva_evt, and showing the covariance file and
number of eigenvalues), use - (hyphen).

<evtfile>
File to be written containing the eigenvectors that are found; will be a PCASYS "matrix" file.The
i’ th row of this matrix will be the eigenvector corresponding to the i’th entry in the eigenvalues
output file.

<evt_desc>
Description string for eigenvectors output file, or - to let eva_evt make the description. As per the
eva_desc.

<ascii_outfiles>
If y, makes ascii output files; if n, binary. Binary is recommended, unless the output files must be
portable across different byte orders or floating−point formats.

EXAMPLE(S)
From test/pcasys/execs/eva_evt/eva_evt.src:

% eva_evt ../meancov/fv1-9.cov 128 fv1-9.eva - fv1-9.evt - n
Computes the eigen-values and eigen-vectors for fv1-9.cov and sorts in decreasing order, then
returns the top 128 from that list.

SEE ALSO
asc2bin (1A), bin2asc (1A), lintran (1A), meancov (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 126

FIXWTS(1A) NFISReference Manual FIXWTS(1A)

NAME
fixwts − M-weighted robust weight filter from network activations.

SYNOPSIS
fixwts <long_error_file> <output_pat_wts>

DESCRIPTION
Fixwts creates a set of unequal pattern weights. The unequal pattern weights make the least squares func-
tion more efficient for non-standard distributions of the output errors by giving less weight to outliers in the
distribution.
[ref. D.F.Andrews,Technometrics, 16 (1974) 523.]

OPTIONS
<long_error_file>

The long error output file from an MLP training run. (Usually the output of a training run for
mlp.)

<output_pat_wts>
The pattern weights to be used in the next MLP training run. It would replace "fg_pat_wts" in the
example directory test/pcasys/execs/mlp/mlp_dir.

EXAMPLE(S)
From test/pcasys/execs/fixwts/fixwts.src:

% fi xwts ../mlp/mlp_dir/tr n01l.err fixwts.out
Takes the long error file (trn01l.err) from a mlp training run and computes a set of robust weights
(fixwts.out) to use in the next training run.

SEE ALSO
mlp (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 127

IAF2AN2K(1C) NFISReference Manual IAF2AN2K(1C)

NAME
iaf2an2k − Takes an ANSI/NIST file conforming to FBI/IAFIS specifications and modifies minutiae and
fingerprint image records in support of the new 2000 standard.

SYNOPSIS
iaf2an2k <file in> <file out>

DESCRIPTION
Iaf2an2k parses an ANSI/NIST file conforming to the FBI/IAFIS (EFTS V7) specifications and, if neces-
sary, converts specific records and fields to take advantage of the ANSI/NIST-ITL 1-2000 standard.This
utility focuses on the format of minutiae and image records.

Minutiae fields:
When a Type-9 record is encountered in the input file, this utility checks to see which fields are populated.
If the NIST-assigned fields 5-12 are empty, but the FBI/IAFIS-assigned fields 13-23 are populated, then the
NIST fields are populated by translating the data recorded in the FBI/IAFIS fields, and the FBI/IAFIS fields
are removed.

Image records:
FBI/IAFIS specifications (EFTS V7) require binary field images, but the ANSI/NIST 2000 standard intro-
duces tagged field image records.To support these new image records, this utility looks for binary field fin-
gerprint records and converts them appropriately. If a Type-4 or Type-6 record is encountered, it is
inspected to determine the impression type of the fingerprint.Latent fingerprints are converted to Type-13
records, while all others are converted to Type-14 records.

OPTIONS
<file in>

the ANSI/NIST file to be converted

<file out>
the resulting ANSI/NIST file

EXAMPLES
From test/an2k/execs/iafan2k/iafan2k.src:

% i afan2k ../../data/iafis.an2 nist.an2

SEE ALSO
an2k2iaf(1C)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 128

INTR2NOT(1D) NFISReference Manual INTR2NOT(1D)

NAME
intr2not − converts an image comprised of pixels with interleaved color components to an image with non-
interleaved component planes.

SYNOPSIS
intr2not <outext> <image file>

[-raw_in w,h,d,[ppi]
[-YCbCr H0,V0:H1,V1:H2,V2]]

DESCRIPTION
Intr2not takes as input an uncompressed image of pixels with interleaved color components and converts
the image into non-interleaved component planes.This utility requires there be three color components in
the input image.Tw o input file formats are possible, a NIST IHead file (the default) or a raw pixmap file
(specified by the-raw_in option). Thenon-interleaved results are stored to a raw pixmap file regardless of
the input file format, because the IHead format only supports interleaved pixels.

For example, the pixels of an RGB color image are interleaved when a pixel’s R, G, and B components are
sequentially adjacent in the image byte stream, ie. RGBRGBRGB... .If the color components are non-
interleaved, then all (R)ed components in the image are sequentially adjacent in the image byte stream, fol-
lowed by all (G)reen components, and then lastly followed by all (B)lue components.Each complete
sequence of color components is called aplane. The utility not2intr converts non-interleaved to inter-
leaved color components.

It is possible that the component planes of an input YCbCr image have been previously downsampled. If
so, the-YCbCr flag must be included on the command line, listing the appropriate component plane down-
sampling factors. Bydefault, this utility assumes no downsampling. (SeeYCbCr OPTIONS below.)

OPTIONS
All switch names may be abbreviated; for example,-raw_in may be written-r .

<outext>
the extension of the output file.To construct the output filename,intr2not takes the input file-
name and replaces its extension with the one specified here.

<image file>
the input file, either an IHead file or raw pixmap file, containing the color image to be converted.

-raw_in w,h,d,[ppi]
the attributes of the input image.This option must be included on the command line if the input is
a raw pixmap file.

w the pixel width of the pixmap

h the pixel height of the pixmap

d the pixel depth of the pixmap

ppi the optional scan resolution of the image in integer units of pixels per inch.

-YCbCr H0,V0:H1,V1:H2,V2
indicates that a YCbCr color image is being input whose component planes have been previously
downsampled. (SeeYCbCr Options below.)

YCbCr OPTIONS
A common compression technique for YCbCr images is to downsample the Cb & Cr component planes.
Intr2not can handle a limited range of YCbCr downsampling schemes that are represented by a list of
component plane factors. Thesefactors together represent downsampling ratios relative to each other. The
comma-separated list of factor pairs correspond to the Y, Cb, and Cr component planes respectively. The

NIST 02April 2001 129

INTR2NOT(1D) NFISReference Manual INTR2NOT(1D)

first value in a factor pair represents the downsampling of that particular component plane in the X-dimen-
sion, while the second represents the Y-dimension. Compressionratios for a particular component plane
are calculated by dividing the maximum component factors in the list by the current component’s factors.
These integer factors are limited between 1 and 4.H,V factors all set to 1 represent no downsampling. For
complete details,intr2not implements the downsampling and interleaving schemes described in the follow-
ing reference:

W.B. Pennebaker and J.L. Mitchell, "JPEG: Still Image Compression Standard," Appendix A -
"ISO DIS 10918-1 Requirements and Guidelines," Van Nostrand Reinhold, NY, 1993, pp. A1-A4.

For example the option specification:

-YCbCr 4,4:2,2:1,1

indicates that there has been no downsampling of the Y component plane (4,4 are the largest X and Y fac-
tors listed); the Cb component plane has been downsampled in X and Y by a factor of 2 (maximum factors
4 divided by current factors 2); and the Cr component plane has been downsampled in X and Y by a factor
of 4 (maximum factors 4 divided by current factors 1). Note that downsampling component planes is a
form of lossycompression. Theutility rgb2ycc converts RGB pixmaps to the YCbCr colorspace, and it
conducts downsampling of the resulting YCbCr component planes upon request.

EXAMPLES
From test/imgtools/execs/intr2not/intr2not.src:

% i ntr2not nin face.raw -r 768,1024,24
converts the interleaved RGB pixels of a face image in a raw pixmap file into separate color com-
ponent planes.

SEE ALSO
not2intr (1D), rgb2ycc(1D)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 130

JPEGTRAN(1E) NFISReference Manual JPEGTRAN(1E)

NAME
jpegtran − lossless transformation of JPEG files

SYNOPSIS
jpegtran [options] [filename]

DESCRIPTION
jpegtran performs various useful transformations of JPEG files.It can translate the coded representation
from one variant of JPEG to another, for example from baseline JPEG to progressive JPEG or vice versa. It
can also perform some rearrangements of the image data, for example turning an image from landscape to
portrait format by rotation.

jpegtran works by rearranging the compressed data (DCT coefficients), without ever fully decoding the
image. Therefore,its transformations are lossless: there is no image degradation at all, which would not be
true if you useddjpeg followed bycjpeg to accomplish the same conversion. Butby the same token,jpeg-
tran cannot perform lossy operations such as changing the image quality.

jpegtran reads the named JPEG/JFIF file, or the standard input if no file is named, and produces a
JPEG/JFIF file on the standard output.

OPTIONS
All switch names may be abbreviated; for example,−optimize may be written−opt or −o. Upper and
lower case are equivalent. Britishspellings are also accepted (e.g.,−optimise), though for brevity these are
not mentioned below.

To specify the coded JPEG representation used in the output file,jpegtran accepts a subset of the switches
recognized bycjpeg:

−optimize
Perform optimization of entropy encoding parameters.

−progressive
Create progressive JPEG file.

−restart N
Emit a JPEG restart marker every N MCU rows, or every N MCU blocks if "B" is attached to the
number.

−scansfile
Use the scan script given in the specified text file.

Seecjpeg(1) for more details about these switches.If you specify none of these switches, you get a plain
baseline-JPEG output file.The quality setting and so forth are determined by the input file.

The image can be losslessly transformed by giving one of these switches:

−flip horizontal
Mirror image horizontally (left-right).

−flip vertical
Mirror image vertically (top-bottom).

−rotate 90
Rotate image 90 degrees clockwise.

−rotate 180
Rotate image 180 degrees.

−rotate 270
Rotate image 270 degrees clockwise (or 90 ccw).

−transpose
Transpose image (across UL-to-LR axis).

IJG 3August 1997 131

JPEGTRAN(1E) NFISReference Manual JPEGTRAN(1E)

−transverse
Transverse transpose (across UR-to-LL axis).

The transpose transformation has no restrictions regarding image dimensions.The other transformations
operate rather oddly if the image dimensions are not a multiple of the iMCU size (usually 8 or 16 pixels),
because they can only transform complete blocks of DCT coefficient data in the desired way.

jpegtran’s default behavior when transforming an odd-size image is designed to preserve exact reversibility
and mathematical consistency of the transformation set.As stated, transpose is able to flip the entire image
area. Horizontalmirroring leaves any partial iMCU column at the right edge untouched, but is able to flip
all rows of the image.Similarly, vertical mirroring leaves any partial iMCU row at the bottom edge
untouched, but is able to flip all columns.The other transforms can be built up as sequences of transpose
and flip operations; for consistency, their actions on edge pixels are defined to be the same as the end result
of the corresponding transpose-and-flip sequence.

For practical use, you may prefer to discard any untransformable edge pixels rather than having a strange-
looking strip along the right and/or bottom edges of a transformed image.To do this, add the−trim switch:

−trim Drop non-transformable edge blocks.

Obviously, a transformation with−trim is not reversible, so strictly speakingjpegtran with this switch is
not lossless.Also, the expected mathematical equivalences between the transformations no longer hold.
For example,−rot 270 -trim trims only the bottom edge, but −rot 90 -trim followed by−rot 180 -trim
trims both edges.

Another not-strictly-lossless transformation switch is:

−grayscale
Force grayscale output.

This option discards the chrominance channels if the input image is YCbCr (ie, a standard color JPEG),
resulting in a grayscale JPEG file.The luminance channel is preserved exactly, so this is a better method of
reducing to grayscale than decompression, conversion, and recompression.This switch is particularly
handy for fixing a monochrome picture that was mistakenly encoded as a color JPEG.(In such a case, the
space savings from getting rid of the near-empty chroma channels won’t be large; but the decoding time for
a grayscale JPEG is substantially less than that for a color JPEG.)

jpegtran also recognizes these switches that control what to do with "extra" markers, such as comment
blocks:

−copy none
Copy no extra markers from source file.This setting suppresses all comments and other excess
baggage present in the source file.

−copy comments
Copy only comment markers. Thissetting copies comments from the source file, but discards any
other inessential data.

−copy all
Copy all extra markers. Thissetting preserves miscellaneous markers found in the source file,
such as JFIF thumbnails and Photoshop settings.In some files these extra markers can be sizable.

The default behavior is −copy comments. (Note: in IJG releases v6 and v6a,jpegtran always did the
equivalent of−copy none.)

Additional switches recognized by jpegtran are:

−maxmemoryN
Set limit for amount of memory to use in processing large images.Value is in thousands of bytes,
or millions of bytes if "M" is attached to the number. For example,−max 4m selects 4000000
bytes. Ifmore space is needed, temporary files will be used.

IJG 3August 1997 132

JPEGTRAN(1E) NFISReference Manual JPEGTRAN(1E)

−outfile name
Send output image to the named file, not to standard output.

−verbose
Enable debug printout. More −v’s giv e more output. Also, version information is printed at
startup.

−debug
Same as−verbose.

EXAMPLES
This example converts a baseline JPEG file to progressive form:

jpegtran −progressive foo.jpg> fooprog.jpg

This example rotates an image 90 degrees clockwise, discarding any unrotatable edge pixels:

jpegtran −rot 90 -trim foo.jpg> foo90.jpg

ENVIRONMENT
JPEGMEM

If this environment variable is set, its value is the default memory limit. The value is specified as
described for the−maxmemory switch. JPEGMEM overrides the default value specified when
the program was compiled, and itself is overridden by an explicit −maxmemory.

SEE ALSO
cjpeg(1), djpeg(1), rdjpgcom(1), wrjpgcom(1)
Wallace, Gregory K. "The JPEG Still Picture Compression Standard", Communications of the ACM, April
1991 (vol. 34, no. 4), pp. 30-44.

AUTHOR
Independent JPEG Group

BUGS
Arithmetic coding is not supported for legal reasons.

The transform options can’t transform odd-size images perfectly. Use−trim if you don’t like the results
without it.

The entire image is read into memory and then written out again, even in cases where this isn’t really nec-
essary. Expect swapping on large images, especially when using the more complex transform options.

IJG 3August 1997 133

KLTRAN(1A) NFISReference Manual KLTRAN(1A)

NAME
kltran − runs a Karhunen-Loeve transform on a set of vectors.

SYNOPSIS
kltran <vecsfile_in[vecsfile_in...]> <mean file> <tranmat_file> <nrows_use> <vecsfile_out> <vecs-
file_out_desc> <ascii_outfile> <message_freq>

DESCRIPTION
Kltran runs a Karhunen-Loeve transform on a set of vectors and reduces the dimensionality of the feature
vectors using the given basis settranmat_file.

If several processors are available, it may be possible to save time, when transforming a large set of vectors.
First, run several simultaneous instances of kltran, each instance transforming a subset of the vectors.
Then, use stackms to combine the resulting output files, in the sense of stacking together the matrices.See
the stackms man page.

