
mhos fliwm
REFERENCE

NIST

PUBLICATIONS
NISTIR 6709

Accelerating Scientific Discovery through
Computation and Visualization

NIST CENTENNIAL

>©

O

w
O
o

James S. Sims, John G. Hagedorn, Peter M. Ketcham,
Steven G. Satterfield, Terence J. Griffin, William L. George,
Howland A. Fowler, Barbara A. am Ende, Howard K. Hung,
Robert B. Bohn, John E. Koontz, Nicos S. Martys,

Charles E. Bouldin, James A. Warren, David L. Feder,
Charles W. Clark, B. James Filla, Judith E. Devaney

U. S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards and Technology
Gaitheresburg, MD 20899

QC
100
156
NO. 6709
2001

NET
National Institute of

Standards and Technology

Technology Administration

U.S. Department of Commerce

NISTIR 6709

Accelerating Scientific Discovery
through Computation and
Visualization

James S. Sims
John G. Hagedorn
Peter M. Ketcham
Steven G. Satterfield

Terence J. Griffin

William L. George
Howland A. Fowler
Barbara A. am Ende
Howard K. Hung
Robert B. Bohn
John E. Koontz
Nicos S. Martys
Charles E. Bouldin

James A. Warren
David L. Feder
Charles W. Clark
B. James Filla

Judith E. Devaney

U. S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

January 22, 2001

U.S. DEPARTMENT OF COMMERCE
Donald L. Evans, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Dr. Karen H. Brown, Acting Director

Accelerating Scientific Discovery

through Computation and Visualization

James S. Sims, John G. Hagedorn, Peter M. Ketcham, Steven G. Satterfield, Terence J. Griffin,

William L. George, Howland A. Fowler, Barbara A. am Ende, Howard K. Hung, Robert B. Bohn,

John E. Koontz, Nicos S. Martys, Charles E. Bouldin, James A. Warren, David L. Feder,

Charles W. Clark, B. James Filla, Judith E. Devaney

Abstract

The rate of scientific discovery can be accelerated

through computation and visualization. This acceleration

results from the synergy of expertise, computing tools,

and hardware for enabling high-performance computa-

tion, information science, and visualization that is pro-

vided by a team of computation and visualization sci-

entists collaborating in a peer-to-peer effort with the re-

search scientists.

In the context of this discussion, high performance

refers to capabilities beyond the current state of the art in

desktop computing. To be effective in this arena, a team

comprising a critical mass of talent, parallel computing

techniques, visualization algorithms, advanced visualiza-

tion hardware, and a recurring investment is required to

stay beyond the desktop capabilities.

This article describes, through examples, how the Sci-

entific Applications and Visualization Group (SAVG) at

NIST has utilized high performance parallel computing

and visualization to accelerate scientific discovery. The

examples include scientific collaborations that have ad-

vanced research in the following areas: (1) Bose-Einstein

condensate modeling, (2) fluid flow in porous materi-

als and in other complex geometries, (3) flows in sus-

pensions, (4) X-ray absorption, (5) dielectric breakdown

modeling, and (6) dendritic growth in alloys.

Keywords: discovery science; distributed processing;

immersive environments; 1MPI; interoperable MPI, mes-

sage passing interface; MPI; parallel processing; scientific

visualization

1 Introduction

Science advances through iterations of theory and ex-

periment. Increasingly, computation and visualization are

an integral part of this process. New discoveries obtained

from an experiment or a computational model are en-

hanced and accelerated by the use of parallel computing

techniques, visualization algorithms, and advanced visu-

alization hardware.

A scientist who specializes in a field such as chem-

istry or physics is often not simultaneously an expert in

computation or visualization. The Scientific Applications

and Visualization Group (SAVG
[1]) at NIST provides a

framework of hardware, software and complementary ex-

pertise which the application scientist can use to facilitate

meaningful discoveries.

Parallel computing allows a computer code to use the

resources of multiple computers simultaneously. A vari-

ety of parallel techniques are available which can be used

depending upon the needs of the application. Generally,

parallel computing is thought of in terms of speeding up

an application. While this is true, experience is show-

ing that users often prefer to use this increased capabil-

ity to do more computation within the same amount of

time. This may mean more runs of the same complexity

or runs with more complex models. For example, paral-

lel computing can use the combined memory of multiple

computers to solve larger problems than were previously

possible. An example of this is described in Sec. 8, Den-

dritic Growth in Alloys.

Visualization of scientific data can provide an intuitive

1

understanding of the phenomenon or data being studied.

One way it contributes to theory validation is through

demonstration of qualitative effects seen in experiments

such as Jefferies orbits as described in Sec. 5, Flow of Sus-

pensions. Proper visualization can also exhibit structure

where no structure was previously known. In the Bose-

Einstein condensate (BEC) example (Sec. 3), visualiza-

tion was key to the discovery of a vortex array. Current

visualization technology provides a full range of hardware

and techniques from static two-dimensional plots, to inter-

active three-dimensional images projected onto a monitor,

to large screen fully immersive systems allowing the user

to interact on a human scale.

Immersive virtual reality (IVR) [2] is an emerging tech-

nique with the potential for handling the growing amount

of data from large parallel computations or advanced data

acquisitions. The IVR systems take advantage of human

skills at pattern recognition by providing a more natural

environment where a stereoscopic display improves depth

perception and peripheral vision provides more context

for human intuition.

The techniques used for parallel computing and visual-

ization, as well as the knowledge of hardware, are special-

ized and outside the experience of most scientists. SAVG
makes use of our experience in solving computational and

visualization problems as we collaborate with scientists to

enhance and interpret their data. Results of this work in-

clude theory validation, experiment validation, new anal-

ysis tools, new insights, standard reference codes and

data, new parallel algorithms, and new visualization tech-

niques.

2 Tools

SAVG has worked with many scientists at NIST on

a wide variety of problems, and makes use of an array

of resources that it can bring to bear on these diverse

projects. Of course we make use of the central computing

resources that include several SGI Origin 2000 systems 1

,

Certain commercial equipment, instruments, or materials are iden-

tified in this paper to foster understanding. Such identification does not

imply recommendation or endorsement by the National Institute of Stan-

dards and Technology, nor does it imply that the matenals or equipment

identified are necessarily the best available for the purpose.

an IBM SP system, a cluster of PCs running Linux, as

well as virtual parallel machines created from workstation

clusters. Each of these systems can be used for parallel

as well as sequential implementations of scientific algo-

rithms. In addition to these central computing resources,

SAVG uses commercial tools and freely available tools

where appropriate, augmenting these with locally devel-

oped tools when necessary. The following are some tools

in common use by SAVG.

2.1 Computation

MPI - Message Passing Interface

The majority of our parallel applications are written

using the message-passing model for parallel pro-

grams. In the message-passing model each process

has exclusive access to some amount of local mem-
ory and only indirect access to the rest of the mem-
ory. Any process that needs data that is not in its

local memory obtains that data through calls to mes-

sage passing routines. MPI is a specification for a

library of these message-passing routines [3, 4, 5],

Since its introduction in 1994, MPI has become the

de facto standard for message-passing programming

and is well supported on high performance machines

as well as on clusters of workstations and PCs.

MPI was designed to support its direct use by appli-

cations programmers as well as to support the de-

velopment of parallel programming libraries. We
have used MPI in both of these contexts (see the

descriptions of C-DParLib, F-DParLib, and Au-

toMap/AutoLink below).

Interoperable MPI (IMPI) [6, 7] is a cross-

implementation communication protocol for MPI
that greatly facilitates heterogeneous computing.

IMPI enables the use of two or more parallel ma-

chines, regardless of architecture or operating sys-

tem, as a single multiprocessor machine for running

any MPI program. SAVG was instrumental in the

development of the IMPI protocol.

C-DParLib and F-DParLib

The libraries C-DParLib and F-DParLib |8, 9, 10,

11], developed by SAVG, support data-parallel style

programming in C and Fortran 90, respectively.

These libraries make heavy use of MPI to han-

dle all communication. Data-parallel programming

refers to parallel programming in which operations

on entire arrays are supported such as A = A + B,

where A and B are arrays of values. C-DParLib and

F-DParLib were developed specifically to support

parallel applications that derive parallelism primar-

ily from the distribution of large arrays among pro-

cessing nodes such as in most finite-difference based

parallel applications.

Both libraries support basic data-parallel operations

such as array initialization, array shifting, and the ex-

changing of array data between adjacent processing

nodes. In addition, C-DParLib provides additional

services such as assisting in the balancing of com-

putational loads among the processing nodes and the

generation of arrays of pseudo-random values. Both

libraries are portable to any platform that supports

MPI and C or Fortran 90.

OpenMP
A standardized, portable tool set for implementing

parallel programs on shared-memory systems in C,

C++, and Fortran [12, 13],

AutoMap/AutoLink

Tools for simplifying the use of complex dynamic

data structures in MPI-based parallel programs [14],

This software was developed at NIST and is fully

portable to any platform that supports MPI and C
[15, 16, 17, 18].

WebSubmit

A Web-based interface [19] that simplifies remote

submission of jobs to NIST's heterogeneous collec-

tion of high-performance computing resources. It

presents a single seamless user interface to these di-

verse platforms. WebSubmit was developed at NIST
and is portable to other environments [20, 21].

2.2 Visualization

OpenDX - Open Data Explorer

An open-source visualization software package [22]

with a sophisticated data model. OpenDX can take

advantage of multiple processors on a high perfor-

mance multiple CPU system. OpenDX is very useful

for the rendering of volumetric data.

