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Abstract

The effect of a temperature dependent diffusion coefficient on the morphological

stability of a binary alloy during directional solidification is treated by a linear stability

analysis. The Soret effect is also included in the analysis. Specific calculations are

carried out for a tin alloy containing silver for which the diffusion coefficient has a linear

dependence on temperature. Although the temperature dependence of the diffusion

coefficient has little effect on the critical concentration for the onset of morphological

stability, it causes a significant change in the wavelength at the onset of instability.

PACS: 81.30.Fb, 81.10.Fq, 66.10.Cb, 64.70.Dv

Keywords: Alloy Solidification, Tin-Silver, Soret Effect, Temperature-Dependent Diffusivity

‘Corresponding author. Tel.: + 1-301-975-2711; fax + 1-301-990-4127.

E-mail address: mcfadden@nist.gov (G. B. McFadden)

1



1 Introduction

Morphological stability during the directional solidification of a binary alloy has been in-

tensively studied [1] since the seminal analysis of Mullins and Sekerka [2]. These analyses

reveal the important role played by solute diffusion in determining interface stability during

growth. In particular, diffusion determines the solute gradient in the liquid at a given growth

rate and, consequently, determines the value of the constitutional supercooling. However,

since the liquid temperature gradient is often high, thermodiffusion (the Soret effect) should

be considered as well. The possible influence of thermodiffusion on the stability analysis was

considered by a number of authors [3-5]. Hurle [3] concluded that thermodiffusion modifies

significantly the wavelength and, in a less pronounced way, the critical value of the control

parameters.

Hurle’s analysis was carried over with a “normal” Soret effect. In many cases, however,

thermodiffusion may have a strong dependence on composition. In particular, for dilute

solutions, the thermodiffusion flux is proportional to the mean concentration. This has been

confirmed in tin alloys by the measurements in microgravity of Praizey et al. [6,7]. To

account for this, the following form of the solute flux J can be used:

J = —D VC - At(C)VT, (1)

where

At(C) = Dt{/3o + P\C). (2)

Here D is the solute diffusion coefficient, C is the solute concentration, T is the temperature,

Dt is the thermodiffusion coefficient, and /30 and are constants. The nonlinear dependence

of the thermodiffusion flux ((3i ± 0) was considered previously by Coriell et al. [4] in order

to extend the analysis performed by Hurle, who studied the influence of thermodiffusion on

morphological stability of planar solidification (with =0). Indeed, for dilute solutions

and for all cases where (3i/(3o is large, the transport is of phoretic form and may exhibit

unusual dynamics [4, 8]. This dependence on composition is, in the terminology of the

thermodynamics of irreversible processes, a nonlinear effect [9]. To be consistent in this
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respect, the diffusion coefficient is considered here as a function of the temperature. Recently

measurements of the temperature dependence of the diffusivity have been performed in

concentrated solutions [10,11] and in dilute solutions [12,13]. For dilute solutions a power

law dependence is observed, while for concentrated solutions the dependence is more difficult

to assess, and is system dependent [14, 15].

In dilute solutions, the dependence of the diffusion coefficient on concentration is not sig-

nificant and the dependence of the thermodiffusion coefficient on temperature is on the order

of l/T in dilute atomic solutions [7]. The dependencies lead to contributions [dD/dC] (VC)
2

and
[
dDr/dT

]

(VT)
2

in the species balance equation. The first case has been considered by

Wollkind [16] who assumed such a dependence to be small, which allowed the use of a per-

turbative technique. However, exceptions to this are observed in concentrated solutions [17],

which introduces additional terms in the perturbation equations. Such a dependence would

therefore require a separate analysis that shall not be carried out here. In our approach we

do not assume that the other dependences are small. Our interest here shall therefore be to

analyze the influence of a dependence of the form

J = —D(T)\7C - Dt% + AC)VT. (3)

on morphological stability. In particular, our analysis addresses how the temperature de-

pendence of the diffusion coefficient contributes to the destabilizing mechanisms.