OPTIONS
<vecsfile_in[vecsfile_in...]>

Input data file(s) in PCASYS "matrix" format, each consisting of a block of the vectors that are to
be transformed.The input vectors are the rows. All input vectors must have the same number of
elements, so the second dimensions of these files (if more than one file) must all be equal. (Usually
the output of themkoascommand.)

<mean file>
Input mean vector that gets subtracted from all the input feature vectors before using the transform
matrix. (Usually the output ofmeancov command.)

<tranmat_file>
A PCASYS "matrix" file containing a transform matrix, some of whose rows are to be used (see
next argument). Thesecond dimension of the transform matrix must equal the second dimension
of the file(s) of input vectors. (Usually the output of theev a_evt or mktran commands.)

<nrows_use>
How many (first) rows of the transform matrix are to be used.This is how many elements each
output vector will have.

<vecsfile_out>
The output vectors, stacked together as a PCASYS "matrix" file, each vector being one row of the
matrix.

<vecsfile_out_desc>
A string to be written into the output file as its description string.This string can be of any length,
but must not contain embedded newline characters.If it contains spaces, tabs, or shell metachar-
acters that are not to be expanded, then it should be quoted.To leave the description empty, use ’’
(two single quotes, i.e.single−quoted empty string).To let kltran make a description (indicating
that kltran was used, and listing the names of the file(s) of input vectors and of the transform
matrix file), use − (hyphen).

<ascii_outfile>
If y, makes an ascii output file; if n, binary. Binary is recommended, unless the output file must be
portable across different byte orders or floating−point formats.

<message_freq>
If a positive integer, then every this many vectors through each input file kltran writes a progress
message to the standard output.If zero, no messages.

EXAMPLE(S)
From test/pcasys/execs/kltran/kltran.src:

% k ltran ../mkoas/sv10.oas ../meancov/fv1-9.men ../eva_evt/fv1-9.evt 128 sv10.kls - n 100
Does transformation using a eigen-vector set made by theev a_evt command.

NIST 02April 2001 134

KLTRAN(1A) NFISReference Manual KLTRAN(1A)

SEE ALSO
lintran (1A), asc2bin (1A), bin2asc (1A), eva_evt (1A), mkoas (1A), mktran (1A), stackms (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 135

LINTRAN(1A) NFIS Reference Manual LINTRAN(1A)

NAME
lintran − runs a linear transform on a set of vectors.

SYNOPSIS
lintran <vecsfile_in[vecsfile_in...]> <tranmat_file> <nrows_use> <vecsfile_out> <vecsfile_out_desc>
<ascii_outfile> <message_freq>

DESCRIPTION
Lintran runs a linear transform on a set of vectors and reduces the dimensionality of the feature vectors
using the given basis settranmat_file.

If several processors are available, it may be possible to save time, when transforming a large set of vectors.
First, run several simultaneous instances of lintran, each instance transforming a subset of the vectors.
Then, use stackms to combine the resulting output files, in the sense of stacking together the matrices.See
the stackms man page.

OPTIONS
<vecsfile_in[vecsfile_in...]>

Input data file(s) in PCASYS "matrix" format, each consisting of a block of the vectors that are to
be transformed.The input vectors are the rows. All input vectors must have the same number of
elements, so the second dimensions of these files (if more than one file) must all be equal. (Usually
the output of themkoascommand.)

<tranmat_file>
A PCASYS "matrix" file containing a transform matrix, some of whose rows are to be used (see
next argument). Thesecond dimension of the transform matrix must equal the second dimension
of the file(s) of input vectors. (Usually the output of theev a_evt or mktran commands.)

<nrows_use>
How many (first) rows of the transform matrix are to be used.This is how many elements each
output vector will have.

<vecsfile_out>
The output vectors, stacked together as a PCASYS "matrix" file, each vector being one row of the
matrix.

<vecsfile_out_desc>
A string to be written into the output file as its description string.This string can be of any length,
but must not contain embedded newline characters.If it contains spaces, tabs, or shell metachar-
acters that are not to be expanded, then it should be quoted.To leave the description empty, use ’’
(two single quotes, i.e.single−quoted empty string).To let lintran make a description (indicating
that lintran was used, and listing the names of the file(s) of input vectors and of the transform
matrix file), use − (hyphen).

<ascii_outfile>
If y, makes an ascii output file; if n, binary. Binary is recommended, unless the output file must be
portable across different byte orders or floating−point formats.

<message_freq>
If a positive integer, then every this many vectors through each input file lintran writes a progress
message to the standard output.If zero, no messages.

EXAMPLE(S)
From test/pcasys/execs/lintran/lintran.src:

% l intran ../mkoas/sv10.oas ../eva_evt/fv1-9.evt 128 sv10mlp.kls - n 100
Does transformation using a eigen-vector set made by theev a_evt command. Usedby MLP clas-
sifier.

% l intran ../mkoas/sv10.oas ../mktran/fv1-9.opt 64 sv10pnn.kls - n 100
Does transformation using a set of eigen-vectors that were adjusted using theoptrws andmktran
commands. Usedby the PNN classifier.

NIST 02April 2001 136

LINTRAN(1A) NFIS Reference Manual LINTRAN(1A)

SEE ALSO
asc2bin (1A), bin2asc (1A), eva_evt (1A), mkoas (1A), mktran (1A), stackms (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 137

MEANCOV(1A) NFIS Reference Manual MEANCOV(1A)

NAME
meancov − computes mean vector and covariance matrix for a set of feature vectors.

SYNOPSIS
meancov <vecsfile_in[vecsfile_in...]> <meanfile_out> <meanfile_out_desc> <covfile_out> <cov-
file_out_desc> <ascii_outfiles> <message_freq>

DESCRIPTION
Meancov computes sample mean vector and sample covariance matrix of a set of feature vectors.

If several processors are available, it may be possible to save time, when computing the mean and covari-
ance of a large set of feature vectors. First,run several simultaneous instances of meancov, each instance
computing the mean and covariance of a subset of the vectors. Then,use cmbmcs to combine the resulting
output files. See the cmbmcs man page.Note: If using cmbmcs, the subset mean vectors made by the
meancov instances must be saved for later use by cmbmcs even if, ultimately, all that is wanted is the over-
all covariance matrix. Construction of the overall covariance requires the subset means, as well as the sub-
set covariances.

OPTIONS
<vecsfile_in[vecsfile_in...]>

Input data file(s) in PCASYS "matrix" format, each consisting of a block of the vectors that are to
be used, i.e. the vectors are the rows of the matrix (matrices).Of course, all input matrices must
have the same second dimension, which is the dimension of the constituent vectors. (Usually the
output ofmkoas.)

<meanfile_out>
Mean file to be written, in PCASYS "matrix" format, with first dimension set to 1 and with second
dimension set to the dimension of the input vectors.

<meanfile_out_desc>
A string to be written into the mean output file as its description string.This string can be of any
length, but must not contain embedded newline characters.If it contains spaces, tabs, or shell
metacharacters that are not to be expanded, then it should be quoted.To leave the description
empty, use ’’ (two single quotes, i.e.single−quoted empty string).To let meancov make a
description (stating that this is a mean vector made by meancov and listing the names of the input
files), use − (hyphen).

<covfile_out>
Covariance file to be written.Meancov sav es memory and cycles by allocating a buffer only large
enough for the nonstrict lower triangle of the symmetric covariance matrix and computing only
those elements, and it saves disk space by storing the covariance in PCASYS "covariance" format,
which stores only the nonstrict lower triangle.The order of the covariance is the dimension of the
input vectors.

<covfile_out_desc>
Description string for covariance file or − to let meancov make the description, same as for the
mean file description argument.

<ascii_outfiles>
If y, makes ascii output files; if n, binary. Binary is recommended, unless the output files must be
portable across different byte orders or floating−point formats.

<message_freq>
If a positive integer, then every this many vectors through each input file, during the accumulation
phase, meancov writes a progress message to the standard output, and it also writes a few other
progress messages.If 0, no messages.

EXAMPLE(S)

NIST 02April 2001 138

MEANCOV(1A) NFIS Reference Manual MEANCOV(1A)

From test/pcasys/execs/meancov/meancov.src:

% meancov ../../data/oas/fv[1-9].oas fv1-9.men - fv1-9.cov - n 100
Compute the mean and covariance matrices for a set of feature vectors.

SEE ALSO
cmbmcs (1), mkoas (1)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 139

MINDTCT(1B) NFISReference Manual MINDTCT(1B)

NAME
mindtct − detects minutiae from a fingerprint image contained in an ANSI/NIST 2000 file.

SYNOPSIS
mindtct <an2k file in> <an2k file out>

DESCRIPTION
Mindtct parses a standardcompliant ANSI/NIST-ITL 1-2000 file searching for the first occurrence of a
grayscale fingerprint image record.If found, the fingerprint image is processed and minutiae are automati-
cally detected.Minutiae results are formatted and stored using the NIST fields 5-12 in a Type-9 record.
Upon successful completion, the input ANSI/NIST record sequence is augmented with two new records,
the Type-9 minutiae record and a tagged field image record containing the results of image binarization.
This augmented record sequence is then written to the specified output filename.

Mindtct also generates the following text files in the current working directory:dmap.txt, hcmap.txt,
lcmap.txt, lfmap.txt, qmap.txt, andmin.txt. These files are described below.

OPTIONS
<an2k file in>

the ANSI/NIST file to be processed

<an2k file out>
the resulting ANSI/NIST file

TEXT OUTPUT FILES
dmap.txt

The Direction Maprepresents the direction of ridge flow within the fingerprint image.The map
contains a grid of integer directions, where each cell in the grid represents an 8x8 pixel neighbor-
hood in the image.Ridge flow angles are quantized into 16 integer bi-directional units equally
spaced on a semicircle.Starting with vertical direction 0, direction units increase clockwise and
represent incremental jumps of 11.25 degrees, stopping at direction 15 which is 11.25 degrees shy
of vertical. Usingthis scheme, direction 8 is horizontal.A value of -1 in this map represents a
neighborhood where no valid ridge flow was determined.

hcmap.txt
The High-Curvature Map represents areas in the image having high-curvature ridge flow. This is
especially true of core and delta regions in the fingerprint image, but high-curvature is not limited
to just these cases.This is a bi-level map with same dimension as the Direction Map.Cell values
of 1 represent 8x8 pixel neighborhoods in the fingerprint image that are located within a high-cur-
vature region, otherwise cell values are set to 0.

lcmap.txt
The Low-Contrast Maprepresents areas in the image having low-contrast. Theregions of low
contrast most commonly represent the background in the fingerprint image.This is a bi-level map
with same dimension as the Direction Map.Cell values of 1 represent 8x8 pixel neighborhoods in
the fingerprint image that are located within a low-contrast region, otherwise cell values are set to
0.

lfmap.txt
TheLow-Flow Maprepresents areas in the image having non-determinable ridge flow. Ridge flow
is determined using a set of discrete cosine wav eforms computed for a predetermined range of
frequencies. Thesewave forms are applied at 16 incremental orientations.At times none of the
wave forms at none of the orientations resonate sufficiently high within the region in the image to
satisfactorily determine a dominant directional frequency. This is a bi-level map with same
dimension as the Direction Map.Cell values of 1 represent 8x8 pixel neighborhoods in the finger-
print image that are located within a region where a dominant directional frequency could not be
determined, otherwise cell values are set to 0.The Direction Map also records cells with non-

NIST 02April 2001 140

MINDTCT(1B) NFISReference Manual MINDTCT(1B)

determinable ridge flow. The difference is that the Low-Flow Map recordsall cells with non-
determinable ridge flow, while the Direction Map records only those that remain non-determinable
after extensive interpolationandsmoothingof neighboring ridge flow directions.

qmap.txt
The Quality Map represents regions in the image having varying levels of quality. The maps
above are combined heuristically to form 5 discrete levels of quality. This map has the same
dimension as the Direction Map, with each value in the map representing an 8x8 pixel neighbor-
hood in the fingerprint image.A cell value of 4 represents highest quality, while a cell value of 0
represent lowest possible quality.

min.txt This text file reports the minutiae detection results.The majority of the results listed in this text
file are also encoded and stored in a Type-9 record in the output ANSI/NIST file.The first non-
empty line in the text file lists the number of minutiae that were detected in the fingerprint image.
Following this, the attributes associated with each detected minutia are recorded, one line of text
per minutia. Each minutia line has the same format.Fields are separated by a ’:’, subfields are
separated by a ’;’, and items within subfields are separated by a ’,’. A minutia line may be repre-
sented as:

MN : MX, MY : DIR : REL: TYP: FTYP: FN : NX1, NY1; RC1: ...

where:

MN is the integer identifier of the detected minutia.

MX is the x-pixel coordinate of the detected minutia.

MY is the y-pixel coordinate of the detected minutia.

DIR is the direction of the detected minutia.Minutia direction is represented similar to ridge
flow direction, only minutia direction is uni-directional starting at vertical pointing up
with unit 0 and increasing clockwise in increments of 11.25 degrees completing a full cir-
cle. Usingthis scheme, the angle of a detected minutia is quantized into the range 0 to 31
with 8 representing horizontal to the right, 16 representing vertical pointing down, and 24
representing horizontal to the left.

REL is the reliability measure assigned to the detected minutia.This measure is computed by
looking up the quality level associated with the position of the minutia from the Quality
Map. Thequality level is then heuristically combined with simple neighborhood pixel
statistics surrounding the minutia point.The results is a floating point value in the range
0.0 to 1.0, with 0.0 representing lowest minutia quality and 1.0 representing highest
minutia quality.

TYP is the type of the detected minutia.
bifurcation ="BIF"
ridge ending = "RIG"

FTYP is the type of feature detected.
appearing ="APP"
disappearing = "DIS"
(This attribute is primarily useful for purposes internal to the minutia detection algo-
rithm.)

FN is the integer identifier of the type of feature detected.(This attribute is primarily useful
for purposes internal to the minutia detection algorithm.)

NX1 is the x-pixel coordinate of the first neighboring minutia.

NY1 is the y-pixel coordinate of the first neighboring minutia.

RC1 is the ridge count calculated between the detected minutia and its first neighbor.

NIST 02April 2001 141

MINDTCT(1B) NFISReference Manual MINDTCT(1B)

... for each additional neighbor ridge count computed, the pixel coordinate of the neighbor
and the ridge count to that neighbor are reported.

EXAMPLES
From test/mindtct/execs/mindtct/mindtct.src:

% mindtct ../../data/t14wsq08.an2 mindtct.an2

SEE ALSO
an2k2txt(1C),an2ktool(1C),dpyan2k.1(1C)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 142

MKOAS(1A) NFISReference Manual MKOAS(1A)

NAME
mkoas − makes orientation arrays from fingerprint images.

SYNOPSIS
mkoas<prsfile>

DESCRIPTION
Mk oasmakes orientation arrays (oas), for a set of fingerprint image files.An oa can be thought of as a 28
(height) by 30 (width) array of real two-dimensional orientation vectors, each of which represents the local
av erage ridge/valley orientation at one point of an equally-spaced rectangular grid; but, sometimes it is
more convenient to think of an oa as a single 1680-dimensional real vector (1680 = 28 x 30 x 2).To make
an oa from a fingerprint, mkoas uses the same sequence of preprocessing/feature-extraction routines that is
used by the classifier demos pcasys and pcasysx.Mkoas causes each oa to be one row of the PCASYS
"matrix" file that is its output.

