
WSST

Ainot EM47TS publications WHMfftHrMKlTrMMH!

REFERENCE

REGTET : A Program for

Computing Regular
Tetrahedralizations

J. Bernal

U. S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Mathematical and Computational Sciences Division

Gaithersburg, MD 20899-8230

NIST CENTENNIAL

>0

O

to

O
O

QC
100

.1156

no.6786

2001

isjisr
National Institute of Standards
and Technology
Technology Administration

U.S. Department of Commerce





REGTET : A Program for

Computing Regular
Tetrahedralizations

J. Bernal

U. S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Mathematical and Computational Sciences Division

Gaithersburg, MD 20899-8230

September 2001

U.S. DEPARTMENT OF COMMERCE
Donald L. Evans, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Dr. Karen H. Brown, Acting Director





REGTET: A Program for Computing Regular

Tetrahedralizations

Javier Bernal

National Institue of Standards and Technology
,

Gaithersburg, MD 20899, USA

Abstract

REGTET, a Fortran 77 program for computing a regular tetrahe-

dralization for a finite set of weighted points in 3—dimensional space,

is discussed. REGTET is based on an algorithm by Edelsbrunner

and Shah for constructing regular tetrahedralizations with incremen-

tal topological flipping. At the start of the execution of REGTET
a regular tetrahedralization for the vertices of an artificial cube that

contains the weighted points is constructed. Throughout the execu-

tion the vertices of this cube are treated in the proper lexicographical

manner so that the final tetrahedralization is correct.

1 Introduction

Let S be a finite set of points in 3—dimensional space
( 7Z

3
) . By a tetrahe-

dralization T for S we mean a finite collection of tetrahedra (3-diniensional

triangles) with vertices in S
,
that satisfies the following two conditions.

1. Two distinct tetrahedra in T that are not disjoint, intersect at a common
facet, a common edge, or a common vertex.

2. The union of the tetrahedra in T equals the convex hull of S.

For each point p in S let wv
be a real-valued weight assigned to p. Given

p in S and a point r in 7v \ the power distance of .r from p. denoted by 7Tp
(.r).



is defined by

7T
p {x) - \xp\

2 ~ Wp ,

where \xp\ is the Euclidean distance between x and p. Given a tetrahedron

t with vertices in S ,
a point, denoted by z(t ), exists in IZ’’ with t he same

power distance, denoted by w(t), from all vertices of t. Point z(t) is called

the orthogonal center of t. Given a tetrahedralization T for S', we then say

that T is a regular tetrahedralization for S if for each tetrahedron t in T
and each point p in S, 7r

p
(z(t)) > w(t). We observe that T is unique if for

each tetrahedron / in T and each point p in S that is not a vertex of f,

7rp (z(t)) > w(t). If T is unique then the power diagram of S [I] is the dual

of T . Finally, we observe that if the weights of the points in S are all equal

then tin' power diagram of S is identical to the Voronoi diagram of S [10],

and the regular and Delaunay [4] tetrahedralizations for S coincide.

In this paper we discuss REGTET, a Fortran 77 program for computing

regular tetrahedralizations (or Delaunay tetrahedralizations in tin 1 absence of

weights) with incremental topological flipping [6] and lexicographical manip-

ulations [3]. A copy of REGTET that includes instructions for its execution

can be obtained from http://math.nist.gov/~JBernal.

2 Topological Flipping

Let T be a tetrahedralization for S, let t be a tetrahedron in T, and let

p a point in S that is not a vertex of t. Denote the vertices of t by (p ,

q2 . f/3 ,
<7 i ,

and let T\ and T, be the only two possible tetrahedralizations for

{ <y i , q2 , 7s i
(l4 iP} [9]. Assume t is in T), and T\ is contained in T. A topological

flip or simply a flip on T\ is an operation that replaces 7\ with T> in T.

For each j, g = 1, . .
.

