MEFRRENCE

REGTET: A Program for Computing Regular Tetrahedralizations

J. Bernal

U. S. DEPARTMENT OF COMMERCE

Technology Administratıon
National Institute of Standards
and Technology
Mathematical and Computational Sciences Division
Gaithersburg, MD 20899-8230

REGTET: A Program for Computing Regular Tetrahedralizations

J. Bernal

U. S. DEPARTMENT OF COMMERCE

Technology Administration
Natıonal Institute of Standards and Technology
Mathematical and Computational Sciences Division Gaithersburg, MD 20899-8230

U.S. DEPARTMENT OF COMMERCE Donaid L. Evans, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Dr. Karen H. Brown. Acting Director

REGTET: A Program for Computing Regular Tetrahedralizations

Javier Bernal
National Institue of Standards and Terdmology.
Gaithrrshurg, MD 20899, USA

Abstract

REGTET, a Fortran 77 program for computing a regular tetrahedralization for a finite set of weighted points in 3-dimensional spare. is discussed. REGTET is based on an algorithm by Edelshrmmer and Shah for constructing regular tetrahedralizations with ineremental topological flipping. At the start of the execution of REGTET a regular tetrahedralization for the vertices of an artificial cube that contains the weighted peints is constructed. Throughout the execution the vertices of this cube are treated in the proper lexicographical mamer so that the final tetrahedralization is correct.

1 Introduction

Let S be a finite set of points in 3 -dimensional spare $\left(\mathcal{R}^{3}\right)$. By a tetrohedralization T for S we mean a finite follection of tetrahedra (3-dimensional triangles) with vertices in S, that satisfies the following two conditions.

1. Two distinet tetrahedra in T that are not disjoint, intersect at a common facet, a common edge, or a common vertex.
2. The union of the tetrahedra in T egpals the convex hull of S.

For eade point p in S let w_{p}, be a real-valued weight assigned to p. (iiven p in S and a point r in \mathcal{R}^{3}, the power distanere of ef from p. denoted by $\pi_{p}(r)$.
is defined by

$$
\pi_{p}(x) \equiv\left|x_{p}\right|^{2}-w_{p}
$$

where $|. r p|$ is the Euclidean distane between x and p. Given a tetrahedron t with vertices in S, a point, denoted by $z(t)$, exists in \mathcal{R}^{3} with the same power distance, denoted l) $\omega(t)$, from all vertices of t. Point $z(t)$ is catled the orthogonal renter of t. Given a tetrahedratization T for S, we then say that T is a regular tetrahedralization for S if for each tetrahedron t in T and earh point p in $S, \pi_{p}(z(t)) \geq w(t)$. We observe that T is mique if for each tetrahedron t in T and each point p in S that is not a vertex of t, $\pi_{p}(z(t))>w(t)$. If T is mique then the power diagram of $S[1]$ is the dual of T. Finally, we observe that if the weights of the points in S are all equal then the power diagran of S is identical to the Voronoi diagram of S [10], and the regular and Delaunay [4] tetrahedralizations for S coincide.

In this paper we discuss REGTET, a Fortran 77 program for computing regular tetrahedralizations (or Delamay tetraledralizations in the absence of weights) with incremental topological flipping [6] and lexicographical manipulations [3]. A copy of REGTET that includes instructions for its execution can be obtained from http://math. nist.gov/~ JBernal.

2 Topological Flipping

Let T be a tetrahedralization for S, let t be a tetrahedron in T, and let p a point in S that is not a vertex of t. Denote the vertices of t by q_{1}, q_{2}, q_{3}, q_{t}, and let T_{1} and T_{2} be the only two possible tetrahedralizations for $\left\{q_{1}, q_{2}, q_{3}, q_{4}, p\right\}[9]$. Assume t is in T_{1}, and T_{1} is contained in T. A topological flip or simply a flip on T_{1} is an operation that replaces T_{1} with T_{2} in T.

