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Certain commercial software products are identified in this paper in order to adequately

specify the computational procedures. Such identification does not imply

recommendation or endorsement by the National Institute of Standards and Technology,

nor does it imply that the software products identified are necessarily the best available

for the purpose.



Abstract

The precision of manufacturing using machine tools depends on the accuracy of the

relative position of the cutting tool with respect to the workpiece. Kinematic modeling of

machine tools is used to describe this relative position. This motion can be modeled by

homogeneous coordinate transformation matrices composed of both rotational elements

as well as positional offset elements of the associated coordinates. The rotation and

translation components of the homogeneous transformations are considered to be

functions of nominal tool position and machine temperatures. In general these functions

are low order polynomials in terms of position and temperatures. The coefficients are

usually calculated with least squares curve fitting techniques. The data for these fits are

obtained by measuring actual coordinate positions and temperatures on the machine tool

based upon desired programmed nominal coordinates. The process of measuring and

modeling the errors of machine axis positions as functions of nominal positions and

temperatures is referred to as machine tool characterization. The geometric-thermal

models developed through machine tool characterization may not fully predict the errors

encountered by a machine tool during machining. The data from machine

characterization usually provides the structure to derive the basic form of the equations

used to model the various error components used in the homogeneous matrices. This

process of model updating involves determining the residual systematic errors of the

machine tool and applying an algorithm to update the geometric-thermal model

coefficients. The updating algorithm described in this report begins with adding

perturbation terms to the characterization coefficients of the geometric-thermal model.

These coefficients are estimated by an “inverse” process, using residual systematic errors,

determined from part measurements on a coordinate measuring machine. The main tool

used in identifying the perturbation terms is called a generalized or pseudo inverse

matrix. This matrix is applied to the residual error vector to obtain a “best” approximate

solution to the least squares problem.

Key Words: generalized inverse; geometric-thermal model; least squares; machine tool

model; post-process analysis; pseudo inverse

3



Table of Contents

0.0 Introduction 5

1.0 Kinematic Model for a Turning Center 8

2.0 Forming the Perturbation Equations 12

3.0 Forming and Solving the System Matrix 18

4.0 Application 22

5.0 Discussion 26

6.0 References 27

APPENDIX A 29

A. 1 Developing the Kinematic Model for a Turning Center 29

A.2 MACSYMA Script for Kinematic Model Generation 36

APPENDIX B 41

B. l Error Model Calibration Coefficients 41

B.2 Error Model Adjusted Coefficients 43

APPENDIX C: Adjusting for Tool Offsets 46

APPENDIX D: Determining the Machine Tool Errors from Part Measurements 47

APPENDIX E: Numerical Aspects of Pseudo Inversion 49

4



0.0 Introduction

The precision of manufacturing using machine tools depends on the accuracy of the

relative position of the cutting tool with respect to the workpiece. Kinematic modeling of

machine tools is used to describe this relative position. In this paper a machine tool is

assumed to be decomposable into basic rigid components. The motions of these

components can be related to each other by means of relative motions of coordinate

systems associated with each component. The machine tool is assumed to have a

reference axis system (arbitrarily assigned by the user). From this axis system two chains

of linked coordinates emanate. One connects the reference axis system with the tool

point and the other with the workpiece. The motion of a coordinate system relative to

another can be modeled by a homogeneous coordinate transformation matrix. This

matrix is composed of both rotational elements as well as positional offset elements of

the associated coordinates. The significance of homogeneous matrices is that a

coordinate system defining the motion of a machine component can be linked to the

reference coordinate system by a sequence of matrix multiplications. The errors in the

location of the tool with respect to the workpiece are related to the relative errors in the

locations of the coordinate frames in the axis chains. The rotation and translation

components of the homogeneous matrices defining the relative motions of the linked

coordinate systems are considered to be functions of nominal tool position and machine

temperatures. In general these functions are low order polynomials in terms of position

and temperatures. The coefficients are usually calculated with least squares curve fitting

techniques. The data for these fits are obtained by measuring actual coordinate positions

and temperatures on the machine tool based upon desired (CNC programmed) nominal

coordinates. Modeling of machine tools in this manner has been used by many
researchers, see for example references [1] to [1 1].

The process of measuring and modeling the errors of machine axis positions as functions

of nominal positions and temperatures is referred to as machine tool characterization.

One of the principal applications of kinematic modeling and machine tool

characterization is to develop a geometric-thermal model that relates the machine tool

error to the geometric imperfection and temperature variation in the machine tool. This

model can also be used for real-time correction of machine tool errors as functions of

nominal position and machine tool temperature profile. References [3] and [12] through

[15] describe several machine tool characterization experiments.

The geometric-thermal models developed through machine tool characterization may not

fully predict the errors encountered by a machine tool during machining. This is because

the characterization is usually based on measurements that can be taken only when the

machine tool is not operating. Many factors, such as coolant spray, load-induced

deformation, and long term machine wear, combine to make such models ineffective.

The data from machine characterization usually provides the structure to derive the basic

form of the equations used to model the various error components used in the

homogeneous matrices. The models developed through machine characterization can be

considered as first order models that require coefficient adjustment and periodic

coefficient updating in order to capture slowly changing process conditions in a
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production environment. This process of model updating involves determining the

residual systematic errors of the machine tool and applying an algorithm to update the

geometric-thermal model coefficients.

The updating algorithm described in this report begins with adding perturbation terms to

the characterization coefficients of the geometric-thermal model. These coefficients are

estimated by an “inverse” process, using residual systematic errors, determined from part

measurements on a coordinate measuring machine (CMM). They are then combined

with the existing model coefficients to compute the updated model coefficients. The
“inverse” process used is a form of least-squares estimation that takes into account the

possibility that the equations that arise in the usual least squares process may not be

uniquely solvable and standard least squares procedures may fail.

A discussion of one implementation of Post-Process analysis can be found in [20]

through [23] although few details of the computational inversion process are given. That

implementation relies on inversion of data acquired on individual features. The current

algorithm significantly differs from that implementation in that it uses data obtained from

measurements of an entire part to determine residual errors rather than restricting the

inversion process to a feature at a time. Using data from an entire part provides an

averaged set of coefficients applicable to all features on the part. Inverting, based on

fitting separate feature measurements, adjusts the same coefficients in the geometric-

thermal model differently and does not provide a single consistent adjustment of all

parameters that apply to the entire part. Once all parameters are uniformly adjusted,

errors on individual features can easily be determined.

The main tool used in identifying the perturbation terms is called a generalized or pseudo

inverse matrix. This matrix is applied to the residual error vector to obtain a “best”

approximate solution to the least squares problem. The term “best” will be described in

Appendix E. The essential tool in forming the generalized inverse is a matrix theorem

which proves that any given matrix can be decomposed into an associated diagonal

matrix, some of whose elements might be zero. The diagonal elements are called

singular values and indicate how many perturbation coefficients are significant. A full

discussion of the numerical aspects related to the singular value decomposition and

pseudo inverse generation are given in Appendix E and in reference [24],

This report describes the algorithmic details of the post-process analysis procedure and

presents an application to one part produced on a turning center. The authors are aware

that the application of the method to one part and, in fact, a reasonably simple part does

not constitute an adequate test of the procedure. However, budgetary constraints at the

time of the study limited the current work. The authors, however, felt that it was

worthwhile publishing the current results as a stimulus for further research. Future testing

of the algorithm is planned as budgets allow. These new tests will highlight various parts

designed to utilize the extent of the workspace and temperature ranges experienced by the

turning center. The object of the tests is to determine whether there is a fixed set of

coefficients for the geometric-thermal model that apply to the entire workspace or

whether the workspace needs to be divided into sub-areas with separate sets of
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coefficients applicable to each sub-area. They will also study the robustness of the

compensated parameters to perturbations of the data points upon which the model

updates were based.

