
STAND & TECH
MIST

REFERENCE

A 111 Ob 052571
NISTIR 6790

A Lexical Analogy to Feature

Matching and Pose Estimation

John Horst

U. S. DEPARTMENT OF COMMERCE
Technology Administration

Intelligent Systems Division

National Institute of Standards

and Technology

Gaithersburg, MD 20899

QC
100

.U56

#6790

2002

l\HST
National Institute of Standards
and Technology
Technoiogv Administration

U.S Department of Commerce

A Lexical Analogy to Feature

Matching and Pose Estimation

John Horst

U. S. DEPARTMENT OF COMMERCE
Technology Administration

Intelligent Systems Division

National Institute of Standards

and Technology

Gaithersburg, MD 20899

January 2002

U.S. DEPARTMENT OF COMMERCE
Donald L. Evans, Secretary

TECHNOLOGY ADMINISTRATION
Phillip J. Bond, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arden L. Bement, Jr., Director

1

A Lexical Analogy to

Feature Matching and Pose Estimation
John Horst

Intelligent Systems Division

National Institute of Standards and Technology (NIST)

Gaithersburg, Maryland, USA
E-mail: john.horsULnist.gov

Abstract— We relate the problem of finding a correspondence
between sensed and model features to that of finding a match
between a random set of letters and words in a dictionary. The
process is equivalent to hashing and the lexical perspective illumi

nates items such as design tradeoffs, computational complexity,

and hashing function definition. A method for two-dimensional
pose estimation based on this concept has been implemented. The
method is local feature based and is robust to image warping, oc-

clusion, illumination anomalies, and sensed feature generation er-

rors. The method will work with certain modifications for three-

dimensional data. The domain is restricted to translation and rota-

tion invariant applications, since many pose estimation problems
do not require scale and skew invariance. This non-affine con-

straint can reduce computational and storage complexity vis a vis

a fully affine transformation invariant technique.

Keywords— pose estimation, hashing, hash tables, lexical, com-
puter vision, feature matching, feature correspondence, pose clus-

tering

I. Introduction

THE cost of exhaustive search for the feature corre-

spondence problem is fundamentally 0(m 5
) where

m and 5 are the numbers of model and sensed fea-

tures, respectively
[1]

1

. This high cost is, in part, due

to the fact that several sensed features can, and often

do, match with a single model feature. Various types of

noise further increase cost. Typically only a small per-

centage of the sensed features belong to the object of in-

terest. For example, some features may belong to other

artifacts in the image, some features may have been mis-

interpreted by the image processing engine, there may
be errors in the imaging optics (e.g., barrel distortion),

and there may be errors due to illumination (e.g., spec-

ular reflections).

The keys to pose estimation efficiency are reducing

the search space, being robust to the various types of er-

rors, designing the algorithm to exploit the asymmetry
between on-line and off-line computing, and exploiting

parallelism. Reducing the search space is greatly helped

by a thoughtful representation of the model features

before matching with sensed feature data is attempted.

Hashing is such a representation. Tree searching tech-

niques have the disadvantage of slower search but, if

features are added to the model of a part, perfect hash

tables (those that have no collisions) may need to be

completely recomputed, whereas insertion and deletion

1 This complexity measure is derived in Appendix -A

is possible within a tree. Besides requiring recomputa-

tion, perfect hash functions are also hard to find. But

if we allow' collisions in our hashing functions, we also

avoid the requirement of recomputation [2]. Recompu-
tation is needed due to the fact that the output of per-

fect hash functions have a strong dependence on each

individual element in the hash table; in contrast, adding

an element to a tree affects the total tree structure very

little.

Grimson [1] employ's a tree search techmque to do
pose estimation. A complete global match of features

is done by forming what is called an interpretation tree.

Depth-first search is performed on that tree using unary

and binary geometric constraints to reduce search while

allowing for a certain amount of pairwise mismatches

due to noise and feature occlusion. Further techniques

are needed to achieve real-time computational speeds,

since the tree search is exponential [3]. This is due to

the fact that an interpretation tree is forming the O (ms
)

matches between model and sensed features. Incorpo-

rating these further techniques, the outline of Grimson’s

approach is as follow's. Perform an initial pose clus-

tering (as in [4]). Perform multiple interpretation tree

searches on the reduced sets of matched features re-

vealed through the clustering. Employ a mismatch tol-

erance threshold to terminate search to allow for sensor

noise and occlusion.

The pose clustering method described by Stock-

man [4] does not reveal the additional combinatorial in-

crease of the number of high level sensed and model
“structures” that can be formed from lower level iconic

features, e.g., line segments and constant curvature

arcs. For example, for m model features, we must form
m (m - 1) structures from these features that would
be sufficient for both matching and determining a pose

estimate from each match. Consequently
,
if we have 5

sensed features, the matching problem is 0(m 2
s
2

), as-

suming an exhaustive matching scheme, i.e., one which

forms all matches, equally weighted.