IDL - Interactive Data Language

A commercially available high-level language [23]

used for data processing and analysis. Many stan-

dard analysis routines such as image processing are

included as easily callable functions. Additionally,

IDL has routines for developing graphical user inter-

faces (GUI) allowing rapid development of powerful

interactive two and three dimensional graphics.

Interactive Graphics Workstations

SAVG maintains a Visualization Laboratory where

high performance graphics workstations are made

available for collaborators. These workstations pro-

vide a facility for NIST scientists to run a wide range

of interactive computational and visualization soft-

ware.

OpenGL - Performer

A commercial product for performance-oriented 3D
graphics applications. Performer [24] provides a

scene graph API (application programming inter-

face) and the ability to read a variety of data formats.

RAVE - reconfigurable automatic virtual environment

A commercially available product which provides a

visually immersive environment for data display and

interaction. It is driven by an SGI Onyx2 visual su-

percomputer. Our current configuration has a sin-

gle 2.29 m x 2.44 m rear projection screen utilizing

Crystal Eyes active stereoscopic glasses with head

and wand tracking.

DIVERSE
The primary software library used to develop RAVE
applications. Developed at the Virginia Tech CAVE,
DIVERSE [25] software has the advantage of pro-

viding a device-independent virtual environment.

The same application can run on a desktop work-

station as well as on single and multi-wall immer-

sive systems. In addition, the software is based on

SGI's OpenGL Performer allowing applications to

take advantage of a wide variety of Performer data

formats. These design features can provide an appli-

cation continuum from the desktop to the visualiza-

tion lab to the RAVE.

VRML - Virtual Reality Modeling Language

A Web based standard that allows interactive view-

ing of three dimensional data. SAVG uses VRML
[26] as a mechanism for distributing visualizations

and graphical simulations to collaborators.

Non-linear Video Editing

A computer/disk based video editing system that al-

lows random access to video and computer graph-

ics sources. Because it is digital, sophisticated edit-

ing techniques such as motion effects, keying, titling,

and resizing can easily be used. Also, it is very easy

to create movies in many different digital formats

for dissemination over the Internet, or movies can

be written out in several video tape formats for use

at presentations and meetings or for distribution.

The computation and visualization resources described

here, together with the expertise to use them, enable

SAVG to collaborate on a wide range of research prob-

lems with NIST scientists.

3 Bose-Einstein Condensates

A Bose-Einstein condensate (BEC) is a state of matter

that exists at extremely low temperatures. BECs were first

predicted in 1925 by Albert Einstein as a consequence of

quantum statistics [27],

3.1 Scientific Background

Researchers at the National Institute of Standards and

Technology are studying BECs of alkali atoms confined

within magnetic traps. These studies are conducted

through numerical simulation as well as laboratory exper-

iments. Numerical simulation of BECs is addressed by

solving the appropriate many-particle wave equation. The

wave function of a BEC corresponds to a macroscopic

quantum object. In other words, a collection of atoms in a

BEC behaves as a single quantum entity and is therefore

described by a single wave function.

The evolution of the BEC wave function is in question

when the trapped BEC is subjected to rotation. Upon rota-

tion, quantized vortices may form within the BEC. These

Fig. 1. Array of vortices in a Bose-Einstein condensate

under rotation.

vortices are of interest because of their theoretical impli-

cations for the characteristics of BECs, such as superflu-

idity.

Researchers perform numerical simulations of the BEC
wave function based on first principles to determine if

quantized vortices exist in these systems. A typical result

of such a simulation is a sequence of three-dimensional

arrays of complex numbers. Each complex number re-

flects the value of the BEC wave function at a particular

position and time.

3.2 Data Analysis

Simulations of rotating BECs are computed on a three-

dimensional grid of order 100 grid points along each di-

mension. The simulation data are subsequently interpo-

lated onto a mesh with 200 points in each dimension for

the purposes of visualization. When each complex num-

ber is decomposed into two real components, there are

16 x 106
scalar values to consider at each time step. Tradi-

tional line and surface plots, for example, are not adequate

for the investigation of three-dimensional qualitative fea-

tures such as vortices. More suitable techniques, such as

scientific visualization, are required.

4

3.3 Visualization

In some respects, scientific visualization is a general-

ization of traditional two-dimensional plotting and graph-

ing. One goal of visualization is the creation of a single

“picture” that conveys to the researcher a small number of

high-level concepts. A collection of such pictures may be

concatenated into an animated sequence to convey con-

cepts that vary over position and time, for example.

In the case of BECs, the goal of the visualization task is

to identify and isolate possible vortex structures within a

three-dimensional volume. Volume rendering techniques

are appropriate for this situation. In particular-, the vol-

ume rendering model used for this investigation assumes

that each point in three-dimensional space both emits and

absorbs light.

In an abstract sense, the visualrzation of a three-

dimensional array of BEC data requires the construction

of a function to map from the BEC data domain to an

image domain. The BEC data domain is composed of

three-dimensional positions along with complex values

from the associated wave function. The image domain

consists of an opacity component and three color compo-

nents: hue, saturation, and brightness. Opacity describes

the extent to which a point in three-dimensional space ab-

sorbs light. Hue describes the gradation among red, green,

or blue. Saturation describes the degree of pastelness.

Brightness describes the degree of luminance.

The constr uction of a function from the BEC data do-

main to the image domain proceeds as follows: The com-

plex values associated with the wave function are decom-

posed into polar form. The angular component of a com-

plex value determines the hue by mapping the angle to a

corresponding position on a color circle. A color circle, as

used here, begins with red at 0 radians and then traverses

through green and blue with a return to red at the comple-

tion of the circular trip. The radial component of a com-

plex value determines the brightness by mapping small

radii to high brightness and large radii to low brightness.

The radial component of the brightness mapping corre-

sponds to density, where low density regions are bright.

The intent is to exhibit low-density vortices as bright re-

gions and suppress the visibility of high-density regions.

The saturation is determined by a constant function; all

regions are fully saturated. Finally, the opacity is deter-

mined by a constant function as well; all regions have zero

opacity (that is, complete transparency).

The function described above is further modified with

respect to the magnetic trap in which the BEC exists.

The purpose of this modification is the suppression of

unimportant regions beyond the confines of the magnetic

trap The BEC in the magnetic trap is ellipsoidal in shape

and the required modifications are straightforward appli-

cations of analytic geometry.

3.4 Results

The result of the visualization process is a sequence of

images, one for each time step, which form a 3D stereo-

scopic animation. In this study, the BEC images did in

deed show the presence of quantized vortices. In addition,

the visualization also discovered an unanticipated struc-

ture of concentric vortex rings, shown in Fig. 2, instead

of the line vortices as shown in Fig. 1. Further, the im-

ages are the first three-dimensional visualization of vortex

structures in a rotating BEC [28],

Fig. 2. Soliton produced by phase imprinting of a Bose-

Einstein condensate.

Additionally, a BEC image of a soliton, produced at the

trap center by a phase imprinting technique, looks like a

flat disk, corresponding to a low-density plane within the

5

condensate cloud. As the soliton propagates through the

condensate, it becomes more curved because the soliton

moves fastest in the condensate center, and doesn’t move

at all at the condensate surface. At a later time, the en-

tire soliton stops completely and becomes a nodal surface.

Rather than returning to the point of creation, it sponta-

neously decays into concentric quantized vortex rings, in

a process known as a snake instability ; see Fig. 2 [29].

This instability provoked a great deal of further simula-

tions and calculations. The results were presented in Ref.

[30],

Experimentalists at JILA, Brian Anderson and Eric

Cornell, attempted to generate these vortex rings in con-

densates in exactly this way. They have confirmed all the

predictions.

4 Fluid Flow in Porous Materials

and in Other Complex Geome-

tries

The flow of fluids in complex geometries plays an im-

portant role in many environmental and technological pro-

cesses. Examples include oil recovery, the spread of haz-

ardous wastes in soils, and the service life of building ma-

terials. Further, such processes depend on the degree of

saturation of the porous medium. The detailed simulation

of such transport phenomena, subject to varying environ-

mental conditions or saturation, is a great challenge be-

cause of the difficulty of modeling fluid flow in random

pore geometries and the proper accounting of the interfa-

cial boundary conditions.

The work described here involves the application of the

lattice Boltzmann (LB) method to this problem. The LB
method of modeling fluid dynamics naturally accommo-

dates multiple fluid components and a variety of boundary

conditions such as the pressure drop across the interface

between two fluids and wetting effects at a fluid-solid in-

terface. Indeed, the LB method can be applied to a wide

variety of complex flow problems that strongly depend on

boundary conditions including phase separation of poly-

mer blends under shear, flow in microchannel devices,

and the modeling of hydrodynamic dispersion. For ex-

ample, Fig. 3 shows an LB simulation of a phase separat-

ing binary mixture under shear [31] The LB and related

methods are currently in a state of evolution as the models

become better understood and corrected for various defi-

ciencies [32, 33].

Fig. 3. Phase separating binary mixture under shear sim-

ulated using a lattice Boltzmann method.

One difficulty with LB methods is that they are resource

intensive. In general, running simulations on large sys-

tems (greater than 1 00 3
grid points) is not practical due to

the lack of memory resources and long processing times.

Because of these extreme demands on memory and com-

putation, and the fact that the LB method generally needs

only nearest neighbor information, the algorithm was an

ideal candidate to take advantage of parallel computing

resources.

