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Abstract

In this paper we discuss some applications of the classical Gibbs adsorption equation

to specific diffuse interface models that are based on conserved and non-conserved order

parameters. Such models are natural examples of the general methodology developed by

J.W. Gibbs in his treatment of the thermodynamics of surfaces. We employ the methodol-

ogy of J.W. Cahn, which avoids the use of conventional dividing surfaces to define surface

excess quantities. We show that the Gibbs adsorption equation holds for systems with gra-

dient energy coefficients, provided the appropriate definitions of surface excess quantities

are used. We consider in particular the phase field model of a binary alloy with gradient

energy coefficients for solute and the phase field. We derive a solute surface excess quantity

that is independent of a dividing surface convention, and find that the adsorption in this

model is influenced by the surface free energies of the pure components of the binary alloy,

as well as the solute gradient energy coefficient. We present one-dimensional numerical

solutions for this model corresponding to a stationary planar interface and show the con-

sistency of the numerical results with the Gibbs adsorption equation. We also discuss the

Gibbs adsorption equation in the context of other diffuse interface models that arise in

spinodal decomposition and order-disorder transitions.





1 Introduction

Diffuse interface models of phase transitions were first employed to describe a liquid near its

critical point. Subsequently, they were developed for a variety of other situations including

spinodal decomposition and anti-phase boundaries in solids. The diffuse interface description

of an interface envisages that the interface has a small finite thickness over which the material

undergoes a smooth transition from one physical state to another, e.g., solid to liquid. The state

of the system at each point in space is characterized by one or more order parameters. In an alloy

the composition may play the role of an order parameter, which therefore varies continuously

within the interfacial region between its value in each of the bulk phases. Consequently other

thermodynamic quantities such as the pressure and Helmholtz free-energy density also vary

through the interface. The associated variation of the free energy density in the interfacial

region gives rise to the surface energy associated with the interface.

Gibbs (1957) in his treatment of interfaces did not explicitly address their internal structure.

Rather, he introduced the notion of a dividing surface which separates the two bulk phases and

accounts for the physical properties of the interface through additional excess quantities such as

composition. In this treatment he derived the Gibbs adsorption equation which relates changes in

the surface energy of an interface to corresponding changes in intensive thermodynamic variables,

such as temperature and chemical potential, and involves the excess quantities associated with

the interface. These ideas have been more recently developed by Cahn (1979).

In this paper we focus on a phase-field model of a binary alloy developed by Wheeler,

Boettinger & McFadden (1993), hereafter denoted by WBM. This model employs a phase-field

variable </>(x, t) to describe the phase of the system as well as a composition c(x, t ). The governing

equations are derived from a free energy functional that contains square gradient terms in both

the composition and phase field. It may be shown that for a planar interface in equilibrium the

chemical potential is continuous across the interface and the bulk solid and liquid compositions

satisfy a common tangent construction. For an ideal solution, this gives a lens-shaped phase

diagram. Charach and Fife (1998) have investigated an extensive range of asymptotic limits

of this model. Related phase-field models of a simple binary alloy have been also developed

by Lin and Rogers (1992), Lowen, Bechhoefer & Tuckerman (1992), Caginalp & Xie (1993),

Wheeler, Boettinger McFadden (1992), Warren & Boettinger (1995), Kim, Kim &; Suzuki

(1999), and Bi &; Sekerka (1998). In addition, phase-field models have been extended to more

complex alloys, such as eutectic alloys by Karma (1994) and Wheeler, McFadden &; Boettinger



996), as well as Steinbach et al. (1996).

Other diffuse models that involve alloy systems include spinodal decomposition (Cahn &;

Hilliard 1958) and antiphase boundaries (Allen & Cahn 1979), as well as multiple order param-

eter models of order-disorder transitions in body-centered-cubic (BCC) alloys (Cahn & Novick-

Cohen 1996), face-centered-cubic (FCC) alloys (Braun, Cahn, McFadden & Wheeler 1997), and

hexagonal-close-packed (HCP) alloys (Cahn, Han, &; McFadden 1999).

In this paper we show that the phase-field model of a simple binary alloy satisfies the Gibbs

adsorption equation when we make a suitable definition of the excess composition. We present

numerical calculations which illustrate that the component of the alloy with the lower surface

energy preferentially adsorbs on the interface, as well as how the surface energy depends on

both temperature and the solute gradient energy coefficient. We go on to show that the Gibbs

adsorption equation may also be derived for other diffuse interface models of alloys, including

spinodal decomposition and interphase and antiphase boundaries in a multiple-order-parameter

diffuse interface model of order-disorder transitions of an FCC alloy.

2 The Gibbs-Adsorption Equation for a Binary Alloy

In this section we review the classical description of the equilibrium surface free energy for a

binary alloy, including J.W. Cahn’s formulation of the Gibbs adsorption equation. The modifi-

cations to this treatment for a phase-field model of a binary alloy are described in the following

section.

2.1 Thermodynamic Equilibrium

We consider an isothermal binary alloy system comprised of two species, A and B. As in

our previous treatments (Wheeler et al. 1992, 1993), we assume a constant molar volume

throughout the system, which allows us to neglect the effects of volume change on solidification.