,

4, denote by f

,

the facet of t that does not contain

(p ,
and by H, the plane in 7v

5

that contains /.,. For each j, j = l....,4,

denote bv H the open half-space in Vfl determined bv H
t
that contains qJ:

and by H~ the open half-space in 7

v

! determined by H

,

that does not con-

tain q3 . Clearly it is by ascertaining which of H n 7/^, Hj contains p for

each j, j = 1. ... ,4, that one can identify the tetrahedralizations and T2 .

Accordingly, tin 1 following nine configurations of T
x
and 74 are possible, each

configuration depending on which of Hn H
;

+
,
H~ contains p for each j,

j — 1, • . • ,
4-

Configuration 1 (possible ‘1 to 4' flip): p is in n]J=1 77 y

+
. Denote by G, t2 ,

9



/.i, and t.,\ 1 li<* tetrahedra whose vertex sets are {<p, </•_>, <i:u />} {31, 72, 7 i, p}-

{q \ . r/3, r/4
,
]>}. and

{ 32 , 7.3 , 7i , p }
• respectively. It then follows that T\ consists

exactly of/, and T2 of / 1 . Z2 , /•',, and D.

Configuration 2 (possible ‘1 to 3 Hip): For distinct integers y 1 , /•_>, /j.

1 < j \ , 72? j:ii Ja < 4
, p is in H n D H+ D C\ H^. Denote 1 by Z 1? / 2 ,

and

/,-5 the tetrahedra whose vertex sets are { <y7 ,
, <y

y
., , <y /3 , /> } , {qn . 3, ,,p}. and

{
ry / , ,

f/
;3 , 3y4 ,p}, respectively. It then follows that 7\ consists exactly of/, and

T‘2 of t\
,

/2 ,
and / :5 .

Configuration 3 (possible ‘1 to 2' flip): For distinct integers j\

.

y2 , 3.3, Ja-,

1 £ 32, J3, Ja < 4 . p is in //
7I

fl 77y, Pi 7
/J

1

,
D 7/^ . Denote by /| and Z 2 the

tetrahedra whose vertex sets are {q n 1 3,., , <y73 , p} and {qJ1 , 322 , 3, 4 ,p}, respec-

tively. It then follows that 7\ consists exactly of /, and T> of’/) and /2 .

Configuration 4 (possible ‘2 to 3 flip): For distinct integers y ] , y2 , 3.3,

34, 1 < 21,22,23,24 < 4
, p is in H~ Pi 77+ fl 77 + fl 77 +. Denote by tu t.2 ,

Z :1 ,

and /' the tetrahedra whose vertex sets are {q ll , <y
; .,, p/:! ,p}, {pyi

. <y
y
, , <y/4 , /> }

,

{(/,, , ^j3 , 3J4 ,p}, and qj3 , qJ 4 ,p}i respectively. It then follows that 7
"i
con-

sists of Z and /', and T2 of Z
L ,

/ 2 ,
and /3 .

Configuration 5 (possible ‘3 to 2 flip): For distinct integers j), / 2 , / :! .

34, 1 < 31,32,33,34 < 4
, p is in 77 “ fl 77 ~ D H ~

+ fl 77 + . Denote bv 2
x ,

Z2 ,
/'.

and /" the tetrahedra whose vertex sets are {y/ ;i , py
., , p}, , <y /2 , <y7J , p }

,

{(lj„, qj3 ,
c//

4 ,p}, {y/ 7l ,
ip,, p/4 ,p}, respectively. It then follows that 77 consists

of/, /', and /", and T2 of /1 and /2 .

Configuration 6 (possible ‘2 to 2 '

flip): For distinct integers
y 1 , / 2 , y :j , y t ,

1 < 31,32,3.3,34 < 4
, p is in 77 “

fl Hj, fl 77+ fl 77 +. Denote by / 1? Z2 ,
and

/' the tetrahedra whose vertex sets are {qJl , qJ2 , qn , p}, {<l n , 3 ; 2 , 72 i- p}, aild

1

3

ja • 2j3 • 3j4 , P } ,
respectively. It then follows that T\ consists of / and /'. and

T2 of /
1
and Z 2 .