For each $j, j=1 \ldots .4$. denote by f_{j} the facet of t that does not contain q_{j}, and by H_{j} the plane in \mathcal{R}^{3} that contains f_{j}. For each $j, j=1, \ldots, 4$, denote by H_{j}^{+}the open half-space in \mathcal{R}^{3} determined by H_{j} that contains q_{j}, and by H_{j}^{-}the open half-space in \mathcal{R}^{3} determined by H_{j} that does not contain q_{j}. Clearly it is by ascertaining which of $H_{j}, H_{j}^{+}, H_{j}^{-}$contains p for each $j, j=1, \ldots, 4$, that one can identify the tetrahedralizations T_{1} and T_{2}. Accordingly, the following nine configurations of T_{1} and T_{2} are possible, each configuration depending on which of $H_{j}, H_{j}^{+}, H_{j}^{-}$contains p for each j, $j=1, \ldots, 4$.
Configuration 1 (possible ' 1 to 4 ' flip): p is in $\cap_{j=1}^{4} H_{j}^{+}$. Denote by t_{1}, t_{2},
t_{3}, and t_{4} the tetrahedra whose vertex sets are $\left\{q_{1} \cdot q_{2} \cdot q_{1 / 3}, p\right\}$. $\left.\left\{q_{1} \cdot q_{2} \cdot q_{1} \cdot p\right)\right\}$. $\left\{q_{1} \cdot q_{3} \cdot q_{1}, p\right\}$, and $\left\{q_{2} \cdot q_{3}, q_{1} \cdot p\right\}$. resperetively. It then follows that T_{1} connists exactly of t and T_{2} of t_{1}, t_{2}, t_{3}, and t_{4}.
Configuration 2 (possible ' 1 to 3 " llip): For distinct integers j_{1}, j_{2}. jz. jo $1 \leq j_{1} \cdot j_{2}, l_{3} \cdot I_{4} \leq 4, p$ is in $H_{11} \cap H_{12}^{+} \cap H_{13}^{+} \cap H_{3-4}^{+}$. Denoto by t_{1}. t_{22}. anded t_{3} the tetrahedra whose vertex sets are $\left\{q_{11} \cdot q_{12} \cdot q_{13} \cdot p\right\},\left\{q_{11} \cdot q_{12} \cdot q_{13} \cdot p\right\}$. and $\left\{q_{1,} \cdot q_{13} \cdot \varphi_{A_{4}} \cdot p\right\}$, respectively. It then follows that T_{1} consists exactly of t and T_{2} of t_{1}, t_{2}, ant t_{3}.
 $1 \leq j_{1}, j_{2}, j_{3}, j_{1} \leq 4, \mu$ is in $H_{1_{1}} \cap H_{j_{2}} \cap H_{j_{3}}^{+} \cap H_{j_{4}}^{+}$. Demote by t_{1} and t_{2} the tetrahedra whose vertex sets are $\left\{q_{j_{1}}, q_{l_{2}}, q_{l_{3}}, p\right\}$ and $\left\{q_{j_{1}}, q_{f_{2}}, q_{f_{1}}, p\right\}$, respeectively. It then follows that T_{1} consists exactly of t, and T_{2} of t_{1} and t_{2}.
Configuration 4 (possible ${ }^{2}$ to 3 ' flip): For distinct integers j_{1}, j_{2}, j_{3}, $j_{4}, 1 \leq j_{1}, j_{2}, j_{3}, j_{4} \leq 4, p$ is in $H_{31}^{-} \cap H_{j_{2}}^{+} \cap H_{j_{3}}^{+} \cap H_{j_{4}}^{+}$. Denote by t_{1}, t_{2}, t_{3}. and t^{\prime} the tetrahectra whose vertex sets are $\left\{q_{11}, q_{12}, q_{13}, p\right\},\left\{q_{11}, q_{12}, q_{14}, p\right\}$. $\left\{q_{11}, q_{j_{3}}, q_{j_{4}}, p\right\}$, and $\left\{q_{j_{2}}, q_{j_{3}}, q_{j_{1}} \cdot p\right\}$, respectively. It then follows that T_{1} consists of t and t^{\prime}, and T_{2} of t_{1}, t_{2}, and t_{3}.
Configuration 5 (possible '3 to 2 ' flip): For distinct integers j_{1}, i_{2}, j_{3}. $j_{4} .1 \leq j_{1}, j_{2}, j_{3} \cdot j_{4} \leq 4, p$ is in $H_{j_{1}}^{-} \cap H_{j_{2}}^{-} \cap H_{j_{3}}^{+} \cap H_{j_{4}}^{+}$. Denote ly $t_{1} \cdot t_{2} . t^{\prime}$. and $t^{\prime \prime}$ the tetrahedra whose vertex sets are $\left\{q_{11} \cdot q_{j_{2}} \cdot q_{13} \cdot p\right\},\left\{q_{j_{1}} \cdot q_{j_{2}} \cdot q_{J_{4}} \cdot p\right\}$. $\left\{q_{j_{2}} \cdot q_{j_{3}}, q_{j_{4}}, p\right\} .\left\{q_{f_{1}} \cdot q_{j_{3}}, q_{f_{4}}, p\right\}$. respectively. It then follows that T_{1} consists of t, t^{\prime}, and $t^{\prime \prime}$. and T_{2} of t_{1} and t_{2}.
Configuration 6 (possible ' 2 to 2 ' flip): For distinct integers $j_{1}, j_{2}, j_{3}, j_{4}$. $1 \leq j_{1}, j_{2}, j_{3} . j_{1} \leq 4, p$ is in $H_{j_{1}}^{-} \cap H_{32} \cap H_{j_{3}}^{+} \cap H_{j_{4}}^{+}$. Denote by t_{1}, t_{2}, and t^{\prime} the tetrahedra whose vertex sets are $\left\{q_{12}, q_{3_{2}}, q_{13}, p\right\},\left\{q_{11}, q_{12} \cdot q_{14} \cdot p\right\}$. and $\left\{q_{j_{2}}, q_{j_{3}}, q_{j_{4}}, p\right\}$, respectively. It then follows that T_{1} consists of t and t^{\prime}. and T_{2} of t_{1} and t_{2}.
Configuration 7 (possible ' 4 to 1 flip): For distinct integers. j1. j2. j3. $j_{4}, 1 \leq j_{1}, j_{2}, j_{3}, j_{4} \leq 4, p$ is in $H_{j_{1}}^{-} \cap H_{j_{2}}^{-} \cap H_{j_{3}}^{-} \cap H_{j_{4}}^{+}$. Denote $\mathrm{l}_{\mathrm{y}} t_{1}, t^{\prime}, t^{\prime \prime}$. and $t^{\prime \prime \prime}$ the tetrahedra whose fertex sets are $\left\{q_{j_{1}} \cdot q_{f_{2}} \cdot q_{7_{3}} \cdot p\right\}$. $\left\{q_{j_{2}} \cdot q_{13} \cdot q_{14} \cdot p\right\}$. $\left\{q_{11}, q_{j_{3}}, q_{j_{4}}, p\right\}$, and $\left\{q_{11}, q_{12}, q_{11}, p\right\}$, respectively. It then follows that T_{1} conlsists of t, t^{\prime}. $t^{\prime \prime}$, and $t^{\prime \prime \prime}$. and T_{2} exactly of t_{1}.
Configuration 8 (possible '3 to l' llip): For distinct integers jo. j2. I. 3 . If $1 \leq j_{1}, j_{2}, j_{3} \cdot j_{4} \leq 4, p$ is in $H_{1_{1}}^{-} \cap H_{j_{2}}^{-} \cap H_{\mu_{3}} \cap H_{j_{4}}^{+}$. Denoto b, t_{1}, t^{\prime}. antl $t^{\prime \prime}$ the tetrabedra whose vertex sets are $\left\{q_{12}, q_{12}, q_{13}, p\right\}$. $\left\{q_{12}, q_{13}, q_{11}, p\right\}$. and $\left\{q_{11}, q_{13}, q_{12}, p\right\}$, respectively. It then follows that T_{1} consists of t. t^{\prime}. and $t^{\prime \prime}$. anel T_{2} exactly of t_{1}.