Several authors have discovered the advantage of

hashing for pose estimation and object recogni-

tion [5] [6] 1 7 1 [8 1. For example, Lamdan (3] defines in-

terest point sets (three points per set) and expresses

all model points in terms of affine transformation in-

variant parameters. These parameters are stored m a

hash table for use during online search. This hash table

generation process (offline) is 0(m 4
) for m model fea-

tures (the a priori complexity of our non-affine method
is always less than 0(m 4

) for feature sets consisting of

two, three, or four features as shown in Table II). Since

the parameters are affine transformation invariant, if we
happen to sense one or more of the same interest point

sets, one can compute the same parameters and look

them up in the hash table. This is followed by a voting

procedure and automatic verification of object pose and
recognition.

Most of these hashing papers say little about the par-

ticular hashing function, the handling of collisions, and
the minimization of memory usage through quantiza-

tion. A lexical analogy will help explicate these issues.

In our method, we match features by first forming a

dictionary' of “words.” The “letters” in each word con-

sist of quantized translation and rotation invariant ge-

ometric attributes for all possible unordered sets of r

model features out of a total of m, making a total of

possible sets. Each word in the dictionary is sorted by a

canonical ordering of the letters within the word and the

entire dictionary is indexed. The rules for canonical or-

dering are based on the type of feature set attribute and
the value of the attribute. Each indexed location con-

tains all model feature set words that match the range

of letters in each dimension. The canonical ordering and
subsequent indexing is a particular instance of hashing.

n. The Lexical Analogy

Our approach to pose estimation is based on search

reduction through hashing. The challenge of hashing

consists in generating a simple and efficient hashing

function that minimizes complexity and memory7 us-

age. We will employ canonical symbol ordering as our

hashing function. Such a hashing function is simple

enough to describe for discrete valued items like let-

ters in words. However, for the pose estimation prob-

lem, we will be dealing with geometric attributes of fea-

tures, whose attributes are real valued quantities of non-

uniform distribution in attribute space. Various types

of errors further complicate pose estimation. There-

fore, items such as design tradeoffs, computational
complexity, and error handling are well illustrated if we
start with a lexical analogy to feature matching.

Consider the following scenario. Select a set of let-

ters at random from an alphabet and form all possible

“w ords” from those letters. Or more formally, randomly
select exactly 5 letters with replacement from an alpha-

bet of m letters (m s possible combinations with order-

ing). For each random selection of 5 letters, we have 5 !

orderings. Determine which of the 5! orderings match
with words in a dictionary of n words, each of length

5 . We will now sketch four methods for accomplishing
this scenario.

The first method is basically a brute force search. We
form all 5 ! orderings (of the randomly selected letters)

and do s! searches through the entire dictionary for

matches. This method requires 0((n + 1) 5 !) opera-

tions to complete the search. This consists of 0(n 5 !)

operations to search through the dictionary and 0(s\)

operations to form the candidate words. 0(1) opera-

tions are required prior to search, and the only memory
needed is that for storing the n words of the dictionary

and the 5 ! candidate matches.

As a second method, index the dictionary7 so that each

word in the dictionary7 has a unique location in a

s times

m x m x • • x m

array7
. Develop indices for these words via canonical

symbol ordering and determine the indices for each of

the 5 ! orderings. Use those indices to see if there is a

match in the indexed dictionary. For example, if 5 = 3,

“bat” would be stored in location (2,1,20) and “tab”

would be stored in the location (20,1,2). If we received

the randomly ordered letters “tba,” we would deter-

mine the indices of each of the 3! orderings of these

three letters, and find the matches in the indexed dic-

tionary. In general, this requires 0(s\) operations for

on-line search, a priori complexity is 0(n log n

)

for cre-

ating the indexed dictionary, and 0(n + ms
) storage lo-

cations are required.

A third method is to form a new indexed dictionary7

,

which first sorts the letters of each word in canonical

(alphabetical) order. These “sorted letter” words are

then indexed as in method two. This canonical ordering

and indexing constitutes the hashing function. Colli-

sions are now highly probable. For example, both “bat”

and “tab” would be stored in the location (1,2,20), or

“abt”. However, collisions are of little concern, since

it is known that finding perfect hash functions (func-

tions that avoid all collisions) are usually not worth the

effort [2]. Collisions will be of more concern when we
look at feature matching in pose estimation. Resolv-

ing collisions involves both local and global consistency

checking in pose estimation (see Figure 3. Search is ac-

complished by simply ordering the randomly selected

letters alphabetically, forming the indices for those let-

ters, and finding all the words associated with those let-

ters in the indexed dictionary. Search via this method
can be done in 0(n/m s

), wffiich is 0(1) since n < m s

and n < m s because each of the n words are of length

5 and there are only m s total possibilities for forming

a word of length 5 from an alphabet of m letters2
. A

priori complexity is Oins log 5 + nlogn) for creating

the ordered and indexed dictionary. This is because we
need to sort the letters in each word, Oins logs), and

finally sort the whole dictionary 7

,
O (nlogn). 0{n + m s

)

storage locations are required 3
.