Configuration 7 (possible
l

4 to 1 hi])): For distinct integers j\. y2 , / :1 .

34, 1 < 31,32,33,34 < 4
, p is in 77 “ fl 77 “ fl 77 “ fl 77+ . Denote by /,, /', /".

and /"' the tetrahedra whose vertex sets are {rya , 3 /s ,p}, {<//.,. <y
/:i

. <iJ4 , p},

{ 3/i , 3/3, 3/4, p}, ail( l {3/!

,

<7/4 , p } ,
respectively'. It then follows that 77 con-

sists of /, /', /", and /'", and T2 exactly of Z }
.

Configuration 8 (possible ‘3 to 1 flip): For distinct integers y7 . / 2 . / :i . y,|.

1 < 31,32,3.3,34 < 4
, p is in H~ D fl //y3 fl //^. Denote by /j, /'. and

t" the tetrahedra whose vertex sets are {<y7l , q r,- 3 /:i , /-*}, {

<

7 /
>• 3 /:! . 3 /r /^}- and

{qn , 373 ,
iyM ,p}, respectively. It then follows that T) consists of/. /'. and /".

and 7b exactly of /,

.



Configuration 9 (possible
l

2 to 1‘ flip): For distinct integers j i, j2l jq, jq,

1 < jh ]>, < J, P is in H~ fl Hj
2
n Hn n H+. Denote by t\ and t' the

tetrahedra whose vertex sets are {qJl , q]2 , qj3 ,p}, and {qj2 , qj3 , qj4 ,p], respec-

tively. It then follows that 7) consists off and t\ and To exactly of t\.

3 Lexicographical Manipulations

Program REGTET which is based on an algorithm by Edelsbrunner and

Shall [G] computes a regular tetrahedralization for the set S by adding the

points in S one at a time into a regular tetrahedralization for the set of pre-

viously added points. This implies that before any points in S are added a

regular tetrahedralization must be first constructed by REGTET with ver-

tices close to infinity and underlying space equal to TvA The vertices of this

initial tetrahedralization are said to be artificial. Throughout the execution

of the program artificial points must be treated in the proper lexicographical

manner so that the final tetrahedralization does contain a tetrahedralization

for S. and this tetrahedralization for S is indeed regular (since the coor-

dinates of the artificial points can be extremely large in absolute value, it

is inadvisable to identify them, thus the need to treat artificial points in a

lexicographical manner)

.

Lexicographical manipulations that are employed in REGTET are de-

scribed below and justified in [3]. At the start of the execution of the imple-

mentation a 3—dimensional cube with vertices close to infinity that contains

S in its interior is identified, and a regular tetrahedralization for the set of

vertices of the cube (weights set to the same number) is computed. The

execution then proceeds with the incremental insertion of points in S as sug-

gested by Edelsbrunner and Shah. However, at all times, because of the

lexicographical manipulations employed in the presence of artificial points

(the vertices of the cube), the artificial points are assumed to be as close to

infinity as the manipulations require.

The lexicographical manipulations are divided in two groups [3]. The first

group consists of manipulations for determining the location of a point in S
with respect to a facet of a tetrahedron. The second group consists of manip-

ulations for determining which of the only two possible tetrahedralizations

for a set of five points is regular. These manipulations are described below.

4



4 Artificial Points

In what follows we formally define the artificial points as they appear in

REGTET.
For each point p in S let w

p
be a real valued weight assigned to />. Define

real numbers xmin
,
xmax, ymin

,
ymax

,
zrnin

, zmax by

.nn in =

xmax =
ymin =

ymax =

zm.in =

zmax

mm { ./
: 3 y, c, (

x,y,z
)
£ 5},

rnaxj.r : 3 y, z, (x.y.z) £ S'}.

min{y : 3 :r, c, (:r, y.c) £ S'},

max{y : 3 :r, z, (:r. //. z) £ 5}.

min{ s : 3 :r, y, (.r. y, z) £ ,5'},

max{; : 3 .r, y, (x,y,z) £ 5}.

