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Protonic Conductors for Fuel Cells

The inset shows the temperature-dependence of the vibrational spectrum

of a protonic conductor, potentially an electrolyte used in a fuel cell,

measured on the Filter Analyzer Neutron Spectrometer (FANS). Comparing

this spectrum to density functional computations can confirm our under-

standing of these useful materials. The surrounding picture shows the

research and engineering team standing by the recently re-commissioned

FANS instrument that is highlighted in this issue. Already a factor of 20

more capable than the one it replaced with another factor of 5 expected

when the second phase is installed, this instrument opens a window for the

rapid evaluation of new materials. See highlight on pp. 8-9 of this report.
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DISCLAIMER

Certain commercial equipment, instruments, or materials are identified in

this report to foster understanding. Such identification does not imply

recommendation or endorsement by the National Institute of Standards and

Technology, nor does it imply that the materials or equipment identified

are necessarily the best available for the purpose.
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FOREWORD

O nce again, it is a pleasure to be able to reflect on the accom-

plishments of the NIST Center for Neutron Research over the

past year. The reactor shim control arms were replaced during a

planned shutdown early in 2000. As a result, the reactor was sched-

uled to operate for 212 days during the reporting period, and did

operate 198 days, or 93 % of the scheduled time, as a consequence

of one unplanned maintenance shutdown. Construction was begun on

the new cooling tower which will not only provide needed capability

for the next 25 years, but will also reduce the plume visibility during

cold weather. The cold source availability for the period was 98%;

i.e. the cold source held the reactor from operation 4 days during the

year. The second-generation liquid hydrogen cold source passed all

required pressure tests, and the final assembly is now being prepared

for insertion into the reactor in 2001 . Finally, steady progress has

been made in preparing for a license renewal application to the

Nuclear Regulatory Commission, in order to extend the period of

operation beyond 2004.

Three high-resolution inelastic scattering instruments, the

High Flux Backscattering Spectrometer, the Disk Chopper time-of-

flight Spectrometer, and the Neutron Spin Echo spectrometer (high-

lighted in the 1999 report), are now being offered to users who

can tolerate the quirks inherent in getting a new instrument on-line.

USANS, the perfect crystal small angle scattering spectrometer (part

of the NSF/NIST CHRNS), is installed at the reactor and available

for proposals; the first phase of the high intensity Filter Analyzer

Neutron Spectrometer is operating with high intensity and good

backgrounds; and the design and manufacture of new thermal neu-

tron spectrometers is underway. (USANS, DCS, and FANS are high-

lighted in this report.) This simultaneous development program has

put severe strains on our resources, but we can now look forward

to many years of benefit from the results. During the past year, a

proposal was made to the National Science Foundation (NSF) to

allow joint NIST/NSF operation of the three high-resolution instru-

ments, and to construct a new cold neutron triple axis spectrometer.

The final disposition of this application is not yet available, but the

external reviews are complete, a site visit has taken place, and the

NSF is now considering the appropriate action. If this proposal is

funded, then we will be able to operate these new inelastic scattering

instruments properly in a full user mode.

Finally, as always, the results are seen in the output of the

researchers who use the facility. As has become our practice, we

are presenting highlights of this work in the following chapters of

this report. I think that all can agree that the results truly speak for

themselves.



INTRODUCTION TO
THE NIST CENTER FOR
NEUTRON RESEARCH (NCNR)

M odern technological society is dependent upon increasingly

sophisticated use of materials, many of whose attributes are

dictated by their sub-microscopic structural and dynamical proper-

ties. A wide range of scientific techniques, of which the many types

of scattering (for example, x-rays, light, electrons, neutrons) are

arguably the most important, provide knowledge of these properties.

Of these probes, neutrons are perhaps least familiar, but they provide

important advantages for many types of measurements.

Neutrons, as prepared for use at modern sources, are moving

at speeds comparable to those of atoms moving at room temperature,

thus providing the ability to probe dynamical behavior. At the same

time, neutrons are well matched to measurements at length scales

ranging from the distances between atoms to the size of biological

or polymer macromolecules. Neutrons are sensitive to the magnetic

properties of atoms and molecules, allowing study of the underlying

magnetic properties of materials. They also scatter quite differently

from normal hydrogen atoms than they do from heavy hydrogen

(deuterium), allowing selective study of individual regions of molec-

ular systems. Finally, neutrons interact only weakly with materials,

providing the opportunity to study samples in different environments

more easily (at high pressures, in shear, in reaction vessels, etc.), and

making them a non-destructive probe. These favorable properties are

offset by the relative weakness of the best neutron sources compared

to x-ray or electron sources, and by the relatively large facilities

required to produce neutrons. As a result, major neutron sources

are operated as national user facilities to which researchers come

from all over the United States (and abroad) to perform small-scale

science using the special measurement capabilities provided.

In addition to scattering measurements, neutrons can be used

to probe the atomic composition of materials by means of capture

and resultant radioactive decay. The characteristics of the decay act

as “fingerprints” for particular atomic nuclei, allowing studies of

environmental samples for pollutants (e.g., heavy metals), character-

ization of Standard Reference Materials, and many other essential

measurements. While the scattering and capture users of neutrons

are little concerned with understanding the inherent properties of the

neutron, there are important areas in physics that can be explored

by carefully measuring fundamental neutron behavior. Examples

include the lifetime of the free neutron, an important quantity in the

theory of astrophysics; the beta decay process of the neutron, the

details of which are stringent tests of nuclear theory; and the effects

of various external influences such as gravity or magnetic fields on

neutrons.

The NCNR utilizes neutrons produced by the 20 MW NIST

Research Reactor to provide facilities, including the Nation’s only

internationally competitive cold neutron facility, for all of the above

types of measurements to a national user community. There are

approximately 35 stations in the reactor and its associated beams

that can provide neutrons for experiments. At the present time 27

of these are in active use, of which 6 provide high neutron flux

positions in the reactor for irradiation, and 21 are beam facilities.

A schematic layout of the beam facilities and brief descriptions of

available instrumentation are given below. More complete descrip-

tions can be found at http://www.ncnr.nist.gov.

These facilities are operated both to serve NIST mission needs

and as a national facility, with many different modes of access. Some

instrumentation was built years ago, and is not suited to general

user access; however, time is available for collaborative research.

NIST has recently built new instrumentation (see the highlights in

this report on FANS, DCS, and USANS), and reserves 1/3 of avail-

able time for mission needs with the balance available to general

users. In other cases, instrumentation was built and is operated by

Participating Research Teams (PRT); PRT members have access

to 75 % of available time, with the balance available to general

users. In a special case, NIST and the National Science Foundation

established the Center for High Resolution Neutron Scattering at the

NCNR, with a 30 m Small Angle Scattering (SANS) instrument,

a cold neutron triple axis spectrometer, and the thermal neutron

perfect crystal SANS commissioned this year. For these facilities,

most time is available for general users. While most access is for

research, whose results are freely available to the general public,

proprietary research can be performed under full cost recovery. Each

year, approximately 1600 researchers (persons who participated in

experiments at the facility, but did not necessarily come here) from

all areas of the country, from industry, academe, and government use

the facility for measurements not otherwise possible. The research

covers a broad spectrum of disciplines, including chemistry, physics,

biology, materials science, and engineering.

NIST CENTER FOR NEUTRON RESEARCH 1



1 A Cold Neutron Depth Profiling

instrument (not shown) for

quantitative profiling of sub-

surface impurities currently at

this site will be moved to

another position. Shown is

a proposed Triple Axis Cold

Neutron Crystal Spectrometer

with double focusing mono-

chromator and multiple crystal

analyzer/detectors that can be

flexibly configured for several

energies simultaneously or for

high throughput at one energy.

2 BT-7 Triple Axis Spectrometer

with fixed incident energy for

measurements of excitations

and structure.

3 BT-8 Residual Stress

Diffractometer optimized for

depth profiling of residual

stress in large components.

4 BT-9 Triple Axis Crystal

Spectrometer for measure-

ments of excitations and

structure.

5 Thermal Column A very well-

thermalized beam of neutrons

used for radiography, tomog-

raphy, dosimetry and other

experiments.

6 BT-1 Powder Diffractometer

Powder diffractometer with 32

detectors; incident wavelengths

of 0.208 nm
,
0.154 nm, and

0.159 nm, with highest resolu-

tion of 8d/d = 8 x 1(H

7 BT-2 Triple Axis Crystal

Spectrometer with polarized

beam capability for measure-

ment of magnetic dynamics

and structure.

8 BT-4 Filter Analyzer

Spectrometer with cooled

Be/Graphite filter analyzer for

chemical spectroscopy.

9 BT-5 Perfect Crystal

Diffractometer SANS small

angle neutron scattering instru-

ment for microstructure on

the 104 nm length scale spon-

sored by the National Science

Foundation and NIST, part of

the Center for High Resolution

Neutron Scattering (CHRNS).

10 NG-7 Horizontal Sample

Reflectometer allows

reflectivity measurements of

free surfaces, liquid vapor

interfaces, as well as polymer

coatings.

11 Neutron Interferometry and

Optics Station with perfect

silicon interferometer; vibration

isolation system provides

exceptional phase stability and

fringe visibility.

12 Spin Polarized Triple Axis

Spectrometer (SPINS) using

cold neutrons with position

sensitive detector capability for

high resolution studies, part of

CHRNS.
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21 20

13 Spin Echo Spectrometer offer-

ing neV energy resolution,

based upon Julich design,

sponsored by NIST, Julich, and

ExxonMobil.

14 Prompt Gamma Activation

Analysis cold neutron fluxes

allow detection limit for H of

1 |xg to 10 (jig. Focused beams

are available for profiling.

15 NG-7 30 m SANS for micro-

structure measurements spon-

sored by NIST, ExxonMobil,

and the University of

Minnesota.

16 Neutron Physics Station a cold

neutron beam 150 mm x 60

mm, available for fundamental

neutron physics experiments.

17 Fermi Chopper TOF
Spectrometer a hybrid time-of-

flight spectrometer for inelastic

scattering with incident wave-

lengths between 0.23 nm and

0.61 nm chosen by focusing

pyrolytic graphite crystals. A

simple Fermi chopper pulses

the beam.

18 Disk Chopper TOF
Spectrometer versatile time-

of-flight spectrometer, with

beam pulsing and monochro-

matization effected by 7 disk

choppers. Used for studies

of dynamics in condensed mat-

ter, including macromolecular

systems.

19 NG-3 30 m SANS for micro-

structure measurements spon-

sored by the National Science

Foundation and NIST; part of

CHRNS.

20 Backscattering Spectrometer:

high intensity inelastic scat-

tering instrument with energy

resolution < 1 |xeV, for studies

of motion in molecular and

biological systems.

21 8 m SANS for polymer charac-

terization, sponsored by NIST

Polymers Division.

22 Vertical Sample

Reflectometers: instruments

for measuring reflectivities

down to 10-8 to determine

subsurface structure, with

polarization analysis capability.

No. 23 is a proposed instru-

ment optimized for biological

measurements.

NIST CENTER FOR NEUTRON RESEARCH 3



NCNR IMAGES 2000

Right: Rob Dimeo (NCNR) examines the

cryostat jacket inside the chamber of

the backscattering spectrometer. Arrayed

on Debye-Scherrer rings behind him are Si

(111) analyzer crystals.

Right: NCNR, cross-country skier’s view.

Below: Sushil Satija (NCNR) emphasizes a

point about reflectometry to participants in

the 6th annual summer school on neutron

scattering held June 5-9, 2000.

Photography by L. A. Shuman

Above: Jeremy Cook (NCNR) at the control

station of the Disk Chopper Spectrometer,

which is highlighted in this issue. Left:

Uta Dieregsweiler and Judith Wdlk (U. Koln)

measuring scattering from aerosols at the

NG-7 30 m SANS.

Photography by L. A. Shuman
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Photography by L. A. Shuman

Above: Barbara Reisner (James Madison U.) makes a

salient point using a model of a zeolite. Below: Rolf

Zeisler and Heather Chen-Mayer (NCNR) prepare for

pulsed neutron beam PGAA measurements.

Photography by L. A. Shuman

Above: John McCarthy (ORNL) watches a

pattern emerge at the NG-3 30 m SANS.

Above: R. St. John Manley (McGill U.) and

NIST Polymer Division’s David VanderHart

and John Barnes discuss the significance

of the diffraction pattern at the NG-1 8 m
SANS. Right: Qingzhen Huang (U. Md.), Jeff

Lynn (NCNR), and Eduardo da Silva-Granado

(U. Md.) strike a pose while measuring a

magnetic structure at the BT-2 triple axis

spectrometer.

Photography by L. A. Shuman



PHASE-CONTRAST IMAGING WITH NEUTRONS

Horizontal scale 1 m
2d detector

position 1

Sample

Neutrons from

point source

2d detector

position 2

\

FIGURE 1. Experimental layout. Contact image
Phase contrast image

n-line phase-contrast images have been observed with many

I forms of radiation. Here we demonstrate that such images can

be observed very simply with neutrons as well. Measurement of

the phase of a neutron wave conventionally requires a delicate

setup, carefully reducing interference-destroying vibrations of the

parts through which the beam passes. Here we describe an alterna-

tive method that only requires measurements of intensity to extract

phase information, and thus bypasses the need for the precise setup

used in a conventional interferometric measurement.

A schematic of the setup used for the present experiment

is shown in Fig.l. To give them the required transverse coherence,

monochromatic neutrons pass through a pinhole onto the sample. A

2-D CCD-type neutron camera then records the transmitted beam

intensity through the sample at some distance from it (plane 2 in

Fig. 1.) This downstream image is called the “phase-contrast image”

because it is enhanced by Fresnel diffraction, since interference

due to phase differences corresponding to edge effects has had a

chance to develop. The radiographic image recorded immediately

after the sample (plane 1 in Fig. 1) is called the “contact image”,

and essentially contains a shadow of the object.

The contact and phase-contrast images of the bullet-shaped

lead sinker, aligned with its axis perpendicular to the beam, taken

with a 0.433 nrn beam at the NCNR interferometer beam line NG-7

are shown in Figs. 2a and 2b. These are direct images, corrected

only for the empty beam profile. In the normal radiograph (Fig. 2a)

the extent and internal details of the sample structure are not clearly

visible because of very low scattering and absoiption. However, in

Fig. 2b interference has enhanced the image intensity contrast at the

edges of the sample and at boundaries within the imperfections at

the tip, rendering them clearly visible. Contact and phase contrast

images of a wasp are shown in Figs. 2c and 2d, respectively. Notice

that in the phase-contrast image all the delicate and thin organs of

the wasp, e.g., antennae, leg segments, and wings, become visible.

Since this method is so simple, many applications investigating

internal features not otherwise visible are now possible.

Turning attention now to extracting phase information, after

the beam has passed through the sample, particularly for an object

offering little absoiption or scattering, refractive variations within

the sample still cause the beam’s phase to be modulated. As a result,

the radiation intensity transverse to the direction of propagation

is redistributed. By measuring these intensity changes alone one

can retrieve the phase density profile of the sample without using

an interferometer. The mathematical basis for this phase retrieval

FIGURE 2. (a) contact and (b) phase contrast images of a lead sinker shown

between them, (c) contact and (d) phase contrast images of a wasp.

RESEARCH HIGHLIGHTS
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technique is based on the quantum mechanical analogue of the so

called ‘Transport of Intensity Equation (TIE)’ of a wave

\/l(rv z)exp(i0(rx , z))exp( /2 tt-;/A), with irradiance, I(rv z) and

phase (f)(rv z) transverse to the beam [1,2]:

2tt dl(rv 0)

A dz

= -Vx * [I(rv 0)V± <f>(f[, 0)] ( 1 ).

The TIE allows one to make a quantitative determination

of the phase because the intensity of the propagated wave in a

given transverse plane downstream is dependent on the intensity and

phase upstream [3]. This technique is well developed for X-rays and

electrons. Very beautiful experiments have been performed using

both of these radiation types [4,5,6],

We recently carried out a series of experiments [7], for the

first time with neutrons, to measure the phase modulated intensity

changes caused by a sample and to quantify the observed phase

profile using this technique. The experiments were performed at

NG-7 and also at NG-0. NG-0 is a curved neutron guide providing

a polychromatic neutron beam with the Maxwellian peak centered

around 0.432 nm. At the NG-7 guide a PG(002) crystal was used to

extract a beam in the range of 0.235 nm to 0.475 nm.

Both contact and phase-contrast images were recorded in

order to obtain the derivative on the left side of Equation (1). The

phase-contrast image was taken with the CCD placed 1 .5 to 1 .8 m

from the sample. The images from the CCD are downloaded to a

computer and the centroids of the neutron events are determined

by hardware processing, achieving a best-case resolution of about

60 pm.