Methods one to three increase search efficiency7
,
but

also increase in both memory usage and amount of a

-’This complexity measure is derived in Appendix -B

3 This complexity measure is derived in Appendix -C

TABLE I

Complexity of search methods i, 2
, 3, and 4 where 5 is the c •c

z

y
r

NUMBER OF LETTERS RANDOMLY SELECTED, 11 IS THE NUMBER OF

WORDS IN THE DICTIONARY, AND m IS THE NUMBER OF LETTERS IN

THE ALPHABET.

method 1 method 2

on-line

search
0((n + 1) • 5 !) 0 is~)

a prion 0(1) 0 (n log n)

memory/ 0(n + 5 !) Oin + nis
)

method 3 method 4

on-line

search
0(1) 0(1)

a priori Oins log 5 + n log n

)

Oins logy + n log n

)

memory Oin + m s
) Oin + (m/p) 5

)

priori complexity. A summary' of the quantitative com-

plexity of the three methods is found in Table 1.

It is easy to see that the number of memory locations

required under methods 2 and 3 can be large indeed for

certain m and s'. For example, if s = 8 and m = 26 (8

letters picked out of the alphabet with replacement), we
have roughly 2 x 10 11 storage locations required. There

is, however, a tradeoff between the amount of storage

and the search required, if we allow more collisions. If

we are willing to do some limited search for matches

among the collisions, we are not forced to provide a

unique location for every one of the m s possible com-

binations of letters. For example, maintaining 2 x 10 11

storage locations for a n = iOOO word dictionary (con-

taining words of length s = 8) can make for a very sparse

array.

A simple solution to this inefficiency of storage is to

modify the indexed array so that the number of loca-

tions is closer to the number of words to store. To ac-

complish this we can design the locations to correspond

to a range of combinations of letters. Such a range can

be applied in each dimension of the array, (i.e., each let-

ter position in the word. If we keep the resolution con-

stant over all dimensions, we get 0(n + p
s

) locations

where p < m. This gives a

s times

P X P X • • • X P

array to store the words of the dictionary . An applica-

tion of a uniform range of letters (p = 6) to a few 5 = 3

letter words is shown in Figure 1. If the n words are

distributed evenly throughout the 5-dimensional array

of m 5 locations, a good choice of p is a p such that

(m/p) 5 « n. If the n words are not so evenly dis-

tributed but exhibit some "dumpiness," we will either

"hug‘!=>(2. 4. 2)

Fig. 1. Forming indices for several example words given a uniform

range, p = 6, for a dictionary of s = 3 letter words. The words
“bet” and “act" are stored m the location (1,1,4) and the word
“hug" is stored in the location (2,4,2). To store all three letter

words for p = 6, we need a block matnx of size p • p • p = 216.

This is much less than the m m • m = 17576 storage locations

that would be required if we did not choose some p <tc m as our

range.

choose a non-uniform partition or else choose a p such

that (m/p) s > n.

A non-uniform partition is one in w hich either the res-

olution varies over each dimension or the resolution is

also non-uniform within each dimension. In the former

case, w?e have an pi x p 2 x • • • x p s array to store the

words of the dictionary.

Now that we have negotiated a tradeoff between

search and memory storage, we note that if we de-

sign things well, we can lose little in on-line search

and gain much in memory usage. Since on-line search

will have -approximately n/(\(m/p)V operations and

since 1 < m/p < m, (m/p) 5 < m 54
. This gives on-

line search cost as 0(n/(m/p) s
). But, if n == (m/p) 5

,

0(n/(m/p) s
) ~ O(l) 3

. So, by choosing p such that

n ~ (m/p) 5 and if the n words are evenly distributed

within the uniform array
,
we have a near optimal solu-

tion for the uniform partitioning case.

Table 1 also includes the costs of method 4. Com-
pared to methods 1, 2, and 3, method 4 significantlv

4
[is the ceiling operator

’This complexity measure is deriv ed in Appendix -D

4

reduces storage, without greatly increasing either on-

line or off-line effort. A search for an exact match must
proceed through the words stored in each indexed loca-

tion. In the case of pose estimation, exact matches are

not desired, so we will need to utilize all the values in

the indexed location for further processing. The num-
ber of words in each storage location will vary widely

from location to location throughout a single dictionary

and over different types of dictionaries. The number of

words in any single location can be bounded by choos-

ing non-uniform letter ranges. In the case of pose es-

timation we bound the search at each location in two

ways, 1) by using non-uniform partitioning of the "word

space," and 2) by allowing Type I errors (i.e., the system

misses a correct match), as we will explain in the next

section.

Increasing on-line
search efficiency

>

Fig. 2. Qualitative view of the on-line efficiency and memory usage
of different search methods

The relationship between on-line complexity, a priori

complexity, and memory use for the four methods is

illustrated qualitatively in Figure 2.

