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THE APEX METHOD IN IMAGE SHARPENING AND THE USE OF
LOW EXPONENT LEVY STABLE LAWS

ALFRED S. CARASSO*

Abstract. The APEX method is an FFT-based direct blind deconvolution technique that can

process complex high resolution imagery in a few minutes of cpu time on current desktop platforms.

The method is predicated on a restricted class of shift-invariant blurs that can be expressed as

finite convolution products of two-dimensional radially symmetric Levy stable probability density

functions. This class generalizes Gaussian and Lorentzian densities but excludes defocus and motion

blurs. Not all images can be enhanced with the APEX method. However, it is shown that the method
can be usefully applied to a wide variety of real blurred linages, including astronomical, Landsat

and aerial images, MRI and PET brain scans, and scanning electron microscope images. APEX
processing of these images enhances contrast and sharpens structural detail, leading to very noticeable

improvements in visual quality. The discussion includes a documented example of non uniqueness

where distinct point spread functions produce high-quality restorations of the same blurred image.

Significantly, low exponent Levy point spread functions were detected and used in all the above

examples. Such low exponents are exceptional in physical applications where symmetric stable laws

appear. In the present case, the physical meaning of t hese Levy exponents is uncertain.

Key words, image deblurring; blind deconvolution; direct methods; electronic imaging systems;

low exponent stable laws: APEX method; SECB method; non uniqueness; astronomical, Landsat,

and SEM images; MRI and PET brain scans.

AMS subject classifications. 35R25, 35B60, 60E07, 68U10.

1. Introduction. The APEX method is an FFT-based direct blind deconvolu-

tion technique introduced by tire author in [9]. The significance of the present paper

lies in the successful use of that method in sharpening a wide variety of real blurred

images
,
as opposed to the synthetically blurred images discussed in [9]. The rea-

sons behind these successful applications are not fully understood. Not all images

can be usefully enhanced with the APEX method. The present paper is essentially

self-contained and may be read independently of [9].

Blind deconvolution seeks to deblur an image without knowing t he point spread

function (psf) describing the blur. Most approaches to that problem are iterative

in nature. Because non uniqueness is compounded with discontinuous dependence

on data, such iterative procedures are not always well-behaved. When the iterative

process is stable, several thousand iterations may be necessary to achieve useful re-

constructions. However, as shown in [9], by limiting the class of blurs, non iterative

direct procedures can be devised that accomplish blind deconvolution of 512 x 512

images in a few minutes on current desktop platforms.

The APEX method assumes the image g(x,y) to have been blurred by a restricted

type of shift-invariant psf h(x, t/), one that can be expressed as a finite convolution

product of 2-D radially symmetric Levy stable probability density functions. Such so-

called class G psfs include Gaussians, Lorentzians, and their convolutions. However,

the class G also excludes defocus and motion blurs, and convolutions of such blurs

with Gaussians and Lorentzians.

The synthetically blurred images g{x,,y) used in [9] were created by numerical

convolution of sharp images f(x,y) with class G psfs h.(x, y). Such blurred images

necessarily obey the convolutional model g(x, y) = h(x, y)< > f(x,y) + noi.se, on which
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2 ALFRED S. CARASSO

the APEX method is predicated. In a real image, the blur need not be radially sym-

metric nor shift-invariant, and may otherwise be poorly approximated by an element

of G. More fundamentally, the blurring operator may not even be linear. Applicabil-

ity of the APEX method to a given real image is far from obvious. Therefore, useful

sharpening of any such image with an APEX-detected psf is always instructive.

Stable distributions are the natural generalization of the Gaussian distribution.

Their theory was developed by Paul Levy in the 1930’s in connection with his work on

the Central Limit Theorem, [13]. In the simplest radially symmetric case, these dis-

tributions are characterized by an exponent /3, 0 < (3 < 1. with (3 = 1 corresponding

to the Gaussian distribution, and [3 = 1/2 corresponding to the Cauchy or Lorentzian

distribution. Because stable distributions have infinite variance when (3 < 1, their ap-

pearance in physical contexts sometimes poses philosophical difficulties. In the present

case, use of such psfs as the framework for the APEX method is motivated by the

important role Levy densities appear to play in numerous imaging systems. This is

documented in section 2. When the APEX method is applied to a given image in the

manner described below, a Levy psf with a specific value of (3 is necessarily detected.

That value of ,3 may not be indicative of the actual physical process that created the

image. This is true even if deblurring with the detected psf significantly improves the

image. As shown in section 4, there are in general infinitely many distinct values of (3

that can produce useful reconstructions from the same blurred image. In some cases,

the usefully enhanced image may not have been blurred by a class G psf to begin

with. In other cases, APEX processing does not significantly improve the image.

Below, we exhibit ten images where APEX processing provided noticeable im-

provement. These examples encompass such diverse imaging applications as astro-

nomical, Landsat, and aerial images, MRI and PET brain scans, a scanning electron

microscope image, a face image, and other types of interesting images. In some cases,

the improvement is due primarily to an increase in contrast. In other cases, there is

demonstrable sharpening of structural detail in addition to increased contrast. In all

cases, the change in image quality is more than cosmetic, as APEX processing signif-

icantly alters the image Fourier transform. It is noteworthy that low exponent stable

laws, with /

3

1/2, were detected and used to deblur all of the images shown below.

Such /3-values are exceptional in physical contexts where radially symmetric Levy

densities appear. Whether or not these values have a physical origin cannot be as-

certained in the present case. Moreover, the APEX detection procedure may not be

well-founded. Nevertheless, the fact remains that the use of such psfs produced valu-

able restoration of real imagery from important fields of science and technology. To
tin 1 author’s knowledge, this application of sub-Cauchy stable laws in image processing

is new and unanticipated.

In recent years, there has been considerable interest in image processing tech-

niques that can be formulated as initial value problems in nonlinear partial differ-

ential equations. An instructive survey of these developments may be found in [10].