2 Theory

We consider directional solidification of a binary alloy at constant velocity V in the 2-direction

and treat the morphological stability of an initially planar crystal-melt interface. We choose

an
(
x,y,z

)
coordinate system (moving with the macroscopically planar interface) such that

the crystal-melt interface is described by 2 = h(x,y,t), where t is the time. We assume that

there is no fluid flow in the melt, that diffusion and thermodiffusion can be neglected in the

crystal, and that the thermal diffusivities in crystal and melt are sufficiently large that the

thermal field can be approximated by Laplace’s equation.
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The temperature fields, TL (x,y,z )
and Ts{x,y,z ), in the melt and crystal and the solute

field in the melt, Ci(x,y, z,t ), satisfy the partial differential equations

v2rt = o, (4)

and

V2
7s = 0,

dCh = -V • J + V
dCl

(5)

(
6

)
dt ' dz

We assume that the solute flux J has the general form given by eq. (3). This form includes

Soret diffusion, as treated previously [4, 8], and temperature dependence of the diffusion

coefficient. We also assume that the other thermophysical properties are independent of

temperature and solute concentration.

The boundary conditions at the crystal-melt interface are

(V • n)(l — k)CL = J • n, (7)

Lv (V n) = (ksVTs - kLVTL )
n, (8)

Ts — TL = Tm + mCi — TM r/C, (9)

Cs = kCL , (10)

where V is the solidification velocity vector, n is the unit normal to the interface, k is

the partition coefficient, Lv is the latent heat per unit volume, ks and ki are the thermal

conductivities of crystal and melt, respectively, TM is the melting point, m is the liquidus

slope, T = 7/Lv is the capillary length, 7 is the crystal-melt surface tension, /C is the mean

curvature of the crystal-melt interface, and Cs is the concentration in the solid. We fix the

far-field boundary conditions by specifying the bulk alloy concentration C

^

in the liquid far

from the interface, and the temperature gradient in the liquid, Gl, at the planar crystal-melt

interface. The steady-state solutions of the temperature equations for the planar crystal-melt
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interface are

T°l (z) = T„ + Gl z, (11)

Tl(z) = To + Gsz , (12)

where the planar interface temperature is given by T0 = TM + ttiCl ,
and the temperature

gradients Gs and Gl are related by LvV = ksGs — k^Gi. The differential equation for the

steady-state solute field can be integrated to obtain the first order equation,

C\S~1 Orp

-D(T

-

DT (P0 + PiCL)~^ = V{1 - k)CL . (13)

We shall assume that the dependence of D on T is linear. For some tin alloys this approxi-

mation is valid over a wide range of temperature [18]. Thus we assume that:

D(T) = D, + (dD/dT)(T - T„), (14)

where Dj the value of the diffusion coefficient at T0 . The unperturbed solute distribution is

then given by

CL - Coo = [1A1K + (n- fc)Coo)[l + aVz/D (15)

where

£ = dtGlPq/v (16)

H — 1 + {DtGl(3\/V) (17)

a = (dD/dT)GL/V (18)

When a tends to zero, eq. (15) tends towards

CL ~ Coo = [1A][£ + (M - k)Coo] exp[—pV2/Di] (19)

which is the expression given previously [4,8]. The values of a and p

the same order of magnitude. We note that o; is always positive, and,

— 1 will usually be of

for usual values of a
,

the profiles given by equations (15) and (19) do not differ significantly. The interfacial liquid
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solute gradient is given by:

Gc = -\Vix/D,k\[(, + (/» - k)Coo]

and the solute concentration in the solid is given by:

(20)

Cs — /iCoc + i (
21

)

The above quantities do not depend on a. Therefore the base state seems to be affected in

a negligible way by the temperature dependence of the diffusion coefficient. For the linear

stability analysis of the base state, the variables are written as the superposition of the

base state component and a perturbation. The perturbed quantities are Fourier analyzed in

the lateral direction and exponential time-dependence is assumed, so that the variables are

written as

( TL {x,y,z,t)
^ ' T°l (z)

^ ' Tl(z) \

Ts {x,y,z,t) — T°s (z)

+
n(z)

CL {x, y, z, t) C°L (z) Cl(z)

\
h(x, y, t)

} \
0

t
h j

exp [at -f- iuxx + iuyy], (22 )

where a = or + iat governs the time-dependence of the perturbation, ux and uy are the

wavenumbers in the x and y directions, and h is the amplitude of the perturbed interface

position. The system is unstable if <Tr > 0 for any wavenumber.

