

A

NISTIR 6736
 core product model for representing
design information

Steven J. Fenves

NISTIR 6736

A CORE PRODUCT MODEL FOR REPRESENTING DESIGN INFORMATION
Steven J. Fenves1

February 2001

A core product model for representing
design information

Steven J. Fenves
Guest Researcher, MSID

MEL

October 2002

U.S. DEPARTMENT OF COMMERCE
Donald L. Evans, Secretary

TECHNOLOGY ADMINISTRATION
Phillip J. Bond, Under Secretary of Commerce for Technology

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
Arden L. Bement, Jr., Director

Contents

Abstract ……………………………………………………………………………… 5
1. Motivation ……………………………………………………………………….. 6
2. Organizational Setting …………………………………………………………... 6

2.1 The Knowledge-based System Interoperability Project ………………...6
2.2 Related Projects …………………………………………………………7

3. Related Research …………………………………………………………………7
3.1 Product Modeling ……………………………………………………….7
3.2 Design Information Flow Modeling …………………………………… 9

4. Objectives ……………………………………………………………………… 10
5. Pragmatic Study ………………………………………………………………... 10
6. The Core Representation ……………………………………………………….. 11

6.1 Representation of Attributes and Class Types ………………………… 11
6.2 Semantics ……………………………………………………………… 12
6.3 Class Hierarchy ………………………………………………………... 16
6.4 Associations and Aggregations ………………………………………... 17
6.5 Relationships …………………………………………………………... 18

7. Present and Potential Applications ……………………………………………… 19
7.1 Design Repository ……………………………………………………... 19
7.2 Open Assembly Design Environment
7.3 Design for Tolerancing ………………………………………………… 21
7.4 Design-Process Planning Integration …………………………………... 21

8. Areas for Future Research ………………………………………………………. 22
8.1 Extensions to Support of Interoperable Tools …………………………. 24
8.2 Exploration of Applicability to Full Lifecycle of Artifact …………….. 24

9. Summary ………………………………………………………………………... 25
Acknowledgements …………………………………………………………………. 25
References …………………………………………………………………………... 26
Appendix A: Comparison of Four Product Models ………………………………… 33
Appendix B: The Core Model ………………………………………………………. 36

 - 2 -

LIST OF FIGURES

1. Classes ……………………………………………………………………………. 13
2. Class Hierarchy …………………………………………………………………… 16
3. Associations and Aggregations …………………………………………………… 17
4. Relationships ……………………………………………………………………… 18
5. Complete Class Diagram …………………………………………………………. 19
6. Partial Artifact Class Hierarchy …………………………………………………… 23
B1. Class Diagram Implemented ……………………………………………………… 34

 - 3 -

LIST OF TABLES

1. Mapping of Information Flow Model States to Core Model Object Classes ……. 20
2. Possible Extensions to Core Model ……………………………………………… 20
3. Partial Taxonomy of Artifacts …………………………………………………… 22

 - 4 -

A CORE PRODUCT MODEL FOR REPRESENTING DESIGN INFORMATION
Steven J. Fenves

Abstract

The report presents a core model for representing design information, motivated by the
perceived needs of next-generation product development systems and drawing content-
level requirements from a related study of design information flows. The core model was
synthesized from a comparison of several independently-developed design artifact
representations.

The primary objective of the report is to provide a base-level product model that is: not
tied to any vendor software; open; non-proprietary; simple; generic; expandable;
independent of any one product development process; and capable of capturing the
engineering context that is most commonly shared in product development activities. The
core model focuses on artifact representation including function, form, behavior and
material, physical and functional decompositions, and relationships among these
concepts. The model is heavily influenced by the Entity-Relationship data model;
accordingly, it consists of two sets of classes, called object and relationship, equivalent to
the UML class and association class, respectively.

It is expected that the core model may eventually serve as a precursor for STEP in the
lifecycle of a product, capturing all information relevant to the ongoing design process
until the product design is firmed up, approved and committed to purchasing or
manufacturing. Aspects of extensions of the model in these directions are discussed.

Keywords:
product modeling, information modeling, data modeling, artifact, form, function,
behavior, Entity-Relationship data model, next-generation product development tools

 - 5 -

1. MOTIVATION

Product development is increasingly performed by geographically and temporally
distributed teams with a high level of outsourcing of many phases of the product
development process. As the complexity of products increases further and product
development becomes even more distributed, new tools will be needed to address a
broader spectrum of product development activities than do traditional Computer Aided
Design and Engineering (CAD/CAE) systems. Next-generation tools will require
representations that allow all information used or generated in the various product
development activities to be transmitted to other activities by way of direct electronic
interchange. Furthermore, product development across companies, and even within a
single company, will almost invariably take place within a heterogeneous software
environment. As a result, there is a greater need for the support of the formal
representation, capture, and exchange of the entire range of information generated and
used in the product development process, not just of the representation of the product
resulting from the completion of the design process. The ability to effectively and
formally capture additional types of information will become a critical issue.

This report provides a core representation for product development information which
can form the basis of future systems that respond to the demands sketched above. This
report seeks to address potential interoperability problems proactively, rather than
reactively, by providing this representation core as a foundation for improved
interoperability among software tools in the future (Shooter et al., 2000b). This work
focuses on an artifact representation that encompasses a broad range of engineering
design concepts beyond the artifact’s geometry, including function, form, behavior and
material, as well as physical and functional decompositions, mappings between function
and form, and various kinds of relationships among these concepts.

The development of a generic infrastructure for the next generation of product
development tools is an effort that neither industry nor the computer aided design,
manufacturing and engineering (CAD/CAM/CAE) tool vendor community is likely to
undertake alone. The National Institute of Standards and Technology (NIST), which has
U.S. industry as its primary customer and works to address problems that have
significance to industry, is well situated to invest in an effort to anticipate and address
interoperability needs in next-generation product development tools. This report is one
component of that effort.

2. ORGANIZATIONAL SETTING

2.1. The Knowledge-based System Interoperability Project

The work reported herein is a component of the Knowledge-based System
Interoperability Project within the Product Engineering Program (PEP) of the
Manufacturing Systems Integration Division (MSID) within the Manufacturing
Engineering Laboratory (MEL) of NIST. The goal of this project is to identify the
knowledge representation needs for next-generation product development systems, and to

 - 6 -

develop a generic core representation for product development knowledge on which
future systems can be built. This project seeks formal representations that are not tied to
any one specific product development process or single vendor software solution, are
open, non-proprietary, simple and generic, and are capable of capturing knowledge
commonly used in product development activities. The project deals with both high-level
modeling of the flow of information through the product development process and
information modeling of product development knowledge. The foundation of
information modeling of product development knowledge is that of modeling the product
representation itself, the subject of this report.

2.2. Related Projects

The Design for Tolerancing of Electro-mechanical Assemblies (DFT) project within PEP
is developing concepts, methods and technologies to advance tolerancing decisions to the
earliest possible stages of design and defining a multi-level approach called Design For
Tolerancing that enables tolerancing to be addressed through the entire design life (Roy
et al., 1999: Sudarsan et al., 2000). As part of DFT, the project is developing an
integrated, comprehensive, and neutral object architecture for function-assembly-
behavior modeling.

The NIST Design Repository project, also within PEP, has as its goal the development of
an information modeling framework to support the creation of design repositories, the
next generation of design databases, and implementation of a prototype design repository
tool suite (Szykman et al., 2000). The information modeling framework is based on a
versatile, but abstract, product model.