In particular, several novel approaches to image enhancement have been devised,

based on integrating well-posed anisotropic nonlinear diffusion equations. In contrast,

the APEX method centers around ill-posed continuation in linear fractional diffusion

equations. The results obtained here appear to compare favorably with what is fea-

sible with nonlinear methods, and they indicate the APEX method to be a useful

addition to this developing methodology.

2. Imaging systems, Levy processes, and the class G. The occurrence and

analysis of Levy processes in the physical sciences are subjects of significant current
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interest. See [1], [2], [4], [27], [29], [30], [33], and references therein. An important

special case involves 2D radially symmetric Levy stable densities h(x,y), implicitly

defined in terms of their Fourier transforms by

(1) //(£,//) = / h(x,y)e~ 2iri{ix+riy) dxdy = e
- Q (C

2+^) d

,
a > Q. o <f3<\.

The cases (3 — 1 and (3 = 1/2 correspond to Gaussian and Lorentzian (or Cauchy)

densities respectively. For other values of /?, h(x,y) in (1) is not known in closed form.

When f3
— 1, h,(x,y) has slim tails and finite variance. For 0 < (3 < 1, h.(x,y) has fat

tails and infinite variance. As noted in [33], there are examples in science where the

occurrence of a stable law can be deduced from ‘first principles’ in terms of physical

mechanisms that do not involve the parameter /

3

explicitly. One such instance is the

Holtsmark distribution describing the gravitational field of stars [13]. There, mathe-

matical analysis reveals the value (3 = 3/4. Such cases must be distinguished from the

many other cases where empirically obtained data with fat tails are fitted to a Levy

law, and the exponent f3 is inferred from these data. Given the limitations of physical

measurements, such empirically established Levy processes do not have the degree of

scientific legitimacy that attends the Holtsmark distribution. The considerations of

the present paper generally lie in this weaker scientific realm. Nevertheless, as will be

seen below, techniques derived from such considerations turn out to be effective.

Image intensifiers, CCDs, and numerous other electronic devices are used in a

wide variety of astronomical, industrial, biomedical, military, and surveillance imaging

systems. See [3], [11], [12], [14], [20]. Each such device has a psf h(x, y), characterizing

that device’s imaging properties. The psf is a probability density function since it is

non-negative and integrates to unity. Use of such a device to image an object f(x, y)

produces a blurred image g(x,y) = h(x,y) 0 f(x,y ), where © denotes convolution.

An ideal device would have h(x,y) = 8(x,y). The Fourier transform /?,(£, p) of the

psf is generally complex-valued and is called the optical transfer function (otf). The
absolute value of the otf is the modulation transfer function (mtf).

In [31], it is noted that electron optical mtfs are often nearly Gaussian in shape,

and that this should be expected from the Central Limit Theorem, since the process

of converting incoming signal photons into the final image that is observed on a screen

involves many intermediate stages. However, it is also observed in [31] that when such

mtfs are fitted with Gaussians, the fitted curves often have slimmer tails than is the

case in the true mtfs.

A systematic study of electron optical mtf measurements is the subject of [17],

[19], and [22]. There, the author claims the empirical discovery that a wide variety of

electronic imaging devices, including phosphor screens and some types of photographic

film, have otfs that are well-described by (1) with 1/2 < (3 < 1. For any

given device, the values of o- and [3 can be determined using specialized graph paper

[23]. Other instances of electron optical stable laws are mentioned in [18], [21], and

[25]. Analysis of the physical mechanisms responsible for such non Gaussian behavior

is not included in these works. An understanding of such mechanisms may lead to

the design of imaging devices with low values of [3. The latter parameter affects the

attenuation of high frequency information in the recorded image. Deconvolution of

that image in the presence of noise, is generally better behaved at low values of (3

than it is at high values of [3.

The characterization (1) is useful in other areas of optics. The otf for long-

exposure imaging through atmospheric turbulence [15], is known to be given by (1)
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with (3 = 5/6, and a determined by atmospheric conditions. Also, as shown in [20],

the analytically known diffraction-limited otf for a perfect lens [32, p. 154], can be

approximated over a wide frequency range by (1), with f3
= 3/4 and a a properly

chosen function of the cutoff frequency.

The range of (3 values discussed above, namely 1/2 < (3 < 1, mirrors that found

in most other physical contexts where symmetric stable laws appear or are surmised.

Values of (3 <C 1/2 seem to be relatively rare in applications. Examples of such (3

values occur in [24], where mtf data for 56 different kinds of photographic film are

analyzed. Good agreement is found when these data are fitted with (1), and the pairs

(n, (3) characterizing each of these 56 mtfs are identified. It is found that 36 types of

film have mtfs where 1/2 < (3 < 1. The remaining 20 types have mtfs with values of

j3 in the range 0.265 < f3 < 0.475.

We now consider imaging systems composed of various elements satisfying (1).

Such systems might be used to image objects through a turbulent atmosphere or

through other distorting media whose oti’s obey (1). The resulting composite otf has

the form

(2) /?,(£, //)
= aA^+^ )l3

‘

, a, >0, 0 < /3, < 1.

Such an object corresponds to a multifractal law in [4], We define the class G to be

the class of all point spread functions h(x,y) with Fourier transforms satisfying (2).

We shall be interested in image deblurring problems

(3) Hf = / h(x - u, y - v)f(u, v)dudv = h(x, y ) <g> f{x, y) = <fix, y),
Jr2

where g(x,y) is the recorded blurred image, f(x,y

)

is the desired unblurred image,

and h(x,y) is a known point spread function in class G. The blurred image g{x,y

)

includes noise, which is viewed as a separate additional degradation,

(-4) fj(xcy) = ge {x,y) + n{x,y).

Here, ge (x/y) is the blurred image that would have been recorded in the absence of

noise, and n(x,y) represents the cumulative effects of all errors affecting final acqui-

sition of the digitized array g(x,y). The unique solution of (3) when the right hand

side is ge (x,y), is the exact sharp image denoted by fe (x,y). Thus

(5) h(x,y) ® fe {x,y) = ge {x,y).