Define a real number wmin by

wmin = minjwp : y £ 5},

real numbers rrcfr, yctr,zctr by

j’e/r = (xmax + xmin)/2,

yeti' = (ymax + ymin) / 2,

zetr = (zmax + zmin)/ 2,

a point y in Tv'
5 bv

y = (xctr. yctr
,
zetr),

and finally vectors e
z ,

/ = 1, . .
. , 8, by

e, = (-1,-1, 1).

e2 = (— 1, 1, 1),

e3 = ( 1, 1, 1),

ep = (
1,-1, 1).



e5

e6

G

<°s

For any positive real number //,, define the vertices pt)ll i = 1, . .

.

,8, of a cube

R,, by

= d + lie-i, i= 1, ... ,8.

For arbitrarily large //., 7?
/(
contains 5 in its interior. Given a positive real

number //, the points pnt ,
z = 1, ... ,8, are the artificial points, and // is as-

sumed to be as large as the lexicographical manipulations require. In order

to be consistent, given a positive real number // ,
a number w, w < wmin

,

is selected and assigned as a weight to each of the points pi/x ,
i — 1, ... ,8.

Since the points ptl , , i — 1 , . .
. , 8, are the vertices of a cube, it follows that

any tetrahedralization for these points is regular. In addition, one such tetra-

hedralization is not difficult to compute.

5 Redundant Points

For each point q in S let w
q
be a real valued weight assigned to q. Without

any loss of generality assume that, the artificial points are in S. Let p be

a point in S that is not artificial, let T Ire a regular tetrahedralization for

S \ and let t be a tetrahedron in T that contains p. Clearly T is also

a tetrahedralization for S although not necessarily regular. Let T\ and T2

be t lie tetrahedralizations as defined in Section 2 with respect to t and p.

Clearly T\ consists exactly of the tetrahedron t so that it is contained in T.

If T) is not regular it then follows that no regular tetrahedralization for S
can have tetrahedra with p as a vertex [6]. Therefore, under this condition,

T is also a regular tetrahedralization for 5, and the point p is then said to

be redundant in S.

As mentioned above, REGTET constructs a regular tetrahedralization

for the set S bv adding tin 1 points in S one at a time into a regular tetra-

liedralization for the set of previously added points. This technique is a

= (-L-1, -1),

= (-l, 1,-1),

= (
i, i,-i),

= (
1,-1, -i)-

6



generalization of a result for computing incrementally Delaunay triangula-

tions in R 1
[7]. Let p l>e a point in S and assume that p is a new point

that is to be added by REGTET into a regular tetraliedralization T' of the

previously added points S'. As p is added, it is first determined wli('ther p

is redundant in S' U {/;}. If it is then I' is also a regular tetraliedralization

for S' U {/>}. Otherwise a regular tetraliedralization for S' U {/>} is obtained

from T\ and points in S' that are redundant in S' U {p} but not in S' are

identified. This is accomplished by REGTET through a finite number of

steps, each step involving a decision about whether a certain flip should take

place and if so applying the flip. Clearly points found to be redundant in

S' U {])} will continue to be redundant as the rest of the points in S are

added.

The first step carried out by REGTET for obtaining a regular tetrahe-

dralization for S' U {p} from T' involves the determination of whether the

point p is redundant in S' U {/;} and if it is not the computation from T'

of an initial tetraliedralization for S' U {/;} with p as a vertex of some of

its tetrahedra. Let t be a tetrahedron in T' that contains p (the process

for identifying t is described below), let T\ and 7b be the tetrahedraliza-

tions as defined in Section 2 with respect to t and p, and for some integer k.

