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A CORE PRODUCT MODEL FOR REPRESENTING DESIGN INFORMATION 
Steven J. Fenves 
 
Abstract 
 
The report presents a core model for representing design information, motivated by the 
perceived needs of next-generation product development systems and drawing content-
level requirements from a related study of design information flows. The core model was 
synthesized from a comparison of several independently-developed design artifact 
representations.  
 
The primary objective of the report is to provide a base-level product model that is: not 
tied to any vendor software; open; non-proprietary; simple; generic; expandable; 
independent of any one product development process; and capable of capturing the 
engineering context that is most commonly shared in product development activities. The 
core model focuses on artifact representation including function, form, behavior and 
material, physical and functional decompositions, and relationships among these 
concepts. The model is heavily influenced by the Entity-Relationship data model; 
accordingly, it consists of two sets of classes, called object and relationship, equivalent to 
the UML class and association class, respectively.   
 
It is expected that the core model may eventually serve as a precursor for STEP in the 
lifecycle of a product, capturing all information relevant to the ongoing design process 
until the product design is firmed up, approved and committed to purchasing or 
manufacturing. Aspects of extensions of  the model in these directions are discussed. 
 
 
Keywords: 
product modeling, information modeling, data modeling, artifact, form, function, 
behavior, Entity-Relationship data model, next-generation product development tools 
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1. MOTIVATION 
 
Product development is increasingly performed by geographically and temporally 
distributed teams with a high level of outsourcing of many phases of the product 
development process. As the complexity of products increases further and product 
development becomes even more distributed, new tools will be needed  to address a 
broader spectrum of product development activities than do traditional  Computer Aided 
Design and Engineering (CAD/CAE) systems. Next-generation tools will require 
representations that allow all information used or generated in the various product 
development activities to be transmitted to other activities by way of direct electronic 
interchange. Furthermore, product development across companies, and even within a 
single company, will almost invariably take place within a heterogeneous software 
environment. As a result, there is a greater need for the support of the formal 
representation, capture, and exchange of the entire range of information generated and 
used in the product development process, not just of the representation of the product 
resulting from the completion of the design process. The ability to effectively and 
formally capture additional types of information will become a critical issue.  
 
This report provides a core representation for product development information which 
can form the basis of future systems that respond to the demands sketched above. This 
report seeks to address potential interoperability problems proactively, rather than 
reactively, by providing this representation core as a foundation for improved 
interoperability among software tools in the future (Shooter et al., 2000b). This work 
focuses on an artifact representation that encompasses a broad range of engineering 
design concepts beyond the artifact’s geometry, including function, form, behavior and 
material, as well as physical and functional decompositions, mappings between function 
and form, and various kinds of relationships among these concepts. 
 
The development of a generic infrastructure for the next generation of product 
development tools is an effort that neither industry nor the computer aided design, 
manufacturing and engineering (CAD/CAM/CAE) tool vendor community is likely to 
undertake alone. The National Institute of Standards and Technology (NIST), which has 
U.S. industry as its primary customer and works to address problems that have 
significance to industry, is well situated to invest in an effort to anticipate and address 
interoperability needs in next-generation product development tools. This report is one 
component of that effort. 
 
2. ORGANIZATIONAL SETTING 
 

2.1. The Knowledge-based System Interoperability Project 
 
The work reported herein is a component of the Knowledge-based System 
Interoperability Project within the Product Engineering Program (PEP) of  the 
Manufacturing Systems Integration Division (MSID) within the Manufacturing 
Engineering Laboratory (MEL) of NIST. The goal of this project is to identify the 
knowledge representation needs for next-generation product development systems, and to 
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develop a generic core representation for product development knowledge on which 
future systems can be built. This project seeks formal representations that are not tied to 
any one specific product development process or single vendor software solution, are 
open, non-proprietary, simple and generic, and are capable of capturing knowledge 
commonly used in product development activities. The project deals with both high-level 
modeling of the flow of information through the product development process and 
information modeling of product development knowledge. The foundation of  
information modeling of product development knowledge is that of modeling the product 
representation itself, the subject of this report. 
 

2.2. Related Projects 
 
The Design for Tolerancing of Electro-mechanical Assemblies (DFT) project within PEP 
is developing concepts, methods and technologies to advance tolerancing decisions to the 
earliest possible stages of design and defining a multi-level approach called Design For 
Tolerancing that enables tolerancing to be addressed through the entire design life (Roy 
et al., 1999: Sudarsan et al., 2000). As part of DFT, the project is developing an 
integrated, comprehensive, and neutral object architecture for function-assembly-
behavior modeling. 
 
The NIST Design Repository project, also within PEP, has as its goal the development of 
an information modeling framework to support the creation of design repositories, the 
next generation of design databases, and implementation of a prototype design repository 
tool suite (Szykman et al., 2000). The information modeling framework is based on a 
versatile, but abstract, product model. 
 
The Design/Process Planning Integration (DPPI) project within the Predictive Process 
Engineering Program has the goal of demonstrating interoperability and enhanced 
performance between design and process planning by providing process information to 
the designer, thus allowing him/her to make more informed design decisions, particularly 
at the early conceptual stages of design (Feng et al, 1999; Feng et al., 2000a: Feng et al., 
2000b). The project is developing a product model to which process information is 
linked. 
 
An earlier project, the Object-Oriented Distributed Design Environment Project, 
developed a software prototype for the Knowledge-based System Interoperability Project, 
using its own product model.  
  
3. RELATED RESEARCH 
 

3.1. Product Modeling 
 
Traditional CAD systems are largely limited to the representation of geometric data. New 
classes of tools that support function- and knowledge-based design, product data 
management and concurrent engineering have been focusing primarily on database-
related issues and do not place a primary emphasis on information models for artifact 
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representation, with representation of the design artifact itself still generally limited to 
geometry, thus limits the utility of these tools in engineering (see, e.g., Bliznakov et al., 
1996; Hardwick and Loffredo, 1995; Kim et al., 1996; Shah et al., 1996; Wood and 
Agogino, 1996).  
 