Figure 3a shows an image constructed from such an analysis

of the lead sinker (of Fig. 2) whose longitudinal axis is nearly

aligned with the incident beam. In Fig. 3b is plotted a profile of

the retrieved phase along AB (blue curve). This profile was obtained

through Fourier processing of the data. The predicted phase profile

(dotted curve) determined from the sample geometry and orientation

is in excellent quantitative agreement with the experimental data.

This phase retrieval technique works with a polychromatic

beam and is not constrained by low flux. We plan to extend both of

these types of measurements using polarized and very cold neutrons

to study magnetic domain structures, interface boundaries and den-

sity variations in multi-layer thin films. We also plan to carry out

tomographic measurements in the near future.
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[4] A. Barty, K. A. Nugent, D. Paganin and A. Roberts, Opt. Lett. 23. 817 (1998).

[5] B. E. Allman, P. J. McMahon, J. B. Tiller, K. A. Nugent, D. Paganin, A. Barty,

I. McNulty, S. P. Frigo, S. Wang and C.C. Retsch, J.Opt. Soc. Am A (submitted

1999).

[6] K. A. Nugent, T. E. Gureyev, D. Cookson, D. Paganin and Z. Bamea, Phys. Rev.

Lett. 77, 2961 (1996).

[7] B. E. Allman, P. J. McMahon, K. A. Nugent, D. Paganin. D. L. Jacobson. M. Arif, S.

A. Werner, Nature 408, 158 (2000)

FIGURE 3. a) reconstructed image of lead sinker along beam direction; b) measured (blue) and computed (dotted) phase

variations along line AB in a).
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FILTER-ANALYZER NEUTRON SPECTROMETER (FANS)

i

1^'—m*
N eutron vibrational spectroscopy (NVS) is an invaluable tech-

nique for probing vibrational dynamics. In particular, the typi-

cal range of energies accessible with reactor-based neutrons spans

the region of important lattice and molecular vibrations. Moreover,

the unique nature of the neutron-nucleus interaction permits the

observation of all vibrational modes in an NVS experiment, not just

those that satisfy appropriate symmetry-based selection rules as in

photon spectroscopies. NVS is particularly useful for characterizing

hydrogenous materials since the incoherent scattering cross section

for hydrogen is much larger than for virtually all the other elements.

Over the past twenty years, neutron vibrational spectra have

been collected for a broad array of both hydrogenous and non-

hydrogenous systems utilizing a first-generation Filter-Analyzer

Neutron Spectrometer (FANS) located at BT-4. Although this instru-

ment possessed an excellent signal/noise ratio, the measured scat-

tering intensities were limited by a relatively small detector solid

angle. Moreover, the BT-4 beam time was typically shared with a

triple-axis instrument. A second-generation FANS is currently being

constructed at BT-4 in two phases in order to obtain a dedicated

FIGURE 1. Schematic diagram of the final configuration of FANS. Presently

installed phase I includes the filters to the right of the beam.

FANS spectrometer with an enhanced measurement sensitivity of

about two orders of magnitude. This instrument will ultimately

overcome the classic objections to NVS, namely the requirement

for much larger samples and longer counting times than are typical

of infrared and Raman spectroscopies. Phase I of this second-gener-
I

ation instrument (FANS-I) is now complete, yielding a twenty-fold

increase in sensitivity with another factor of at least five anticipated

upon completion of phase II.

Figure 1 illustrates the FANS layout. Using either a Cu(220)

or pyrolitic graphite (PG) (002) monochromator covers an accessible

FIGURE 2. Comparison of the larger phase-l and original FANS detector banks.

35 40 45 50 55 60 65 70 75 80

Neutron Energy Loss (meV)

FIGURE 3. Comparison of the neutron vibrational spectrum for triethylene

diamine (C
2
H
4 )3
N

2
measured with FANS-I vs. that measured with the original

configuration.
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energy range of « 5-250 meV with options for precollimations of

60', 40', or 20’ and postcollimations of 40’, 20’, or 10’. The inten-

sity improvement of the phase-I instrument is due to the twenty-fold

increase in detector solid angle provided by a much larger detector

bank (see Fig. 2). The accompanying analyzer filter consists of

a Be-PG-Be layered arrangement cooled with liquid nitrogen to

enhance transmission of the low energy neutrons. Such a low-

bandpass filter provides a best resolution at the lowest energy trans-

fers of ^ 1.1 meV FWHM.

The first measurements during the spring of 2000 confirmed

the magnitude of the expected gains. For example. Fig. 3 displays

the low-temperature neutron vibrational spectrum for triethylene

diamine measured using the new FANS-I configuration compared

with that measured using the original configuration under identical

beam collimations and measurement times. This gain in intensity is

accompanied by a somewhat improved signal/noise ratio.

The enhanced capabilities of the FANS-I instrument have

already been demonstrated for a variety of materials including pro-

tonic conductors, organic solids, metal hydrides, carbon nanotubes,

and metal oxides. These experiments confirmed substantial reduc-

tions in required sample size and/or measurement time. For exam-

ple, Fig. 4 displays the temperature dependence of the NV spectrum

for RbH(SO
4 )081

(SeO
4 )019 ,

a protonic conductor oxide with lattice

protons that become mobile at temperatures less than 473 K.

Vibrational spectra were collected with FANS-I at nine different

temperatures in less than one day, a feat not possible using the

original instrument. It proved particularly interesting that the energy

of the mode near 100 meV decreases while that of the mode near 83

meV increases with increases in temperature concomitant with rapid

decreases in both peak intensities. Indeed, these proton-related fea-

tures largely disappear at temperatures as low as 200 K, indicating

that there is significant proton motion even at this low temperature.

Figure 5 shows the FANS-I spectrum for solid 3-nitrophenol

[H0(C
6
H

4
)N0

2 ]
compared with a GAUSSIAN calculation for the

isolated molecule. This spectrum exemplifies the overall quality and

high-resolution capabilities enabled by the marked improvement in

sensitivity. There is fair agreement between calculation and experi-

ment for many features in the vibrational density of states, although

it is clear that significant intermolecular hydrogen bonding interac-

tions in the solid cause strong perturbations in the OH wagging

mode predicted near 45 meV for the isolated molecule.

FIGURE 4. Temperature dependence of the NV spectrum of RbH(SO
4 )O 81

(SeO
4 )019.

(Data collected by T. Yildirim, NCNR.)

Neutron Energy Loss (meV)

FIGURE 5. NV spectrum for solid 3-nitrophenol [H0(C
6
H

4
)N0

2]
at 10 K compared

with a GAUSSIAN calculation (b3lyp/6-316*) for the isolated molecule.

(Data collected by T. Heilweil, NIST Physics Laboratory and C. M. Brown, U.

Rffld. and NCNR.)

NIST CENTER FOR WEUTftOH RESEARCH



THE NCNR DISK CHOPPER TIME-OF-FLIGHT
SPECTROMETER (DCS)

T
he recently commissioned Disk Chopper Spectrometer (DCS)

is a versatile state-of-the-art instrument that is primarily intend-

ed for studies of diffusional processes and low energy excitations in

materials. It has no equal in North America and is fully competitive

with comparable instruments in Europe.

The spectrometer is shown schematically in Fig. 1. Following

a tapered offset guide assembly (“neutron optical filter”) that

removes almost all of the y-rays and high energy neutrons from

the reactor beam f 1], seven phased disk choppers supply monochro-

matic bursts of neutrons at the sample position. Three parallel banks

of 6 atmosphere 3He detectors, of 400 mm active length, are placed

4010 mm from the sample position, and ~ 90 % of the space

between the sample and the detectors is argon-filled. Each of the 913

rectangular cross section detectors subtends ~ 0.5° in the scattering

plane. The central bank provides continuous angular coverage from

-30° to -5° and from 5° to 140°. The overall detector coverage is

~ 0.65 sr, double that of the IN5 spectrometer at the Institut Faue

Fangevin. Grenoble. Presently fitted with a ~ 50 mm long room

temperature beryllium filter, the instrument operates at wavelengths

greater than *= 4. 1 A. The beryllium will shortly be replaced with an

assembly of cold oriented graphite, 100 mm in length, permitting

measurements down to « 2.3 A. (Wavelengths near 3.33 A and 6.67

A will be unavailable.) The first two and last two choppers are fitted

with three slots of different widths, enabling a choice among three

“resolution modes” at a given wavelength and master chopper speed.

The neutron current density at the sample and the energy resolution

width at the detectors are shown in Figs. 2 and 3 respectively.

In designing and building the DCS great care has been taken to

ensure that distances and detector locations are accurately known.

The stability of the chopper phasing results in a resolution lineshape

with a sharp leading edge. The sample area is easily accessed at

beam level and from above. The data acquisition system has been

carefully designed and is extremely reliable. We plan to modify it

so that crude pulse height spectra can be extracted. The software

is user-friendly and will be improved as time permits. Planned

improvements, apart from the crystal filter replacement, include

removal of the two innermost reflecting plates within the guides

after the first chopper; this will increase the flux with little reduction

in versatility. With the new cold source and these optics improve-

ments we anticipate a threefold improvement in flux within the next

year.

The first officially approved experiment using the DCS was

a comparative study [2] of native bovine a-lactalbumin (BFA) and

a-lactalbumin in a “molten globular” state (MBFA); the latter state

is partially folded and compact, with native-like secondary structure

but lacking the side-chain packing that characterizes the native state.

Molten globules play an important role in understanding protein

folding mechanisms, and molten globules also participate in impor-

tant cellular functions. The DCS measurements (Fig. 4) confirm and

extend previous results [3, and see also the article by Z. Bu et al. on

Confinement Neutron Guide Hail (G1 00) Sample

FIGURE 1. A schematic plan view of the DCS.
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p. 20 of this report] obtained with the Fermi chopper spectrometer

(FCS); the improved energy resolution of the DCS adds confidence

to the earlier results, especially for BLA. The structural differences

between BLA and MBLA are reflected in the dynamics on

time scales of order 10-100 ps whereas complementary measure-

0 2 4 6 8 10 12

Wavelength (A)

FIGURE 2. The neutron current density at the sample position with all choppers

spinning at 20 000 rpm. Measured values are shown for the three “resolution

modes” of the instrument.

ments have shown that the high frequency dynamics are virtually

unchanged.

The moniker “boson peak” has of late been associated with

an excess feature that shows up in the vibrational density of states

of many materials, generally in the Debye region, between 1 and 10

meV. While the molecular origin of the peak is unclear, its character-

istic energy suggests that it is a collective excitation between the

low energy acoustic modes and localized high energy optic modes

(representing local bond vibrations, librations, bendings, etc.). In a

recent experiment [4] the thermal softening of the boson peak was

studied in detail in a polyester carbonate copolymer that had already

been extensively studied using the FCS and the NCNR backscatter-

ing spectrometer. The DCS is particularly well suited for such a

study because of the large solid angle of detectors and the large

beam size. The analysis of the data is in progress.

Other materials recently studied using the DCS include car-

bon nanotubes and superionic proton conductors.

REFERENCES
[1] J.R.D. Copley. J. Neutron Res. 2, 95 (1994).

[2] Z. Bu et al.
,
private communication.

[3] Z. Bu, D. A. Neumann, S.-H. Lee. C. M. Brown, D. M. Engelman, and C. C. Han,
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FIGURE 3. Calculated resolution widths (full widths at half maximum height)

for the three “resolution modes” of the instrument. Some experimental widths

are also shown.

FIGURE 4. The Q dependence of the full-width at half maximum height of the

quasielastic Lorentzian peak for native bovine a-lactalbumin (BLA) and for

molten globular bovine a-lactalbumin (MBLA) in 8M urea [2]. Results [3] for BLA

from the Fermi chopper spectrometer (FCS) are shown for comparison.
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ULTRA-HIGH RESOLUTION SMALL-ANGLE
NEUTRON SCATTERING (USANS)

Aperfect crystal diffractometer (PCD), shown in Fig. 1 , for ultra-

high resolution small-angle neutron scattering (USANS) mea-

surements is now in operation at the thermal neutron beam port,

BT-5. The PCD increases the maximum size of features accessible

with the NCNR's 30-m long, pinhole collimation SANS instruments

by nearly two orders of magnitude, from ~ 102 nm to 104 nm.

The PCD is a Bonse-Hart type instrument with large triple-

bounce, channel-cut Si (220) crystals as monochromator and ana-

lyzer. The perfect crystals provide high angular resolution while

the multiple reflections suppress the “wings” of the beam profile,

improving the signal-to-noise ratio to values comparable to that

obtained with pinhole instruments. This technique, widely utilized

for x-rays for many years, has only recently been successfully adapt-

ed for neutrons [ 1 ]
as dynamical diffraction effects arising from the

deep penetration of neutrons in thick perfect crystals have become

better understood. Neutrons can, in effect, propagate through a thick

crystal, and then reflect from the back-face of the crystal. The

geometry of this second diffraction path allows part of the beam to

bypass the second and third reflections. The design of the NCNR’s

PCD [2] successfully eliminates the single reflection path by adding

shielding along the middle of the long face of each crystal between

the first and third reflections (see inset in

Fig. 2). The additional shielding reduces the

wings in the rocking curve by two orders

of magnitude, resulting in a signal-to-noise

ratio of 105 at a minimum scattering vector

Q = 0.0005 nm4
. Figure 2 shows typical

rocking curves with and without shielding

of the deleterious back-face reflection. The beam flux obtained

for smaller samples is 3000 cnUs4
,
while the maximum intensity

i

obtained is 15 000 S"
1 when using the maximum 3x5 cm2 beam

size. The mainly fast neutron flat background (~ 0.15 s
1

) found at

large angles is independent of beam size. The beam intensity will

increase somewhat when the present perfect crystals are replaced by

ones with a wider channel, and a gap in the middle of the long face,

in order to increase the beam width to 4 cm with no contamination

from single back-face reflections.

The measurement range of the PCD overlaps that of the

NCNR’s 30-m SANS instruments. Together they probe structure in

materials over four orders of magnitude, from ~1 nm to 104 nm.

Combined measurements on these instruments will enable fuller

characterization of hierarchical and highly anisotropic microstruc-

tures in materials, for example in fiber or clay impregnated nano-

composites. The PCD is part of the NIST/NSF Center for High

Resolution Neutron Scattering (CHRNS) with up to two-thirds of

the available beam time to be allocated by the NCNR's Program

Advisory Committee to scientists and engineers who submit propos-

als for peer review.

The PCD USANS instrument can accept any ancilliary sam-

FIGURE 1. NCNR’s Oerek Ho (top) and John Barker load a sample at the PCD. The triple-bounce analyzer is

visible in the center foreground of the picture.
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FIGURE 2. Rocking curves measured for the PCD USANS instrument. The diamond symbols are data taken before adding

shielding to block back-face reflections from the triple-bounce, channel-cut monochromator and analyzer crystals. The

circle symbols are data taken after adding such shielding. The dash-dot curve is the theoretical profile for a pair of

triple-bounce perfect crystals. The solid line is the weighted sum of the theoretical profiles for 3x3 and 1x1 rocking

curves, with weighting factors of 0.998 and 0.002, respectively. The inset shows a schematic diagram of a channel-cut

crystal with the shielding needed to remove the single reflection path from the back-face of the crystal.

Figure 3. First USANS measurement obtained using new PCD instrument. The

sample is a 2.5 cm thick commercially obtained poly(tetrafluoroethylene) plate.

Scattering is predominately from residual sub-micron size pores (~ 0.2 % by

volume) that survive the extrusion processing of the material.

pie environment equipment that is used on the 30 m SANS instru-

ments. Larger liquid sample cells and a dedicated two-position heat-

ing block (30 °C to 400 °C) are currently being designed to utilize

the larger available beam size.

The first USANS measurement was made in May 2000 on

a commercially obtained poly(tetrafluoroethylene) plate. The slit-

smeared data are shown in Fig. 3. The data easily overlap the acces-

sible (2-range the 30m-SANS instruments. Examples of material

systems studied so far are: pigment aggregation in paint, clay aggre-

gation structures in various solutions and polymer melts, pores in

copper, hydrides in uranium, and large scale structures in controlled

pore glasses.

REFERENCES
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LIGAND DYNAMICS IN Mn[N(CN)2]2.PYRAZINE

O ne of the major themes of solid state chemistry is the develop-

ment of new molecular architectures with novel chemical and

physical properties for applications such as chemical separation,

catalysis and magnetic devices. Compounds consisting of transition

metal ions linked together by polydentate organic ligands are of

particular
-

interest because their properties can be tailored by judi-

cious choice of the components. For example, changing the transi-

tion metal can alter both the bonding motif and magnetic properties

of these systems. The properties of these materials can also be

controlled by introducing ancillary ^-conjugated ligands such as

pyrazine (pyz), 4,4'-bipyridine and 2,2'-bipyridine. These molecular

building blocks not only affect the spatial separation of the transi-

tion metal cations and the dimensionality of the crystal, but also

modulate the superexchange interactions. For instance, of the many

Mn[N(CN)
2 ] 2

L materials examined to date, only L = pyrazine exhib-

its long-range magnetic order above 2 K.