The Design/Process Planning Integration (DPPI) project within the Predictive Process
Engineering Program has the goal of demonstrating interoperability and enhanced
performance between design and process planning by providing process information to
the designer, thus allowing him/her to make more informed design decisions, particularly
at the early conceptual stages of design (Feng et al, 1999; Feng et al., 2000a: Feng et al.,
2000b). The project is developing a product model to which process information is
linked.

An earlier project, the Object-Oriented Distributed Design Environment Project,
developed a software prototype for the Knowledge-based System Interoperability Project,
using its own product model.

3. RELATED RESEARCH

3.1. Product Modeling

Traditional CAD systems are largely limited to the representation of geometric data. New
classes of tools that support function- and knowledge-based design, product data
management and concurrent engineering have been focusing primarily on database-
related issues and do not place a primary emphasis on information models for artifact

 - 7 -

representation, with representation of the design artifact itself still generally limited to
geometry, thus limits the utility of these tools in engineering (see, e.g., Bliznakov et al.,
1996; Hardwick and Loffredo, 1995; Kim et al., 1996; Shah et al., 1996; Wood and
Agogino, 1996).

The product model presented here follows the tradition of work in the area of artifact
representation. The division of artifact information into the categories of form, function,
and behavior has its roots in earlier work in intelligent design systems. Examples of such
work from artificial intelligence include qualitative simulation (de Kleer and Brown,
1983), behavioral and functional representation (Iwasaki and Chandrasekaran, 1992),
functional representation (Chandrasekaran et al., 1993) and successive representations
from projects such as KRITIK (Goel, Bhatta et al., 1996) and INTERACTIVE KRITIK
(Goel, Gomez et al., 1996), the YMIR project (Alberts and Dikker, 1992), and others.
Work in engineering design includes CONGEN (Gorti et al., 1998), the MOSES project
(Henson et al., 1994), the GNOSIS Intelligent Manufacturing System project (Ranta et
al., 1996), the Function-Behavior-State Modeler (Umeda et al., 1996), and the function-
behavior-structure framework (Qian and Gero, 1996). The work presented here is most
directly descended from the representation developed as part of the NIST Design
Repository project (Szykman et al., 1999; Szykman et al., 2000). That work is based in
part on the CONGEN architecture (Gorti et al., 1998), which made use of the SHARED
object model (Wong and Sriram, 1993) as a basis. The model presented here shares both
conceptual and representational aspects with that developed by the MOKA (Methodology
and tools Oriented to Knowledge based engineering Applications) Consortium, an
ESPRIT-funded collaborative project of the European Union (Stokes, 2001).

The reader may rightly question the need for another product model, given NIST’s and
MEL’s leadership in the development of STEP (Standard for the Exchange of Product
model data) and their continued commitment to its maintenance and enhancement
(ISO,1994; PDES, 1999; Kemmerer, 1999). STEP is a mature and widely used standard
for the exchange of product data after that product has been designed. In practice, STEP
tends to be invoked only late in the product development process, after all design
decisions have been made and when the product is ready to be purchased, manufactured
or assembled. Thus, STEP is used for the exchange of information that is the outcome of
design activities, rather than for the information produced and used through the
development of the design. STEP provides no support for design evolution, for the early
phases of design when descriptive information is sparse, and for the ready attachment of
various forms of knowledge rather than pure data.

The work presented here may be seen as intended to serve as the precursor for STEP in
the lifecycle of a product, capturing all the information relevant to the ongoing design
process until the product design is firmed up, approved and committed to purchasing or
manufacturing. A production version of the core product model presented here could be
readily fitted with a translator that would extract the information representing the finished
design and convert it to the STEP format for transmission to subsequent manufacturing
activities.

 - 8 -

3.2. Design Information Flow Modeling

The Open Assembly Design Environment (OpenADE), another component of the
Knowledge-based System Interoperability Project within PEP, is addressing design
information interchange and agent interoperability issues within the context of a
collaborative design framework (Lyons et al., 1999; Angster et al., 1998, Shooter et al.,
2000a). OpenADE seeks to formalize the semantics, types and levels of design
information. One step in this direction is the modeling of the flow of design information.
The model for the flow of design information differs from a design process model
because it models information flows among design activities irrespective of the particular
sequence in which the activities are executed. The model classifies design information
into various types and organizes these types into information states and levels of
abstraction. The information flow model assumes that design activities operate in two
modes. The iterative mode accounts for the various feedback loops that occur as
designers seek to satisfy design goals. The layered mode corresponds to the levels of
abstraction designers use as they represent the current state of the design at different
levels of completeness and fidelity.

The design information flow model identifies the following states of information. The
Customer Needs state describes what customers need or desire in a product. The
Specifications state describes customers’ needs in terms of evaluation criteria. The
Engineering Requirements state formalizes the requirements that the artifact must satisfy.
The Family of Solutions state includes one or more partial or prototypical descriptions of
the artifact proposed as the design solution. The Proposed Artifact state provides an
extensional description of the artifact at a given level of abstraction. The Observed
Behavior state includes the artifact’s behavior as derived, i. e., simulated, from its
description. The Evaluated Behavior state describes the extent to which the proposed
artifact’s observed behavior matches its intended behavior. Finally, the Evaluated
Requirements state includes an evaluation of the proposed artifact’s degree of satisfaction
of the engineering requirements. As stated above, these states are iterated on within one
level of abstraction, as well as expanded progressively as the design is carried out to
increasing detail, i. e., increasingly lower levels of abstraction. Possible extensions of the
core model to more fully support the information flow model are discussed in Section
7.2.

4. OBJECTIVES

The primary objective of the work presented in this report is to provide a base-level
foundation core product model to underlie the information flow model over all levels of
abstractions and one that retains the principles of the OpenADE project, namely, a
representation that is:

• not tied to a single vendor software solution,
• open and non-proprietary,
• simple and generic,

 - 9 -

• expandable,
• not dependent on any one product development process, and
• capable of capturing that portion of the engineering context that is most

commonly shared in product development activities.

This work is, in itself, not a development of a new standard. Rather, it is an attempt to
identify needs and provide a generic information representation core that can serve as a
foundation for development of new systems, which at some future point may be the
subject of standards development efforts. The work reported here can provide a starting
point for future standards. Simplicity is therefore a key requirement for the
representation. Simplicity also makes a proposed representation more appealing to users.
The product information representation also needs to be domain-independent and not be
tied to any one product development process.

It is expected that the core model presented in this report, with suitable modifications
based on experience in usage, can serve as the information transfer mechanism for next-
generation product development tools, either in the basic form presented here or as the
base-level representation of the multilevel design information flow model presented in
(Shooter et al., 2000a).

5. PRAGMATIC STUDY

The initial direction of the work presented was an attempt to provide a common basis
among the four in-house research and development projects described in Section 2:

• the NIST Design Repository project;
• the Design-Process Planning Integration project;
• the Design for Tolerancing of Electro-Mechanical Assemblies project; and
• the Object-Oriented Distributed Design Environment project.

In the early stages of these projects, the need for a shared product model was not
immediately apparent. However, as the projects progressed and presented their results in
group meetings, the commonality of concepts became apparent end a comparison was
called for. The comparison of the initial four product models is shown in Appendix A.
This comparison excludes terms that are specific to the domain of one project only, such
as process- and tolerance-related terms. As can be seen in the appendix, there was not
much commonality among the four product models. Of the 133 distinct terms used as
object or attribute names, 99 terms (74%) appeared in one model only and only 3 (2%)
appeared in all four models.