It should be clear now that a non-uniform partition-

ing can be chosen off-line that suits the "dumpiness"
of our dictionary'. In regions where there are many or-

dered words not far away from each other, we are able to

choose a non-uniform partitioning with on-line search

complexity of 0(1). The distance metric for words is

the following. If P = p\p 2 ps and Q = qiqz •
• q s

are words, p

,

and q, are letters, and the metric is

I, I Pi
- dJ-

We have been assuming up until now that we only

match words of length 5 in our dictionary . We have
also assumed that our dictionary only contains words
of length 5. However, we may also want to find matches
in a more normal dictionary containing words of length

less than or equal to 5 contained in the set of 5 ran-

domly chosen letters. The addition of the NULL letter

to the list of n symbols will accomplish this. In this case,

we need to form all the possible words of length i < s,

i
= 1,2, •

• ,s. Since we are selecting i letters out of

5 without regard to ordering and without replacement,

we have to perform the following number of searches

in the ordered and indexed dictionary, £/=i m = 2 s - 1

As in method 3 described above, we order the letters in

each of these words in alphabetical order and search for

each ordered word in our new ordered and indexed dic-

tionary. This new dictionary contains NULL letters to

allow for words of varying length. However, the man-
ner we have chosen to do pose estimation does not re-

quire the use of the NULL letter. We will employ two
dictionaries of different symbol sets and each of those

dictionaries contains words of length exactly equal to 5.

III. Pose Estimation

In the previous section, we matched randomly se-

lected letters to words in a dictionary by creating an ar-

ray of locations organized so that the words contained

in each location have the same set of letters. We ex-

panded this basic concept to define each location to con-

tain words that have sets of letters that are all within a

local range of one another. For example, if our range is

sLx letters (as in Figure 1), “bet” and “cat” are stored in

the same location, but “bat” and “but”, are not, since

“a” and “u” are not within the range.

We exploit this technique for pose estimation by
equating “location” of letters in the lexical analogy to

“feature set attribute” in pose estimation. Our feature

set attributes are roughly analogous to the unary, bi-

nary, and tertiary' geometric constraints found in the

literature [1]. We generate pose invariant feature set at-

tributes and call them “letters.” The ordered attributes

of a feature set form the “word" for that feature set.

The canonical ordering of the letters in the feature set

word is equivalent to the alphabetical ordering of let-

ters in each word in the lexical analogy. The canonical

ordering of the letters in the feature set word (along

with quantization) constitutes the hashing function for

feature matching. We begin our discussion of pose esti-

mation with an overall view of the component parts of

the pose estimation task.

Our feature-based pose estimation method can be di-

vided into the following subtasks: sensed and model
feature generation, model dictionary generation, sensed

feature set word generation, feature matching (or fea-

ture set word search), globally consistent pose checking,

and pose clustering. Only model dictionary generation,

sensed feature set word generation, and feature match-

ing employ the lexical analogy' of the previous section.

We will focus our discussion on word generation and

feature matching, but also describe the other subtasks

in some detail. We illustrate the subtasks and data flow

of the pose estimation task in Figure 3.

The goal of model and sensed feature generation is

to generate features that are in the same format and are

sufficient for pose invariant feature set word generation.

Line segment and constant curvature arc features are

sufficient. The parameters of these features are passed

to model dictionary generation and sensed feature set

word generation subtask.

Off-line computation

Computer-Aided
Design (CAD)

Software Model

model feature set word
dictionary

Globally Consistent

Pose Checking

globally consistent

y pose estimates

Pose Clustering

final pose

y estimate

Fig. 3. The overall pose estmiation task

A. Model dictionary' generation

Model feature set word dictionary generation is ac-

complished as follows. We form all possible feature sets

of r features out of the total of m model features, which

is a total of ('") feature sets. Pose invariant feature sets

of 5 attributes are generated for each feature set. This

is analogous to the canonical ordering of the letters in

each word. We generate four separate dictionaries. One
for sets containing all line segments, one for sets con-

taining exactly one arc, one for sets containing all arcs,

and one for all other sets. The four separate dictionaries

are necessary, if feature set attributes are different for

the four dictionaries, as is so in this case. This is equiv-

alent in the analogy to having four dictionaries with dif-

ferent alphabets.

The goal in choosing these dictionaries is to create ap-

propriate transformation-invariant attributes that pre-

serve or amplify true differences between sets of fea-

tures. .Another possibility is to create a uniform trans-

formation that is independent of the nature of the fea-

tures in each set. This is the approach taken by I.am-

dan [5] and has the advantage of greater simplicity of

feature set attribute "alphabets."

For the “line-segments-only” dictionary, we form all

possible differences in orientation between pairs of line

segment. This gives y2 J
differences for r features in the

set. We order these differences by magnitude to form

the letters of our model feature set word for the line-

segments-only dictionary. This is equivalent to alpha-

betical ordering of the letters in the lexical analogy.

For the “exactly one arc” dictionary', we first form the

vector of shortest distances from the arc center to the

lines formed from each of the line segments. The first

letter is the arc radius plus the sum of these distances.

The next r - 1 letters form the ordered vector of these

distances. This is again equivalent to alphabetical or-

dering of the letters in the lexical analogy. Each word in

this dictionary has s = r letters.