Configuration 9 (possible '2 to 1 ' flip): For distinct integers $j_{1}, j_{2}, j_{3}, j_{4}$, $1 \leq j_{1}, j_{2}, j_{3}, j_{4} \leq 4, p$ is in $H_{j_{1}}^{-} \cap H_{j_{2}} \cap H_{j_{3}} \cap H_{j_{4}}^{+}$. Denote by t_{1} and t^{\prime} the tetrahedra whose vertex sets are $\left\{q_{j_{1}}, q_{j_{2}}, q_{j_{3}}, p\right\}$, and $\left\{q_{j_{2}}, q_{j_{3}}, q_{j_{4}}, p\right\}$, respectively. It then follows that T_{1} consists of t and t^{\prime}, and T_{2} exactly of t_{1}.

3 Lexicographical Manipulations

Program REGTET which is based on an algorithm by Edelsbrumer and Shah [6] computes a regular tetrahedratization for the set S by adding the points in S one at a time into a regular tetrahedralization for the set of previously added points. This implies that before any points in S are added a regular tetrahedralization must be first constructed by REGTET with vertices close to infinity and underlying space equal to \mathcal{R}^{3}. The vertices of this initial tetrahedralization are said to be artificial. Throughout the execution of the program artificial points must be treated in the proper lexicographical manner so that the final tetrahedralization does contain a tetrahedratization for S, and this tetrahedralization for S is indeed regular (since the coordinates of the artificial points can be extremely large in absohute value, it is inadvisable to identify them. thus the need to treat artificial points in a lexicographical manner).

Lexicograplical manipulations that are employed in REGTET are described below and justified in [3]. At the start of the execution of the implementation a 3 -dimensional cube with vertices close to infinity that contains S in its interior is identified, and a regular tetrahedralization for the set of vertices of the cube (weights set to the same number) is computed. The exeeution then proceeds with the incremental insertion of points in S as suggested by Edelsbrumer and Shah. However, at all times, because of the lexicographical manipulations employed in the presence of artificial points (the vertices of the cube), the artificial points are assumed to be as close to infinity as the manipulations require.

The lexicographical manipulations are divided in two groups [3]. The first group consists of manipulations for determining the location of a point in S with respeet to a facet of a tetrahedron. The second group consists of manipulations for determining which of the only two possible tetrahedralizations for a set of five points is regular. These manipulations are described below.

4 Artificial Points

In what follows we formally define the artificial peints ats they appear in REGTET.