Mkoas sets the values of its parameters as follows. First, it reads the default oas-production parms file
pcasys/parms/oas.prs; then, it reads the file of default values of additional mkoas parms,
pcasys/parms/mkoas.prs; finally, it reads the required user parms file, which is the argument (prsfile). Each
time a parms file is read, its values override those set by previously read parms file(s), if any. See PARAM-
ETER FILES, below, for a description of the difference betweenoas.prs andmkoas.prs.

Since the oas of a large set of fingerprints can turn out to be quite a large amount of data, it may be that the
entire set of oas that are to be produced cannot exist as a single file, because of disk space limitations.If so,
one should run several instances of mkoas, each producing a matrix file that is a subset of the required oas.
To estimate output file size as a function of number of oas, note that each oa consists of 1680 single-preci-
sion floating-point numbers, and therefore it takes 1680 x 4 = 6720 bytes.Allow slightly more space, for
header data contained in a matrix file.

OPTIONS
<prsfile>

A file containing parameters.To find out what the available parameters are, and as examples of
the format of parameters files, consult the default files pcasys/parms/oas.prs and
pcasys/parms/mkoas.prs. Each parameter is specified by having its name and value on a line; a
pound sign indicates that the rest of its line is a comment.

PARAMETER FILES
pcasys/parms/oas.prs

Contains default values of the parameters that affect the making of orientation arrays (oas): these
are the parms of the segmentor (sgmnt), the image enhancer (enhnc), the ridge-valley orientation
finder (rors), the registration program (r92a), and the registration-implementing pixelwise orienta-
tions reaverager (rgar). Thevalues used for these parms when making the oas used in optimizing
the classifier should also be used when running the finished classifier.

Default settings inpcasys/parms/oas.prs

Used in the segmentation routine:

sgmnt_fac_n5
How many threshold-making factors to try.

sgmnt_min_fg2000
Minimum allowed number of foreground (true) pixels.

sgmnt_max_fg8000
Maximum allowed number of foreground (true) pixels.

sgmnt_nerode3
Do this many erosions in foreground cleanup.

NIST 02April 2001 143

MKOAS(1A) NFISReference Manual MKOAS(1A)

sgmnt_rsblobs1
If 1, remove small blobs in foreground cleanup.

sgmnt_fill 1
If 1, fill holes in rows, columns in foreground cleanup.

sgmnt_min_n25
Cutting angle becomes zero if any foreground edge has fewer than this many pixels.

sgmnt_hist_thresh20
Threshold that tilted-rows-histogram must meet to find top-location for cutting.

sgmnt_origras_wmax2000
Maximum allowed width of original raster.

sgmnt_origras_hmax2000
Maximum allowed height of original raster.

sgmnt_fac_min0.75
Minimum threshold-making factor value.

sgmnt_fac_del0.05
Delta of threshold-making factor value.

sgmnt_slope_thresh0.90
If any of the three edges has slope differing by more than this from the average of the
slopes, then cutting angle is set to zero.

Used in the FFT image enhancer:

enhnc_rr1 150
High-frequency elements of FFT whose filter plane value is less than this value are dis-
carded.

enhnc_rr2 449
Low-frequency elements of FFT whose filter plane number is greater than this value are
discarded.

enhnc_pow 0.3
Power spectrum is raised to this power before it is multiplied by the FFT output.

Used in the ridge-valley orientation finder:

rors_slit_range_thresh10
If the difference between the maximum and minimum slit-sums at a pixel is less than this,
then this pixel makes no contribution to the histogram used to make the local average ori-
entation.

Used in the r92a wrapper for r92 registration program:

r92a_discard_thresh0.01
If squared-length of a local-average orientation vector is less than this, then conversion of
this vector to an angle for use by r92 just produces the special value 100., which means
an undefined angle.

Used in the registering pixelwise-orientations-reaverager:

rgar_std_corepixel_x245
X coordinate of standard (median) core position.

NIST 02April 2001 144

MKOAS(1A) NFISReference Manual MKOAS(1A)

rgar_std_corepixel_y189
Y coordinate of standard (median) core position.This is the standard registration point,
to which the particular core point gets translated to implement registration.

pcasys/parms/mkoas.prs
Contains default values of additional parameters needed bymkoas, besides those appearing in
pcasys/parms/oas.prs. Parameters without defaults values must appear in the usersprsfile.

Default settings inpcasys/parms/mkoas.prs

ascii_oasn
Ascii (y) or binary (n) output?

update_freq1
Frequency of progress messages.

clobber_oas_filen
Overwrite an oas_file if it already exists?

proc_images_list(no default, user must set)
The list of fingerprint images to make orientation arrays from.

oas_file(no default, user must set)
The output file that is to be produced containing orientation arrays.

EXAMPLE(S)
From test/pcasys/execs/mkoas/mkoas.src:

% mkoas sv10.prs
Creates a set of orientation arrays based on the file list given in the parameters filesv10.prs.

SEE ALSO
bin2asc (1A), asc2bin (1A), chgdesc (1A), stackms (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 145

MKTRAN(1A) NFIS Reference Manual MKTRAN(1A)

NAME
mktran − makes transform matrix from regional weights and eigenvectors.

SYNOPSIS
mktran <regwts_file> <eigvecs_file> <n_eigvecs_use> <tranmat_file> <tranmat_file_desc> <ascii_out-
file>

DESCRIPTION
Mktran takes a matrix of regional weights, and a set of eigenvectors, and makes a transform matrix from
the regional weights and the specified number of (first) eigenvectors. Theresulting matrix is suitable for
transforming an orientation array into a low−dimensional feature vector.

OPTIONS
<regwts_file>

Regional weights file in PCASYS "matrix" format.The dimensions must be 14x15, because that
is the pattern of 2x2−vector blocks of orientation vectors. (Usually the output ofoptrws.)

<eigvecs_file>
Eigenvectors file in PCASYS "matrix" format.The first dimension is the number of eigenvectors
contained in the file; the second dimension must be 1680, which is the dimension of an orientation
array when it is thought of as a single vector. (Usually the output ofev a_evt.)

<n_eigvecs_use>
The number (first) eigenvectors to be used.This will be the first dimension of the resulting trans-
form matrix.

<tranmat_file>
Transform file to be made, in PCASYS "matrix" format.First dimension will ben_eigvecs_use
and second dimension will be 1680.

<tranmat_file_desc>
A string to be written into the transform matrix output file as its description string.This string can
be of any length, but must not contain embedded newline characters.If it contains spaces, tabs, or
shell metacharacters that are not to be expanded, then it should be quoted.To leave the description
empty, use ’’ (two single quotes, i.e.single−quoted empty string).To let mktran make a descrip-
tion, use − (hyphen).

<ascii_outfile>
If y, makes an ascii output file; if n, binary. Binary is recommended, unless the output file must be
portable across different byte orders or floating−point formats.

EXAMPLE(S)
From test/pcasys/execs/mktran/mktran.src:

% mktran ../optrws/optrws.bin ../eva_evt/fv1-9.evt 64 fv1-9.opt - n
Uses a set of optimized regional weights (optrws.bin) to adjust a eigen-vector basis set (fv1-9.evt)
and create a new transformation matrix (fv1-9.opt) that is used to reduce the dimensionality of the
feature vectors.

SEE ALSO
eva_evt (1A), lintran (1A), optrws (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 146

MLP(1A) NFISReference Manual MLP(1A)

NAME
mlp − Does training and testing runs using a 3-layer feed-forward linear perceptron Neural Network.

SYNOPSIS
mlp [-c] [specfile]

DESCRIPTION
Mlp trains a 3-layer feed-forward linear perceptron using novel methods of machine learning that help con-
trol the learning dynamics of the network. As a result, the derived minima are superior, the decision sur-
faces of the trained network are well-formed, the information content of confidence values is increased, and
generalization is enhanced.The theory behind the machine learning techniques used in this program is dis-
cussed in the following reference:

[C. L. Wilson, J. L. Blue, O. M. Omidvar, "The Effect of Training Dynamics on Neural Network Perfor-
mance," NIST Internal Report 5696, August 1995.]

Machine learning is controlled through a batch-oriented iterative process of training the MLP on a set of
prototype feature vectors, and then evaluating the progress made by running the MLP (in its current state)
on a separate set of testing feature vectors. Training on the first set of patterns then resumes for a predeter-
mined number of passes through the training data, and then the MLP is tested again on the evaluation set.
This process of training and then testing continues until the MLP has been determined to have satisfactorily
converged.

The MLP neural network is suitable for use as a classifier or as a function-approximator. The network has
an input layer, a hidden layer, and an output layer, each layer comprising a set of nodes. The input nodes
are feed-forwardly connected to the hidden nodes, and the hidden nodes to the output nodes, by connec-
tions whose weights (strengths) are trainable. The activation function used for the hidden nodes can be cho-
sen to be sinusoid, sigmoid (logistic), or linear, as can the activation function for the output nodes. Training
(optimization) of the weights is done using either a Scaled Conjugate Gradient (SCG) algorithm [1], or by
starting out with SCG and then switching to a Limited Memory Broyden Fletcher Goldfarb Shanno
(LBFGS) algorithm [2]. Boltzmann pruning [3], i.e. dynamic removal of connections, can be performed
during training if desired.Prior weights can be attached to the patterns (feature vectors) in various ways.

[1] J. L. Blue and P. J. Grother, "Training Feed Forward Networks Using Conjugate Gradients," NIST Inter-
nal Report 4776, February 1992, and in Conference on Character Recognition and Digitizer Technologies,
Vol. 1661, pp.179-190, SPIE, San Jose, February 1992.

[2] D. Liu and J. Nocedal, "On the Limited Memory BFGS Method for Large Scale Optimization," IMathe-
matical Programming B, Vol. 45, 503-528, 1989.

[3] O. M. Omidvar and C. L. Wilson, "Information Content in Neural Net Optimization," NIST Internal
Report 4766, February 1992, and inJournal of Connection Science, 6:91-103, 1993.

Tr aining and Testing Runs

When mlp is invoked, it performs a sequence of runs. Each run does either training, or testing:

training run: A set of patterns is used to train (optimize) the weights of the network. Each pattern consists
of a feature vector, along with either a class or a target vector. A feature vector is a tuple of floating-point
numbers, which typically has been extracted from some natural object such as a handwritten character. A
class denotes the actual class to which the object belongs, for example the character which a handwritten
mark is an instance of. The network can be trained to become a classifier: it trains using a set of feature vec-
tors extracted from objects of known classes.Or, more generally, the network can be trained to learn, again
from example input-output pairs, a function whose output is a vector of floating-point numbers, rather than
a class; if this is done, the network is a sort of interpolator or function-fitter. A training run finishes by writ-
ing the final values of the network weights as a file. It also produces a summary file showing various infor-
mation about the run, and optionally produces a longer file that shows the results the final (trained) network
produced for each individual pattern.

NIST 02April 2001 147

MLP(1A) NFISReference Manual MLP(1A)

testing run: A set of patterns is sent through a network, after the network weights are read from a file. The
output values, i.e. the hypothetical classes (for a classifier network) or the produced output vectors (for a fit-
ter network), are compared with target classes or vectors, and the resulting error rate is computed. The pro-
gram can produce a table showing the correct classification rate as a function of the rejection rate.

OPTIONS
[-c] Only do error checking on the specfile parameters and print any warnings or errors that occur in

the specfile format.

[specfile]
Specfile to be used by mlp. The default is a specfile named "spec" located in the current working
directory.

This is a file produced by the user, which sets the parameters (henceforth "parms") of the run(s)
that mlp is to perform. It consists of one or more blocks, each of which sets the parms for one run.
Each block is separated from the next one by the word "newrun" or "NEWRUN". Parms are set
using name-value pairs, with the name and value separated by non-newline white space characters
(blanks or tabs). Each name-value pair is separated from the next pair by newline(s) or semi-
colon(s). Sinceeach parm value is labeled by its parm name, the name-value pairs can occur in
any order. Comments are allowed; they are delimited the same way as in C language programs,
with /* and */. Extraneous white space characters are ignored.

When mlp is run, it first scans the entire specfile, to find and report any (fatal) errors (e.g. omitting
to set a necessary parm, or using an illegal parm name or value) and also any conditions in the
specfile which, although not fatally erroneous, are worthy of warnings (e.g. setting a superfluous
parm). Mlp writes any applicable warning or error messages; then, if there are no errors in the
specfile, it starts to perform the first run. Warnings do not prevent mlp from starting to run. The
motivation for having mlp check the entire specfile before it starts to perform even the first run, is
that this will prevent an mlp instance that runs a multi-run specfile from failing, perhaps many
hours, or days, after it was started, because of an error in a block far into the specfile: such errors
will be detected up front and presumably fixed by the user, because that is the only way to cause
mlp to get past its checking phase. To cause mlp only to check the specfile without running it, use
the -c option.

The following listing describes all the parms that can be set in a specfile. There are four types of
parms: string (value is a filename), integer, floating-point, and switch (value must be one of a set
of defined names, or may be specified as a code number). A block of the specfile, which sets the
parms for one run, often can omit to set the values of several of the parms, either because the parm
is unneeded (e.g., a training "stopping condition" when the run is a test run; or, temperature when
boltzmann isno_prune), or because it is an architecture parm (purpose, ninps, nhids, nouts,
acfunc_hids, or acfunc_outs), whose value will be read fromwts_infile. The descriptions below
indicate which of the parms are needed only for training runs (in particular, those described as
stopping conditions).Architecture parms should be set in a specfile block only if its run is to be a
training run that generates random initial network weights: a training run that reads initial weights
from a file (typically, final weights produced by a previous training session), or a test run (must
read the network weights from a file), does not need to set any of the architecture parms in its
specfile block, because their values are stored in the weights file that it will read. (Architecture
parms are ones whose values it would not make sense to change between training runs of a single
network that together comprise a training "meta-run", nor between a training run for a network and
a test run of the finished network.) Setting unneeded parms in a specfile block will result in warn-
ing messages when mlp is run, but not fatal errors; the unneeded values will be ignored.

If a parm-name/parm-value pair occurring in a specfile has just its value deleted, i.e. leaving just a
parm name, then the name is ignored by mlp; this is a way to temporarily unset a parm while leav-
ing its name visible for possible future use.

