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Abstract

Anisotropic surface free energy is included in a phase-field model to determine

the equilibrium shapes of a free particle in a matrix. Our model allows for a

crystal-melt interface with sharp corners due to a highly anisotropic surface

free energy with missing orientations. Numerical simulations for various de-

grees of anisotropy were calculated and they show excellent agreement with

analytical equilibrium shapes.

I. INTRODUCTION

Phase-field models provide a numerical technique that has been shown to be useful for the

study of solidification processes [1-7]. The fundamental component of a phase-field model is

the inclusion of an additional variable <^>, which allows one set of thermodynamic equations

to describe a system of multiple phases. The phase field is a constant value in each bulk

phase, e.g. <p = 0 in the matrix and <p— 1 in the particle. The interface between phases is

represented by a smooth transition region where ef) varies from zero to one. Modifications

are made to the governing thermodynamic functions with the addition of gradient energy
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terms that contribute to the surface energy of the system. The most significant advantage

of a phase-field model is the avoidance of explicit tracking of the interface between phases.

The incorporation of surface free energy anisotropy in these models has been considered

previously [2,4,8-10]. The work of both Kobayashi [2] and Wheeler, Murray, and Schae-

fer [9] show that anisotropy could be introduced by allowing the gradient energy coefficient to

depend on the normal to the interface. McFadden et at. [4] followed this with an asymptotic

analysis for a surface free energy that varies smoothly with orientation, i.e. without missing

orientations, and they recovered the Gibbs-Thomsonequation in the sharp-interface limit. A

direct link between sharp and diffuse surface motion laws with anisotropy was determined by

Taylor and Cahn [11]. They showed the dependence of the energy on surface normal direction

was identical with a phase-field or sharp interface model. Fierro et at. [10] performed numer-

ical simulations of an anisotropic phase-field model and the effect which the anisotropy has

on the numerical stability. They investigated nonconvex reciprocal anisotropy and the effect

convexification had on the motion of a nonconserved phase-field. They did not investigate

a conserved evolution equation or the resulting equilibrium solutions. The dynamics of the

nonconvex problem should also be investigated in correlation with the numerical technique.

Our aim is to introduce anisotropy into a simple phase-field model for a pure crystal in

a liquid melt which can predict equilibrium shapes with sharp corners. When the degree

of anisotropy is high enough, orientations disappear from the surface, i.e. corners are de-

veloped and the numerical solution of the phase-field equations becomes problematic. We

developed a method that is numerically stable for highly anisotropic systems and shows

excellent agreement with known equilibrium shapes.

II. EQUILIBRIUM SHAPES OF PARTICLES IN A MATRIX

The effect of anisotropic surface free energy on the equilibrium shape of two-dimensional

domains of a phase in a matrix can be described by the Gibbs-Thomsonequation,
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H = Ho + vm ( 7 + leo )
A

where vm is the molar volume, A is the curvature, 7 is the surface free energy and the

subscripts denote differentiation with respect to 0. the angle made by a unit vector normal

to the interface and the x axis. Equilibrium is achieved when the chemical potential, y is

constant throughout the system. Setting y — Hei a constant, equilibrium shapes can be

found by solving Eq. 1 in parametric form [12];

x = —

—

(7 cos 0 — 7# sin 0)
He ~ Ho

y= —— (7 sin 0 + ye cos 9) (2)
He - Ho

for the quadrant 0 < 0 < 7t/2.

The 6 dependence of the surface free energy is unspecified to this point. We have chosen

the following 7 function,

7(0) = 7o(l + e4 cos 40) (3)

for a crystal with four-fold symmetry. The degree of anisotropy is set by the constant

c 4 on the interval [0,1). As the anisotropy is increased, the crystal shape will be energy

minimizing when certain high energy orientations are missing from the equilibrium shape.