The “all arcs” dictionary also has s = r pose-invariant

feature set attributes. For the center of each arc, we sum
the radius plus the sum of the distances from the center

of each of the r- 1 other arcs. This gives r values, which

we use to form the ordered vector of these distances.

The ordered vector forms the s = r letters in the word.

In the “otherwise” dictionary, the first letter is the

number of arcs in the set. Then, for each arc, we sum
the radius plus the sum of the distances from each of

the other arcs. We form an ordered vector of these val-

ues. We then choose the arc that has the smallest radius

plus the sum of distances, and we form the ordered vec-

tor of distances from this arc center to the lines formed

from each of the line segments. The number of arcs and

these two vectors form the s = r + 1 letters in each word
of this dictionary

.

The complexity of dictionary construction (z.e., a pri-

ori complexity) is 0(5 log 5 + log ('”)). As long

as r = 2, 3, or 4, slogs + ('”) log ('") is always less

than the a priori (dictionary building) complexity of m 4

found in (5). We used r = 3. This reduction in a priori

complexity is in part due to the fact that we are using a

non-affine constraint (translation and rotation only).

We experimented with various values for r and found

that r = 3 seems to give the best combination of speed,

manageable dictionary size, and pose estimation accu-

racy.

We now have four dictionaries that consist of un-

ordered lists of words with ordered letters. Following

search method 4 in the lexical analogy
,
we need to form

the indexed list, in which we store the words. For each

dictionary, we must choose what the range of values

will be for determining the storage location size and ex-

tent. In the lexical case we have discrete letters and we
assume that there is no error in the transmission and in-

terpretation of the letters. In pose estimation, we have

two key differences, 1) the presence of errors and 2) the

“letters” are real valued (excepting the number of arcs

letter). The use of a range of values for the letters be-

comes essential for pose estimation. So we have a nearly

exact analogy with method 4 described in the previous

section. The key difference is the presence of errors in

transmission and interpretation.

6

Handling errors effectively translates to our choice of

range of feature set attribute (letter) values in each dic-

tionary. This choice is guided by the following trade-

off. If we make our range of letters too large, we will

have too many potential matches at each location w'here

the true match lives, increasing search. However, if the

range of letters is too narrow, the location may not con-

tain the correct match due to various types of measure-

ment errors. In order to avoid too large a range, we
bound the search at each location in two ways, 1) by us-

ing non-uniform partitioning of the "word space," and 2)

by allowing Type I errors (the system misses a correct

match). In order to avoid too small a range, we simply

make sure the range is not too small by experimenta-

tion. The range of values is obtained experimentally.

There are many sources of error in our system, including

camera calibration error, feature distortion error (e.g.,

image warping), coordinate system transformation pa-

rameter measurement error, lighting errors (e.g., spuri-

ous reflections), image processing errors, and pose es-

timation averaging errors. The search for an optimal

range computation as a function of all the errors was
not within the scope of this research. Therefore, we se-

lect a range for each dimension of each indexed list that

seems to give successful pose estimates while minimiz-

ing execution time.

B. Sensed feature set word generation

Sensed feature set word generation is done exactly as

model feature set dictionary generation, except that we
do not generate words for all possible combinations of

sensed feature sets. Once we have generated our in-

dexed model dictionaries, we randomly select a set of r

sensed features out of the total of 5 features. Random
selection implies that no attempt is made to weight cer-

tain features to be more likely candidates than others.

We form the sensed feature set word and order the let-

ters in the sensed word just as we did for all the words
in the model dictionary. We then compute the indices

for that word using the same ranges employed in gen-

erating the indexed model dictionaries.

C. Word search

Using the sensed word indices, we get all the model
words stored in the dictionary at that location. If there

are no words at that location, we randomly select an-

other set of sensed features and compute another set

of sensed word indices. If there are words at the lo-

cation, we send these words to the globally consistent

pose checking phase.

Global consistency means that we must examine the

pose transformations feature by feature within each

candidate match. We check if the pose transformations

required to put each of the r sensed features in the

matched set into correspondence with the candidate

model feature matches are the same, or nearly so. In

order to achieve bounded time execution, we also re-

quire that we put a bound on the number of candidate

matches that are input to this subtask. If we miss a

match, it is of little consequence, since we will loop back

and generate another sensed word from a randomly se-

lected feature set.

If we find a non-empty set of globally consistent pose

estimates, we return and randomly select a new sensed

feature set of r features, until we receive N non-empty
sets of globally consistent pose estimates. 5 < N < 20
seems to work well for our experiments.

D. Pose clustering

The final list of globally consistent pose estimates for

all N cycles is input to the pose clustering subtask. In

pose clustering, because we often expect more wrong
answers than right, we cannot use common averaging,

such as the mean or median of the data. This situation

is dauntingly typical in computer vision, where we of-

ten encounter a preponderance of “replacement errors,”

i.e., utterly wrong errors. For example, with rectangular

shaped objects, we often measure orientation estimates

that are off by ±tt/2 rad or rr rad. Pose clustering al-

lows us to find the correct answer even when common
averaging would miss it altogether.