NIST 02April 2001 148

MLP(1A) NFISReference Manual MLP(1A)

String Parms (Filename)

short_outfile
This file will contain summary information about the run, including a history of the train-
ing process if a training run. The set of information to be written is controlled, to some
extent, by the switch parmsdo_confuseanddo_cvr.

long_outfile
This optionally produced file will have two lines of header information followed by a line
for each pattern. The line will show: the sequence number of the pattern; the correct class
of the pattern (as a number in the range 1 throughnouts); whether the hypothetical class
the network produced for this pattern was right (R) or wrong (W); the hypothetical class
(number); and thenouts output-node activations the network produced for the pattern.
(See the switch parmshow_acs_times_1000below, which controls the formatting of the
activations.) In a testing run, mlp produces this file for the result of running the patterns
through the network whose weights are read fromwts_infile; in a training run, mlp pro-
duces this file only for the final network weights resulting from the training session. This
is often a large file; to save disk space by not producing it, just leave the parm unset.

patterns_infile
This file contains patterns upon which mlp is to train or test a network. A pattern is either
a feature-vector and an associated class, or a feature-vector and an associated target-vec-
tor. The file must be in one of the two supported patterns-file formats, i.e. ASCII and
(FORTRAN-style) binary; the switch parmpatsfile_ascii_or_binarymust be set to tell
mlp which of these formats is being used.

wts_infile
This optional file contains a set of network weights. Mlp can read such a file at the start
of a training run - e.g., final weights from a preceding training run, if one is training a net-
work using a sequence of runs with different parameter settings (e.g., decreasing values
of regfac) - or, in a testing run, it can read the final weights resulting from a training run.
This parm should be left unset if random initial weights are to be generated for a training
run (see the integer parmseed).

wts_outfile
This file is produced only for a training run; it contains the final network weights result-
ing from the run.

lcn_scn_infile
Each line of this optional file should consist of a long class-name (as shown at the top of
patterns_infile) and a corresponding short class-name (1 or 2 characters), with the two
names separated by white space; the lines can be in any order. This file is required only
for a run that requires short class-names, i.e. only ifpurposeis classifierand (1)priors is
class or both (these settings ofpriors require class-weights to be read from
class_wts_infile, and that type of file can be read only if the short class-names are
known) or (2)do_confuseis true (proper output of confusion matrices requires the short
class-names, which are used as labels).

class_wts_infile
This optional file contains class-weights, i.e. a "prior weight" for each class. (See switch
parm priors to find out how mlp can use these weights.) Each line should consist of a
short class-name (as shown in lcn_scn_infile) and the weight for the class, separated by

NIST 02April 2001 149

MLP(1A) NFISReference Manual MLP(1A)

white space; the order of the lines does not matter.

pattern_wts_infile
This optional file contains pattern-weights, i.e. a "prior weight" for each pattern. (See
switch parmpriors to find out how mlp can use these weights.) The file should be just a
sequence of floating-point numbers (ascii) separated from each other by white space, with
the numbers in the same order as the patterns they are to be associated with.

Integer Parms

npats
Number of (first) patterns frompatterns_infile to use.

ninps, nhids, nouts
Specify the number of input, hidden, and output nodes in the network. If ninps is smaller
than the number of components in the feature-vectors of the patterns, then the firstninps
components of each feature-vector are used. If the network is aclassifier(seepurpose),
thennouts is the number of classes, since there is one output node for each class. If the
network is afitter, thenninps andnouts are the dimensionalities of the input and output
real vector spaces. These are architecture parms, so they should be left unset for a run that
is to read a network weights file.

seed
For the UNI random number generator, if initial weights for a training run are to be ran-
domly generated. Its values must be positive. Random weights are generated only if
wts_infile is not set. (Of course, theseedvalue can be reused to generate identical initial
weights in different training runs; or, it can be varied in order to do several training runs
using the same values for the other parameters. It is often advisable to try several seeds,
since any particularseedmay produce atypically bad results (training may fail). However,
the effect of varying theseedis minimal if Boltzmann pruning is used.)

niter_max
A stopping condition: maximum number of iterations a training run will be allowed to
use.

nfr eq
At every nfreq’th iteration during a training run, theerrdel andnokdel stopping condi-
tions are checked and a pair of status lines is written to the standard error output and to
short_outfile.

nokdel
A stopping condition: stop if the number of iterations used so far is at least kmin and,
for each of the most recent NNOT (defined insrc/lib/mlp/optchk.c) sequences ofnfr eq
iterations, the number right and the number right minus number wrong have both failed to
increase by at leastnokdel during the sequence.

lbfgs_mem
This value is used for the m argument of the LBFGS optimizer (if that optimizer is used,
i.e. only if there is no Boltzmann pruning). This is the number of corrections used in the
bfgs update. Values less than 3 are not recommended; large values will result in excessive

NIST 02April 2001 150

MLP(1A) NFISReference Manual MLP(1A)

computing time, as well as increased memory usage.Values in the range 3 through 7 are
recommended; value must be positive.

Floating-Point Parms

regfac
Regularization factor. The error value that a training run attempts to minimize, contains a
term consisting of regfac times half the average of the squares of the network weights.
(The use of a regularization factor often improves the generalization performance of a
neural network, by keeping the size of the weights under control.) This parm must always
be set, even for test runs (since they also compute the error value, which always usesreg-
fac); however, its effect can be nullified by just setting it to 0.

alpha
A parm required by thetype_1error function.

temperature
For Boltzmann pruning: see the switch parmboltzmann. A higher temperature causes
more severe pruning.

egoal
A stopping condition: stop when error becomes less than or equal toegoal.

gwgoal
A stopping condition: stop when |g | / | w | becomes less than or equal togwgoal, where
w is the vector of network weights andg is the gradient vector of the error with respect to
w.

errdel
A stopping condition: stop if the number of iterations used so far is at least kmin and the
error has not decreased by at least a factor oferrdel over the most recent block ofnfr eq
iterations.

oklvl
The value of the highest network output activation produced when the network is run on a
pattern (the position of this highest activation among the output nodes is the hypothetical
class) can be thought of as a measure of confidence. This confidence value is compared
with the thresholdoklvl , in order to decide whether to classify the pattern as belonging to
the hypothetical class, or to reject it, i.e. to consider its class to be unknown because of
insufficient confidence that the hypothetical class is the correct class. The numbers and
percentages of the patterns thatmlp reports ascorrect, wrong, and unknown, are affected
by oklvl : a high value ofoklvl generally increases the number of unknowns (a bad thing)
but also increases the percentage of the accepted patterns that are classified correctly (a
good thing). If no rejection is desired, setoklvl to 0. (Mlp uses the singleoklvl value
specified for a run; but if the switch parmdo_cvr is set totrue, thenmlp also makes a full
correct vs. rejectedtable for the network (for the finished network if a training run). This
table shows the (number correct) / (number accepted) and (number unknown) / (total
number) percentages for each of several standardoklvl values.)

tr goff
This number sets how mildly the target values for network output activations vary

NIST 02April 2001 151

MLP(1A) NFISReference Manual MLP(1A)

between their "low" and "high" values. Iftr goff is 0 (least mild, i.e. most extreme, effect),
then the low target value is 0 and the high, 1; iftr goff is 1 (most mild effect), then low
and high targets are both (1 /nouts); if tr goff has an intermediate value between 0 and 1,
then the low and high targets have intermediately mild values accordingly.

scg_earlystop_pct
This is a percentage that controls how soon a hybrid SCG/LBFGS training run (hybrid
training can be used only if there is to be no Boltzmann pruning) switches from SCG to
LBFGS. The switch is done the first time a check (checking every nfreq’th iteration) of
the network results finds that every class-subset of the patterns has at least
scg_earlystop_pctpercent of its patterns classified correctly. A suggested value for this
parm is 60.0.

lbfgs_gtol
This value is used for the gtol argument of the LBFGS optimizer. It controls the accuracy
of the line search routine mcsrch. If the function and gradient evaluations are inexpensive
with respect to the cost of the iteration (which is sometimes the case when solving very
large problems) it may be advantageous to setlbfgs_gtol to a small value. A typical small
value is 0.1.Lbfgs_gtol must be greater than 1.e-04.

Switch Parms

Each of these parms has a small set of allowed values; the value is specified as a string, or less ver-
bosely, as a code number (shown in parentheses after string form):

train_or_test

train 0
Train a network, i.e. optimize its weights in the sense of minimizing an error
function, using a training set of patterns.

test1
Test a network, i.e. read in its weights and other parms from a file, run it on a
test set of patterns, and measure the quality of the resulting performance.

purpose
Which of two possible kinds of engine the network is to be. This is an architecture parm,
so it should be left unset for a run that is to read a network weights file. The allowed val-
ues are:

classifier0
The network is to be trained to map any feature vector to one of a small number
of classes. It is to be trained using a set of feature vectors and their associated
correct classes.

fitter 1
The network is to be trained to approximate an unknown function that maps any
input real vector to an output real vector. It is to be trained using a set of input-
vector/output-vector pairs of the function.NOTE: this is not currently sup-
ported.

errfunc
Type of error function to use (always with the addition of a regularization term, consist-
ing of regfac times half the average of the squares of the network weights).

NIST 02April 2001 152

MLP(1A) NFISReference Manual MLP(1A)

mse0
Mean-squared-error between output activations and target values, or its equiv-
alent computed using classes instead of target vectors. This is the recommended
error function.

type_11
Type 1 error function; requires floating-point parmalpha be set. (Not recom-
mended.)

pos_sum2
Positive sum error function. (Not recommended.)

boltzmann
Controls whether Boltzmann pruning of network weights is to be done and, if so, the type
of threshold to use:

no_prune0
Do no Boltzmann pruning.

abs_prune2
Do Boltzmann pruning using threshold exp(- |w| / T), wherew is a network
weight being considered for possible pruning andT is the Boltzmanntempera-
tur e.

square_prune3
Do Boltzmann pruning using threshold exp(- wˆ2 / T), wherew and T are as
above.

acfunc_hids, acfunc_outs
The types ofactivation functionsto be used on the hidden nodes and on the output nodes
(separately settable for each layer). These are architecture parms, so they should be left
unset for a run that is to read a network weights file. The allowed values are:

sinusoid0
f(x) = 0.5 * (1 + sin(0.5 * x))

sigmoid1
f(x) = 1 / (1 + exp(-x)) (Also called logistic function.)

linear 2
f(x) = 0.25 * x

priors
What kind of prior weighting to use to set the final pattern-weights, which control the rel-
ative amounts of impact the various patterns have when doing the computations. These
final pattern-weights remain fixed for the duration of a training run, but of course they can
be changed between training runs.

allsame0
Set each final pattern-weight to (1 /npats). (The simplest thing to do; appropri-
ate if the set of patterns has a natural distribution.)

NIST 02April 2001 153

MLP(1A) NFISReference Manual MLP(1A)

class1
Set each final pattern-weight to the class-weight of the class of the pattern con-
cerned divided bynpats. The class-weights are derived by dividing the given-
class-weights, read from theclass_wts_infile, by the derived-class-weights,
computed for the current data set and the normalize them to sum to 1.0.(Appro-
priate if the frequencies of the several classes, in the set of patterns, are not
approximately equal to the natural frequencies (prior probabilities), so as to
compensate for that situation.)

pattern 2
Set the final pattern-weights to values read frompattern_wts_infile divided by
npats. (Appropriate if none of the other settings of priors does satisfactory cal-
culations (one can do whatever calculations one desires), or if one wants to
dynamically change these weights between sessions of training.)

both 3
Set each final pattern-weight to the class-weight of the class of the pattern con-
cerned, times the provided pattern-weight, and divided bynpats; compute the
class-weights as previously described inclass priors and read pattern-weights
from file pattern_wts_infile. (Appropriate if one wants to both adjust for unnat-
ural frequencies, and dynamically change the pattern weights.)

patsfile_ascii_or_binary
Tells mlp which of two supported formats to expect for the patterns file that it will read at
the start of a run.(If much compute time is being spent reading ascii patsfiles, it may be
worthwhile to convert them to binary format: that causes faster reading, and the binary-
format files are considerably smaller.)

ascii0
patterns_infile is in ascii format.

binary 1
patterns_infile is in binary (FORTRAN-style binary) format.

do_confuse

true 1
Compute the confusion matrices and miscellaneous information and include
them inshort_outfile.

false0
Do not compute the confusion matrices and miscellaneous information.

show_acs_times_1000
This parm need be set only if the run is to produce along_outfile.

true 1
Before recording the network output activations in long_outfile, multiply them
by 1000 and round to integers.

false0
Record the activations as their original floating-point values.

do_cvr (See the notes onoklvl .)

true 1
Produce a correct-vs.-rejected table and include it inshort_outfile.

NIST 02April 2001 154

MLP(1A) NFISReference Manual MLP(1A)

false0
Do not produce a correct-vs.-rejected table.

EXAMPLE(S)
From test/pcasys/execs/mlp/mlp.src:

% mlp
Runs mlp assuming the default specfile ("spec") in the local directory.

% mlp myspecfile
Runs mlp using the specfile "myspecfile".

SEE ALSO
fixwts (1A), mlpfeats (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 155

MLPFEATS(1A) NFISReference Manual MLPFEATS(1A)

NAME
mlpfeats − converts PCASYS formatted feature files into the format compatible with the mlp command line
function.

SYNOPSIS
mlpfeats<feats_file> <class_file> <mlp_feats_file>

DESCRIPTION
Mlpfeats is used to convert a PCASYS formatted feature file from the lintran function into the format used
by the mlp command. PCASYS keeps the feature file and class file in separate files and mlp stores them in
a single file with different header information format. At this point it was decided to just convert the format
from PCASYS features to mlp features file format, any future release may try and resolve this problem into
a single format.

OPTIONS
<feats_file>

The PCASYS formatted features file. (Usually the output oflintran .)

<class_file>
The PCASYS formatted class file.

<mlp_feats_file>
The MLP features file to be written, containing the PCASYS formatted feature and class files
merged into a single MLP formatted file.

EXAMPLE(S)
From test/pcasys/execs/mlpfeats/mlpfeats.src:

% mlpfeats ../lintran/fv1-9mlp.kls ../../data/oas/fv1-9.cls fv1-9mlp.kls
Converts the feature file from the PCASYS file format to the mlp data file format (combines class
and features into a single file.)It is unfortunate that two file formats exist but for now it is easier
to keep both formats around.

SEE ALSO
lintran (1A), mlp (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 156

NOT2INTR(1D) NFISReference Manual NOT2INTR(1D)

NAME
not2intr − converts an image comprised of non-interleaved color component planes to an image with inter-
leaved color component pixels.

SYNOPSIS
not2intr <outext> <image file> <w,h,d,[ppi]>

[-raw_out]
[-YCbCr H0,V0:H1,V1:H2,V2]

DESCRIPTION
Not2intr takes as input a raw pixmap file containing an uncompressed image comprised of non-interleaved
color component planes and converts the image to interleaved color component pixels. Thisutility requires
there be three color components in the input image.Tw o output file formats are possible, a NIST IHead file
(the default) or a raw pixmap file (specified by the-raw_out option).

For example, the pixels of an RGB color image are interleaved when a pixel’s R, G, and B components are
sequentially adjacent in the image byte stream, ie. RGBRGBRGB... .If the color components are non-
interleaved, then all (R)ed components in the image are sequentially adjacent in the image byte stream, fol-
lowed by all (G)reen components, and then lastly followed by all (B)lue components.Each complete
sequence of color components is called aplane. The utility intr2not converts interleaved to non-inter-
leaved color components.

It is possible that the component planes of an input YCbCr image have been previously downsampled. If
so, the-YCbCr flag must be included on the command line, listing the appropriate component plane down-
sampling factors. Bydefault, this utility assumes no downsampling. YCbCrimage results should always
be explicitly stored in a raw pixmap file, because the IHead format only supports RGB pixels. (SeeYCbCr
OPTIONS below.)

OPTIONS
All switch names may be abbreviated; for example,-raw_out may be written-r .

<outext>
the extension of the output file.To construct the output filename,not2intr takes the input file-
name and replaces its extension with the one specified here.

<image file>
the input raw pixmap file containing the color image to be converted.