The core product model described here benefited greatly from the pragmatic comparison
study. Although the core model that resulted most closely resembles the model
originating from the NIST Design Repository project, terms from the other three projects
were also incorporated, showing the synergy provided by broader exposure and
discussion. The examination of multiple independently-developed models, abstracting out

 - 10 -

the commonalties, and distilling their basic information content, led to a more generic
and extensible representation than any one of them had previously provided. Ideas on
how the core model could be adopted by the projects described and extended as needed to
suit the concerns of the individual projects are presented in Section 7. Such an adoption
has already been made by the NIST Design Repository project, where the second-
generation information model is patterned directly after the core model presented here.

6. THE CORE REPRESENTATION

The core representation is heavily influenced by the Entity-Relationship data model
(Chen, 1976). Accordingly, the model consists of two sets of classes, called object and
relationship. The two sets of classes are equivalent to the Unified Modeling Language
(UML) terms of class and association class, respectively (Booch et al., 1999). The full
listing of all classes in the core representation is shown in Appendix B. In the text that
follows, names of classes are capitalized (e. g., Information) and names of attributes are not
(e. g., information).

The general characteristics of the classes are discussed first. Then, the semantics of each
class of objects and relationships is presented. Finally, the hierarchies and relationships
among the classes are presented.

 6.1. Representation of Attributes and Class Types

In order to make the representation as robust as possible without having to predefine all
possible attributes that might be relevant in any given domain, the core representation is
limited to attributes required to capture generic types of product information and to create
relationships among the classes. The representation intentionally excludes attributes that
are domain-specific (e. g., attributes of mechanical or electronic devices) or object-
specific (e. g., attributes specific to function, form or behavior). For the representation of
this information, two generic information modeling concepts have been adopted from the
NIST Design Repository project.

First, each object and relationship has an information attribute. The class Information is a
container consisting of:

• a brief textual description slot;
• a textual documentation string (e. g., a file path or URL referencing more

substantial documentation);
• a methods slot for the methods operating on the object; and
• a properties slot that contains a set of attribute-value pairs stored as strings

representing all domain- or object-specific attributes.

This lack of specialization results in a small number of broadly applicable classes.

 - 11 -

Second, all object and relationship classes, except for the abstract classes and the
Information class, have an attribute called type, the value of which is a string that acts as a
symbolic classifier. Each object and relationship class may have a distinct hierarchical
taxonomy of terms associated with that class. The value of the type attribute would then
correspond to one of the terms within the taxonomy for the given class. For example,
“convert” is one of numerous types of transfer functions and the term can serve as the
type attribute of an instance of the class. Thus, all object and relationship classes in the
representation may have their own individual generic engineering classification
hierarchies that are independent of any other hierarchy.

In the NIST Design Repository project, the typing information and the associated
taxonomies provide a standardized vocabulary which facilitates indexing and retrieval of
product knowledge for design reuse (Szykman et al., 1999). In an eventual
implementation of the core model for production use, the type attributes and their
underlying taxonomies may provide an automated means for creating domain-specific
specializations of the generic core classes, as discussed in Section 8.1.

 6.2. Semantics

This section presents brief descriptions of the semantics or meaning of all the classes in
the core model shown in Figure 1 (the seemingly odd placement of the objects in the
figure will be clarified in the succeeding figures).

Common Core Object
This is an abstract class (class with no instances) that is the highest level of generalization
of object classes, i.e., all object classes are specialized from it according to the class
hierarchy discussed in Section 6.3.

Core Entity
This is an abstract class from which the classes Artifact and Feature are specialized.

Core Property
This is another abstract class, from which the classes Function, Flow, Form, Geometry and
Material are specialized. Constraints, requirements and assembly relationships, as
presented in Section 6.4, may be applied to instances of this class.

Artifact
The key object class is the Artifact. The Artifact represents a distinct entity in a design,
whether that entity is a component, product, subassembly or assembly. All the latter
entities can be represented and interrelated through the subartifact/subartifact_of
containment hierarchy discussed in Section 6.4. The Artifact’s attributes, other than the
common ones described above, refer to the Specification responsible for the Artifact and the
Form, Function and Behavior objects comprising the Artifact, i. e., in UML terminology,
forming an aggregation with the Artifact.

 - 12 -

MaterialGeometryTransfer
Function

Form Flow Function

Feature

Artifact

Constraint

Assembly

Requirement

Set Rel’ship

Dir Set Rel

Undir Set Rel

Reference

Core
Property

Core
Entity

BehaviorSpecification

CommonCore
Relationship

Common
Core Object

Figure 1. Classes

An additional attribute, config_info, links the Artifact to an element of the class Config_Info
that represents design process-related attributes of the Artifact, such as state and level, as
used in (Shooter et al., 2000a), or version designation and other process parameters that
may be used in an interactive environment.

Feature
A feature is a subset of the form of an object that has some function assigned to it. Thus,
an artifact may have design features, analysis features, manufacturing features, interface
features (sometimes referred to as ports), etc., as determined by their respective functions.
Function has its own containment hierarchy, so that compound features can be created out
of other features (but not artifacts).
Specification
The Specification contains information relevant to an artifact derived from customer needs
or engineering requirements. The Specification collects the specific requirements that the
function, form, geometry and material of the artifact must satisfy.

 - 13 -

Function
The artifact’s function represents what the artifact is supposed to do. The artifact satisfies
the engineering requirements largely through its function. The term function is often
used synonymously with the term intended behavior.

Transfer Function
Transfer function is a specialized form of function involving the transfer of an input flow
into an output flow. Examples of transfer functions are “transmit” a flow of fluid or
current, a message, etc., or “convert” from one energy flow to another or from a message
to an action.

Flow
Flow is the medium (fluid, energy, message stream, etc.) that serves as the output of one
or more transfer function(s) and the input of one or more other function(s). Each flow is
also identified by its source and destination artifacts.

Behavior
The artifact’s behavior represents how the artifact implements its function. Behavior is
governed by engineering principles which are incorporated into a behavior or causal
model that explains how the intended function is achieved. Application of the behavior
model to the artifact describes or simulates the artifact’s observed behavior based on its
form.

Form
The form of the artifact can be viewed as the proposed design solution for the design
problem specified by the function. In the core product model described, the artifact’s
physical characteristics are represented in terms of its geometry and material properties.
This subdivision was introduced into the core model because some of the intended
applications, such as the Design-Process Planning Integration and the Design for
Tolerancing projects tend to treat these two aspects quite differently (e. g., the task of
material selection for a given function and geometry in process planning).

Geometry
Geometry is the spatial description of the artifact.

Material
Material is the description of the internal composition of the artifact.

Common Core Relationship
This is the abstract class from which all relationship classes are specialized according to
the class hierarchy presented in Section 6.3.

 - 14 -

Requirement
A requirement is a specific element of the specification of an artifact that applies to some
aspect of the function, form, geometry or material of the artifact. Conceptually,
requirements should only affect the function, i. e., the intended behavior; in practice,
some requirements tend to affect the design solution directly, i. e., the form, geometry or
material of the artifact. As will be shown in Section 6.5, requirements cannot apply to
behavior, which is strictly determined by the behavior model.