The pose clustering technique is simple and is de-

signed for efficient computation. Since the best pose

estimates have been culled already, there is no need for

an exhaustive pose clustering algorithm. All candidate

poses have three real-valued measurements for x, y,
and 0. We find the largest and next-to-largest clusters of

measurements in each dimension, x, y, and 6, indepen-

dently. A cluster is defined as the collection of points

lying with each of the bins of a simple histogram. For

example, if there are N pose estimates, then for the set

measurements, x, for i
= 1, 2, ... N, we find two subsets,

xtj for j = 1, 2, . . . L < N and X{
k
for k = 1, 2, . . .M < N.

The first subset is the set with the largest number of

points fitting into one cluster. The second subset is the

set with the second largest number of points fitting into

one cluster. For two clusters in each of three dimen-

sions, we have 2-3 = 6 clusters in all the dimensions.

With these we form the 2
3 = 8 possible pose clusters in

three dimensional pose space (x, v, and 6). This greatly

reduces the amount of space in three dimensions over

which we must search. We find the cluster in three di-

mensional pose space with the most pose estimates in

it, compute the mean of the points in that cluster, and
declare the mean as the final pose estimate. This sim-

ple and efficient pose clustering technique depends on
the fact that the matching effort has already eliminated

many of the erroneous estimates.

E. Pose estimation computational complexity'

To describe the complexity of the pose estimation al-

gorithm we have only to look at the lexical analogy, since

the heart of the pose estimation algorithm is based on
it. A few additions to complexity must be considered.

On-line search will have approximately n/(n/p) s =

('")/(('") /p)
s operations, where n is the number of

words (model feature set attributes) in the dictionary.

To optimize on-line search and storage efficiency, we

want to select a p such that « (('”)/p) s
If we

select p a
(7) /yji'r)'

we have optimum values for on-

line search and memory usage. Since s > 2, this value

for p also meets the required constraint, 1 < p < ('").

Therefore, on-line search complexity is 0(1) just as it

was in method 4 of the lexical analogy6 . On-line com-

plexity, a priori complexity, and memory usage for pose

estimation are summarized in Table II.

TABLE n

Complexity and memory usage of method 4 applied to pose

ESTIMATION WHERE S IS THE NUMBER OF FEATURE SET ATTRIBUTES

(LETTERS), V IS THE NUMBER OF FEATURES IN THE ATTRIBUTE SET, M
IS THE NUMBER OF MODEL FEATURES, AND p IS THE NUMBER OF

LETTERS IN THE PARTITIONING RANGE

pose estimation

on-line

search
0(1)

a priori 0<(™)ilogs + (”)log(™))

memory' o<(?) + <(7)/p>
5

>

The overall pose estimation algorithm has two loops

as can be seen in Figure 3. The inner loop is necessary,

because we will often encounter incorrect sensed fea-

tures of various types. The bad features may be due

to features from other parts, poor lighting, optical ef-

fects such as image warping, camera calibration errors,

or correct sensed features not existing in the model set.

The outer loop is necessary 7 as well. Even though we will

encounter word matches, most of them are not glob-

ally consistent, i.e., the pose transformations required

to put each of the features in the set into correspon-

dence are not equal.

Furthermore, even globally consistent pose estimates

can be wrong. Wrong estimates typically arise from tw o

sources. One, due to replacement errors, w here the pose

estimate is off by a large amount, and the other, due to

small errors due to random noise in the measurement
process. Therefore, we need to collect more than one

globally consistent pose estimate to guarantee success

in the pose clustering phase and get an accurate pose

estimate.

Additionally, depending on the nature of the data, we
often find a very large set of candidate matches in a

single hash table location that need to be checked for

global consistency . To assure bounded execution time,

we must limit the number of matches checked for global

6This complexity measure is derived in Appendix -E

consistency. However, this may cause us to miss the

correct globally consistent match. We solve this prob-

lem by looping back, namely, selecting another sensed

feature set at random and try ing again.

Percent "bad" sensed data features

Fig. 4. The probability of selecting a set of r features out of 100
total features as a function of percentage of spurious features

for a few values of r.

F. Random selection and computational complexity'

Random selection affects algorithm complexity. If

we randomly select features, search time can be un-

bounded, if the sensed features sets containing at-

tributes find no match in the model dictionary . Clearly

,

we must bound search to declare failure when we are un-

able to find matches within sufficient time. If we have

enough features in the total set of sensed features that

have real matches in the total model feature set, we can

guarantee statistically that we will find a correct pose

estimate within bounded time. To illustrate this, Fig-

ures 4 and 5 show the probability of getting a sensed

feature set containing one or more “bad” features, i.e.,

sensed features having no true match with features in

the model feature set. In Figure 4, this probability is a

function of the total percentage of bad features in the

sensed feature set. A family of curves is generated for,

r = 2, 3, and 4 (r is the number of randomly selected

features). In Figure 5, this probability is a function of

r and a family of curv es is generated for certain values

of the total percentage of bad features in the sensed

feature set.