The structure of Mn[N(CN)
2] 2

.pyz can be described as an

inter-penetrating Re0
3
-like network with axially elongated Mn2+

octahedral and edges made-up of p-bonded [N(CN)
2 ]

-

anions and

FIGURE 1. Crystal structure of Mn[N(CN)
2]2

.pyz showing the two independent,

interpenetrating Re0
3
-like lattices. The hydrogen atoms of the pyrazine ring

have been omitted, while the Mn, C, and N atoms are depicted as red, black,

and blue spheres, respectively.

neutral pyrazine ligands (Fig. 1) [1], Upon heating above « 200

K, Rietveld refinements of neutron powder diffraction (NPD) data

indicate a marked increase in the Debye-Waller factor for the mid-

nitrogen in the cynanride ligand and a concomitant appearance of

thermal diffuse scattering. Further heating to = 400 K results in a

phase transition to an unknown structure.

While the structural and magnetic behaviors of these materi-

als have been rather well characterized, very little information has

been obtained concerning the interactions that underlie the interest-

ing bonding motifs. Due to its unique sensitivity to hydrogen and

the possibility of covering a wide range of timescales, neutron

spectroscopy is particularly well suited to probe ligand dynamics

that directly reflect the bonding interactions. Quasielastic neutron

scattering (QENS) provides information on the geometry and times-

cale of diffusive motions. For ‘localized’ motions, the geometry is

embodied in the elastic incoherent structure factor (EISF); the ratio

of the elastic scattering to the total scattered intensity.

For all temperatures studied, a quasielastic signal due to the

paramagnetic Mn 2+ ions and the dynamics of the cyanamide ligand

Momentum Transfer (A
1

)

FIGURE 2. The experimental EISF (black circles) for Mn[N(CN)
2]2

.pyz at 425 K,

has been corrected (blue circles) for coherent and paramagnetic quasielastic

scattering. The solid red line is a fit to the corrected data with a 2-fold jump

model that results in a proton jump distance of 4.17(1) A. For comparison, the

expected EISF for proton diffusion on a circle is also shown (red dashed line).
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was observed. However, above « 425 K, the quasielastic signal in

the pyrazine compound is significantly larger. Figure 2 shows the

^-dependence of the EISF for the protonated compound and the

same data after subtracting the measured quasielastic scattering from

a deuterated material. These data are very well described by a two-

fold proton jump model where the only variable parameter, the jump

distance, is found to be 4.17(1 ) A, consistent with the analysis of the

NPD data which gives the D-D distance across the pyrazine ring as

« 4.16(2) A. Further, the width of the quasielastic peak is constant

over the entire (2-range, as expected for a simple, localized jump

motion (the correlation time is ~ 70 ps at 425 K). Thus, the pyrazine

ligands must be performing Jt-jumps about the axis defined by the

coordinating nitrogens.

The phonon density of states for Mn[N(CN),],.pyz at selected

temperatures covering all structural phases are shown in Fig. 3. In

addition to the general broadening and softening of the spectral

features with temperature, the intense peak assigned to the libration

of the pyrazine ring at = 1 1 .2 meV is strongly attenuated and,

assuming a two-fold cosine potential, suggests an activation energy
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of ~ 1.2 eV. Because this activation energy is much larger than kBT

at the temperature where one observes fully dynamic pyrazines (425

K) and the quasielastic scattering appears abruptly at the structural

transition, the transition must result in a greatly reduced rotational

barrier. Unfortunately, the activation energy for this process was

not measurable due the proximity of the material’s decomposition

temperature.

Vibrational spectra at higher energy transfers were recorded

on the FANS spectrometer (Fig. 4). Our calculations agree well with

observation and show that the spectrum is dominated by the normal

modes of the hydrogen containing pyrazine. Current investigations

are aimed at understanding how the transition metal affects the

dynamics of the ligands.
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FIGURE 3. Temperature dependence of the vibrational density of states of FIGURE 4. The vibrational spectrum (blue) of Mn[N(CN)
2]2

.pyz (10 K) measured on

Mn[N(CN)
2]2

.pyz measured on the FCS spectrometer at a wavelength of 4.8 A. the upgraded FANS spectrometer. Shown in red and green are the calculated

contributions from chemically simplified, isolated fragments of [Ca-pyz-Ca]4*

and [Ca-NCNCN-Ca]3
*, respectively.
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PROBING DISORDER IN CONFINED METHYL IODIDE

The presence of structural disorder in many materials can have a

dramatic effect on macroscopic properties. Typically, structural

disorder is described in terms of molecular spatial distributions

determined from diffraction measurements. A complementary view

is to quantify disorder by determining the distribution of potential

energies experienced by the molecules. For a highly ordered system

the distribution is shaip while it is broad for a disordered system.

To explore this approach, high-resolution neutron inelastic scattering

has been used to examine the low-energy rotational dynamics of

simple symmetric top molecules confined to extremely tiny pores.

In effect, the porous substrate furnishes a static impurity distributed

throughout the molecular solid that can be thought of as disorder

quenched into the molecular matrix. The modification to the rota-

tional spectrum of the confined molecules measured using neutron

scattering can then be related to the distribution of potential ener-

gies. This measurement technique, known as rotational tunneling

spectroscopy [1], is extremely sensitive to the environment experi-

enced by the molecules. By modeling the observed spectra one can

quantitatively extract the potential energy distribution.

Rotational tunneling spectroscopy is rooted firmly in quantum

mechanics. In a simple picture the potential barrier to reorientation

that, to a good approximation, has three minima determines the

motion of a methyl group (a pyramid with a base of three hydrogen

atoms having a carbon atom at its apex seen in Fig. 1). In the limit

of a small barrier to reorientation, the methyl group can undergo

nearly free rotation about the C-I axis. In the limit of a very

high barrier, the methyl group can oscillate (librate) within minima.

When the temperature is high enough to provide sufficient kinetic

energy, the molecule can reorient stochastically by jumping over the

barrier, a process known as rotational diffusion. Some molecules

such as methyl iodide (CH,I) possess finite barriers in which the

rules of quantum mechanics allow the methyl group to reorient

via tunneling through the barrier. A schematic illustration of these

processes in terms of the potential energy is shown in Fig. 1

.

Measurements of the rotational tunneling of methyl iodide

(CH
3
I) confined to a porous glass with a very narrow pore size

distribution (diam « 58 A) were performed using the NIST backscat-

tering spectrometer very well suited to such measurements due to

its excellent energy resolution: §E (FWHM) < 1 peV. Measurements

were carried out for the bulk solid, partially filled pores, and com-

pletely filled pores. Spectra taken at 5 K are shown in Fig. 2.

stocnastic

reorientation

FIGURE 1. Potential energy model for a CH
3
rotor showing the three types of

low energy motions observable with neutrons. Note that each circle located in

a potential minimum represents one of three particular orientations of the CH
3

methyl group of the CH
3
I molecule depicted on the right.

FIGURE 2. Tunneling spectra for the bulk CH
3
I (solid red line), partially filled

pores (blue squares), and completely filled pores (black circles). Bulk-like

peaks (red arrows) indicate strong order while the broad peaks (blue arrows)

indicate that disorder is present.
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FIGURE 3. Origin of the asymmetric lineshape observed in confined CH
3
I. A FIGURE 4. The barrier height probability density extracted from full pore tunnel-

symmetric distribution of potential barriers yields an asymmetric tunneling ing spectra at 5 K.

lineshape.

The bulk CH,I spectrum shows two sharp side peaks whose

positions are related to the frequency at which the methyl group

(CFf,) tunnels between three equivalent orientations. The location of

these peaks is directly related to the potential barrier height hinder-

ing reorientation. These peaks at ± 2.5 peV correspond to a potential

barrier of 42 meV. When the pores are partially filled (50%) a broad

set of peaks appear at ± 4 peV. In addition to these broad peaks,

a broad featureless scattering intensity appears underneath the well-

defined peaks over the entire dynamic range. When the pores are

completely filled the broad peaks at ± 4 peV increase in intensity

and a new set of peaks at ± 2.5 peV appear. We interpret these

different peaks as due to the presence of varying amounts of order in

the molecular structure of the confined CH,I. The narrow peaks that

occur in the bulk and the full-pore spectra point to the similarity

of the potentials experienced by the molecules as expected when

there is structural order. The broad peaks at ± 4 peV correspond to

methyl groups under the influence of a distribution of potential bar-

riers. The very broad scattering feature underlying both the full-pore

and partially-filled samples is attributed to very strongly disordered

methyl groups. Based on the filling dependence of the two broad

scattering components, these are attributed to molecules near the

glass surface while the narrow peaks at ± 2.5 peV are due to

molecules located near the center of the pore.

To quantify the disorder, we performed numerical calculations

of the effects of a distribution of potential barriers on the tunneling

lineshape. In Fig. 3 we plot the variation of the potential barrier as a

function of tunneling energy. For a broad but symmetric distribution

of barrier heights, the tunneling lineshape is clearly asymmetric.

Finally, using a relationship between the tunneling energy and bar-

rier height we may extract the probability density for a particular

barrier height, P(V
}
). The result for the full pore spectra corrected

for instrumental resolution is shown in Fig. 4.

Thus neutron inelastic scattering measurements of the rota-

tional tunneling spectrum offer a means of quantifying the disorder

of the energy landscape in this system of molecules in a confined

geometry. A further challenge is to correlate the energy and struc-

tural descriptions of disorder.

REFERENCES
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PRESSURE-INDUCED INTERLINKING OF CARBON
NANOTUBES: COMPUTATIONS

C arbon nanotubes, originally discovered as by-products of

fullerene synthesis, are now considered to be the building

blocks of future nanoscale electronic and mechanical devices. It is

therefore desirable to have a good understanding of their electronic

and mechanical properties and the interrelations between them. In

particular, single wall carbon nanotubes (SWNT) provide a system

where the electronic properties can be controlled by the structure

of the nanotubes and by various deformations of their geometries

[1,2]. The physical properties can also be altered by intertube inter-

actions between nanotubes packed in hexagonal lattices, as so-called

“nanoropes”.

The intertube interactions in nanoropes can be probed by

applying external pressure to vary the intertube distance. For fuller-

enes, such high pressure studies have yielded many interesting

results including new compounds such as the pressure-induced poly-

meric phases of C
60

. It is, therefore, of interest to inquire if similar

covalent-bonding can occur between the nanotubes in a rope. This

could have important consequences for nanoscale device applica-

tions and composite materials that require strong mechanical proper-

ties since nanoropes consisting of inter-linked SWNT will be signifi-

cantly stronger than nanoropes composed of van der Waals (vdW)

packed nanotubes.

We investigated possible new pressure-induced ground state

structures for (n,0 ) nanotube ropes from first-principles total energy

calculations using the pseudopotential method within the general-

ized gradient approximation (GGA) [1 ]. For simplicity, we model

FIGURE 1. Optimized structures of the vdW (7,0) (a), and one- dimensional

interlinked (7,0) (b) nanotube lattices. The interlinked structure shown in (b)

has lower energy than vdW packed (7,0) nanotubes shown in (a).

the nanoropes as a hexagonal lattice of nanotubes with one nanotube

per unit cell. The pressure dependence of the lattices of nanotubes

was determined by calculating the total energy as a function of

nanotube separation (i.e. a and b) while the other parameters, includ-

ing atom positions, c, and 7 are optimized. We observe that (7,0)

nanotubes become elliptically distorted with applied pressure (i.e.

decreasing nanotube-nanotube distance). At a critical pressure, we

observe a structural phase transformation from the vdW nanotube

lattice (as shown in Fig. la) to a new lattice in which the nanotubes

are interlinked along the
[
110 ]

direction, where the strain of the

nanotube is largest (Fig. lb). The covalent bonding between nano-

tubes is therefore the result of curvature-induced re-hybridization

of the carbon orbitals. The same structural transformation was

observed for the other (n,0 ) nanoropes.

To quantitatively study the bonding mechanism, we calculated

the total energies of the different phases as a function of the lattice

constant (i.e. applied pressure). The result for (7,0) nanotubes is

summarized in Fig. 2. The energies of the vdW and the one-dimen-

sional interlinked phases cross each other at about a = 9.0 A with

an energy barrier of only 46 meV/unitcell (552 K). The pressure

required to attain this lattice constant is only about 0.3 GPa for

the vdW phase, indicating that polymerization of vdW (7,0) nano-

ropes could occur at modest pressures and temperatures. Once the
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interlinked phase is reached, the energy barrier required to break the

bonds and obtain free nanotubes is about 0.7 eV (25 meV/atom),

which is comparable to that of 1 D polymerized C
60
molecules

(20 meV/atom).

Figure 2 also shows that another interlinked phase of (7,0)

nanotubes becomes the ground state for lattice parameter smaller

than 8.0 A. In this new phase the nanotubes are interlinked along

both a- and b-axes (see Fig. 3a). This 2-D interlinked structure is

about four times stiffer than the 1-D interlinked phase and sixteen

times stiffer than the vdW nanoropes.

We observe that applying even higher pressures yields more

complicated and denser phases for many of the nanoropes studied

here (see Fig. 3). For (9,0) nanoropes, we find that the nanotubes

are interlinked along three directions forming a hexagonal network.

The length of the intertube bond, dc c = 1 .644 A, is significantly

elongated for a sp3 C-C bond. The two dimensional interlinked

phase of (7,0) nanotubes is further transformed to a denser structure

at 30 Gpa with a band gap of 2 eV (Fig. 3c). By comparison, (6,6)

nanotubes do not form an interlinked structure up to a pressure

of 60 GPa. Rather the nanotubes are hexagonally distorted such

that the local structure of the nanotube faces is similar to that in

graphite sheets (Fig. 3d). Furthermore, releasing the pressure yields

the original structure, indicating that the distortion is purely elastic.

FIGURE 2. Planer lattice constant variation of the total energy of (7,0) nanotube

ropes in three different phases. Inset shows the view of the structures along

c-axis. The zero of energy was taken to be the energy of vdW packing of the

nanotubes.

The structural changes clearly have strong effects on the electronic

properties [2] and therefore should be detected in the pressure

dependence of various transport properties of nanoropes.

The new pressure-induced, high density phases [1] reported

here may provide a way of synthesizing novel carbon base materials

with interesting physical properties. For example interlinking of the

nanotubes may improve the mechanical performance of composites

based on these materials. The change in the band gap of a SWNT

with applied pressure can be exploited to realize various quantum

devices on a single nanotube with variable and reversible electronic

properties [2], It will be an experimental challenge to confirm the

structures predicted here. A difference-INS spectrum of two identi-

cal samples, one treated with pressure and the other not, may give

some evidence for the new phases.

REFERENCES
[1] T. Yildirim, O. Gulseren, C. Kilic, and S. Ciraci, Phys. Rev. B 62, 12648 (2000).
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FIGURE 3. Various high density phases of carbon nanotubes.(a) Two dimensional

interlinked structure of (5,0) nanotubes, consisting of rectangularly distorted

nanotubes interlinked on a 2-D network, (b) A hexagonal network of (9,0)

nanotubes, (c) A very dense structure of (7,0) nanotubes obtained under 30 GPa

pressure, (d) The optimized structure of (6,6) nanotubes under P = 53 GPa.
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DYNAMICS CHANGES IN THE
MOLTEN GLOBULE-NATIVE FOLDING STEP

The function of a protein depends critically on its ability to

adopt a specific structure. Remarkably, a protein can fold effi-

ciently to this native state from the many unfolded states on physi-

ological time scales. Understanding how this process occurs is one

of the great challenges in biology. Proteins can also form partially

folded, collapsed states under both equilibrium and non-equilibrium

conditions [1,2], Such partially folded proteins resemble the inter-

mediate states along the protein folding pathway, and thus play an

important role in understanding the mechanisms of protein folding.

Moreover these partially folded proteins have also been shown to

participate in important cell functions.

A molten globule is a compact, partially folded protein that

has native-like secondary structure and backbone folding topology,

but lacks the extensive, specific side-chain packing interactions of

the native structure [3], Structural studies have shown that the side-

chains in a molten globule can adopt a greater variety of conforma-

tions than in a native protein. The ability of the side chains to form

the tight and specific interactions typical of a native protein, is the

essential final step in the protein folding pathway. This packing

process is considered to be energetically more difficult than forming

the collapsed, disordered folding intermediates. However, little is

known about the dynamics of this mostly folded state.