1 < /,• < 9. let Configuration k be the configuration for T\ and 7b (Section 2).

Since p is in t it then follows that k can not be larger than 3. REGTET de-

termines the value of k and whether 7b is regular. If 7b is not regular, i. e.

7r
?
,(c(/)) > w {t)i then p is marked as being redundant and T' is identified as

a regular tetraliedralization for S' U {/;}. Otherwise for some positive integer

m the tetrahedra t n j — 1. . .
.

,

m, in T' that contain p are identified. Clearly

t is one of them, and the value of m depends on that of k (1 if k equals 1,

2 if k equals 2, and greater than or equal to 3 if k equals 3). For each /,

j = l,...,m, REGTET then identifies the tetrahedralizations and T> as

defined in Section 2 with respect to t.j and p, and applies the flip correspond-

ing to Configuration k (Section 2) that replaces T\ with T, in T' (for each

/, j = l,...,m, the configuration for T\ and 7b is always Configuration k).

An initial tetraliedralization not necessarily regular for S' U {/;} with p as a

vertex for some of its tetrahedra results.

As just described if p is not redundant in S' U {/;}, REGTET first com-

putes from T' a tetraliedralization for S' U {p} with p as a vertex for some of

its tetrahedra. If the new tetraliedralization is not regular other steps follow

for the purpose of eventually obtaining one that is. It is through this process

that points in S' that are not redundant in S' but that are redundant in

i



S' U {]>} are identified. The process which involves the flips associated with

Configuration 4 through Configuration 9 (Section 2) is described below.

6 Locally Regular Tetrahedra

Let T be a tetrahedralization for S. Given a tetrahedron / in T we denote by

N(t) the set of points in S \ t that are vertices of tetrahedra in T sharing a

facet with t. We then say that t is locally regular if for each point q in N(t),

7r
q
(z(t,)) > w(t). By extending results for Delaunay triangulations and tetra-

hedralizations [8], [9], Edelsbrunner and Shah [C] have proven that if the

vertex set of T contains all non-redundant points in S and every tetrahedron

in T is locally regular it then follows that T is a regular tetrahedralization

for S.

Let p be a point in S that is being added by REGTET into a regular

tetrahedralization T' of the previously added points S'. Assume that it has

been determined by REGTET that p is not redundant in S' U {p} and that

the program has computed as described above an initial tetrahedralization

for S' U {p} with p as a vertex for some of its tetrahedra. For some posi-

tive integer m, REGTET then identifies the tetrahedra t n j = in

I he initial tetrahedralization with p as a vertex. REGTET then proceeds

to transform this initial tetrahedralization through an iterative procedure as

follows. For j, j = 1, . .
.

,

m + 1. if j equals m + 1 the procedure terminates.

Otherwise REGTET determines whether tj is in the current tetrahedraliza-

tion (not necessarily equal to the initial tetrahedralization). If it is not then

REGTET proceeds to the next value of j. Otherwise REGTET determines

whether a tetrahedron t exists in the current tetrahedralization that shares

with tj a facet that does not contain p. If it does not then t.j is locally reg-

ular and REGTET proceeds to the next value of j. Otherwise REGTET
determines whether 7tp (z(t)) > w(t). If the inequality holds then A

;
is locally

regular and REGTET proceeds to the next value of j. Otherwise REGTET
identifies tetrahedralization Ti as defined in Section 2 with respect to t and p
and determines whether it is contained in the current tetrahedralization. If

it is not then REGTET proceeds to the next value of j. Otherwise REGTET
identifies tetrahedralization T2 as defined in Section 2 with respect to t and p,

and determines the value of the integer 1 < k < 9, for which Configura-

tion A: is the configuration for 7\ and To (Section 2). Since p is not in t

it then follows that A: must be larger than 3. REGTET then applies the



flip corresponding to Configuration k that replaces Tx with T2 in the current

tetrahedralization, and marks the tetrahedra in Tx as not being in the current

tetrahedralization (after certain flips the current tetrahedralization may not

satisfy the first condition in the definition of a tetrahedralization, however at

the end of the iterative procedure tin 1 final tetrahedralization will satisfy it).