Constraint
A constraint is a specific shared property of a set of entities that must hold in all cases. At
the level of the core model, only the entity instances that constitute the constrained set are
identified. If it is intended to represent a mathematical equality or inequality constraint,
the properties slot of the constraint can store the names of the attributes that enter in the
constraint as well as the relational operator linking them.

Reference
A reference provides a direct means of linking or navigating between two entities.
Considering the vast complexity of relationships among entities that can be represented in
the model, it was thought prudent to introduce this class.

Assembly
The assembly relationship between artifacts, i.e., parts, and their assembly features is
modeled simply as a set membership relationship among attributes called components. In
future applications of the core model these components could be differentiated by roles,
for example: source artifact(s); their respective mating feature(s); and the resulting
artifact.

Set-Relationship
This is another abstract class from which the two relationship classes described below are
specialized.

Undirected Set-Relationship
This class sets up a simple set membership relationship among its constituent entities.

Directed Set-Relationship
This is a set membership relationship consisting of two subsets, one of which is called the
special member, in which the two subsets have different roles. For example, a directed
set relationship “control” may designate a special member of the set which has the role of
“controlling,” while the other members of the set have the role of being “controlled by”
that special member.

 6.3. Class Hierarchy

The class hierarchy is shown in Figure 2.

 - 15 -

Common
Core Object

CommonCore
Relationship

Specification Behavior

Core
Entity

Core
Property

Reference

Undir Set Rel

Dir Set Rel

Set Rel’ship

Requirement

Assembly

Constraint

Artifact

Feature

Function Flow Form

Transfer
Function Geometry Material

Figure 2. Class Hierarchy

All object classes are specializations of the abstract class Common_Core_Object. Its
attributes are name, information, and linkages to the Reference and set membership
relationships.

The specializations of the Common_Core_Object class are the Artifact, Behavior, Core_Entity
and Core_Property classes. The attributes of the Core_Property class are the linkages to the
Constraint, Requirement and Assembly relationships. The Specializations of the Core_Entity
class are the Artifact and Feature classes. The specializations of the abstract class
Core_Property are the Function, Flow, Form, Geometry and Material classes. The Function
class further specializes into the Transfer_Function class.

Similarly to objects, all relationship objects are specializations of the abstract class
Common_Core_Relationship, with attributes name and information. The specializations are
the Requirement, Reference, Constraint, Assembly and Set_Relationship classes. The latter
further specializes into Directed_Set_Relationship and Undirected_Set_Relationship classes.

 - 16 -

 6.4. Associations and Aggregations

Three kinds of associations between classes are shown in Figure 3.

Specification

Artifact

Feature

Function Flow Form

Transfer
Function Geometry Material

Behavior

Figure 3. Associations and Aggregations

First, all object classes, i. e., specializations of the abstract class Common_Core_Object,
except Flow, have their own separate, independent decomposition hierarchies, also known
as “part-of” relationships or containment hierarchies. Decomposition hierarchies are
represented by attributes such as subartifacts/subartifact_of for the Artifact class.

Second, there are associations between: (a) a Specification and the Artifact that results from
it; (b) a Flow and its source and destination Artifacts as well as its input and output Functions;
and (c) an Artifact and its Features.

Third, and most importantly, Figure 3 shows the three aggregations that are fundamental
to the core model: Function, Form and Behavior aggregate into Artifact; Function and Form
aggregate into Feature; and Geometry and Material aggregate into Form.

 - 17 -

6.5. Relationships

The relationships discussed in Section 6.1 form the association classes shown in Figure 4.

Common
Core Object

Core
Entity

Core
Property

Reference

Undir Set Rel

Dir Set Rel

Requirement

Assembly

Constraint

Specification

Figure 4. Relationships

Requirement is a one-to-many relationship between a Specification and a set of Function,
Form, Geometry, Material and Flow entities governed or otherwise affected by that
specification.

Constraint is an undirected set membership relation among the constrained Function, Form,
Geometry, Material and Flow entities.

Reference is a one-to-one directed relationship between referring and referred_to objects.

Assembly is a simple set membership relationship among its components.

Undirected_Set_Relationship is a simple set membership relationship among its members.

Directed_Set_Relationship further identifies special_members of the set as well as the roles
of members and special members.

The complete class diagram is shown in Figure 5. As can be seen from the discussion
above, the core representation is by no means minimal. The set of object classes largely
reflects traditional terms used in formal design descriptions and models; it was felt that
any further abstraction would have eliminated semantically meaningful terms. The
number of relationship classes could have been reduced, since requirements and
constraints could have been represented using the more generic set relationships.
However, it was felt that the terms “requirement” and “constraint” are by themselves
semantically meaningful in the design domain and that they should be retained.

 - 18 -

Common
Core Object

CommonCore
Relationship

Specification Behavior

Core
Entity

Core
Property

Reference

Undir Set Rel

Dir Set Rel

Set Rel’ship

Requirement

Assembly

Constraint

Artifact

Feature

Function Flow Form

Transfer
Function Geometry Material

Legend:

 Class Hierarchy

 Association

 Aggregation

 Relationship

Figure 5. Complete Class Diagram

7. PRESENT AND POTENTIAL APPLICATIONS

 7.1. Design Repository

As stated earlier, an earlier version of the core representation presented here (without the
Feature entity and the Assembly relationship) has been adopted for the latest version of the
Design Repository project.

 7.2. Open Assembly Design Environment

One of the anticipated applications of the core product model presented in this report was
for it to serve as the base-level representation of the multilevel design information flow
model for information transfer among next-generation product development tools
presented in (Shooter et al., 2000b). The correspondence between the states in the

 - 19 -

information flow model, summarized in Section 3.2, and the core model object classes is
shown in Table 1. In the table, Artifact implies the aggregation of Function and Form.

INFORMATION FLOW
MODEL

CORE MODEL

Customer Needs Specification
Specification Specification
Engineering Requirements Specification + Requirements
Family of Solutions Artifact
Proposed Artifact Artifact
Observed Behavior Artifact + Behavior
Evaluated Behavior Artifact + Behavior
Evaluated Requirements Artifact + Requirements

Table 1. Mapping of Information Flow Model States to Core Model Object Classes

It can be seen from the table that the correspondence is close, but that the two models are
by no means isomorphic: the core model does not provide a clear enough distinction
between the three uses of Specification and the five uses of Artifact. The discrepancy was
considered acceptable at the time that (Shooter et al., 2000b) was written. When further
work is undertaken on the Information Flow model, the core model may be extended as
shown in Table 2 to provide a closer correspondence.

INFORMATION FLOW
MODEL

CORE MODEL POSSIBLE EXTENSIONS OF
CORE MODEL

Customer Needs Specification Specialize?
Or, specialize its Requirements to
eliminate requires link

Specification Specification Same as above
Engineering Requirements Specification + Requirements Differentiate form/function

requirements?
Family of Solutions Artifact Specialize?
Proposed Artifact Artifact + Behavior See below
Observed Behavior Artifact + Behavior Differentiate Behavior attributes:

-behavior model (a method)
-intended behavior
-observed behavior

Evaluated Behavior Artifact + Behavior Add unintended behavior attribute?
Evaluated Requirements Artifact + Requirements Add evaluated requirement attribute?

Or, add evaluated attribute to
Requirement?