The report is divided into six sections. Section 2 presents the error equations for the

machine tool (in this report a turning center was used). Section 3 describes the

development of the perturbation equations. Section 3 describes the formation of the

system matrix. Section 4 describes the application of the method to estimate the

perturbed machine tool model coefficients by using a machined part on the turning

center. Section 5 concludes with a discussion of the results. Section 6 includes the

references.
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1.0 Kinematic Model for a Turning Center

The turning center that is modeled in this section is shown in Figure 1. Although 40

thermocouples have been identified numerically from 0 to 39 (see Appendix A.l, Table

Al), only 36 were actually used to measure temperatures since 3 through 6 were not

attached to the machine tool during testing. This figure also shows the locations of

various thermocouples used to model the individual component errors that are included in

the complete kinematic model.

Figure 1: Turning Center with Thermocouple Locations

The formal development of the geometric-thermal error equations from the kinematic

model is given in Appendix A.l and only the results are given below. The definitions of

the terms in the model are also given in Appendix A.L The methods used to develop

these equations are well known and can be found in [3-5]. The coordinate system for the

turning center is shown in Figure 1.
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The modeled displacement errors of the tool from the workpiece are given by:
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These equations give the generic error formulas for a turning center with its absolute

reference axis system and machine coordinate system assumed aligned at “cold start” in

the “home” position. The constants, X,, Z,, X
2 , Z 2 , X 4 , Z4 , X 5 , Z5 , are relative offsets

of the machine component coordinate systems from the absolute reference axis system.

Note that X
3 , Z 3

are found to be non-significant and thus do not appear in equation (1).

The significant offset constants are given in Table A.2 of Appendix A.l. Many of the

components are deemed non-significant on a turning center (since the turning center is a

2-axis machine) so that only nine errors are included in the final model for the turning

center to yield the error equations

Ex =[£
v
(z,T) + £

y
(xS)]*Z i

+£
y
(zJ)*Z 2

+[S
x XzJ) + a

p
(T)*Az] + Sx

(x,T)

(2)
E

z
=-[£

y
U,T) + £

y
(x,T)]*X 4

-£
y
(zJ)*(X 2

+x) +S
z
(z,T )

+ [S. \x,T) + ao (T)* Ax] - S
z
(s, T)

Appendix A.2 lists the program used to symbolically generate equations (1) and (2) using

the symbol manipulator program MACSYMA. Note that the final error compensation

model for the turning center requires only two coordinate system offsets. These offsets

are given by

(Z 4 ,X 4 ) - Tool offset from the turret.

(Z
2
,X

2 ) - Cross slide offset from the carriage axis.
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The notation T represents the vector of all thermocouple temperatures given by

T = (T
0,-Ji9 ).

The following error components on the turning center are the characterization equations

and the coefficients used in the current study are given in Appendix B.l. The rotational

displacement of all points on the turning center have a yaw component that is a function

of temperature

Mach _ Yaw = A
10 ,

((r
i0
+T

21 )1 2) + A10 2 (3)

X yaw is

e
y
(x,T) = Aux

2 + Anx + (A
13 + Mach _Yaw) (4)

Z yaw is

e
y
(z,T) = A

2l z
2 + A

22 z + (A
23 + Mach _Yaw) (5)

The X straightness error with Z motion is

S
x \z,T )

= A
3i z~ + A

22
Z + (A

33
r
39

-i- A34 ) (6)

The X-axis displacement is

3
X (X,T) = A

41
j:" + (

A

42 + A43T35
)x + (AUT25

+ A
45 ) (7)

The Z displacement is

S_(z,T) = A^'Z
2 + A

52 z + (A
5}
T

]2
+ Ast) (8)

The Z straightness of the X axis is

S. \x,T) = A
61
x‘ + A62x + (A

63
T
30
+ A^) (9)

Spindle growth is

S
:
(s,T) = AqJn + A12

T27 + A73
T190 + A74 (10)

The temperature of thermocouple 19 is taken at the initial temperature before the machine

starts to warm up.

The squareness of the X-axis with respect to the spindle axis is
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a0 (T) = \ }

T
0 + (11)

The parallelism error is

cc
p (
T ) = Aj,T

i9 0 + A92Tl9 0 + Ag
3
T

3] + ( 12 )
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2.0 Forming the Perturbation Equations

In order to adjust the coefficients of (2) we form a set of perturbed equations. These

equations are built up from perturbing the coefficients of the component error equations.

These are
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Note that the perturbations are structured in such a way that the characterization

coefficients are carried along into the difference terms. This was done in order to carry

the influence of the characterization coefficients along during the fitting process. Now,
to obtain the perturbation terms subtract equations (4) through (12) from (15) to get
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The perturbation form of the kinematic model becomes
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In order to relate the perturbed residual position errors in (17) to the perturbed error

component coefficients substitute (16) into (17). Now, the problem becomes one of

determining the perturbation coefficients from the observed (measured) residual error

vector (A(E
X ), A(E

y
)). To do this we create a system of equations of the following form
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where the C
y
(x,z),£>„ (x, z),d,

;
terms will be defined below.

When (16) is substituted into (17) the unknown coefficients are AA
ij

. From the

numerical point of view it will be necessary later to scale these unknowns in equation

(16) in order to control the magnitude of the elements in the resulting matrix that arises in

the fitting process. The scaled unknowns are the d coefficients in (18). In order to

construct them we will introduce a scaling array s(i), i - l,---,35 and redefine the

perturbation terms so that
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where d
tJ

are new perturbation coefficients. The scaling is necessary in order to

guarantee that terms in the fitting process matrix are all approximately the same order of

magnitude and are not too large. The scaling array is determined in such a way that the

maximum value in each column of the matnx J is one. This is done for each column by

first finding the maximum of the absolute values of the elements in each column. If the

maximum is zero then the scale for that column is set to one. Otherwise the scale is set to

the reciprocal of the maximum. For a discussion of scaling and its application to

problems of inversion see [25].

Returning to the substitution of (16) into (17) we further introduce (18) into (17) and

rearrange terms. Now, define the following coefficients
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* 5(5) * (Z

4
+Z

2 )).

c
2i (x,z)

= ^23 * 5(6) * (Z
4 + z 2 )

C
3i
(a,z) = ^31 *5(7) * Z

2

C
i2 (a,z)

= ^32 * 5(8) * z

Ci3 (a,Z>
= ^33 *T39 *5(9)

c34 (a,z)
= ^34 * 5(10)

C4I (a,Z)
= *4, * 5(1 1) * x

2

C42 (x,z)
= ^42 * 5(12) * Jt

C43 (a,z)
= ^43 *r

35
* 5 (13)* X

cu (x,z) = ^44 *r
35

* 5 ( 14 )

(x,z) =A 45 *5(15)

C
9I

(A, z) = A9 |

*r
I

2

0
* 5(30) * Az

ĉ
92
(a,Z) = A

92
*T

19 .0
*5(31) * Az

ĉ93 (a, z) = A93 *r3l
* 5 (32)* Az

r
94
(a,z) = A94 * 5(33) * Az

C
10, (a, z) = A10a * (2Z 4 + Z 2

)((T
10 + r2I ) / 2 )

* s(34 )

c,0.2
(a, z) = A

l0 2
* (2Z 4 + Z 2 )

* 5(35)

and
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Du (x,z) = -(Au *s(l)*X A )x
2

Dn (x, z )
= -(A,

2
* 5 ( 2 )

* X 4 )x

D
l3
(x, z) = -A13

* 5(3 )
* X 4

D
2 i

(jc,z) = -(A
21
*s(4)*(X, +X

2 + x))z
2

D
22 (x,z)

= —(A
22

* 5 ( 5 ) * (X 4 + X 2 + x))z

D
23 (x,z) = -A

23
* 5 (6 ) * (X 4 + X 2 + x)

D
5 ]
(x,z) = A

5I *5(16)*z
2

D
52 (x , z) = A

52
* 5(17)* z

D
52

(x, z) = A
53
*T

i2
*5(18)

D^ix, z) = Am *5(19)

D
6l (x,z)