The first order perturbation variables, T[(z), T<j(z), and Cl(z), satisfy the ordinary

differential equations

dz2
T l

L = 0,

Tl = 0,

(23)

(24)

+ (V + ~^fGh + Dt(3\Gl)— — Du2 — o C} +
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,dD n 0 dC° d dDd2C°L
{ df

+ DT^d-Z
+ T} = 0. (25)dT dz2

where u2 = uo
2 + uo

2
. The solution for the perturbed temperature field in the solid and liquid

which decay at infinity are given by

Tg(z) = Ts exp{ujz), (26)

TL( Z )
= Tl exp(-ujz), (27)

where 7$ and TL are constants.

The boundary conditions at z — 0 give the following relationships:

TL + GLh = fs + Gsh = m[C\ + Gch) - TM Tuj
2h

, (28)

Lvoh = ksujfs + kLujfL , (29)

<r(l - k)(Cs/k)h + (1 - k)VCl + (1 - k)VGch = -D^- - Gc(fL + GLh)
dz ol

(PC0

+ Dt(0o + PiCs/k)uTL - DrMGch + Cl)GL , (30)

By eliminating h, Ts, Tl from these equations, we obtain a single boundary condition at

z = 0 involving the perturbed liquid concentration.

3 Numerical Results

We have solved for the perturbed temperature and concentration fields in the liquid using

the computer code SUPORT [25] with the assumption that = 0 at the onset of instability

(crr = 0). Calculations were carried out for a tin-silver alloy for a range of solidification

velocities for a temperature gradient in the liquid of 180 K/cm. The thermophysical prop-

erties used are summarized in Table I. The values of k and m are deduced from the phase

diagram. The values of the diffusion coefficient and of its variations with composition were

obtained by Bruson and Gerl [18] in a shear cell. Although those values may be altered by

convection as studied by Garandet et al. [19], the measurements by Bruson and Gerl are
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thought to provide good estimates. Thermodiffusion data are known to be very sensitive

to gravitational convection [19], and it is presently necessary to rely on measurements per-

formed in microgravity conditions. Such measurements are available only for some tin alloys

[12, 13]. Values for pure tin are used for the other thermal quantities, as given in standard

thermophysical tables.

The results of the numerical calculations of linear stability are shown in fig. 1 and fig. 2.

We plot the critical value of above which the interface is unstable as a function of

growth velocity V in fig. 1. There are three curves which almost coincide; the solid curve is

the usual Mullins and Sekerka theory with the thermodiffusion coefficient Dt = 0 and the

temperature dependence of the diffusion coefficient dD/dT — 0. The dashed curve is for the

actual values of the DT and (dD/dT) given in Table I with j3\ = 1 and /30 = 0, while the

dashed-dot curve sets the thermodiffusion coefficient to zero, but retains the temperature

dependence of the diffusion coefficient. For the lowest velocity used in the calculations (0.5

l±m/s), the critical concentrations are 0.00321, 0.00308, and 0.00322 atomic fraction silver

for the solid, dashed, and dashed-dot curves, respectively. Similar results for the critical

wavenumber as a function of velocity are given in fig. 2. At the lower velocities, the dashed

and dashed-dot curves almost coincide, but differ significantly from the solid curve. Since the

dashed-dot curve neglects the effect of thermodiffusion, we conclude that the temperature

dependence of the diffusion coefficient results in the change in critical wavenumber.