In this situation the Helmholtz free energy density, /, may be considered to depend only on

the composition c, representing the mole fraction of component B, and the temperature of the

system, T, and satisfies the relation

df = —sdT + fide, (
1
)



where s is the entropy per unit volume and p — df/dc is the chemical potential 1
. The pressure

p(c, T
)

is given by

p=-f + cp, (2)

and satisfies the Gibbs-Duhem equation,

dp = sdT + cdp. (3)

For equilibrium of a spatially heterogeneous system, these thermodynamic relations are assumed

to apply locally at each point, though /, s, c, and p may vary from point to point. Gibbs (1957)

provides a description of the equilibrium properties of phase boundaries that apply in general,

without requiring a detailed model of the interfacial region itself.

We consider a planar solid-liquid interface at temperature T that is at equilibrium, with

a semi-infinite solid region extending to x —> — oo, and a semi-infinite liquid region extending

to x —» +oo. We consider a control volume consisting of a cylinder of uniform cross-sectional

area A and length 2W extending over the interval —W < x < W

.

The solid-liquid interface

is assumed to be located near x = 0, and the cylinder is assumed to be long enough that the

material near x — —W consists of bulk solid phase and that near x — W is bulk liquid phase.

We assume the equilibrium solute profile is described by a function c(x) which tends to bulk

equilibrium values in regions far from the solid-liquid interface.

The total Helmholtz free energy of the control volume, Fw ,
is given by

rW
Fw — A f (c, T) dx, (4)

J-w

and we also define a total entropy Sw ,
total composition Cw ,

and volume Vw,

rW rW rW
Sw = A sdx, Cw — A cdx, Vw — A dx — 2AW. (5)

J-w J-w J-w

For a given temperature, T, the system within the control volume is at equilibrium if Fw is a

minimum for given values of Cw and Vw- Introducing constant Lagrange multipliers ji and p,

1
Strictly speaking, a more accurate term for /i is the diffusion potential, proportional to the difference between

the chemical potentials of species B and A, but for brevity we will simply refer to g as the chemical potential.

3



the condition for equilibrium is

0 — 5 {Fw — pCw + pVw} , (
6 )

where the minimum is taken with respect to variations in solute, c(x)+6c(x), and the end points

x — —W + SWs and x — W + SWL ,
for a fixed value of A. This gives

0 = A
/ [/C (c, T) - /i] Sc dx + [f{cL ,

T) - pcL + p] SWL - [f{cs ,
T) - pcs + P] 6WS , (7)

J —W

where Ci — c(W) and cs = c(-W) are the equilibrium bulk concentrations in the liquid and solid

phases, respectively. The equilibrium concentration profile is thus characterized by a uniform

chemical potential. The pressures pi = cBp — f{ci,T) and ps = Csp — f{cs,T) in the bulk

liquid and solid phases are equal and satisfy pL = ps — p. At equilibrium, then, we have uniform

values of p and T, but only that pL — ps in the bulk phases; /, c, s, and p generally vary through

the interface.

The equilibrium conditions imply that the common tangent construction holds, as given by

fc(cL,T) = fc(cs,T) =
/(Ci-’ 7

’

>
" /(C5

’
T
f (8)

Cl C5

These conditions define the liquidus and solidus concentrations, ci(T) and cs(T), as functions

of temperature. The chemical potential p(T) is also a function of temperature at equilibrium.

Prescription of the value of Cw serves to specify the position of the interfacial region within the

control volume, so that a variation in Cw for a given temperature changes the relative amounts

of solid and liquid in the control volume.

An explicit example for /(c, T) is provided by the ideal solution model considered in Wheeler

et al. (1992), where
U'T

f{cL ,T) = fL {cL ,T) = I{cL ), (9)
Vm

and

„ ^ Lb(T-Tb )
, „ _ ^LA (T - Ta )

,

RT
f(cs ,T) = fs(cs,T)

= cs = + (1 - Cs)
Tf,

+— '(cs). (10)
1 B 1 A Vm

where Ta and TB are the bulk melting points of components A and B, respectively, LA and LB

are the latent heats per unit volume of A and B
,
R is the ideal gas constant, and vm is the

4



molar volume, which is assumed to be uniform throughout the system. Here

1(c) = clnc + (1 - c) ln(l - c) (11)

is proportional to the ideal entropy of mixing. These free energies lead to a lens-shaped phase

diagram, as illustrated in Fig. 1 for a model of the Cu-Ni system with properties listed in Table

1.

2.2 The Surface Free Energy

The surface free energy 7w can be introduced through the expression

rW rW
Fw = A /(c, T)dx = A

/
{[/(c, T) - /(cL ,

T)} - fc (cL ,T)[c - cL ]} dx
J —W J —w

rW
+ fc(cL,T)A cdx + {f (cl ,T) — CLfc(cL,T)]Vw = Aq/w nCw — PlVw, (

12
)

J —W

where
rW

7w= {[/( c >
T) — f (ci, T)] - fc (cL ,

T)[c — cL }} dx. (13)
J—W

Using the relation p = cp — /(c, T), we may also write

rW
Fw r- pCw — A p(x)dx, (14)

J-w

where the contribution to the free energy from the pressure p(x) appears explicitly. Comparing

Eq. (12) and Eq. (14), we see that the surface free energy 7w can be interpreted as the free

energy associated with the variation of pressure through the interfacial region. We note that

Fw , Sw ,
and Cw all vary strongly with the width W, since their integrands tend to non-zero

limits as x —

>

±00. In contrast, 7w has a well-defined finite limit for large W given by

/
OO

{[/(c,T) - /(cl ,T)] - fi[c - cL }} dx
, (15)