In order to understand the changes in protein dynamics that

occur in the final stages of folding, we have used incoherent

quasielastic neutron scattering (IQNS) to probe the differences in

the dynamics between the native state and the almost completely

folded, molten globule state of the protein, bovine a-lactalbumin

in solution [4], Because hydrogen scatters neutrons much more

strongly than deuterium, the exchangeable protons were deuterated

and D,0 was used as the solvent. The scattering from the protein is

then dominated by the non-exchangeable protons in the side-chains.

Figure 1 shows the measured scattering function, S(

Q

, (0), of bovine

a-lactalbumin (BLA) and its molten globules (MBLA), as a function

of the energy transfer hco at a momentum transfer Q - 1 .08 A 1

.

The broader quasielastic peak of MBLA indicates that the side-chain

protons within the molten globules move significantly faster than

those in the native protein, which reflects the lack of the specific

side chain interactions in MBLA compared to BLA.

In addition to the time scale, IQNS yields information on

the geometry of the observed motion through the ^-dependence of

S(Q, (O). We have analyzed the (^-dependence for BLA and MBLA

FIGURE 1. The quasielastic neutron scattering spectra, $(<?, w) of BLA and

MBLA (in arbitrary units), measured as a function of the energy transfer ftw at

Q = 1.08 A The solid lines are fits to the data while the dashed lines show the

two components described in the text.
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using a model where some of the protons diffuse within a spherical

cavity, while others are fixed on the ~ 70 ps time scale of these

measurements. This is intended to capture the physical picture of

side chain motion within a constrained volume imposed by the

backbone topology of the protein. Within this model, the scattering

consists of two components, a 8-function and a Lorenztian, each

broadened with the experimental resolution = 60 peV. Typical fits

for individual spectra are shown in Fig. 1.

Figure 2 shows the half-width at half-maximum T of the

Lorenztian component of the scattering as a function of Q2
. The

initial linear region indicates that on longer length scales (small Q ),

the protons undergo spatially-restricted diffusive motions, while the

crossover to a consant width at higher Q reflects the granularity

of the motion at these shorter, atomic length scales. The elastic

incoherent structure factor, which gives the time-averaged spatial

distribution of the protons, is formed by dividing the intenstity of

the elastic (8-function) component by the total integrated intensity

measured at each Q. The EISF is shown as a function of Q in Fig.

3. The solid lines show fits to the EISF expected for diffusion within

a sphere, showing that the length scale of the motion increases by

about 25 % as the side chains become disordered. This is in contrast

with the usual situation where slower motions tend to cover larger

Q
2

(A'
2

)

FIGURE 2. The half-width at half-maximum r of the quasielastic Lorentzian

peak as a function of the momentum transfer Q

*

() is for BLA and (O) is for

MBLA. The r vs. Q plot reflects the length dependence of the decay rate of

the self-correlation function and is a measure of the mobility of the protons

within the protein.

length scales. The fact that the EISF plateaus at a higher value for

BLA than MBLA indicates that more of the side chain protons are

immobilized in the protein's native state.

The mean square amplitude <u2> of the high-frequency vibra-

tional modes can be obtainted from the ^-dependence of the total

scattering intensity through the Debye-Waller factor. The values

of <u2> extracted in this way are indistinguishable for BLA and

MBLA, which suggests that chemical bond vibrational motions do

not change significantly in the final stage of protein folding.

Overall, these results demonstrate that the side chains in mol-

ten globules are significantly more mobile than those in the native

protein, and explore a larger length scale in a shorter time. This

indicates that the specific side chain interactions responsible for the

final step in protein folding both localize and slow the motions of

the side chains.
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FIGURE 3. The elastic incoherent structure factor (EISF) of () BLA and

(o) MBLA. The lines are fits to the EISF expected for diffusion within a

sphere. The fits show that the length scale of the motion in MBLA is about

25 % larger than in BLA.
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SOFT PHONON ANOMALIES IN RELAXOR
FERROELECTRICS

O ur current phonon studies of ferroelectrics at the NCNR are

part of a systematic investigation ofAB0
3
perovskite oxides

that exhibit exceptionally high piezoelectric responses. Two solid

solutions, (Pb[Zn
1/
,Nb

2/,]0,) I
.i
(PbTi0

3 ) (
(PZN-xPT) and (PbZrO,),^

PbTiOjX (PZT) have been extensively investigated in recent years.

A common feature of these two systems is the morphotropic phase

boundary (MPB), which separates the tetragonal and rhombohedral

regions of the T-x phase diagram. The maximum piezoelectric activ-

ity is located on the rhombohedral side of the MPB for both sys-

tems. PZN-xPT, however, can sustain ultrahigh strain levels, with

< 1% hysteretic loss, fully one order of magnitude larger than

those attainable with conventional PZT-based piezoelectric ceramics.

These two remarkable properties suggest that PZN-xPT holds great

promise for the next generation of solid-state transducers.

The compositions of the perovskite B -sites of PZN-xPT and

PZT differ in a key respect. Whereas an isovalent mixture of Zrt+

and Ti4+ ions occupies the PZT B-site, a more disparate group of

heterovalent Zn2+
, Ti

4+
, and Nb5+ ions shares the PZN-xPT B-site.

This creates intense quenched random electric fields that are thought

to produce the so-called relaxor phase, which is characterized by a

diffuse phase transition and a broad and strongly dispersive peak in

the dielectric susceptibility. Despite years of research, the physics of

this diffuse phase transition is still not well understood. In prototypi-

cal ferroelectric systems such as PbTi0
3 , it is well known that

the softening of a zone-center transverse optic (TO) phonon drives

the transition from a cubic paraelectric phase to a tetragonal fer-

roelectric phase. In relaxor compounds such as pure PZN, however,

the mixed-valence character of the B-site sharply breaks the transla-

tional symmetry, resulting in much more complex lattice dynamics.

In fact, no definitive evidence for a soft mode has been found in

these relaxor systems.

Motivated by these results, we have examined the lattice

dynamics of the polar TO phonon mode in a high quality single

crystal of PZN-8%PT, for which the measured value of the piezo-

electric coefficient ff
33

is a maximum. Fig. 1 shows neutron scat-

tering data taken on PZN-8%PT in its cubic phase at 500 K

(~ 50 K above T
c) [1], The maximum scattered neutron intensity

has been plotted as a function of energy transfer fm and momentum

transfer q along the symmetry directions [110] and [001]. The

lowest-energy data points trace out a normal TA phonon branch

along both [110] and [001]. What is striking, however, is that Fig.

1 shows no evidence of a zone center TO mode at all. Instead,

the data suggest a precipitous drop of the TO branch into the TA

branch, somewhat resembling a waterfall. This anomalous feature is

highlighted by the shaded regions in Fig. 1, and stands in marked

contrast to the behavior of PbTi0
3
where the same TO phonon

branch intercepts the ^.co-axis at a finite energy.

To clarify the nature of this unusual observation, we show a

constant-F scan at ha> = 6 meV in Fig. 2 along with a constant-0

scan in the insert
[ 1 ]. Both scans were taken at 500 K near the (220)

Bragg peak, and along the [001] direction. The small horizontal

PZI\I-8%PT

-0.3 -0.2 -0.1 0 0.2 0.4

(h,h,4) (rlu) (2,2,Q (rlu)

FIGURE 1. Solid dots represent positions of peak scattered neutron intensity

taken from constant-0 and constants scans at 500 K. Vertical (horizontal)

bars represent phonon FWHM iinewidths. Solid lines indicate TA and TO phonon

dispersions.
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bar shown under the left peak of the constant-# scan represents

the instrumental FWHM ^-resolution. We see immediately that the

constant-^ scan shows no evidence of any well-defined phonon

peak, most likely because the phonons near the zone center are

overdamped. However, the constant-# scan indicates the presence of

a ridge of scattering intensity at £ = 0.13 r.l.u., or about 0.2 A#

Thus, the sharp drop in TO branch that appears to take place in

Fig. I does not correspond to a real dispersion. Rather, it simply

indicates a region of (#co,g)-space in which the phonon scattering

cross section is enhanced. The question remains why does this

happen?

In 1983 Burns and Dacol proposed a seminal model for the

disorder intrinsic to relaxor ferroelectrics [3]. Using measurements

PZN- 8%PT

c
E

GO
-I—

'

cz
r3
oo

(2,2,0 (r.l.u.)

FIGURE 2. Constant-f scan measured along [001] at 6 meV at 500 K near the

(220) Bragg peak. Solid line is a fit to a double Gaussian function of 0 No peak

is discernible in the constant-0 scan shown in the insert.

of the optic index of refraction on a variety of samples, including

single crystals of PZN, they demonstrated that a randomly oriented

local polarization #
d
develops at a well-defined temperature #

d
sev-

eral hundred degrees above the transition temperature #
c

. The origin

of this local polarization, not present in normal ferroelectrics above

#
c , was conjectured to arise from the formation of polarized micro-

regions (PMR) of the crystal that are richer in Nb5+ than the average

chemical formula.

The presence of such randomly oriented PMR above #
c
in

PZN-8%PT should effectively impede the propagation of polar pho-

non modes whose wavelength exceeds the size of the PMR. The

observation that the phonon scattering cross section is dramatically

affected ~ 0.2 A 1 from the zone center gives a measure of the

dynamic size of these polarized domains. If the length scale associ-

ated with the anomalous “waterfall” is of order 2nlq, this would

correspond to 31 A, or about 7 to 8 unit cells, a size that is

consistent with Burns and Dacol’s conjecture. We have recently

been able to model this behavior quite well for PZN using a simple

coupled-mode that assumes a highly ^-dependent linewidth T(q) that

increases sharply for q < 0.2 A-1

[2], Hence we speculate that the

striking anomalies in the TO phonon branch shown in Fig. 1 (the

same branch that goes soft at the zone center at T
c
in PbTiCF,) for q <

0.2 A' 1 are directly caused by these PMR which serve to dampen the

zone center TO phonon modes. If true, then this unusual behavior

should be observed in other related relaxor systems. Direct evidence

for this has already been observed at room temperature in neutron

scattering measurements on PMN (M = Mg)[4],
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LITHOSILICATES: A NEW FAMILY OF
MICROPOROUS MATERIALS

i

iiIlfhenever you have a novel structure you usually get novel

WW properties.” Edith M. Flanigen [1] (First winner of the

International Zeolite Association lifetime contribution and achieve-

ment award).

Zeolites and related microporous materials contain regularly

spaced molecule-sized pores and are fascinating examples of molec-

ular engineering. More than just aesthetically inspiring, as can be

seen in Fig. I, these materials represent billions of dollars in com-

merce, as they have widespread industrial applications: Materials of

this type are used as catalysts to produce gasoline and pharmaceu-

ticals. For medical and industrial purposes, they are employed to

separate N
2 , 0

2
and other gases. Formulated in household detergents,

they remove the calcium ions that make water “hard", replacing

environmentally unfriendly phosphates. Zeolites and related micro-

porous materials are also employed to sequester radioactive ions

for bioremediation. Many new applications are being investigated

in areas such as selective mem-

branes, batteries and fuel cells.

Properly used, the term

zeolite should be restricted to

naturally-occurring aluminosili-

cates. However, related micro-

porous materials (herein called

zeolitic) have been synthesized,

where elements such as B, Be,

Cr, Fe, Ga, Ge, Mn, P, Ti, and

Zn substitute for tetrahedrally

bonded Si or Al. These atoms

have roughly the same bonding

configurations, so they tend to

adopt the same framework con-

nectivities as aluminosilicates

and thus have the same pore

structures. Further, since each

tetrahedral (T) atom is linked by

four oxygen atoms, the frame-

work must have a generalized chemical formula [T0
2] 1 _x

m[T’0
2]x

n

where the charge on each tetrahedral unit (m or n) is typically zero

1

or -1. Additional extra-framework cations, such as H+
, Na+

,
Fi+ or

Ca2+ are then needed to balance changes. The number and nature of

these cations is significant as cations are often the chemically active

site for interactions with guest species, or their presence may affect

the framework properties. Thus, they may dictate the catalytic or

sorptive properties of the material. Empirically, the most negatively

charged zeolitic frameworks that have been found, e.g. those that

have the largest number of extra-framework cations, are materials

with formula M +[Si0
2
][A10,] '. Pauling’s rules, restated in the zeo-

lite field as Fowenstein's rule, dicate that the ratio of Al:Si cannot

exceed unity, limiting the cation fraction to 1/7 the total number

of atoms.
I*

A new class of materials that have Fi incorporated as a

tetrahedralframework species has recently been discovered [2,3].

FIGURE 1. The RUB-29 framework. Tetrahedral Si and Li atoms are shown as solid yellow and blue spheres, respectively at

their approximate covalent radius (1 A). Framework 0 atoms are shown as transparent red spheres at their approximate

Van der Waals radius (1.4 A). Extra-framework species are omitted for clarity.
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These materials, called microporous lithosilicates, are novel for

two reasons. One is that [LiOJ tetrahedra appear more flexible

than other [7DJ tetrahedra. This means that lithosilicates can

bond in configurations that are too strained to exist for other sil-

icates. Thus, lithosilicates offer the promise of new families of

pore structures. Second, the general formula for these materials is

M
3
T[Si0 2] 1 . v

[Li0
2 ] t

3
-, so that lithosilicates have the potential to be

more negatively charged than aluminosilicates, if the Li:Si ratio

exceeds 1:4.

A team of NCNR scientists and collaborators has recently

completed the first complete structural characterization of a micro-

porous lithosilicate, RUB-29. To determine the framework geometry,

synchrotron diffraction measurements were performed at the NSLS

using an extraordinarily small single crystal — with dimensions 10

pm x 10 pm x 2 pm. (For comparison, human hair is typically 50

to 100 pm thick.) With 35 symmetry-unique atoms comprising the

framework, RUB-29 is one of the most complex zeolitic structures.

Powder neutron diffraction at NIST was then used to better deter-

mine the siting of the framework Li atoms, as well as four additional

extra-framework Li atoms and seven other extra-framework species.

The RUB-29 framework is shown in Fig. 1.

The structural studies of RUB-29 demonstrate two novel

structural building blocks, a Li,Si-spiro-3,5 and a Li,Si-spiro-5 unit

(see Fig. 2.) It should be noted that both these building units contain

“three-rings” where three T atoms, in this case one Li and two Si

atoms, are bonded in a cyclic structure. This three-ring structural

entity is highly strained in silicates; only one silicate example has

ever been found.

In RUB-29, only 1 in 5 T atoms are Li, so the total framework

charge is comparable to 1:1 aluminosilicates. However, RUB-29

appears to be stable under conditions where these high-aluminum

zeolites tend to degrade. Further, there is promise that new lithosili-

cate materials can be synthesized with even higher Li:Si ratios.

Another interesting property exhibited by RUB-29 is that the

Li atoms, both in framework and non-framework sites, appear to

move on an NMR timescale at temperatures as low as 250° C. Much

more work is needed to learn about conduction in this material, but

it may hold promise for ionic conduction applications, such as in

batteries.
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FIGURE 2. Li,Si-spiro-3,5 (left) and Li,Si-spiro-5 (right). Small red circles indicate the centers of [SiOJ-tetrahedra, and big blue circles are those of [LiOJ-tetrahedra.

The 0 atoms that bridge each pair of Si and Li atoms have been omitted to improve clarity.
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QUANTIFICATION OF PHASE FRACTION AND
AMORPHOUS CONTENT

While many methods can be used to determine the elemental

composition of a material, diffraction is one of the few

techniques that is also sensitive to the physical arrangement of

atoms and molecules in the solid state. Even phases with the same

chemical composition, such as graphite and diamond, have different

diffraction patterns, dictated by the particular structure of each sub-

stance. The diffraction pattern from a mixture is the weighted sum

of the patterns from each phase that is present, making it possible

for quantitative phase composition to be determined. Prior to the

application of Rietveld refinement techniques to the problem of

quantitative phase analysis, these measurements required difficult

calibrations and were often imprecise. However, Rietveld analysis

involves the fitting of the entire diffraction pattern of each compo-

nent phase based upon a structural model of the material and no

standards or prior calibration is required. It should be noted though

that even Rietveld analysis could not be used directly to quantify

materials with unknown structures or amorphous phases, since such

materials cannot be modeled crystallographically. An example where

quantitative phase analysis explains the inevitable failure of ceramic

thermal barrier coatings was presented in the 1998 NCNR Annual

Report.