IV. Conclusion

The lexical perspective illuminated many of the trade-

offs inherent in the feature matching phase of the pose

estimation problem. It not only allowed us to see clearly

8

Number, r, of randomly selected
features out of 100 total

Fig. 5. The probability of selecting a set of r features as a function

of r for a few different percentages of bad sensed features.

that hashing is efficient, but that certain tradeoffs are re-

quired to achieve quasi-optimal memory usage. Based

on this analysis, we have described an asymmetrical

pose estimation system that places more computational

and complexity burden on the off-line algorithms in or-

der to speed up the on-line computations. Efficient use

of indexing can be done only when the algorithm is de-

signed to allow the effective ordering of the search space

(via the hashing function) prior to the matching phase.

A summary of the analogies between the lexical perspec-

tive and pose estimation is given in Table ID.

Our pose estimation method is not invariant to scale,

since in many applications the scale of the sensed fea-

tures can readily be gotten from other measurements,
namely, height of the camera from the object. We have

implemented and integrated this algorithm in an inspec-

tion system for the purpose of automating part set-up

in manufacturing.

We performed tests on a part with many orthogonal

and symmetrical features. In this case, errors in pose
estimation were most often found when the estimated

orientation was off by integer multiples of tt/2 rad.

The algorithm degrades when the percentage of part

features in the image is low, as illustrated in Figures 4

and 5.

To make this method work for three-dimensional

pose estimation, one must choose a set of feature set at-

tributes that are fully affine. Lamdan has described such
attributes [5]. However, this system we’ve described

is independent of the particular type of feature set at-

tributes chosen.

The pose estimation system is independent of the par-

ticular characteristics of a single object or family of ob-

table m
A SUMMARY OF THE ANALOGIES BETWEEN THE LEXICAL PERSPECTIVE

AND POSE ESTIMATION.

Fexical Problem Pose Estimation

Choose an alphabet of

symbols
Choose feature set attribute types

Choose a set of words Form the feature set attributes from all

possible model feature sets

Order letters in each
word m alphabetical

order

Sort feature set attributes (the letters) in

each model feature set attribute word in

canonical order

Sort ordered words in al

phabetical order
Form and sort (in canonical order) model
feature set attribute words

Choose the letter range,

p, (see Figure 1) and store

all words into locations in

a 2D array

Choose ranges for each feature set at-

tribute, quantize and store all model fea-

ture set attribute words mto locations in

a 2D array

Randomly pick letters

from the alphabet, sort

the letters, determine the

indices in the 2D array

for this "word"

Randomly select a set of r sensed fea-

tures, form the sensed feature set at-

tributes, order them into a word, quan-

tize the attribute values, determine the

appropriate indices for this word in the

2D array

Check to see which of the

potential word matches
at the appropriate loca-

tion in the array actually

match perfectly

Check the global consistency of the pose
transformation of model features (in

each candidate set from the matching lo-

cation in the array) to each randomly se-

lected sensed feature set

jects (e.g., prismatic). This is done by defining parame-

ters that can be adjusted according to various minimiza-

tion and optimization criteria such as speed of execu-

tion, number of potential matches, and a priori effort.

However, we adjusted these parameters manually. To
automate this system we would need to create adaptive

parameter adjustment through some cost function of

the minimization and optimization criteria.

All operations are coded in Mathematica™ 7
. A version

of the on-line portion of the code is in C+ + . The C+ +
version executes in about 0.1 s for a fairly uncluttered

image. Figure 6 shows sensed features in blue overlaid

onto model features in green after the computation of

pose via our method. Note the presence of occlusion,

warping, spurious data, and missing data in this data

set, but not very much clutter.

It is clear that hashing helps achieve efficient pose

estimation. However, the choice of feature types and

feature set attributes varies widely depending on the

class of object for which we desire a pose estimate. The
choice of these attributes and feature types is ad hoc

,

and much wTork needs to be done to understand how7 to

automate this choice to achieve algorithm design effi-

ciency.

' Certain commercial products are identified in this paper in order

to specify the experimental procedure adequately. Such identifica-

tion is not intended to imply anyjudgement by the National Institute

of Standards and Technology concerning these products, nor is it in-

tended to imply that they are necessarily the best available for the

purpose.

Fig. 6. An example pose estimate. The blue features are sensed
constant curvature arcs and line segments. The red dots are the

start of each sensed feature. The model features are green.

References

[1] W. E. L. Crimson, Object Recognition by Computer: The Role of
Geometric Constraints, MIT Press, 1990.

[2] D. E. Knuth, The Art of Computer Programming, Volume 3, Sort-

ing and Searching, Addison Wesley Longman, second edition,

1998.

[3] W. E. L. Grimson, “The combinatorics of local constraints in

model-based recognition and localization from sparse data,”

Journal of the ACM, vol. 33, pp. 658-686, 1986.