-OO

where convergence of the integral is made possible by the common tangent construction, Eq. (8),

satisfied by the integrand.
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2.3 The Gibbs Adsorption Equation

The equilibrium surface energy for a binary alloy can be considered to be a function of T alone,

and the Gibbs adsorption equation in this context describes the variation of surface energy with

temperature, d'y/dT. Gibbs’ original treatment was described in terms of a dividing surface

which is introduced to define surface excess quantities that account for local variation in the

interfacial region; for example, a surface excess entropy Sxs can be defined by

rW rXo rW
Sw = A s(x) dx = ssA / dx + siA / dx + Sxs A, (16)

J-W J-W J A'o

where x = X0 is the location of the dividing surface. In this description the bulk entropy

densities sl and ss in the liquid and solid are extended to either side of the dividing surface,

and the excess quantity Sxs is introduced to account for the actual variation of s(:r) near the

interface. One similarly defines an adsorption, or surface excess concentration, Cxs ,
and relates

d'y/dT to the excess quantities Cxs and Sxs ,

d'y = -Sxs dT - Cxs d/i. (17)

Although Cxs and Sxs depend on the location of the dividing surface, the resulting expression for

d-y/dT does not, consistent with the fact that d'y/dT represents a measurable quantity, unlike

Sxs and Cxs . We note that *yw itself can be interpreted as the surface excess of the quantity

f — cfc = —p; in this case, however, jw is independent of the location of the dividing surface

by virtue of the common tangent construction.

Cahn (1979) gives an elegant discussion of the Gibbs adsorption equation which proceeds

without the introduction of a dividing surface. We provide a short summary of Cahn’s formula-

tion for the special case of a binary alloy in the next section. This description is then generalized

to treat the case of a phase-field model with gradient energy coefficients appearing in the free

energy function.

2.4 Cahn’s Formulation of the Gibbs Adsorption Equation

In terms of the thermodynamic description given in the previous section, if we perturb an

equilibrium system that is at temperature T and composition Cw by T —> T + ST and Cw ->

Cw + SCw, the local composition of the resulting equilibrium state will also be changed, with

6



c(x) —» c(a:) + 8c(x), where
rW

8Cw = A / Sc(x)dx. (18)
J-w

The variations ST and SCw represent independent variations; for example, a variation in Cw at

a given temperature can result from a translation in x of the system that changes the relative

amounts of solid and liquid within the control volume.

The corresponding free energy change is given by

rW rW
SFw = A

J
Sf dx = A

J [fcSc(x )
— sST]dx = pSCw — SwST, (19)

which is the system-wide version of equation (1). On the other hand, from the relation Fw —

A'yw ~ PlVw + pCw In Eq. (13), a variation at fixed A and W gives

SFw — AS'yw — VwSpL + pSCw + CwSp

,

(20)

where Sfi and Spi are the changes in fi and pi that result from the variations ST and SCw-

Comparing Eq. (19) and Eq. (20) leads to the following version of the Gibbs adsorption equation:

AS'yw — VwSpL — CwSp ~ SwST. (21)

Note, however, that the quantities Vw , Cw, and Sw are all strongly-varying functions of the

width W. To obtain an invariant form for this equation, we follow Cahn’s treatment by append-

ing the two Gibbs-Duhem equations for the bulk phases,

0 = SpL - sL ST - cL Sp , (
22

)

0 = Sps - ss ST - cs Sp, (23)

which also represent the increments to Eq. (21) that result from changes of the endpoints at

x — W and x — —W. If we note that Spi = Sps at equilibrium, we may then write (21 - 23) as

the linear system
/ \ /

— AS'yw

SPL

\
u i -cs

j y
Sp

j

( , v c \ (
1 Vw —L'W

0 1 cL

0 1 -cs )

\ ( a \Ow

Sl

ss
j

<5T, (24)

7



and use Kramer’s rule to solve for AS'yw- This gives

&lw — —ST
(ss ~ sL )

(Cs - CL )

(
c-cL )

dx. (25)

This expression has well-defined limits for large W, leading to the expression

g?7

dT

dp

dT

{ss - sL )

(Cs - Cl)
(

c

- cL )

(
cs - cL )

{ss - SL )

{s - SL )

dx

dx. (26)

The term (s$ - sl)/{cs — cl) is seen from (22) and (23) to equal —dfi/dT, and Eq. (25) equiv-

alently results from Eq. (21) by using this expression and Eq. (22) to eliminate pl . It is also

easily seen that the expression (25) is equivalent to the Gibbs adsorption equation (17) by using

the appropriate definitions for dp/dT and the definitions of the surface excess quantities.

3 The Phase Field Model for a Binary Alloy

We next consider the phase-field model of a simple binary alloy discussed by Wheeler et al.

(1992), which is based upon a gradient Helmholtz free energy functional given by

Fw =
/v
,|/(c,T,0) + ^|V^| 2

+ y|Vc| 2

|
dv (27)

where e and k are constant gradient energy coefficients; we denote the solute gradient energy

coefficient by k rather than S, the more common notation, to avoid confusion with variational

quantities. This model has also been studied by a number of other authors as well, including

Charach &; Fife (1998, 1999) and Cahn & Novick-Cohen (2000).