4.1 Implementation of the LB Algorithm

The approach of the LB method is to consider a typical

volume element of fluid to be composed of a collection

of particles that are represented by a particle velocity dis-

tribution function for each fluid component at each grid

point. The time is counted in discrete time steps and the

fluid particles can collide with each other as they move,

possibly under applied forces.

The sequential implementation of the algorithm was

6

relatively straightforward. We have both active sites (that

hold fluid) and inactive sites (that consist of material such

as sandstone). For efficient use of memory we use an in-

direct addressing approach where the active sites point to

fluid data and the inactive sites point to NULL. Hence

only minimal memory needs to be devoted to inactive

sites. At each active site we point to the necessary ve-

locity and mass data for each fluid component. Over the

course of an iteration we visit each active cell in the data

volume and calculate the distribution of each fluid compo-

nent to be streamed to neighboring cells. New mass and

velocity values are accumulated at each active cell as its

neighbors make their contributions.

We implemented the parallel version of the algorithm

using the Message Passing Interface [3] (MPI). The par-

allelization was accomplished within a simple single-

program multiple-data (SPMD) model. The data volume

is divided into spatially contiguous blocks along the 2

axis; multiple copies of the same program run simultane-

ously, each operating on its own block of data. Each copy

of the program runs as an independent process and typi-

cally each process runs on its own processor. At the end

of each iteration, data for the planes that lie on the bound-

aries between blocks are passed between the appropriate

processes and the iteration is completed.

The mechanisms for exchanging data between pro-

cesses via MPI calls and for managing the minor house-

keeping associated with MPI are concealed within a few

routines. This enables us to have a purely serial version

of the program and a parallel version of the code that are

nearly identical. The code is written in standard ANSI C,

and the only external library that has to be used is the MPI
library, which is available on all of NIST's parallel sys-

tems as well as many other parallel computing environ-

ments. These implementation strategies enable us to run

the program, without any modification on any of NIST's

diverse computing platforms.

and Higdon [34], which are based on the numerical solu-

tion of coefficients of a harmonic expansion that satisfies

the Stokes equations. Agreement is very good, especially

given that the solid inclusions are digitized spheres.

0.08

0.07

0.06 -

0.05 -]

A 0.04

•ii 0.03 -

0.02 -\

0.01

0.00

0.00

Chapman and Higdon Calculation

j Lattice Boltzmann Model

Q-

O

0 0 0 0 Q ,Q Q

1 t
1

r 1
»

1

0.25 0.50 0.75 1.00

C

Fig. 4. Normalized flow through spheres, as a function

of the solid fraction C, centered on a simple cubic lat-

tice. The permeability k is normalized by the square of

the distance d between sphere centers. The solid fraction

C is (1 — porosity).

We then determined the permeability of several

microtomography-based images of Fontainebleau sand-

stone. Figure 5 depicts a portion of one of these sand-

stone images. The resolution is 5.72 pm per lattice spac-

ing and data sets were 5103 voxels (volume elements).

Figure 6 shows the computed permeability compared to

experimental data [35], Clearly there is good agreement,

especially at the higher porosities.

4.3 Performance of the Parallel Code

4.2 Verification

We verified the correctness of the model with several

numerical tests. For example, one test involved comput-

ing the permeability of porous media composed of a pe-

riodic array of (possibly overlapping) spheres. In Fig. 4

we compare our simulation data with those of Chapman

We ran a series of timing tests on several of the parallel

systems at NIST, including an SGI Origin 2000. an IBM
SP2. and an Intel Pentium cluster. Because of the porta-

bility of the MPI calls and our standard ANSI C code it

was easy to inn the same code and test cases on each plat-

form.

The timings recorded for these runs closely agree with

7

Fig. 5. A G4
:1 portion of the 7.5 % porosity Fontainebleau

sandstone media. The solid matrix is made transparent to

reveal the pore space (grey shaded region).

Fig. 6. Measured and modeled permeabilities (/.') of

Fontainebleau sandstone media as a function of porosity.

The solid rectangles show the modeled results.

a very simple model describing performance:

T = S + P/N,
where

T is total time for a single iteration,

S is time for the non-parallelizable computation,

P is time for the parallelizable computation, and

N is number of processors.

The parallelizable computation is that portion of the pro-

cessing that can be effectively distributed across the pro-

cessors. The non-parallelizable computation includes

processing that cannot be distributed; this includes time

for inter-process communication as well as computation

that must be performed either on a single processor, or

must be done identically on all processors.

We found in all cases that the non-parallelizable com-

putation S accounts for between 0.7 % and 3 % of the

total computational load. In one of the test cases the per-

formance data from the SGI Origin 2000 closely matches

this formula (T is the total time in seconds for an itera-

tion):

T = 0.090 s + 11.98 s/N.

The non-parallizable computation S is 0.090 s, while the

parallelizable portion of the computation P uses 1 1 .98 s.

So, for example, a single iteration took 12.08 s on one

processor but only 1.11 s on 12 processors. These results

indicate that the algorithm is, indeed, well suited to a par-

allel computing environment.

Other timing tests indicate that the time for the paral-

lelizable portion of the code is roughly proportional to

the number of active sites over the entire volume, while

interprocess communication time is roughly proportional

to the size of an xy cross-section of the volume. So as

we process larger systems, the time for the parallelizable

portion of the code should increase proportionally with

the cube of the linear size of the system, while the non-

parallelizable portion should increase with the square of

the linear size of the system. This means that for larger

systems, a larger proportion ot the time is in the paral-

lelizable computation and greater benefits can be derived

from running on multiple processors.

4.4 Results

The modeled permeabilities of the Fontainebleau sand-

stone media and their agreement with experimental re-

sults verified the correctness and utility ot our parallel

implementation of the LB methods. These simulations

8

would not have been possible without parallelizing the al-

gorithm. The requirements for computing resources are

beyond the capacity of single-processor systems.

In addition, parallelization has enabled us to try al-

ternatives that would have been prohibitive in the past.

For example, when calculating the permeabilities of the

Fontainebleau sandstone samples, we found that at the

lowest porosity (7.5 %), there were not enough nodes

across the pores to produce a reliable flow field. Because

we could handle large volumes, we were able to double

the resolution on a large subset of the low-porosity sam-

ple. This yielded very satisfactory results, as indicated

above.

Lattice Boltzmann methods for simulating fluid flow

in complex geometries have developed rapidly in recent

years. The LB method produces accurate flows and can

accommodate a variety of boundary conditions associated

with fluid-fluid and fluid-solid interactions. With the ad-

vent of parallel systems with large memories, computa-

tions on large systems that were considered beyond the

reach of even some “super” computers from a few years

ago can now be considered routine.

5 Computational Modeling of the

Flow of Suspensions

Understanding the flow properties of complex fluids

like suspensions (e.g., colloids, ceramic slurries, and con-

crete) is of technological importance and presents a sig-

nificant theoretical challenge. The computational model-

ing of such systems is also a great challenge because it is

difficult to track boundaries between different fluid/fluid

and fluid/solid phases. Recently, a new computational

method called dissipative particle dynamics (DPD) [36]

has been introduced which has several advantages over

traditional computational dynamics methods while natu-

rally accommodating such boundary conditions. In struc-

ture, a DPD algorithm looks much like molecular dynam-

ics (MD) where particles move according to Newton's

law. That is, in each time step, the forces on each particle

are computed. The particles are then moved and the forces

recalculated. However, in DPD, the interparticle interac-

tions are chosen to allow for much larger time steps so that

physical behavior, on time scales many orders of magni-

tude greater than that possible with MD, may be studied.

The original DPD algorithm used an Euler algorithm for

updating the positions of the free particles (which repre-

sent “lumps” of fluid), and a leap frog algorithm for up-

dating the positions of the solid inclusions. Our algorithm

QDPD [37] is a modification of DPD that uses a veloc-

ity Verlet [38] algorithm to update the positions of both

the free particles and the solid inclusions. In addition, the

solid inclusion motion is determined from the quaternion-

based scheme of Omelayan [39] (hence the Q in QDPD).

QDPD uses an implementation of the linked cell

method [40, 41] which is a true 0{N) algorithm. The

QDPD cell is partitioned into a number of subcells. For

every time step a linked list of all the particles contained

in each subcell is constructed. The selection of all pairs of

particles within the cutoff is achieved by looping over all

pairs of subcells within the cutoff and particles within the

subcells. Because of their regular arrangement, the list of

neighboring subcells is fixed and may be precomputed.

QDPD was originally written in Fortran 77 as a serial

program. To improve performance, a parallelization of

the code was done in MPI [42] using a simplified version

of the replicated data approach.

5.1 Replicated Data Approach

In the replicated data approach [43, 44, 45] every pro-

cessor has a complete copy of all the arrays containing

dynamical variables for every particle. The computation

of forces is distributed over processors on the basis of cell

indices. This is a very efficient way of implementing par-

allelism since the forces must be summed over proces-

sors only once per time step, thus minimizing interproces-

sor communication costs. On "shared-memory" machines

like an SGI Origin 2000, this approach is very attractive,

since all processors can share the arrays containing dy-

namical variables.

The biggest disadvantage of the replicated data strat-

egy is that every processor must maintain a copy of all

of the data and therefore the data must be updated on

each processor at the end of each time step. This is not

a problem in the shared-memory multiprocessor version

if the MPI implementation is smart enough to take ad-

vantage of the shared memory. In our implementation,

a global sum technique is used to add the separate con-

9

tributions to the forces via an MPLallreduce library call.