<w,h,d,[ppi]>
the attributes of the input image in the raw pixmap file.

w the pixel width of the pixmap

h the pixel height of the pixmap

d the pixel depth of the pixmap

ppi the optional scan resolution of the image in integer units of pixels per inch.

-raw_out
specifies that the results should be stored to a raw pixmap file.

-YCbCr H0,V0:H1,V1:H2,V2
indicates that a YCbCr color image is being input whose component planes have been previously
downsampled. The-raw_out flag should always be used in conjunction with this option.(See
YCbCr Options below.)

NIST 02April 2001 157

NOT2INTR(1D) NFISReference Manual NOT2INTR(1D)

YCbCr OPTIONS
A common compression technique for YCbCr images is to downsample the Cb & Cr component planes.
Not2intr can handle a limited range of YCbCr downsampling schemes that are represented by a list of
component plane factors. Thesefactors together represent downsampling ratios relative to each other. The
comma-separated list of factor pairs correspond to the Y, Cb, and Cr component planes respectively. The
first value in a factor pair represents the downsampling of that particular component plane in the X-dimen-
sion, while the second represents the Y-dimension. Compressionratios for a particular component plane
are calculated by dividing the maximum component factors in the list by the current component’s factors.
These integer factors are limited between 1 and 4.H,V factors all set to 1 represent no downsampling. For
complete details,not2intr implements the downsampling and interleaving schemes described in the follow-
ing reference:

W.B. Pennebaker and J.L. Mitchell, "JPEG: Still Image Compression Standard," Appendix A -
"ISO DIS 10918-1 Requirements and Guidelines," Van Nostrand Reinhold, NY, 1993, pp. A1-A4.

For example the option specification:

-YCbCr 4,4:2,2:1,1

indicates that there has been no downsampling of the Y component plane (4,4 are the largest X and Y fac-
tors listed); the Cb component plane has been downsampled in X and Y by a factor of 2 (maximum factors
4 divided by current factors 2); and the Cr component plane has been downsampled in X and Y by a factor
of 4 (maximum factors 4 divided by current factors 1). Note that downsampling component planes is a
form of lossycompression. Theutility rgb2ycc converts RGB pixmaps to the YCbCr colorspace, and it
conducts downsampling of the resulting YCbCr component planes upon request.

EXAMPLES
From test/imgtools/execs/not2intr/not2intr.src:

% not2intr raw face.nin 768,1024,24 -r
converts the non-interleaved RGB face image in a raw pixmap file into interleaved color pixels.

SEE ALSO
intr2not (1D), rgb2ycc(1D)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 158

OAS2PICS(1A) NFISReference Manual OAS2PICS(1A)

NAME
oas2pics − makes pictures of orientation arrays.

SYNOPSIS
oas2pics<oasfile> <i_start> <i_finish outpics_dir> <verbose>

DESCRIPTION
Oas2picsreads a specified segment of orientation arrays (oas) from a file, and makes IHead raster images
depicting the oas.This can be useful for testing whether oas are reasonable, and to find out about their
characteristics.

OPTIONS
<oasfile>

A PCASYS "matrix" file containing orientation arrays, with each row being one oa.First dimen-
sion is number of oas in the file, and second dimension must be 1680 (the dimensionality of one
oa). (Usually the output ofmkoas.)

<i_start> <i_finish>
The program makes pictures of the segment consisting of oas i_start through i_finish, numbering
starting at 1.

<outpics_dir>
The program makes image files in this directory. (If the directory does not already exist, the pro-
gram makes it.) The files will have names i.pct where i goes from i_start through i_finish.

<verbose>
If y, the program writes a progress message to stdout for each oa it is making a picture of.

EXAMPLE(S)
From test/pcasys/execs/asc2bin/asc2bin.src:

% oas2pics ../../data/oas/fv1.oas 1 2 oaspics y
Makes a set of images files (IHEAD format) so the user can see how the orientation arrays look
and compare to the actual fingerprint image if desired. The files can be converted to JPEG format
using thecjegbcommand.

SEE ALSO
mkoas (1A), dpyimage (1D), cjpegb (1D)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 159

OPTOSF(1A) NFISReference Manual OPTOSF(1A)

NAME
optosf − optimizes the overall smoothing factor for the PNN classifier.

SYNOPSIS
optosf<prsfile>

DESCRIPTION
Optosf optimizes the overall smoothing factor (osf) for the Probabilistic Neural Network (PNN) classifier.

The regional weights are optimized using theoptrws command. To sav eoptrws runtime, it is suggested
that optrws be run using the K-L feature vectors of only a reasonably small set of fingerprints, perhaps a
small subset of the full prototype set that will be used in the finished classifier. But then, after the full pro-
totype set of feature vectors is made by transforming previously made orientation arrays using the trans-
form matrix incorporating the optimized regional weights, one can expect that the classifier that uses these
feature vectors will be slightly more accurate if it uses an overall smoothing factor slightly larger than 1, to
compensate for the fact that the prototype set is larger than it was during optimization of the regional
weights. Duringoptimization of the regional weights, no explicit overall smoothing factor is used, since
any effect such a factor would have had could equally well be produced by just using different values of the
regional weights; so, optrws in effect fixes the overall smoothing factor at 1.

The optosf command is provided to optimize the overall smoothing factor for best results on the full set of
prototypes. Itoptimizes osf by attempting to find a minimum (or at least a local minimum) of an activation
error rate that results when a set of finished feature vectors is classified by PNN.The set of prototypes used
by the PNN, during this optimization, is a superset of the set on which the activation error rate is computed:
both sets start at the beginning of the provided data, but they are of different lengths.Whichever fingerprint
the classifier is running on is temporarily left out of the prototypes set, i.e. a leave-one-out method is used
in order to simulate a realistic situation.

The optimization method used is a very simple one, consisting of taking steps of an initial size, then halv-
ing the stepsize and reversing direction if the error rates ceases to decrease, etc.This method, while obvi-
ously not sufficient for the general problem of minimizing a real function of one real variable, appears to be
sufficient for this particular problem, since the activation error rate as a function of the osf seems to always
have a unimodal form.

OPTIONS
<prsfile>

A file specifying values of some or all of the parameters.Parameters not specified in this file
assume default values. To find out what the parameters are, and as an example of the format of a
parameters file, see the filepcasys/parms/optosf.prs in the PARAMETER FILES section below.
The user’s prsfile must specify values for those parameters thatoptosf.prs indicates have no
defaults; it can also specify default-overriding values for one or more of the parameters that have
defaults.

PARAMETER FILES
pcasys/parms/optosf.prs

Contains default values of the parameters for optosf (optimize overall smoothing factor com-
mand). Parameters with no defaults must be set in the usersprsfile.

Default settings inpcasys/parms/optosf.prs

n_feats_use64
How many (first) features of the feature vectors to use.

osf_init .1
Initial value for osf (overall smoothing factor).

osf_initstep.2
Initial step size for osf.

NIST 02April 2001 160

OPTOSF(1A) NFISReference Manual OPTOSF(1A)

osf_stepthr.01
Program stops when step size becomes <= this value.

tablesize1000
Size of the table used to avoid redundant computing.

verbosey
If y, write progress messages to stdout.

outfile_desc-
A − (hyphen) means let optosf make the description; otherwise, value is the description.

fvs_file (no default, user must set)
The file containing the prototype feature vectors, each vector stored as one row of the
matrix.

classes_file(no default, user must set)
The file containing the classes of the prototype feature vectors.

n_fvs_use_as_protos_set(no default, user must set)
The number of first feature vectors from fvs_file to use as the PNN prototypes when opti-
mizing osf.

n_fvs_use_as_tuning_set(no default, user must set)
The number of first feature vectors from fvs_file to run the PNN on to optimize osf.

outfile (no default, user must set)
The results output file.

EXAMPLE(S)
From test/pcasys/execs/optosf/optosf.src:

% optosf optosf.prs
Optimize the overall smoothing factor based on the parameters set in the fileoptosf.prs.

SEE ALSO
optrws (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 161

OPTRWS(1A) NFISReference Manual OPTRWS(1A)

NAME
optrws − optimizes the regional weights for PNN classifier.

SYNOPSIS
optrws <prsfile>

DESCRIPTION
Optrws optimizes the regional weights, each of which goes with one 2x2-vector block of the orientation
array. Since that array has 28 x 30 vectors, there are (28 / 2) x (30 / 2) = 210 regional weights.

Optimization consists of attempting to approximate the minimum, or at least a local minimum, of an "acti-
vation error rate" of the Probabilistic Neural Network (PNN) classifier when it is run on a set of finger-
prints, using the same set as the prototypes for the PNN but leaving out of the prototype set, each time, the
particular fingerprint that the network is being run on.The program first finds a reasonable value to use as
an initial value for all 210 weights.Then, it uses a very simple form of a gradient descent algorithm to fin-
ish optimizing the weights.Each iteration consists of, first, estimating the gradient of the error at the cur-
rent "basepoint", and second, approximately finding the minimum (or at least a local minimum) of the error
along the straight line pointing in the anti-estimated-gradient direction.(Estimating the gradient seems to
be sufficient, and calculating it from its definition may actually require more computation then estimating.)
Because the activation error is apparently such a well-behaved function of distance along this line, for this
particular problem, it seems sufficient to use a very simple algorithm for the line search: this consists of
taking large equal-sized steps in the anti-gradient direction until the error ceases to decrease, then halving
the stepsize and going in the opposite direction along the line until the error again ceases to decrease, etc.,
with the process stopping when the step size becomes smaller than a threshold.This finds a local mini-
mum, and it appears that this function generally is unimodal along the line, so that this local minimum will
be the minimum along the line.

The 0th basepoint is (irw,irw,...,irw), where irw is the initial value decided upon for all regional weights.
The 1st basepoint is the result of the line search that follows the gradient-estimation at the 0th basepoint;
etc. Stoppingof the program is controlled by specifying the number of line searches that are to be done.If
this parameter is set to 1, then the program only gets as far as basepoint 1.Since optrws records each base-
point, the program can be manually stopped if it turns out that it is taking too much time, without the run
being a total waste of cycles.

At each of the basepoints, optrws produces the following files (in a directory specified as one of the param-
eters). Thebasepoint, as a "matrix" file of dimensions 14 x 15 (these dimensions correspond to the geomet-
ric interpretation of the basepoint as a set of regional weights); these files have names bspt_0.bin,
bspt_1.bin, etc. or bspt_0.asc, bspt_1.asc, etc.The estimated gradient of the activation error rate at the
basepoint, also as a "matrix" file of dimensions 14 x 15; these files have names egrad_0.bin, egrad_1.bin,
etc. or egrad_0.asc, egrad_1.asc, etc.And, the activation error rate at the basepoint, as a text file; these files
have names acerr_0.txt, acerr_1.txt, etc.As optrws is running (which make take sev eral hours), these inter-
mediate results files may be examined to find out what kind of progress the optimization is making.The
acerr files obviously can be examined to find out if the reported error rate is still decreasing or has leveled
off. Also, the rwpics command (see rwpics man page) can be used to make, from a set of bspt files, a set of
grayscale IHead images depicting these regional weights sets in their proper geometric layout.Rwpics can
also make two other kinds of pictures: grayscale pictures of a set of estimated gradients (egrad files), and
grayscale-binary (i.e. 0 and 255 pixels) pictures showing the signs of the elements of estimated gradients.
(The blocks whose estimated gradient elements, i.e. estimated partials, are negative, are ones whose
weights will be increasing as optrws takes steps in the anti-estimated-gradient direction.)For the "optimal"
set of regional weights, just use the final bspt file produced before the optrws run stops by itself (because of
doing the specified number of iterations) or, if optimization appears not to be making much more progress,
kill the optrws process and use the last bspt file produced.Or, it could also be interesting to do testing
using various basepoints, to find out whether the decreases in the activation error during optimization corre-
spond to error decreases on a test set, i.e. to find out whether even small improvements in the weights in the
sense of training error rate, are actually significant in the sense of generalizing to other data.(The weights
seem to generalize well, not too suprisingly since there are only 210 of them, hardly a large enough number

NIST 02April 2001 162

OPTRWS(1A) NFISReference Manual OPTRWS(1A)

for them to be capable of becoming very specifically tuned to the training data in such a way as to have lit-
tle generalization value.)

The parameters of optrws are specified by parameter files.The program first reads
pcasys/parms/optrws.prs, which contains default values of some of its parameters; then it reads the user-
provided parameters file whose name is given as the argument. Consultoptrws.prs to find out what the
parameters are, and as an example of the format of a parameters file.Optrws.prs specifies default values for
the parameters that have defaults, and it also has a comment concerning each parameter that has no default
value. Theuser parameters file must specify a value for each parameter that does not have a default, and it
also can specify default-overriding values for one or more of the other parameters.

Optrws can start several simultaneous instances of another program, optrwsgw, each time it needs to esti-
mate the gradient, if desired.This can reduce the time needed for optimization, if there are several proces-
sors available. To use this feature, set acerror_stepped_points_nprocs in your parameters file to a value > 1
(probably should be <= number of processors available). If the operating system on your computer does
not implement fork() and execl(), then the Makefile for optrws should be modified by appending
-DNO_FORK_AND_EXECL to the definition of CFLAGS, so that a different subset of the code will be
compiled and the linker will thereby find no unresolved references.

OPTIONS
<prsfile>

A file specifying values of some or all of the parameters.Parameters not specified in this file
assume default values.

PARAMETER FILES
pcasys/parms/optrws.prs

Contains default values for some of the optrws parameters.The remaining parameters, with no
default values must be specified in the userprsfile.

Default settings inpcasys/parms/optrws.prs

n_feats_use64
How many (first) features of each K-L feature vector to use.

irw_init 0.1
Initial value for irw.

irw_initstep 1.0
Initial step size for irw.

irw_stepthr .01
Optimization of irw stops when step size becomes smaller than this threshold.

grad_est_stepsize.001
Step size for secant-estimation of gradient.

n_linesearches2
Number of (estimate gradient, line search) iterations to do.

linesearch_initstep .1
Initial step size for line search.

linesearch_stepthr .01
Line search stops when its step size becomes smaller than this threshold.

tablesize1000
Size of a table used to hold pairs of values corresponding to previous computations of the
error, either as a function of irw or as a function of distance along downhill-pointing line.
Lookup in this table saves some cycles by avoiding repeated calculations.

NIST 02April 2001 163

OPTRWS(1A) NFISReference Manual OPTRWS(1A)

acerror_stepped_points_nprocs1
How many processes to use when computing the activation error at the points stepped to
from a basepoint, in order to compute the approximate gradient by secant method.If 1,
optrws computes the error at all stepped points itself.If > 1, optrws starts this many child
processes, each of which computes the error at an interval of the stepped points.

verbosey
If y, write progress messages to standard output.

ascii_outfilesn
Whether outputfiles are to be ascii (y) or binary (n).

klfvs_file (no default, user must set)
File containing K-L feature vectors to be used as prototypes set, and also as "tuning" set,
for the optimization. Usually the output on the lintran function.

classes_file(no default, user must set)
File containing the classes that go with the feature vectors ofklfvs_file. Must be a pcasys
"classes" formatted file.

n_klfvs_use(no default, user must set)
How many of the K-L feature vectors to use (off the top).

eigvecs_file(no default, user must set)
File containing the eigenvectors.

outfiles_dir (no default, user must set)
The directory in which optrws is to produce its output files.