Missing orientations occur when the reciprocal 7 plot first becomes concave [13]. In two

dimensions, concavity of I /7 requires that,

7 + lee = 1 - 15 e4 cos 46* = 0 (4)

for some orientations. Thus, missing orientations occur for c 4 > 1/15. The first, missing

orientation 9m ,
for a given anisotropy can be determined by setting y — 0 in Eq. 2. The

shapes obtained from Eq. 2 include metastable and stable orientations on the “ears
1-

that

do not belong to the equilibrium crystal. Mullins [14] proved that in 2-D the equilibrium

shape is given by the convex shape remaining after removal of these “ears". The resulting

equilibrium shapes for various values of are shown in Fig. 1.
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FIGURES

FIG.

(e) (4 = 0.20 (f) 64 = 0.50

Equilibrium shapes for anisotropic crystals with various values of e 4 .

III. DEVELOPMENT OF THE MODEL

Phase-field models are natural extensions of the diffuse-interface models of Cahn and

Allen [15, 16], Ginzburg and Landau [?], and of Cahn and Hilliard [17, 18]. For a single com-

ponent crystal, the phase-field equations are developed from the free-energy functional [1],

T = fa (fW + j |V^|
2

dCl (5)

on the region fl. The energy density function,

H4>) = ~<pf (6)

is a double-well which has minima at = 0 and 4>=\. With this choice of the free-energy

density, the barrier height of the double well potential is IT/64. Requiring the free-energy
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functional to decreases monotonically in time for a conserved variable results in the evolution

equation,

Dcj) ( 8F\

^ = v.^/wv_j ( ? )

where M(cf>) is the mobility and the ^ dependence allows for a mobility that is different in

each phase or at the interface.

There are threee steady state one-dimensional solutions of Eq. 7. The first two are of

a single-phase a (</>=0 matrix) or (3 particle) everywhere in the domain. The third

solution is for a planar interface,

cp(x) =
1

9
1 — tanh

(
8

)

where the interfacial thickness,

(9)

is a balance between two opposing effects. The interface tends to be sharp in order to

minimize the regions where the free-energy density is positive which occurs when cp is between

0 and 1 . Conversely, the interface tends to be diffuse to reduce the energy associated with

the gradient of cf). The phase field varies from 0.1 to 0.9 over a distance of AS. The excess

free energy of the interface is related to the gradient energy coefficient,

7
6 V 9

(
10

)

for the free-energy functional in Eq. 5 with Eq. 6 [16].

To describe anisotropic surface energies, we allow the gradient energy coefficient, e to

depend on the angle of the normal to the contours of constant
(f> [4,5]. This angle,

<»>

is the same as the orientation angle described in Section II. Any anisotropy present in t will

appear in the surface energy, 7 in Eq. 10, as well as the interface thickness, S in Eq. 9. We

choose the anisotropy in e(9) to coincide with the surface free energy in Eq. 3. Thus,
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e{9) = e0 (l + e4 cos 40) (
12

)

For values of e4 > 1/15, the polar plot of 1/e is non-convex when e + egg < 0. This leads

to an ill-posed evolution equation that is backward parabolic for 0 in the range of missing

orientations. The range of missing orientations is given by a common tangent construction

to the 1/e plot, see Fig. 2. Considering the vertical tangent on the right side of the figure,

the angles at the tangent points are extrema in the abscissa coordinate,

d ( cos 0
= 0 (13)

dO \ e(0)

which reproduces the torque-balance condition. The corner angle of the equilibrium shape

or first missing orientation, 0m follows from Eq. 13 and therefore stisfies,

c( 9m )
sin 9m "F e#( 0m )

cos 9m — 0 (14)

Performing this common tangent construction dictates equilibrium or the balance of chemical

forces at the corner. Our method also removes metastable orientations which have t + too > 0

but are not on the equilibrium shape. This is a requirement for local equilibrium.

FIG. 2. Convexifying the polar plot of 1/e (e 4 = 0.20).