3. Deblurring with the SECB method. The SECB method is a direct FFT-
based image deblurring technique designed for equations of the form (3) when h(x, y) is

known and satisfies (2). Theoretical analysis of that method, along with error bounds

and comparison with other methods, may be found in [5], [6], [7], [8]. Significantly,

the method does not impose smoothness constraints on the unknown image f(x,y).

For class G psfs, we may define fractional powers H 1

, 0 < t < 1, of the convolution

integral operator H in (3) as follows

(6) H'f = {h'(G//)/(Gd)} ,
0 < t < 1.

Class G psfs are intimately related to diffusion processes, and solving (3) is equivalent

to finding the initial value u(x,y, 0) = f(x,y) in the backwards in trine problem for
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the generalized diffusion equation

U, = - E/=1 A,(-A)'-V A, = «,( 4tt
2 )-a

,
I) < f < 1.

( 7 )

"(i) = u(x,y)-

When f{x,y) is known, u(x,y,t) = H 1

f is the solution of (7) at time t. The SECB
method is a regularization method for solving the ill-posed problem (7) that takes

into account the presence of noise in the blurred image data g(x,y) at / = 1. The
SECB deblurred image /^ (,/•. y) is obtained in closed form in Fourier space. With z

denoting the complex conjugate of c,

( 8 ) fH^n)
M^v)g(Cv)

|h(^7/)P+/v--
>

|l-/D'(e,7y)| 2
’

leading to p(x,y) upon inverse transforming. Here, the regularization parameters

A, s are positive constants that depend on a-priori information. In practice, FFT
algorithms are used to obtain f'(x,y). This may result in individual pixel values that

are negative, or that exceed 255, the maximum value in an 8-bit image. Accordingly,

all negative values are reset to the value zero, and all values exceeding 255 are reset to

the value 255. For 512 x 512 images, a single trial SECB restoration requires about 5

seconds of cpu time on current desktop workstations. We may also form and display

(9) uHx,y,t) = H'fHx,y),

for selected decreasing values of t lying between 1 and 0. This simulates marching

backwards in time in (7), and allows monitoring the gradual deblurring of the image.

As t f 0 the partial restorations u^(x,y,t) become sharper. However, noise and

other artifacts typically become more noticeable as t f 0. Gradual deblurring allows

detection of features in the image before they become obscured by noise or ringing

artifacts. Such marching backwards in time is an important element in the APEX
method.

It should be noted that the class G is only a small subclass of the class of in-

finitely divisible densities, [13]. The latter class includes multimodal non symmetric

psfs, associated with linear diffusion equations more complex than (7). Detection of

such psfs from blurred image data would require considerable extension of the APEX
method discussed below.

4. Non uniqueness in blind deconvolution. Blind deconvolution of images

is a mathematical problem that is not fully understood. Well-documented examples

of the kinds of behavior that may occur are of particular interest. In this section,

we highlight important non uniqueness aspects of that problem that are helpful in

understanding the results of the APEX method. Let fe (x,y) be a given exact sharp

image, let h(x, y) be a Levy point spread function, and let g,.(x, y) — //.(x
,
y)<- fe (x, y).

We shall show that given the blurred image gt.(x,y ), there are in general many point

spread functions li,(x,y
) ^ h(x,y) that deblur ge (x,y), producing high quality recon-

structions fi{x, y) / /, (./•, //), with h ,(x. y) ( f,(x.y) « g, (x,y).

The sharp 512 x 512 Sydney image /, (
.r

, y

)

in Figure 1(A) was synthetically

blurred by convolution with a Cauchy density h(.r.y) with <*0 = 0.075, fio
— 0.5.

This produced the blurred image g, (.r. y) in Figure 1(B). To avoid distractions caused

by noise, the blurred image ge (x,y) in this experiment was computed and stored
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E F

Fig. 1. Non uniqueness in blind deconvolution. Distinct point spread functions exist that

produce hiqh. quality reconstructions from same blurred image. (A) Original sharp 512 x 512 Sydney
image. (B) Synthetically blurred Sydney image created by convolution with Lorentzian density with

qq = 0.075, /3o = 0.5. Blurred image computed and stored in 64-bit precision. (C) Deblurring

of image (B) using correct parameters a = 0.075, ft = 0.5. (D) Deblurring of image (B) using

a — 0.1301264, ft
— 0.44298. (E) Deblurring of image (B) using a = 0.1950345, ft = 0.403889. (F)

Deblurring of image (B) using a — 0.2360994, ft = 0.369666. Notice that images (D), (E), and (F)

were found using specific pairs (a, ft) where a > ao and ft < fto- All deblurred images obtained

using SECB procedure with s = 0.001 and h — 10000.
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iii 64-bit, precision. Deblurring this noiseless image with the correct psf values a =
0.075, /3 = 0.5, produces Figure 1(C). This is in excellent visual agreement with

fe (x,y) m Figure 1(A), as expected. However, the visual quality in Figures 1(D),

1(E). and 1(F) is generally as good as that in Figure 1(C). The latter three images

were deblurred with Levy densities with values (q-,/1) where o > ci0 , /j < /io , and

they differ from Figure 1(A) in contrast and brightness. All deblurred images were

obtained using the SECB method with s = 0.001 and I\ = 10000. One dimensional

cross sections of the four distinct psfs used in Figure 1 are displayed in Figure 2.

These psfs also exhibit distinct heavy tail behavior not shown in Figure 2.

One can imagine four photographers, simultaneously photographing the identical

scene depicted in Figure 1(A), yet producing the four distinct images shown in Figures

1(C), 1(D), 1(E), and 1(F), through use of different lenses, film, filters, exposures,

printing, and the like. In practice, given only the blurred image in Figure' 1(B), any

one of these four restorations would be considered highly successful. Convolution of

each reconstruction with its corresponding psf in Figure 2. reproduces the blurred

image in Figure 1(B).