EXAMPLE(S)
From test/pcasys/execs/optrws/optrws.src:

% optrws optrws.prs
Optimizes the regional weights for a set of feature vectors based on the parameters set in the file
optrws.prs.

SEE ALSO
rwpics (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 164

PCASYS(1A) NFISReference Manual PCASYS(1A)

NAME
pcasys − fingerprint classifier demo, non-graphical version

SYNOPSIS
pcasys[prsfile]

DESCRIPTION
Pcasysis the non-graphical fingerprint classifier demo program.It reads a sequence of image files, each
depicting one box as scanned from a fingerprint card, and classifies each fingerprint, using a Multi-Layer
Perceptron (MLP) or Probabilistic (PNN) Neural Network, to one of six pattern−level classes: Arch, Left
loop, Right loop, Scar, Tented arch, and Whorl. The type of classifier MLP or PNN is chosen in the param-
eters filepcasys/parms/pcasys.prs. Pcasys optionally makes an output file, containing a results line for each
fingerprint and a summary at the end showing the error rate and the "confusion matrix", and it optionally
writes progress messages to the standard output.

The graphical version, pcasysx, is recommended as being much more interesting than this version. How-
ev er, pcasys is suitable if (1) the X Window System, which pcasysx requires, is not installed, or (2) greatest
classification speed is desired.(The graphical displays take a significant amount of additional time.)

Pcasys will look in the default locationpcasys/parmsfor the default parameter files it needs.There are pro-
totype and weights files inpcasys/weights/{mlp|pnn}that are needed by the MLP and PNN classifiers. If
NFIS was installed in a location other than/usr/local/nfisthe INSTALL_DIR in include/little.h will need to
be changed and the code recompiled.Also, the current default location for the 2700 sample fingerprint
images istest/pcasys/data/images. If the user wants to save disk space, these images could be left on a
mounted CDROM and a link made from the images directory on the CDROM to the image directory where
the software is installed.

OPTIONS
[prsfile]

A file containing one or more parameter values that are to override the default values. To find out
what the parameters are, and as examples of the format of a parameters file, consult the default
parameters files that pcasys reads, namelypcasys/parms/oas.prs and pcasys/parms/pcasys.prs
which are described in the section PARAMETER FILES. Each line, in the parms file consists of a
parameter name followed by a value; a pound sign indicates that the rest of its line is a comment.
If pcasys is run with no argument, i.e. not specifying a user parameters file, then it uses the default
values of all parameters.

PARAMETER FILES
pcasys/parms/oas.prs

Contains default values of the parameters that affect the making of orientation arrays (oas): these
are the parms of the segmentor (sgmnt), the image enhancer (enhnc), the ridge-valley orientation
finder (rors), the registration program (r92a), and the registration-implementing pixelwise orienta-
tions reaverager (rgar). Thevalues used for these parms when making the oas used in optimizing
the classifier should also be used when running the finished classifier. See themkoasman page
for more information about the parameters in this file.

pcasys/parms/pcasys.prs
Contains default values of the remaining parameters of pcasys.Also look at pcasys.mlpand
pcasys.pnnfor examples on using each classifier.

Default settings inpcasys/parms/pcasys.prs

network_type 2
Set classifier as (1) PNN (Probabilistic Neural Net) or (2) MLP (Multi-layer Perceptron).

tr nsfrm_nrows_use128
How many (first) rows of the transform matrix to use, and hence, how many features to
make for the feature vector of each incoming fingerprint, and also how many (first) fea-
tures to use of each prototype feature vector when running the classifier:

NIST 02April 2001 165

PCASYS(1A) NFISReference Manual PCASYS(1A)

tr nsfrm_matrix_file pcasys/weights/mlp/mlp_tmat.bin
File used by the demo to transform the orientation array of an incoming fingerprint into
the low-dimensional feature vector that will be sent to the classifier.

cls_strALRSTW
Class string used in graphics mode to display the ouput activations. Shouldbe same size
as number of outputs (ie. pnn_nclasses or number outputs in mlp_wts file).Must be
some combination of "ALRSTW".For PNN, these must be the same classes as used in
the prototype files and be in the same order as when the prototype were optimized.

pnn (Probabilistic Neural Net) parameters:

pnn_nprotos_use24300
How many first feature vectors to use, from the set of prototypes.The value 24300 corre-
sponds to the entire provided set, corresponding to volumes 1 - 9 "f" rollings of Special
Database 14.

pnn_nclasses6
How many different classes there are.For the fingerprint pattern-level classification
problem, there are 6: A, L, R, S, T, and W.

pnn_osf1.368750
Overall smoothing factor for the PNN.May be optimized using optosf.

pnn_protos_fvs_filepcasys/weights/pnn/profvs.bin
Prototype feature vectors file.

pnn_protos_classes_filepcasys/weights/pnn/procls.asc
Prototype classes file.

MLP (Multi-layer Perceptron) network parameters:

mlp_wts_filepcasys/weights/mlp/mlp_wts.bin
MLP weights file.

Parameters used by the pseudoridge tracer:

pseudo_slthresh00.0
If squared-length of an orientation vector (in the fine grid used by pseudo) is < this value,
then the vector is zeroed before the (possible) application of smoothing iterations.

pseudo_slthresh10.04
If, after (possible) smoothing iterations, the squared-length of an orientation vector is <
this value, then this location is marked as bad, meaning that no pseudoridge is allowed to
start here and if one arrives here, tracing stops at this point.

pseudo_smooth_cwt0.0
Center-weight for each iteration of smoothing of the orientation grid.An iteration con-
sists of replacing each vector with the weighted average of itself and its four neighbors,
with itself getting this much weight and its neighbors equally dividing the remaining
weight (sum of weights is 1).

pseudo_stepsize1.0
Length of one step in the production of a pseudoridge, which is actually a polygon.A
value of 1. corresponds to the spacing between vectors in the (finer) orientation array
used by pseudo.

NIST 02April 2001 166

PCASYS(1A) NFISReference Manual PCASYS(1A)

pseudo_max_tilt45
Max allowed tilt of a candidate concave-upward’s vertex (point of sharpest turning) from
a horizontal that corresponds to exact uprightness.In degrees.

pseudo_min_side_turn 70
Minimum cumulative turn that each side of concave-upward must have. In degrees.

Limits for the block of starting positions in pseudoridge tracing:

pseudo_initi_s11
Small limit, vertical. (TOP)

pseudo_initi_e46
Large limit, vertical. (BOTTOM)

pseudo_initj_s11
Small limit, horizontal. (LEFT)

pseudo_initj_e50
Large limit, horizontal. (RIGHT)

pseudo_maxsteps_eachdir200
Maximum number of steps that tracer ever takes in either of the two directions from start-
ing point. (Controls the amount of memory needed to store a pseudoridge, and more
importantly, such a limit is needed to prevent possible infinitely looping pseudridges in
some whorls.)

pseudo_nsmooth3
How many iterations of smoothing.

pseudo_maxturn 40
Maximum turn that is allowed to occur in a single step (in degrees). Anattempted turn
sharper than this causes tracing to stop.

Used by the combine routine.

combine_clash_confidence.9
This is the confidence value combine assigns if pseudo finds a concave-upward (causing
hyp class to be whorl) but PNN thinks the print is not a whorl:

PCASYS I/O parameters.

demo_images_listpcasys/parms/first20.txt
List of fingerprint images to run the demo on.The default list here lists the first 20 fin-
gerprints of the provided demo set, which consists of the 2700 fingerprints of volume 10
"s" rollings of NIST Special Database 14.pcasys/parms/all.txtlist all 2700 files.

outfile pcasys.out
Output file to be produced.If no output file is wanted, set this to /dev/null.

clobber_outfile n
If n, then if outfile already exists, exit with an error message.If y, then overwrite outfile
if it already exists.

verbosey
If y, then write progress messages to stdout.

NIST 02April 2001 167

PCASYS(1A) NFISReference Manual PCASYS(1A)

EXAMPLE(S)
From test/pcasys/execs/pcasys/pcasys.src:

% pcasys
Runs the pcasys demo using the default settings found in
pcasys/parms/pcasys.prs.

% pcasys myprsfile
Runs the pcasys demo using parameters set inmyprsfile to change the value of the default settings.

SEE ALSO
pcasysx (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 168

PCASYSX(1A) NFISReference Manual PCASYSX(1A)

NAME
pcasysx − fingerprint classifier demo, graphical version

SYNOPSIS
pcasysx[prsfile]

DESCRIPTION
Pcasysxis the graphical fingerprint classifier demo program.It reads a sequence of image files, each
depicting one box as scanned from a fingerprint card, and classifies each fingerprint, using a Multi-Layer
Perceptron (MLP) or Probabilistic (PNN) Neural Network, to one of six pattern−level classes: Arch, Left
loop, Right loop, Scar, Tented arch, and Whorl. The type of classifier MLP or PNN is chosen in the param-
eters file pcasys/parms/pcasys.prs. Additional parameters specific to pcasysx are in
pcasys/parms/pcasysx.prs.

Pcasysx produces screen graphics illustrating the results of the processing phases (requires X Windows). It
optionally makes an output file, containing a results line for each fingerprint and a summary at the end
showing the error rate and the "confusion matrix", and it optionally writes progress messages to the stan-
dard output.

Pcasysx will look in the default locationpcasys/parmsfor the default parameter files it needs.There are
prototype and weights files inpcasys/weights/{mlp|pnn}that are needed by the MLP and PNN classifiers
and images needed for the graphics display inpcasys/images. If NFIS was installed in a location other than
/usr/local/nfis the INSTALL_DIR in include/little.h will need to be changed and the code recompiled.
Also, the current default location for the 2700 sample fingerprint images istest/pcasys/data/images. If the
user wants to save disk space, these images could be left on a mounted CDROM and a link made from the
images directory on the CDROM to the image directory where the software is installed.

OPTIONS
[prsfile]

A file containing one or more parameter values that are to override the default values. To find out
what the parameters are, and as examples of the format of a parameters file, consult the default
parameters files that pcasysx reads, namelypcasys/parms/oas.prs, pcasys/parms/pcasys.prs, and
pcasys/parms/pcasysx.prs, which are described in the section PARAMETER FILES. Each line, in
the parms file consists of a parameter name followed by a value; a pound sign indicates that the
rest of its line is a comment.If pcasysx is run with no argument, i.e. not specifying a user parame-
ters file, then it uses the default values of all parameters.

PARAMETER FILES
pcasys/parms/oas.prs

Contains default values of the parameters that affect the making of orientation arrays (oas): these
are the parms of the segmentor (sgmnt), the image enhancer (enhnc), the ridge-valley orientation
finder (rors), the registration program (r92a), and the registration-implementing pixelwise orienta-
tions reaverager (rgar). Thevalues used for these parms when making the oas used in optimizing
the classifier should also be used when running the finished classifier. See themkoasman page
for more information about the parameters in this file.

pcasys/parms/pcasys.prs
Contains default values of the parameters forpcasysx. Also look atpcasys.mlpandpcasys.pnnfor
examples on using each classifier. See thepcasysman page for more information about the
parameters in this file.

pcasys/parms/pcasysx.prs
Contains default values of parameters, in addition topcasys/parms/pcasys.prs, that are specific to
pcasysx.

Default settings inpcasys/parms/pcasysx.prs

Parameters for the graphical demo, pcasysx, that control sleeping (pausing) after displaying vari-
ous intermediate results. Value -1 is also allowed: that means wait for user to type enter key

NIST 02April 2001 169

PCASYSX(1A) NFISReference Manual PCASYSX(1A)

before continuing.

sleeps_titlepage0
after title page

sleeps_sgmntwork 1
intermediate results of segmentor

sleeps_segras0
segmented image

sleeps_enhnc1
enhanced image

sleeps_core_medcore3
ridge-orientation bars, core, standard core

sleeps_regbars2
registered ridge-orientation bars

sleeps_featvec1
bar graph of feature vector input to PNN

sleeps_normacs2
bar graph of normalized PNN outputs

sleeps_foundconup1
found a concave-upward pseudoridge (conup)

sleeps_noconup0
all pseudoridges, if no conup is found

sleeps_lastdisp2
results display for the fingerprint

Mouse control parameter:

warp_mousen
If y (yes), then warp the mouse pointer into graphical window so its colormap takes
effect. If n (no), no warping.

PCASYS I/O parameters.

outfile pcasysx.out
Output file to be produced.If no output file is wanted, set this to /dev/null.

EXAMPLE(S)
From test/pcasys/execs/pcasys/pcasys.src:

% pcasysxRuns the pcasysx demo using the default settings found in
pcasys/parms/pcasysx.prs.

% pcasysx myprsfile
Runs the pcasysx demo using parameters set inmyprsfile to change the value of the default set-
tings.

SEE ALSO
pcasys (1A)

NIST 02April 2001 170

PCASYSX(1A) NFISReference Manual PCASYSX(1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 171

RDJPGCOM(1E) NFISReference Manual RDJPGCOM(1E)

NAME
rdjpgcom − display text comments from a JPEG file

SYNOPSIS
rdjpgcom [−verbose] [filename]

DESCRIPTION
rdjpgcom reads the named JPEG/JFIF file, or the standard input if no file is named, and prints any text
comments found in the file on the standard output.

The JPEG standard allows "comment" (COM) blocks to occur within a JPEG file.Although the standard
doesn’t actually define what COM blocks are for, they are widely used to hold user-supplied text strings.
This lets you add annotations, titles, index terms, etc to your JPEG files, and later retrieve them as text.
COM blocks do not interfere with the image stored in the JPEG file.The maximum size of a COM block is
64K, but you can have as many of them as you like in one JPEG file.

OPTIONS
−verbose

Causesrdjpgcom to also display the JPEG image dimensions.

Switch names may be abbreviated, and are not case sensitive.

HINTS
rdjpgcom does not depend on the IJG JPEG library. Its source code is intended as an illustration of the
minimum amount of code required to parse a JPEG file header correctly.

In −verbosemode,rdjpgcom will also attempt to print the contents of any "APP12" markers as text. Some
digital cameras produce APP12 markers containing useful textual information. If you like, you can modify
the source code to print other APPn marker types as well.

SEE ALSO
cjpeg(1), djpeg(1), jpegtran(1), wrjpgcom(1)

AUTHOR
Independent JPEG Group

IJG 11October 1997 172

RDWSQCOM(1D) NFISReference Manual RDWSQCOM(1D)

NAME
rdwsqcom − scans a WSQ-encoded image file for any and all comment blocks, printing their contents to
standard output.

SYNOPSIS
rdwsqcom<image file>

DESCRIPTION
Rdwsqcom takes as input a file containing a WSQ-compressed image, andwithout decoding and recon-
structing the image, the utility scans the file for any and all comment blocks.As a comment block is
encountered, its contents is printed to standard output.Comments can be written to a WSQ file by using
thewrwsqcomcommand.

OPTIONS
<image file>

the input WSQ file to be scanned.

EXAMPLES
From test/imgtools/execs/rdwsqcom/rdwsqcom.src:

% r dwsqcom finger.wsq > finger.com prints any comments stored in the WSQ fingerprint file to
an output file.