4 Approximate Stability Conditions

In order to understand the preceding numerical results, particularly the change in wavenum-

ber that results from the temperature dependence of the diffusion coefficient, we derive an

analytical dispersion relation based on approximating the governing equations. The appro-

priate approximations were found by numerical examination of the governing equations in

order to identify the dominant terms.

If we first assume that Dt is negligible, the perturbed solute equation takes the form

d2 dD d 2D
d? + {v +

fff
Gl)

Tz
~ Du - a c}+
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dDdCl d
+
dD d2C?

Tl

L = 0,
dT dz dz dT dz2

and the perturbed solute flux boundary condition takes the form

(31)

a{ 1 - k)(Cs/k)h + (1 - k)VCl + (1 - k)VGch = (32)

- D dCl

dz

™
Gc(TL + GLh)-D*§h

at z = 0. An analytic solution to the perturbed solute equation (31) is difficult because of

the spatial variation in the coefficients arising from D(T). The numerical results indicate

that the variation is small enough that D in eq. (31) can be assumed to be constant, D —

Dj\ however, the derivative dD/dT must be retained in these equations. This produces a

constant coefficient equation that can be solved analytically. We further find that to a good

approximation the base state C° and its derivatives can be obtained from the solution

Cl = C«,( 1 + A ex P[ -Vz/D,} (33)

corresponding to a constant diffusion coefficient as well. Eq. (31) then admits an exponential

solution

Cl(z )
= A0T

l

L exp[— rz] + B0 exp[-Az], (34)

where r = uj + V/Dj,

x
V + GLdD/dT

,

2£>/
+
N

'

V + GLdD/dT \ ,

a

2Dj )

+UJ +
Dr (35)

and

rGc(dD/dT)
0 " u(V - GLdD/dT) -a- VGL(dD/dT)/D,

'

(36)

The coefficient B0 ,
together with h, TL ,

and Ts, is found by applying the boundary

condition (32), together with the boundary conditions (28) and (29). In applying (32), we

find that the term d?C°/dz2 should be obtained from the exact solution given by eq. (15)

(with f = 0 and fi = l) rather than eq. (33).
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The resulting dispersion relation is given by

—omGc
+ 'mAog0 (\ — r) + (Gi + go) + g0mGcdD/dT

~D r

+ mGr A -
V_

d~A
— TmTuj2 A — (1 -k)

V_

D~i
-0,

where

go =
dLy /LO + ks{Gs — Gi)

(37)

(38)
ki + ks

is a proportionality factor relating the perturbed liquid temperature and the interface per-

turbation, Ti — goh.

Since the critical wavelength is found to be small compared to the diffusion length Dj/V
,

we consider the dispersion relation in the limit of large wavenumber. The resulting approx-

imation to the dispersion relation, with o = 0, has the form

Q 1 -
G Aft3

mG r

-k +
ak<

2 {ki + ks) \Gl
r^-n-o. (39)

where fi = uD,/V, a = G L (dD/dT)/V, G =
(
kLG L + ksGs )/(kL + ks ), and

kTMTV2

A mGcDj
2 (40)

is the absolute stability parameter of Mullins and Sekerka [2]. The left hand side of eq. (39)

has an extremum when

3AQ2

_ 1 _
G

k mGc
’

which when combined with eq. (39) results in the relation

(41)

fi
3

k aks /Gs A

2A
"

2 (ki, + ks) /
(42)

Numerically solving eq. (39) for and minimizing as a function of u; yields the

critical concentration and wavenumber as a function of velocity and liquid temperature gradi-

ent. A plot of the critical concentration as a function of velocity based on the approximation

(39) is indistinguishable from the dashed-dot curve in fig. 1; the results agree to four digits.
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The results for the critical wavenumber as a function of velocity based on the approximate

formula (39), and the corresponding exact numerical solution, which corresponds to the

dashed-dot curve in fig. 2, is shown in fig. 3.