For any restoration /(./•. //) of the exact image fe (x,y) in Figure 1(A), anti any

norm
|| ||, we can evaluate the relative error

|| / — /, || / || fe ||. Define the discrete

Id, L J
. and Hm norms as follows

(10) 11/11-2= {a'- 2

EC=.I/(-'2 9)P}'
/
',

ii / ii*- = { iv-2 e£

k
,=. ( i

+

e + tY" \m. -i)P
}

1/2

.

The relative errors in the L ]

, L 1
. II

1 and // ’ norms, for each of the four restora-

tions in Figure 1, are shown in Table 1. As might be expected, image (C) is the closest

to image (A) in each of these norms, since the correct psf values were used to obtain

image (C) from image (B). It is also evident from Table 1 that the four restorations

are distinct from one another, since they differ from image (A) by different amounts.

Most important, the fact that image (E) is a significantly poorer approximation to

image (A) in these norms than is image (C), does not imply that image (E) is an

inaccurate representation of the visual scene depicted in image (A). Notice also that

image (F) is not as sharp as image (E), although it is closer to image (A) in three of

the four norms.

Iterative algorithms are the most common approach to blind deconvolution. Con-

vergence proofs for such iterative procedures are seldom available. The above example

illustrates some of the difficulties underlying any analysis of convergence. Such anal-

ysis should allow for the possibility of infinitely many useful limit points, while the

mathematical characterization of such limit points is not obvious. Moreover, as is

evident from Table 1 and has been known for some time, the use of Lp or H‘" norms

in assessing the visual quality of a reconstruction can be misleading.

5. Marching backwards in time and the APEX method. The APEX
method is a blind deconvolution technique based on detecting class G psf signat ures

by appropriate 1-D Fourier analysis of the blurred image y(.i\ y). The detected psf

parameters are then input into the SECB algorithm to deblur the image. Let /,.(.;. //)
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FOUR DISTINCT PSFS THAT DEBLUR SYDNEY IMAGE

SPATIAL VARIABLE X (IN PIXELS)

C5

Os

Fig. 2. Four distinct point spread functions that deblur image (B) in Figure 1. Curves C , D, E
and F are l-D cross sections of the 512 x 512 psfs that respectively produced images (C), (D), (E)

and (F) in Figure 1. These psfs also exhibit distinct heavy tail behavior.

TABLE 1

Relative errors in various norms for the four deblurred images in Figure 1.

Restoration Parameters o, (3 L l L2 H l H 5

Image (C) a = 0.075, /3 = 0.500 2.13 % 3.52 % 4.13 % 19.66 %
Image (D) a = 0.130, f3 = 0.443 6.63 % 8.37 % 8.67 % 21.11 %
Image (E) a = 0.195, /3 = 0.404 12.64 % 15.53 % 15.75 % 25.52 %
Image (F) a = 0.236, f3

— 0.370 12.54 % 15.08 % 15.31 % 26.17 %

be an exact sharp image as in (5). Since fe (x,y) > 0

(11) |/e (f , v)\ < / fe (x, y)dxdy = fe (0, 0) = a > 0.

Also, since ge (x,y) = h.(x,y
) 0 fe (x,y) and h(x,y) is a probability density,

(12) ge (0, 0) — / ge (xpy)dxdy = I f, (x.y)dxdg = /, ((), 0) = rr > 0.

Jr 2 Jr 2

Using a as a normalizing constant, we may normalize Fourier transform quantities

q{ev) dividing by a. Let

(
13

)
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A B

r,
1VH'«Nvwi

Fig. 3. Behavior of normalized Fourier transform in types of blurred images g(x,y) considered

in present paper. (A) log \g* (£, 0)| in Cindy Crawford image. (B) log|r)*(£.0)| in Washington DC
Landsat image. While local behavior is highly oscillatory, global behavior is generally monotone
decreasing and convex.

denote the normalized quantity. The function |/e (£, rf)\ is highly oscillatory, and
- *

0 < l/e
|

< I- Since fe (x,y) is real, its Fourier transform is conjugate symmetric.
»

*

Therefore, the function
\ fe (£,'//)

|

is symmetric about, the origin on any line through

the origin in the (£, 77 )
plane. The same is true for the blurred image data \g*(£, 7

/ ) |

.

All blurred images in this and the next section are of size 512 x 512 and quantized

at 8-bits per pixel. For any blurred image g(x,y), the discrete Fourier transform is a

512 x 512 array of complex numbers, which we again denote by </(£, 77 )
for simplicity.

The ‘frequencies’ £,?/ are now integers lying between —256 and 256, and the zero

frequency is at the center of the transform array. This ordering is achieved by pre-

multiplying g(x, y) by
(
— l)

J + y
. We shall be interested in the values of such transforms

along single lines through the origin. The discrete transforms |<7 *(£, 0)|, and |<y*(0, 77 )

|

are immediately available. Image rotation may be used to obtain discrete transforms

along other directions. All 1-D Fourier domain plots shown in this paper are taken

along the axis 7
/
= 0 in the (£, 77 )

plane. In these plots, the zero frequency is at the

center of the horizontal axis, and the graphs are necessarily symmetric about the

vertical line £ = 0. Examples of such plots are shown in Figures 3, 5, and 10.

The class of blurred images g{x, y) considered in the present paper can be de-

scribed in terms of the behavior of log \g*(£,T))\ along lines through the origin in the

(£, 77 )
plane. While local behavior is highly oscillatory, global behavior is generally

monotone decreasing and convex. This is shown in Figure 3 for two typical images,

along the line 77 = 0. I 11 [9], a large class of images with that property was exhibited,

the class W. The blurred images considered here may be loosely characterized as

being in class W. Not all blurred images may be so characterized. For example, if

the Cindy Crawford image g(x,y) in Figure 3(A) were convolved with a, wide Gaus-

sian psf to form a new blurred image gi(x, y), global behavior in log |</i*(£, 0 )|,

away from the origin, would be monotone decreasing and concave. Application of the

APEX method to several concave examples is discussed in [9]. Convolution of Figure

3(A) with a. defocus psf produces a different kind of blurred image //_> (;/\ ;</), and global

behavior in log |fyV(£, 0)| is neither concave nor convex. Instead, there is a regular

pattern of sharp singularities corresponding to successive zeroes of the defocus off.