Table 2. Possible Extensions to Core Model

 - 20 -

 7.3. Design for Tolerancing

The core model presented in this report could be adapted readily for a major portion of
the Function Assembly Behavior (FAB) Model described in (Sudarsan et al., 2000). At
the top level, the differences between the core model and the FAB model are slight: (a) in
the FAB model, Goal, Decision and Design Context serve essentially the same purpose as
Specification in the core model; (b) Physical Solution is related to Behavior but the Technical
Solution interface is absent in the core model; (c) Assembly, Subassembly, Part, Feature and
Geometric Entity are treated as specializations of Artifact or Feature; and (c), most
significantly, Form, Geometry and Material do not appear at the top level (see Figure 10 of
(Sudarsan et al., 2000)).

It is at the next level, the modeling of Assembly, that differences arise. First, in the FAB
model, an Assembly is composed of Subassembly/parts; in the core model, this is
represented by the containment hierarchy. Second, in the FAB model, the relationship of
each Subassembly/part with another Subassembly/part is represented explicitly in terms of
the mating Features; this association is only skeletally represented by the Assembly
relationship in the core model. Finally, in the FAB model, geometry is associated
explicitly with features only and in terms of the most basic geometric entities, e. g., faces
(see Figure 11 of (Sudarsan et al., 2000)).

 7.4. Design-Process Planning Integration

The core model presented in this report could also be readily adapted for a major portion
of the object model supporting Conceptual Design Integrated with Process Planning
(Feng and Song, 2000a, 2000b). In fact, portions of the Feng and Song model are adopted
or derived from the core model. The differences between the two models are minor,
except for one: in the Feng and Song model, Feature is a direct ingredient of an artifact’s
Form (see Figure 4 of Feng and Song, 2000b)), while in the core model Feature is a class
at the same level as Artifact, so that a particular artifact’s features can only be accessed by
traversing the artifact’s containment hierarchy until the components’ feature attributes are
encountered. This difference is important because in the Feng and Song model both
tolerance and assembly modeling is based on this tight artifact-feature association, in a
manner similar to that discussed above in connection with the FAB model of (Sudarsan
et al., 2000). The remaining differences (e.g., that BehaviorSpecification is associated with
Artifact but BehaviorModel with its Form) can be resolved readily. Most of the process
planning concerns are associated with ArtifactToBeMade, a specialization of Artifact.

In summary, the only substantial extension needed for the core model to support the
functionality of both the FAB model and the Feng and Song model is the expansion of
the Assembly relationship. Further analysis is needed to determine whether: (a) a full 4-
ary relationship from artifact (subassembly/part in the FAB model) to mating feature to
mating feature to artifact is needed or whether the existing part- to-feature containment
hierarchies could be used to reduce it to a binary relationship; (b) if the latter, whether
this should be a relationship of mating feature to mating feature or of artifact to artifact (it
appears that the latter would be more useful in the early conceptual stages). In this

 - 21 -

connection, it should also be ascertained whether the Assembly, Subassembly, Part
hierarchy should be implemented by specialization of the Artifact class in addition to the
artifact containment hierarchy provided by the core model.

8. AREAS FOR FUTURE RESEARCH

 8.1. Extensions to Support of Interoperable Tools

As described in Section 6.1, the core model presented here adopts two techniques from
the Design Repository project so as to make the model compact and generic: (a) the use
of the type attribute for classification of entities; and (b) the use of the property attribute of
the Information entity associated with each class to store an object's attributes as a string of
attribute-value pairs. These techniques stemmed from the objectives of the Design
Repository project, i. e., the storage and retrieval of archival information rather than the
support of interactive product development. The benefit of these techniques is the generic
nature of the class hierarchy that allows the representation of a broad number of concepts
without specialization into a large number of subclasses. The lack of specialization is a
benefit at the representation level in terms of simplicity, but may be expected to be
unsuitable as a mode of information transfer between tools where rapid and seamless
interoperation is needed. There are a number of ways by which these limitations may be
removed.

The type taxonomies developed by the Design Repository project may be used to
generate, automatically or semi-automatically, domain-specific specializations of the
generic classes in the core model. As an illustration, Table 3 shows a small subset of the
taxonomy of Artifacts that arose in the modeling of the current set of example repositories,
without any specific attempt at a comprehensive artifact taxonomy. Figure 6 shows the
class hierarchy structure generated in a one-to-one correspondence with the classifiers in
the taxonomy tree. Similar class hierarchy structures may be generated as needed for the
other generic object classes, e. g., Function, Form and Behavior.

Artifact
Machine-element …

Axle …
Bearing …
Brake

Block-brake
Band-brake
Cone-brake …

Clutch
Friction-clutch
Axial-clutch
Cone-clutch …

Table 3. Partial Taxonomy of Artifacts

 - 22 -

Axle

Bearing

Brake

Machine-element

Block-brake

Band-brake

Cone-brake

Clutch

Friction-clutch

Axial-clutch

Cone-clutch

Artifact

Figure 6. Partial Artifact Class Hierarchy

The primary reason for having domain-specific subclasses of the generic classes is to be
able to assign readily accessible domain-specific attributes and methods to each
specialization class. In parallel with the expansion of the generic classes into domain-
specific subclasses described above, the properties attribute of each generic instance could
be expanded and each named attribute and method of the instance declared as an attribute
or method of the subclass.

An alternate means of retaining a few generic classes while representing many entities
with diverse attributes and methods was used in SEED-Config, a knowledge intensive
system for the design of buildings (Fenves et al., 1999). The information model of SEED-
Config, called BENT, uses only one generic class, called BuildingEntity, as a container (i.
e., aggregation) of all information about a building entity, which may be as general as an
entire building or as specific as a beam or even a joint (Rivard and Fenves, 2000). One
attribute of BuildingEntity is the buildingEntityType, the value of which is an entry from a

 - 23 -

hierarchical taxonomy of building entity types known to the system, in a manner
analogous to the type attributes in the Design Repository.

Some slots of the BuildingEntity are common to all building entity types, e. g., the entity’s
spatial representation (geometry), its classifiers (all symbol valued attributes are treated
as classifiers) and its derivation (the sequence of productions that produced the current
state of the artifact’s description). More specific attributes are grouped into three sets:
Function Units, analogous to Requirements and Function in the core model, describing the
design requirements; Design Units, analogous to Form, describing the proposed solution;
and Evaluation Units, analogous to Behavior, describing the evaluation results. Each unit
consists of one or more source-coherent attributes, typically the attributes resulting from
the application of one production, e.g., “loads” in a Functional Unit or “steel properties”
in a Design Unit. The BuildingEntityType acts as an internal classifier that determines what
types of Units can be assigned to a building entity of a given type.

Extending the core model in a manner similar to that used in the BENT model would
present no conceptual difficulties. The only distinction from the first specialization
method discussed above is that instead of actually generating specialization subclasses
with their explicit domain-specific attributes, the type taxonomies would be used to
designate the sets of attributes to be aggregated to the generic classes.

 8.2. Exploration of Applicability to Full Lifecycle of Artifact

All of the studies that contributed to the development of the core product model have
dealt with the early, conceptual phases of design. It is in these phases that the design of
the emerging artifact is most directly influenced by the requirements and that the function
and form of the artifact are dealt with equal emphasis. The core model directly facilitates
reasoning with these concepts by means of the associations, aggregations and named
relationships provided.