The product model presented here follows the tradition of work in the area of artifact 
representation. The division of artifact information into the categories of form, function, 
and behavior has its roots in earlier work in intelligent design systems. Examples of such 
work from artificial intelligence include qualitative simulation (de Kleer and Brown, 
1983), behavioral and functional representation (Iwasaki and Chandrasekaran, 1992), 
functional representation (Chandrasekaran et al., 1993) and successive representations 
from projects such as KRITIK (Goel, Bhatta et al., 1996) and INTERACTIVE KRITIK 
(Goel, Gomez et al., 1996), the YMIR project (Alberts and Dikker, 1992), and others. 
Work in engineering design includes CONGEN (Gorti et al., 1998), the MOSES project 
(Henson et al., 1994), the GNOSIS Intelligent Manufacturing System project (Ranta et 
al., 1996), the Function-Behavior-State Modeler (Umeda et al., 1996), and the function-
behavior-structure framework (Qian and Gero, 1996). The work presented here is most 
directly descended from the representation developed as part of the NIST Design 
Repository project (Szykman et al., 1999; Szykman et al., 2000). That work is based in 
part on the CONGEN architecture (Gorti et al., 1998), which made use of the SHARED 
object model (Wong and Sriram, 1993) as a basis. The model presented here shares both 
conceptual and representational aspects with that developed by the MOKA (Methodology 
and tools Oriented to Knowledge based engineering Applications) Consortium, an 
ESPRIT-funded collaborative project of the European Union (Stokes, 2001). 
 
The reader may rightly question the need for another product model, given NIST’s and 
MEL’s leadership in the development of STEP (Standard for the Exchange of Product 
model data) and their continued commitment to its maintenance and enhancement 
(ISO,1994; PDES, 1999; Kemmerer, 1999). STEP is a mature and widely used standard 
for the exchange of product data after that product has been designed. In practice, STEP 
tends to be invoked only late in the product development process, after all design 
decisions have been made and when the product is ready to be purchased, manufactured 
or assembled. Thus, STEP is used for the exchange of information that is the outcome of 
design activities, rather than for the information produced and used through the 
development of the design. STEP provides no support for design evolution, for the early 
phases of design when descriptive information is sparse, and for the ready attachment of 
various forms of knowledge rather than pure data. 
 
The work presented here may be seen as intended to serve as the precursor for STEP in 
the lifecycle of a product, capturing all the information relevant to the ongoing design 
process until the product design is firmed up, approved and committed to purchasing or 
manufacturing. A production version of the core product model presented here could be 
readily fitted with a translator that would extract the information representing the finished 
design and convert it to the STEP format for transmission to subsequent manufacturing 
activities. 
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3.2. Design Information Flow Modeling 

 
The Open Assembly Design Environment (OpenADE), another component of the 
Knowledge-based System Interoperability Project within PEP, is addressing design 
information interchange and agent interoperability issues within the context of a 
collaborative design framework (Lyons et al., 1999; Angster et al., 1998, Shooter et al., 
2000a). OpenADE seeks to formalize the semantics, types and levels of design 
information. One step in this direction is the modeling of the flow of design information.  
The model for the flow of design information differs from a design process model 
because it models information flows among design activities irrespective of the particular 
sequence in which the activities are executed. The model classifies design information 
into various types and organizes these types into information states and levels of 
abstraction. The information flow model assumes that design activities operate in two 
modes. The iterative mode accounts for the various feedback loops that occur as 
designers seek to satisfy design goals.  The layered mode corresponds to the levels of 
abstraction designers use as they represent the current state of the design at different 
levels of completeness and fidelity. 
 
The design information flow model identifies the following states of information. The 
Customer Needs state describes what customers need or desire in  a product. The 
Specifications  state describes customers’ needs in terms of evaluation criteria. The 
Engineering Requirements state formalizes the requirements that the artifact must satisfy. 
The Family of Solutions state includes one or more partial or prototypical descriptions of 
the artifact proposed as the design solution. The Proposed Artifact state provides an 
extensional description of the artifact at a given level of abstraction. The Observed 
Behavior state includes the artifact’s behavior as derived, i. e., simulated, from its 
description. The Evaluated Behavior state describes the extent to which the proposed 
artifact’s observed behavior matches its intended behavior. Finally, the Evaluated 
Requirements state includes an evaluation of the proposed artifact’s degree of satisfaction 
of the engineering requirements. As stated above, these states are iterated on within one 
level of abstraction, as well as expanded progressively as the design is carried out to 
increasing detail, i. e., increasingly lower levels of abstraction. Possible extensions of the 
core model to more fully support the information flow model are discussed in Section 
7.2. 
 
4. OBJECTIVES 
 
The primary objective of the work presented in this report is to provide a base-level 
foundation core product model to underlie the information flow model over all levels of 
abstractions and one that retains the principles of the OpenADE project, namely, a 
representation that is: 

• not tied to a single vendor software solution, 
• open and non-proprietary, 
• simple and generic, 
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• expandable,  
• not dependent on any one product development process, and 
• capable of capturing that portion of the engineering context that is most  

commonly shared in product development activities. 
 
This work is, in itself, not  a development of a new standard. Rather, it is an attempt to 
identify needs and provide a generic information representation core that can serve as a 
foundation for development of new systems, which at some future point may be the 
subject of standards development efforts. The work reported here can provide a starting 
point for future standards. Simplicity is therefore a key requirement for the 
representation. Simplicity also makes a proposed representation more appealing to users. 
The product information representation also needs to be domain-independent and not be 
tied to any one product development process. 
 
It is expected that the core model presented in this report, with suitable modifications 
based on experience in usage, can serve as the information transfer mechanism for next-
generation product development tools, either in the basic form presented here or as the  
base-level representation of the multilevel design information flow model presented in 
(Shooter et al., 2000a). 
 
5. PRAGMATIC STUDY 
 
The initial direction of the work presented was an attempt to provide a common basis 
among the four in-house research and development projects described in Section 2:  
 

• the NIST Design Repository project;  
• the Design-Process Planning Integration project;  
• the Design for Tolerancing of Electro-Mechanical Assemblies project; and 
• the Object-Oriented Distributed Design Environment project. 
 