Use of the APEX method in the manner to be described below, is intended only for
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blurred images with Fourier behavior analogous to that shown in Figure 3.

The APEX method is based on the following observations. In the basic relation

(14) g(*,y) = h{x,y) ® fe (x,y) + n(x,y),

we may safely assume that the noise ii(x,y) satisfies

(15) /
\n(x,y)\dxdy / f,.(x,y)dxdy = a > 0,

Jr2 ) r-

so that,

(16) |b*(£,r/)| <C 1.

Consider the case where the otf is a pure Levy density />(£,?/) = e~ a^ +n 1
. Since

!) = 9e + II

(17) log|<nC'/y)| =\og\e- a{? + ,
'

2),i

l*(Z,v) +n'(Z,ii)\.

Let = {(£,?/)
|
£
2 + T

)

2 < ur} be a neighborhood of the origin where

(18) e>
-a(€WC|//

(^ 7/)|»| 7r(4i7?) |.

Such an il exists since (18) is true for £ = ?/ = 0 in view of (16). The radius u > 0 of

11 decreases as a and n increase. For (£,//) £ 11 we have

(19) log|<T(£,t?)| » -o(£2 + rfY + log |/e *(£, r;)|.

Because of the radial symmetry in the psf, it is sufficient to consider (19) along a

single line through the origin in the (£,??) plane. Choosing the line y = 0, we have

(20) log l^*(C 0)| ~ — o|£|
2/i + log |/e *(£, 0)|, k

c |<u,’.

Some type of a-priori information about fe (x,y) is necessary for blind deconvolu-

tion. In (20), knowledge of log|/e (£,0)1 on |£| < uj would immediately yield Q'|£|
2 '^

on that interval. Moreover, any other line through the origin could have been used in

(19). However, such detailed knowledge is unlikely in practice. The APEX method

seeks to identify a useful psf from (20) without prior knowledge of log |/e (£, 0)|. The
method assumes instead that fe (x, y) is a recognizable object, and typically requires

several interactive trials before locating a suitable psf. As previously noted, such

trial SECB restorations are easily obtained. Here, prior information about fe (x,y)

is disguised in the form of user recognition or rejection of the restored image, and

that constraint is applied at the end of the reconstruction phase, rather than at the

beginning of the detection phase.
~ *

In the absence of information about log|/e (£,0)|, we replace it by a negative

constant —.4 in (20). For any A > 0, the approximation

(21) log|r(C0)| w -a\Z\
2l3 -A,

is not valid near £ = 0, since the curve u(£) = —o |£|
2 ,H — A, has —A as its apex.

Choosing a value of .4 > 0, we best fit log |<y*(£,0)| with u(£) — — oj£|
2tf — .4 on the

interval |£| < a;, using nonlinear least squares algorithms. The resulting fit is close
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t=1.0 t=0 . 8 t=0 . 7 t=0 .

6

t = 0 .

4

t = 0 .

0

Fig. 4. Enhancement of Cindy Crawford image by marching backwards from t = 1 with

APEX detected psf. Image sequence shows gradual increase in contrast as I decreases. Undesirable

artifacts at t = 0 indicate continuation backwards in time has proceeded too far. Best results are

highly subjective m this case, but probably occur at some I > 0.5. Note sharpness of earrings near

t = 0.5.

only for £ away from the origin. The returned values for a and ft are then used in

the SECB deblurring algorithm. Different values of .4 return different pairs (cv, (3).

Experience indicates that useful values of .4 generally lie in the interval 2 < A < 6.

Increasing the value of A decreases the curvature of u{£) at £ = 0, resulting in a

larger value of ft together with a smaller value of a. A value of .4 > 0 that returns

ft > 1 is clearly too large, as ft > I is impossible for probability density functions

[13]. Decreasing A has the opposite effect, producing lower values of ft and higher

values of a. As a rule, deconvolution is better behaved at lower values of ft than it is

when ft « 1. A significant observation is that an linage blurred with a pair (ao,fto)

can often be successfully deblurred with an appropriate pair (a, ft), where o > «o
and ft < ft0 . Examples of this phenomenon were shown in Figure 1 in connection

with the blurred Sydney image. An effective interactive framework for performing the

above least squares fitting is the fit command in DATAPLOT [16]. This is a high-

level English-syntax graphics arid analysis software package developed at the National

Institute of Standards and Technology. This software tool was used throughout this

paper.

The following version of the APEX method, using the SECB inarching backwards

in time option (9), has been found useful in a variety of image enhancement problems

where the image g(x, y) is such that log 0)| is generally globally monotone

decreasing and convex, as shown in Figure 3. Choose a value of .4 > 0 in (21) such

that the least squares fit develops a slight cusp at f = 0. Using the returned pair

(a, ft) in the SECB method, obtain a. sequence u'(x,y,t) of partial restorations as

t decreases from t = 1, as illustrated in the Cindy Crawford sequence in Figure 4.

With a good choice of A, high quality restorations will be found at positive values of
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t, and these will gradually deteriorate as t 4 0. Typically, the restoration at t = 0

will exhibit undesirable artifacts, indicating that continuation backwards in time has

proceeded too far in (7). Terminating the continuation at some appropriate t = t.\ > 0,

is equivalent to rescaling the value of a without changing the value of (3. If the pair

(a,/i) produces a high quality restoration at t. = t\ > 0, the pair (aq,/3), where

aj = (1 - t i)cv, will produce the same quality results at t = 0. In general, there will

be many values of A in (21) returning pairs {a, (3) that produce good reconstructions

at some tap > 0. A large number of distinct pairs («*,/4*) can thus be found that

produce useful, but distinct, results at t = 0. Indeed, this is the process that was used

to obtain the four psfs shown in Figure 2.