This approach has worked well for small to medium sized

problems (tens-of-thousands of particles) on the shared-

memory SGIs. We have found speedups of as much as

17.5 times on 24 processors of a 32 processor SGI Origin

2000. Utilizing three such systems, we were able to com-

plete a year’s worth of conventional computing in a week.

Among the results obtained by this technique has been

the calculation and subsequent visualization of a sheared

suspension of ellipsoids.

5.2 Spatial Decomposition

Fig. 7. Motion of a single ellipsoidal inclusion subject

to shear. The single ellipsoid rotation is a well known

phenomenon seen in experiments called Jefferies orbits.

While the replicated data approach of the previous

section has been the workhorse of QDPD work for some

time now, it has had its disadvantages. The biggest disad-

vantage is that scaling to very large numbers of processors

in a shared-memory environment is poor (24 is the prac-

tical limit for us), and it has turned out to be almost unus-

able on distributed memory systems including those with

high speed interconnects like the IBM SP2/SP3 systems.

When the goal is to simulate an extremely large sys-

tem on a distributed-memory computer to allow for the

larger total memory of the distributed-memory computer

and also to take advantage of a larger number of proces-

sors, a different approach is needed. Our spatial decom-

position [46, 47] replaces the serial linked cell algorithm

with a parallel linked cell algorithm [44, 48], The basic

idea is this:

y

Fig. 8. Motion of twenty eight ellipsoidal inclusions, of

size varying up to a factor of two, subject to shear. Note

that the Jefferies orbits are suppressed due to hydrody-

namic interactions between ellipsoids.

Split the total volume into P volumes, where P is the

number of processors. If we choose a one dimensional

(ID) decomposition (“slices of bread’’), then the pth pro-

cessor is responsible for particles whose x-coordinates lie

in the range

(p~l)Mx/P<x <pMx /P,

where Mx is the size of the volume along the x axis.

Similar equations apply for 2D and 3D decompositions

for simulation dimensions My and Mz . Whether the de-

composition is ID, 2D, or 3D depends on the number of

processors: First assign particles to processors. Augment

particles on each processor with neighboring particles so

each processor has the particles it needs. Now on each

processor, form a linked cell list of all particles in the orig-

inal volume plus an extended volume that encompasses

all of the particles that are needed for computations on

this processor. Loop over the particles in the original vol-

ume, calculating the forces on them and their pair particle

10

Fig. 9. A screen shot of a Web based animation using

VRML to allow interactive viewing of the time series an-

imation.

(for conservation of momentum). Care must be taken to

add these forces on particles in the extended volume to the

forces on the processor “owning” them. Finally calculate

the new positions of all panicles and move the particles

which have left the processor to their new home proces-

sors.

We distinguish between “owned” atoms and “other”

atoms, where the later are atoms that are on neighboring

processors and are part of the extended volume on any

given processor. For “other” atoms only the information

needed to calculate forces is communicated to neighbor-

ing processors. Second, the QDPD technique is being ap-

plied to suspensions, so there are two types of particles:

“free” par ticles and particles belonging to solid inclusions

such as ellipsoids. A novel feature of this work is that we
explicitly do not keep all particles belonging to the same

solid inclusion on the same processor. Since the largest

solid inclusion that might be built can consist of as many

as 50 % of all particles, it would be difficult if not impos-

sible to handle in this way without serious load-balancing

implications. What we do is assign each par ticle a unique

particle number when it is read in. Each processor has the

list of solid inclusion definitions consisting of lists of par-

ticles defined by these unique par ticle numbers. Each pro-

cessor computes solid inclusion properties for each parti-

cle it “owns”, and these properties are globally summed

over all processors so that all processors have solid inclu-

sion properties. Since there are only a small number of

solid inclusions (relative to the number of particles), the

amount of communication necessary for the global sums

is small and the amount of extra memory is also relatively

small. Hence it is an effective technique.

Current results show a speed up of a factor of 22.5

on 27 200 MHz Power3 processors on an IBM SP2/SP3

distributed memory system. The same technique also is

very effective in a shared-memory environment, where

the speedups are a factor of 29 on 32 processors of an SGI

Origin 3000 system and a factor of 50 on 64 processors.

5.3 Visualization

While various quantitative tests are used to help vali-

date our algorithms, visualization plays an important role

in the testing and validation of codes. Even simple visual

checks to make sure the solid inclusions satisfy boundary

conditions can be helpful.

Figure 7 shows a time series of the motion of a single

ellipsoidal inclusion subject to shear. The different colors

correspond to the time sequence. The shearing bound-

ary conditions were obtained by applying a constant strain

rate to the right at the top of the figure and to the left at

the bottom. Note that the single ellipsoid rotates. This

is a well known phenomenon seen in experiments called

Jefferies orbits.

In contrast, we found that when several elliposidial in-

clusions were added to the system (Fig. 8) the Jefferies

orbits were suppressed and the ellipsoids had a tendency

to align as their relative motion was partly stabilized by

mutual hydrodynamic interactions.

Virtual Reality Modeling Language (VRML) [26] has

been used to distribute animations of the results from this

computation (Fig. 9). VRML is a Web-based standard that

allows interactive viewing of three dimensional data. In

contrast to movie loop animations, VRML allows the user

to interactively view the animation while the results of the

computational model is cycled. This interactive viewing

capability allows users to select their own point of view.

Since it is Web based, the animation can be distributed to

any PC or UNIX based system with a VRML viewer in-

stalled. The amount of data displayed and speed of view-

ing is only limited by the speed of the viewing system.

An example of using VRML to animate the results from

a computational model of the flow of suspensions can be

found on the Web [49],

6 Rapid Computation of X-ray Ab-

sorption Using Parallel Computa-

tion: FeffMPI

X-ray absorption spectroscopy (XAS) uses energy-

dependent modulations of photoelectron scattering to de-

termine local atomic structure [50]. XAS is usually

divided into the extended X-ray absorption fine struc-

ture (EXAFS) with photoelectron energies above approx-

imately 70 eV, and the X-ray absorption near' edge struc-

ture (XANES) in the 0 to 70 eV range. Theoretical cal-

culations of photoelectron scattering are now an integral

part of both EXAFS and XANES analysis. These theoret-

ical calculations have grown in sophistication and com-

plexity over the past 20 years. Fortunately, during the

same time period, Moore's law [51] has increased com-

puting power dramatically, so that EXAFS calculations

are now fast, accurate, and easily executed on inexpensive

desktop computers [52, 53]. However, XANES calcula-

tions remain time-consuming in spite of these improve-

ments. The photoelectron mean free path is large at the

low photoelectron energies of the XANES region, so ac-

curate XANES calculations require large atomic clusters

and remain challenging on even the fastest single proces-

sor machines. Furthermore, the photoelectron scattering

is strong for low energies, so that full multiple scatter-

ing calculations are required. These calculations require

repeated inversions of large matrices which scale as the

cube of the size of the atomic cluster [54], Further so-

phistication in the computer codes, such as the use of

non-spherically symmetric potentials, will improve accu-

racy but increase computational requirements even fur-

ther. The computation required for XANES calculations

led us to investigate the use of parallel processing.

To implement parallel processing of XANES we started

from the serial version of the computer code Feff [54].

Feff (for effective potential Feff) does real-space calcula-

tions of X-ray absoiption, is written in portable Fortran

77, and uses a number of computational strategies for ef-

ficient calculations. Our goal was to implement a parallel

processing version of Feff that retained all the advantages

and portability of the single-processor code while gaining

at least an order of magnitude improvement in speed. Feff

models the physical process of X-ray absorption, so it was

natural to exploit the intrinsic task or physical parallelism,

namely, that X-ray absorption at a given X-ray energy is

independent of the absorption at other energies. We use

this physical parallelism to make simultaneous calcula-

tions of the XANES at different energies using multiple

processor clusters, and then assemble the results from the

individual processors to produce the full XANES spec-

trum. We use the Message Passing Interface (MPI) to

implement this idea [42], We have run the parallel Feff

code (FeffMPI) on Linux, Windows NT. IBM-AIX. and

SGI systems with no changes to the code. FeffMPI can

run on any parallel processing cluster that supports MPI,

and these systems can use distributed or shared memory,

or even a mixture of distributed and shared memory.

The starting point for "parallelizing” Feff was to de-

termine which parts of the code were the most time con-

suming. As expected on physical grounds, profiling tests

showed that the loop over X-ray energies in the XANES
computation dominated the time; over 97 % of the CPLJ

time is spent inside this loop. Therefore, we chose this

part of the code for the initial work on a parallel version of

Feff. A secondary hot spot is a similar loop that is used to

construct self-consistent potentials. In this first version of

FeffMPI the self-consistency calculation does not execute

in parallel; we plan to implement this in a later revision.

By concentrating on a single hot spot in the code, we

leave 99.7 % of the existing single-processor code of Feff

unchanged. We use the MPI libraries to arbitrarily des-

ignate cluster node number one as the master node, and

designate the other Ar

procs — 1 nodes as workers. In the

energy loop of the XANES calculation each node (master

and workers) executes l/A procs XANES calculations that

each cover l/.Aprocs of the energy range of the XANES
calculation. After each worker completes its part of the

12

task, the results are sent back to the master and the worker

processes can be terminated. This approach means that

(1) exactly the same executable is run on every node in

the cluster; (2) virtually all of the changes to the single-

processor Feff are confined within a single subroutine;

(3) the FeffMPI code is nearly identical to the single-

processor version of Feff, the only difference being that

each instance of the FeffMPI process is aware that it is a

particular node of a cluster of Nprocs processors; and (4)

communication between master and worker processors is

kept to a minimum.