If k is larger than 7 then REGTET identifies the point in S' that is a vertex

of both tj and t but not of the one tetrahedron in T> and marks this point

as being redundant. For some positive integer ???/, m! > m, REGTET then

identifies tetrahedra t
3 , j — m + 1 , . .

. ,
m', in the current tetrahedralization

which are exactly the tetrahedra in To {p is a vertex of each one of these

tetrahedra), replaces the value of m by that of m'

,

and proceeds to the next

value of j. Clearly when the procedure terminates it then follows that every

tetrahedron in the current tetrahedralization with p as a vertex is locally

regular [G]. Since all other tetrahedra in the current tetrahedralization are

in T', they must also be locally regular. Thus the current tetrahedralization

is regular for S' U {p}.

7 Point Location Determination

For arbitrarily large //,, // > 0, let S' be a proper subset of S that contains

the artificial points pljL (= p + pe
? ), / = 1, . .

.

,

8, (Section 4), and let T' be a

regular tetrahedralization for S'. Given a point p in S \ S' and a tetrahedron t

in T'

,

we present direct computations and lexicographical manipulations used

in REGTET for determining the location of p relative to any given facet of t.

This capability allows REGTET to identify the tetrahedralizations T
x
and

T-2 as defined in Section 2 with respect to t and p. We do this by cases, each

case depending on the number of artificial vertices of the facet of t under

consideration. We assume without any loss of generality that S' contains at

least one point in S that is not artificial. It then follows that if the vertices

of either an edge or a facet of a tetrahedron in T' are all artificial then the

edge or facet must be contained in its entirety in the boundary of the cube

RM (Section 4). In addition, no tetrahedron in T' exists whose vertices are

all artificial.

Denote the vertices of t by q x , q2 , (?3 ,
and g4 ,

and without any loss of gen-

erality assume that the facet under consideration is the facet with vertices

(p, <ii, and (p

.

We define a vector v by v = (q x — q%) x (q2 — p3 ), i. e. the

cross product of vectors (q x — q$) and (q2 — q%), and assume that q x , q2 , qs

9



are ordered in such a way that v - (<y4 — q3 ), i. e. the inner product of v and

(</4
—

</3 ) ,
is positive. Clearly, the location of p relative to the facet depends

on the sign of v
(p — q:i ). The solution by cases to the point location deter-

mination problem, i. e. the problem of determining the sign of v • (p — <7,3 )

,

follows. This solution is justified in
[
3 ].

Case 1: None of q { , q2 , q2 is artificial. The sign can then be determined

through direct computations of v, p — q:i ,
and v

(p — q:i ).

Case 2: Exactly one of </i, q2 , <j;\ is artificial. Without any loss of generality

we asssume the one point is q\ so that q2 and q2 are not artificial. Let k be

an integer, 1 < k < 8, so that <p equals pkfl

Define numbers <70 ,
d\, as follows:

do = {{P~ di) x {Q2 - (h)) (.P ~ do )

•

d\ = (ek x (q2 - q :> ) )
• (p - q3 ).

If d\ is non-zero then the sign is that of d\.

Else, if d[ is zero then it is that of r/0 .

Case 3 : Exactly two of q { , q2 , q2 are artificial. Without any loss of generality

we asssume the two points are q\ and q2 so that q3 is not artificial. Let k and

/ be integers, 1 < k, l < 8, so that q\ equals pk2l and q2 equals p^.

Define numbers d\, d2 ,
as follows:

d\ = {{p~ q:\) x (e/ - ek )) • (p - q3 ).

d2 = {ek x et ) • {p - q3 ).

If r/-2 is non-zero then the sign is that of d2 .

Else, if d2 is zero then it is that of d\.

Case 4 : q x , q2 , q3 are all artificial. The sign is positive.