We propose a regularized gradient energy coefficient, e using the common tangent to

convexify the 1/e plot. The inversion of the tangent in Fig. 2 with abscissa cos(0m ) / e(6m )

goes into a circle through the origin in the e-plane, see Fig. 3. The convexified portion of
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e is thus a portion of the circle with diameter e(0m )/ cos(0m ). Restricting attention to the

quadrant \0\ < 7t/ 4, the modification to e occurs over the range |#| < 0m . Our regularized

gradient energy coefficient,

e =
e(0) for 6m < \0\

< 7r /4

t(0m )
cos 0

15;

cos (0 7

for |0| < 6 r

will provide a surface free energy anisotropy that has the same equilibrium shapes described

in Section II. and in which e + tgg > 0. Similarly, the expressions for the remaining three

quadrants can be determined, reflecting the four-fold symmetry and the piece-wise definition

of l.

Using this convexified gradient energy, Eq. 15 in the free-energy functional, Eq. 5 and

using Eq. 7 yields,

ST 8f / \ d ( _ dt d(p\ 3 (~dld<T
(16)

Scf) 0(p ' ' dx \ d9 dy ) dy \ dd dx )

this is a generalized chemical potential. For non-missing orientations
(
9m < |0| < tt/4)

Eq. 16 can be reformulated into a more suitable form for computations [5],

c st~ r

j- =
^7 ~ e

2V 2
</i>- et [sin (29) (4>yy - (j)xx ) + 2 cos (20) (j>xy ]

+ - (e
/2

4- ee") [2 sin (20) 4>xy - V 2
</> - cos (26) (<f)yy — <pxx ) (

17
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where e' = de/dO and e" = d2 c/d0 2
. For missing orientations (|0| < 6m )

Eq. 16 can be

simplified greatly due to the specific choice of the convexified gradient energy,

ST df e(6r

(18)
S(f> d<f> \COS {9m))

for the quadrant |0| < 7r/4. Similar equations can be derived for the remaining three quad-

rants.

IV. NUMERICAL SIMULATIONS

Numerical simulations of the anisotropic particle-matrix surface free energy were then

performed using an explicit finite difference technique. We solve the evolution equation,

Eq. 7 on a two-dimensional uniform grid using a finite difference approximation that is

second order accurate in space and first order accurate in time. The mesh spacing is h, and

the time step At.

A. Equilibrium Shapes

When the degree of anisotropy is low (e 4 < 1/15), the equilibrium shape is smooth without

corners and the numerical simulation can be performed without difficulty. For the spatial

derivatives, simple centered finite differencing formula can be used throughout the domain.

The equilibrium shapes that were calculated numerically for t 4 = 0.06 match well with the

analytical shapes calculated by Eq. 2 in Section II. Fig. 4 shows this agreement in both

the numerical and the analytical equilibrium shapes (shown by the dashed and solid lines

respectively). In Fig. 4(a) the dashed numerical equilibrium shape is constructed from a

contour of constant phase-field parameter,
(f)
= 0.5. In Fig. 4(b) is a polar plot of the surface

normal angle as a function of the polar angle of the point on the interface at which the

normal angle is measured.
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(a) equilibrium shapes (b) surface normal orientations

FIG. 4. Comparison of numerical dashed line and analytical solid line (a) equilibrium shapes

and (b) surface normal orientations, 6 for particles with non-missing surface energy anisotropy

(€4 = 0.06).