[4] G. Stockman, “Object recognition and localization via pose clus-

tering,” m Computer Vision: Advances and Applications, Ran-
gachar Kasturi and Ramesh C. Jain, Eds. 1991, IEEE Computer
Society Press.

[5] Y. Lamdan, J. Schwartz, and H. Wolfson, “Affine invariant model-
based object recognition,” IEEE Transactions on Robotics and
Automation, vol. 6, no. 5, October 1990.

[6] A. S. Wallack, J. F. Canny, and D. Manocha, “Object localization

using crossbeam sensing,” 1993 IEEE International Conference
on Robotics and Automation, vol. 1, pp. 692, 1993.

[7] J. Edwards and R. Shoureshi, “Recognition of multiple objects

using geometric hashing techniques,” Pi-oceedings of the 32iul

IEEE Conference on Decision and Control, vol. 2, pp. 1617, 1993.

[8] S. Verreault, D. Laurendeau, and R. Bergevin, “Pose determina-
tion for an object in a 3-d image using geometric hashing and
the interpretation tree," Canadian Conference on Electrical and
Computer Engineering, vol. 2, pp. 755, October 1993.

Appendix

A. Derh’ation of 0(m s
) for feature correspondence

problem

We assume that model features will not be broken up;

multiple model features will not match with the same
sensed feature, i.e., model features are unique and com-
plete. However, multiple sensed features may match to

a single model feature. This is common in computer vi-

sion when there is occlusion and other errors. This is

best revealed through an example. Consider Figure 7.

Since every sensed feature must be matched with each

model feature, the following sets of matches are nec-

essary to determine pose, {mo-So. mo^i. moS2 }, \ >noSo,

m 0s i, m [52 }, {m 05o, nnsi, m 0s2 \, 1 m 050 ,
mj5j, m^j,

{m i50 ,
m 0 5j, m052 }, {mi50 ,

m 0s j, mi52 }, {mj5o, mi5[,

moS2 } , {mi5o, mi5[, m 1 ^2 }- A total of 2 3 = 8 sets of

matches are needed, which is generalizable to m s
. This

is the same as the number of unique ways to pick 5 sym-

bols with replacement out of a bin of m unique symbols.

Note that only the set { niQSo, m\S\, m 1 52 } contains the

correct match. If there are spurious sensed features

(features that don’t belong to the model), we still need

to match with it, but just need some way to be robust

to these erroneous matches. Our solution is to choose

a small, random subset of all features, 5,, and match
with all model features; matching now being done with

a hash table of feature Set attributes.

Fig. 7. Variables m, are model features and Sj are sensed features.

B. Derh’ation of 0(1) on-line search complexity' for

method 3

If n is the number of w ords (all of length 5) in the dic-

tionary and m is the number of letters in the alphabet,

then, an 5-dimensional array of m locations per dimen-

sion is required to store the n words. This array has

m s locations. Now it is clear that no language will have

words defined for every7 possible combination of letters,

in fact, n «: m s
,
typically. Since our array is indexed,

we can immediately access the location in the array we
seek. However, there may be more than a single word
at some locations, but it will never be greater than 5 !

and usually much less than that, particular for large 5 .

Therefore, it can be concluded that we have 0(1) com-

plexity.

C. Derh’ation of a priori complexity for method 3

We order the letters in each word in the dictionary al-

phabetically (canonically) and then we must sort canon-

ically this new dictionary of words with canonically or-

dered letters. Each new word has pointers to the < 5 !

words that contain the same letters as the canonically

ordered word, e.g., “bat" and “tab" would both be

stored in the location (1,2,20) or “abt". It is known that

the best known sorting methods are 0(n log n) and we
also must order the letters in each of n words, so the

total complexity is Oins log 5 + n log n).

D. Derivation of on-line search complexity> for method 4

As before, n is the number of words (all of length s) in

the dictionary, m is the number of letters in the alpha-

bet, and p is the size of the partition. An 5-dimensional

array of \(m/p) locations per dimension is required.

This array has (\(m/p)) s locations. We want to dis-

tribute the n words of the dictionary evenly through-

out the dictionary. Now the occurrence of letters in an

English dictionary are not equally likely, but, even so,

if we choose p such that n a
(m/p) s

,
we will get not

too many words in each location. Since on-line search

will, have approximately n/(\(m/p)) s operations and

since 1 < m/p < m, (m/p) s < m s
. This gives on-

line search cost as 0(n/(m/p) s
). But, if n ~ (m/p) s

,

Oin/(m/p) s
)
a 0(1). Therefore, it can be concluded

that we have 0(1) complexity.

E. Derh’ation of on-line search complexity for pose esti-

mation

Again, n is the number of words (all of length s) in

the dictionary, m is the number of letters in the alpha-

bet, p is the size of the partition, and r is the number
of features in a feature set. This gives the same deriva-

tion as in the section above which derives the on-line

search complexity for method 4, with the exception that

n = (™). ('”) is the number of words in the model dic-

tionary of feature set attribute words.