= A
6i
*5(20)* a

2

D
62 (x,z)

= A
62

*5(21)* x

D
63 (x,z)

= A
63
*r

30 *5(22)

Dm (x,z) = Am *5(23)

D
7l
(x,z) = -A

7l
*T

2

2
*5(24)

D
72 (x,z)

= -A72 *T27
* 5(25)

D
73

(x, z) = —A73
* r

]9 0
* 5(26)

D
7i (x,z)

= -A 74
* 5(27)

D
gl

(a, z) = A
81

* T
0
* 5(28) * Aa

D
82

(a, z) = A
82

* 5(29)* Ax

dio.iUz) =
-A,o.i *(X

2
+2X 4 + a)*((T

i0
+r

21
)/2)*5(34)

7)i 0i2 (^^)
= -Ai02 *(X 2

+2X 4 + a) * 5(35)

By substituting equations (20) and (21) into (17) we get (18), which is the system we
sought to form. System (18) itself cannot be directly solved for the unknowns, but if we
introduce the residual errors measured at a set of spatial points on the part then it will be

feasible to solve for the unknowns in a least squares manner. In the next section we form

the system of equations needed to solve for the unknowns. There are 35 unknowns, each

associated with a column of the system matrix. However, not all of the coefficients

appear in both (20) and (21) simultaneously. These missing coefficients lead to blocks of

zeroes in the matrix defined in the next section.

17



3,0 Forming and Solving the System Matrix

We form the system of equations to solve for the unknown d
t]
's in equation (18) as

follows. Let there be n points on the part at which residual errors are to be computed

from CMM measurements. Denote the points by (jq , z, ) for i = 1, n. Then set

J
,.\

=

1.2 =

J
i,3

J., =
1.4

I.5
=

J,
6 =

J,,=

J
i. 8
—

J,9
=

A. 10

J,n =

^ i.l2

=

1.14
J

1.15

I,

J
i.30

J
i,31

A. 32
~

•^1,33
=

i.34

i,35

C
\ 1 (-*o+]-i ’ *“o+I-i )

^12 (**0+1 -i ’ ^o+l-i )

^13 (-*o+l-i » ^o+l-i )

^21 (Xn+\-i ’ *“o+l-i )

^22 (^o+l-i ’ *L+l-i )

^23 (*o+l-i ’ ^o + l-i )

— C
3I (-Ti+l-i , ^n+i-, )

= C32 (-^o+l-i ’ ^o+l-i )

— C
33 (*„+]_, , £„+]_, )

— (^34 (-*„+!-, i ^n+l-i )

^41 (**o + l-i ’ *“0+1-1 )

— C42 (*„+]_, , Z n+] _, )

— C43 , Z„+\-i )

— C44 (-^o+l-i ’ *L+l-i )

— L
45

(jt n+ |_,- , Z n + 1 _, )

= 0,k = 16, ••*,29

— C
91 (-Tj+i-, ’ *“n+i-i

)

— ^92 (-^o+i-i ’ ^o+l-i )

— C93 (jc„+ 1
_

1
- , z n+1 _ J )

— C94 (xf;+ ,_. , z n+I_,

)

— C
l0 j

(-X„
+1 _, , v! n+ |_, )

~ ^10,2 (*o+l-i ’ ^0+1-1 )

(22 )

In C
91

to C94 the value of Az is computed as Az = zn+l _, - z„_, for / = !,*••,« - 1 . For

i = n, Az = z2 ~zr

For i = n+l,...,2n the matrix elements are written as

18



0,
1 (-*2,1+1-, ’ 2/i+l—j )

1.2 = 0,2'(*2/,+!-, ’ ^2/i+l-i )

ly 0i3(^2n+l-i '

> ^2«+l-, )

J,A = O+l 1

(-*2/i+l-i ’ ^ 2/,+1-z )

J,5
= Z)

22 ("*2/i+l-i ’ ^ 2/i+ 1—

i

)

J,
6
= F)+3

'

(-*2/1+!-: ’ *”2/i+l-< )

*/,,*
= 0,k = 7,--- ,15

*/„,6 = 051 (-*2n+l-; » ^2/i+l-,)

A,n = 052 (•*2/!+,-/ ’ *”2/i+l-,)

*^,.18
= 053 (•*2/1 + 1-/ ’ ^ 2/i+l-,)

^ i,l9
= 054 ("*2/1+1-, ’ *”2/i + l-,)

J
i, 20

= 061 (-*2/1 + 1-/ ’ *”2/i+l-,)

A, 21
= 062 (-*2/1+1—, ’ ^ 2/i+ 1

—,)

22
= 063 ("*2/1+1-/; * *”2/i+l-,)

*^,.23
= 064 ("*2/i+l-, ’ *”2/i+l-,)

A. 24
= 07, (•*2/1 + 1-, 5 ^ 2/1+1—,)

^ i,25
= 072 (-*2/1+1-,- ’ *”2/i+l-,)

J
i.26

= 073 (*2,1+1-, ’ ^ 2/i+l —,)

J i,21
= 074 (-*2n+l-i!

’ *”2/1+ 1-,)

J
i, 28

= 081 (-*2/1+1-, ’ 2/i + l-,)

^ i,29
= 082 (-*2/1 + 1-, ’ ^ 2/i+l-,)

J.,
k
= o. k= 30,--•,33

Im 010,1 (-*2/1+1--, ’ ^2/i+l-,)

J
i,35

— 0,0 ,2 (-*2/1+1 -, ’ ^ 2/1+!

In D
gl

and D
82

the value of Ax is computed as Aj: = jc2n+l _ (

- x2n_t
for

t = « + 1,
• •

• ,2/2 - 1 . For i = 2n, Ax = x
2
- xr

Finally, for ease of notation, set

V(i) = AE n

x

+
'-,i = !,,

n

V (i) = AE 2n+l~‘
,i = n + !, ,2n

(24 )

and
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U(l) = du

U (2) = dn

U (3) = J
13

U (4) = d
2x

U (5) = d22

U (6) = d
23

uv) = d
3l

U (8) = di2

U(9) = d»

um = dM

U(ll) = dM

U(l2) = d42

U(l3) = d
i3

U (14) = du

U (15) = d45

um = d
5]

U (17) = d
52

um = d
52

U (19 )
= d

54

U (20) = d
6l

U (21) = d
62

U{22) = d
63

U (23) = dM

U(24) = d
lx

U (25) = d
72

U (26) = d
12

U (27) = d
14

U (28) = d
ix

U(29) = d
i2

U (30) = d
9l

U(3l) = d
92

U (32) = d
93

U(33) = d94

U (34) = d
]OX

U (35) = dl02

(25 )
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We now have the notation set up to form the system

JU = V (26)

where J is a matrix with 2n rows, since there are n probe points each with an x and a z

error, by 35 columns, one for each scaled perturbation coefficient. Note that if any

residual error in equation (24) is zero then the associated row of J is set to zero.

If J were a square matrix and non singular then the solution would be simply

(27)

but in general J is an overdetermined system with more rows than columns. Furthermore,

since many of the columns might be dependent on each other a standard least squares

approach will likely fail. For this reason we apply a matrix called the generalized or

pseudo inverse and compute

U = J
+
V. (28)

The details involved with computing the pseudo inverse are given in Appendix E and in

[24].

Once U has been computed the AA coefficients can be determined from (19) and the

updated coefficients, given by

A/l + AA,,). (29)
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4.0 Application

In this section an application of the inversion process described in the previous sections

will be given. The part shown in Figure 2 was machined. It consisted of two concentric

cylinders. The smaller cylinder has a nominal diameter of 50.8 mm (2 in), and the larger

one has a nominal diameter of 152.4 mm (6 in). To compute the process errors, the part

was probed with a touch trigger probe at 35 points while still secured on the machine

tool. For a discussion of on-machine probing see Bandy and Gilsinn [17].