For anisotropies with e4 > 1/15, orientations disappear from the equilibrium shape and

the numerical calculation becomes more involved. First, special care is taken to accurately

evaluate 0, the angle of the normal to the contours of constant
<f>

given by Eq. 11. The

first derivatives of <p across corners are erroneously calculated by centered finite differencing

formula. For instance, if a mesh point is located exactly on a corner, then 0 = 0 using a

centered formula (he. Eq. 19 and Fig. 5(a)). However, a one-sided formula (he. Eq. 20 and

Fig. 5(b)) would yield the correct angle on either side of the corner. Although this difficulty

can be avoided by rotating the mesh grid relative to the surface anisotropy by 45° which

would reduce the inaccuracy of the centered differencing, this does not completely solve the

problem especially for very high anisotropies.

j. + i) - 4>{iJ - 1)

-3<j){ij) + 4 <f)(i,j + 1) - 0(i, j + 2)
Wffi) - 777

(19)

(
20

)
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(a) centered (b) one-sided

FIG. 5. Diagram of 6 calculation by the related first derivatives using (a) centered and (b)

one-sided differencing formula across the corner, (where 0C is the corner angle) IA the x direction,

centered differencing is used.

The second derivatives (^>xx , (j)yy , (foxy) are also inaccurate using centered differencing for-

mulae near a corner. Unfortunately, using a similar approach as that used in evaluating

the first derivatives yields a method that is unstable in time. Ignoring any error caused by

using centered second derivatives, we are still able to calculate very good equilibrium shapes.

Shown in Fig. 6 is a comparison of the analytical and numerical crystal shapes for e 4 =0.08

(which is greater than 1/15 and thus has corners).
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(a) equilibrium shapes (b) surface normal orientations

FIG. 6. Comparison of numerical dashed line and analytical solid line (a) equilibrium shapes and

(b) surface normal orientations (6) for particles with missing surface energy anisotropy (c 4 = 0.08).

Remarkably, these numerical shapes have discontinuous chemical potentials at the cor-

ners, but are still numerically stable. Using centered second derivatives results in a corner

chemical potential that changes from small to large values nearly every iteration. Completely

one-sided second derivatives are accurate, but unstable. Accurately resolving the chemical

potential while also maintaining the stability of the numerical method is the trade-off that

must be balanced. Thus, a mixed differencing scheme was developed for more accurate cal-

culations near these sharp corners. A comparison between the chemical potentials calculated

with this mixed differencing scheme verses that of a simple centered one is shown in Fig. 7.
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FIG. 7. Polar polat of the chemical potential along

and (b) mixed second derivative differencing formula.

(b) mixed

the interface for €4 = 0.08 using (a) centered

In our mixed differencing scheme, the first issue is to locate the corners in our phase-field

based on the value of 0 and then choose the differencing scheme for the second derivatives

that go across each corner. If \0\ <0m ,
then the convexified gradient energy is used (Eq. 15)

and the chemical potential is determined by Eq. 18. The chemical potential only depends

on the second x derivative at the corner, but not across it; hence, centered differencing is

appropriate. For |0|£0m ,
the full equation for the chemical potential (Eq. 17) must be

used. In this region, a weighted average of one-sided and slanted differencing (away from the

corner) is used for those derivatives across the corner. The weighted average is 95 to 99.9%

one-sided depending on the anisotropy. If 0m < \6\ < 7r/8 -f- 9m l2, then a slanted formula is

used. Finally for 7t/8 + 0m /2 < |#| < 7t/ 4, centered differencing is used for all derivatives

because it is significantly far away from the sharp corner. Examples of differencing formula

for centered, slanted, and one-sided are given in Eqs. 21-23.

^yy ( b J )

(t)yy( l
i J )

~ 1
)
- + 1

)

h2

11 - 1) - 20<f>(i,j) + + 1) + 4 + 2) - + 3)

12h 2

(
21

)

221

12



(
23

)

.

2<f>(i,j) - 5<f>(ij + 1) + 4<f>(i,j + 2) - + 3)
(Pyy\‘l ’> J ) —

1^2

A similar algorithm, based on the value of 0, for the remaining three quadrants is straight-

forward.