 
In the early stages of these projects, the need for a shared product model was not 
immediately apparent. However, as the projects progressed and presented their results in 
group meetings, the commonality of concepts became apparent end a comparison was 
called for. The comparison of the initial four product models is shown in Appendix A. 
This comparison excludes terms that are specific to the domain of one project only, such 
as process- and tolerance-related terms. As can be seen in the appendix, there was not 
much commonality among the four product models. Of the 133 distinct terms used as 
object or attribute names, 99 terms (74%) appeared in one model only and only 3 (2%) 
appeared in all four models.  
 
The core product model described here benefited greatly from the pragmatic comparison 
study. Although the core model that resulted most closely resembles the model 
originating from the NIST Design Repository project, terms from the other three projects 
were also incorporated, showing the synergy provided by broader exposure and 
discussion. The examination of multiple independently-developed models, abstracting out 
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the commonalties, and distilling their basic information content, led to a more generic 
and extensible representation than any one of them had previously provided. Ideas on 
how the core model could be adopted by the projects described and extended as needed to 
suit the concerns of the individual projects are presented in Section 7.  Such an adoption 
has already been made by the NIST Design Repository project, where the second-
generation information model is patterned directly after the core model presented here. 
 
 
6. THE CORE REPRESENTATION 
 
The core representation is heavily influenced by the Entity-Relationship data model 
(Chen, 1976). Accordingly, the model consists of two sets of classes, called object and 
relationship. The two sets of classes are equivalent to the Unified Modeling Language 
(UML) terms of class and association class, respectively (Booch et al., 1999). The full 
listing of all classes in the core representation is shown in Appendix B. In the text that 
follows, names of classes are capitalized (e. g., Information) and names of attributes are not 
(e. g., information). 
 
The general characteristics of the classes are discussed first. Then, the semantics of each 
class of objects and relationships is presented. Finally, the hierarchies and relationships 
among the classes are presented. 
 
 6.1. Representation of Attributes and Class Types 
 
In order to make the representation as robust as possible without having to predefine all 
possible attributes that might be relevant in any given domain, the core representation is 
limited to attributes required to capture generic types of product information and to create 
relationships among the classes. The representation intentionally excludes attributes that 
are domain-specific (e. g., attributes of mechanical or electronic devices) or object-
specific (e. g., attributes specific to function, form or behavior). For the representation of 
this information, two generic information modeling concepts have been adopted from the 
NIST Design Repository project. 
 
First, each object and relationship has an information attribute. The class Information is a 
container consisting of: 
 

• a brief textual description slot; 
• a textual documentation string (e. g., a file path or URL referencing more 

substantial documentation);  
• a methods slot for the methods operating on the object; and  
• a properties slot that contains a set of attribute-value pairs stored as strings 

representing all domain- or object-specific attributes.  
 
This lack of specialization results in a small number of broadly applicable classes.  
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Second, all object and relationship classes, except for the abstract classes and the 
Information class, have an attribute called type, the value of which is a string that acts as a 
symbolic classifier. Each object and relationship class may have a distinct hierarchical 
taxonomy of terms associated with that class. The value of the type attribute would then 
correspond to one of the terms within the taxonomy for the given class. For example, 
“convert” is one of numerous types of transfer functions and the term can serve as the 
type attribute of an instance of the class. Thus, all object and relationship classes in the 
representation may have their own individual generic engineering classification 
hierarchies that are independent of any other hierarchy. 
 
In the NIST Design Repository project, the typing information and the associated 
taxonomies provide a standardized vocabulary which facilitates indexing and retrieval of 
product knowledge for design reuse (Szykman et al., 1999). In an eventual 
implementation of the core model for production use, the type attributes and their 
underlying taxonomies may provide an automated means for creating domain-specific 
specializations of the generic core classes, as discussed in Section 8.1.  
 
 6.2.  Semantics 
 
This section presents brief descriptions of the semantics or meaning of all the classes in 
the core model shown in Figure 1 ( the seemingly odd placement of the objects in the 
figure will be clarified in the succeeding figures). 
 
Common Core Object 
This is an abstract class (class with no instances) that is the highest level of generalization 
of object classes, i.e., all object classes are specialized from it according to the class 
hierarchy discussed in Section 6.3. 
 
Core Entity 
This is an abstract class from which the classes Artifact and Feature are specialized.  
 
Core Property 
This is another abstract class, from which the classes Function, Flow, Form, Geometry and 
Material are specialized. Constraints, requirements and assembly relationships, as  
presented in Section 6.4, may be applied to instances of this class. 
 
Artifact 
The key object class is the Artifact. The Artifact represents a distinct entity in a design, 
whether that entity is a component, product, subassembly or assembly. All the latter 
entities can be represented and interrelated through the subartifact/subartifact_of 
containment hierarchy discussed in Section 6.4. The Artifact’s attributes, other than the 
common ones described above, refer to the Specification responsible for the Artifact and the 
Form, Function and Behavior objects comprising the Artifact, i. e., in UML terminology, 
forming an aggregation with the Artifact.  
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Figure 1. Classes 
 
An additional attribute, config_info, links the Artifact to an element of the class Config_Info 
that represents design process-related attributes of the Artifact, such as state and  level, as 
used in (Shooter et al., 2000a), or version designation and other process parameters that 
may be used in an interactive environment. 
 
Feature 
A feature is a subset of the form of an object that has some function assigned to it. Thus, 
an artifact may have design features, analysis features, manufacturing features, interface 
features (sometimes referred to as ports), etc., as determined by their respective functions. 
Function has its own containment hierarchy, so that compound features can be created out 
of other features (but not artifacts). 
Specification 
The Specification contains information relevant to an artifact derived from customer needs 
or engineering requirements. The Specification collects the specific requirements that the 
function, form, geometry and material of the artifact must satisfy.  
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Function 
The artifact’s function represents what the artifact is supposed to do. The artifact satisfies 
the engineering requirements largely through its function.  The term function is often 
used synonymously with the term intended behavior.  
 
Transfer Function 
Transfer function is a specialized form of function involving the transfer of an input  flow 
into an output flow. Examples of transfer functions are “transmit” a flow of fluid or  
current, a message, etc., or “convert” from one energy flow to another or from a message 
to an action. 
 