For cach peint p in S let w_{p} be a real valued weight assigned to p. Define

$$
\begin{aligned}
& \text { rmin } \equiv \min \{. r: \exists y, \quad, \quad(r, y, z) \in S\}, \\
& \text { rmar. } \equiv \max \{x: \exists y, \quad \text {, }(. r, y, z) \in S\} \text {. } \\
& \text { ymıи } \equiv \operatorname{min\{ y:\exists r,\therefore ,(r,y,z)\in S\} ,~.~} \\
& \text { ymии } \equiv \max \{y: \exists x, z,(r, y, z) \in S\} \text {. } \\
& \text { zuin } \equiv \operatorname{mim}\{z: \exists r, y,(r, y, z) \in S\}, \\
& z m a x \equiv \max \{z: \exists r, y,(r, y, z) \in S\} .
\end{aligned}
$$

Define a real number womm by

$$
n^{\prime} m i n \equiv \min \left\{n_{p}: \rho \in S\right\} .
$$

real numbers iretr, yatriactr by

$$
\begin{aligned}
& \text { rrt. } \equiv(\text { rmar }+. r m m m) / 2, \\
& \text { ysti } \equiv(\text { gmuar }+ \text { ymum }) / 2, \\
& \text { zatr } \equiv(\text { zmar }+z m m) / 2 .
\end{aligned}
$$

a point \bar{p} in \mathcal{R}^{3} by

$$
\bar{p} \equiv(x+t r, y c t r, z a t)
$$

and finally vectors $\epsilon_{i}, i=1, \ldots .8$. by

$$
\begin{aligned}
r_{1} & \equiv(-1,-1,1) \\
r_{2} & \equiv(-1,1,1), \\
\epsilon_{3} & \equiv\left(\begin{array}{ll}
1, & 1
\end{array}\right) \\
r_{1} & \equiv(1,-1,1)
\end{aligned}
$$

$$
\begin{aligned}
\epsilon_{5} & \equiv(-1,-1,-1), \\
\epsilon_{6} & \equiv(-1,1,-1), \\
\epsilon_{7} & \equiv\left(\begin{array}{cc}
1, & 1,-1), \\
\epsilon_{8} & \equiv(1,-1,-1) .
\end{array}, ~\right.
\end{aligned}
$$

For any positive real mumber μ, define the vertices $p_{i \mu}, i=1, \ldots, 8$, of a cube R_{μ} by

$$
p_{\imath \mu} \equiv \bar{p}+\mu e_{i}, \quad i=1, \ldots, \delta
$$

For arbitrarily large μ, R_{μ} contains S in its interior. Given a positive real number μ, the points $p_{\iota \mu}, i=1, \ldots, 8$, are the artificial points, and μ is assumed to be as large as the lexicographical manipulations require. In order to be consistent, given a positive real number μ, a number $w, w<w \mathrm{~min}$, is selected and assigned as a weight to each of the points $p_{i \mu}, i=1, \ldots, 8$. Since the points $p_{i \mu}, i=1, \ldots, \delta$, are the vertices of a cube, it follows that any tetrahedralization for these points is regular. In addition, one such tetrahedralization is not difficult to compute.

5 Redundant Points

For each point q in S let w_{q} be a real valued weight assigned to q. Without any loss of gencrality assume that the artificial points are in S. Let p be a point in S that is not artificial. let T be a regular tetrahedralization for $S \backslash\{p\}$, and let t be a tetrahedron in T that contains p. Clearly T is also a tetrahedralization for S although not necessarily regular. Let T_{1} and T_{2} be the tetrahedralizations as defined in Section 2 with respect to t and p. Clearly T_{1} consists exactly of the tetrahedron t so that it is contained in T. If T_{2} is not regular it then follows that no regular tetralsedralization for S can have tetrahedra with p as a vertex [6]. Therefore, under this condition, T is also a regular tetrahedralization for S, and the point p is then said to be redundant in S.

As mentioned above, REGTET constructs a regular tetrahedralization for the set S by adding the points in S one at a time into a regular tetrahedralization for the set of previously added points. This technique is a
gencratization of a result for computing incrementally Delamay triamgulations in $R^{2}[7]$. Let p be a point in S and assmme that p is a new point that is to be added by REGTET into a regnlar tedtalodeatization T^{\prime} of the previonsly added points $S^{\prime \prime}$. As p is added, it is first detemmed whether p is rechundant in $S^{\prime} \cup\{p\}$. If it is then T^{\prime} is atso a regntar tetrahedralization for $S^{\prime} \cup\{p\}$. ()therwise a regular tetrahedralization for $S^{\prime} \cup\{p\}$ is obtained fiom T^{\prime}, and peints in S^{\prime} that are redmedant in $S^{\prime} \cup\{p\}$ but not in S^{\prime} are identified. This is accomplished by REGTET throngh a finite mumber of steps, eath step involving a derision about whether a certain flip should take phace and if so applying the flip. Clearly points fomed to be redundant in $S^{\prime} \cup\{p\}$ will continue to be redumdant as the rest of the points in S are added.