NIST participation in a round robin on determination of

quantitative phase abundance, sponsored by the International Union

of Crystallography Commission on Powder Diffraction, provided

an excellent opportunity to demonstrate the high quality of data

obtained using the 32-detector NCNR high-resolution powder dif-

fractometer at BT- 1 . The NCNR implementation of the Rietveld

technique for phase quantification was found to give excellent agree-

ment with the nominal compositions. In addition, a new method for

determining the amorphous phase content of a mixed-phase sample

without sample adulteration was validated.

Data were collected using a Cu(3 11) monochromator

(A. = 1 .5402 A) and 15’ incident collimation, and were then pro-

cessed in the usual procedure to obtain a pseudo-single detector data

set. The phase fractions were determined using standard Rietveld

refinement techniques, including full refinement of crystallographic

and instrumental parameters, as implemented by the GSAS suite

of programs. Results for a sample consisting of nearly equal mass

fractions of A1
2
0

3 ,
CaF,, and ZnO, along with values reported by

the other round-robin participants, are given in Table 1; the results

obtained at NIST for all other samples are reported in Table 2

along with the nominal phase content. It can be seen from Table

Table 1. Mass fractions (%) of three-phase mixture reported by round robin

participants. The ranges are reported for 111 x-ray determinations, 7 neutron

determinations, and 4 synchrotron determinations. Standard uncertainties are

reported in parentheses for the XRF (x-ray fluorescence, 3 determinations as

reported by the organizers) and NIST results (determined from the least-squares

refinement).

Phase Weighed XRF x-ray Neutron Synchrotron NIST

Al
2
0

3
31.4 31.7(1) 22-49 29-32 31-35 31.7(1)

CaF
2

34.4 33.9(1) 19-42 32-39 34-35 33.9(1)

ZnO 34.2 34.0(1) 25-42 32-35 29-35 34.4(1)

1 that neutron data give significantly more accurate results than

synchrotron or laboratory x-ray data, and that the results obtained at

NIST are exceedingly good. The high accuracy of these results can

be attributed to the intrinsic Gaussian line shape of the reactor

neutron source, as well at to the lack of microabsorption and pre-

ferred orientation effects that frequently plague x-ray data but are

normally negligible with neutron data. The data presented in Table

2 further confirm this conclusion, in that the results for sample 2

(preferred orientation), sample 3 (amorphous content) and sample 4

(microabsorption) all agree well with the nominal phase content.

The determination of amorphous content in a crystalline sam-

ple has traditionally involved integration of the area under the broad

amorphous hump, giving the relative intensity compared with that of

the Bragg scattering. However, in multiphase samples this technique

is impractical. An alternative approach is to add a known quantity of

a material as an internal intensity standard.

The unique properties of neutron diffraction suggested an

alternative approach. Since absorption is negligible for most ele-

ments, and since the entire sample is irradiated in the neutron beam,

a strategy based on absolute scattering intensities using an external

standard was devised.

In the Rietveld technique, the mass of each crystalline phase,

Wj, is proportional to the product of the scale factor for that phase,

S,, and the molecular weight of the unit cell contents (Z
1

M
I
) where

is the number of formula units per unit cell and M, is the molecular

weight. Thus for a crystalline multiphase sample of mass wc (wc =

X Wj) the relation wc « (s true. The proportionality constant

can be determined using mass w
std

of a completely crystalline known

standard under identical data collection conditions, so the relation

wc/wstd
= (ZS

]

Z
|

M
|

)/S
ild
Zj|M

std
can be used. If the sample mass, w

s ,
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Table 2. Comparison of nominal phase composition (%) with that obtained

at NIST. The weighed and XRF values were provided by the round

robin organizers. Standard uncertainties for the NIST results are given in

parentheses.

Sample Component Mass fraction

weighed

Mass fraction

XRF

Mass fraction

NIST

la AIA 1.2 1.2 1.3(1)

CaF
2

94.8 94.1 94.8(3)

ZnO 4.0 4.1 3.9(1)

1b ai
2
o

3
94.3 94.7 94.4(3)

CaF
2

4.3 4.3 4.2(1)

ZnO 1.4 1.4 1.4(1)

1c AIA 5.0 5.1 4.9(1)

CaF
2

1.4 1.3 1.4(1)

ZnO 93.6 93.2 93.8(3)

Id AIA 13.5 13.8 13.7(1)

CaF
2

53.6 53.0 53.0(2)

ZnO 32.9 33.0 33.3(1)

1e AA 55.1 55.8 55.4(2)

CaF, 29.6 29.4 29.2(1)

ZnO 15.3 15.3 15.4(1)

If AA 27.1 27.3 26.7(1)

CaF
2

17.7 17.4 17.5(1)

ZnO 55.2 54.9 55.8(2)

2 AIA 21.3 20.9 21.9(4)

CaF
2

22.5 24.1 22.0(4)

ZnO 19.9 19.5 19.1(6)

Mg(0H)
2

36.3 36.1 37.0(3)

3 Amorphous 29.5 27.1 32.3(6)

AIA 30.8 31.1 30.7(6)

CaF
2

20.1 19.9 18.7(3)

ZnO 19.7 19.6 18.3(3)

4 AIA 50.5 50.4 50.5(3)

Fe
30, 19.6 19.6 20.3(2)

ZrSi0
4

29.9 29.5 29.3(4)

also contains an amorphous component, wA , then since wA = ws
- wc

and the amorphous fraction fA = wA / ws ,
then

IS.ZM w,„

f* = i
'

^std ^std
M

std
W

s

Using the GSAS suite of programs, the values for S
(

may

be obtained from the product of the overall scale factor and the

“phase fraction”, or by fixing the overall scale factor to 1.0 so that

the refined “phase fractions” are in fact the Rietveld scale factors

for each phase.

In order to make sure that data on the unknown and standard

materials were collected under identical conditions the automated

sample changer was used, the sample volume was reduced to ensure

complete sample irradiation, and identical data collection parameters

were employed. In this way, data on any number of unknowns

could be compared to a single standard sample since no changes

were made to the experimental conditions. An additional benefit was

that no adulteration or mixing of the samples was necessary. This

technique was used with several single-phase samples in order to

compare the crystallinity of potential standards as well as of the

unknown samples. In fact, the round robin organizers subsequently

sent samples of each of the unmixed phases to NIST for analysis.

The results obtained for the round robin sample with amorphous

content gave excellent agreement with the mass fractions determined

by weighing (see Table 2); the slightly higher amorphous content

obtained using the neutron Rietveld technique is explained by the

presence of a small amount (1 % to 2 %) of amorphous material in

the component crystalline phases.

This external standard technique to determine amorphous con-

tent could also be used to determine the mass fraction of a crystal-

line phase with an unknown structure. For both applications, how-

ever, obtaining the best results depends upon obtaining the best dif-

fraction data. The unique capabilities of the NCNR high-resolution

diffractometer at BT-1 make this possible; these are summarized

below.

FEATURES OF THE BT-1 DIFFRACTOMETER

Automatic six-carousel locking sample changer (vanadium sample

cans), ideal sample size: 10 cm3
.

Maximum beam size: 15 mm width by 50 mm height.

Collimations: 15’ or 7' before monochromator, 20’ before

sample [30’ for Si(53 1 )],
7’ before detectors.

Detectors: 32 Tie-filled detectors at 5° intervals; 13° scan

range covering 2 d from 0° to 167°.

Monochromators:

Monochromator

crystal and

Bragg plane

In-pile

Collimation

angle (’)

Monochromator

2 90
Relative

Bragg

Intensities

Flux

(neutrons s°

cm !

)

Wavelength

(A)

Typical

run times

(It)

Ge(311) 15 75 3.34 700 000 2.0784 0.5-5

Ge(311) 7 75 1.84 400 000 2.0795

Cu(311) 15 90 1.00 400 000 1.5401 3-12

Cu(311) 7 90 0.59 200 000 1.5405

Si(531) 15 120 0.47 200 000 1.5903 6-24

Si(531) 7 120 0.33 100 000 1.5904



DIFFRACTION ELASTIC CONSTANTS FOR ARBITRARY
SPECIMEN AND CRYSTAL SYMMETRIES

Accurate determination of residual stresses by means of dif-

fraction relies on the knowledge of the elastic constants that

translate lattice strain into macro-stress. Because of the difference

between the elastic behavior of the aggregate and that of a single

crystallite, the straightforward relationship between strain and stress

as mediated by single crystal or polycrystal elastic constants no

longer holds. Instead, the relationship between lattice strain and

macro-stress is mediated by diffraction elastic constants (DEC).

Very recently, we proposed a theory that allows a transparent

calculation of DEC. This theory applies for almost the entire range

of polycrystalline elasticity, including that for aggregates of arbitrary

phase composition and arbitrary symmetry, both of the aggregate

and of the constituents [1], Results show that for a particular crystal-

lographic plane (hid) and an arbitrary anisotropic material there are

usually six independent DEC. These DEC depend on the orientation

of the scattering vector, on the grain shape, and on the elastic

constants both of the crystallites and of the aggregate. Figure 1

shows Young’s modulus vs. the orientation parameter for different

crystallographic planes (hkl) of two plasma-sprayed coatings with

different types of anisotropy. Calculated DEC for comparison to

measurement were not previously available.

Figure 1 also illustrates the difference between the anisotropy

of the aggregate and that of the crystallites that comprise the

aggregate. The slope of E
hkl

vs. T depends mostly on the ratio

r

FIGURE 1. Young’s modulus vs. orientation parameter for a metallic nickel coat-

ing and a ceramic YSZ (Zr0
2
+8%Y

2
0

3 )
coating deposited by plasma spraying.

Solid lines indicate calculated values, points are measured values.

z

FIGURE 2 . Central section of the representation surface for Young’s modulus

in a nickel coating and a yttria stabilized zirconia coating. The length of

the radius vector for a certain tilt angle 'k is equal to Young’s modulus

in units of GPa. These values were calculated from hkl-dependent elastic

constants measured by neutron diffraction. The z-direction is perpendicular to

the surface of the coating. All in-plane directions are equivalent due to the

transversal-isotropic elastic symmetry of sprayed coatings.
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2CJ(Cn-Cv) which is > 1 for nickel and < 1 for YSZ. The

aggregates exhibit generally transversal isotropic elastic symmetry

but again with a different anisotropy in the metallic coating

(Cu/C33
< 1 ) and in the ceramic coating (Cn/C33

> 1). This anisot-

ropy causes a substantial difference between Em normal and

perpendicular to the coating surface.

While the data in Fig. 1 still depend on the crystallographic

plane (hkl) they can also be used to estimate the overall elastic

constants of the aggregates that, in turn, yield the directional depen-

dence of the mechanical value of Young’s modulus. This distribution

forms a surface with rotational symmetry around the coating surface

normal vector as illustrated by a central section shown in Fig. 2.

9% interlamellar voids + 25% vertical cracks, c/a=5

6% interlamellar voids (a/c=3)+ 4% vertical cracks

FIGURE 3. Young’s modulus for the YSZ coating (a) and for the nickel coating (b)

vs. the pore aspect ratio. The vertical lines at aspect ratio of 10 indicate where

the best agreement is found with experimental results.

The elastic anisotropy of sprayed coatings has its roots in

their microstructure. In the complete absence of preferred crystallite

orientation, the responsible factor is the porosity and alignment of

elongated voids and cracks resulting from the spray process. These

voids can be treated as another phase with very low elastic moduli.

This way it is possible estimate the overall elastic constants if the

distribution of pore shapes and volume fractions are known.

In the case that the aggregate constants are already known,

the reverse approach of estimating a pore distribution can offer some

insight into the properties of different coatings. Figs. 3a and b show

where the best agreement was found for plasma sprayed metallic

and ceramic coatings. The main difference is that the pore structure

of the ceramic coating is dominated by interlamellar (horizontal)

voids, while the concentrations of horizontal voids and vertical

cracks are more balanced in the metallic coating.
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DIRECT OBSERVATION OF SUPERHEATING AND
SUPERCOOLING OF VORTEX MATTER

Acurrent question of fundamental interest concerns whether a

vortex solid-liquid transition exists in type-II superconductors

[1], In addition to providing a possible model system for melting

and freezing, vortex matter offers unprecedented opportunities to

study the effects of quenched disorder on phase transitions. The

peak effect, where the critical current exhibits a peak rather than

decreasing monotonically with increasing temperature, has been

found to occur at the same temperature as a magnetization jump,

which suggests a melting of the vortex lattice. However, there has

been no direct structural evidence indicating whether there is indeed

an underlying phase transition, and if so, whether it is solid-to-solid,

solid-to-liquid, or even liquid-to-liquid in origin. Moreover, since

quenched disorder is known to have important consequences for

phase transitions, whether a solid-liquid transition can occur when

random pinning is effective has broad implications in condensed

matter physics.

Here we report the first observation of a striking history

dependence of the structure function of vortex matter in the peak

effect regime in a Nb single crystal, using SANS combined with

simultaneous magnetic susceptibility measurements [2]. Metastable

supercooled vortex liquid and superheated vortex solid phases have

been observed, providing direct structural evidence for a first-order

vortex solid-liquid transition associated with the peak effect.

Measurements were performed on a Nb single crystal, with

the incident neutron beam nominally along the cylindrical axis

which coincides with the three-fold symmetric <11 1> crystallo-

graphic direction. A superconducting magnet applies a dc magnetic

field along the same direction. The peak-effect regime is determined

in situ by measuring the characteristic dip in the temperature depen-

dence of the real-part of the ac magnetic susceptibility as shown

in Fig. 1(a) for H -
3.75 kOe [2]. The pronounced diamagnetic dip

in
5c'(T) of the ac susceptibility corresponds to a strong peak effect

in the critical current. The onset, the peak, and the end of the peak

effect are denoted by Ta(H), T
p
(H), and 77,(77), respectively. Figure

1(b) shows the window of the experiment.

For each (7,77), we measure the SANS patterns for different

thermal paths. At sufficiently low temperatures the SANS images

show sharp Bragg peaks with six-fold symmetry, independently of

the thermal history. An example is shown in the inset of Fig. 1(b)

for H = 3.75 kOe and T = 3.50 K. However, the vortex pattern

starts to show striking history dependence as the peak-effect regime

is approached. We define the field-cooled (FC) state as when the

sample is cooled to the target temperature in a magnetic field, while

the zero-field-cooled (ZFC) state is reached by cooling the sample in

zero field to the target temperature and then increasing the magnetic

field to the desired value. For a field-cooled-warming (FC-W) state,

the system is cooled in-field to a low temperature (
~ 2 K), then

wanned back to the final temperature.

For the FC path, the vortex patterns show nearly isotropic

rings for T
]?

<T < T
c2
and broad Bragg spots for 7 < T

p
. In contrast,

for the ZFC and the FC-W paths, sharp Bragg spots are observed

for all temperatures up to T
c2

. Shown in the top panel of Fig. 2 are

the ZFC and FC images at (3.75 kOe, 4.40 K), which is just below

FIGURE 1. Peak effect and (##-7) phase diagram of Nb. a) ac magnetic suscepti-

bility for Hic
= 3.75 kOe (field-cooled). Hac

= 3.3 Oe and 1 kHz. Inset: global

H-T phase diagram for the Nb crystal used in this study, (b) Expanded view of

the H-T phase diagram (shaded box in a). Two observed SANS images of the

field-cooled vortex states are shown.

I
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T
0(
3.75 kOe) = 4.50 K. The images in the mid panel are for (4.00

kOe, 4.40 K), which is 0.10 K above T
p
(4.0 kOe) = 4.30 K. The

intensities at the radial maximum for the mid panel SANS data

are plotted in the lower panel. The shaip Bragg spots for the ZFC

state indicate a vortex lattice with long-range-order (LRO), while the

very broad spots for the FC state signify a disordered phase with

short-range-order.

The observed hysteresis suggests a first-order vortex solid-

liquid (or glass) transition. A controversial issue is the location

of the underlying equilibrium phase transition to the position of

the peak effect. One interpretation places the conjectured vortex

©(deg.)

solid-liquid transition Tm at T

,

consistent with the recent experi-

ments in YBCO. Another widely held view is based on the classical

Lindemann criterion which would place Tm at T
c2
(H) for Nb, pro-

vided the vortex-lattice elastic moduli remain well-behaved. In this

scenario, the FC disordered phase seen here (as well as in [3,4])

is a supercooled liquid and the thermodynamic ground state is an

ordered solid across the entire peak-effect regime. The third scenario

places Tm at or below the onset of the peak effect.

To experimentally determine the ground state and approxi-

mate value of Tm ,
the susceptibility coil was used to shake the vortex

assembly, using SANS to observe how the vortex structure evolves.