The free energy density considered by Wheeler et al. (1992) is given by an ideal solution

model

f(c,T,4>) = r(4>)fs(c,T) + (1 - r(4>)]h(c,T) + ^T±g(4>), (28)

where W(c) = cWq + (1 — c)WA is a linear combination of the double well heights for the pure

components, and

S (0) = 0
2
(1 - 0

2
), r(0) = 0

2
(3 - 20). (29)

The phase-field variable 0, which labels the liquid and solid phases in our model, is analogous

8



to an order parameter in solid-state order-disorder transitions (Allen &; Cahn 1979). In this

context, the liquid phase in our model is analogous to a disordered phase with 0 = 0, and the

solid phase is analogous to the ordered phase with 0=1. The phase-field variable can also

be interpreted in terms of the density of atoms in the solid-liquid system. In the solid phase,

the density varies periodically on the scale of the crystal lattice, whereas the mean density is

uniform in the liquid phase, with a smooth transition between the two states in the interfacial

region. The phase-field variable can then be regarded as characterizing the amplitude of the

density modulation. With the convention that 0 = 0 represents the liquid phase and 0=1
represents the solid phase, the above functions #(0) and r(0) satisfy g(0) = g(l) = 0, r(0) = 0,

and r(l) - 1, resulting in /(c,T, 1) = fs (c,T) and /(c,T, 0) = fL {c,T).

An equivalent expression for the free energy density is

f(c,T,$) = c}M,T) + [1 - c\fA (4,,T) + —/(c), (30)
B

m

where 1(c) is given in Eq. (11). Here fA and fB are the free energy densities of components A

(
c = 0) and B (c — 1), respectively, and are given by

r (X rn\ LA(T-TA )
WA Lb (T - Tb) Wd

fA ((J),T) = - r (0) + T"0(0)> /b(0>T) = T rw) + (
31

)

1

A

4 1b 4

cf. Eq. (10). At the melting points of the pure components, the equilibrium surface energies

and widths of the solid-liquid interface can be related to the double well heights and gradient

energy coefficient, viz. (Wheeler et al. 1992)

= 7b = \\/w^2, (32)

and

^a = / —
,

vTi/2 0A/2

3.1 Thermodynamic Equilibrium for the Phase-Field Model

(33)

Equilibrium inside the control volume of length 2W is described by the Euler equations

Cxx — /C (C,T,0) /i, (34)

9



e
2
0xx = /*(c,T,0), (35)

where ji is again a Lagrange multiplier representing the constraint on the total concentration

C\v, which is defined by Eq. (5) in this case as well. Neumann boundary conditions cx(W) =

cx (
— W) — 0 and <j)x(W )

= (j)x {
—W) = 0 arise naturally if the energy is minimized in the control

volume with respect to c and if the width W is large enough compared to the interfacial

region, the solute and phase fields will be uniform far from the interfacial region, in that case

the generalized chemical potential fc — k,
2
cxx = jl reduces to the classical chemical potential in

the bulk solid and liquid phases.

The Euler equations admit a first integral

2 2

y^x + y cx = l/(c, T, 4>) - f(cL ,
T, 0)] - ji\c - cL ], (36)

and by examining the far field values of equations (34) and (36) we see that the common tangent

conditions (8) relating c/,, cs ,
and T also apply in this case.

3.2 Surface Free Energy for the Phase-Field Model

The surface free energy in the phase-field model includes the gradient energy terms, and is

defined by writing

Fw = A
J_w

|/(c, T, </>) + -4>2

X T — cl
|

dx

= A
J-W 1 2 ^ + Y4 + [/(c. T, 4>) -I (CL, T, 0)] — }c (cl,T, 0)[c - cL ]

|

dx

rW
' + fc {cL ,T,0)A cdx + [/(cl ,T,0) - cLfc (cL ,T,0)]Vw

J—W

= A'yw + fiCw — VlVw-, (37)

where we have assumed that cxx(W) is negligible in replacing /c (cl,T, 0) by jj, in the last equa-

tion. This expression has the same form as in Eq. (12), but now instead of the definition (13)

we have

7w = J w \ 1*l + jcl + \f(c,T,4>) ~ }(cl,TM - fc (cL ,T,0)\c-cL]\ dx. (38)

10



3.3 Gibbs Adsorption Equation for the Phase-Field Model

A derivation for the Gibbs adsorption relation corresponding to this phase-field model follows

the same lines as given above; for brevity we simply compute d^/dT by varying the temperature

only. A variation in temperature causes variations in 7w, P and pi ,
as well as the functions c(x)

and 4>{x). From Eq. (37) we have

dFw _ A
d^w dp _ dCw dpL

~dT
~ A

~df
+
df°w

+
^~dT

~ (39)

We also have

a.

^
11-A±

dT j

rW

l-W
|/(C,T, 0 ) +

e

-(t)
2

x + yC^j dx

II

{
IcCt + fr + f(p&T + d2

(f)x (t>xT + K
2
CXCXT

|
dx

1411 {(/c- ft cxx
^
ct s + ^

f(p
(- (pxx^j 4*t

^
dx

)

~ dCw c— n dT
sw , (40)

where we have integrated by parts and used the Euler equations to obtain the final expression.