To evaluate how well the parallel algorithm succeeds,

we conducted tests on six systems. As representa-

tive single-processor systems, we did benchmarks on a

450 MHz AMD K6-3 running SuSe Linux 6.1, and an

Apple PowerMac G4 running at 450 MHz. We then ran

FeffMPI on fourMPI clusters: (1) a cluster of 16 Pentium

II 333 MHz systems running Redhat Linux connected via

100 Mbit Ethernet; (2) a similar cluster of Pentium III

400 MHz machines running Windows NT connected by

100 Mbit Ethernet; (3) a cluster of SGI machines; and

(4) an IBM SP2/3 using up to 32 processors. The fastest

times were turned in by using 32 IBM SP3 processors.

That system was 25 times faster than the PowerMac G4
and 40 times faster than the single processor Linux sys-

tem. We found that processing speed could be predicted,

as a function of cluster size, by the simple scaling law

T = a[0.03 s + 0.97 s/NpTOC], where T is the runtime

in seconds (s), a is a scaling factor that accounts for the

speed of a given single processor type and the efficiency

of the compiler, and Npmc is the number of processors in

the cluster. As shown in Fig. 10, if the runtimes on the

various clusters are rescaled by the a for that cluster, giv-

ing a normalized runtime of 1.0 for each cluster when a

single processor is used, all the runtimes fall on a univer-

sal curve that shows how well FeffMPI scales with cluster

size. As cluster size is increased, the part of the code that

runs in par allel changes from the dominant part of the run-

time to an irrelevant fraction of the total. In the limit of

large cluster sizes, runtime is dominated by the 3 % of the

original code that still executes sequentially. In such large

clusters, we expect no further increase in speed because

the runtime is then totally dominated by sequentially exe-

cuting code. In fact, large clusters can even increase run-

time due to communications overhead. However, on the

largest clusters we had available, we did not observe any

saturation of the scaling due to communication overhead.

FeffMPI Scaling with Cluster Size

Number of nodes

Fig. 10. Runtime of a typical FeffMPI XANES calcu-

lation with cluster size. The calculation has been run on

four different clusters. The execution time on a single

processor has been normalized to 1.0, showing that the

scaling on all clusters is very similar once the variation in

processor speed and compiler quality is eliminated. The

scaling indicates that about 3 % of the runtime is still from

the sequentially executing parts of the code, implying that

a very large cluster should run FeffMPI about 30 times

faster than an equivalent single processor.

6.1 Results on Parallel Processing Clusters

As one example of these calculations, we show how

XANES measurements are used in the study of barium-

strontium titanate (BST) films that are of interest as high-

k dielectrics in electronic devices [55, 56], The films

are deposited by metal-organic chemical vapor deposition

(MOCVD) that must take place at low substrate tempera-

tures because of processing constraints in device fabrica-

tion. Due to the low deposition temperature the structure

of the films often departs from the ideal crystalline BST

state [57]. However, the actual structure is unknown and

13

Fig. 1 1. Measured XANES data of 4 Barium-strontium

titanate (BST) films deposited by MOCVD. The variation

in size and energy position of the pre-edge peak near -2

eV to +2 eV is a signature of the structural variation in

these films.

the structural origin of the variation in the dielectric con-

stant is undetermined. Because the films contain amor-

phous material that gives no clear X-ray diffraction sig-

nal, we used XANES measurements to help understand

the structure of the films and ab initio calculations using

FeffMPI to interpret the XANES spectra.

In Fig. 1 1 we show a series of XANES measurements

of several BST films. The most important feature is the

evolution of the peak near' -2 eV to +2 eV (the origin

of the energy zero is arbitrary) as deposition conditions

are changed. In Fig. 12 we show theoretical calculations

of tetrahedral and octahedral oxygen coordination around

the Ti atoms; note the qualitatrve similarity to the trend

seen in the measured XANES data in Fig. 1 1

.

The calculations suggest that the observed change in

the XANES implies a change from a non-inversion sym-

metric Ti-0 structure with tetrahedral oxygen coordtna-

tion to one that ts a nearly inversion symmetric octahe-

dral Ti-0 arrangement. The tetrahedral Ti-0 structures

are not ferroelectric, so this structural variatron accounts

for the change of the dielectric constant with film depo-

sition temperature and titanium-oxygen stoichiometry. In

Fig. 12. XANES calculation from the octahdral and tetra-

hedral Ti-0 structures shown in Figs. 13 and 14. The

nearly perfect inversion symmetry of the Ti-0 octahe-

dra leads to only a small low-energy resonance in the

XANES. The non-inversion symmetric tetrahedral Ti-0

environment gives a much larger low-energy resonance.

The qualitatrve similarity of these simulations with the

XANES measurements shown in Fig. 1 1 indicates that

the BST films make a transition from a non-ferroelectric

phase with tetrahedral Ti-0 oxygen coordination to the

octahedral Ti-0 structure that is characteristic of BaTi0 3 .

Figs. 13 and 14 we show the structures of BaTi03 and

BaoTiO-i that were used as the inputs for the calculatrons

in Fig. 12. The BaoTiOt structure has a slightly dis-

torted Ti-0 tetr ahedral structure with zig-zag chains of Ba

atoms separating the Ti-0 tetrahedra. The BaTi0 3 struc-

ture contains Ti-0 octahedra with nearly perfect inversion

symmetry, and the octahedra are surrounded by a cage

of Ba atoms. The BST films contain amorphous material

which are probably distortions of those shown in Figs. 13

and 14, but we can say with certainty that the Ti-0 en-

vironment changes from one with inversion symmetry to

one that is strongly non inversion symmetric. Chemical

constraints and the FeffMPI calculations suggest that this

is because of a transition from octahedral to tetrahedral

oxygen coordination.

14

Fig. 13. Rendering of the ideal rhombohedral structure

of BaTi() 3 . The structure is a repetition of nearly perfect

Ti-0 octahedra that are separated by a nearly cubic cage

of Ba atoms. The nearly perfect inversion symmetry of

the Ti-0 octahedra leads to only a small low-energy reso-

nance in the XANES. Except for a mixture of both Ba and

Sr atoms on the same site, this is the expected structure for

BST films deposited with high substrate temperatures.

7 Dielectric Breakdown Modeling;

growth of streamers in dielectric

liquids

In high-voltage power transformers, catastrophic

breakdown in the dielectric oil is preceded by the rapid

growth of conducting plasma streamers. Branching fil-

amentary structures sometimes form in the streamers,

as documented through high-speed photographic exper-

iments conducted by Hebner, Kelley, and Stricklett at

NBS in the 1980s [58]. However, the photographs did

not record the very fast processes (on the order of tens or

hundreds of nanoseconds) that caused the filament to de-

velop. Our model describes the “shaping” effects of the

suiTounding electric field on the rapidly-growing plasma

streamers.

Fig. 14. Rendering of the structure of Ba2Ti0 4 . The

structure is a repetition of nearly perfect Ti-0 tetrahedra

that are rotated with respect to each other and are sepa-

rated by zig-zag chains of Ba atoms. The lack of inver-

sion symmetry in the Ti-0 tetrahedra leads to a very large

low-energy resonance in the XANES.

We have applied stochastic Laplacian growth as a

model to filamentary dielecUic breakdown as described

by Pietronero and Wiesmann [59] and others [60. 61, 62,

63], Here we construct a simplified model of the algo-

rithm on a large Cartesian grid using boundary conditions

which confine the electric field. We examined the effect

of parameters (threshold voltage, choice of power law) on

the fractal structure (which can be dense or sparse) and the

timing of the growth process. The calculation of the volt-

age field throughout the full volume, which is repeated af-

ter each iteration of breakdown growth, is the major com-

putational burden. The computational resources required

for this problem suggested the use of parallel methods

7.1 Implementation

Our first parallel implementation of the algorithm was

developed in a machine-language which was specific to

the CM-2 Connection Machine. This version of the code

15

used a single instruction, multiple data (SIMD) model

which tits our problem closely. The current parallel

method was then developed in a portable serial version

using the array-oriented features of Fortran 90. The For-

tran 90 array operations and intrinsic functions enabled

us to write the code in a very compact form that closely

corresponds to the mathematical description of the under-

lying algorithm. Furthermore, these features of Fortran 90

greatly simplified the parallelization of the code.

The serial code was converted to parallel by using our

F-DParLib subroutine library. F-DParLib is designed to

be used in a single-program-multiple-data (SPMD) pro-

gramming approach. In other words, multiple copies of

the same program are running simultaneously, and each

copy is processing a different portion of the data. In par-

ticular, F-DParLib provides simple mechanisms to divide

very large arrays into blocks, each of which is handled by

a separate copy of the program. In practice, this means

that the researcher can write parallel code that looks al-

most identical to serial code. In our case, the code could

be written as though addressed to a single active grid-node

and its immediate neighbors. Fortran 90, extended across

block boundaries by F-DParLib, executed each instruc-

tion on all sites of each array.

F-DParLib's emphasis on array handling is designed to

mesh with Fortran 90's array syntax and intrinsic array-

handling functions. Much of F-DParLib consists of par-

allel versions of the intrinsic array functions such as

CSHIFT and MAXVAL.
In parallelizing this code, F-DParLib played the role

of a high-level language for block parallelism. Using F-

DParLib we converted the existing serial version of the

algorithm to a parallel version with very few changes.