The first step carried ont by REGTET for obtaining a regular tetrabedralization for $S^{\prime} \cup\{p\}$ from T^{\prime} involves the detemmation of whether the point p is redmelant in $S^{\prime} \cup\{p\}$ and if it is not the computation frem T^{\prime} of an initial tetrahedralization for $S^{\prime} \cup\{p\}$ with p as a vertex of some of its tetrahedra. Let t be a tetrahedron in T^{\prime} that contains p (the process for identifying t is deseribed below), let T_{1} and T_{2} be the tetrahedralizations as defined in Section 2 with respect to t and p, and for some integer k : $1 \leq k \leq 9$, let Confignration k be the confignation for T_{1} and T_{2} (Section 2). Sinco p is in t it then follows that k can not be larger than 3. REGTET determines the value of k and whether T_{2} is regular. If T_{2} is not regnlar. i. e. $\pi_{p}(z(t))>w(t)$, then p is marked as being rednmedant and T^{\prime} is identifiod as a regular tetrahedralization for $S^{\prime \prime} \cup\{p\}$. Otherwise for some positire integer m the tetrahedra $t_{j}, j=1, \ldots, m$, in T^{\prime} that contain p are identified. Clearly t is one of them, and the value of m depends on that of $k:(1$ if k eguals 1 . 2 if k cquals 2 , and greater than or equal to 3 if k equals 3). For eatch i. $j=1 \ldots, m$, REGTET then identifies the tetrabedralizations T_{1} and T_{2} as defined in Section 2 with respect to t, and p, and applies the flip correspennding to Configmation k (Section 2) that replaces T_{1} with T_{2} in T^{\prime} (for cach $i, j=1, \ldots, m$, the configmation for T_{1} and T_{2} is always Confignration k). An initial tetrahedralization not neecessarily regular for $S^{\prime} \cup\{p\}$ with p as a vertex for some of its tetrahedra results.

As just described if p is not redmudant in $S^{\prime} \cup\{p\}$, REGTET first combputes from T^{\prime} a tetralietralization for $S^{\prime} \cup\{p\}$ with p as a vertex for some of its tetrahedra. If the new tetrahedralization is not regutar other stepes follow for the purpose of erentualty obtaining one that is. It is thenght this process that points in S^{\prime} that are not redundant in S^{\prime} but that are redundant in
$S^{\prime} \cup\{p\}$ are identified. The process whith involves the flips associated with Configuration 4 through Configuration 9 (Section 2) is described below.

6 Locally Regular Tetrahedra

Let T be a tetrahedralization for S. Given a tetrahedron t in T we denote by $N(t)$ the set of points in $S \backslash t$ that are vertices of tetrahedra in T sharing a facet with t. We then say that t is locally regular if for each point q in $N(t)$, $\pi_{q}(z(t)) \geq w(t)$. By extending results for Delaunay triangulations and tetrahedralizations [8], [9], Edelsbrumer and Shah [6] have proven that if the vertex set of T contains all non-redundant points in S and every tetrahedron in T is locally regular it then follows that T is a regular tetrahedralization for S.

Let p be a point in S that is being added by REGTET into a regular tetrahedralization T^{\prime} of the previously added points S^{\prime}. Assume that it has been determined by REGTET that p is not reduntant in $S^{\prime} \cup\{p\}$ and that the program has computed as described above an initial tetrahedralization for $S^{\prime} \cup\{p\}$ with p as a vertex for some of its tetrahedra. For some positive integer m, REGTET then identifies the tetrahedra $\hat{t}_{j}, j=1, \ldots, m$, in the initial tetrahedralization with p as a vertex. REGTET then proceeds to transform this initial tetrahedralization through an iterative procedure as follows. For $j, j=1, \ldots, m+1$, if j equals $m+1$ the procedure terminates. Otherwise REGTET determines whether t_{j} is in the current tetrahedralization (not necessarily equal to the initial tetrahedralization). If it is not then REGTET proceeds to the next value of j. Otherwise REGTET determines whether a tetrahedron t exists in the current tetrahedralization that shares with t, a facet that does not contain p. If it does not then t_{j} is locally regular and REGTET proceeds to the next value of j. Otherwise REGTET determines whether $\pi_{p}(z(t)) \geq w(t)$. If the inequality holds then \hat{t}_{j} is locally regular and REGTET proceeds to the next value of j. Otherwise REGTET identifies tetrahedralization T_{1} as defined in Section 2 with respect to t and p and determines whether it is contamed in the current tetrahedratization. If it is not then REGTET proceeds to the next value of j. Otherwise REGTET identifies tetrahedralization T_{2} as defined in Section 2 with respect to t and p, and determines the value of the integer $k, 1 \leq k \leq 9$, for which Configuration k : is the configuration for T_{1} and T_{2} (Section 2). Since p is not in t it then follows that k must be larger than 3. REGTET then applies the
flip corresponding to Configuration k that replaces T_{1} with T_{2} in the current tetrahedralization, ant marks the tetrahedra in T_{1} as not being in the current tetrahedralization (after certain flips the current tetrahedralization may not satisfy the first condition in the definition of a tetrahedralization, however at the end of the iterative procedure the final tetrahedralization will satisfy it). If k is larger than 7 then REGTET identifies the point in S^{\prime} that is a vertex of both t_{j} and t but not of the one tetrahedron in T_{2} and marks this point as being redundant. For some positive integer $m^{\prime}, m^{\prime}>m$, REGTET then identifies tetrahedra $\hat{t}_{j}, j=m+1, \ldots, m^{\prime}$, in the eurrent tetrahedralization which are exactly the tetrahedra in $T_{2}(p$ is a vertex of each one of these tetraheelra), replaces the value of m by that of m^{\prime}, and proceeds to the next value of j. Clearly when the procedure teminates it then follows that every tetrahedron in the current tetrahedralization with p as a vertex is locally regular [6]. Since all other tetrahedra in the current tetrahedralization are in T^{\prime}, they must also be locally regular. Thus the current tetrahedralization is regular for $S^{\prime} \cup\{p\}$.