The chemical potential computed with the centered differencing algorithm is discontin-

uous but stable, due to the regularization of the gradient energy coefficient. Switching to a

mixed differencing algorithm results in a smooth constant chemical potential (Fig. 7). How-

ever, the equilibrium shape is unchanged. Computing good equilibrium shapes for values

of e4 < 0.5 is possible with either differencing technique. This limit in surface free energy

anisotropy is not due to the finite difference approximation, but instead a result of the mesh

resolution. Shown in Figs. 8 and 9 compare the analytical and numerical crystal shapes for

64 = 0.15 and £4 = 0.30, respectively.

(a) equilibrium shapes (b) surface normal orientations

FIG. 8 . Comparison of numerical dashed line and analytical solid line (a) equilibrium shapes and

(b) surface normal orientations
(
6

)
for particles with missing surface energy anisotropy (£4 = 0.15).
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(a) equilibrium shapes (b) surface normal orientations

FIG. 9. Comparison of numerical dashed line and analytical solid line (a) equilibrium shapes and

(b) surface normal orientations (0) for particles with missing surface energy anisotropy — 0.30).

B. Dynamics

The dynamics of forming crystal shapes with corners from an initially smooth surface

was investigated with a centered differencing scheme. The mixed scheme presented above

is optimized for shapes that have corners and is inadequate for a circular initial condition.

The regions on the initial shape in the missing range of orientations evolve slower than those

just outside of this area. The evolution is shown in Fig. 10 by surface contours (<f>
= 0.5) at

various times shown atop each other. This phenomenon is non-physical and is most likely

a result of the regular zed gradient energy. However, Fig. 10 illustrates that the method is

stable even though the initial shape had orientations for which e + tee < 0.

14



FIG. 10. Surface contours during computation of equilibrium shape (e = 0.15).

Once the corner has formed, its motion is not affected by the differencing scheme. This

was tested by tracking the corner positions during the evolution from a rectangular shape to

a shape with equal length sides (Fig. 11). No significant difference was found between the

computations using centered and mixed differencing formula. Corner motion is unaltered by

the discontinuity of the chemical potential present with the centered scheme.

FIG. 11. Diagram of corner motion test, showing the initial and final surface shapes (c = 0.15).

Any difference between the shapes given by a centered or mixed differencing scheme is

restricted to one or two mesh points around each corner. These slight differences are not

apparent in the equilibrium shapes shown, due to the number of mesh points used for each
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computation (mesh 261 x 261). With a centered calculation, the corners are rounded by

orientations that should not appear on the equilibrium shape. However, there appears to

be no other significant disadvantage with using simple centered differencing for the second

derivatives; the time step stability is the same for either method.

A computation was performed on a sinusoidal interface to demonstrate the flexibility of

this phase-field method, see Fig 12. The initially smooth surface was imposed with a surface

energy anisotropy resulting in corners. Initially the jumps in normal angle or corners develop

very quikly. Along the steep slides new corners appear (t — b) due to the enforcement of

local equilibrium required by our regularization of the gradient energy. These corners then

coarsen (t = c) and disapear (/ = d) as the phase-field evolves. The final interface only

contains stable orientations. However, it is metastable because the curved surface area can

be reduced by coarsening. This computation shows that the method can both introduce new

and remove old corners without any implicit tracking of the interface.

FIG. 12. Surface contours {4> — 0.5) at various times for a periodic sinusoidal computation for

c4 = 0.15.
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V. CONCLUSION

We have introduced anisotropic surface free energy into a phase-field model and com-

puted the equilibrium shapes for crystals both with and without sharp corners. We have

shown excellent agreement between our equilibrium shapes and the analytical ones for highly

anisotropic particles. With the numerical solution of the phase-field equations for this sim-

ple, two dimensional, crystal-melt system, we were able to determine the equilibrium shapes

for various degrees of anisotropy. No obvious disadvantage using simple centered differencing

for the second derivatives has been determined. Numerical stability, dynamics, and most

importantly equilibrium shape are unaffected by the discontinuity of the chemical potential

present with the centered algorithm. This validated phase-field method allows similar for-

mulations, for surface energy anisotropy, to be included into more sophisticated phase-field

simulations.
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