Figure 2: Two Cylinder Turned Part

In order to use on-machine touch trigger probe readings in determining machine tool

errors, various coordinate systems have to be linked. For example, the turning center

error models are based on calibrated error component equations that describe error

motions at points in the reference coordinate system of the turning center. When parts

are turned, however, points on the part are identified relative to a part coordinate system.

Therefore the part coordinate zero needs to be located relative to the turning center

reference coordinate system. In Figure 2 the part coordinate zero is set as the center point

of the top face of the small cylinder. The positive Z-axis is taken vertically and the

positive X-axis is taken to the right. In order to link the part zero point to the turning

center reference coordinate system two sets of data are read. First the probe offsets in the

X and Z directions are obtained from a database file. These offsets are distances from a

point on the turning center tool turret called the tool setting point. As the turret moves

22



the location of the tool setting point with respect to the reference coordinate system can

be queried so that when the touch trigger probe is brought to the part zero point the

location of the part zero relative to the reference coordinate system can be computed. As
a result any part coordinate can be identified with a reference coordinate. Therefore,

when points on a part are identified by their part coordinates, error estimates at these

points can then be computed by identifying the part coordinates with their machine

reference coordinates. For a further discussion of computing machine offsets see

Appendix C.

A coordinate measuring machine (CMM) is used to measure the part in Figure 2 at the

same part coordinates that were probed on the turning center. This is done by

establishing a working reference plane on the CMM along the top surface of the small

cylinder and setting the reference plane zero at the same point as the part zero is set on

the turning center. Then, the 35 points probed on the turning center are probed at the

same coordinates on the CMM. Error measurements are made normal to the surface

features probed. Realizing that there is statistical variation in the measurements, the

CMM is programmed to measure the 35 points along the surface at 8 angles around the

part in Figure 2. The error measurements at these equally spaced angles are then

averaged.

The estimation of the new coefficients for the component error equations in the turning

center error model proceeds by: 1) reading the old coefficients from a database, 2)

reading the thermocouple temperatures on the turning center when the part was

manufactured, 3) reading the initial turning center temperatures before machining, 4)

reading the nominal points probed on the part and the averaged CMM error

measurements. The turning center errors are computed by the methods of Appendix D
and the system matrix J is formed as in Section 4. Next, the predicted turning center

errors are computed using the old coefficients and the difference between the CMM
measured errors and the predicted turning center errors, as in equation (D5). This

produces the residual errors at the probed points. The pseudoinverse of the system

matrix, J
+

, is applied to the residual errors to produce the scaled correction terms d
l}

.

The coefficient correction terms are computed by rescaling the terms in (19). Finally the

new coefficients are computed by adding one to the rescaled correction terms and then

multiplying by the old coefficients as in equation (29).

The computed results are shown below in figures 3 and 4. Of the 35 points chosen on the

surface for analysis, eight were selected on the top surface of the small cylinder and nine

each were selected on the small cylinder side, the large cylinder top and the large cylinder

side. Figure 3 shows the results of plotting the averaged CMM error measurements in the

X direction along with the predicted machine errors using the updated coefficients. The

solid lines are the predicted errors and the dashed lines are the averaged CMM error

measurements at the points along the small cylinder (points 9 to 17) and along the large

cylinder (points 27 to 35). Figure 4 shows a similar plot, but for the errors in the Z
direction. The errors along the top of the small cylinder are plotted for points 1 through 8

and those along the top of the large cylinder are for points 18 through 26. The maximum.
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mean and the standard deviation of the differences between the measured and predicted

errors are given in Table 1. The new coefficients are given in Appendix B2.

Error Difference (mm)
Maximum Mean Standard Deviation

X Direction 0.0041 0.0014 0.0010

Z Direction 0.0025 0.0008 0.0007

Table 1: This shows the Maximum, Mean and Standard Deviations of the

differences in the errors plotted in figures 3 and 4.

X Direction

Point Number

Figure 3: Comparing the Measured Turning Center Errors (dashes) with the

Predicted Errors (solid) based on Updated Turning Center Model in the X
Direction.
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Z Direction

Figure 4: Comparing the Measured Turning Center Errors (dashes) with the

Predicted Errors (solid) based on Updated Turning Center Model in the Z
Direction.
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5.0 Discussion

Machine tool error models are often developed and calibrated by using such techniques

as laser interferometry and capacitance gauges to measure component errors such as scale

and straightness errors. Since a machine tool’s various parts such as bearings cannot in

general be warmed up to functional conditions experienced during machining, another

method must be developed to modify the calibrated machine error models to represent

errors experienced under cutting conditions. This report proposes a method that can be

used to modify the coefficients of a calibrated model so that it can be used during

machining operations to compensate for machine tool errors.

The method employed here is a modified least squares technique that takes into account

the fact that the normal equations generated during the least squares process may not be

solvable in the usual sense. For that reason a generalized inverse is applied to the normal

equations to generate the best solution in the sense of Appendix E. This is a well known
tool for solving least squares problems and a thorough discussion can be found in [24],

The results shown in Table 1 and Figures 3 and 4 clearly show that the method produces

an adjusted error model that accurately reproduces the measured data used to update the

error model for the turning center used during the study. Appendices B1 and B2 show

that the method significantly changes the coefficients to the basic form of the model. A
reader should recognize that the model fits are adequate for the range of the data. They do

not guarantee that the updated model could be used to compensate errors on turned parts

dissimilar to the one used in the study. Further research must address the question of how
to extend the model adjustment procedure described in this report to hold for families of

similar parts or for other classes of parts. Further studies will also emphasize

manufacturing parts under varying temperature conditions. Parts will also be designed to

test different features placed throughout the workspace

Since the intent of the machine tool error model is to be used for real time error

compensation no attempt is made to fit model forms beyond cubic spatial terms. This is

because past experience has shown that cubic polynomials can be evaluated and their

results passed to a machine tool to correct tool position within the real time constraints of

the cutting process. Furthermore, higher order polynomials can introduce unwanted

oscillations between fitting points.

Again the authors emphasize that this is not a report that claims that using singular value

decomposition is the only tool for modifying or developing a machine tool error

compensation model. However, given the initial error component model forms on which

to base the turning center error compensation model, the authors felt that singular value

decomposition was a sufficiently robust tool to use for the current study.
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APPENDIX A

A.l Developing the Kinematic Model for a Turning Center

In this appendix the homogeneous transformations for the coordinate systems modeling

the turning center components along with the final error model will be given. For a

detailed discussion of the theoretical development of the transformations see [3-5], The

turning center that is modeled in this section is shown in Section 2, Figure 1. Table A1
lists thermocouples along with their position descriptors.

The first step in the model development is the establishment of a reference coordinate

system. On the turning center this will be taken as the or absolute coordinate system, the

origin of which is located at the farthest travel to the left along the z-axis and the farthest

travel vertically alone the x-axis. For the turning center, modeled in this study, the

absolute coordinate system origin aligns itself with a point that is located at the upper

right rear of the tool slot as one faces the turret, when the turret is brought to Home
position. This point is also called the tool setting point.

Let (Z, , X, ) be the offset of the origin of the z-slide coordinate system from the

reference coordinate system. Upper case letters are constants representing coordinate

system offsets from each other, whereas lower case axis letters represent variable values.

Thus the origin of the z-slide axis system is set Z\ units along the z-axis from the origin

of the reference coordinate system and X\ units along the x-axis from the origin of the

reference coordinate system. The motion of the z-slide coordinate system (also called the

carriage coordinate system) relative to the machine coordinate system is described by the

homogeneous transformation

'
1 -€

Z
(Z,T) £

y
(Z,T)

°T =
1

~ £AzJ)
— £y

(z,T) £x (z,T) 1

0 0 0

£_(z,T) is the roll error of the carriage given z motion as a function of the

temperature state, T, of the machine.

£x (z,T ) is the pitch error of the carnage given z motion and temperature

state T.

e ( z,T ) is the yaw error of the carriage given z motion and temperature

state T.

S
x
(z,T) is the x-displacement error given z motion and temperature state T.