7 Point Location Determination

For arbitrarily large $\mu, \mu>0$, let S^{\prime} be a proper subset of S that contains the artificial points $p_{i \mu}\left(\equiv \bar{p}+\mu e_{i}\right), i=1 \ldots, 8$, (Section 4), and let T^{\prime} be a regular tetrahedralization for S^{\prime}. Given a point p in $S \backslash S^{\prime}$ and a tetrahedron t in T^{\prime}, we present direct computations and lexicographical manipulations used in REGTET for determining the location of p relative to any given facet of t. This capability allows REGTET to identify the tetrahedralizations T_{1} and T_{2} as defined in Section 2 with respect to t and p. We do this by cases, each case depending on the number of artificial vertices of the facet of t under consideration. We assume without any loss of generality that S^{\prime} contains at least one point in S that is not artificial. It then follows that if the vertices of either an edge or a facet of a tetrahedron in T^{\prime} are all artificial then the edge or facet must be contained in its entirety in the boundary of the cube R_{μ} (Section 4). In addition, no tetrahedron in T^{\prime} exists whose vertices are all artificial.

Denote the vertices of t by q_{1}, q_{2}, q_{3}, and q_{4}, and without any loss of generality assume that the facet under consideration is the facet with vertices q_{1}, q_{2}, and q_{3}. We define a vector v by $v \equiv\left(q_{1}-q_{3}\right) \times\left(q_{2}-q_{3}\right)$, i. e. the cross product of vectors $\left(q_{1}-q_{3}\right)$ and $\left(q_{2}-q_{3}\right)$, and assume that q_{1}, q_{2}, q_{3}
are ordered in such a way that $v \cdot\left(q_{4}-q_{3}\right)$, i. c. the immer product of v and $\left(q_{4}-q_{3}\right)$, is positive. Clearly, the location of p relative to the facet depends on the sign of $v \cdot\left(p-q_{3}\right)$. The solution by cases to the point location determimation problem, i. e. the problem of determining the sign of $v \cdot\left(p-q_{3}\right)$, follows. This solution is justified in [3].

Case 1: None of q_{1}, q_{2}, q_{3} is artificial. The sign can then be determined though direct computations of $v, p-q_{3}$, and $v \cdot\left(p-q_{3}\right)$.

Case 2: Exactly one of q_{1}, q_{2}, q_{3} is artificial. Without any loss of generality we asssmme the one point is q_{1} so that q_{2} and q_{33} are not artificial. Let l_{i} be an integer. $1 \leq k \leq 8$, so that q_{1} equals $p_{k \mu}$.
Define mumbers' d_{0}. d_{1}, as follows:

$$
\begin{aligned}
& d_{0} \equiv\left(\left(\bar{p}-q_{3}\right) \times\left(q_{2}-q_{3}\right)\right) \cdot\left(p-q_{3}\right) . \\
& d_{1} \equiv\left(\kappa_{k} \times\left(q_{2}-q_{3}\right)\right) \cdot\left(p-q_{3}\right) .
\end{aligned}
$$

If d_{1} is non-zero then the sign is that of d_{1}.
Else, if d_{1} is zero then it is that of d_{0}.

Case 3: Exactly two of q_{1}, q_{2}, q_{3} are artificial. Without any loss of generality we asssmme the two points are q_{1} and q_{2} so that q_{3} is not artificial. Let k and l be integers, $1 \leq k, l \leq 8$. so that q_{1} equals $p_{k \mu}$ and q_{2} equals $p_{l \mu}$.
Define numbers d_{1}, d_{2}, as follows:

$$
\begin{aligned}
d_{1} & \equiv\left(\left(\bar{p}-q_{3}\right) \times\left(e_{l}-c_{k}\right)\right) \cdot\left(p-q_{3}\right) . \\
d_{2} & \equiv\left(c_{k} \times e_{l}\right) \cdot\left(p-q_{3}\right) .
\end{aligned}
$$

If d_{2} is non-zero then the sign is that of d_{2}.
Else, if d_{2} is zero then it is that of d_{1}.

Case 4: q_{1}, q_{2}, q_{3} are all artificial. The sign is positive.

8 Flipping Determination

In this section we present direct computations and lexicographical manipulations used in REGTET for solving the flipping determination problem, i. e.
the problem of determining the sign of $\pi_{p}(z(t))-m(t)$. We do this he casess. rach case depending on the momber of artificial vertices of t. This solution is justified in [3].

Case 1: Nome of $41 \cdot 4_{2} \cdot 4_{3} \cdot 4_{1}$ is artificial. The sign (an then be detemined through diroct compmations of $z(t), w^{\prime}(t), \pi_{p}(z(t))$, and $\pi_{p}(z(t))-w^{(}(t)$.