The parallel version of the code can easily be run, with-

out modification, on many processors on a large parallel

system, or on a single processor on a desktop workstation.

Multiple parallel algorithms were implemented to

speed the runs. Spatial decomposition through block de-

composition required each processor to track only its part

of the space. Parallel breakdown was also implemented

using a randomized red-black algorithm. Laplace's equa-

tion was solved in parallel using SOR [64], Finally, time

compression was used to reduce the empty (no break-

down) steps for periods of low breakdown probability

[651.

Fig. 15. Simulation of a dense streamer growth associated

with a low cutoff-voltage parameter.

7.2 Results

The parallel computing model was validated by com-

parison of model visualization to photographs taken of

streamers during physical experiments [66, 65, 67], These

images enable us to make a detailed, qualitative compar-

ison of features of the model versus those of the actual

phenomenon being modeled. We have also used anima-

tion and color banding of the images to simulate time pro-

gression.

Our algorithm has reached a new level of detail and re-

alism for this class of simulations. The trend from sparse,

forward-directed growth to volume-filling side-branching

has been illustrated for a range of power-law response

curves. Several parallel algorithms have been included in

the numerical modeling. We have simulated a range of ef-

fects which occur in experiments as the parameters of the

model are changed. For example. Figs. 15 and 16 demon-

strate a nanowing of the conical top envelope associated

with increased cutoff voltage, which has its experimen-

tal counterpart in experimental behavior under increased

pressure.

16

Fig. 1 6. The conical top envelope of the streamer is nar-

rowed by increasing the cutoff-voltage parameter. The

narrowing has a counterpart in experimental behavior un-

der increased pressure.

8 Dendritic Growth in Alloys

8.1 Background

When an alloy is cast, the liquid metal freezes into a

solid in much the same way that water freezes to form

ice. Just as water freezes forming intricate patterns called

snowflakes, cast alloys also form snowflake-like patterns.

These treelike structures are generically known as den-

drites, and are ubiquitous in microstructural casting pat-

terns.

A better understanding of the process of dendritic

growth during the solidification of alloys is the goal of

this project. This knowledge will help guide the design of

new alloys and the casting process used to produce them.

Early versions of computational models of solidifi-

cation, known as sharp interface models, treated the

liquid-solid interface as a mathematically two dimen-

sional boundary. Tracking this complicated boundary was

a computationally challenging task [68, 69, 70],

In the phase field method, however, the liquid-solid

transition is described by an order parameter that deter-

mines, at each location in the simulated alloy, whether the

alloy is in the liquid or solid phase. The transition from

liquid to solid is not abrupt, but follows a smooth curve,

thus allowing the interface to have thickness and internal

structure. The phase field method can determine the ex-

act location and movement of the surface of the dendrite

during the simulation by simply updating each point in

the phase-field on each time step of the iteration accord-

ing to the relevant governing equations. This algorithm,

in two-dimensions, is described in detail by Warren and

Boettinger [71].

Our collaboration on this project began when the re-

searchers wished to expand their two-dimensional simula-

tion to three dimensions. The new simulation would better

match the actual three-dimensional nature of these den-

drites, as well as verify physical properties of dendrites

that only appear when all three dimensions are included.

The amount of computing power as well as the amount

of memory needed to simulate this process of dendrite

growth in three dimensions required more hardware than

was available on the desktop.

8.2 Implementation

Our three-dimensional simulation of dendritic growth

is of a copper-nickel alloy. A pair of diffusion equations,

one describing the phase-field and one describing the rel-

ative concentration of the two solutes, is solved over a

uniform three-dimensional grid using a first-order finite

difference approximation in time and second-order finite

difference approximation in space. On each time-step of

this algorithm, each point in the grid is updated. At regu-

lar intervals, a snapshot of the phase-field and concentra-

tion are saved to disk for later processing into animations

and still pictures of the simulated dendrite.

A three-dimensional grid of size 1000 x 1000 x 1000 is

required to obtain the detailed and highly resolved images

needed from this simulation. Eight three-dimensional ar-

rays of this size are required, each containing double pre-

cision (8 byte) floating point elements. Therefore, this

program requires over 64 GB of memory for the desired

resolution. In order to handle such a large amount of data,

we have developed a parallel version of this simulator.

We have used MP1 [3, 4] to develop a data-parallel style

17

program that can be run efficiently on both distributed

memory and shared memory machines. The M PI based

communication library C-DParLib [8, 9] has been used

to simplify the coding of this simulator. Sufficient par al-

lelism is obtained by distributing the three-dimensional

arrays among the available processors and exchanging

data between adjacent processors at the beginning of each

time step. Currently, the arrays are distributed along one

axis but they could be distributed along two or three axes

if needed.

Parallel applications benefit when the computational

load on each processor is approximately the same. Given

a homogeneous set of processors, load-balancing some-

times can be accomplished simply by distributing the ele-

ments of the arrays equally among the processors. Unfor-

tunately, this balancing is only effective if the processors

are identical and the computational load is the same at

all points throughout the finite-difference grid. Nether of

these assumptions are true for this simulator. The update

algorithm requires more computations at grid points near

the surface and inside the dendrite compared to the rest of

the grid, so distributing the arrays equally, even assuming

perfectly equal processors, results in a load imbalance. In

modern computing facilities, such as at NIST, as parallel

machines are upgraded, an originally homogeneous set of

processors commonly becomes heterogeneous over time

with the introduction of higher speed processors and pro-

cessing nodes with local memories of varying sizes. This

effect has resulted in heterogeneous parallel machines at

NIST

At run time, our C-DParLib [72] can periodically re-

distribute the arrays across the processors according to

simple performance parameters, such as execution time

per element, for each iteration. This can greatly improve

the execution time depending on the set of processors that

are assigned to the job. The impact of this dynamic load-

balancing on the source code for the simulator is small

with only a few C-DParLib function calls required within

the main iteration loop.

8.3 Visualization

The output from this simulator consists of pairs of files

(snapshots) containing the phase-field (0) and the relative

concentration (C) of the solutes at each grid point at spe-

cific time steps. For each simulation, we produce 40 snap-

shots at regular' time intervals. TIFF (Tagged Image File

Format) images are made from the snapshot data, then re-

played sequentially to generate an animation showing the

dendrite as it grows. At the smaller grid sizes, below 3003
,

we use commonly available visualization software to pro-

cess these snapshot files into color images with appropri-

ate lighting and shading added to enhance the images. In

this process, we interpret the value of 128 (mid-point of

the byte-scaled data) in the phase field to be the surface of

the dendrite and calculate an isosurface of the phase-field

data using this value. The surface is then colored using

the relative concentration of the alloys from the data in

the corresponding C snapshot file. An example of this for

a simulation on a grid of size 300 3
is shown in Fig. 17.

r~: : y: .

"

.:
20 30 40 50 60

Fig. 17. A 3D dendrite from a simulation over a grid

of 300s
points. The color bar shows the coding of the

relative concentration of the metals in the dendrite. The

color coding ranges from concentr ations of 20 % to 60 %.

Two-dimensional slices through these snapshots are

also produced to investigate the details of the internal

structure. Three slices through the dendrite shown in

Fig. 17 are shown in Fig 18. Animations of both the den-

drite and slices through the dendrite are generated.

18

Fig. 18. Three 2D slices through the 3D dendrite shown

in Fig. 1 7. The scale is the same in these three images but

in order to save space the area surrounding the dendrite

has been clipped. The color coding used in these images

is identical to the color coding used in Fig. 17. The blue

background corresponds to the initial concentration of ap-

proximately 40 %. Image A is a slice through the base of

the dendrite, image B is a slice taken halfway down to-

ward the tip of dendrite, and image C is a slice taken near

the tip of the dendrite.

Simulations on grids of size 300 3 and larger cannot use

this technique due to the increased memory requirements

in calculating the isosurface. Although our machines have

the available main memory to complete an isosurface cal-

culation on these larger grids, most software is not capable

of utilizing all of the available memory due to addressing

limitations (32-bit limits). In addition to this addressing

limitation, the commonly available visualization systems

do not provide interactive viewing in a 3D movie loop of

the dendrite growth. We have therefore begun to investi-

gate alternative methods for visualizing these snapshots.

The SGI Onyx2 systems have high performance hard-

ware that can provide interactive viewing for large

amounts of polygonal data. We have developed a visu-

alization procedure that converts the 3D grid data into a

polygonal data set that can take advantage of this hard-

ware acceleration. Each data point within the dendrite,

i.e. with a phase of 128 or less, is represented by a

glyph of three planar quadrilaterals oriented in each of the

three orthogonal planes (xy , xz ,
yz). The size of these

glyphs correspond to the 3D grid voxel size. A semi-

transparent color value as a function of concentration is

assigned to the glyph. A full color scale ranging from

black to white represents low to high areas of concentra-

tion. The speed of the interactive display is determined

by the number of glyphs (polygons) used to form the den-

drite. As previously stated, phase values in the range of

0 to 128 are inside the dendrite. Interactivity can be in-

creased by restricting the range of the values selected for

glyphs. For example, Fig. 19 uses glyphs for phase val-

ues from 28 to 128. However, the trade off for increasing

interactivity is a more sparse representation of the den-

drite. Using standard SGI software, OpenGL Performer,

this polygonal representation is easily displayed. The

semi-transparent colors allow a certain amount of inter-

nal structure to be revealed and the additive effects of the

semi-transparent colors produces an isosurface approxi-

mation. A series of polygonal representations from the

simulator snapshots are cycled producing a 3D animation

of dendrite growth that can be interactively viewed. Most

of the currently available immersive virtual reality (IVR)

systems are based on OpenGL Performer. Thus, utilizing

this format immediately allows the dendrite growth ani-

mation to be placed in an IVR environment for enhanced

insight.