Comparing Eq. (39) and Eq. (40) gives

dlw dp dpL

It
=
~dT

Cw ~ Sw +W Vw ' (41)

Using

and

dpL

dT

dps

sl + cL
dp

df

dp

dT
= Ss + Cs

dT

and following Cahn’s treatment as before, leads again to the expression

(42)

(43)

d'Jw

~dT
=
-^ff |(c-cL)-£p—^(s-sL )jete;
dT J-w

{
(ss - sL ) J

(44)

thus the addition of gradient energy terms does not alter the form (25) of the classical Gibbs

adsorption equation. However, the gradient terms do affect the profiles that comprise the inte-

grands in (44) as will be illustrated numerically in a specific example below.



4 Numerical Calculations

In this section we describe numerical calculations for the model binary alloy considered by

Wheeler et al. (1992). Numerical solutions were computed by discretizing the Euler equations

(34) and (35) and using second-order-accurate finite differences on a uniform grid of 2N + 1

points, with a mesh spacing of h = W/N

.

Neumann boundary conditions were applied at

x = ±W, resulting in 2N -f 4 nonlinear equations in the 2N + 4 unknowns c
3 « c(jh) and

4>j « (/>{jh)., for j = —N , ..., N. In addition, the Lagrange multiplier fi is computed by specifying

a value for the total solute Cw- An alternative possibility is to specify the condition 0(0) = 1/2

instead of the solute constraint; both conditions serve to locate the position of the interfacial

region inside the box. The resulting set of nonlinear equations is solved using the package SNSQ

(Powell 1970). Acceptable accuracy is obtained using 200 grid points provided that the width

W is an order of magnitude wider than the interfacial region.

4.1 The Phase-Field Model without Solute Gradient Energy Terms

(» = 0 )

We first set k = 0 and study the effect on interface adsorption of varying the surface free energies

of the pure components, 7A and 7#. Some interface profiles for T = 1700K are shown in Fig. 2.

The dashed curve corresponds to the choice yA — 7#; Table 2 contains the resulting values of

7, normalized by ja, and the quantity dj/dT, normalized by 7A/TA . This temperature is near

the pure A side of the phase diagram, and the concentrations and surface free energies are near

those of component A.

If 7,4 is fixed and 7B is increased (lower curves), the equilibrium profile is characterized by

depletion of B in the interfacial region, consistent with the minimization of the free energy by

reducing the amount of the higher-energy component in the interface. The surface free energy

increases with increasing 75, and d^/dT becomes increasingly negative.

If 7B is fixed and 74 is increased (upper curves), the situation is reversed, and the lowest

energy state has preferential incorporation of component B in the interfacial region, which is

also reflected in the trends shown in Table 2.

We next show in Fig. 3 the dependence of 7 on temperature for 7.4 = 1b = 3.7(10~5
)

J/cm2
. Although the surface free energy of the pure components are equal, the surface energy

is larger for intermediate values of the system temperature, reflecting the influence of the solute

12



contribution to the surface free energy.

The corresponding surface adsorption is shown in Fig. 4. Here we define a dimensionless

surface adsorption

(45)

The derivative of the surface free energy 7w with respect to temperature is proportional to

-Yxsdn/dT. The ‘s-shaped’ adsorption curve reflects the change in sign of dy/dT, which is non-

monotonic in this case. We emphasize that ris is independent of a dividing surface convention,

and generalizes the adsorption coefficient that was displayed in Fig. 3 of WBM; Fxs includes

contributions from both the solute and the entropy profiles.

We next show in Fig. 5 the dependence of 7 on temperature for 7A — 3.7(10
-5

)
J/crn2

and 7b = 2.8(10
-5) J/cm 2

. In this case the surface free energy is a monotonic function of

temperature, as the contribution to the surface free energy from solute is less than the variation

that is associated with the different values for the pure components.

The corresponding adsorption is shown in Fig. 6. The adsorption ris is positive, with a

maximum at an intermediate temperature near the middle of the phase diagram.

4.2 The Phase-Field Model with Solute Gradient Energy Terms (tz /

0
)

We next present numerical calculations with a non-zero solute gradient energy coefficient ac.

We take 7a = 3.7(10
-5

)
J/cm2 and 7b — 2.8( 10

—

5

)
J/cm2

,
with e = 3.3(10

_6
)
(J/cm) 1 /2

;

the case ac = 0 therefore corresponds to Figs. 5 and 6. In Fig. 7 we show the surface free

energy for ac = e = 3.3(10
-6

)
(J/cm) 1 / 2

,
ac = 1.0(10

-5
)
(J/cm) 1 /2

,
/c = 2.0(10

-5
)
(J/cm) 1 /2

,
and

ac = 3.3(10
-5

)
(J/cm) 1 /2

. The curve for /c = e — 3.3(1Q
-6

)
(J/cm) 1 /2

,
indicated by a dashed

line, is almost indistinguishable from the case /c = 0 shown in Fig. 5. As ac increases, the

surface free energy also increases due to the enhancement of the free energy from the solute

gradient energy contribution. For the value ac = 3.3(10
-5

)
(J/cm) 1 /2

,
the maximum surface

free energy occurs at an intermediate temperature in the interior of the phase diagram. The

corresponding adsorption coefficients are shown in Fig. 8. For larger values of ac, the adsorption

adopts an ‘s-shaped’ profile with both positive and negative values, which is consistent with the

observations in Fig. 3 of WBM, which corresponded to a limiting case e//c <C 1 (in WBM, /c was

13



denoted by 5). For t/n <C 1 the width of the transition layer for the solute profile is much larger

than that for the phase field, as discussed in WBM and Charach h Fife (1999). The surface

free energy curve shown in Fig. 4 of WBM for k = 3.3(10~ 5
)
J/cm 1 /2 shows a non-monotonic

temperature dependence that is similar to the present calculations with e = 3.3(H)
-6

)
J/cm 1 / 2

and k — 3.3(1Q~ 5
)
J/cm 1 /2

.