Flow 
Flow is the medium (fluid, energy, message stream, etc.) that serves as the output of one 
or more transfer function(s) and the input of one or more other function(s). Each flow is 
also identified by its source and destination artifacts. 
 
Behavior 
The artifact’s behavior represents how the artifact implements its function.  Behavior is 
governed by engineering principles which are incorporated into a behavior or causal 
model that explains how the intended function is achieved. Application of the behavior 
model to the artifact describes or simulates the artifact’s observed behavior based on its 
form. 
  
Form 
The form of the artifact can be viewed as the proposed design solution for the design 
problem specified by the function. In the core product model described, the artifact’s 
physical characteristics are represented in terms of its geometry and material properties. 
This subdivision was introduced into the core model because some of the intended 
applications, such as the Design-Process Planning Integration and the Design for 
Tolerancing projects tend to treat these two aspects quite differently (e. g., the task of 
material selection for a given function and geometry in process planning). 
 
Geometry 
Geometry is the spatial description of the artifact. 
 
Material 
Material is the description of the internal composition of the artifact. 
  
Common Core Relationship 
This is the abstract class from which all relationship classes are specialized according to 
the class hierarchy presented in Section 6.3. 
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Requirement 
A requirement is a specific element of the specification of an artifact that applies to some 
aspect of the function, form, geometry or material of the artifact. Conceptually, 
requirements should only affect the function, i. e., the intended behavior; in practice, 
some requirements tend to affect the design solution directly, i. e., the form, geometry or 
material of the artifact. As will be shown in Section 6.5, requirements cannot apply to 
behavior, which is strictly determined by the behavior model. 
 
Constraint 
A constraint is a specific shared property of a set of entities that must hold in all cases. At 
the level of the core model, only the entity instances that constitute the constrained set are 
identified. If it is intended to represent a mathematical equality or inequality constraint, 
the properties slot of the constraint can store the names of the attributes that enter in the 
constraint as well as the relational operator linking them. 
 
Reference 
A reference provides a direct means of linking or navigating between two entities. 
Considering the vast complexity of relationships among entities that can be represented in 
the model, it was thought prudent to introduce this class. 
 
Assembly 
The assembly relationship between artifacts, i.e., parts, and their assembly features is 
modeled simply as a set membership relationship among attributes called components. In 
future applications of the core model these components could be differentiated by roles, 
for example: source artifact(s); their respective mating feature(s); and the resulting 
artifact.  
 
Set-Relationship 
This is another abstract class from which the two relationship classes described below are 
specialized. 
 
Undirected Set-Relationship 
This class sets up a simple set membership relationship among its constituent entities. 
 
Directed Set-Relationship 
This is a set membership relationship consisting of two subsets, one of which is called the 
special member, in which the two subsets have different roles. For example, a directed 
set relationship “control” may designate a special member of the set which has the role of 
“controlling,” while the other members of the set have the role of being “controlled by” 
that special member.  
 
 6.3.  Class Hierarchy 
 
The class hierarchy is shown in Figure 2.  
 

 - 15 -  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Common 
Core Object 

CommonCore 
Relationship

Specification Behavior

Core 
Entity 

Core 
Property

Reference 

Undir Set Rel

Dir Set Rel

Set Rel’ship

Requirement

Assembly

Constraint

Artifact 

Feature 

Function Flow Form 

Transfer 
Function Geometry Material

Figure 2. Class Hierarchy 
 
All object classes are specializations of the abstract class Common_Core_Object. Its 
attributes are name, information, and linkages to the Reference and set membership 
relationships.  
 
The specializations of the Common_Core_Object class are the Artifact, Behavior, Core_Entity 
and Core_Property classes. The attributes of the Core_Property class are the linkages to the 
Constraint, Requirement and Assembly relationships. The Specializations of the Core_Entity 
class are the Artifact and Feature classes. The specializations of the abstract class 
Core_Property are the Function, Flow, Form, Geometry and Material classes. The Function 
class further specializes into the Transfer_Function class.  
 
Similarly to objects, all relationship objects are specializations of the abstract class 
Common_Core_Relationship,  with attributes name and information. The specializations are 
the Requirement, Reference, Constraint, Assembly and Set_Relationship classes. The latter 
further specializes into Directed_Set_Relationship and Undirected_Set_Relationship classes. 
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 6.4.  Associations and Aggregations 
 
Three kinds of associations between classes are shown in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Specification 

Artifact 

Feature 

Function Flow Form 

Transfer 
Function Geometry Material

Behavior

Figure 3. Associations and Aggregations 
 
First, all object classes, i. e., specializations of the abstract class Common_Core_Object, 
except Flow, have their own separate, independent decomposition hierarchies, also known 
as “part-of” relationships or containment hierarchies. Decomposition hierarchies are 
represented by attributes such as subartifacts/subartifact_of for the Artifact class.  
 
Second, there are associations between: (a) a Specification and the Artifact that results from 
it; (b) a Flow and its source and destination Artifacts as well as its input and output Functions; 
and (c) an Artifact and its Features. 
 
Third, and most importantly, Figure 3 shows the three aggregations that are fundamental 
to the core model: Function, Form and Behavior aggregate into Artifact; Function and Form 
aggregate into Feature; and Geometry and Material aggregate into Form.  
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6.5. Relationships 

 
The relationships discussed in Section 6.1 form the association classes shown in Figure 4. 
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Figure 4. Relationships 
 
Requirement is a one-to-many relationship between a Specification and a set of  Function, 
Form, Geometry, Material and Flow entities governed or otherwise affected by that 
specification. 
 
Constraint is an undirected set membership relation among the constrained Function, Form, 
Geometry, Material and Flow entities.  
 
Reference is a one-to-one directed relationship between referring and referred_to objects. 
 
Assembly is a simple set membership relationship among its components. 
 
Undirected_Set_Relationship is a simple set membership relationship among its members. 
 
Directed_Set_Relationship further identifies special_members of the set as well as the roles 
of members and special members. 
 