We have been assuming //.(£,//) to be a pure Levy otf in (14). For more general

class G otfs (2), we may still use the approximation log|<?*(£, 0)| ~ — a|£| 2/^ - .4,

and apply the same technique to extract a suitable pair (cv,/l) from the blurred image.

Here, the returned APEX values may be considered average values for the o,, (3, in

(2). producing a single pure Levy otf approximating the composite otf.

6. Application to real images. The developments in sections 2 through 5

are predicated on two assumptions. The first assumption is that the blurred image

g(.r, y) obeys the simple convolution equation (3) rather than a more general, possibly

nonlinear, integral equation

In addition to linearity, (3) implies that, the blur is isoplanatic. The second assumption

is that the point spread function h(x,y) belongs to a restricted class of unimodai,

radially symmetric, probability density functions, the class G defined in (2). In [9],

successful blind deconvolution of synthetically blurred images, with added noise, was

demonstrated. Such synthetically blurred images necessarily obey (2) and (3).

The applicability of the preceding theory to real blurred images is by no means

assured. Deviations from linearity, isoplanatism, unimodality, and radial symmetry
are possible. Moreover, the class G excludes motion and defocus blurs. In addition,

the types and intensities of noise processes in real images may differ fundamentally

from the noise models typically used in numerical experiments. Therefore, only limited

success on a narrow class of images can be expected in real applications.

The examples discussed below involve images obtained from multiple sources using

diverse imaging modalities. Some of these images have been used as test images in

the literature. In this paper, each of these images is assumed to have been blurred by

some unknown process, and we seek to improve visual quality by APEX processing.

All images are of size 512 x 512 and quantized at 8 bits per pixel.

Our first, example is a well-known English village image denoted by g(x,y), and

shown in Figure 5(A) together with log |ry*(£, 0)| on |£| < 250. The plot, displays

globally convex monotone behavior. In Figure 5(B), the APEX fit of log|g*(£, 0)|

with u(f) = — o|£| 2/3 — .4, on the interval |£|
< 200, is shown. With .4 = 3.75, the fit

develops a cusp at £ = 0 and returns o = 0.251274, (3 = 0.242246. With these psf

parameters, SECB deblurring using s = 0.01, A = 1300, and continuation backwards

in time terminated at. t — 0.5, produces Figure 6(B). This is compared with the

original in Figure 6(A).

The extent of sharpening in Figure 6(B) becomes evident when zooming on se-

lected parts of the image. In Figure 7, rooflines on the first three houses are compared
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A B

8-BIT ENGLISH VILLACE IMAGE

-250 -ISO -50 50 150 250

DISCRETE FREQUENCE I INTEGER )

APES METHOD IN 8- BIT ENGLISH VILLAGE IMAGE

-200 -tOO 0 tOO 200

DISCRETE FREQUENT) [INTEGER]
LEA , T SQUARES FIT WITH APE\=-H 75 (

5

OLID LINE)

Fig. 5. APEX method of psf detection. (A) log |g* (£, 0)| on |£| < 250 m 8-bit English, village

image. (B) Least squares fit of log
|

g* (f , 0)| with ;/,(£) = —a |£|
2^ —3.75 on |£| < 200. develops cusp

at £ = 0 and returns a = 0.251274, /3 — 0.242246.

A B

Fig. 6. Enhancement of English village image. (A) Original 8-bit image. (B) SECB deblurred

image using s — 0.01, l\ = 1300, with APEX detected values a = 0.251274, /l = 0.242246. and
continuation backwards in time terminated at t = 0.5.

before and after APEX processing. There is noticeable enhancement of structural de-

tail in the roof shingles and stone fronts of the three houses in Figure 7(B). In Figure

8(B), Holstein cows grazing in the meadow, not previously identifiable, are clearly

visible. So are individual chimney bricks. In Figure 9(B), buildings in the distance,

not readily noticed in Figure 9(A), become well-defined.

It should be noted that use of a different value of .4, and/or a different neigh-

borhood of the origin H in Figure 5(B), may return a different psf pair (cv,/J). In
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Fig. 8. Extent of sharpening in English village scene becomes more evident with zooming.

Holstein cows grazing in m.eadow in image (B) are not readily identifiable in image (A).

that case, backwards continuation in the SECB method may need to be terminated

at some other value of t to obtain the best image. However, with good choices of A
and {l, the latter image would again be a high quality representation of the visual

scene in Figure 6(B), while differing from Figure 6(B) at individual pixels. This is

the non uniqueness phenomenon previously discussed in connection with the Sydney
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A B

Fig. 9. Extent of sharpening m English, village image becomes more evident with zooming.

Enhanced image (B) shows buildings in distance not immediately apparent in original image (A).

A B

FOURIER TRANSFORM BEHAVIOR IS ENGLISH VILLAGE IMAGE FOURIER TRANSFORM BEHAVIOR IN TERRAIN IMAGE

i

i

.1

ENHANCED './

'j

l

'"
1

"j U R

I
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j 'V

i

:

_i
, ,

,
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ORIGINAL IMAGE (SOLID) ENHANCED IMAGE < DOTTED

)

Fig. 10. APEX processing significantly alters Fourier transform behavior. (A) English village

image before and after processing. (B) F15 terrain image in Figure 12 before and after processing.

Behavior shown in (B) is exceptional. All other examples in present paper conform with, behavior

shown in (A).

image in Figure 1.

Deconvolution of Figure 6(A) with the above APEX-detected psf significantly

alters its Fourier transform. As shown in Figure 10(A), the Fourier transform in

Figure 6(B) (dashed curve), decays less rapidly as |£| increases than was the case in

the original Figure 6(A) (solid curve). Evidently, APEX processing amplifies high

frequency image components in a stable coherent fashion, resulting in the overall

improvements visible in Figures 6 through 9. The ‘before and after’ Fourier transform
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A B

Fig. 11. Enhancement of boat image. APEX method with A = 4.0 on |£| < 250, yields

a = 0.518155, = 0.215083. Using these parameters with s = 0.01, K = 1300, and backwards

continuation terminated at t = 0.5, SECB method applied to image (A) produces image (B). Number
7 2 7 on side of boat in image (B) was not easily identifiable in image (A).