5 Discussion

We next mention some variations of this procedure, which apply to special cases and general-

izations of the solidification model that we have discussed above. We start with two examples,

given by the Cahn-Hilliard equation and the binary alloy model of Kim, Kim, and Suzuki (1999),

where analytic solutions allow the Gibbs adsorption equation to be verified explicitly. We then

discuss an example with multiple order parameters that illustrates the dependence of the Gibbs

adsorption equation on the thermodynamic degrees of freedom in the system.

5.1 Cahn-Hilliard Equation

The Cahn-Hilliard equation is a special case of the binary alloy phase-field model that results

from setting e = 0 and taking a special form of the free energy density that is independent of

<f>. A simple model for spinodal decomposition near the critical temperature Tcr and critical

mposition ccr is obtained by assuming

f(c, T) = a(T - T„)(c - ccr )

2 + b{c - ccr )\ (46)

where a and b are positive constants. If T < Tcr ,
a solute profile of the form

c(x) - Ccr +
q(rcr - T)

2b

1 1/2
X

tanh —
2£

(47)

satisfies the Cahn-Hilliard equation, where the width £ of the interface is given by

£
2 =

K,

4a{Tcv - T)
(48)

14



The surface energy of the interface is given by

2

c
2

2
+ f{c,T) > dx =

2aca3 /2 (Tcr - T) 3/2

36
(49)

This model is symmetric about the point c = ccr ,
so that the chemical potential /i is zero for

the planar system for all T. The resulting form of the Gibbs adsorption equation,

dT /
OO

[s(:r) — s(oo)] dx =
-OO

— Aca
3 /2 (Tcr — T )

1 /2

(50)

can be verified directly, where the entropy density is s — —fr — —a(c — ccr )

2
.

5.2 Kim, Kim, and Suzuki’s Model of a Binary Alloy

A model for the solidification of a binary alloy that has a very simple description of the equi-

librium phase field and solute profiles across the solid-liquid interface was given by Kim, Kim,

and Suzuki (1999). In their model, 0 is interpreted as a solid fraction, and solute concentra-

tions Cl{x) and cs{x )
in the liquid and solid are defined throughout the system; the solute

concentration at each point in space is then given by

c = r(4>)cs + [1 - r(0)]cL , (51)

where r(0) is a smooth function of 0 with r(0) = 0 and r(l) = 1; e.g., r(0) = 0 or r(0) =

0
2

(3 — 20). The concentrations cl(x) and cs(x) are also assumed to satisfy a parallel tangent

construction at each point, with

dA(cL,T

)

= dfs (cs ,T)

dcL dcs
(52)

where fL and fs are the prescribed bulk free energy densities in each phase. Eqns. (51) and (52)

are inverted to give the relations ci = Cl(c, T, 0) and cs{c, T, 0), and the free energy density

/(c, T, 0) is then defined as

WIT)
/(c,T, 0) = r((j>)fs (cs{c, T, 0)) + [1 - r(0)]/L (cL (c, T, 0)) + —-—#(0), (53)

which differs from the form used in Eq. (28) in that cs and ci appear in the arguments of fs

and fi rather than the concentration c itself. Kim, Kim, and Suzuki (1999) assume a constant

15



double well height W, but we assume here that the height depends on temperature as a means

of allowing different surface free energies at T — Ta and T = TB -

The free energy functional of the system has the form (27) with k = 0, and the equilibrium

equations

fc = /A U~ <?<\>xx = 0, (54)

have particularly simple solutions because of the specific form chosen for /(c, T, 0). By using (51)

and (52) we find that A(c,T, </>) = W(T)g'((f))/4, so that the phase field is given by the profile

(j){x) = [1 — tanh(ar/2£)]/2, where £(T) — e/yJ\V(T). In addition, the equilibrium equations

imply that the common tangent construction holds, which in this case results in ci{x) and cs(x)

being constants that are given by the liquidus and solidus values at the given temperature T
;

the solute profile c(x
)
in (51) is then simply an interpolation by r(</>) between the liquidus and

solidus values.

The derivative of the surface free energy is

c?7

dT
dx

W'(T) r°° r0° r o W l W'(T) r°°
= —-— J

g{(j))dx + J
|c

: + -j-^'(0)0t| dx = —-— J
g(<t>)dx, (55)

where an integration by parts again simplifies the final expression. On the other hand, we have

s(x) = -fT = r{(f))ss + [1 - r(0)]sL -
W'(T)

9 {4), (56)

where ss = —dfs{cs,T)/dT and sl — -dfi(ci,T)/dT are the bulk entropy densities in each

phase, so that the Gibbs adsorption equation gives

% = -II {

[s(x) - Stl - |Sj lc(x) - Cl1

}
dx =™ II sWdx (57)

in agreement with (55).