Case 2: Exactly one of $q_{1} q_{2}, q_{3}, q_{1}$ is artificial. Withont any loss of gemerality assmme θ_{1} is artificial.
Assume $\left(\left(q_{2}-q_{4}\right) \times\left(q_{3}-q_{t}\right)\right) \cdot\left(q_{1}-q_{1}\right)<0$.
Compute $\left.d \equiv\left(\left(q_{2}-q_{1}\right) \times\left(q_{3}-q_{1}\right)\right) \cdot(p)-q_{t}\right)$.
If d is non-zero then the sign is that of d.
Else, if d is zero then let f be the facet of t whose vertieses are q_{2}, q_{3}, and q_{1}, and let H be the plane in \mathcal{R}^{3} that contains f. Compute \bar{i}, the orthogonal center of f in the plane H, and \bar{c}. the power distance of z from any of the vertices of f.
Compute $\pi_{p}(\bar{z})$ and $\pi_{p}(\bar{z})-\bar{w}$.
The sign is that of $\pi_{p}(\bar{z})-\bar{w}$.
Case 3: Exactly two of $q_{1} q_{2}, q_{3} \cdot q_{4}$ are artificial. Withont any loss of generality assume ψ_{1} and q_{2} are artificial. and lot k, l be integers. $1 \leq l i . l \leq 8$. so that q_{1} equals $p_{k \mu}$ and q_{2} equals $p_{\mu_{\mu}}$.
Assume $\left(\left(q_{2}-q_{1}\right) \times\left(q_{3}-q_{1}\right)\right) \cdot\left(q_{1}-q_{1}\right)<0$.
Compute $d \equiv\left(\left(e_{1}-c_{k}^{\prime}\right) \times\left(q_{3}-q_{4}\right)\right) \cdot\left(p-\psi_{4}\right)$.
If d is non-zero then the sign is that of d.
Else, if d is zero then let \tilde{H} be the plane in \mathcal{R}^{3} that is the chordale of 4_{3} and 4_{4}, i. e. the plane of points x in \mathcal{R}^{3} for which $\pi_{q_{3}}(x)=\pi_{q_{4}}(x)$. Let H be the plane in \mathcal{R}^{3} that is the chomdale of $\mu_{k \mu}$ and p_{l} for all positive values of μ, and let H be the plane in \mathcal{R}^{3} that contains q_{3} and t_{4}, and is perpendicnlar to $\bar{H} \cap \bar{H}$. Compute \bar{z}, the one point in $\bar{H} \cap \bar{H} \cap H$. and \bar{w}. the power distance of \bar{z} from either 4_{3} or 44 .
Compute $\pi_{p}(\bar{z})$ and $\pi_{p}(\bar{z})-\bar{w}$.
The sign is that of $\pi_{p}(\bar{z})-\bar{\omega}$.

Case 4: Exactly three of $q_{1}, q_{2}, q_{3}, q_{4}$ are artificial. Without any losis of generality assmme q_{1}. q_{2} and q_{3} aro artificial, and lot k. l. In be integers. $1 \leq k, l, m \leq 8$, so that q_{1} equals $p_{k, \mu} q_{2}$ equals p_{μ}. and ψ_{3} e equals $p_{m \mu}$.

Assume $\left(\left(q_{2}-q_{1}\right) \times\left(q_{3}-q_{1}\right)\right) \cdot\left(q_{1}-q_{4}\right)<0$.
Compute $d \equiv\left(\left(\epsilon_{l}-e_{k}\right) \times\left(\epsilon_{m}-e_{k}\right)\right) \cdot\left(p-q_{4}\right)$.
If d is non-zero then the sign is that of d.
Else, if d is zero then let \tilde{H} and \bar{H} be the planes in \mathcal{R}^{3} that are the chordales, respectively, of $p_{k \mu}$ and $p_{l \mu}$, and $p_{k \mu}$ and $p_{m \mu}$, for all positive values of μ. Let H be the plane in \mathcal{R}^{3} that contains q_{4} and is perpendicular to $\tilde{H} \cap \bar{H}$. Compute \bar{z}, the one point in $\tilde{H} \cap \bar{H} \cap H$, and \bar{w}, the power distance of \bar{z} from q_{4}. Compute $\pi_{p}(\bar{z})$ and $\pi_{p}(\bar{z})-\bar{w}$.
The sign is that of $\pi_{p}(\bar{z})-\bar{w}$.

9 Flipping History

At all times during its execution, REGTET maintains a list of all tetrahedra in the current and previous tetrahedratizations. This list is in the form of a directed acyelic graph that represents the history of the flips REGTET has performed [6], and it is used by REGTET for identifying a tetrahedron in the current tetrahedralization that contains a new point. Identifying a tetrahedron that contains a point this way is a generalization of a technique used in [7] for 2 -dimensional triangulations. Essentially, given a tetrahedron t in this list, links exist from t to at most four other tetrahedra in the list. If t is in the current tetrahedralization then the tetrahedra to which t is linked are those in the tetrahedralization that share a facet with t. Otherwise, if t was in a previous tetrahedralization then at some point during the execution of REGTET, t was part of a tetrahedralization for a set of five points on which a flip was applied. Accordingly, the tetrahedra to which t is linked are those in the tetrahedralization for the set of five points that resulted from that flip. Since a tetrahedron that is elminated through a flip stays eliminated throughout the execution of REGTET then it follows that the directed graph defined by the list of tetrahedra is acyclic.