SEE ALSO
cwsq(1D), wrwsqcom(1D)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 173

RGB2YCC(1D) NFISReference Manual RGB2YCC(1D)

NAME
rgb2ycc − converts a color RGB image to the YCbCr colorspace and downsamples component planes as
specified.

SYNOPSIS
rgb2ycc<outext> <image file>

[-raw_in w,h,d,[ppi]
[-nonintrlv]]

[-YCbCr H0,V0:H1,V1:H2,V2]

DESCRIPTION
Rgb2ycc takes as input a file containing an uncompressed color RGB image.Tw o possible input file for-
mats are accepted, NIST IHead files and raw pixmap files. If a raw pixmap file is to be converted, then its
image attributes must be provided on the command line as well.Once read into memory, the RGB pixmap
is converted to the YCbCr colorspace. The results are always written to a raw pixmap file because the NIST
IHead file format only supports interleaved RGB images.

The color components of RGB pixels in a raw pixmap file may be interleaved or non-interleaved. By
default, rgb2yccassumes interleaved color pixels. (SeeINTERLEAVE OPTIONS below.)

If requested,rgb2yccalso conducts downsampling of the YCbCr component planes.By default, this utility
does no downsampling. Regardless of downsampling, the conversion from RGB to YCbCr and back to
RGB will not result in the same exact image.Some pixels values will be slightly perturbed due to the
round-off of the floating point transformations that are applied.(See YCbCr OPTIONS below.)

OPTIONS
All switch names may be abbreviated; for example,-raw_in may be written-r .

<outext>
the extension of the YCbCr output file.To construct the output filename,rgb2ycc takes the input
filename and replaces its extension with the one specified here.

<image file>
the input file, either an IHead file or raw pixmap file, containing the color RGB image to be con-
verted.

-raw_in w,h,d,[ppi]
the attributes of the input image.This option must be included on the command line if the input is
a raw pixmap file.

w the pixel width of the pixmap

h the pixel height of the pixmap

d the pixel depth of the pixmap

ppi the optional scan resolution of the image in integer units of pixels per inch.

-nonintrlv
specifies that the color components in aninput raw pixmap file image are non-interleaved and
stored in separate component planes.(See INTERLEAVE OPTIONS below.)

-YCbCr H0,V0:H1,V1:H2,V2
this option, if provided on the command line, directsrgb2ycc to conduct downsampling of the
YCbCr component planes.If all the H,V factors are set to 1 then no downsampling is done; this is
equivalent to ommiting the option.(See YCbCr Options below.)

NIST 02April 2001 174

RGB2YCC(1D) NFISReference Manual RGB2YCC(1D)

INTERLEA VE OPTIONS
The color components of RGB pixels in a raw pixmap file may be interleaved or non-interleaved. Color
components are interleaved when a pixel’s (R)ed, (G)reen, and (B)lue components are sequentially adjacent
in the image byte stream, ie. RGBRGBRGB... .If the color components are non-interleaved, then all (R)ed
components in the image are sequentially adjacent in the image byte stream, followed by all (G)reen com-
ponents, and then lastly followed by all (B)lue components.Each complete sequence of color components
is called aplane. The utilitiesintr2not andnot2intr convert between interleaved and non-interleaved color
components. Bydefault, rgb2ycc assumes interleaved color components, and note that all color IHead
images must be interleaved.

YCbCr OPTIONS
Rgb2ycc converts color RGB images to the YCbCr colorspace.A common compression technique for
YCbCr images is to downsample the Cb & Cr component planes.Rgb2yccconducts a limited range of
YCbCr downsampling schemes that are represented by a list of component plane factors. Thesefactors
together represent downsampling ratios relative to each other. The comma-separated list of factor pairs cor-
respond to the Y, Cb, and Cr component planes respectively. The first value in a factor pair represents the
downsampling of that particular component plane in the X-dimension, while the second represents the
Y-dimension. Compressionratios for a particular component plane are calculated by dividing the maxi-
mum component factors in the list by the current component’s factors. Theseinteger factors are limited
between 1 and 4.H,V factors all set to 1 represent no downsampling. For complete details,rgb2ycc
implements the downsampling and interleaving schemes described in the following reference:

W.B. Pennebaker and J.L. Mitchell, "JPEG: Still Image Compression Standard," Appendix A -
"ISO DIS 10918-1 Requirements and Guidelines," Van Nostrand Reinhold, NY, 1993, pp. A1-A4.

For example the option specification:

-YCbCr 4,4:2,2:1,1

directsrgb2ycc to not downsample the Y component plane (4,4 are the largest X and Y factors listed); the
Cb component plane will be downsampled in X and Y by a factor of 2 (maximum factors 4 divided by cur-
rent factors 2); and the Cr component plane will be downsampled in X and Y by a factor of 4 (maximum
factors 4 divided by current factors 1).Note that downsampling component planes is a form oflossycom-
pression. Theutility ycc2rgb takes the YCbCr results and converts them back to the RGB colorspace.If
downsampling was applied to the YCbCr components, then the downsampled planes are up-sampled prior
to conversion to RGB.Note that even without dowsampling, the conversion from RGB to YCbCr and back
to RGB will not result in the same exact image.Some pixels values will be slightly perturbed due to the
round-off of the floating point transformations that are applied.

EXAMPLES
From test/imgtools/execs/rgb2ycc/rgb2ycc.src:

% r gb2ycc ycc face.raw -r 768,1024,24 -Y 4,4:1,1:1,1
converts an RGB face image in a raw pixmap file to the YCbCr colorspace and downsamples the
Cb and Cr component planes by a factor of 4 in both dimensions.

SEE ALSO
cjpegl(1D), dpyimage(1D), intr2not (1D), not2intr (1D), ycc2rgb(1D)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 175

RWPICS(1A) NFISReference Manual RWPICS(1A)

NAME
rwpics − makes pictures of regional weights or gradients.

SYNOPSIS
rwpics <rwfile_in[rwfile_in...]> <rws|eg|seg> <outpics_dir>

DESCRIPTION
Rwpics reads a set of PCASYS "matrix" format files each of size 14 x 15.The input files either should be
a set of points in regional weights space (in particular, basepoints produced by the optimize regional
weights command optrws), or they should be a set of estimated gradients of the activation error (also pro-
duced by optrws).Makes a corresponding set of IHead format image files depicting the weights points or
gradients; these image files can then be displayed using dpyimage. Rwpicscan be used as a sanity check
on whether optrws is working properly, and to help decide when the time has come that it is reasonable to
stop an optrws run because further significant change of the weights seems unlikely.

OPTIONS
<rwfile_in[rwfile_in...]>

The pcasys "matrix" format file(s) to be depicted.Either they should each be a basepoint of the
optrws optimization (point in regional weights space), or they should each be an estimated gradi-
ent, also produced by optrws.In either case, they must be matrices of size 14 x 15, corresponding
to the weights, each of which is associated with one 2 x 2 vector block of the 28 x 30 pattern of
orientation vectors. (Usually the output ofoptrws.)

<rws|eg|seg>
A code telling rwpics what kind of pictures to make:

If rws ("regional weights"), the program makes a grayscale picture that is reasonable if the input
file represents a set of regional weights, e.g. one of the bspt files produced by an optrws run.To
do so, it linearly maps absolute values of input values to gray tones, setting the mapping so that 0.
maps to black and the maximum absolute value across all components of all input matrices, to
white. Absolutevalues are the reasonable thing to depict when examining a point in regional-
weights space, since the sign of a regional weights has no effect on the PNN classifier. (Optimiza-
tion may sometimes cause some unimportant outer weights to be slightly negative.) Themapping
is adapted to the maximum absolute value across all input files, rather than being separately
adapted for each input file; this is done so that the several resulting pictures can be examined side
by side with the knowledge that all gray tones are on the same scale.

If eg ("estimated gradient"), the program makes a grayscale picture that is reasonable if the input
file represents an estimated gradient of the error function, e.g. one of the egrad files produced by
an optrws run.To do so, it affinely maps input values to gray tones, setting the mapping so that
the minimum input value across all input files is mapped to white and the maximum input value, to
black.

If seg ("sign of estimated gradient"), the program makes a grayscale-binary (ie. 0 and 255 pixel
values) picture that is reasonable if the input file represents an estimated gradient of the error func-
tion. To do so, it maps negative values to white (255) and nonnegative values to black (0).This is
interesting because if the component of the estimated gradient (i.e., the estimated partial
derivative) associated with a region is negative, that shows that the weight for this region should be
increased (and will be increased by optrws).

<outpics_dir>
The directory in which the program should produce its output files, which will be raster images in
the NIST IHead format.(The directory must already exist, i.e. rwpics does not produce it.) Each
output file’s name is produced by taking the last component of the corresponding input file and
appending an underscore, then the rws|eg|seg code, then .pct (the standard IHEAD file suffix). The
output image files may be examined using the dpyimage command.

NIST 02April 2001 176

RWPICS(1A) NFISReference Manual RWPICS(1A)

EXAMPLE(S)
From test/pcasys/execs/rwpics/rwpics.src:

% r wpics ../optrws/optrws.bin rws rwpics
Produces an image of the optimized regional weights, which can be converted to JPEG format
using thecjpegbcommand.

% r wpics ../optrws/optdir/egrad_1.bin eg rwpics
Produces an image of the estimated gradient, which can be converted to JPEG format using the
cjpegbcommand.

% r wpics ../optrws/optdir/egrad_1.bin seg rwpics
Produces an image of the sign of estimated gradient, which can be converted to JPEG format using
thecjpegbcommand.

SEE ALSO
dpyimage (1A), optrws (1A), cjpegb (1D)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 177

SD_RFMT(1D) NFISReference Manual SD_RFMT(1D)

NAME
sd_rfmt − takes images from NIST Special Databases 4, 9, 10, 14, and 18 and reformats the compressed
data to work with the decompressorsdjpegl anddwsq.

SYNOPSIS
sd_rfmt <SD #> <image file>

SD list = {4,9,10,14,18}

DESCRIPTION
Sd_rfmt reformats images compressed with the old JPEGLSD and WSQ14 compression, on NIST Special
Databases 4, 9, 10, 18 (JPEGLSD) and 14 (WSQ14), so the images can be decompressed with the new
commandsdjpegl anddwsq.

When JPEGLSD was used to compress images on NIST Special Databases (4, 9, 10, 18) the NIST IHEAD
header was used to store the data for the JPEGLSD compression.In the new versionscjpegl anddjpegl the
full JPEG format is used not the IHEAD header.

The WSQ14 compression used on SD14 has problems with ordering of the data in the compressed file.
Sd_rfmt simply reorders the data to comply with the format specified in the FBI’s Criminal Justice Infor-
mation Services (CJIS) document, "WSQ Gray-scale Fingerprint Compressions Specification," Dec. 1997.
This is the only fingerprint compression format accepted by the FBI IAFIS system.NOTE: The method
for selecting the quantization amount was refined after the release of SD14 so the data loss in the
reconstructed image may be more than seen when using the new versions cwsq and dwsq.

OPTIONS
<SD #>

Specify that the input image is from NIST Special Database #.

<outext>
the extension of the reformatted output file.ªTo construct the output filename,sd_rfmt takes the
input filename and replaces its extension with the one specified here.

<image file>
the compressed input file to be reformatted.

EXAMPLES
From test/imgtools/execs/sd_rfmt/sd_rfmt.src:

% sd_rfmt 7 jpl sd09.old
% sd_rfmt 10 jpl sd10.old
% sd_rfmt 14 wsq sd14.old
% sd_rfmt 18 jpl sd18.old
Convert the special database images to the correct formatted compressed files (JPEGL and WSQ).
User could userdjpgcom and rdwsqcom to read the NISTCOM comment that is written in the
reformatted output file.After reformatting the new file can be decompressed withdjpegl or dwsq.

SEE ALSO
djpegl(1D), dwsq(1D), dpyimage(1D), rdjpgcom(1D), rdwsqcom(1D)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 178

STACKMS(1A) NFISReference Manual STACKMS(1A)

NAME
stackms − stacks PCASYS formatted matrix files together.

SYNOPSIS
stackms <matrixfile_in[matrixfile_in...]> <matrixfile_out> <matrixfile_out_desc> <ascii_outfile mes-
sages>

DESCRIPTION
Stackmsstacks together several PCASYS "matrix" files: produces a file whose matrix has, as its rows, the
rows of all the input matrices. All input matrices must have the same second dimension.(The standard
"cat" (catenate files) command is insufficient for proper stacking of matrix files, since the files contain
header information and not just the rows of entries.)

OPTIONS
<matrixfile_in[matrixfile_in...]>

The matrix files to be read.(Can be ascii or binary, and they don’t all have to hav e the same
ascii/binary setting.)All must have the same second dimension.

<matrixfile_out>
The matrix file to be written.Its rows will be the rows of all the input matrices.

<matrixfile_out_desc>
A string to be written into the output matrix file as its description string; must contain no embed-
ded newline characters.If it contains spaces, tabs, or shell metacharacters that are not to be
expanded, then it should be quoted.To leave the description empty, use ’’ (two single quote
marks, i.e. a single−quoted empty string).To let stackms make the description (stating that the file
was made by stackms, and listing the names of the input files), use − (hyphen).

<ascii_outfile>
If y, stackms makes an ascii output file; if n, it makes a binary output file.Binary is recom-
mended, unless the output file must be portable across different byte orders or floating−point for-
mats.

<messages>
If y, stackms writes a progress message to the standard output each time it is about to start reading
a new input file; if n, no messages.

EXAMPLE(S)
From test/pcasys/execs/stackms/stackms.src:

% stackms ../meancov/fv1.men ../meancov/fv2.men tst.men - n y
Combines the mean filesfv1.menand fv2.meninto a single file.This is only and example, the
cmbmcsshould be used to combine mean files.The mean files were used to preserve disk space.
The stackms in practice is used to combine feature vector files (ie. where one wants to stack the
data in the files).

SEE ALSO
asc2bin (1A), bin2asc (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 179

TXT2AN2K(1C) NFISReference Manual TXT2AN2K(1C)

NAME
txt2an2k − Converts a formatted text file into an ANSI/NIST 2000 file.

SYNOPSIS
txt2an2k <fmttext in> <ansi_nist out>

DESCRIPTION
Txt2an2k parses a specially formatted text file representing the contents of an ANSI/NIST-ITL 1-2000 file,
and writes its contents to a new file in the standard compliant format.This utility when used in conjunction
with an2k2txt enables changes to be interactively made to an ANSI/NIST file using a simple text editor.

OPTIONS
<fmttext in>

the formatted text file to be converted

<ansi_nist out>
the output ANSI/NIST file

INPUT FORMA T
Every line in the input text represents a single information item for the ANSI/NIST file.These lines are
formatted as follows:

r.f.s.i [t.n]=value{US}

r.f.s.i references the information item with

r the item’s positionalrecord index in the file

f the item’s positionalfield index in the record

s the item’s positionalsubfield index in the field

i the item’s positionalitem index in the subfield

Note that all indices start at 1.

t.n references the Record Type and Field ID from the standard.

t the record’s type

n the field’s ID number

value is the textual content of the information item, unless the information item contains binary
image data, in which case, the value is the name of an external file containing the binary
data.