5.3 Diffuse Interface Model of FCC Alloys

Adsorption also arises in models of interphase boundaries (IPBs) and antiphase boundaries

(APBs) that are based on diffuse interface descriptions; examples include face-centered-cubic

alloys (Braun et al. 1997) and hexagonal-close-packed alloys (Cahn, Han, & McFadden 1999). In

16



numerical computations for an FCC system performed by Tonaglu (2000), adsorption is observed

in the concentration profiles associated with APBs. This model provides a good illustration of

the appropriate degrees of freedom that appear in the Gibbs adsorption equation, and we provide

a brief summary of the governing equations here.

The FCC model is based on four order parameters that describe how the two species are

distributed on the FCC lattice, corresponding to the corners and faces of the unit cell. The

overall concentration in the system is denoted by c, a conserved order parameter, and there are,

in addition, three non-conserved order parameters, denoted by X
,
Y, and Z. The disordered

phase is characterized by X = Y — Z = 0, and ordered states have one or more non-zero values

of X, Y, and Z. There is an associated free energy density f(c,X,Y,Z,T). The free energy

functional for the system includes three gradient energy coefficients A
,
B

,
and /-c, and takes the

form

F =
fv {j (Xl + if + z\) + f (Af + Xl + Yl + Yl + Zl + Z2

y )

+y|Vc| 2 + /(c,A',K,Z,7')| dV (58)

For a planar system with unit normal n - (nx ,
ny ,

nz ), a one-dimensional solution depends only

on the variable ( = n • (x, y, z) that measures distance from the interface. The system has the

associated free energy

where

+ f{c,X, Y, Z, dQ, (59)

= An2
x + Bn2 + Bn], a2

y
= Bn2

x -I- An2

y + Bn2
,

al = Bnl + Bn
l + An\- (60)

The Euler equations are

fc
- K2

CC< = A. (61)

where the Lagrange multiplier /i again is equal to the chemical potential, and the non-conserved

order parameters satisfy

« ~ fx - 0, a 2Ycc - fv = o, a2

z
Za - fz = 0. (62)
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A first integral of the system is given by

0 2 9 9
- at » 9 <K ryO K 2
0 = -fxl + Jr(

! + ~^z\ + -c\ (63)

+ (
f(c, X, V, Z, T) - f(c(oo), A'(oo), V(oo), Z(oo),T)} - £[c - c(oo)].

5.3.1 Interphase Boundaries

An IPB connecting the disordered bulk phase with concentration cdls and an ordered bulk phase

with concentration cor and associated order parameters (X0,Y0 ,
Z0 ) ^ (0,0,0) is described by

the above Euler equations, with solutions that satisfy the far-field boundary conditions

(c(0,V(0,r(C),z(C)]
[cor ,X0 ,lo,Zo] as C ^ — CX),

<

[cdls , 0,0,0] as C OO,

(64)

say. The situation is analogous to our previous treatment of the binary alloy solidification

problem, with the disordered phase playing the role of the liquid phase, and the ordered phase

playing the role of the ordered phase. The Euler equations again imply that the common tangent

construction holds, which in this case is given by

fcicdis ,
o, 0, 0, T) = fc (cor,Xo, Y0 , Zo, T )

= f{cdls , 0, 0, 0, T) - f (
cor ,

A0 ,
T0 ,

Z0 ,
T)

Cdis Cor

= A, (65)

and

fx(c

fx (c*„ 0, 0, 0, T) = fY (cdt„ 0, 0, 0, T) = !z(cdls , 0, 0, 0, T) = 0,

or, Vo, Vo, Zo, T) = /v (c„, A'0 , Vo, Zo, T) = fz (c„, X0 ,
V0 ,

Z0 ,
T) = 0.

(66 )

(67)

Employing a control volume of uniform cross-sectional area A as before, extending over the

interval -W < ( < W in this case, leads to a corresponding surface free energy 7w given by

rW ( K
2

2
a2

2
Oiy r^ = LJtc

<
+

+

fY
<
+ ^ 72

+ [/(c, X, T, Z, T
)
- f(cdis ,

0, 0, 0, T)] - p[c - cdls ]} (
68

)

in terms of which we have

Fw = A"yw + jdCw ~ PdisVw , (69)
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where pdls ,
the pressure in the bulk disordered phase, is given by pdls = cdlsfc (cdls ,0,Q,0,T) —

f {C(hsi 0? 0, 0, T). The bulk equilibrium concentrations are then functions of the temperature,

cdls (T )
and cor (T), whose loci form curves in the phase diagram analogous to the liquidus and

solidus curves in the solidification case. The temperature is the sole thermodynamic degree of

freedom for an IPB, and the Gibbs adsorption equation

djw_

dT
Cdis ) dc (70)

for this diffuse interface system can be derived as before, in this case by making use of the

Euler equations (61) and (62) to simplify the result. Here the entropy density is given by

s = ~fT (c, X, y, Z, T).

5.3.2 Antiphase Boundaries

An APB connects variants of an ordered bulk phase. The variants have the same bulk con-

centrations cor and free energy; but the composition and temperature of the ordered phase are

independent thermodynamic degrees of freedom, in contrast to the case of an IPB. The non-

conserved order parameters assume different values in the two variants; examples include an

APB connecting two Ll 0 variants with X = Ar

0 ^ 0, Y — Z — 0 and X = —AT, Y = Z — 0, or

an APB connecting two Ll 2 variants with X — Y — Z — X0 ^ 0 and X - —Y = —Z = X0 .