It is difficult to make further analytical progress in solving the equations (39) and (41) to

obtain explicit expressions for the critical wavenumber and concentration (or an alternative

control parameter such as k or Gi). The parameter A depends on both V and Cqo, and the

dependence on the control parameters is nonlinear in these expressions. An estimate for the

effect of temperature-dependent diffusivity on the critical wavenumber can be obtained from

eq. (42) if we ignore the small effect that a has on A. For tin-silver, the term in brackets

on the right hand side of eq. (42) has the value [k + 0.052] for a velocity V = 1 gm/s; since

k = 0.018 in this case, this results in a significant change in the critical wavenumber.

5 Discussion

For the low solidification velocities considered here, morphological instability is, to a good

approximation, given by the modified constitutional supercooling criterion: instability occurs

when the constitutional supercooling term mGc exceeds the thermal-conductivity-weighted

temperature gradient, i.e., G/(mGc ) < 1 in eq. (39). The surface tension term
(AQ3/k

)
is

small compared to Q, but plays an important role in determining the critical wavenumber.

Similarly, although the term proportional to a is small as well, it also has a significant

effect on the critical wavenumber. Noting that k/A is independent of k for fixed Gc ,
we

see from eq. (42) that the temperature-dependence of the diffusivity effectively modifies

the partition coefficient k. At the onset of instability the term in brackets in eq. (42) can

be written as k — [(dD/dT)g0/(2V)], where go relates the perturbed temperature field and

interface shape, Tl = goh. When the diffusivity is temperature-dependent and the thermal

conductivity in the solid is larger than in the liquid (as in the tin alloy considered here), this

term increases the effective partition coefficient and hence, from eq. (42), it increases the

critical wavenumber.

In the frozen temperature approximation [26], in which Gl = Gs, the perturbed tem-

perature field vanishes and there is no modification of the critical wavenumber associated
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with the temperature-dependent diffusion coefficient, see eq. (42). In this approximation, the

hills at the interface maxima are hotter than the valleys at the interface minima, and hence

the diffusion coefficient is larger at the hills than in the valleys. However, this effect does

not cause a modification of the critical wavenumber. The change in wavenumber apparently

arises from the perturbed temperature field, which modifies the perturbed concentration

field, see eq. (34). The perturbed temperature field depends on the parameter g0 given by

eq. (38), which is the quantity that actually enters the approximate dispersion relation (39).

With the parameter values we have studied for the tin-silver system, the Soret effect is

found to be small. We note, however, that Hurle [3] found a significant shift in the critical

wavenumber for moderate Soret coefficients for systems with small partition coefficients,

k < 0.01.
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Table I

Thermophysical Properties of Tin-Silver Alloys

Melting point of tin, TM

Liquid thermal conductivity, kL

Solid thermal conductivity, ks

Heat of fusion, Lv

Capillary parameter, TMF

Liquid diffusion coefficient, D(Tm)

Temperature coefficient,
(
dD/dT

)

Liquidus slope, m

Segregation coefficient, k

Thermodiffusion coefficient, Dt

505.1 K [20]

0.30 J/(cm s K) (23]

0.60 J/(cm s K) [23]

418.0 J/cm3
[20]

8.6 (10~ 6
)

Kcm [21]

2.07(10~ 5
)

cm2
/s [18]

1.72(10
-7

)
cm 2

/ (Ks) [18]

-284. K/at. frac. [22]

0.018 (22]

7.2(10~ 9
)

cm 2
/ (Ks) [24]

References

[1] S.R. Coriell, G.B. McFadden, in: D.T.J. Hurle (Ed.), Handbook of Crystal Growth, vol.

IB, North-Holland, Amsterdam (1993), p. 785.

[2] W.W. Mullins, R.F. Sekerka, J. Appl. Phys. 35 (1964) 444.

[3] D.T.J. Hurle, J. Crystal Growth 61 (1983) 463.

[4] S. Van Vaerenbergh, S.R. Coriell, G.B. McFadden, B.T. Murray, J.C. Legros, J. Crystal

Growth 147 (1995) 207.

[5] P. Rudolph, T. Boeck, P. Schmidt, Cryst. Res. Technol. 31 (1996) 221.