Fig. 12. Striking enhancement of terrain features in FI5 image. APEX method with A = 3.5

on |£| < 250, yields a = 0.85G096, ft = 0.107289. Using these parameters with s = 0.01, A = 1000,

and backwards continuation terminated at t — 0.25, SECB method applied to image (A) produced

image (B). Condensation trails behind aircraft in image (B) not immediately evident m image (A).
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A B

Fig. 13. Enhancement of Washington DC Landsat image. APEX method with A = 4.25 on

|£| < 250, yields a = 0.540825, f3
= 0.182410. Using these parameters with s = 0.01, K = 1300, and

backwards continuation terminated at t = 0.5, SECB method applied to image (A) produced image
(B). Increased resolution in image (B) improves definition of several landmarks and thoroughfares.

A B

Fig. 14. Enhancement of scanning electron microscope image of a mosquito’s head showing

compound eye. APEX method with A = 4.0 on |£| < 250, yields a = 0.734259, (3 = 0.156963. Using

these parameters with s = 0.001, K = 10, and backwards continuation terminated at t = 0.4, SECB
method applied to image (A) produced image (B). APEX processing enhances contrast and brings

eye into sharper focus.
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Fig. 15. Enhancement of sagittal MRI brain image. APEX method with A — 4.0 on |£| < 250,

yields a = 0.333267, (3 — 0.209416. Using these parameters with s = 0.01, K = 1300, and backwards

continuation terminated at t = 0.35, SECB procedure applied to image (A) produced image (B).

APEX processing noticeably improves feature definition in areas between two and four o’clock.

Fig. 16. Enhancement of transverse PET brain image. APEX method with A = 5.0 on

|£| < 250, yields a = 0.198931, (3 = 0.284449. Using these parameters with s = 0.001, K = 5.0,

and backwards continuation terminated at t = 0.6, SECB procedure applied to image (A) produced

image (B). Bright spots in enhanced image (B), indicating areas of the brain responding to applied

external stimuli, are barely visible m original image (A).
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Fig. 17. Enhancement of Whirlpool Galaxy (M51) image. APEX method with A = 4.0 on

|£| < 250, yields a = 0.451615, f3 = 0.221955. Using these parameters with s = 0.001, A’ = 5.0.

and backwards continuation terminated at t = 0.5, SECB applied to image (A) produced image (B).

APEX processing increases resolution and enhances luminosity in spiral arms and galactic cores.

pattern shown in Figure 10(A) occurs in every example discussed in this paper, with

the exception of the F15 image in Figure 12. The anomalous behavior in that case is

shown in Figure 10(B).

The next example is the boat image in Figure 11(A). With A — 4.0, the APEX fit

on |£| < 250 returned o = 0.518155, (3 = 0.215083. Using these values in the SECB
method, with s = 0.01, A = 1300, and continuation terminated at t = 0.5, produced

Figure 11(B). Enhancement has now rendered visible the number 7 2 7 on the left

side of the boat. Other identifiable details include the stripe along the left trouser

leg of the man on the ground, the lettering on the sign hanging from the boat, to his

right, and part of the stone work and stairway to the left of the lighthouse.

The F15 plane image in Figure 12(A) is another interesting example. The aim

here is to enhance the background terrain. With A = 3.5, the APEX fit on |^|
< 250

develops a cusp at £ = 0 and returns a = 0.856096, (3 = 0.107289. Using these

values in the SECB method, with s = 0.01, I\ = 1000, and backwards continuation

terminated at t = 0.25, produces rather striking enhancement of the ground features

in Figure 12(B). This example is noteworthy on two counts: the exceptionally low

value of f3 detected by the APEX method, and the previously mentioned unexpected

Fourier behavior shown in Figure 10(B).

Beginning with Figure 1, all of the examples discussed so far involve images of

familiar objects. This allows for relatively easy evaluation of the results of APEX
processing. The next five examples involve less familiar objects. Moreover, fine de-

tails visible on a modern high resolution computer screen are sometimes lost in t he

printing process. Consequently, improvements in image quality in some of the next

examples may seem less obvious than in previous examples. At the same time, the

performance of the APEX method in reconstructing real details of familiar objects,
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provides a. measure of confidence in the results obtained when that method is applied

to unfamiliar objects.

Figure 13(A) is a Landsat image of the Washington DC area. With A = 4.25, the

APEX fit on |f |

< 250 returns a = 0.540825, f3 = 0.182410. Using these parameters in

the SECB method with s = 0.01, K — 1300, and continuation terminated at t = 0.5,

produces Figure 13(B). There is a significant increase in resolution in Figure 13(B),

which improves definition of several landmarks and thoroughfares. The Washington

Monument, the bridges over the Potomac, Pennsylvannia and Maryland Avenues

radiating from the Capitol, Massachusetts Avenue to the north, and Virginia Avenue

and the Southeast Freeway to the south, are some of the features that are more easily

identified in the enhanced image.

Figure 14(A) is a scanning electron microscope image of a mosquito’s head. A
prominent feature is the insect’s compound eye. With .4 = 4.0, the APEX fit on |f

|

<

250 yields a = 0.734259, f3 = 0.15G9G3. Using these values in the SECB method with

s = 0.001, I\ — 10.0, and backwards continuation terminated at t
—

0.4, produces

Figure 14(B). Evidently, APEX processing results in significant overall improvement.

In particular, the eye appears in much sharper focus.

The sagittal MRI brain image in Figure 15(A) has been used as a test sharp image

in previous publications. In [5] and [7], synthetically blurred versions of that sharp

image were used in a comparative evaluation of restoration algorithms when the psf is

known. Here, we consider further sharpening the sharp image by blind deconvolution.