For some positive integer n, let $p_{J}, j=1 \ldots, n$, be the points in S, exchuding the artificial points. in the order in which they are added by REGTET. At the start of the execution of REGTET, so that at all times the set of previously added points is not empty, REGTET first computes a regular tetrahedralization for the set of artificial points together with p_{1}. Essentially, REGTET does this by dividing the cube R_{μ} (Section 4) in the obvious way into twelve tetrahedra, two per facet of R_{μ}, with p_{1} as a vertex of all twelve tetrahedra. That the resulting tetrahedralization is regular for very
large μ is not hard to show. Clearly these twelve tetrahedra are the first to be placed in the list of tetrahedra that REGTET maintains.

Assume inductively that for some integer $j, 1<j \leq n$, the points p_{i}, $i=1, \ldots, j-1$, have been added by REGTET into the tetrahedralization. REGTET then proceeds to identify a tetrahedron in the cmrent tetrahedralization that contains the point p_{j} through an iterative procedure as follows. Using the solution to the point location determination problem (Section 7) REGTET initially identifies a tetrahedron t that contains p_{j} among the first twelve in the list of tetrahedra. Let m be an integer variable whose initial value equals one. For $l, l=1, \ldots, m+1$, if the value of l equals that of m phus one the procedure terminates. Otherwise REGTET determines whether t is in the current tetrahedralization. If it is then t is the desired tetrahedron and REGTET proceeds to the next value of l (since the next value of l is that of m plus one the procedure terminates). Otherwise, if it is not then from the list of tetrahedra, REGTET identifies the tetrahedra to which t is linked. Since t is contained in their mion it follows that at least one of them contains p_{j}. Again, using the solution to the point location determination problem (Section 7) REGTET identifies one that does, t becomes this tetrahedron, the value of m is increased by one, and REGTET proceeds to the next value of l. Clearly when the procedure terminates it then follows that t is in the current tetrahedralization and contains p_{3}. In addition, the value of m equals the number of tetrahedra that contain p_{j} and that were identified by REGTET for the purpose of identifying the final t.

10 Execution time

REGTET has the capability of adding the points in S in a random sequence. For some positive integer n, let n be number of points in S. Using an analysis similar to the one in [7] for 2-dimensional Delaunay triangulations, Edelsbrumer and Shah [6] show that if the points in S are added in a random sequence then the expected ruming time of their algorithm for computing a regular tetrahedralization for S is $O\left(n \log n+n^{2}\right)$. As pointed out in [6], the actual expected time could be much less, i. e. the second term $\left(n^{2}\right)$ in the above expectation could be much less, depending on the distribution of the points in S. Accordingly this should be the case for sets of uniformly distributed points in a cube or a sphere. As proven for a cube in [2] and for a sphere in [5], the complexity of the Voronoi diagram, and therefore of
the Delamay tetrahedralization, for such sets is expected linear. Indeed we have obtained good execution times when computing with REGTET regular tetrahedralizations for sets of uniformly distributed points in cubes: on a SGI ONYX2 (300 MHz R12000 CPU) ${ }^{1}$ the rmming time is about 25 CPU minutes for a set of 512.000 points with raudom weights. A similar time was obtainel for the same set without weights. Finally, REGTET has also been executed successfully aud efficiently to compute Delamay tetrabedralizations for nom-miformly distributed point sets representing sea floors and cave walls.

References

[1] Auremhammer: F.: Power diagrams: properties, algorithms and applications. SLAM J. Comput. 16 (1987) 78-96
[2] Bernal, J.: On the expected complexity of the 3-dimensional Voronoi diagram. NISTIR 4321 (1990)
[3] Bernal, J.: Lexicographical manipulations for correctly computing regular tetrahedralizations with incremental topological flipping. NISTIR 6335 (1999)
[4] Delaunay, B.: Sur la sphère vide. Bull. Acad. Sci. USSR (VII), Classe Sci. Mat. Nat. (1934) 793800
[5] Dwyer. R. A.: Higher-dimensional Voronoi diagrans in linear expected time. Discrete Comput. Geomı. 6 (1991) 343-367
[6] Edelsbrmmer, H., Shah, N. R.: Incremental topological flipping works for regular triangulations. Algorithmica 15(3) (1996) 223-241
[7] Guibas, L. J., Kinutlı, D. E.. Sharir, M.: Randomized incremental construction of Delannay aud Voronoi diagrams. Springer-Verlag Lecture Notes in Computer Science 443 (1990) 414-431
[8] Lawson. C. L.: Software for C^{1} surface interpolation. Mathematical Software III. J. R. Rice (Ed.), Academic Press, New York (1977) 161-194

[^0][9] Lawsen. C. L.: Properties of n-dimemsiomal triangulations. Computer Aitled Ceometric Design 3 (1986) 231 246
[10] Voromoi, G.: Nomvelles applications des paramètres contimus à la théerie des formes quadraticues. J. Reme Angew. Matlı. 134 (1908) 198287

Phioi Moinin -i.

[^0]: ${ }^{1}$ The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards and Technology.