The data show that above T the Bragg peaks start to disappear

within the first 102 sec of the shaking experiment, demonstrating

that the equilibrium state is disordered. Similiarly, the FC disordered

states for T < T
p
are metastable and the ordered ZFC state is the

ground state, opposite to that for T > T . In the T < 7j, regime,

though, the metastability is obviously stronger since a much larger

ac field is needed to change the metastable state.

We conclude that for T > T
p
the ordered ZFC vortex lattice

is a superheated state and the ground state of the vortex system

is a disordered vortex liquid, while for T < T
p
the ground state is

a vortex Bragg solid and the disordered FC state is a supercooled

vortex liquid. A thermodynamic phase transition must therefore have

taken place, with Tm ~ T

.

These results also imply the absence

of superheating in conventional transport experiments with a large

drive current, which solves a longstanding puzzle in which the

history dependence of the nonlinear resistance always vanishes at

T
p
(H); only with extremely low drive currents may one then observe

the subtle effects of superheating in transport.
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FIGURE 2. History-dependent SANS patterns at 4.40 K. The SANS images of the

ZFC and FC vortex states for H = 3.75 kOe (top panel: below the onset of the

peak effect) and H = 4.00 kOe (mid panel: near the upper end of the peak-effect

regime). The thick arrows indicate how the SANS images evolve after applying

a small ac magnetic field. The lower panel shows the intensity data at the

radial maximum as a function of the azimuthal angle for the ZFC and FC SANS

data (W = 4 kOe).
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SANS MEASUREMENTS OF NANOSCALE
LITHOGRAPHIC FEATURES

The continued growth of the semiconductor industry depends

on advances in lithographic processes and materials to enable

the economical production of smaller device features. Precise mea-

surement of the size and quality of lithographically prepared fea-

tures is critical as their sizes continue to decrease, with dimensions

approaching 1 00 nm. Current microscopy-based techniques such as

scanning electron microscopy (SEM) and atomic force microscopy

(AFM) often require special modifications to enable the measure-

ment of either the critical dimensions or feature resolution param-

eters. More importantly, these techniques become extremely chal-

lenging as feature sizes continue to decrease.

In this highlight, we demonstrate the powerful use of small-

angle neutron scattering (SANS) to quickly, non-destructively, and

quantitatively characterize both the size and profile of lithographi-

cally prepared structures as prepared on a silicon wafer substrate

[1], Until recently, SANS instruments were unable to measure litho-

graphic feature sizes (sizes greater than 300 nm) and neutron beam

fluxes were insufficient to measure scattering from thin film struc-

tures. Today, with new focusing optics, the high intensity NCNR

instruments allow routine SANS measurements of smaller litho-

graphic features [2], Other important advantages for the use of

SANS to measure lithographic structures include a) the measure-

ment of structures on silicon, because single crystal silicon wafers

are generally transparent to neutrons, b) a measurement metric sta-

tistically averaged over an area of several square centimeters, and c)

less stringent SANS instrument requirements as lithographic struc-

tures decrease in size.

As an example, periodic, equally spaced, parallel line patterns

with a nominal size of 1 50 nm were prepared on a silicon single

crystal wafer using standard 248 nm optical lithography, and placed

directly in and normal to the neutron beam. Quantitative measure-

ments of the size and average profile of these lines are extracted

from the scattering data. SEM micrographs of these structures are

shown in Fig. 1.

The SANS measurements were performed on the NG-7 30

m SANS line under ambient atmospheric conditions at the NCNR.

Newly developed neutron focusing optics consisting of 28 biconcave

MgF, lenses were used to access small enough angles to resolve

feature sizes up to 300 nm, a previously inaccessible length scale

for SANS. In this configuration, the SANS data provide quantitative

information about the fine repeat distance and the quality of the line

structure.

The 2-D scattering data from the structures displayed in Fig. 1

are shown in Fig. 2. The fine structures are aligned with the vertical

FIGURE 1. Top-down and side view scanning electron micrographs of the litho-

graphically prepared lines used in the SANS measurement. The lines are nomi-

nally 150 nm wide and 0.62 ^m in height.
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axis of the detector. Six orders of diffraction peaks are immediately

observed in the horizontal axis of the detector because of the highly

periodic pattern of the fabricated lines. By linearly fitting the peak

position plotted as a function of the diffraction order index, the

feature repeat distance for the structure in Fig. 1 is determined to

be (3031 ±9) A.

A more detailed analysis provides a quantitative determination

of the average profile of the line structures, including a measure

of the line-edge roughness (LER). We model the periodic line pat-

tern as a convolution of a periodic delta function with the average

cross-section of a line. In Fig. 3, the scattering intensity of a given

diffraction peak is plotted as a function of the position of the peak.

The solid line is the best theoretical fit to the experimental data and

corresponds to a measure of the LER of (213 ± 13) A. Also in Fig.

3, the second and fourth order diffraction peaks are visible and less

intense than the first and third diffraction peaks. The measurable

intensity of the even order diffraction peaks indicates that the line

feature size is slightly less than one half the overall repeat distance.

The model fit results in a line feature size of (1350 ± 60) A.

The average line structural size and cross-section were deter-

mined in a configuration where the sample was placed perpendicular

to the incident neutron beam. More three-dimensional information

about the average line structure can be obtained by tilting the line

pattern with respect to the incident beam. Varying projections of

the line profile onto the detector plane provide an elegant method

to deduce more specific structural information. In additional, the

formalism to extend the SANS theoretical framework to arbitrary

shapes is well established and will be applied in the future. With

these advances, SANS may be used to identify resolution limits

in new nanofabrication processes and materials and to serve as an

important metrology tool in understanding the physical processes

that control the resolution of these methods.
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FIGURE 2. Two-dimensional SANS pattern from the sample shown in Fig. 1. Six

orders of diffraction are observed due to the high resolution of the lithographi-

cally prepared pattern.

NIST CENTER FOR NEUTRON RESEARCH



ASYMMETRIC MAGNETIZATION REVERSAL IN
EXCHANGE-BIASED HETEROSTRUCTURES

E xchange bias refers to a shift of the ferromagnetic hysteresis

loop along the field axis, by an amount H
e
(see Fig. 1 for

an example.) The bias is a consequence of an exchange interaction

across the interface between dissimilarly ordered magnetic materi-

als, e.g. a ferromagnet and an antiferromagnet (AF). This exchange

interaction induces a unidirectional anisotropy as the AF material

is cooled through its Neel temperature, 7N [1,2], Exchange bias is

an example of a bulk property whose fundamental origin is attrib-

uted to physical processes occurring at the nanometer length-scale.

This phenomenon is not simply a scientific curiosity; it underpins

present-day magnetic recording technology.

Read-write heads used with magnetically stored data are

based on giant magnetoresistance (GMR) sensors. These sensors

consist of layers of ferromagnetic thin films separated by non-

ferromagnetic ones. When the the magnetizations in the ferromag-

netic layers are all oriented the same way, conduction electrons

pass through them relatively easily, but when the electrons must

cross from films having one orientation to another they encounter

more resistance through magnetic scattering. GMR arises when an

external field can change the relative orientations of the magnetiza-

tion in the films easily. To keep the layers from all reorienting

together in the presence of an external field, some of them must be

pinned. One way to accomplish pinning is exchange biasing.

Despite its technological importance, theoretical models are

unable to convincingly explain observations of exchange bias (e.g.

positive exchange bias), and phenomena associated with it. Even

in the simplest experimental systems such as Fe on TMF, where

TM = Mn or Fe, the asymmetric reversal of magnetization and the

unusual temperature dependence of coercivity are not well under-

stood.

Using polarized neutron reflectometry we recently, examined

the magnetization reversal processes of a ferromagnetic Fe film

exchange-coupled to twinned AF (TMF
2)

films as a function of

magnetic field [3]. Neutron scattering measurements typical of those

from a sample exhibiting large exchange bias are shown in the

figure for fields at coercivity on either side of the loop. Spin-flip

(SF) scattering observed on the left hand side of the loop indicates

magnetization reversal via magnetization rotation. Fack of SF scat-

tering on the right hand side is consistent with domain nucleation

(with opposite magnetization) and growth. These two fundamentally

different (asymmetric) reversal processes have distinct neutron scat-

1— *

tering signatures. The ability to discern so easily between these

processes sets neutron scattering apart from magnetometry.

Comparisons of measurements like those in the figure taken

from many samples, including single crystalline and polycrystalline

AF films, lead to the following picture: In the case of samples with

twinned AF’s, which exhibit large exchange bias, “45° exchange

coupling” is energetically favorable as each AF domain indepen-

dently tends to perpendicular coupling but is frustrated due to

the twinned microstructure. Furthermore, field cooling provides

an additional unidirectional asymmetry. Therefore, field reduction

from positive saturation results in magnetization rotation rather than

domain nucleation. This is due to the intrinsic unidirectionality that

hinders formation of domains with magnetization anti-parallel to

the cooling field direction. As the field is reduced from negative

saturation, formation of domains with magnetization parallel to the

initial cooling direction is favored. Hence reversal occurs by domain

nucleation and propagation.

For the case of samples with single crystalline (untwinned)

AF’s, frustration is lacking; consequently, there is no anisotropy axis

parallel to the cooling field with which unidirectional anisotropy can

be established. In this case, magnetization rotation is always favored

(as evidenced by SF scattering on both sides of the ferromagnetic

hysteresis loop). We note the exchange bias for the single crystal

sample is always small. A clear correlation was observed: samples

with an asymmetric magnetization reversal process exhibit large

exchange bias, while those with symmetric magnetization reversal

process exhibit small exchange bias.

By identifying the mechanisms involved in the asymmetry

favoring large exchange biasing in this system, these and related

neutron reflectivity studies point out a direction for the design of

next generation GMR sensors having substantial improvements in

magnetic field sensitivity.
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Energy, BES-DMS under Contract No. W-7405-Eng-36, grant
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FIGURE 1. Center: Exchange bias is the shift of the ferromagnetic hysteresis

loop (in this case to negative H). The two insets show neutron reflectivity

versus Q. The blue and red dots represent non-spin-flip scattering. Spin-flip

scattering (SF in upper left corner) observed on the left-hand-side indicates

magnetization reversal through rotation. No SF scattering was observed on the

right-hand-side, indicating reversal via domain nucleation and growth. Large

exchange bias is correlated with asymmetry in the magnetization reversal

processes.
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THE ROLE OF THE CRP/CAMP
PROTEIN COMPLEX IN DNA TRANSCRIPTION

DNA molecules direct the synthesis of specific RNA and protein

molecules. In the early stages of protein synthesis, specific

regions of the DNA (genes) are copied into short strands of RNA

that retain all of the genetic information of the DNA sequence from

which they were copied. The process by which RNA molecules are

synthesized from the coding regions of DNA is known as DNA

transcription. The RNA polymerase enzyme, whose function is to

make a RNA copy of a DNA sequence, catalyzes the synthesis of

these RNA molecules. The amount of RNA made from a particular

region of DNA is controlled by gene regulatory proteins that bind to

specific sites on DNA close to the coding sequences of a gene. In

this highlight we describe experiments addressing how a particular

gene regulatory protein controls RNA transcription from DNA.

One useful model of such a protein is the cyclic AMP receptor

protein (CRP) of E. coli. Upon binding cyclic adenosine monophos-

phate (cAMP), CRP undergoes

a conformational change that, in

turn, promotes binding to spe-

cific DNA sequences. The CRP/

cAMP complex, upon binding

DNA, produces a bend in the

DNA that causes it to wrap

around the RNA polymerase to

promote DNA transcription.

A method well suited to

directly study the structure of

proteins and DNA in solution,

where transcription takes place,

is small-angle neutron scattering

(SANS). The radius of gyration.

R , which can be used to

measure conformational chang-

es, and the structure of the

molecule in solution can be

determined from an analysis of

the scattered neutron intensity

versus Q.

Particularly powerful is the contrast variation technique [1] in

which isotopic substitution of D for H in the solvent is routinely

used to change the scattering from a macromolecule without affect-

ing its biochemistry. In the case of a two-component complex such

as CRP/cAMP/DNA (cAMP is considered to be part of the CRP

component), the neutron scattering length density of CRP is quite

different from that of DNA. In this case, the scattered intensity

at each Q value is expressed as the sum of three terms, each of

which is the product of an unknown component intensity and a

known contrast term. (The contrast is the difference between the

scattering length density of a component and that of the solvent.)

Thus, the scattering from the complex in solution can be separated

into component intensities by measuring the scattered intensity of

the complex, HQ), at a minimum of three contrasts obtained from

different D,0/H
2
0 buffer mixtures.

FIGURE 1. The distance distribution functions, P(r), of the CRP component of the CRP/cAMP/DNA complex

obtained from the SANS data (•), the energy-minimized x-ray crystal structure (...) [5,6] and the energy-

minimized model structure (—).
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Recent SANS measurements of CRP/DNA complexes [2]

confirmed, in solution, the bending of the bound DNA that was

observed in an early x-ray crystal structure of the complex [3],

However, the Rg value for the complex was larger than that pre-

dicted from the same crystal structure. SANS confirmed experimen-

tally that this value does not change with concentration. Thus, the

increase in R„ is not due to aggregation, but it could result from an

increase in the /?, of the CRP component upon DNA binding. Such

a conformational change would be apparent in the SANS solution

measurements: it was not evident in the crystal structure [3],

To obtain the scattered neutron intensity of the CRP compo-

nent, a contrast variation series of SANS measurements was per-

formed on CRP/DNA complexes in 0 %, 15 % and 70 % D,0/H,0

buffer solutions. The Rg values were found to be the same, (28 A

Derived
from SANS

FIGURE 2. The top molecule is the energy-minimized x-ray crystal structure

[5,6] of the CRP(blue)/cAMP(green)/DNA(brown) complex. The bottom molecule

is the energy-minimized model structure which fits the SANS data

to 30 A), for all three cases. This clearly indicates that the CRP

component is the main reason that R,
( RP was larger than originally

expected. It was found from the Q behavior of the CRP component

intensity that R„crp = 28.5 ± 0.3 A, which is = 6A larger than the

21.6 + 0.2 A value observed in solution for CRP alone [4], It is also

~ 6 A larger than the 22.6 A value predicted for the CRP component

from an energy-minimized X-ray crystal structure of the complex

by Parkinson et al. [5], with cAMP incorporated as in Passner and

Steitz [6],

To model the solution structure of the CRP/DNA complex, the

energy-minimized x-ray structure [5,6] was distorted in the regions

thought most likely responsible for the conformational change in

CRP upon DNA binding [7]. The distance distribution function,

P(r), was calculated [4] from the energy-minimized distorted con-

formation and compared to that obtained from the SANS data.

As shown in Fig. 1, the P(r) function calculated from the model

structure clearly fits the experimental data better than that from

the x-ray crystal structure [5,6]. A molecular representation of the

energy-minimized x-ray crystal structure [5.6] is shown in Fig. 2,

along with the model structure that fits the SANS data.

The experimentally observed conformational change in CRP

upon DNA binding may play a role in the enhancement of transcrip-

tion of DNA by CRP. Perhaps this occurs through its contacts with

RNA polymerase that is bound on the DNA at a site adjacent to

the CRP binding site. This is the subject of further ongoing SANS

studies.
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POLYMER THIN FILMS UNDER SUPERCRITICAL CO.

I

n recent years supercritical fluids (SCFs), materials at tempera-

tures and pressures above their critical values, are being used

in both traditional industry and new advanced technical areas. The

major advantage of SCFs is that their physical properties such

as dielectric constant, density, and solubility parameters, can be

tuned simply by adjusting the temperature and pressure. Especially,

SCFs have also been shown to be effective plasticizers as well as

solvents for numerous polymers. In particular, much attention has

been focused on CO, since it becomes supercritical at a moderate

critical temperature and pressure, T
c
= 31.3 °C at P

c
= 73.8 bar, and it

is environmentally benign [1].

In spite of its practical importance and numerous studies of

the C0
2
-induced swelling in bulk polymers, fundamental

questions still remain. It is important to understand the

interaction of supercritical C0
2
(scC0

2 )
that can modify

diffusion coefficient and the glass transition in thin poly-

mer films. The performance of the many applications

of thin films is often dependent on knowledge of the

structure and dynamics of the interfaces. Therefore,

research in this area will advance

understanding of the fundamental physics and applications of poly-

mer thin films.

Neutron reflectivity (NR) is used for quantitative determina-

tion of the thicknesses, compositions, and interfacial structures of

polymer thin films on a nanometer scale. To achieve this under-

fir situ conditions, we have developed a temperature and pressure

controlled chamber specifically for neutron reflectivity (Fig. 1.).