The complete class diagram is shown in Figure 5. As can be seen from the discussion 
above, the core representation is by no means minimal. The set of object classes largely 
reflects traditional terms used in formal design descriptions and models; it was felt that 
any further abstraction would have eliminated semantically meaningful terms. The 
number of relationship classes could have been reduced, since requirements and 
constraints could have been represented using the more generic set relationships. 
However, it was felt that the terms “requirement” and “constraint” are by themselves 
semantically meaningful in the design domain and that they should be retained. 
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Figure 5. Complete Class Diagram 
  
7. PRESENT AND POTENTIAL APPLICATIONS 
 
 7.1.  Design Repository 
 
As stated earlier, an earlier version of the core representation presented here (without the 
Feature entity and the Assembly relationship) has been adopted for the latest version of the 
Design Repository project.  
 
 7.2.  Open Assembly Design Environment 
 
One of the anticipated applications of the core product model presented in this report was 
for it to serve as the  base-level representation of the multilevel design information flow 
model for information transfer among next-generation product development tools 
presented in (Shooter et al., 2000b). The correspondence between the states in the 
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information flow model, summarized in Section 3.2, and the core model object classes is 
shown in Table 1. In the table, Artifact implies the aggregation of Function and Form. 
 

INFORMATION FLOW 
MODEL 

CORE MODEL 

Customer Needs Specification 
Specification Specification 
Engineering Requirements Specification + Requirements 
Family of Solutions Artifact 
Proposed Artifact Artifact  
Observed Behavior Artifact + Behavior 
Evaluated Behavior Artifact + Behavior 
Evaluated Requirements Artifact + Requirements 

 
Table 1. Mapping of Information Flow Model States to Core Model Object Classes 
 
It can be seen from the table that the correspondence is close, but that the two models are 
by no means isomorphic: the core model does not provide a clear enough distinction 
between the three uses of Specification and the five uses of Artifact. The discrepancy was 
considered acceptable at the time that (Shooter et al., 2000b) was written. When further 
work is undertaken on the Information Flow model, the core model may be extended as 
shown in Table 2 to provide a closer correspondence. 
 
INFORMATION FLOW 
MODEL 

CORE MODEL POSSIBLE EXTENSIONS  OF 
CORE MODEL 

Customer Needs Specification Specialize? 
Or, specialize its Requirements to 
eliminate requires link 

Specification Specification Same as above 
Engineering Requirements Specification + Requirements Differentiate form/function 

requirements? 
Family of Solutions Artifact Specialize?  
Proposed Artifact Artifact + Behavior See below 
Observed Behavior Artifact + Behavior Differentiate Behavior attributes: 

-behavior model (a method) 
-intended behavior 
-observed behavior 

Evaluated Behavior Artifact + Behavior Add unintended behavior attribute? 
Evaluated Requirements Artifact + Requirements Add evaluated requirement attribute? 

Or, add evaluated attribute to 
Requirement? 

 
Table 2. Possible Extensions to Core Model 
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 7.3.  Design for Tolerancing 
 
The core model presented in this report could be adapted readily for a major portion of 
the Function Assembly Behavior (FAB) Model described in (Sudarsan et al., 2000). At 
the top level, the differences between the core model and the FAB model are slight: (a) in 
the FAB model, Goal, Decision and Design Context serve essentially the same purpose as 
Specification in the core model; (b) Physical Solution is related to Behavior but the Technical 
Solution interface is absent in the core model; (c) Assembly, Subassembly, Part, Feature and 
Geometric Entity are treated as specializations of Artifact or Feature; and (c), most 
significantly, Form, Geometry and Material do not appear at the top level (see Figure 10 of 
(Sudarsan et al., 2000)). 
 
It is at the next level, the modeling of Assembly, that differences arise. First, in the FAB 
model, an Assembly is composed of Subassembly/parts; in the core model, this is 
represented  by the containment hierarchy. Second, in the FAB model, the relationship of 
each Subassembly/part with another Subassembly/part is represented explicitly in terms of 
the mating Features; this association is only skeletally represented by the Assembly 
relationship in the core model. Finally, in the FAB model, geometry is associated 
explicitly with features only and in terms of the most basic geometric entities, e. g., faces 
(see Figure 11 of (Sudarsan et al., 2000)). 
 
 7.4.  Design-Process Planning Integration 
 
The core model presented in this report could also be readily adapted for a major portion 
of the object model supporting Conceptual Design Integrated with Process Planning 
(Feng and Song, 2000a, 2000b). In fact, portions of the Feng and Song model are adopted 
or derived from the core model. The differences between the two models are minor, 
except for one: in the Feng and Song model, Feature is a direct ingredient of  an artifact’s 
Form (see Figure 4 of Feng and Song, 2000b)), while in the core model Feature is a class 
at the same level as Artifact, so that a particular artifact’s features can only be accessed by 
traversing the artifact’s containment hierarchy until the components’ feature attributes are 
encountered. This difference is important because in the Feng and Song model both 
tolerance and assembly modeling is based on this tight artifact-feature association, in a 
manner similar to that discussed above in connection with the FAB model of  (Sudarsan 
et al., 2000). The remaining differences (e.g., that BehaviorSpecification is associated with 
Artifact but BehaviorModel with its Form) can be resolved readily. Most of the process 
planning concerns are associated with ArtifactToBeMade, a specialization of Artifact. 
 
In summary, the only substantial extension needed for the core model to support the 
functionality of both the FAB model and the Feng and Song model is the expansion of 
the Assembly relationship. Further analysis is needed to determine whether: (a) a full 4-
ary relationship from artifact (subassembly/part in the FAB model) to mating feature to 
mating feature to artifact is needed or whether the existing part- to-feature containment 
hierarchies could be used to reduce it to a binary relationship; (b) if the latter, whether 
this should be a relationship of mating feature to mating feature or of artifact to artifact (it 
appears that the latter would be more useful in the early conceptual stages). In this 
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connection, it should also be  ascertained whether the Assembly, Subassembly, Part 
hierarchy should be implemented by specialization of the Artifact class in addition to the 
artifact containment hierarchy provided by the core model. 
 