With .4 = 4.0. the APEX fit on |f| < 250 returns a — 0.333267, [3 = 0.209416. Using

these parameters in the SECB procedure with s = 0.01, K = 1300, and continuation

terminated at, t = 0.35, produced the image in Figure 15(B). Substantial improvement

is apparent over the whole image. In the sector between two and four o’clock in

particular, sharpening of structural detail significantly improves feature definition.

In PET imaging, a positron emitting radionuclide is injected into the patient and

used to tag glucose molecules in their course through the brain. The metabolic rate

of glucose is a key parameter that measures cerebral function and reflects the extent

to which regions of the brain are working or failing to work. Performing specific

mental tasks activates various parts of the brain, causing increased glucose uptake

and hence increased positron emission. Centers of activity translate into relatively

bright spots in the PET image. However, blurring by the scanner psf tends to average

out such relative differences, resulting in loss of contrast. Figure 16(A) is a PET
image of a transverse slice through the brain. Blind deconvolution is used to enhance

that image. With .4 = 5.0, the APEX fit on |£|
< 250 returns cv = 0.198931, (3 =

0.284449. Using these parameters in the SECB method with s = 0.001, I\ = 5.0,

and backwards continuation terminated at t = 0.6. produces Figure 16(B). Note that

both images in Figure 16 show identical features, but contrast has been increased in

the APEX processed image, with some regions becoming darker while others have

become lighter. In particular, several bright spots appear in Figure 16(B) that were

not readily apparent in the original image.

Our last example is the Whirlpool galaxy (M51) in Figure 17(A). With .4 = 4.0,

the APEX fit on |£|
< 250 yields a = 0.451615, /3 = 0.221955. Using these values in

the SECB method with s = 0.001, I\ = 5.0, and backwards continuation terminated

at t = 0.5, produced Figure 17(B). In the enhanced image, the spiral arms are more

luminous and better defined, and the luminous cores are larger in both the spiral

galaxy and its companion. The dark connecting arm between the two galaxies is also

more clearly defined. These enhancements are due to a change in Fourier transform
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behavior brought about by deconvolution with the APEX-detected psf. This change

in Fourier behavior is similar to that shown in Figure 10(A). although it is more

pronounced. A concomitant effect of deconvolution is amplification of data noise,

which now becomes visible against the dark background in Figure 17(B).

Clearly, in this galaxy image as in the preceding PET image, there is no way

of knowing whether or not the enhanced image conforms with reality. Conceivably,

the increased luminosity in Figure 17(B) may be exaggerated. However, the bright

areas along the galactic arms in Figure 17(B), as well as the bright spots in Figure

1G(B), did not materialize spontaneously. These areas must have been just below

some brightness threshold in the original image, and APEX processing has served the

very useful purpose of revealing their presence. If such areas appear overenhanced,

this can be corrected by repeating the SECB procedure and terminating continuation

at higher values of /

.

7. Concluding remarks. Setting aside all theoretical considerations, a practi-

cal enhancement technique has been presented that can sharpen significant classes of

images, originating from diverse imaging modalities. One important feature of the

above approach is its fast implementation on desktop platforms. Even with large size

images, numerous trial restorations can be accomplished in a few minutes of cpu time.

This makes for easy hue tuning of parameters. Whether or not APEX processing sig-

nificantly improves a given image can generally be quickly decided. Once improvement

is detected, fine tuning must be used to obtain optimal results. Here, another impor-

tant feature of the APEX method plays a useful role. This is the marching backwards

in time option characteristic of class G psfs, which allows for deconvolution to be

performed in slow motion. Robustness is a third important property of the APEX
method, allowing detection of multiple psfs capable of significant sharpening. This

substantially increases the probabilities of finding a useful candidate.

On the theoretical side, this paper raises new questions. The first of these is

the existence of several useful psfs. as demonstrated in the Sydney image in Figure

I. This phenomenon warrants further investigation. A second question concerns

the important role Levy psfs appear to play in numerous imaging systems. The

discussion in section 2 has surveyed inferences of stable laws that have been made
from mtf measurements. Development of methods of analyzing imaging systems that

can rigorously establish such laws, and predict the Levy exponent ft, would be a major

advance.

Reconciling the results of section 2 with the behavior of large classes of images

raises additional questions. Electronic imaging psfs h(x,y) are found to have expo-

nents ft > 0.5 in most cases, so that log /;,(£, 0) = — oj^|
2 '^

is a monotone decreasing

concave function on f > 0. However, as illustrated in Figure 3, all images g{x. g) used

in this paper are such that global behavior in log
| <?*(£, 0)| is generally monotone

decreasing and convex. Another large class of images with this convexity property,

the class W, was exhibited in [9]. When such images are APEX-fitted with a Levy

psf in the manner shown in Figure 5(B), a value of ft
< 0.5 is inevitably detected.

An average value of ft
= 0.23 was found for the six images in Figures 4, C, 11. 15,

16, and 17, and significantly lower values were found for the remaining three images

in Figures 12, 13, and 14. A possible partial explanation for this discrepancy is pro-

vided by the Sydney experiment in Figure 1. There, the APEX method detected

several useful psfs with values of ft smaller than the value that was used to blur the

image. The detected /i-values in the above nine images may likewise underestimate

the true imaging system /Lvalues. An entirely different scenario may be that the
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APEX met hod provides generic low exponent Levy psfs capable of enhancing a wide

variety of images, independently of the imaging physics that created them. Other

generic enhancement techniques have been used for some time in image processing,

[28, Chap. 10]. More recent approaches based on nonlinear diffusion equations are

also intended as generic enhancement methods, [10]. However, such methods require

large numbers of iterations and are not well suited for real-time processing of complex

high resolution imagery.

Whatever may be the reasons behind it, the effectiveness of the APEX method

on many types of images is undeniable, and the method is a useful addition to the

image processing toolbox.
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