8 Flipping Determination

In this section we present direct computations and lexicographical manipu-

lations used in REGTET for solving the flipping determination problem
,

i. e.

10



the problem of determining the sign of np (z(t)) — //?(/). We do t his by cases,

each case depending on the number of artificial vertices of /. This solution is

justified in
[
3 ].

Case 1: None of r/i, r/2 ,
c/3

, q4 is art ificial. The sign can then be determined

through direct computations of z(t ), w{t), tt
p (z(t)), and np (z(t)) — w(f).

Case 2: Exactly one of c/i q2 ,
c/3

. q

\

is artificial. W ithout any loss of gener-

ality assume r/i is artificial.

Assume ((q2 - q4 )
x (c/3 - q4 )) [q { - q ,) < 0.

Compute d = ((q2 - q4 )
x (r/3 - q { )) (p - q4 ).

If (I is non-zero then the sign is that of d.

Else, if d, is zero then let / be the facet off whose vertices are q>. q:i ,
and q. j.

and let H be the plane in Tv ' that contains /. Compute c, the orthogonal

center of / in the plane //, and w, the power distance of 5 from any of the

vertices of /.

Compute 7rp (z) and ir
p
(z) — w.

The sign is that of ttp (z) — w.

Case 3 : Exactly two of q { q2 , q?, , q\ are artificial. Without any loss of gener-

ality assume q\ and q2 are artificial, and let /,;, / be integers, 1 < k,l < 8. so

that qi equals yg. /t and q2 eijuals pip .

Assume {{q2 - qi) x {q:i - q4 )) {q }
- qA )

< 0 .

Compute d= {{e i
- t

}, )
x (q3 - q4 )) (p - q4 ).

If d is non-zero then the sign is that of d.

Else, if d is zero then let H be the plane in Tv
1

that is the chordale of 1/3 and

qq, i. e. the plane of points x in 7W for which 7r
93

(;r) = 7r94
(.r). Let FI be the

plane in Tv
5 that is the chordale of pk tl

and pi4 ,
for all positive values of //.

and let H be the plane in Tv
5

that contains 93 and r/4 ,
and is perpendicular

to H D H. Compute c, the one point in H n H D //, and w, the power dis-

tance of z from either q :i
or q 4.

Compute 7r
p
(z) and tt

p (z) — w.

The sign is that of 7

r

p (
3

)
— tv.

Case 4 : Exactly three of q { , q2 , <73 , q4 are artificial. Without any loss of

generality assume iq, q2 and q% are artificial, and let T\ /. m be integers,

1 < k.L in < 8, so that q

\

equals q2 equals p//( ,
and c/3 ('quals pm(l .



Assume {{q2 - (ji) x (q3 - q { )) (q l - q4 )
< 0.

Compute d = {{e
L
- ek )

x (em - ek )) • {p - q4 ).

If d is non-zero then the sign is that of d.

Else, if d is zero then let H and H Ire the planes in 7v
!

that are the chordales,

respectively, of pkfJ and pip ,
and pkfl and prnp ,

for all positive values of //,. Let

H be the plane in 7T3 that contains q4 and is perpendicular to H D H

.

Com-
pute 2

,
the one point in II H II Pi //. and ?h, the power distance of 5 from q4 .

Compute 7Tp (z) and ttp (z) — w.

The sign is that of 7Tp (5)
— w.

9 Flipping History

At all times during its execution, REGTET maintains a list of all tetrahedra

in the current and previous tetrahedralizations. This list is in the form of

a directed acyclic graph that represents the history of the flips REGTET
has performed [G], and it is used by REGTET for identifying a tetrahedron

in the current tetrahedralization that contains a new point. Identifying a

tetrahedron that contains a point this way is a generalization of a technique

used in [7] for 2— dimensional triangulations. Essentially, given a tetrahedron

t in this list, links exist from t to at most four other tetrahedra in the list. If

t is in the current tetrahedralization then the tetrahedra to which t is linked

are those in the tetrahedralization that share a facet with t. Otherwise, if t

was in a previous tetrahedralization then at some point during the execution

of REGTET, t was part of a tetrahedralization for a set of five points on

which a flip was applied. Accordingly, the tetrahedra to which t is linked

are those in the tetrahedralization for the set of five points that resulted

from that flip. Since a tetrahedron that is eliminated through a flip stays

eliminated throughout the execution of REGTET then it follows that the

directed graph defined bv the list of tetrahedra is acyclic.