One of the anonymous reviewers of (Shooter et al., 2000a) questioned whether the design
information flow model, summarized in Section 3.2, is applicable to the later, detailed
design development phases. Since the core product model is envisaged as the base level
support of the design information flow model, as discussed in Section 7.2, the same
question is appropriate for the core model as well. The core model is sufficiently generic
that it should be applicable to the full lifecycle of the artifact beyond design to
manufacturing, distribution and recycling. Admittedly, detailed design development
introduces a great deal of detail in the artifact description, not all of it necessarily tied to
user requirements, function or even behavior. This information can be readily captured in
the core model through unlimited recursion in the containment hierarchies of the Artifact
and its Form. Nevertheless, the applicability of the core model for such use has neither
been demonstrated nor tested, and must therefore be treated as an open research question.

Alternately, as indicated in Section 3.1, the core model may be used only in the
conceptual design phases, with the resulting design description translated to more robust,
tested information exchange representations, e. g., STEP.

 - 24 -

The final significant area of future work is to gather feedback and buy-in from both
researchers and end-users of tools interoperating by means of a representation based on
the core model.

9. SUMMARY

This report presents a core representation for design information that is intended to serve
as a representational foundation for next-generation product development systems. The
development of this core representation was motivated by a vision of next-generation
product development systems, drew specific content-level requirements from a closely
related effort in design information flow modeling, and was synthesized after an analysis
of several independently-developed design artifact representations.

This research is one attempt to provide a foundation for next-generation tools by means
of a simple and generic representation infrastructure. Clearly, automated reasoning will
be easier using formally-represented product information than using informal or
unstructured information. The structure of product information that is captured, such as
physical decomposition, functional decomposition, and mappings between the two, will
further support reasoning about designs. The development of extensive taxonomies of
engineering terminology (an ongoing activity in the NIST Design Repository project) for
use with the type classification attribute will greatly facilitate the indexing and retrieval
of product information from engineering databases.

ACKNOWLEDGEMENTS

The author thanks Ram Sriram for suggesting the topic; his co-authors on (Shooter et al.,
2000a) and (Shooter et al., 2000b), Simon Szykman, Walid Keirouz and Steven B.
Shooter, for providing the global context for the core model and many iterations of
discussions; R. Sudarsan for many helpful discussions on modeling; Simon Szykman, R.
Sudarsan, Shaw Feng and Jaideep Ganguly, for contributing the individual product
models that merged into the common core model; Jocelyn Senfaute for assistance in
refining and maintaining the information model; and, foremost, Fujun Wang for
assistance in developing the UML model and its Java implementation.

DISCLAIMER

No approval or endorsement of any commercial product, service or company by the
National Institute of Standards and Technology is intended or implied.

 - 25 -

REFERENCES

Alberts L.K. and F. Dikker (1992), “Integrating Standards and Synthesis Knowledge
Using the YMIR Ontology,” Artificial Intelligence in Design ‘94, J.S. Gero and F.
Sudweeks (Eds.), Kluwer Academic Publishers, Boston, pp. 517-534.
 Angster, S., K. Lyons, P. Hart, and S. Jayaram (1998). “Interoperability of
Assembly Analysis Applications Through the Use of the Open Assembly Design
Environment,” Proceedings of DETC98, 1998 ASME Design Engineering Technical
Conference.

Bliznakov, P. I., J. J. Shah, and S. D. Urban (1996), “Integration Infrastructure to
Support Concurrence and Collaboration in Engineering Design,” Proceedings of the 1996
ASME Design Engineering Technical Conferences and Computers in Engineering
Conference, Paper No. 96-DETC/EIM-1420.

Booch, G., J. Rumbaugh, and I. Jacobson (1999), The Unified Modeling Language
User Guide, Addison-Wesley, Reading, Massachusetts.

Chandrasekaran, B., A. Goel, and Y. Iwasaki (1993), “Functional Representation as
Design Rationale,” IEEE Computer, pp. 48-56.

Chen, P. P.(1976), “The Entity-Relationship Model: Toward a Unified View of
Data”, ACM Transactions on Database Systems, Vol. 1, No. I, pp. 9-36.

de Kleer, J. and J. S. Brown (1983), “Assumptions and Ambiguities in Mechanistic
Mental Models,” Mental Models, D. Gentner and A. L. Stevens (Eds.), Lawrence
Erlbaum Associates, New Jersey, pp. 155-190.

Feng, S. C., W. W. Nederbragt, S. Kaing, and R. D. Sriram (1999) “Incorporating
Process Planning into Conceptual Design,” Proceedings of the 1999 ASME Design
Engineering Technical Conferences (4th Design for Manufacturing Conference), Paper
No. DETC99/DFM-8922.

Feng, S. C. and E. Y. Song (2000a), “Information Modeling of Conceptual Process
Planning Integrated with Conceptual Design,” Proceedings of the 2000 ASME Design
Engineering Technical Conferences (5th Design for Manufacturing Conference), Paper
No. DETC2000/DFM-14009.

 Feng, S. C. and E. Y. Song (2000b), “Information Modeling of Conceptual Design
Integrated with Conceptual Process Planning,” Proceedings of the 2000 ASME
International Mechanical Congress and Exposition.

Fenves, S. J., H. Rivard and N. Gomez (1999), “SEED-Config: A Tool for
Conceptual Structural Design in a Collaborative Building Design Environment”, special
issue on "Collaborative and Concurrent Engineering in the Construction Industry,"
Artificial Intelligence in Engineering, to appear.

 - 26 -

Goel, A., S. Bhatta, and E. Stroulia (1996), “KRITIK: An Early Case-Based Design
System,” Issues and Applications of Case-Based Reasoning to Design, M. Maher and P.
Pu (Eds.), Lawrence Erlbaum Associates, New Jersey.

Goel, A., A. Gomez, N. Grue, J. W. Murdock, M. Recker, and T. Govindaraj (1996),
“Explanatory Interface in Interactive Design Environments,” Artificial Intelligence in
Design ‘96, J. S. Gero (Ed.), Kluwer Academic Publishers, Boston.

Gorti S. R., G. J. Gupta, G. J. Kim, R. D. Sriram, and A. Wong (1998), “An Object-
Oriented Representation for Product and Design Process,” Computer-Aided Design, Vol.
30, No. 7, pp. 489-501.

Hardwick, M. and D. Loffredo (1995), “Using EXPRESS to Implement Concurrent
Engineering Databases,” Proceedings of the 1995 ASME Computers in Engineering
Conference and Engineering Database Symposium, pp. 1069-1083.

Henson, B., N. Juster and A. de Pennington (1994), “Towards an Integrated
Representation of Function, Behavior and Form,” Computer Aided Conceptual Design,
Proceedings of the 1994 Lancaster International Workshop on Engineering Design,
Sharpe J. and V. Oh (eds.), Lancaster University EDC, pp. 95-111.

ISO 10303-1:1994 (1994a), Industrial Automation Systems and Integration – Product
Data Representation and Exchange – Part 1: Overview and Fundamental Principles.

Iwasaki Y. and B. Chandrasekaran (1992), “Design Verification through Function
and Behavior-Oriented Representations: Bringing the Gap between Function and
Behavior,” Artificial Intelligence in Design ‘92, J.S. Gero (Ed.), Kluwer Academic
Publishers, Boston, pp. 597-616.

Kemmerer, S. J. (1999), “STEP: The Grand Experience,” NIST Special Publication
939.