S
y (
z,T

)

is the y-displacement error given z motion and temperature state T.

8, (z,T) is the z scale error given z motion and temperature state T.

X
l
+8

x (z,T)

S
y
(z,T)

Z
x
+ z + 8

z
(z,T)

1

(A.l)
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Sx (z,T) = Sx Xz,T) + ap
(T)*Az (A.2)

where

8
x \zJ)

a
p
(T)

Az

T

is the x-straightness error of the carriage given z motion and

temperature state T.

is the parallelism error between the z-motion and axis average line

of the spindle given temperature state T.

is the incremental z motion.

temperature state of the machine and is taken to be the vector

T = (T
0
,---,r

39 ) ,
of thermocouple temperatures.

Let (Z
2
,X

2 ) be the offset of the origin of the x-slide axis system (also called the cross

slide) from the origin of the z-slide axis system then the transformation representing the

motion of the x-slide motion relative to the z-slide is given by

ZT =

1

£
;
(x,T)

-e
y
(x,T)

0

-e
:
(x,T)

1

£
x
(x,T)

0

£
y
(xJ) X

2
+x + S

x
(x,T)^

-£
x
(x,T) S

y
(x,T)

1 Z
2
+S.(x,T)

0 1

(A.3)
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Thermocouple Locations

Number Location

0 Bottom of X-Scale (Glass)

1 Top of X-Scale

2 Coolant Tank

3 Not Used

4 Not Used

5 Not Used

6 Not Used

7 Right of Z-Scale

8 Right Center of Z-Scale

9 Left Center of Z-Scale

10 Left of Z-Scale

11 Top of X-Way
12 Bottom of X-Way
13 Top of X-Head

14 Bottom of X-Head

15 Bottom Left of Z-Slide

16 Top Left of Z-Slide

17 Bottom Right of Z-Slide

18 Top Right of Z-Slide

19 Hydraulic Tank

20 Left End of Lower Z-Way

21 Left End of Upper Z-Way

22 Right End of Lower Z-Way

23 Right End of Upper Z-Way

24 Lower Front of Spindle Head

25 Lower Rear of Spindle Head

26 Upper Front of Spindle Head

27 Upper Rear of Spindle Head

28 Left of Top of Spindle Head

29 Middle of Top of Spindle Head

30 Right of Top of Spindle Head

31 Bottom Left of Bed

32 Top Left of Bed

33 Bottom Right of Bed

34 Top Right of Bed

35 Near X-Drive Motor Shaft Bearing

36 Left Z-Ballscrew Bearing

37 Right Z-Ballscrew

38 X-Ballscrew Housing

39 Z-Ballscrew Nut

Table Al: Thermocouple Locations on the Turning Center.
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where

e,(x,T) is the roll error of the cross slide with x motion at temperature state

T.

e.(x,T) is the pitch error of the cross slide with x motion at temperature

state T.

Cy{X,T) is the yaw error of the cross slide with x motion at temperature

state T.

S,(x,T) is the y displacement of the cross slide with x motion at

temperature state T.

S,(x,T) is the x scale error of the cross slide with x motion at temperature

state T.

S.(x,T) is the z displacement error of the cross slide with x motion at

temperature state T.

S
:
(xJ) = S

:
XxJ) + a

o
(T)*Ax (A.4)

where

S
z
\x,T) is the z straightness of the cross slide with x motion at temperature

state T.

&JT) is the orthogonality error between the x motion and the axis

average line of the spindle at temperature state T.

Ax is the incremental x motion.

Let the turret and x-slide coordinates overlay so that

'
1

£
z
(tJ)

~

£

y
(t,T

)

-e
t
(t,T) e

y
(t,T ) S,(t,T)'

1 -c,(t,T) 5
y
(t,T)

e,(t.T ) 1 SAt,T)

0 0 1

where, due to misalignments of the turret on its rotational axis,

£(t,T),£(t,T),£.(t,T ) are the rotational errors in station-to-station motion of

the tool turret at temperature state T.

S
r
(t,T),S(t,T),S.(t,T ) are the translation errors in station-to-station motion of

x y c

the tool turret at temperature state T.
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A turret on the lathe has the capability of holding, for example, various cutters, tools and

on-machine measurement devices. Station-to-station motion here refers to rotation of the

turret from one cutter or tool position on the turret to another.

Let (Z
4 , X 4 ) be the offset of the cutter coordinate system from the turret coordinate

system. Since the cutting tool coordinate frame is assigned to the tool tip (a point), the

rotation errors have no effect. The errors involved are due in part to the fact that an

actual tool is in error from its nominal dimension and in part to thermal effects during the

cutting operations. The cutting tool error matrix relative to the turret is given by

^
1 0 0 X

4 +£,(c,7T

0 1 0 S
y
(c,T)

0 0 1 Z
A
+S

:
(cJ)

0 0 0 1

V J

(A.6)

where

S
f
(c,T),S

v
(c,T),SAc,T), are the incremental tool dimension changes in the x, y

and z directions at temperature state T.

Let (Z
5 , X 5 ) be the offset of the spindle coordinate system from the machine coordinate

system. In the generic turning center model, the spindle has unrestricted rotation about

the z axis so that £. (s,T) - 0 . The spindle errors are due to either axis of rotation errors

of the spindle or errors resulting from misalignments of the chuck. The spindle error

matrix relative to the machine coordinate system is given by

(

V

1

0

£
y
(s,T)

0

0

1

£
x
(s,T)

0

e
y
(s,T) X

5
+Sx U,T)''

~ £A s>T) S
r
(s,T )

1 Z
t
+SAs,T )

(A.7)

where

£
x
(s,T)

£
y
(sJ)

S
x
(s,T)

S
y
(s,T )

S
z
(s,T)

is the tilt of the spindle in the non-sensitive direction, i.e. yaw

motion about the x axis, at temperature state T.

is the tilt of the spindle in the sensitive direction or a pitch motion

about the y axis at temperature state T.

is the translations of the spindle in the sensitive or x direction at

temperature state T.

is the translations of the spindle in the non-sensitive or y direction

at temperature state T.

is the z-axial motion of the spindle at temperature state T.
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Let (z(w), jt(w)) be the desired point on the work piece to which the tool is to be brought.

Finally, for the workpiece assume no rotational errors. The workpiece error

transformation is given by:

"10 0 x(w) + S
x
(w,T)^

0 1 0 S
y
(w,T)

0 0 1 z(w) + S
z
(w,T)

0 0 0 1

(A.8)

where

S
x
(w,T),S

y
(w,T),S.(w,T) are the changes of the coordinates of the point on the

workpiece to which the tool is to be applied in the x, y and z directions at

temperature state T.

To determine (z(w),jc(w)) at the work point one equates the ideal transformation (i.e.

without errors) products of the two chains

or ,
° (A>9 )

and get

a:(w) — X, + X + X 4
+ x — X

5

z(w) = Z
]

+Z
2
+Zi +z-Z 5

(A. 10)

The offsets are given in Table A.2 for the turret lathe. The coordinate systems are not

placed arbitrarily but are placed on the machine tool components in such a way that they

are related to the measurement characteristics of the metrology devices used to calibrate

the error components.