8. AREAS FOR FUTURE RESEARCH 
 
 8.1.  Extensions to Support of Interoperable Tools 
 
As described in Section 6.1, the core model presented here adopts two techniques from 
the Design Repository project so as to make the model compact and generic: (a) the use 
of the type attribute for classification of entities; and (b) the use of the property attribute of 
the Information entity associated with each class to store an object's attributes as a string of 
attribute-value pairs.  These techniques stemmed from the objectives of the Design 
Repository project, i. e., the storage and retrieval of archival information rather than the 
support of interactive product development. The benefit of these techniques is the generic 
nature of the class hierarchy that allows the representation of a broad number of concepts 
without specialization into a large number of subclasses. The lack of specialization is a 
benefit at the representation level in terms of simplicity, but may be expected to be 
unsuitable as a mode of information transfer between tools where rapid and seamless 
interoperation is needed. There are a number of ways by which these limitations may be 
removed. 
 
The type taxonomies developed by the Design Repository project may be used to 
generate, automatically or semi-automatically, domain-specific specializations of the 
generic classes in the core model. As an illustration, Table 3 shows a small subset of the 
taxonomy of Artifacts that arose in the modeling of the current set of example repositories, 
without any specific attempt at a comprehensive artifact taxonomy. Figure 6 shows the 
class hierarchy structure generated in a one-to-one correspondence with the classifiers in 
the taxonomy tree. Similar class hierarchy structures may be generated as needed for the 
other generic object classes, e. g., Function, Form and Behavior. 
 

Artifact       
Machine-element … 

Axle … 
Bearing … 
Brake  

Block-brake  
Band-brake  
Cone-brake … 

Clutch  
Friction-clutch  
Axial-clutch  
Cone-clutch … 

   
Table 3. Partial Taxonomy of Artifacts 
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Figure 6. Partial Artifact Class Hierarchy 
 
The primary reason for having domain-specific subclasses of the generic classes is to be 
able to assign readily accessible domain-specific attributes and methods to each 
specialization class. In parallel with the expansion of the generic classes into domain-
specific subclasses described above, the properties attribute of each generic instance could 
be expanded and each named attribute and method of the instance declared as an attribute 
or method of the subclass.  
 
An alternate means of retaining a few generic classes while representing many entities 
with diverse attributes and methods was used in SEED-Config, a knowledge intensive 
system for the design of buildings (Fenves et al., 1999). The information model of SEED-
Config, called BENT, uses only one generic class, called BuildingEntity, as a container (i. 
e., aggregation) of all information about a building entity, which may be as general as an 
entire building or as specific as a beam or even a joint (Rivard and Fenves, 2000). One 
attribute of BuildingEntity is the buildingEntityType, the value of which is an entry from a 
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hierarchical taxonomy of building entity types known to the system, in a manner 
analogous to the type attributes in the Design Repository.  
 
Some slots of the BuildingEntity are common to all building entity types, e. g., the entity’s 
spatial representation (geometry), its classifiers (all symbol valued attributes are treated 
as classifiers) and its derivation (the sequence of productions that produced the current 
state of the artifact’s description). More specific attributes are grouped into three sets: 
Function Units, analogous to Requirements and Function in the core model, describing the 
design requirements; Design Units, analogous to Form, describing the proposed solution; 
and Evaluation Units, analogous to Behavior, describing the evaluation results. Each unit 
consists of one or more source-coherent attributes, typically the attributes resulting from 
the application of one production, e.g., “loads” in a Functional Unit or “steel properties” 
in a Design Unit. The BuildingEntityType acts as an internal classifier that determines what 
types of Units can be assigned to a building entity of a given type. 
 
Extending the core model in a manner similar to that used in the BENT model would 
present no conceptual difficulties. The only distinction from the first specialization 
method discussed above is that instead of actually generating specialization subclasses 
with their explicit domain-specific attributes, the type taxonomies would be used to 
designate the sets of attributes to be aggregated to the generic classes.  
 
 8.2.  Exploration of Applicability to Full Lifecycle of Artifact 
 
All of the studies that contributed to the development of the core product model have 
dealt with the early, conceptual phases of design. It is in these phases that the design of 
the emerging artifact is most directly influenced by the requirements and that the function 
and form of the artifact are dealt with equal emphasis. The core model directly facilitates 
reasoning with these concepts by means of the associations, aggregations and named 
relationships provided. 
 
One of the anonymous reviewers of (Shooter et al., 2000a) questioned whether the design 
information flow model, summarized in Section 3.2, is applicable to the later, detailed 
design development phases. Since the core product model is envisaged as the base level 
support of the design information flow model, as discussed in Section 7.2, the same 
question is appropriate for the core model as well. The core model is sufficiently generic 
that it should be applicable to the full lifecycle of the artifact beyond design to 
manufacturing, distribution and recycling. Admittedly, detailed design development 
introduces a great deal of detail in the artifact description, not all of it necessarily tied to 
user requirements, function or even behavior. This information can be readily captured in 
the core model through unlimited recursion in the containment hierarchies of the Artifact 
and its Form. Nevertheless, the applicability of the core model for such use has neither 
been demonstrated nor tested, and must therefore be treated as an open research question. 
 
Alternately, as indicated in Section 3.1, the core model may be used only in the 
conceptual design phases, with the resulting design description translated to more robust, 
tested information exchange representations, e. g., STEP. 
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The final significant area of future work is to gather feedback and buy-in from both 
researchers and end-users of tools interoperating by means of a representation based on 
the core model. 
 
9.  SUMMARY 
 
This report presents a core representation for design information that is intended to serve 
as a representational foundation for next-generation product development systems. The 
development of this core representation was motivated by a vision of next-generation 
product development systems, drew specific content-level requirements from a closely 
related effort in design information flow modeling, and was synthesized after an analysis 
of several independently-developed design artifact representations.  
 
This research is one attempt to provide a foundation for next-generation tools by means 
of a simple and generic representation infrastructure. Clearly, automated reasoning will 
be easier using formally-represented product information than using informal or 
unstructured information. The structure of product information that is captured, such as 
physical decomposition, functional decomposition, and mappings between the two, will 
further support reasoning about designs. The development of extensive taxonomies of 
engineering terminology (an ongoing activity in the NIST Design Repository project) for 
use with the type classification attribute will greatly facilitate the indexing and retrieval 
of product information from engineering databases. 
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APPENDIX A: COMPARISON OF FOUR PRODUCT MODELS 
 
This Appendix presents the comparison of four product models developed by the 
following projects: 
 

• NIST Design Repository;  
• Object-Oriented Distributed Design Environment; 
• Design-Process Planning Integration; and  
• Design for Tolerancing of Electro-Mechanical Assemblies. 
 