Kim, T. S., S.-H. Han, and Y. J. Shin (1996), “Product Data Management Using
AP203 of STEP Standard,” Proceedings of the 1996 ASME Design Engineering
Technical Conferences and Computers in Engineering Conference, Paper No. 96-
DETC/DAC-1069.

Lyons, K., S. Shooter, W. Keirouz and P. Hart (1999), “The Open Assembly Design
Environment: An Architecture for Design Agent Interoperability,” Proceedings of the
1999 ASME Design Technical Conference, Paper No. DETC99/DFM-8945.

PDES (1999), “STEP Success Stories,” PDES, Inc. presentation, available online at
<http://pdesinc.aticorp.org/success_stories.ppt>.

Qian L. and J. S. Gero (1996), “Function-Behavior-Structure Paths and Their Role in
Analogy-Based Design,” Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, Vol. 10, No. 4, pp. 289-312.

 - 27 -

Ranta, M., M. Mäntylä, Y. Umeda and T. Tomiyama (1996), “Integration of
Functional and Feature-Based Product Modelling – the IMS/GNOSIS Experience,”
Computer-Aided Design, Vol. 28, No. 5, pp. 371-381.

Rivard, H., and S. J. Fenves (2000), “A Representation of Conceptual Building
Designs”, Journal of Computing in Civil Engineering, American Society of Civil
Engineers, Vol. 14, No. 3, pp. 151-159.

Roy, U., R. Sudarsan, R. D. Sriram, K. W. Lyons, and M.R. Duffey (1999),
“Information Architecture for Design Tolerancing: From Conceptual to the Detail
Design,” Proceedings of the 1999 ASME Design Engineering Technical Conferences
(25th Design Automation Conference), Paper No. DETC99/DAC-8704.

Shah, J. J., D. K. Jeon, S. D. Urban, P. Bliznakov, and M. Rogers (1996), “Database
Infrastructure for Supporting Engineering Design Histories,” Computer-Aided Design,
Vol. 28, No. 5, pp. 347-360.

Shooter, S. B., W. Keirouz, S. Szykman, and S. Fenves (2000a), “A Model for the
Flow of Design Information,” submitted to Engineering with Computers.

Shooter, S. B., W. Keirouz, S. Szykman, and S. Fenves (2000b), “A Foundation for
Interoperability in Next-generation Product Development Systems,” submitted to
Computer-Aided Design.

Stokes, M. (Editor) (2001), Managing Engineering Knowledge: MOKA Methodology
for Knowledge Based Engineering Applications, MOKA Consortium, London.

Sudarsan, R., U. Roy, Y. Narahari, R. D. Sriram, K. W. Lyons and N. Pramanik
(2000), “Information Models for Design Tolerancing: From Conceptual to Detailed
Design,” NISTIR 6524.

Szykman, S., J. W. Racz and R. D. Sriram (1999), “The Representation of Function in
Computer-based Design,” Proceedings of the 1999 ASME Design Engineering Technical
Conferences (11th International Conference on Design Theory and Methodology), Paper
No. DETC99/DTM-8742.

Szykman, S., J. W. Racz, C. Bochenek and R. D. Sriram (2000), “A Web-based
System for Design Artifact Modeling,” Design Studies, Vol. 21, No. 2.

Umeda, Y., M. Ishii, M. Yoshioka, Y. Shimomura and T. Tomiyama (1996),
“Supporting Conceptual Design Based on the Function-Behavior-State Modeler,”
Artificial Intelligence for Engineering Design, Analysis and Manufacturing, Vol. 10, pp.
275-288.

Wong A. and R. D. Sriram (1993), “SHARED: An Information Model for
Cooperative Product Development,” Research in Engineering Design, Vol. 5, No. 1, pp.
21-39.

 - 28 -

Wood III, W. H. and A. M. Agogino (1996), “Case-Based Conceptual Design
Information Server for Concurrent Engineering,” Computer-Aided Design, Vol. 28, No.
5, pp. 361-370.

 - 29 -

APPENDIX A: COMPARISON OF FOUR PRODUCT MODELS

This Appendix presents the comparison of four product models developed by the
following projects:

• NIST Design Repository;
• Object-Oriented Distributed Design Environment;
• Design-Process Planning Integration; and
• Design for Tolerancing of Electro-Mechanical Assemblies.

The comparison below shows the objects and their attributes in the four product models,
after all project-specific terms (object and attribute names) have been eliminated, e. g.,
tolerance-related terms in the Design for Tolerancing project. Some interpretation was
used to equivalence some of the terms used, e. g., “Information” and “artifactDescription”.

Blank lines in the comparison indicate that a term used in one model does not have an
equivalent term in another model.

The symbol (sp) stands for Specialization.

NIST Design OO Distributed Design-Process Design for
Depository Design Environment Planning Integration Tolerancing

Artifact Artifact Artifact
 id
Name name Name
Type type Group
Information artifactDescription
Function artifactFunctions Function
Form artifactForm
Behavior artifactBehaviors Behavior
Subartifacts subArtifacts
Subartifact_of
Relationships
Constraints artifactConstraints Constraint
 artifact Requirements
 Purpose
 ArtifactAttributes
 Requires
 Structure
 Goal
 Parameter
 StructureBehavior
 IndividualBehavior

 - 30 -

 ArtfactToBeMade (sp)
 dueDate
 quantity
 supplyingCompany
 ArtifactToBeBought(sp)
 unitCost
 quantity
 supplyingCompany
 Assembly (sp)
 SubAssembly (sp)
 Part (sp)
 Feature Feature (sp)
 id
 name
 type
 typeOfShape
 dimensions
 tolerances
 location
 orientation
 features

Function Function Function Function
Name name name Name
Type
Information description
 TransferFunction (sp)
Input_flow inputSource Input
Output_flow outputSource Output
Subfunctions consistsOfFunctions
Subfunction_of subFunctionOf
Constraints Constraint
Referring_artifact Artifact
 listOfForms
 parameters
 variationLimit
 Goal

 - 31 -

Form Form Form
 id
Name name name
Type typeOfShape
Information
Filenames
Constraints
Referring_artifact
 functionName
 geometricAttribute
 materialAttribute
 interfaceAttribute
 pointerToCompatible-

Forms

 method
 dimensions
 location
 artifactMaterial
 orientation
 designRationale
 features

Behavior Behavior Behavior Behavior
Name name Name
Type type
Information
Subbehaviors
Subbehavior_of
Constraints
Referring_artifact
 listOfForms
 listofBehaviorAttributes
 method() behaviorModel()
 StateVariable
 CausalLink
 DependsOn
 AffectsVariable
 ReferenceValues

 Material
 name
 description
 properties

 - 32 -

Flow
Name
Type
Information
Source
Destination
Constraints
Referring_functions

Relationship Relationship
Name Name
Type RelationshipType
Information
Links RelationshipLink

 ArtifactAssembly

Relationship

 matingArtifacts
 numberOfFeature-

AssemblyRelationships

 matingFeatures
 assemblyLink

 FeatureAssembly

Relationship

 matingFeatures
 featureAssemblyLink

Constraint Constraint
Name Name
Type ConstraintType
Information
Text
Links ConstraintLink

 Specification
 Attribute

 Attribute
 attributeName
 attributeType
 value
 ioDirection
 Engineering

Requirement

 requirements

 - 33 -

APPENDIX B: THE CORE MODEL

This Appendix reproduces, with minor formatting changes, the Java code generated by
Rational Rose™ from the UML class diagram of the core model entered into Rational
Rose. The visual display of the class diagram in Rational Rose is too cluttered to be
reproduced.