For some positive integer n, let Pj. j = 1 ....

,

/?,, be the points in S
,
exclud-

ing the artificial points, in the order in which they are added by REGTET.
At the start of the execution of REGTET, so that at all times the set of

previously added points is not empty, REGTET hist computes a regular

tetrahedralization for the set of artificial points together with p\

.

Essen-

tially, REGTET does this by dividing the cube R
fl
(Section 4) in the obvious

way into twelve tetrahedra, two per facet of f?p ,
with p\ as a vertex of all

twelve tetrahedra. That the resulting tetrahedralization is regular for very

12



large // is not hard to show. Clearly these twelve tetrahedra are the first to

he placed in the list of tetrahedra that REGTET maintains.

Assume inductively that for some integer j, 1 < j < n, the points pn
i = 1, . .

.

,

j — 1, have been added by REGTET into the tetrahedralization.

REGTET then proceeds to identify a tetrahedron in the current tetrahedral-

ization that contains the point p3
through an iterative procedure as follows.

Using the solution to the point location determination problem (Section 7)

REGTET initially identifies a tetrahedron t that contains p3
among the first

twelve in the list of tetrahedra. Let rn be an integer variable whose initial

value equals one. For /, / = 1 ,
nn + 1, if the value of / equals that of m

plus one the procedure terminates. Otherwise REGTET determines whether

t is in the current tetrahedralization. If it is then t is the desired tetrahedron

and REGTET proceeds to the next value of / (since the next value of / is

that of m plus one the procedure terminates). Otherwise, if it is not then

from the list of tetrahedra. REGTET identifies the tetrahedra to which t is

linked. Since t is contained in their union it follows that at least one of them

contains pj. Again, using the solution to the point location determination

problem (Section 7) REGTET identifies one that does, t becomes this tetra-

hedron. the value of m is increased by one, and REGTET proceeds to the

next value of l. Clearly when the procedure terminates it then follows that t

is in the current tetrahedralization and contains pj. In addition, the value of

rn equals the number of tetrahedra that contain p}
and that were identified

by REGTET for the purpose of identifying the final t.

10 Execution time

REGTET has the capability of adding the points in S in a random sequence.

For some positive integer n. let n be number of points in S. Using an analysis

similar to the one in [7] for 2—dimensional Delaunay triangulations, Edels-

brunner and Shah [6] show that if the points in S are added in a random

sequence then the expected running time of their algorithm for computing

a regular tetrahedralization for S is 0(n\ogn + n 2
). As pointed out in [C],

the actual expected time could be much less, i. e. the second term (?r) in

the above expectation could be much less, depending on the distribution of

the points in S. Accordingly this should be the case for sets of uniformly

distributed points in a cube or a sphere. As proven for a cube in [2] and

for a sphere in [5], the complexity of the Voronoi diagram, and therefore of

13



the Delaunay tetrahedralization, for such sets is expected linear. Indeed we

have obtained good execution times when computing with REGTET regular

tetrahedralizations for sets of uniformly distributed points in cubes: on a

SGI ONYX2 (300 MHz R 12000 CPU) 1 the running time is about 25 CPU
minutes for a set of 512,000 points with random weights. A similar time

was obtained for the same set without weights. Finally, REGTET has also

been executed successfully and efficiently to compute Delaunay tetrahedral-

izations for non-uniformly distributed point sets representing sea floors and

cave walls.
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