8.4 Status

Our largest three-dimensional dendritic growth simu-

lation to date has been on a grid of size 500 3 using 32

processors of an IBM SP. This simulation took approxi-

mately 70 h to complete. With the increase in the number

and speed of available processors on our systems, and the

associated additional memory, we will be able to regularly

19

Fig. 19. A 3D dendrite visualized using glyphs and semi-

transparent colors. This image was generated from the

same data as in Fig. 17. In this image the output from

the simulator has been mirrored along all three axes giv-

ing a symmetric six-pointed star structure. The image in

Fig. 17, due to memory limitations in computing the iso-

surface, was mirrored only along the x and y axes.

run simulations on grids of size 1000 3
.

Test runs on our current systems, which include an IBM
SP, a Linux based PC cluster, several SGI Origin 2000

machines, and other available SGI workstations, indicate

that we will soon be able to complete a 1000 3 simulation

in 3 to 4 days. This assumes that we can run on 70 to

80 of these compute nodes, and that each includes 1 GB
of main memory or more. At that point we will begin

production runs of this simulator. The use of IMPI (Inter-

operable MPI) [6] is expected to assist us in utilizing the

compute nodes from these different machines as a single

large heterogeneous parallel machine.

The 3D phase-field simulator enabled by parallel com-

puting will provide a better understanding of the solidifi-

cation phenomena and increased understanding of the pa-

rameter space as it pertains to melting. Dendritic growth

models are an important element of macroscale commer-

cial solidification packages, which will be the the eventual

users of our results.

9 Conclusion

To maintain our ability to provide world class computa-

tional support for our scientific collaborations, we expect

that NIST will continue to upgrade its central computing

facility with current generation high-performance paral-

lel computation servers as well as clusters of high perfor-

mance PCs. Beyond this, SAVG will continue to develop

and apply advanced parallel scientific computing and vi-

sualization techniques that enable us to run the largest,

most detailed, and most useful computational experiments

possible.

The newly installed Reconfigurable Automatic Virtual

Environment (RAVE) is the next step for SAVG to im-

prove our acceleration of scientific discovery. This sys-

tem provides a large rear projection screen for peripheral

vision, stereoscopic display for increased depth percep-

tion, and head tracking for more realistic perspective. All

of the features combine into an immersive environment

for greater insight into the collaborative results.

Our collaborations free physical scientists to focus on

their science and the output of these computational ex-

periments while we focus on the raw computational and

visualization problems. The goal in these efforts is always

to advance the scientific research of our collaborators.

10 Acknowledgements

Fontainebleau sandstone images were prepared by John

Dunsmuir of Exxon Research & Engineering Co. in col-

laboration with Brent Lindquist and Teng-Fong Wong
(SLINYSB) at the National Synchrotron Light Source.

Brookhaven National Laboratory, which is supported by

the U.S. Department of Energy, Division of Materials

Sciences and Division of Chemical Sciences under con-

tract number DE-AC02-98CH 10886. We are indebted to

Larry Davis and Mitchell Murphy of the University of

20

Maryland Institute for Advanced Computing Systems for

their assistance and for access to the CM-2 Connection

Machine during our initial implementation of the dielec-

tric breakdown model. The authors would like to thank

Michael D. Indovina for the NT runs cited in the FeffMPI

section (Sec. 6), Kirk Kern of SGI for the 64 proces-

sor SGI runs cited in the QDPD section (Sec. 5), and

Robert R. Lipman for the first version of the Data Ex-

plorer network that handles ellipsoids referenced in the

QDPD section (Sec. 5). Last, but certainly not least, the

generous assistance of numerous people from the High

Performance Systems Usage Group and the Operating

Systems Support Group is greatly acknowledged.

References

[1] T. J. Griffin, NIST Scientific Applications and

Visualization Group [online]. Available from:

<http://www.itl.nist.gov/div895/savg>. Accessed

20 Nov. 2000.

[2] Andries van Dam, Andrew Forsberg, David Laidlaw,

Joseph LaViola, and Rosemary Simpson, Immersive

VR for scientific visualization: A progress report,

IEEE Comput. Graph. Apph, Nov./Dec. 2000, pp.

26-52.

[3] Message Passing Interface Forum, MPI: A message-

passing interface standard, Int. J. Supercomput.

Appl. 8(3/4), (1994).

[4] Message Passing Interface Forum, MPI-2: A
message-passing interface standard, Int. J. Super-

comput. Appl. High Perform. Comput. 12 (1-2),

(1998).

[5] Message Passing Interface Forum, MPI-2 [online].

Available from: <http://www.mpi-forum.org/>.

Accessed 20 Dec. 2000.

[6] William L. George, John G. Hagedom, and Judith E.

Devaney, IMPI: Making MPI interoperable, J. Res.

Natl. Inst. Stand. Technol. 105 (3), (2000).

[7] William L. George, IMPI: Interoperable MPI [on-

line], Available from: <http://impi.nist.gov/>. Ac-

cessed 1 2 Oct. 2000.

[8] William L. George, C-DParLib User's Guide, NIST,

(2000), Natl. Inst. Stand. Technol. Internal Report

(NISTIR) in progress.

[9] William L. George, C-DParLib Reference Manual,

NIST, (2000), Natl. Inst. Stand. Technol. Internal Re-

port (NISTIR) in progress.

1 10] John Hagedom and Alan Heckert, F-DParLib User's

Guide, Draft of NIST software library documenta-

tion, Mar. 1997.

[11] T. J. Griffin, DparLib [online]. Available from:

<http://www.itl.nist.gov/div895/savg/dparlib/>.

Accessed 16 Dec. 2000.

[12] Rohit Chandra, Leo Dagum, Dave Kohr, Dior May-

dan, Jeff McDonald, and Ramesh Menon, Parallel

Programming in OpenMP, Morgan Kauffman Oct.

2000 .

[13] OpenMP: Simple, portable, scalable SMP program-

ming [online],OpenMP Architecture Review Board,

Available from: <http://www.openmp.org>. Ac-

cessed 15 Nov. 2000.

[14] Martial Michel, MPI data-type tools [on-

line], Scientific Applications and Visu-

alization Group, NIST, Available from:

<http://www.itl.nist.gov/div895/savg/auto/>.

Accessed 1 9 Nov. 2000.

[15] Delphine Goujon, Martial Michel, Jasper Peeters,

and Judith E. Devaney, AutoMap and AutoLink:

Tools for communicating complex and dynamic

data-structures using MPI, in Lecture Notes in

Computer Science, Dhabaleswar Panda and Craig

Stunkel, eds., volume 1362, Springer-Verlag (1998).

pp. 98-109.

[1 6] Martial Michel and Judith E. Devaney.A generalized

approach for transferring data-types with arbitrary

communication libraries, in Proc. of the Workshop

on Multimedia Network Systems (MMNS‘2000) at

the 7th Int. Conf. on Parallel and Distnb. Systems

(ICPADS '2000), (2000).

[17] Martial Michel and Judith E. Devaney, Fine packet

size tuning with AutoLink, in Proc. of the Int. Work-

shop on Parallel Comput. (IWPP '99), (1999).

21

[18] Martial Michel, Andre Schaff, and Judith E. De-

vaney. Managing data-types: the CORBA approach

and AutoLink, an MP1 solution, in Proc. Message

Passing Interface Developer's and User's Conf.,

March 10-12, 1999, Atlanta, GA.

[19] J. Koontz, WebSubmit: A Web-based interface to

high-performance computing resources. Scientific

Applications and Visualization Group, NIST,

Available from:

<http://www.itl.nist.gov/div895/savg/websubmit/>.

Accessed 19 Nov. 2000.

[20] Ryan McCormack, John Koontz, and Judith De-

vaney. Seamless Computing with WebSubmit, J.

Concurrency Prac. Exper. 11 (15), (1999), Special

issue on Aspects of Seamless computing.

[21] Ryan McCormack, John Koontz, and Judith De-

vaney, WebSubmit: Web Based Applications with

Tel, (1998), Natl. Inst. Stand. Technol. Internal Re-

port (NISTIR) 6165.

[22] IBM Research, Open visualization data explorer:

OpenDX [online]. Available from:

<http://www.research.ibm.com/dx/>. Accessed

5 Dec. 2000.

[23] Research Systems Inc.,IDL [online]. Available from:

<http://www.rsmc/idl/>. Accessed 5 Dec. 2000.

[24] OpenGL Performer [online], Silicon Graphics, Inc.,

Available from: <http://www.sgi.com/software/

performer>, Accessed 14 Dec. 2000.

[25] DIVERSE: Device independent virtual environ-

ments - reconfigurable, scalable, extensible [on-

line], Univ. Visualization and Animation Group

of the Advanced Communications and Information

Technology Center, Virginia Tech. Univ., Avail-

able from: <http://www.diverse.vt.edu/>. Accessed

14 Dec. 2000.

[26] Web 3D Consortium [online]. Available from:

<http://www.vrml.org>. Accessed 27 Nov. 2000.

[27] Wolfgang Ketterle, Experimental studies of Bose-

Einstein condensation, Phys. Today 52, 30-35

(1999).

[28] David Feder and Peter Ketcham, Image of vortices in

a rotating Bose-Einstein condensate. Cover of Phys.