{US} is the non-printable ASCII character 0x1F. This separator character is one of 4 used in
the standard.In VIM, this non-printable character may be entered using the ˆv command
and entering the decimal code "31".In Emacs, this non-printable character may be
entered using the ˆq command and entering the octal code "037".

Example Input Lines

1.5.1.1 [1.005]=19990708•

This is the information item corresponding to the Date (DAT) field in the standard.It is the 5th
field in a Type-1 record, and the Type-1 record is always the first record in the ANSI/NIST file;
therefore, its record index is 1, its field index is 5, its subfield index is 1, and its item index is 1.
The value of this information item represents the date of July 8, 1999.The ’•’ at the end of the
line represents the non-printable {US} character.

1.3.4.1 [1.003]=14•

This information item is part of the File Content (CNT) field.The CNT field is the 3rd field in a

NIST 02April 2001 180

TXT2AN2K(1C) NFISReference Manual TXT2AN2K(1C)

Type-1 record, so this information item’s record index is 1 and its field index is 3. This informa-
tion item is in the 4th subfield of the CNT field, and has an item index of 1; therefore, its value 14
signifies that the 4th record (the subfield index) in this ANSI/NIST file is a Type-14 record.

4.14.1.1 [14.999]=fld_2_14.tmp•

This information item corresponds to an Image Data field of a Type-14 record.This field always
has numeric ID 999 and is always the last field in the image record.This Type-14 record is the 4th
record in this ANSI/NIST file, so the Image Data information item has record index 4, and it is in
the 14th field (field index 14) in the record.This information item in the ANSI/NIST file contains
binary pixel data, so the input value "fld_2_14.tmp" references an external filename from which
txt2an2k reads the item’s binary data.

EXAMPLES
From test/an2k/execs/txt2an2k/txt2an2k.src:

% t xt2an2k ../an2k2txt/nist.fmt nist.an2

SEE ALSO
an2k2txt(1C),an2ktool(1C)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 181

WRJPGCOM(1E) NFISReference Manual WRJPGCOM(1E)

NAME
wrjpgcom − insert text comments into a JPEG file

SYNOPSIS
wrjpgcom [−replace] [−commenttext] [−cfile name] [filename]

DESCRIPTION
wrjpgcom reads the named JPEG/JFIF file, or the standard input if no file is named, and generates a new
JPEG/JFIF file on standard output.A comment block is added to the file.

The JPEG standard allows "comment" (COM) blocks to occur within a JPEG file.Although the standard
doesn’t actually define what COM blocks are for, they are widely used to hold user-supplied text strings.
This lets you add annotations, titles, index terms, etc to your JPEG files, and later retrieve them as text.
COM blocks do not interfere with the image stored in the JPEG file.The maximum size of a COM block is
64K, but you can have as many of them as you like in one JPEG file.

wrjpgcom adds a COM block, containing text you provide, to a JPEG file.Ordinarily, the COM block is
added after any existing COM blocks; but you can delete the old COM blocks if you wish.

OPTIONS
Switch names may be abbreviated, and are not case sensitive.

−replace
Delete any existing COM blocks from the file.

−commenttext
Supply text for new COM block on command line.

−cfile name
Read text for new COM block from named file.

If you have only one line of comment text to add, you can provide it on the command line with−comment.
The comment text must be surrounded with quotes so that it is treated as a single argument. Longercom-
ments can be read from a text file.

If you give neither−commentnor −cfile, thenwrjpgcom will read the comment text from standard input.
(In this case an input image file name MUST be supplied, so that the source JPEG file comes from some-
where else.)You can enter multiple lines, up to 64KB worth. Type an end-of-file indicator (usually con-
trol-D) to terminate the comment text entry.

wrjpgcom will not add a COM block if the provided comment string is empty. Therefore−replace −com-
ment "" can be used to delete all COM blocks from a file.

EXAMPLES
Add a short comment to in.jpg, producing out.jpg:

wrjpgcom −c "View of my back yard" in.jpg > out.jpg

Attach a long comment previously stored in comment.txt:

wrjpgcom in.jpg < comment.txt> out.jpg

or equivalently

wrjpgcom -cfile comment.txt< in.jpg > out.jpg

SEE ALSO
cjpeg(1), djpeg(1), jpegtran(1), rdjpgcom(1)

AUTHOR
Independent JPEG Group

IJG 15June 1995 182

WRWSQCOM(1D) NFISReference Manual WRWSQCOM(1D)

NAME
wrwsqcom − inserts a specified comment block into a WSQ-encoded image file.

SYNOPSIS
wrwsqcom<image file> <-f comment file| -t comment text>

DESCRIPTION
Wrwsqcom takes as input a file containing a WSQ-compressed image, and inserts a user-specified com-
ment block into the file.The comment may be represented by the contents of a file or it may be represented
as a string on the command line.Comments can be read from a WSQ file by using therdwsqcomcom-
mand.

OPTIONS
<image file>

the input WSQ file to modified.

-f comment file
specifies that the comment text is contained in the following file.

-t comment text
specifies that the comment text is the following string on the command line.

EXAMPLES
From test/imgtools/execs/wrwsqcom/wrwsqcom.src:

% wrwsqcom finger.wsq -f comment.txt
inserts the contents of the filecomment.txt into the WSQ fingerprint file.

SEE ALSO
cwsq(1D), rdwsqcom(1D)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 183

YCC2RGB(1D) NFISReference Manual YCC2RGB(1D)

NAME
ycc2rgb − converts a color YCbCr image to the RGB colorspace and accounts for downsampling of the
YCbCr component planes.

SYNOPSIS
ycc2rgb <outext> <image file> <w,h,d,[ppi]>

[-raw_out]
[-nonintrlv]
[-YCbCr H0,V0:H1,V1:H2,V2]

DESCRIPTION
Ycc2rgb takes as input a raw pixmap file containing an uncompressed color YCbCr image and converts its
pixels to the RGB colorspace.Tw o output file formats are possible, a NIST IHead file (the default) or a raw
pixmap file (specified by the-raw_out flag).

The color components of YCbCr pixels in a raw pixmap file may be interleaved or non-interleaved. By
default, ycc2rgb assumes interleaved color pixels. Notethat interleaved input produces interleaved output,
and likewise, non-interleaved input produces non-interleaved output. Resultsfrom non-interleaved input
should be explicitly stored in a raw pixmap file, because the IHead format only supports interleaved pixels.
(See INTERLEAVE OPTIONS below.)

It is possible that the component planes of the input YCbCr image have been previously downsampled. If
so, the-YCbCr flag must be included on the command line listing the appropriate component plane down-
sampling factors. If downsampling is specified, thenycc2rgb conducts appropriate upsampling of the
YCbCr component planes prior to RGB conversion. By default, this utility assumes no downsampling.
Regardless of downsampling, the conversion from RGB to YCbCr and back to RGB will not result in the
same exact image.Some pixels values will be slightly perturbed due to the round-off of the floating point
transformations that are applied.(See YCbCr OPTIONS below.)

OPTIONS
All switch names may be abbreviated; for example,-raw_out may be written-r .

<outext>
the extension of the RGB output file.To construct the output filename,ycc2rgb takes the input
filename and replaces its extension with the one specified here.

<image file>
the input raw pixmap file containing the color YCbCr image to be converted.

<w,h,d,[ppi]>
the attributes of the input image in the raw pixmap file.

w the pixel width of the pixmap

h the pixel height of the pixmap

d the pixel depth of the pixmap

ppi the optional scan resolution of the image in integer units of pixels per inch.

-raw_out
specifies that the results should be stored to a raw pixmap file.

-nonintrlv
specifies that the color components in theinput raw pixmap file image are non-interleaved and
stored in separate component planes.The -raw_out flag should always be used in conjunction
with this option. (See INTERLEAVE OPTIONS below.)

NIST 02April 2001 184

YCC2RGB(1D) NFISReference Manual YCC2RGB(1D)

-YCbCr H0,V0:H1,V1:H2,V2
this option, if provided on the command line, indicates that the YCbCr component planes of the
input image have been previously downsampled. Ycc2rgb uses the listed factors to conduct
upsampling of the YCbCr component planes prior to RGB pixel conversion. If all the H,V factors
are set to 1 then no upsampling is required; this is equivalent to omitting the option.(See YCbCr
Options below.)

INTERLEA VE OPTIONS
The color components of YCbCr pixels in a raw pixmap file may be interleaved or non-interleaved. Color
components are interleaved when a pixel’s Y, Cb, and Cr components are sequentially adjacent in the image
byte stream, ie. YCbCrYCbCrYCbCr... . If the color components are non-interleaved, then all Y compo-
nents in the image are sequentially adjacent in the image byte stream, followed by all Cb components, and
then lastly followed by all Cr components.Each complete sequence of color components is called aplane.
The utilitiesintr2not andnot2intr convert between interleaved and non-interleaved color components.By
default, ycc2rgb assumes interleaved color pixels. Notethat interleaved input produces interleaved output,
and likewise, non-interleaved input produces non-interleaved output. Resultsfrom non-interleaved input
should beexplicitly stored in a raw pixmap file, because the IHead format only supports interleaved pixels.

YCbCr OPTIONS
Ycc2rgb converts color YCbCr images to the RGB colorspace.A common compression technique for
YCbCr images is to downsample the Cb & Cr component planes.Ycc2rgb can handle a limited range of
YCbCr downsampling schemes that are represented by a list of component plane factors. Thesefactors
together represent downsampling ratios relative to each other. The comma-separated list of factor pairs cor-
respond to the Y, Cb, and Cr component planes respectively. The first value in a factor pair represents the
downsampling of that particular component plane in the X-dimension, while the second represents the
Y-dimension. Compressionratios for a particular component plane are calculated by dividing the maxi-
mum component factors in the list by the current component’s factors. Theseinteger factors are limited
between 1 and 4.H,V factors all set to 1 represent no downsampling. For complete details,ycc2rgb
implements the downsampling and interleaving schemes described in the following reference:

W.B. Pennebaker and J.L. Mitchell, "JPEG: Still Image Compression Standard," Appendix A -
"ISO DIS 10918-1 Requirements and Guidelines," Van Nostrand Reinhold, NY, 1993, pp. A1-A4.

For example the option specification:

-YCbCr 4,4:2,2:1,1

indicates that there has been no downsampling of the Y component plane (4,4 are the largest X and Y fac-
tors listed); the Cb component plane has been downsampled in X and Y by a factor of 2 (maximum factors
4 divided by current factors 2); and the Cr component plane has been downsampled in X and Y by a factor
of 4 (maximum factors 4 divided by current factors 1).The utility rgb2ycc converts RGB pixmaps to the
YCbCr colorspace, and it conducts downsampling of the resulting YCbCr component planes upon request.
Note that downsampling component planes is a form oflossycompression. Ifdownsampling was applied
to an input image,ycc2rgb takes the downsamples planes and upsamples them prior to RGB conversion.
Note that even without downsampling, the conversion from RGB to YCbCr and back to RGB will not result
in the same exact image.Some pixels values will be slightly perturbed due to the round-off of the floating
point transformations that are applied.

EXAMPLES
From test/imgtools/execs/ycc2rgb/ycc2rgb.src:

% ycc2rgb raw face.ycc 768,1024,24 -r -Y 4,4:1,1:1,1
converts a YCbCr face image with downsampled Cb and Cr component planes to the RGB col-
orspace, storing the results to a raw pixmap file.

NIST 02April 2001 185

YCC2RGB(1D) NFISReference Manual YCC2RGB(1D)

SEE ALSO
intr2not (1D), not2intr (1D), rgb2ycc(1D)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 186

	INTRODUCTION
	INSTALLATION GUIDE
	Software Installation
	Data and Testing Directories

	PACKAGES
	PCASYS – Fingerprint Pattern Classification
	MINDTCT – Minutiae Detection
	Definition of Minutiae
	Latent Fingerprints

	AN2K – Standard Reference Implementation
	IMGTOOLS – General Purpose Image Utilities

	SYSTEMS
	PCASYS
	Algorithmic Description
	Segmentor [src/lib/pca/sgmnt.c; sgmnt()]
	Image Enhancement
	Ridge-Valley Orientation Detector [src/lib/pca/ridge.c; rors(), rgar()]
	Registration [src/lib/pca/r92a.c; r92a()]
	Feature Set Transformation [src/lib/pca/trnsfrm.c; trnsfrm()]
	Karhunen-Loève Transform
	Regional Weights [src/bin/optrws/optrws.c]
	Combined Transform [src/bin/mktran/mktran.c]

	Probabilistic Neural Network Classifier [src/lib/pca/pnn.c; pnn()]
	Multi-Layer Perceptron Neural Network Classifier
	Auxiliary Classifier: Pseudo-ridge Tracer [src/lib/pca/pseudo.c; pseudo()]
	Combining the Classifier and Pseudo-ridge Outputs

	Computing Features
	Make the Orientation Arrays
	Make the Covariance Matrix
	Make the Eigenvalues and Eigenvectors
	Run the Karhunen-Loève Transform

	Training the Neural Networks
	Optimizing the Probabilistic Neural Network
	Optimize the Regional Weights
	Make the Transform Matrix
	Apply the Transform Matrix
	Optimize the Overall Smoothing Factor

	Training the Multi-layer Perceptron Neural Network

	Running PCASYS
	PCASYS Data Files
	Commands
	Classifier Demos
	Training (Optimization) Commands
	Utility Commands

	Running the Classifier
	Graphical and Non-graphical Versions
	Default Parameters and Specifying Parameters
	Output File

	Classification Results

	MINDTCT
	Input ANSI/NIST File [src/lib/an2k/fmtstd.c; read_ANSI_NIST_file()]
	Generate Image Quality Maps [src/lib/lfs/maps.c; gen_image_maps()]
	Direction Map [src/lib/lfs/dft.c; dft_dir_powers()]
	Low Contrast Map [src/lib/lfs/block.c; low_contrast_block()]
	Low Flow Map [src/lib/lfs/maps.c; gen_initial_maps()]
	High Curve Map [src/lib/lfs/maps.c; gen_high_curve_map()]
	Quality Map [src/lib/lfs/quality.c; gen_quality_map()]

	Binarize Image [src/lib/lfs/binar.c; binarize_V2()]
	Detect Minutiae [src/lib/lfs/minutia.c; detect_minutiae_V2()]
	Remove False Minutiae [src/lib/lfs/remove.c; remove_false_minutia_V2()]
	Remove Islands and Lakes [src/lib/lfs/remove.c; remove_islands_and_lakes()]
	Remove Holes [src/lib/lfs/remove.c; remove_holes()]
	Remove Pointing to Invalid Block
	Remove Near Invalid Blocks
	Remove or Adjust Side Minutiae
	Remove Hooks [src/lib/lfs/remove.c; remove_hooks()]
	Remove Overlaps [src/lib/lfs/remove.c; remove_overlaps()]
	Remove Too Wide Minutiae [src/lib/lfs/remove.c; remove_malformations()]
	Remove Too Narrow Minutiae [src/lib/lfs/remove.c; remove_pores_V2()]

	Count Neighbor Ridges [src/lib/lfs/ridges.c; count_minutiae_ridges()]
	Assess Minutia Quality [src/lib/lfs/quality.c; combined_minutia_quality()]
	Output ANSI/NIST file [src/lib/an2k/fmtstd.c; write_ANSI_NIST_file()]

	REFERENCES