[6] J.P. Praizey, Int. J. Heat Mass Transfer 32 (1989) 2385.

[7] S. Van Vaerenbergh, J.P. Garandet, J.P. Praizey, J.C. Legros, Phys. Rev. E 58 (1998)

1866.

[8] S. Van Vaerenbergh, J.C. Legros, M. Henenberg, J. Crystal Growth 158 (1995) 369.

13



[9]

I. Prigogine, Introduction to Thermodynamics of Irreversible Processes, Thomas, New

York (1955).

[10] M. Meier, V. Braetsch, G.H. Frischat, J. Am. Ceram. Soc. 73 (1990) 2122.

[11] A.O. Ukanawa, NASA-CR-149958, (1976).

[12] G. Frohberg, K.H. Kraatz, A. Griesche, H. Wever, Proceedings of the Norderney Sym-

posium on Scientific Results of the German Spacelab Mission D-2, (1994), p 288.

[13] R.W. Smith, Microgravity Sci. Tech. 11 (1999) 78.

[14] H.J.V. Tyrrell, K.R. Harris, Diffusion in Liquids: a Theoretical and Experimental Study,

Butterworths, London, 1984.

[15] S. Van Vaerenbergh, J.C. Legros, in: R. Monti (Ed.), Fluid Physics in Microgravity, in

press.

[16] D.J. Wollkind, J. Appl. Phys. 43 (1972) 3663.

[17] J. Urbanek, Th. Hehenkamp, Proceedings of the Norderney Symposium on Scientific

Results of the German Spacelab Mission D-2, (1994), p. 322.

[18] A. Bruson and M. Gerl, Phys. Rev. B21 (1980) 5447.

[19] J. P. Garandet, J. P. Praizey, S. Van Vaerenbergh, T. Alboussiere, Phys. Fluids 9 (1997)

510.

[20] Smithells Metals Reference Book, Ed. E. A. Brandes (Butterworths, London, 1983).

[21] J. H. Perepezko, D. H. Rasmussen, I. E. Anderson, and C. R. Loper, Jr., Solidification

and Casting of Metals (Metals Society, London, 1979) p.169.

[22] U. R. Kattner, private communication

[23] Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, Thermophysical Proper-

ties of Matter, Vol 1, Thermal Conductivity; Metallic Elements and Alloys (IFI/Plenum,

New York, 1970).

14



[24] J. P. Praizey, Int. J. Heat Mass Transfer 32 (1989) 2385.

[25] M. R. Scott and H. A. Watts, SIAM J. Numer. Anal. 14 (1977) 40.

[26] J.S. Langer, Rev. Mod. Phys. 52 (1980) 1.

15



at.

frac.

Sn-Ag Alloys

Figure 1: The critical silver concentration above which the interface is mor-

phologically unstable as a function growth velocity for a tin-silver alloy with

a liquid temperature gradient of 180 K/cm. The three curves which almost

coincide correspond to: solid [Dt = 0 and
(
dD/dT

)
— 0]; dashed [DT = 7.2

IQ
-9 cm2/(Ks) and (dD/dT) = 1.72 10~ 7 cm2

/(Ks)]; dashed-dot [Dt = 0 and

(dD/dT) = 1.72 10- 7 cm2
/(Ks)].
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250
Sn-Ag Alloys

Figure 2: The critical wavenumber as a function growth velocity for a tin-silver

alloy with a liquid temperature gradient of 180 K/cm. The solid, dashed, and

dashed-dot curves correspond to the same parameters as those in fig. 1; the

dashed and dashed-dot curves almost coincide.
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Sn-Ag Alloys

Figure 3: The critical wavenumber as a function growth velocity for a tin-

silver alloy with a liquid temperature gradient of 180 K/cm for a temperature-

dependent diffusion coefficient. The solid curve is the same as the dashed-dot

curve of fig. 2, while the dashed curve is based on numerical solution of the

analytic expression given by eq. (39).
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