The cell is equipped with two cylindrical sapphire windows. C0
2

is loaded into the cell by means of a manually operated pressure

generator. Pressurizing and depressurizing cycles up to 1400 bar

are possible. Temperature and pressure stability of the chamber of

±0. 1 °C and ±0.2 %, respectively can be achieved. Due to the high

absorption of neutrons in C0
2 , the incident and reflected beams

passed through the Si substrate with a transmission of 0.90

relative to air. It is interesting to note that the background

Gasket scattering from the C0
2
increases dramatically as the

Teflon o-ring

Thermocouple

Heating bands

Beam-in

density increases at the phase boundary. Hence the

supercritical transition point can be

independently monitored with high

accuracy.

Beam-out

Sapphire window
Si Substrate

C0 2 reservoir

Quartz spacer

FIGURE 1. Cross-sectional view of the supercritical C0
2
chamber for neutron

reflectivity measurements.
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In this study we have successfully performed NR measure-

ments of deuterated polystyrene (d-PS) thin films in CO, at P <

700 bar (Fig. 2). The results show an anomalously large swelling

maximum (AV7V » 25 %) which occurs only at the supercritical

fluid/gas phase boundary. Atomic force microscopy confirmed the

swelling is uniform throughout the films and does not produce large

voids. Such a swelling maximum at the supercritical fluid/gas phase

boundary has never been seen in bulk PS-CO, mixtures. In addition,

an isobaric experiment at 79 bar showed that the same swelling

behavior did not appear at the phase boundary between the liquid

and supercritical fluid CO, phases.

At this point we can only speculate that the anomalous swell-

ing behavior may be related to the higher order nature of the

gas/supercritical fluid transition that is accompanied by larger den-

sity fluctuations than the first-order liquid/supercritical fluid transi-

tion. Experimentally these fluctuations are clearly seen by the shaip

increase in background scattering from the CO, at the transition

boundary. Adsoiption of CO, into the viscous polymer film may

suppress these fluctuations thereby lowering the energy of the sys-

tem. This effect was further investigated by observing the swelling

of the d-PS film as a function of temperature at P = 79 bar (Fig. 3.)

Recently we have expanded our research by measuring chain

mobility in bilayer polymer films of d-PS and hydrogenated PS

(h-PS). We have used secondary ion mass spectrometry and NR to

measure the diffusion coefficient as a function of pressure, tempera-

ture and molecular weight. This work established that swelling at

the phase boundary is accompanied by an increase in interdiffusion

between the polymer layers and a large decrease in the PS glass

transition temperature. These results show that scCO,can potentially

be used to process multi-component thin polymer films that may

otherwise not be miscible. Potential applications are in the areas of

graded index of refraction waveguides and lower dielectric constant

films for use in microelectronic devices.
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FIGURE 2. Representative reflectivity data for the first pressurization process

at T = 36 °C. The lines are the best-fit results of the model to the observed

density profiles. Swelling is evident in the change of the period of the fringes.

Inset: a schematic phase diagram of C0
2
near critical point. The vertical line

at 36 °C in the inset is the isotherm along which data were taken at pressures

of 1, 86, and 140 bar.

FIGURE 3. Temperature dependence of the swelling of polystyrene at P= 79

bar (filled circles). Open circles show the averaged background intensity as a

function of temperature.
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COLD NEUTRON DEPTH PROFILING OF
LITHIUM BATTERY MATERIALS

As part of a continuing collaboration between NIST and Tufts

University, we have employed cold neutron depth profiling

(NDP) to measure elemental concentrations versus depth for several

lithium ion battery materials. One goal is to rationally design the

thermo-mechanical properties of amorphous lithium phosphorous

oxynitride (lipon, a solid ionic conductor), particularly the thermal

stress (thermal expansion coefficient). A part of this study is to relate

the resulting thermal stress to starting composition and temperature

of evaporant, and of the composition and pressure of the background

gas during deposition. We are also studying LiCo0
2
films (a material

that can be used as an electrode in batteries) to determine if the

ion beam assisted deposition process used has the capability of

controlling not only the degree of crystallinity and orientation of

crystallites, but also of the Li/Co ratio.

The NIST cold neutron depth profiling instrument and tech-

nique have been described previously [1], The technique of neutron

depth profiling (NDP) permits the determination of depth profiles

in thin films up to a few micrometers for several light elements.

The most readily analyzed elements are lithium, nitrogen and boron.

We have previously reported measurement of lithium mobility in

electrochromic devices [2], The lithium depth profiles are based on

the measurement of the energy of alpha particles and/or tritons from

the 6Li(n,a)3H reaction. Nitrogen depth profiles are based on the

measurement of the energy of protons from the l4N(n,p) 14C reaction.

Samples are placed in a beam of cold neutrons, and the emerging

particles are intercepted by surface barrier detectors that measure

their number and energy. Comparing the emission intensity with

that of a known standard leads to quantitative determination of the

lithium and nitrogen concentrations. Moreover, the emitted charged

particles lose energy as they exit the film; this energy loss provides

a direct measurement of the depth of the originating lithium nucleus.

A great advantage of the NDP technique is that it is non-destructive,

which allows repeated observations of the concentrations under dif-

ferent conditions. When combined with other techniques, e.g., acti-

vation analysis, ratios to other constituents can be determined.

Lipon depth distributions

FIGURE 1. Depth profiles of lithium and nitrogen for two different lipon samples.

Tattle I

Sample Li/N Ratio Thickness, jim

Y243 4.46 0.7

Y232 4.39 1.5

Y239 1.63 0.4

Y245 3.1 0.6

Figure 1 gives an example of profiling results using the NDP

technique. Shown here are profiles for two lipon samples manufac-

tured under different conditions. The elemental concentrations in

atoms/cm 1

are presented as a function of depth. Because the alpha

particle loses energy at a greater rate than the proton, the resolution

for the lithium profile is better than that for nitrogen. One observes

that the sample Y245 has a much more uniform distribution of

lithium than sample Y239. By integrating the areas under the curves,

one obtains the total concentration of lithium and nitrogen, respec-

tively, and therefore the ratio of the two in the sample. Table I gives

measured lithium/nitrogen ratios thus obtained and the correspond-

ing thicknesses of four lipon samples.

RESEARCH HIGHLIGHTS



G.P. Lamaze, H.H. Chen-Mayer, and

D.A. Becker

Chemical Science and Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899-8395

F. Vereda, A. Gerouki, N. Clay, P. Zerigian,

T. Haas, and R.B. Goldner

Electro-Optics Technology Center

Tufts University

Medford, MA 02155

-0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60

depth, p.ni

FIGURE 2. Typical lithium depth profiles of two LiCo0
2
samples.

Table II

Sample Lithium

(at/cm2
)

Cobalt

(at/cm2
)

Li/Co

Ratio

Ratio

Uncertainty

(%)(1cr)

Z57a,T 4.9x1

0

17 7.0x1

0

17 .70 3.5

Z57a,B 2.2x1

0

17 7.0x1

0

17
.31 3.5

Z57b,T 4.8x1

0

17 7.0x1

0

17 .68 3.5

Z57b,B 1 .9x1

0

17 7.0x1

0

17 .27 3.5

Z59 9.4x1

0

17 7.6x1

0

17 1.25 3.5

To obtain information on other isotopes that are not measur-

able by NDP, a combination of techniques is employed. In the

following example the ratio of lithium to cobalt in two thin him

LiCoO, samples is determined. The lithium concentration is deter-

mined by NDP, as described above; and the cobalt concentration

is determined by instrumental neutron activation analysis (INAA).

Figure 2 gives lithium depth distributions from NDP measurement

for two thin films of LiCoO,. The integral under the curves gives

the total amount of lithium in the him. After the depth distributions

were obtained, the samples were encapsulated in polyethylene “rab-

bits” for irradiation in the core of the NIST reactor. The total

cobalt concentration was then determined by INAA in which the

60Co gamma decay intensity was measured and compared with a

standard. Table II gives the lithium and cobalt atom area density

obtained from NDP and INAA respectively, as well as the lithium/

cobalt atom ratios for these and other samples. The INAA technique

does not provide any depth information, so that the ratio values

listed in the table are for the average over the entire depth.

To summarize, depth profiles of two different lithium ion bat-

tery materials have been measured. For the lipon sample, profiles

were obtained for lithium and nitrogen as well as the total quantity

of each of these elements in the film. To date, an insufficient number

of samples have been measured to obtain a good correlation with

the physical properties of the films. We are also investigating the

possibilities of measuring Li/P ratios of both starting materials and

resulting films by combining NDP with RNAA for phosphorous.

For the lithium cobalt oxide sample, the NDP technique was

combined with INAA to determine the ratio of lithium to cobalt in

the samples. Although further work is needed to better quantify the

relative evaporation rates of lithium and cobalt, it has been demon-

strated that the measured Li/Co ratio varies in direct proportion to

the relative evaporation rates of lithium and cobalt, as anticipated.

Furthermore, the results indicate that the Li/Co ratio can be control-

lably varied from being less than one to greater than one.
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SERVING THE SCIENTIFIC AND
TECHNOLOGICAL COMMUNITIES

8

The role of the NCNR as a national user facility has expanded

significantly over the past year, as the final few instruments

envisioned in the original cold neutron project have become opera-

tional. The Disk-Chopper Spectrometer, the Filter-Analyzer Neutron

Spectrometer, the High Flux Backscattering Spectrometer, and the

Neutron Spin-Echo spectrometer now permit US scientists to carry

out neutron spectroscopy with greatly enhanced resolution and sen-

sitivity. In addition the new thermal perfect-crystal diffractometer

small angle neutron scattering instrument (USANS) has been com-

missioned this year, expanding the length scale available by this

technique to 104 nm. User experiments show a steadily increasing

diversification in subject area and technique, enabled by the new

instruments. We anticipate that the trend will continue over the next

few proposal cycles. (See the highlights on USANS, FANS and DCS

in this issue. The 1999 NCNR report featured a highlight on the

NSE.)

User participation over the past 14 years shows continuing

growth (see Fig. 1 ). The NCNR currently accommodates more than

half of all neutron users in the US. It has assumed greater impor-

tance to the neutron user community this year with the announce-

88 90 92 94 96 98 2000

FIGURE 1: Research Participants at the NCNR.

ment of the permanent shutdown of the High Flux Beam Reactor

at Brookhaven National Laboratory. As the Spallation Neutron

Source is being built at Oak Ridge, the NCNR continues to be the

nation’s premier facility for providing neutrons to the U.S. research

community.

THE NCNR USER PROGRAM

Researchers may obtain use of NCNR neutron beam instruments

in several ways, the most direct being through the formal proposal

system. Approximately twice a year, a Call for Proposals is issued.

After a thorough review process by external referees and by the

NCNR Program Advisory Committee (PAC), approved proposals are

allocated beam time. The PAC is a panel of distinguished scientists

with expertise across a broad range of neutron methods and scien-

tific disciplines. It is the body primarily responsible for proposal

review and recommending user policies for the NCNR, working

closely with the Center’s Director and staff. Its current membership

includes Sanat Kumar (Penn State University, chair), Robert M.

Briber (University of Maryland), Michael K. Crawford (DuPont),

Dieter K. Schneider (Brookhaven National Laboratory), Thomas P.

Russell (University of Massachusetts), Sunil K. Sinha (Argonne

National Laboratory), Laurence Passed (Brookhaven National

Laboratory ), and Gabrielle G. Long (NIST).

At the recent PAC meeting in May, 2000, the PAC considered

71 proposals for SANS and reflectometry, in addition to 43 for

inelastic neutron scattering. Although we expect that both categories

will see increased user demand in future proposal rounds, the latter

area is likely to see more growth, since the new inelastic scattering

spectrometers will offer capabilities that in aggregate have not been

available previously at US neutron facilities.

THE CENTER FOR HIGH RESOLUTION
NEUTRON SCATTERING

Several NCNR instruments are supported by the National Science

Foundation (NSF) through the Center for High Resolution Neutron

Scattering (CHRNS), a very important component of the user pro-

gram. The instruments include a 30 m SANS machine, the SPINS

triple-axis spectrometer, and USANS. Approximately 40% of the

instrument time allocated by the PAC goes to experiments carried

out on CHRNS instruments. In the near future, another SANS dif-

fractometer, the 8-m machine on neutron guide NG- 1 , which is

presently used primarily for NIST programmatic research, will be
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upgraded to a more powerful 9-m instrument with a new detector,

and made available to users. The NSF is currently reviewing a pro-

posal to further expand the scope of CHRNS, so that it will encom-

pass several of the newer cold neutron spectrometers. Including

these instruments in the CHRNS project will provide maximal tech-

nical support and accessibility to the user community.

SIXTH ANNUAL SUMMER SCHOOL

The NCNR held its annual Summer School on Neutron Scattering

on June 5-9, 2000. The course this year focused on the comple-

mentary techniques of SANS and neutron reflectometry (NR) and

was attended by a group of 32 graduate students and postdoctoral

fellows, predominantly from university chemical engineering and

materials science departments. By devoting an entire week to just

two techniques, it was possible to cover both theoretical and practi-

cal aspects, as well as applications, in some depth. Sixteen NCNR

staff members led the participants through lectures, demonstrations

and hands-on experiments at the NCNR’s two 30-m SANS instru-

ments and two reflectometers. Included for the first time in this

year's course were demonstrations of newly developed computa-

tional tools for planning and simulating SANS and NR experiments

now accessible through the NCNR Web site.

The final day of the course consisted of parallel lecture ses-

sions in the morning on applications of the two techniques drawn

from recent research in polymer science, complex lluids, magne-

tism, and structural biology. The course closed with a session in

which representatives from each team presented their experimental

results to the whole class and staff, which prompted several lively

discussions. Comments received throughout the week and on the

course evaluation forms indicated that the course was successful

in enabling the attendees to assess the applicability of neutron scat-

tering to their own research interests. As in the past, this summer

school was jointly sponsored with the National Science Foundation,

which provided financial assistance to many of the university par-

ticipants.

FIGURE 2: Participants gain hands-on experience in SANS measurements

at the 6th annual summer school on neutron scattering, June 5-9, 2000

COLLABORATIONS

Direct collaborations on specific experiments remain a common way

for users to pursue their ideas using NCNR facilities, accounting for

approximately half of the number of instrument-days. The thermal-

neutron triple-axis spectrometers are mainly scheduled in this way.

Most of the time reserved for NIST on these and all other NCNR

instruments is devoted to experiments that are collaborations with

non-NIST users. Collaborative research involving external users and

NIST scientists often produces results that could be not obtained

otherwise.

Another mode of access to the NCNR is through Participating

Research Teams (PRTs). In this case, groups of researchers from

various institutions join forces to build and operate an instrument.

Typically, 50 % to 75 % of the time on the instrument is then

reserved for the PRT, and the remaining time is allocated to general

user proposals. For example, a PRT involving ExxonMobil, the

University of Minnesota, and NIST cooperates on the NG-7 30 m

SANS instrument. Similar arrangements involving other PRTs apply

for the horizontal-sample retlectometer, the high-resolution powder

diffractometer, the filter-analyzer spectrometer, and the neutron spin-

echo spectrometer.

Eep



INDEPENDENT PROGRAMS
L

There are a number of programs of long standing located at the

NCNR that involve other parts of NIST, universities, industrial labo-

ratories, or other government agencies.

The Polymers Division of the Materials Science and

Engineering Laboratory has two major program elements at the

NCNR. In the first, the purpose is to help the U.S. microelectronics

industry in addressing their most pressing materials measurement

and standards issues. In today’s ICs and packages the feature size

on a chip is ever shrinking, approaching 250 nm, while the size of

a polymer molecule is typically 5 nm to 10 nm. As feature size

shrinks, the structure and properties of interfaces play an increas-

ingly important role in controlling the properties of the polymer

layers used in interconnects and packages. NIST scientists use both

neutron reflectivity and other neutron scattering methods to char-

acterize polymer/metal interfaces with regard to local chain mobil-

ity, moisture absorption, glass transition temperature and crystalline

structure.

In the second program element, the objective is to understand

underlying principles of phase behavior and phase separation kinet-

ics of polymer blends, both in the bulk and on surfaces, in order

to help control morphology and structure during processing. SANS

and reflectivity measurements in equilibrium, in transient conditions,

and under external fields, provide essential information for general

understanding as well as for specific application of polymer blend/

alloy systems. Customers include material producers and users,

ranging from chemical, rubber, tire, and automotive companies, to

small molding and compounding companies. The focus of research

on polymeric materials includes commodity, engineering and spe-

cialty plastic resins, elastomers, coatings, adhesives, films, foams,

and fibers.