X Z
1 -148 -43

2 30 -26

3 0 0

4 -35 30

5 -386 0

Table A.2: Coordinate System Offsets

in mm.
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The resulting generic error matrix can be computed as

E =(
s
T~

l

)°T
z
T

x%% (ATI)

A symbolic manipulation package, such as MACSYMA, can be used to generate the

inverse matrices and compute the final product E (see Appendix A. 2.). The final

displacement errors of the tool from the workpiece are given by:

Ex
=£

y
(sX*Z5

+(e
y
(zX + £

y
(x,T) + £

y
(t,T)-£

y
(s,T))*Z

4

+ (e
y
(z,T)-£

y
(s,T))*Z

2
-£

y
(s,T)*(Z

i

+z) + S
x (z,T) + Sx

(x, T)

-S
x
(w,T) + Sx (r, F) - S

x
(s,T) + 8X (c, T)

E
y
= -e

x (5, T) * Z
5 + (~e

x (z,T)~£x (x,T)~ £
x (t,T) + £

x
(s, T))*Z

4

+ (-£
x (z,T) + £x (s,T))*Z 2

+ex {s,T)*(Z i
+z) + (£

z
(z,T) + £

:
(x,T) + £

:
(tS))*X 4

(A ' 12)

+ £
z
(zX)*(X 2

+x) + S
y
(z,T) + S

y
(x,T)-S

y
(w,T) + S

y
(tX)-S

y
(s,T) + S

y
(c,T)

E
:
=-e

y
(s,T)*X

s
+(-£

y
(z,T)-£

y
(x,T)-£

y
(t,T) + £

y
(sX))*X 4

+ (-£
y
(z,T) + e

y
(s,T))*(X

2 + x) + £
y
(s,T)* X, +S

z
(z,T) + S

z
(x,T)

- 5. (•w,T ) + S z (
tj )

- 8. ( 5 , T) + 8
Z
(cj)

These equations give the generic error formulas for a turning center with its absolute

reference coordinate system and the tool setting point assumed aligned at “cold start” in

the “home” position.

There are only two equations in the final model. Errors in the y direction are not included

since they are in the non-sensitive direction. The nonsensitive direction in turning centers

is the direction perpendicular to the plane in which the two machine slides move. The

only error components included were those found to be significant and not in

nonsensitive directions. Only seven errors are included in the final model for the turning

center to yield the error equations

E,=(£
)
(z,T) + e

y
(x,T))*Z,+e

y
(z,T)*Z

2
+(Sx ’U,T)+ap

(T)*Az) + S,(x,T)

(A. 13)
E. = -(e

y
(z,T) + £

y
(x,T))* X 4 - e

y
(z,T)*(X 2 + x) +S

z
(z,T)

+ (SAx,T) + ct„(T)*Ex)-SAs,T)

The MACSYMA script used to generate these equations is given in Appendix A. 2.
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A.2 MACSYMA Script for Kinematic Model Generation

This appendix contains the listing of a command script for the symbol manipulator

language MACSYMA. The script can be loaded into MACSYMA by using the BATCH
command. Note that the small variable arithmetic is taken care of by observing that the

result of the product of two terms with small order variables is just the linearization of the

final result with respect to all of the small variables. This can be accomplished by taking

the Taylor series of the product up to the first order terms only. The final result of this

script is given by equation (A. 13).

/* Construct the list of error components */

listl:[ezz,eyz,dxz,exz,dyz,dzz,ezx,eyx,dxx,exx,dyx,dzx]$

list2:[ezt,eyt,dxt,ext,dyt,dzt,dxc,dyc,dzc]$

list3:[eys,dxs,exs,dys,dzs,dxw,dyw,dzw,ap,ao]$

list:append(list 1 ,Hst2,list3)$

/* Declare Final Error Array */

array(Err,3)$

/* Initialize all transformation arrays to 0 */

array!ioTz. 4,4)$

array(izTx, 4,4)$

array(ixTt, 4,4)$

array! itTc, 4,4)$

array(ioTs, 4,4)$

array(isTw, 4,4)$

array(eoTz, 4,4)$

array(ezTx, 4,4)$

array(exTt, 4,4)$

array(etTc, 4,4)$

array(eoTs, 4,4)$

array(esTw, 4,4)$

for i:l thru 4 do

for j: 1 thru 4 do

(ioTz[i j] : 0.0,

izTx[i,j] : 0.0,

ixTt[i,j] : 0.0,

itTc[i,j] : 0.0,

ioTs[i,j] : 0.0,

isTw[i,j] : 0.0,

eoTz[i,j] : 0.0,

ezTx[i,j] : 0.0,

exTt[i,j] : 0.0,

etTc[i,j] : 0.0,

eoTs[i,j] : 0.0,

esTw[i,j] : 0.0)$

/* Initialize the ideal transformation components */

ioTz[l,l] : 1$
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ioTz[2,2] : 1$

ioTz[3,3] : 1$

ioTz[4,4] : 1$

ioTz[l,4] : Xl$
ioTz[3,4] : Zl+z$
izTx[l,l] : 1$

izTx[2,2] : 1$

izTx[3,3] : 1$

izTx[4,4] : 1$

izTx[l,4] : X2+x$
izTx[3,4] : Z2$
ixTt[ 1,1] : 1$

ixTt[2,2] : 1$

ixTt[3,3] : 1$

ixTt[4,4] : 1$

itTc[U] : 1$

itTc[2,2] : 1$

itTc[3,3] : 1$

itTc[4,4] : 1$

itTc[l,4] : X4$
itTc[3,4] : Z4$
ioTs [ 1 , 1 ] : 1$

ioTs[2,2] : 1$

ioTs[3,3] : 1$

ioTs[4,4] : 1$

ioTs[l,4] : X5$
ioTs[3,4] : Z5$
isTw[l,l] : 1$

isTw[2,2] : 1$

isTw[3,3] : 1$

isTw[4,4] : 1$

isTw[l,4] : xw$
isTw[3,4] : zw$
/* Initialize Error Components */

eoTz[U] : 1$

eoTz[l,2] : -ezz$

eoTz[l,3] : eyz$

eoTz[l,4] : dxz + ap*dz$

eoTz[2,l] : ezz$

eoTz[2,2] : 1$

eoTz[2,3] : -exz$

eoTz[2,4] : dyz$

eoTz[3,l] : -eyz$

eoTz[3,2] : exz$

eoTz[3,3] : 1$

eoTz[3,4] : dzz$
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eoTz[4,4] : 1 $

ezTx[l,l] : 1 $

ezTx[l,2] : -ezx$

ezTx[l,3] : eyx$

ezTx[l,4] : dxx$

ezTx[2,l] : ezx$

ezTx[2,2] : 1 $

ezTx[2,3] •' -exx$

ezTx[2,4] : dyx$

ezTx[3,l] : -eyx$

ezTx[3,2] : exx$

ezTx[3,3] : 1$

ezTx[3,4] : dzx + ao*dx$

ezTx[4,4] : 1 $

exTt[l,l] : 1$

exTt[l,2] : -ezt$

exTt[l,3] : eyt$

exTt[l,4] : dxt$

exTt[2,l] : ezt$

exTt[2,2] : 1$

exTt[2,3] : -ext$

exTt[2,4] : dyt$

exTt[3,l] : -eyt$

exTt[3,2] : ext$

exTt[3,3] : 1$

exTt[3,4] : dzt$

exTt[4,4] : 1$

etTc[ 1 , 1 ] : 1$

etTc[l,4] : dxc$

etTc[2,2] : 1$

etTc[2,4] : dyc$

etTc[3,3] : 1 $

etTc[3,4] : dzc$

etTc[4,4] : 1 $

eoTs[l,l] : 1 $

eoTs[l,3] : eys$

eoTs[l,4] : dxs$

eoTs[2,2] : 1 $

eoTs[2,3] : -exs$

eoTs[2,4] : dys$

eoTs[3,l] : -eys$

eoTs[3,2] : exs$

eoTs[3,3] : 1$

eoTs[3,4] : dzs$

eoTs[4,4] : 1$

esTw[l,l] : 1$
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esTw[l,4] : dxw$
esTw[2,2] : 1$

esTw[2,4] : dyw$
esTw[3,3] : 1$

esTw[3,4] : dzw$
esTw[4,4] : 1$

/* Generate Matrices */

mioTz : genmatnx(ioTz,4)$

mizTx
: genmatrix(izTx,4)$

mixTt
:
genmatrix(ixTt,4)$

mitTc : genmatrix(itTc,4)$

mioTs
:
genmatrix(ioTs,4)$

misTw
:
genmatrix(isTw,4)$

meoTz : genmatrix(eoTz,4)$

mezTx
:
genmatrix(ezTx,4)$

mexTt
:
genmatrix(exTt,4)$

metTc
:
genmatrix(etTc,4)$

meoTs
:
genmatrix(eoTs,4)$

mesTw : genmatrix(esTw,4)$

oTz : mioTz.meoTz$
zTx : mizTx.mezTx$
xTt

:

mixTt.mexTt$

tTc : mitTc.metTc$

oTs : mioTs.meoTs$

sTw : misTw.mesTw$
/* Compute Full Error Matrix */

E : (sTwAA-l).(oTsAA-l).oTz.zTx.xTt.tTc$
/* Zero variables not measured */

ezz:0$

exz:0$

dyz:0$

ezx:0$

exx:0$

dyx:0$

ezt:0$

eyt:0$

dxt:0$

ext:0$

dyt:0$

dzt:0$

dxc:0$

dyc:0$

dzc:0$

eys:0$

dxs:0$

exs:0$
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dys:Q$

dxw:Q$

dyw:0$

dzw:0$

xw:Xl+X2+X4+x-X5$
zw:Zl+Z2+Z4+z-Z5$
/* Evaluate E again */

for i: 1 thru 4 do

for j : 1 thru 4 do

E[i,j] : ev(E[i,j])$

/* Get the linearized displacement errors */

for i: 1 thru 3 do

Err[i] : taylor(E[i,4],list,0,l);
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APPENDIX B

This appendix lists the calibration coefficients for the original geometric-thermal model

as well as the adjusted coefficients. Since the angular error equations are calibrated in arc

seconds the coefficients are scaled to radians. Furthermore, straightness errors are

calibrated in micrometers, and are converted to millimeters. All of the other component
error equations are calibrated in millimeters. Temperatures are in degrees Celsius. This

discussion of units is only given in order to interpret the coefficients given below. The
methods described in this report are not dependent on these specific units.

B.l Error Model Calibration Coefficients

This appendix lists those initial coefficients A
t]
that apply to most of the machining

conditions encountered on the turning center portrayed in Figure 1 . The coefficients

given here represent the coefficient values of the component error functions given in

Section 3 for spatial motion in the negative x and positive z direction. These coefficients

were developed during an earlier characterization of the turning center (see [26-27]).

Spindle speed is assumed to be 3000 revolutions per minute.

X Yaw

An A]2 A|3

-1.339000E-04 5.289925E-02 -3.490320E-01

Z Yaw

At] A22 A23

1.81 1200E-05 8.326300E-04 -6.450000E-01

X Straightness with Z Motion

A 31 A32 A33 A34

-4.192000E-05 3.091716E-02 -4.283536E-01 1.007243E+01
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X Displacement

A41 A42 A43 Au A45

3.362300E-07 2.466 100E-04 -2.828000E-06 1.700000E-04 -1.808700E-03

Z Displacement

A51 A52 A53 A 54

-1.521630E-08 3.270300E-05 1.231370E-03 -3.586880E-02

Z Straightness of X Motion

A$i A63 ^64

5.097300E-05 -1.594320E-02 6.321090E-03 2.71 1352E-01

Spindle Drift

A 71 A72 A73 A74

-1.020000E-04 1.20675 IE-02 -3.894400E-03 -1.29298QE-Q1

X Axis Squareness with respect to the Spindle Axis

Agi A82

-1.354370E+00 1.031200E+01
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Parallelism of Z Axis with respect to the Spindle Axis

A9 |
A92 A93 A94

-7.416000E-01 3.410200E+01 4.710000E-02 -3.93420QE+02

Machine Yaw

Aio.i A 10,2

-5.1 13500E+00 1.146000E+02

B.2 Error Model Adjusted Coefficients

This appendix lists the updated coefficients A .

X Yaw

An Aj 2 A 13

- 1.5941 62 IE-02 -6.5335550 -8.1679140E+02

Z Yaw

A 21 A22 A23

1.8534552E-03 5.8945 11 6E-01 1.88656 18E+02

X Straightness with Z Motion

A31 A32 A33 A34

3.0374870E-04 -1.4928799E-01 -3.2036746 -5.6535790E+01
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X Displacement

A41 A42 A43 A44 A45

1.3291 142E-06 4.031 1660E-05 -1.0762552E-05 -2.391 838 IE-03 -6.84 16490E-023

Z Displacement

A51 A52 A53 A54

-5.3957796E-06 -1.0142461E-03 -2.1621554E-03 -1.1814533E-01

Z Straightness of X Motion

A^i A$2 A^3 Am

-3.3490506E-03 -9.2555965E-01 -2.7085232 -8.1 174190E+01

Spindle Drift

A71 A72 A73 A74

-5. 156564 IE-06 1.487646E-02 -3.532987 IE-04 -4.7854670E-02

X Axis Squareness with respect to the Spindle Axis

Agi A82

-1.03561 14E-01 4.0332 133E+01
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Parallelism of Z Axis with respect to the Spindle Axis

A91 A92 A93 A94

-7.6842435E-01 3.3485040E+01 -4.9867230E-01 -4.076 1008E+02

Machine Yaw

Aio.i A 10.2

1.4453392 2.7857098E+02
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APPENDIX C: Adjusting for Too! Offsets

All points on a part are usually specified in terms of part coordinate system points

(z
p ,x p

). (C.l)

Therefore the part origin must be determined relative to the machine coordinate system.

This offset will be designated as:

(Z
off
,X

off
). (C.2)

and is decomposed into two separate offsets. The first offset, (Z
tool set , X lool set ) , is the

offset from the machine coordinate system to a point on the turret, called the tool locating

point, to which tool inserts in the turret are referenced. The second offset, (Z
tool , X luol )

,

is the Z and X values of the tool point length from the tool locating point. Thus,

7—7 + 7^ off
^ tool _ set

^ ^ tool'

lA- •J )

Y — y _l y^
off tool _set ' tool

'

The conversion of a part coordinate to an absolute coordinate is then given by

x = x p +X
off

.

(C.4)
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APPENDIX D: Determining the Machine Tool Errors from Part

Measurements

Although equation (18) associates the x and z residual machine errors at a general point

with the perturbation terms d , this equation cannot directly be used to estimate the

perturbations. The x and z residual errors at a set of sample points on several parts must

be determined. These residual errors are usually obtained by inspecting parts on a CMM

Assume that the machining is done in, say, the positive z and negative x direction. This

is the standard cutting direction used during this study. The significance of this

assumption lies in the selection of the characterization equation coefficients given in

Appendix B.l. Let there be n inspection points on the surface of a part. One needs to

take n > 17, since there are 35 unknown perturbation terms and two coordinates per

inspected point. Designate these nominal inspection points as

/ nom nom
V 4i

r
nom nom

(Dl)

Suppose on a CMM these points are inspected and the CMM returns the following

coordinates, where the superscript p means inspected,

(D2>

Suppose that the process errors can be identified at n inspection points on the surface of

the part using process-intermittent probing methods as described in [17]. If these errors

are defined as dimensional discrepancies normal to the surface, then the errors must be

decomposed into x and z components at each of the inspection points. Thus we suppose

that we have measured process error component pairs

(E[ p,,EI pi ),--,(K pi
,e:

pi )(D3)

Next, we convert the inspection points, assumed given in part coordinates to absolute

coordinates by computing using equation (C4).

For the absolute coordinates (C4) the predicted z and x errors are computed from

equation (2), using the coefficients from Appendix Bl. Once this has been done we have

n predicted machine error pairs

(El, pred ,E
i

x.pred
),-,{E%red ,Elpred ). (D4)

The residual errors are then computed at the inspection points as
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AE‘

AE‘

= E‘ -E‘ ~E‘ ,
x,meas ^X,P1 x.pred

- f l

z,meas
- E‘̂

Z.P

1

- E‘̂
z ,
pred

(D5)

The subscript meas indicates that these errors are measured errors on the CMM and the

subscript PI indicates that these errors are the process-intermittent errors measured on the

part while it is on the machine tool.
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APPENDIX E: Numerical Aspects of Pseudo Inversion

Equation (26) is in general an overdetermined system in that there are more rows than

columns or more known parameter coefficients than unknown parameters. Ordinary

inversion of 7 is not possible. A reasonable approach to obtaining a “solution” to (26) is

to employ a least squares procedure. If the columns of 7 are linearly independent then

this can usually be done by fairly standard least squares software. However, if some of

the columns are dependent then other procedures must be applied. It is for that reason we
introduce the idea of a pseudo inverse that will be described below.