There is one fundamental difference between the core model described in the text and
illustrated in Figures 1 through 5, and the model entered into Rational Rose. This
difference is due to the fact that the Java language does not implement the concept of an
association class (even in “standard” UML, “ an additional relationship is required to
show ownership” (A. I. Holub, http://www.holub.com) of the association class by one of
the classes forming the association). This limitation was overcome by severing each
original association and creating a new association between each original member class
and the former association class. In other words, association classes were treated as
ordinary classes. The changes that were made are graphically illustrated in Figure B1.

 Implemented

 Not implemented

Common
Core Object

Core
Entity

Core
Property

Reference

Undir Set Rel

Dir Set Rel

Set Rel’ship

Requirement

Assembly

Constraint

Specification

Figure B1. Class Diagram Implemented

//Source file:
/home/msid/fuwang/CoreModelDiagram/CoreModel/*.java

package CoreModel;

public class Artifact extends Core_Entity
{ private String type;
 public Config_Info config_info;
 public Form form;
 public Function function[];
 public Behavior behavior[];
 public Specification is_specified_by;

 - 34 -

http://www.holub.com/

 public Flow is_source_of[];
 public Flow is_destination_of[];
 public CoreModel.Artifact subartifact_of[];
 public CoreModel.Artifact subartifacts[];
 public Feature features[];

 public Artifact(){}}

public class Assembly extends Common_Core_Relationship
{ private String type;
 public Core_Entity components[];

 public Assembly(){}}

public class Behavior extends Common_Core_Object
{ private String type;
 public Artifact behavior_of_artifact;
 public CoreModel.Behavior subbehaviors[];
 public CoreModel.Behavior subbehavior_of;

 public Behavior(){}}}

public abstract class Common_Core_Object
{ private String name;
 public Information information;
 public Reference referenced_by[];
 public Reference references[];
 public Set_Relationship member_of[];
 public Directed_Set_Relationship special_member_of[];

 public Common_Core_Object(){}}

public abstract class Common_Core_Relationship
{ private String name;
 public Information information;

 public Common_Core_Relationship(){}}

public class Config_Info
{ private String name;
 private String type;
 public Information information;
 public Artifact config_info_of_artifact;

 public Config_Info(){}}

 - 35 -

public class Constraint extends Common_Core_Relationship
{ private String type;
 public Core_Property constrains[];

 public Constraint(){}}

public abstract class Core_Entity extends
Common_Core_Object
{ public Assembly component_of[];

 public Core_Entity(){}}

public abstract class Core_Property extends
Common_Core_Object
{ public Constraint constrained_by[];
 public Requirement required_by_requirement[];

 public Core_Property(){}}

public class Directed_Set_Relationship extends
Set_Relationship
{ private String type;
 private String special_member_role;
 private String member_role;
 public Common_Core_Object special_members[];

 public Directed_Set_Relationship(){}}

public class Feature extends Core_Entity
{ private String type;
 public Artifact feature_of_artifact;
 public Function function_of_feature[];
 public Form form_of_feature;
 public CoreModel.Feature subfeature_of;
 public CoreModel.Feature subfeatures[];

 public Feature(){}}

public class Flow extends Core_Property
{ private String type;
 public Artifact is_source_of[];
 public Artifact is_destination_of[];
 public Transfer_Function input_flow[];
 public Transfer_Function output_flow[];

 public Flow(){}}

 - 36 -

public class Form extends Core_Property
{ private String type;
 public Material material;
 public Geometry geometry;
 public Artifact form_of_artifact;
 public Feature form_of_feature;
 public CoreModel.Form subforms[];
 public CoreModel.Form subform_of;

 public Form(){}}

public class Function extends Core_Property
{ private String type;
 public Artifact function_of_artifact;
 public Feature function_of_feature;
 public CoreModel.Function subfunctions[];
 public CoreModel.Function subfunction_of;

 public Function(){}}

public class Geometry extends Core_Property
{ private String type;
 public Form geometry_of_form;
 public CoreModel.Geometry subgeometries[];
 public CoreModel.Geometry subgeometry_of;

 public Geometry(){}}

public class Information
{ private String name;
 private String description;
 private String documentation;
 private String methods;
 private String properties;

 public Information(){}}

public class Material extends Core_Property
{ private String type;
 public Form material_of_form;
 public CoreModel.Material submaterials[];
 public CoreModel.Material submaterial_of;

 public Material(){}}

 - 37 -

 - 38 -

public class Reference extends Common_Core_Relationship
{ private String type;
 public Common_Core_Object references[];
 public Common_Core_Object reference_by[];

 public Reference(){}}

public class Requirement extends Common_Core_Relationship
{ private String type;
 public Specification required_by[];
 public Core_Property requires_Core_Property[];

 public Requirement(){}}

public abstract class Set_Relationship extends
Common_Core_Relationship
{ public Common_Core_Object members[];

 public Set_Relationship(){}}

public class Specification extends Common_Core_Object
{ private String type;
 public Artifact specification_of;
 public Requirement requirements[];

 public Specification(){}}

public class Transfer_Function extends Function
{ public Flow output_flow[];
 public Flow input_flow[];

 public Transfer_Function(){}}

public class Undirected_Set_Relationship extends
Set_Relationship
{
 public Undirected_Set_Relationship(){}}

	A CORE PRODUCT MODEL FOR REPRESENTING DESIGN INFORMATION
	LIST OF FIGURES
	LIST OF TABLES
	A CORE PRODUCT MODEL FOR REPRESENTING DESIGN INFORMATION
	Abstract
	Keywords:

	MOTIVATION
	ORGANIZATIONAL SETTING
	The Knowledge-based System Interoperability Project
	Related Projects

	RELATED RESEARCH
	Product Modeling
	Design Information Flow Modeling

	OBJECTIVES
	PRAGMATIC STUDY
	THE CORE REPRESENTATION
	6.1. Representation of Attributes and Class Types
	6.2. Semantics
	Common Core Object
	Core Entity
	Core Property
	Artifact
	Feature
	Specification
	Function
	Transfer Function
	Flow
	Behavior
	Form
	Geometry
	Material
	Common Core Relationship
	Requirement
	Constraint
	Reference
	Assembly
	Set-Relationship
	Undirected Set-Relationship
	Directed Set-Relationship
	6.3. Class Hierarchy
	6.4. Associations and Aggregations
	Relationships

	PRESENT AND POTENTIAL APPLICATIONS
	7.1. Design Repository
	7.2. Open Assembly Design Environment

	INFORMATION FLOW MODEL
	CORE MODEL
	INFORMATION FLOW MODEL
	CORE MODEL
	POSSIBLE EXTENSIONS OF CORE MODEL
	
	
	
	
	Table 2. Possible Extensions to Core Model

	7.3. Design for Tolerancing
	7.4. Design-Process Planning Integration

	AREAS FOR FUTURE RESEARCH
	8.1. Extensions to Support of Interoperable Tools
	
	
	
	Table 3. Partial Taxonomy of Artifacts

	8.2. Exploration of Applicability to Full Lifecycle of Artifact

	9. SUMMARY
	ACKNOWLEDGEMENTS
	DISCLAIMER
	REFERENCES
	APPENDIX A: COMPARISON OF FOUR PRODUCT MODELS
	APPENDIX B: THE CORE MODEL