The comparison  below shows the objects and their attributes in the four product models, 
after all project-specific terms (object and attribute names) have been eliminated, e. g., 
tolerance-related terms in the Design for Tolerancing project. Some interpretation was 
used to equivalence some of the terms used, e. g., “Information” and “artifactDescription”. 
 
Blank lines in the comparison indicate that a term used in one model does not have an 
equivalent term in another model. 
 
The symbol (sp) stands for Specialization. 
 
NIST Design  OO Distributed  Design-Process   Design for   
Depository  Design Environment  Planning  Integration  Tolerancing   
        
Artifact    Artifact  Artifact  
    id    
Name    name  Name  
Type    type  Group  
Information    artifactDescription    
Function    artifactFunctions  Function  
Form    artifactForm    
Behavior    artifactBehaviors  Behavior  
Subartifacts    subArtifacts    
Subartifact_of        
Relationships        
Constraints    artifactConstraints  Constraint  
    artifact Requirements    
      Purpose  
      ArtifactAttributes  
      Requires  
      Structure  
      Goal  
      Parameter  
      StructureBehavior  
      IndividualBehavior  
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    ArtfactToBeMade (sp)    
    dueDate    
    quantity    
    supplyingCompany    
    ArtifactToBeBought(sp)    
    unitCost    
    quantity    
    supplyingCompany    
      Assembly (sp)  
      SubAssembly (sp)  
      Part (sp)  
    Feature  Feature (sp)  
    id    
    name    
    type    
    typeOfShape    
    dimensions    
    tolerances    
    location    
    orientation    
    features    
        
Function  Function  Function  Function  
Name  name  name  Name  
Type        
Information    description    
    TransferFunction (sp)    
Input_flow    inputSource  Input  
Output_flow    outputSource  Output  
Subfunctions  consistsOfFunctions      
Subfunction_of  subFunctionOf      
Constraints      Constraint  
Referring_artifact      Artifact  
  listOfForms      
    parameters    
    variationLimit    
      Goal  
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Form  Form  Form    
    id    
Name  name  name    
Type    typeOfShape    
Information        
Filenames        
Constraints        
Referring_artifact        
  functionName      
  geometricAttribute      
  materialAttribute      
  interfaceAttribute      
  pointerToCompatible- 

Forms 
     

  method      
    dimensions    
    location    
    artifactMaterial    
    orientation    
    designRationale    
    features    
        
Behavior  Behavior  Behavior  Behavior  
Name    name  Name  
Type    type    
Information        
Subbehaviors        
Subbehavior_of        
Constraints        
Referring_artifact        
  listOfForms      
  listofBehaviorAttributes      
  method()  behaviorModel()    
      StateVariable  
      CausalLink  
      DependsOn  
      AffectsVariable  
      ReferenceValues  
        
    Material    
    name    
    description    
    properties    
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Flow        
Name        
Type        
Information        
Source        
Destination        
Constraints        
Referring_functions        
        
Relationship      Relationship  
Name      Name  
Type      RelationshipType  
Information        
Links      RelationshipLink  
        
    ArtifactAssembly 

Relationship 
   

    matingArtifacts    
    numberOfFeature- 

AssemblyRelationships 
   

    matingFeatures    
    assemblyLink    
        
    FeatureAssembly 

Relationship 
   

    matingFeatures    
    featureAssemblyLink    
        
Constraint      Constraint  
Name      Name  
Type      ConstraintType  
Information        
Text        
Links      ConstraintLink  
        
  Specification      
  Attribute      
        
  Attribute      
  attributeName      
  attributeType      
  value      
  ioDirection      
    Engineering 

Requirement 
   

    requirements    
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APPENDIX B: THE CORE MODEL 
 
This Appendix reproduces, with minor formatting changes, the Java code generated by 
Rational Rose™ from the UML class diagram of the core model entered into Rational 
Rose. The visual display of the class diagram in Rational Rose is too cluttered to be 
reproduced. 
 
There is one fundamental difference between the core model described in the text and 
illustrated in Figures 1 through 5, and the model entered into Rational Rose. This 
difference is due to the fact that the Java language does not implement the concept of an 
association class (even in “standard” UML, “ an additional relationship is required to 
show ownership” (A. I. Holub, http://www.holub.com) of the association class by one of 
the classes forming the association). This limitation was overcome by severing each 
original association and creating a new association between each original member class 
and the former association class. In other words, association classes were treated as 
ordinary classes. The changes that were made are graphically illustrated in Figure B1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

          Implemented 
 
          Not implemented

Common 
Core Object 

Core 
Entity 

Core 
Property

Reference 

Undir Set Rel

Dir Set Rel
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Requirement

Assembly

Constraint

Specification 

Figure B1. Class Diagram Implemented 
 
//Source file: 
/home/msid/fuwang/CoreModelDiagram/CoreModel/*.java 
 
package CoreModel; 
 
public class Artifact extends Core_Entity  
{  private String type; 
   public Config_Info config_info; 
   public Form form; 
   public Function function[]; 
   public Behavior behavior[]; 
   public Specification is_specified_by; 
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   public Flow is_source_of[]; 
   public Flow is_destination_of[]; 
   public CoreModel.Artifact subartifact_of[]; 
   public CoreModel.Artifact subartifacts[]; 
   public Feature features[]; 
    
   public Artifact(){}}  
    
public class Assembly extends Common_Core_Relationship  
{  private String type; 
   public Core_Entity components[]; 
    
   public Assembly(){}}  
    
public class Behavior extends Common_Core_Object  
{  private String type; 
   public Artifact behavior_of_artifact; 
   public CoreModel.Behavior subbehaviors[]; 
   public CoreModel.Behavior subbehavior_of; 
    