Today, Dec. 1999.

[29] David Feder and Peter Ketcham, Image of soliton

produced by phase imprinting of a Bose-Einstein

condensate,Cover of Opt. and Photonics News, Dec.

2000 .

[30] D. L. Feder, M. S. Pindzola, L. A. Collins, B. I.

Schneider, and C. W. Clark, Dark-soliton states

of Bose-Einstein condensates in anisotropic traps,

Phys. Rev. A 62, 053606 (2000).

[31] N. S. Martys and J. F. Douglas, Critical properties

and phase separation in lattice Boltzmann fluid mix-

tures, Phys. Rev. E, (2000), (to appear).

[32] X. Shan and H. Chen, A lattice Boltzmann model

for simulating flows with multiple phases and com-

ponents, Phys. Rev. E 47, 1815-1819(1 993).

[33] N. S. Martys and H. Chen, Simulation of multicom-

ponent fluids in complex three-dimensional geome-

tries by the lattice Boltzmann method, Phys. Rev. E

53, 743-750(1996).

[34] A. M. Chapman and J. J. L. Higdon, Oscillatory

stokes flow in periodic porous media, Phys. Fluids

A 4 (10), 2099-2116(1992).

[35] T. Bourbie and B. Zinszner. Hydraulic and acoustic

properties as a function of porosity in Fontainebleau

sandstone, J. Geophys. Res. 90 (B13). 1 1524—1 1532

(1985).

[36] P. J. Hoogerbrugge and J. M. V. A. Koelntan, Sim-

ulating microscopic hydrodynamic phenomena with

dissipative particle dynamics, Europhys. Lett. 19 (1),

155-160(1992).

[37] N. S. Martys and R. D. Mountain, Velocity Verlet

algorithm for dissipative-particle-based models of

suspensions, Phys. Rev. E 59 (3), 3733-3736 (1999).

[38] L. Verlet, Computer ‘experiments' on classical flu-

ids. I. thermodynamical properties of Leonard Jones

molecules, Phys. Rev. 165, 201-214 (1967).

[39] 1. Omelyan.Comput. Phys. 12, 97 (1998).

[40] B. Quentrec and C. Brot, New methods for search-

ing for neighbours in molecular dynamics computa-

tions,.!. of Comput. Phys. 13, 430-432 (1973).

[41] M. P. Allen and D. J. Tildesley,Computer simulation

of liquids, Clarendon Press, Oxford (1987).

[42] W. Gropp, E. Lusk, and A. Skjellum, Using MPI

(2nd edition). The MIT Press, Cambridge, Mass.

(1999).

[43] W. Smith. Molecular dynamics on hypercube par-

allel computers, Comput. Phys. Commun. 62, 229-

248 (1991).

[44] W. Smith, A replicated-data molecular dynamics

strategy for the parallel ewald sum, Comput. Phys.

Commun. 67, 392-406 (1992).

[45] K. Refson, Moldy User's Manual [online], (1996),

Available from: <http://www.earth.ox.ac.uk/

~keith/moldy— manual/>. Accessed 20 Dec. 2000.

[46] S. J. Plimpton, B. Hendrickson, and G. Helleltinger,

A new decomposition strategy for parallel bonded

molecular dynamics.Proc. 6th SIAM Conf. on Paral-

lel Processing for Sci. Comput. (Norfolk, VA), Mar.

1993.

[47] S. J. Plimpton, Fast parallel algorithms for short-

range molecular dynamics, J. Comput. Phys. 117,

1-19(1995).

[48] M. Pinces, D. Tildesley, and W. Smith, Large scale

molecular dynamics on parallel computers using the

link-cell algorithm, Mol. Simul. 6 , 51-87 (1991).

[49] S. Satterfield, Flow of Suspensions [online]. Avail-

able from: <http://www.itl.nist.gov/div895/savg/

FlowOfSuspensions>, Accessed 27 Nov. 2000.

[50] E. A. Stem, Theory of EXAFS, in X-Ray Absorp-

tion: Principles, Applications, Techniques of EX-

AFS, SEXAFS, and XANES, D.C. Koningsberger

and R. Prins, eds., volume 92 of Chemical Analysis ,

chapter 1, pp. 3-51 John Wiley and Sons, New York,

(1988).

[51] Gordon E. Moore, Electronics magazine, Apr. 1965.

[52] J. J. Rehr, R. C. Albers, and S. 1. Zabinsky.

High-order multiple-scattering calculations of X-

ray-absorption fine structure, Phys. Rev. Lett. 69

(23), 3397-3400(1992).

[53] S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Al-

bers, and M. J. Eller, Multiple-scattering calculations

of X-ray-absorption spectra, Phys. Rev. B 52 (4),

2995-3009(1995).

[54] A. L. Ankudinov, B. Ravel. J. J. Rehr, and S. D. Con-

radson.Real space multiple scattering calculation of

XANES, Phys. Rev. B, (1998), p. 7565.

[55] J. F. Scott, Ferroelectrics 183, 51 (1996).

[56] J. F. Scott, Ferroelectric Rev. 1, 1 (1998).

[57] Debra L. Kaiser et al.. Effect of film composi-

tion on the orientation of (Ba,Sr)Ti03 grains in

(Ba,Sr)yTi02+y thin films, J. of Mater. Res. 14(12),

4657 (1999).

[58] R. E. Hebner, E. F. Kelley, E. O. Forster, and J. J.

Fitzpatrick, Observation of prebreakdown and break-

down phenomena in liquid hydrocarbons II, non-

uniform field conditions, IEEE Trans. Electr. Insul.

20 (2), 28 1-292 (1985).

[59] L. Pietronero and H. J. Wiesmann, From physical

dielectric-breakdown to the stochastic fractal model,

Zeitschrift Fuer Physik B 70 (1), 87-93 (1988).

[60] W. G. Chadband, The ubiquitous positive streamer,

IEEE Trans. Electr. Insul. 23 (4), 697-706 (1988).

[61] W. G. Chadband and T. M. Sultan, Experimental

support for a model of positive streamer propaga-

tion in liquid insulation, IEEE Trans. Electr. Insul.

20 (2), 239-246 (1985).

[62] S. Satpathy, Dielectric breakdown in three dimen-

sions, in Fractals in Physics, L. Pietronero and

E. Tossatti, eds., Elsevier Science Publishers (1986),

p. 173.

[63] T. J. Lewis. The liquid state and its electrical prop-

erties, in Proceedings of the NATO Advanced Study

Institute, E. E. Kunhardt, L. G. Christophorou. and

L. E. Luessen, eds.. Plenum July 1 989, pp. 43 1 -453.

[64] J. J. Modi, Parallel Algorithms and Matrix Compu-
tation, Clarendon, Oxford (1988).

[65] H. A. Fowler, J. E. Devaney, and J. G. Hagedorn,

Dielectric breakdown in a simplified parallel model,

Comput. Phys. 12(5), 478-482 (1998).

[66] H. A. Fowler, J. E. Devaney, and J. G. Hagedorn,

Growth model for filamentary streamers in an ambi-

ent field, IEEE Trans. Dielectr. Electr. Insul., (2000),

(to appear).

[67] H. A. Fowler, J. E. Devaney, and J. G. Hagedorn,

Shaping of filamentary streamers by the ambient

field, in 1999 Annual Report Conference on Electri-

cal Insulation and Dielectric Phenomena IEEE Di-

electrics and Electrical Insulation Society, (1999),

pp. 132-136.

[68] M. J. Bennett and R. A. Brown, Cellular dynamics

during directional solidification: Interaction of mul-

tiple cells, Phys. Rev. B 39. 1 1705-1 1723 (1989).

[69] A. R. Roosen and J. Taylor, Modeling crystal growth

in a diffusion field using fully faceted interfaces, J.

Comput. Phys. 114 , 113-128(1994).

[70] Y. Saito, G. Goldbeck-Wood, and H. Muller-

Krumbhaar, Numerical simulation of dendritic

growth, Phys. Rev. A 38. 2148-2157 (1988).

[71] James A. Warren and William J. Boettinger, Predic-

tion of dendritic growth and microsegregation pat-

terns in a binary alloy using the phase-field method,

Acta Metall. Mater. 43(2), 689-703 (1995).

[72] William L. George, Dynamic load balancing for

data-parallel MPI programs, in Proc. Message Pass-

ing Interface Developer's and User's Conf., Mar.

1999, pp. 95-100.

About the authors: James S. Sims, John G. Hagedorn,

Peter M. Ketcham, Steven G. Satterfield, Terence J. Grif-

fin, William L. George, Barbara A. am Ende, Howard K.

Hung, Robert B. Bohn, John E. Koontz, and B. James

Filla are computational scientists in the Scientific Appli-

cations and Visualization Group, Mathematical and Com-

putational Sciences Division, of the NIST Information

Technology Laboratory. Howland Fowler is a Guest Re-

searcher in the Scientific Applications and Visualization

Group. Judith E. Devaney is Group Leader of the Scien-

tific Applications and Visualization Group. David Feder

is a Physical Scientist in the Electron and Optical Physics

Division in the Physics Laboratory and Charles Clark is

Chief of the Electron and Optical Physics Division in the

Physics Laboratory. Charles Bouldin and James Warren

are Physical Scientists in the Materials Science and Engi-

neering Laboratory. Nicos Martys is a Physical Scientist

in the Building and Fire Research Laboratory. The Na-

tional Institute of Standards and Technology is an agency

of the Technology Administration, U.S. Department of

Commerce.

24