The boundary conditions for the Euler equations (61) and (62) in this case are c —> cor as

£ —» ±oo; the far-field values of the non-conserved order parameters are denoted by X(oo),

A(-oo), etc. The variants have equal energy,

/(cor ,
A(-oo), y(-oo), Z(-oo), T) = /(cor ,

X(oo),T(oo),Z(oo),T), (71)

which follows from the first integral (63) for this case.

The surface adsorption and surface excess entropy for the APB are well-defined quantities,

with no need for a dividing surface convention, and are given by

/
OO roo

(c cor )
d(T SXs — / (5 sOT ) d(^i (72)

-00 J —o

o

where sor = - fricor, X(oo),Y(oo), Z{oo),T) is the entropy density of the bulk ordered phase.
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In the control volume we define the surface free energy 7w by

Iw
rW , k2

/Jtc
C
+ V 2

Q O',

+ fz
c

+ [/(c, A', y, Z, T) - /(cor ,
A

(

00), Y(oo), Z(oo), T)] - £[c - <v]} dC- (73)

For a fixed control volume, we consider changes 67^ due to variations ST in temperature

and Scor in the bulk composition; there are also associated changes in the local profiles of the

concentration and the non-conserved order parameters, as well as in the total concentration Cw ,

the chemical potential /}, and the bulk pressure por . The variations SCw and Sc(x) are related

as in Eq. (18). Note that a translation of the system within the control volume does not cause

an appreciable change in Cw provided W is large enough; therefore we do not assume that SCw

can be varied independently of T and cor .

The free energy of the control volume is Fw = A^w + pCw — PorVw, and examination of its

variation again leads to the familiar equation

AS'yw ~ VwSpor — CwSp — SwST, (74)

where the Euler equations can be used to eliminate the contributions from the gradient energy

terms as before. For an APB there is a single Gibbs-Duhem equation that holds in the bulk for

both variants,

Spar = SarST + CorSp, (75)

which leads to the result

rW rW
Slw = ST / [s(ar) - sor l dQ-Sfi [c(x) - cor \

dC, = -SxsST - CxsSp
J-w J-w

(76)

Here

Sfi = /cc (cor,X(oo),r(oo),Z(oo),T)^cor + fCT(cor ,
X (oo), Y (oo), Z(oo), T) ST (77)

which allows the calculation of d'yw/dT and d'yw/dcor directly in terms of Sxs ,
Cxs ,

and second

derivatives of the free energy density.
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6 Conclusion

In this paper we have shown that diffuse interface models of alloy systems satisfy the Gibbs

adsorption equation. In particular, we have investigated in detail a phase-field model of a

binary alloy involving gradient energy terms in both the phase-field and composition. Numerical

solutions of a planar interface using this model exhibit the component with the lower surface

energy preferentially adsorbing onto the interface as well as the surface energy being enhanced

through the presence of the solute gradient energy term. We also considered examples using

models of spinodal decomposition and order-disorder transitions in binary alloys. In each case we

have verified that the Gibbs adsorption equation holds for systems that feature gradient energy

coefficients and combinations of conserved and non-conserved order parameters, provided that

the appropriate definitions of surface excess quantities are used.
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La 2350 J/cm 3

Lb 1725 J/cm 3

T

a

1728 K
Tb 1358 K
vm 7.4 cm 3/mole

R 8.314 J/mole K

Table 1: Material parameters used in phase diagram calculations.

7a (j/cm2
) 7b (J/cm2

) l/lA (TAhA)dy/dT

11.2(1Q~ 5
)

2.8(10
-5

)
0.952673 2.9194647

8.4(10~ 5
) 2.8(10

-5
)

0.959877 2.4917755

5.6(10
-5

)
2.8(10- 5

)
0.969577 1.8930718

2.8(10" 5
) 2.8(10

-5
)

1.006204 -0.363581

2.8(10
-5

)
5.6(10~ 5

)
1.115590 -6.733671

2.8(10
-5

)
8.4(10" 5

)
1.261922 -14.490109

2.8(10
-5

)
11.2(10" 5

)
1.417201 -22.055166

Table 2: Material parameters used in adsorption calculations. Here T — 1700

K, e = 3.3(10
-6

)
(J/cm) 1/2

,
lA = e

2
/6^A -

Ni-Cu Phase Diagram

Figure 1: Phase diagram using the parameters in Table 1.
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Figure 4: The dependence of the dimensionless surface adsorption rxs on

temperature for = 7# = 3.7(1Q
-5

)
J/cm2

.

Figure 5: The dependence of 7 on temperature for 74 = 3.7(10
5
)
J/cm 2 and

7s = 2.8(10
-5

)
J/cm2

.
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Figure 6: The dependence of the dimensionless surface adsorption rxs on

temperature for 74 = 3.7 ( 10
-5

)
J/cm 2 and 7# = 2.8(10

-5
)
J/cm2

.

Figure 7: The surface free energy for k, = e — 3.3(10
6

)
(J/cm) 1/2 [dashed

curve], ac = 1.0(10
-5

)
(J/cm) 1 /2

,
ac = 2.0(10

-5
)
(J/cm) 1/2

,
and k = 3.3(10~ 5

)

(J/cm) 1 /2
.
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Figure 8: The surface adsorption for At = e = 3.3(10
6

)
(J/cm) 1 /2 [dashed

curve], At = l.Q(10~ 5
)
(J/cm) 1 /2

,
At = 2.0(10

-5
)
(J/cm) 1/2

,
and At = 3.3(1Q~ 5

)

(J/cm) 1 / 2
.
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