   public Behavior(){}}} 
 
public abstract class Common_Core_Object  
{  private String name; 
   public Information information; 
   public Reference referenced_by[]; 
   public Reference references[]; 
   public Set_Relationship member_of[];  
   public Directed_Set_Relationship special_member_of[]; 
  
   public Common_Core_Object(){}}  
    
public abstract class Common_Core_Relationship  
{  private String name; 
   public Information information; 
    
   public Common_Core_Relationship(){}}  
    
public class Config_Info  
{  private String name; 
   private String type; 
   public Information information; 
   public Artifact config_info_of_artifact; 
  
   public Config_Info(){}}  
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public class Constraint extends Common_Core_Relationship  
{  private String type; 
   public Core_Property constrains[]; 
    
   public Constraint(){}} 
    
public abstract class Core_Entity extends 
Common_Core_Object  
{  public Assembly component_of[]; 
    
   public Core_Entity(){}}  
 
public abstract class Core_Property extends 
Common_Core_Object  
{  public Constraint constrained_by[]; 
   public Requirement required_by_requirement[]; 
    
   public Core_Property(){}}  
 
public class Directed_Set_Relationship extends 
Set_Relationship  
{  private String type; 
   private String special_member_role; 
   private String member_role; 
   public Common_Core_Object special_members[]; 
    
   public Directed_Set_Relationship(){}}  
    
public class Feature extends Core_Entity  
{  private String type; 
   public Artifact feature_of_artifact; 
   public Function function_of_feature[]; 
   public Form form_of_feature; 
   public CoreModel.Feature subfeature_of; 
   public CoreModel.Feature subfeatures[]; 
       
   public Feature(){}}  
 
public class Flow extends Core_Property  
{  private String type; 
   public Artifact is_source_of[]; 
   public Artifact is_destination_of[]; 
   public Transfer_Function input_flow[]; 
   public Transfer_Function output_flow[]; 
       
   public Flow(){}}  
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public class Form extends Core_Property  
{  private String type; 
   public Material material; 
   public Geometry geometry; 
   public Artifact form_of_artifact; 
   public Feature form_of_feature; 
   public CoreModel.Form subforms[]; 
   public CoreModel.Form subform_of; 
  
   public Form(){}}  
    
public class Function extends Core_Property  
{  private String type; 
   public Artifact function_of_artifact; 
   public Feature function_of_feature; 
   public CoreModel.Function subfunctions[]; 
   public CoreModel.Function subfunction_of; 
  
   public Function(){}}  
    
public class Geometry extends Core_Property  
{  private String type; 
   public Form geometry_of_form; 
   public CoreModel.Geometry subgeometries[]; 
   public CoreModel.Geometry subgeometry_of; 
    
   public Geometry(){}}  
    
public class Information  
{  private String name; 
   private String description; 
   private String documentation; 
   private String methods; 
   private String properties; 
    
   public Information(){}}  
    
public class Material extends Core_Property  
{  private String type; 
   public Form material_of_form; 
   public CoreModel.Material submaterials[]; 
   public CoreModel.Material submaterial_of; 
    
   public Material(){}}  
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public class Reference extends Common_Core_Relationship  
{  private String type; 
   public Common_Core_Object references[]; 
   public Common_Core_Object reference_by[]; 
    
   public Reference(){}} 
    
public class Requirement extends Common_Core_Relationship  
{  private String type; 
   public Specification required_by[]; 
   public Core_Property requires_Core_Property[]; 
    
   public Requirement(){}}  
    
public abstract class Set_Relationship extends 
Common_Core_Relationship  
{  public Common_Core_Object members[]; 
    
   public Set_Relationship(){}}  
 
public class Specification extends Common_Core_Object  
{  private String type; 
   public Artifact specification_of; 
   public Requirement requirements[]; 
    
   public Specification(){}}  
    
public class Transfer_Function extends Function  
{  public Flow output_flow[]; 
   public Flow input_flow[]; 
    
   public Transfer_Function(){}} 
    
public class Undirected_Set_Relationship extends 
Set_Relationship  
{ 
      public Undirected_Set_Relationship(){}}  
 
 
 


	A CORE PRODUCT MODEL FOR REPRESENTING DESIGN INFORMATION
	LIST OF FIGURES
	LIST OF TABLES
	A CORE PRODUCT MODEL FOR REPRESENTING DESIGN INFORMATION
	Abstract
	Keywords:

	MOTIVATION
	ORGANIZATIONAL SETTING
	The Knowledge-based System Interoperability Project
	Related Projects

	RELATED RESEARCH
	Product Modeling
	Design Information Flow Modeling

	OBJECTIVES
	PRAGMATIC STUDY
	THE CORE REPRESENTATION
	6.1. Representation of Attributes and Class Types
	6.2.  Semantics
	Common Core Object
	Core Entity
	Core Property
	Artifact
	Feature
	Specification
	Function
	Transfer Function
	Flow
	Behavior
	Form
	Geometry
	Material
	Common Core Relationship
	Requirement
	Constraint
	Reference
	Assembly
	Set-Relationship
	Undirected Set-Relationship
	Directed Set-Relationship
	6.3.  Class Hierarchy
	6.4.  Associations and Aggregations
	Relationships

	PRESENT AND POTENTIAL APPLICATIONS
	7.1.  Design Repository
	7.2.  Open Assembly Design Environment

	INFORMATION FLOW MODEL
	CORE MODEL
	INFORMATION FLOW MODEL
	CORE MODEL
	POSSIBLE EXTENSIONS  OF CORE MODEL
	
	
	
	
	Table 2. Possible Extensions to Core Model




	7.3.  Design for Tolerancing
	7.4.  Design-Process Planning Integration

	AREAS FOR FUTURE RESEARCH
	8.1.  Extensions to Support of Interoperable Tools
	
	
	
	Table 3. Partial Taxonomy of Artifacts




	8.2.  Exploration of Applicability to Full Lifecycle of Artifact

	9.  SUMMARY
	ACKNOWLEDGEMENTS
	DISCLAIMER
	REFERENCES
	APPENDIX A: COMPARISON OF FOUR PRODUCT MODELS
	APPENDIX B: THE CORE MODEL