The ExxonMobil Research and Engineering Company is

a member of the Participating Research Team (PRT) that operates,

maintains, and conducts research at the NG-7 30 m SANS instru-

ment and the recently commissioned NG-5 Neutron Spin Echo

Spectrometer. The mission is to use those instruments, as well as

other neutron scattering techniques, in activities that complement

research at ExxonMobil's main laboratories as well as at its affili-

ates’ laboratories around the world. The aim of these activities is

to deepen understanding of the nature of ExxonMobil's products

and processes, so as to improve customer service and to improve

the return on shareholders’ investment. Accordingly, and taking full

FIGURE 3: PAC substitute Bill Hamilton (ORNL), members Larry Passell (BNL) and

Dieter Schneider (BNL), and PAC Chair Sanat Kumar (Penn State U.) share a lighter

moment while considering proposals for beam time at the NCNR.

advantage of the unique properties of neutrons, most of the experi-

ments use SANS or other neutron techniques to study the structure

and dynamics of hydrocarbon materials, especially in the fields

of polymers, complex fluids, and petroleum mixtures. ExxonMobil

regards its participation in the NCNR and collaborations with NIST

and other PRT members not only as an excellent investment for the

company, but also as a good way to contribute to the scientific health

of the nation.

The Nuclear Methods Group (Analytical Chemistry

Division, Chemical Science and Technology Laboratory) has as its

principal goals the development and application of nuclear analytical

techniques for the determination of elemental compositions with

greater accuracy, higher sensitivity and better selectivity. A high

level of competence has been developed in both instrumental and

radiochemical neutron activation analysis (INAA and RNAA). In

addition, the group has pioneered the use of cold neutron beams

as analytical probes with both prompt gamma activation analysis

(PGAA) and neutron depth profiling (NDP). PGAA measures the

total amount of a particular analyte present throughout a sample

by the analysis of the prompt gamma-rays emitted during neutron

capture. NDP, on the other hand, determines concentrations of sev-

eral important elements (isotopes) as a function of depth within the

first few micrometers of a surface by energy analysis of the prompt
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charged-particles emitted during neutron bombardment. These tech-

niques (INAA, RNAA, PGAA, and NDP) provide a powerful com-

bination of complementary tools to address a wide variety of ana-

lytical problems of great importance in science and technology, and

are used to help certify a large number of NIST Standard Reference

Materials.

During the past several years, a large part of the Group's

efforts has been directed towards the exploitation of the analytical

applications of the guided cold-neutron beams available at the NIST

Center for Neutron Research. The Group’s involvement has been

to design and construct state-of-the-art cold neutron instruments for

both PGAA and NDP and provide facilities and measurements for

outside users, while retaining and utilizing our existing expertise in

INAA and RNAA.

The Center for Food Safety and Applied Nutrition, U S.

Food and Drug Administration (FDA), directs and maintains a neu-

tron activation analysis (NAA) facility at the NCNR. This facility

provides agency-wide analytical support for special investigations

and applications research, complementing other analytical tech-

niques used at FDA with instrumental, neutron-capture prompt-gam-

ma, and radiochemical NAA procedures, radioisotope x-ray fluores-

cence spectrometry (RXRFS), and low-level gamma-ray detection.

This combination of analytical techniques enables diverse multi-

element and radiological information to be obtained for foods and

related materials. The NAA facility supports agency quality assur-

ance programs by developing in-house reference materials, by char-

acterizing food-related reference materials with NIST and other

agencies, and by verifying analyses for FDA’s Total Diet Study

Program. Other studies include the development of RXRFS methods

for screening foodware for the presence of Pb, Cd and other poten-

tially toxic elements, use of instrumental NAA to investigate bro-

mate residues in bread products, and use of prompt-gamma NAA to

investigate boron nutrition and its relation to bone strength.

The Neutron Interactions and Dosimetry Group (Physics

Laboratory) provides measurement services, standards, and funda-

mental research in support of NIST’s mission as it relates to neutron

technology and neutron physics. The national and industrial interests

served include scientific instrument calibration, electric power pro-

duction, radiation protection, defense nuclear energy systems, radia-

tion therapy, neutron radiography, and magnetic resonance imaging.

The Group’s activities may be represented as three major

activities. The first is Fundamental Neutron Physics including mag-

netic trapping of ultracold neutrons, operation of a neutron interfer-

ometry and optics facility, development of neutron spin filters based

on laser polarization of ^He, measurement of the beta decay lifetime

of the neutron, and investigations of other coupling constants and

symmetries of the weak interaction. This project involves a large

number of collaborators from universities and national laboratories.

The second is Standard Neutron Fields and Applications uti-

lizing both thermal and fast neutron fields for materials dosimetry

in nuclear reactor applications and for personnel dosimetry in radia-

tion protection. These neutron fields include thermal neutron beams,

“white” and monochromatic cold neutron beams, a thermal-neutron-

induced 235u fission neutron field, and 25-Cf fission neutron fields,

both moderated and unmoderated.

The third is Neutron Cross Section Standards including exper-

imental advancement of the accuracy of neutron cross section stan-

dards, as well as evaluation, compilation and dissemination of these

standards.

Several universities have also established long term programs

at the NCNR. The University of Maryland is heavily involved in

the use of the NCNR, and maintains several researchers at the facil-

ity. Johns Hopkins University participates in research programs in

solid-state physics and in instrument development at the NCNR. The

University of Pennsylvania is working to help develop biological

applications of neutron scattering. It is also participating in the

second stage construction of the filter analyzer neutron spectrometer,

along with the University of California at Santa Barbara, DuPont,

Hughes, and Allied Signal. The University of Minnesota partici-

pates in two PRTs, the NG-7 30-m SANS and the NG-7 reflectom-

eter. The University of Massachusetts also participates in the latter

PRT.
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REACTOR OPERATION AND ENGINEERING
I

T he reactor operated for 198 full power (20MW) days during

the past year or 54 % of real time that is equivalent to 77 %
of the maximum available operating time. Routinely, the reactor is

scheduled to operate on a 7-week cycle, seven times a year. Each

operating cycle includes 38 days on-line and 1 1 days shutdown

for refueling, routine maintenance and surveillance tests. This year,

several major tasks became due and required additional shutdown

time. Included among these are two shipments of spent fuel, replace-

ment of the shim arm assemblies which required removal of the

entire core and took only one month, half of that previously, and

major modification to the refueling system projected to take two

months was completed in five weeks. In addition, corrective mainte-

nance of the thermal shield and the thermal column cooling systems,

refurbishing of the existing cooling tower to assure uninterrupted

operation for at least two more years, and finally the biennial retrain-

ing, re-examination and requalification of all licensed operations

personnel were conducted.

The major engineering effort the past year was the design and

specification of a completely new plume-abatement cooling tower

to be installed adjacent to the existing one. (Figure 1 compares

examples of abated and non-abated cooling towers.) As well as

being a larger capacity, more effective and more efficient system,

the new tower eliminates vapor plumes down to 10 °F ambient.

Construction of the new tower basin began in late September 2000

and should be completed before the end of the year. Fabrication of

the tower is underway and scheduled for completion in the spring

of 2001 to be followed by on-site installation, expected to take

approximately four months. No reactor shutdown will be required

during this period. The reactor will have to be shutdown only for

final hookup of electrical, controls and piping connections and for

acceptance and performance testing.

FIGURE 1. No discernible cloud is emitted by the plume-abated cooling

tower shown on the left compared to the plumes emerging from the

non-abated towers on the right.

Preparations for reactor re-licensing in 2004 for an additional

twenty years are proceeding. They include preparation of an updated

safety analysis report including seismic evaluation, an environmen-

tal report and impact statement, technical specifications and bases,

operator requalification program and emergency and security plans.

In-service inspections of reactor internals and ultrasonic testing of

the primary cooling system plus upgrade of older systems and

components will be needed in support of the application for license

renewal. Many of the upgrades have already been completed or are

in progress. Among the major upgrades planned over the next few

years are complete replacement of the nuclear instrumentation panel

and associated safety and control systems, complete replacement of

the electrical power systems and associated switch gear and replace-

ment and upgrade of the reactor emergency power supply systems.



INSTRUMENTATION DEVELOPMENTS

A LOW BACKGROUND DOUBLE FOCUSING
NEUTRON MONOCHROMATOR

Work continues on the development of a low background double

focusing monochromator which was described in the 1999 NCNR

report. The actively controlled double focusing monochromator con-

sists of an array of 3 1 5 pyrolytic graphite crystals mounted on 2

1

thin aluminum blades (see Fig. 1). When buckled, each variable

thickness blade conforms in shape to an arc of constant radius

providing active vertical focus control. Horizontal focus is accom-

plished by independently controlling the rotation of each blade.

The design and choice of materials for the system reduces

scattering from the supporting structure, a problem common to tradi-

tional lead-screw and lever controlled monochromators. Structural

material in the beam is limited to the 21 blades and three thin walled

aluminum posts. The 315 crystals are accurately suspended with

only 630 g of structural material in the beam’s direct line of sight.

An engineering mock-up of the focusing system was con-

structed (see Fig. 2a). This three-blade version of the full-scale

21 -blade unit was used to study blade performance, develop control

software, quantify horizontal and vertical focus performance, and

test mechanical and electrical system components. Figure 2b shows

an optical test of vertical focus performance using the mock-up. The

U

FIGURE 1. Rendered image of the low background doubly focusing

monochromator.

FIGURE 2. Three blade mockup of the doubly focusing monochromator focusing

system, (a) Blades are shown buckled to an arc of a 1 m radius circle.

(b) Vertical focusing is optically verified by focusing a white point source onto

a screen.

three blades are covered with reflective mirrors and illuminated with

a white point source. The reflected image is focused onto a screen.

Imaging tests such as this, as well as mechanical measurements,

have verified that errors in blade shape are negligible compared to

contributions due to crystal mosaic over the focal range of interest.

Similar optical tests have been used to verify the horizontal focus

performance.

The full-scale unit is currently under construction. When com-

pleted, the 1300 cm 2 monochromator will be the heart of the new

cold neutron spectrometer under development at the NCNR. It is

expected to provide an intense monochromatic neutron flux with 0.1

< AE < 0.5 meV and AQ = 0. 1 A' 1 yielding a peak flux of order 1 .0

x 108 n/cm2
/s, higher than any currently available worldwide. This

new instrument will be ideal for studying materials with excitations

having a low characteristic velocity. The enhanced sensitivity will

enable inelastic neutron scattering studies of smaller sample size

and will provide dynamic information of unprecedented detail when

large samples are available.
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THE BT-7 THERMAL TRIPLE AXIS

ANALYZER/DETECTOR SYSTEM

As part of the modernization of the thermal neutron spectrometers

a new triple-axis instrument is being designed for the BT-7 thermal

beam port. For the analyzer portion of this machine several different

types of systems have been proposed. One type is a horizontally

focused pyrolytic graphite analyzer system shown in Fig. 3. The

analyzer crystal system consists of 1 3 pyrolytic graphite blades,

each 2 cm wide and 15 cm high, with either an individual detector

for each of the 13 blades, or a position-sensitive detector using all

the blades at once.

This is the modem equivalent of our present analyzer systems,

and is expected to be the workhorse for the new thermal triple axis

instruments. The blades of the analyzer can be freely rotated by

360 degrees and individually positioned, while the entire unit can be

rotated as a whole to achieve the desired focusing condition. Each

blade can then be matched with a detector that is capable of being

positioned individually by a stepper motor on a circular track around

the analyzers. A straight-through beam monitor is incorporated into

the shielding behind the analyzer crystals to continuously monitor

the flux of neutrons entering the analyzer system. A separate diffrac-

tion detector is also provided, which can be moved in front of the

analyzer if the energy-integrated signal is to be measured.

The general design philosophy is to make the instrument as

user friendly as possible while still meeting all the desired operating

criteria. These include a built-in magnetic guide field for polarized

beam operation, various beam defining systems such as collimators,

beam apertures, spin flippers, and filters. Ease of exchanging beam

collimators before and after the analyzer crystals is an important

design feature that presents an engineering challenge. Extracting the

wiring from all the moving detectors and motors inside the system

will also be a technical challenge.

A second type of analyzer system will consist of a series of up

to 30 individual and isolated analyzer/detector systems. Other ana-

lyzer options, to be developed in the future, include incorporating

a velocity selector into the analyzer system, and developing a “con-

ventional'' double-focusing analyzer with a single, well-shielded

detector.

THERMAL NEUTRON PROMPT GAMMA-RAY
ACTIVATION ANALYSIS (PGAA) FACILITY

AT VT-5.

The vertical beam tube VT-5 thermal neutron PGAA facility

is being upgraded through a collaboration of members of the

NCNR, the Nuclear Methods Group, and the U.S. Food and Drug

Administration. The current facility consists of an internal neu-

tron-collimating beam tube and shutter assembly, an external beam

tube, sample chamber, a beam stop, and a gamma-ray detection sys-

tem. All components except the

internal beam tube and shutter

assembly will be replaced and

a sapphire filter installed in the

shutter assembly. The new com-

ponents will be designed to

reduce background count rates

and improve detection limits.

The external components will be

constructed as a single unit to

simplify removal and re-assem-

bly of the instrument to make

room for reactor refueling.

Custom gear tracks

Straight through

beam monitor

Pyrolitic graphite

analyzer blades

Each detector

Cadmium-shielded

Individual detectors

which, as a group,

can range over

5 < 2 ©analyzer^ 145

High density poly-

ethylene shielding

B4C shielding

Diffraction Detector

Beam Collimator

Position-sensitive

detector

Stepper Motor Drives

FIGURE 3. Horizontally focused pyrolytic graphite analyzer system for the BT-7 thermal triple-axis spectrometer.
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FIGURE 4. Andrzej Rajca (left, University of Nebraska) and NCNR’s Sung-Min

Choi load a sample under special conditions. For this SANS experiment, the

sample had to be kept below 170 K from storage in liquid nitrogen to top-

loading into the pre-cooled cryostat. The transfer was performed in a helium

atmosphere using a glove bag in order to prevent water condensation on the

sample cell surface.

A cylindrical sapphire filter 5.3 cm long (4.3 cm diameter)

was added to the shutter. This modification reduced the number of

fast neutrons by a factor of five and greatly reduced the low-energy

gamma-ray background. The gamma-ray background measured at

the perimeter of the apparatus has decreased by a factor of two and

the peak-to-background ratios for gamma-ray energies below 500

keV increased by a factor of two to three.

The design of the new system is complete. The steel compo-

nent of the old beam stop will be replaced by aluminum to eliminate

iron capture gamma-ray background. The external beam tube will be

evacuated to minimize neutron scattering and capture in air and will

be constructed from aluminum tubing lined internally with lithoflex

to eliminate the background for boron determinations. The detection

system will consist of a 40 % (relative efficiency) germanium detec-

tor with a bismuth germanate Compton suppression system. The

new system will decrease analysis times and improve detection for

most elements determined.

SAMPLE ENVIRONMENT TEAM

Fiscal year 2000 marked the creation of a new Sample Environment

Team, dedicated to providing a central resource for the sample

environment needs of neutron researchers. This team provides a

single contact point to resolve any issue related to the sample condi-

tions during an experiment, such as temperature, pressure, magnetic

field, electric field, or in situ measurements. The scope of this

team includes sample preparation and mounting, equipment schedul-

ing. special equipment configurations, operational procedures, provi-

sion of necessary' resources, sample storage, and equipment repair.

Figure 4 shows researchers loading a sample, hi this case a difficult

SANS experiment was made possible by the team working with

the researchers to choose the appropriate sample environment equip-

ment and operating procedures.

The most visible change during FY2000 is in the high-bay

sample preparation area at the NCNR. This area was extensively

remodeled to provide more workspace, greater ease of use. more

convenient preparation of cryogenic equipment, and better access

to sample storage. Additionally, extensive documentation is now

available for the most widely used sample environment equipment,

the closed-cycle helium refrigerators. This documentation details

individually-measured operating characteristics, sample mounting

information, temperature sensor data, and operating guidelines.

Significant new equipment acquired for the user community' in

FY2000 is listed in Table 1.

TABLE 1. Significant sample environment purchases during FY2000..

100 mm access top-loading

helium cryostat

1.5 K to 300 K, dedicated to

time-of-flight spectrometer

70 mm access top-loading

helium cryostat

1.5 K to 300 K. general use

Seven additional sample

probes for 50. 70. and

100 mm access top-loading

helium cryostats

Provide for faster sample changes

and specialized needs such as

gas handling

Closed-cycle helium refrigerator 10 Kto 350 K. dedicated to

backscattering spectrometer

Closed-cycle helium refrigerator 10 Kto 350 K. general use

Electromagnet 0-0.7 Tesla, dedicated to

vertical reflectometer

Thirty indium-sealing

sample cans

Mounting of powder samples and

single crystal samples

Six temperature controllers Multiple sensor capability,

PID control

Nine turbopumps 10‘ : mbar base pressure

Two large rotary vane pumps 10-4 mbar base pressure
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