In order to “solve” (26) for the unknown vector U we need to examine some issues

involved with the least-squares solution of equation (26). A numerical difficulty arises if

there are nonzero vector solutions u of

Ju= 0 (El)

There are an infinite number of solutions of (El) since any multiple of a solution is also a

solution. Thus if U
i

is a solution of (26) and u is a solution of (41) then, for any

constant c , the vector U
x
+cu is a solution of (26) since J(U

l
+ cu) = JU

l
+ cJu = JU

X

.

The problem then is to select from the infinite number of solutions one particular “good”

solution.

To analyze the difficulty we need to introduce some terminology from matrix theory.

The matrix 7 is a transformation of vectors of length 35 to vectors of length 2n. The

vectors of length 35 will be called the domain vectors and the vectors of length 2n will be

called the range vectors. The range of J is a linear vector space in that the sum of two

elements in the range is also in the range as well as a scalar multiple of an element in the

range since 7m, + Ju
z
= 7(n, + u

2 ) and cJu - J(cu ) . The matrix J can also be written

in the following form

j = (j 1
,j 2

,-,j
3S )

(E2)

where 7, , for i = 1,— ,35 , are the columns of the matrix. Each of these columns can also

be thought of as a 2n-length vector. If u is a vector of length 35 with scalar elements m
(
,

for / = !,•••,35 , then we can write, using (E2),

( u ^

7m (7j,y 2 ’
" "

" ’ ^ 35 )

1

M,

M„
35 y

f>V, (E3>
(=1
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This shows that the range of the matrix J is the set of linear combinations of the columns

of J , thought of as vectors. A subset of the column vectors J., for i = 1,— ,35 , is said to

be linearly independent if

0 (E4 )

7=1

implies that u
}
=0, for j = !,•••,&

,
where k < 35 . This says that the k vectors (or

columns) form a set of coordinate vectors for the range space and that k is the dimension

of the range space. The number k is called the column rank of the matrix J . If k is 35

then the matrix is said to be offull rank. The null space of the matrix J is the set of all

vectors u that satisfy Ju = 0. This set is also a vector space. Its dimension, also called

its nullity , is the largest set of linearly independent vectors that satisfy Ju = 0. A
fundamental result in matrix theory is that the sum of the rank and the nullity of a matrix

is the dimension of the domain space.

In order to determine a least-squares solution of equation (26) some measure of the

difference between the right and left-hand sides of (26) must be defined. The usual

measure or metric used extends the idea of Euclidean distance to, in this case, vectors of

length 2n, where n is the number of probed points on the workpiece. We will denote the

length or norm of a 2«-vector by

H = <ES)

The least-squares problem associate with equation (26) is to find the 2/i-vector that

minimizes the norm of the difference between the right and left-hand sides of (26). This

is symbolically written as

miniJu - v|| (E6)
u 1

where v is a right-hand side vector for (26). From linear regression analysis the solution

of (E6) depends on solving the system

J
T
Ju = J

T
v (E7)

where the superscript T represents the transpose of the matrix. There are two cases to

consider: (1) rank(J) = 35 and (2) rank(J) = k < 35. If the rank of J is 35, then the rank

of J
T
J is 35 and it is a square matrix. Therefore J

T
J has an inverse and (El) is

uniquely solvable. This is the traditional least-squares solution of (E6). However, if

rank(J) = k < 35 , then the rank of J
T
J is k(< 35), which means that the nullity of J

T
J

is nonzero and (E7) has an infinite number of solutions or an infinite number of vectors
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that satisfy (E6). The object then is to select an appropriate solution for (38) and

therefore ultimately for (26).

A significant method for decomposing matrices, such as J, is called the Singular Value

Decomposition and is strongly related to the eigenvalue-eigenvector decomposition of

J
7
J . The singular value decomposition of the 2n by 35 matrix J of rank k is given by

J = ODW t
(E8)

where O, a 2n by In matrix and W, a 35 by 35 matrix, are orthogonal , which means they

satisfy

00 T -O tO = /

WW T =W TW =/
(E9)

and D is a 2n by 35 diagonal matrix with nonnegative diagonal elements arranged to be

nonincreasing from upper left to lower right. Some of them in the lower right can be 0.

The relation to the matrix J
7
J is given by

J
tJ=WD tDW t

(E10)

which is not hard to show by multiplying the transpose of (E8) times (E8) and using (E9).

This shows that the singular values of J are the positive square roots of the eigenvalues of

J
T
J .

The singular value decomposition of J can be used to solve the least-squares

minimization problem (E6) by using the following result (See [24]).

Suppose that J is decomposed, using the singular value decomposition to the form (E10)

where the matrix D can be written in the block form

D =
(D\\

0

0
"

(Ell)

where the submatrix Dn is a diagonal kxk matrix with the nonnegative diagonal

elements, containing the singular values, arranged to be nonincreasing from upper left to

lower right. Introduce two new variables g and y by

0 T
v = g =

W T
u = y =

V #2y (E12)
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where g, , y, are vectors of length k, the rank of Dn , g 2
is a vector of length 2n-k and

y2
is a vector of length 35-L Note that at this point, since u is unknown, y is unknown.

Now let
5?i

be the unique solution of the matrix equation

Dnyi=8i CE13)

Then the first conclusion is that all solutions of the minimization problem (E6) are of the

form

u=W (El4)

where y 2
is an arbitrary vector of length 35-£. Next, any vector of the form (E14)

generates the same residual vector r given by

r = v - Ju = O
0\

\ 8l J

(El 5)

This says also that the vector of the difference between any two vectors of the form (E14)

lies in the null space of J. Therefore any two vectors of the form (E14) differ by a vector

in the null space of J. The norm of r satisfies ||r|| = ||v - Ju\ = ||g 2
||

and, finally, the unique

solution of the minimization problem (38) with the minimum length is given by

u = W
V J

(El 6)

The fact that (E16) is the unique solution of minimum length of (E6) permits the

definition of a concept of generalized inverse of the matrix J even though it is not a

square matrix. In particular the following result also holds. If the matrix J is written in

the form of its singular value decomposition (E8) where the diagonal matrix D is written

in the block form (Ell) then the unique minimum length solution of the minimization

problem (E6) can also be written as

u =W
fD ~

1 0^

V

11
v
O t

v (E17)
0 oj

by combining (El 2), (E13) and (E16). Now define

( r\-

1

i
+ = w o

0 0

'v

0 T
(E18)
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The matrix J
+

is called the generalized inverse of J.

Although the matrix Du has all of its diagonal elements nonzero so that it has the form

A, =

(d
x

0

0

0 "l

0

d
k

(E19)

care must be taken when the inverse is computed numerically. Theoretically the inverse

of Dn has elements of the form — ,i = !,•••,&, but the values of d may be sufficiently
d,

small so that their reciprocals are numerically meaningless. Thus, when the generalized

inverse of a matrix is computed the diagonal matrix of singular values Du is usually

redefined to be the matrix that contains only the singular values whose absolute values

are larger than some tolerance. All others are set to zero, so that from a numerical point

of view the rank of Du may be less than k. A tolerance that is used often in determining

those singular values that are to be eliminated is given by

tol = 2n||y||f (E20)

where the norm of a matrix is computed in a similar manner to the norm of a vector in

that the square root of the sum of the squares of all of the elements is taken as the norm

and e is called the machine epsilon and is that positive finite machine precision number

that satisfies 1 + e = 1 . For an ordinary PC using double precision the number is

approximately 2.2E-16.
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