
JAVA-Based XML Utility for the NIST Machine Tool Data Repository

Joe Falco
National Institute of Standards and Technology

100 Bureau Drive, Stop 823
Gaithersburg, MD 20899-8230

(301) 975-3455
falco@nist.gov

Abstract

The National Institute of Standards and Technology (NIST) is
developing a specification for a standard format to represent
machine tool performance test data. This data is used for machine
acceptance, predictive maintenance, error compensation, and to
evaluate the capability of a machine or contractor to manufacture
parts to specified tolerances. This paper describes the
implementation of a JAVA-based utility for converting data
produced by several machine tool performance evaluation software
packages into a unified Extensible Markup Language (XML) based
standard data representation. The utility also provides XML based
validation, viewing and editing capabilities, and a mechanism for
client/server web based communications for database upload.

NISTIR 6581
2000

Introduction

A JAVA-based utility has been developed for the conversion, inspection, validation,
modification and client/server upload of Extensible Markup Language (XML) based machine
tool performance data. Machine tool performance data is used for machine acceptance,
predictive maintenance, error compensation, and to evaluate the capability of a machine or
contractor to manufacture parts to specified tolerances. Currently there exists a variety of
software packages for the performance evaluation of machine tools. These packages employ
different data models and use vendor specific data formats thus complicating data exchange, data
storage in databases, and use of the data by third-party software. NIST has been working within
a consortium, the NIST Machine Tool Performance Models and Machine Data Repository, to
develop and implement a standardized computer interpretable representation [1] that allows for
efficient archiving and exchange of performance test data throughout the life cycle of a machine
tool. This work has led to the formation of a new standards technical committee, American
Society of Mechanical Engineers (ASME) B5 TC56 Information Technology for Machine Tools.
The primary goal in the development of the NIST Machine Tool XML Utility was to provide a
platform independent application capable of converting performance data from a variety of
vendor specific data files to the standard XML based format. An example of a raw vendor
format and its associated XML file can be found in the appendix of this document. This
implementation standard will be referred to here as the NIST Machine Tool Data Dictionary.
Additional goals were to build, within this application, capabilities to view, validate, and edit
XML files and to provide the mechanism to upload these files to an experimental database over
the Internet.

XML, DTD & JAVA

XML is a standard framework for the description of data so that it can be easily exchanged and
reinterpreted [2][3]. Like Hypertext Markup Language (HTML), XML is a markup language;
however, XML was designed to describe data by defining tags, while HTML was designed to
display data using a predefined set of tags. The ability to define a custom set of tags to structure
and describe data is what makes XML extensible. XML was not designed to replace HTML, but
rather, the two often compliment each other.

A Document Type Definition (DTD) defines the document structure with a list of legal elements
for a particular XML data implementation. The purpose of a DTD is to define the legal building
blocks of an XML document. A DTD can be defined within an XML document, or as a separate
file that is identified within an XML document. Applications to check the validity of an XML
document against a DTD are readily available.

JAVA is an object-oriented programming language capable of creating general-purpose
applications and embedded programs “applets” in Web pages. JAVA is platform independent,
meaning the application is compiled once and can run on any computer-platform provided the
platform contains a JAVA Virtual Machine for running the compiled JAVA code. Likewise,
browsers contain their own built-in JAVA Virtual Machine for running JAVA applets. JAVA
programs consist of pieces called classes. Programmers can code their own classes and also take

advantage of rich collections of existing classes in JAVA class libraries. The “hooks” for using
these libraries are Application Programming Interfaces (APIs) which describe the structure and
usage of the libraries.

JAVA and XML complement each other. XML provides platform-independent data (portable
documents and data), and JAVA provides platform-independent processing (portable object
oriented software solutions)[4][5]. The intrinsic hierarchical object oriented design of some of
JAVA’s APIs readily support the XML hierarchical representation of data, making the two
extremely compatible for representing each other’s structures. In addition, JAVA provides built
in networking capabilities with its standard APIs for support of socket, Hypertext Transfer
Protocol (HTTP), HTML, and server protocols. Although there are many XML tools and APIs
based on other languages such as Perl and C, the majority of XML development is focused on
JAVA, which is emerging as the industry’s language of choice for processing XML.

Application Implementation

The NIST Machine Tool XML Utility is implemented as a client side application, meaning it
runs on a users local computer platform. One reason for this was to keep a significant portion of
the processing load on the client side leaving the server to handle database operations.
Additionally, the software design is modular so the only data being passed between the client and
server, as well as between the different modules within the client application, is an XML
document. This makes the client processing independent of the server processing and simplifies
future implementations of software tools. These tools may include analysis tools for XML based
machine tool performance data both prior to data upload and after data retrieval from the
database. Lastly, the application resides on the client side and the server network address and
XML processing calls are configurable. This provides the capability for uploading machine tool
performance data to different servers where server locality could range from local private
Intranets holding a proprietary data repository to the Internet holding a public data repository.

The JAVA API for XML Parsing (JAXP) [6][7] is the Sun Microsystems JAVA1 standard
extension for XML which provides 100 % conformance to the XML 1.0 Specification, the
Simple API for XML (SAX) 1.0, Document Object Model (DOM) Level 1 Core, and XML
namespace recommendations from the Word Wide Web Consortium (W3C). This API provides
the basic functionality for reading, manipulating, and generating XML documents through pure
JAVA APIs and provides a standard interface for integrating any XML-compliant parser with a
JAVA application. Depending on the needs of the application, developers have the flexibility to
swap between several available JAVA-based XML parsers without making application code
changes. XML-compliant parsers provide a platform and language neutral interface that allows
programs to dynamically access and update content, structure and style of XML documents. The
NIST Machine Tool XML Utility uses the JAXP default parser, Sun’s JAVA Project X.

1. DISCLAIMER: Any mention of commercial products within this paper is for information only
and does not imply recommendation or endorsement by NIST.

There are two methods of accessing XML documents. The first is event-driven, serial access
using SAX. This is the fastest and least memory intensive mechanism for working with XML
documents. This type of parsing has traversal and modification limitations. A document can be
traversed from top to bottom, once, and the document cannot be rearranged. Document
traversals such as this are fast and are ideal for tasks such as database uploads and DTD
validation. The second method constructs a DOM to access an XML Document. The DOM API
is ideal for interactive applications because the entire object model for the document is present in
memory as a tree structure, where it can be accessed and manipulated by the user. Each node of
the DOM tree structure contains one of the components from an XML structure. The most
common types of nodes are element nodes and text nodes. The DOM API provides mechanisms
to create nodes, remove nodes, change their contents, and traverse the node hierarchy. The client
side NIST Machine Tool XML Utility utilizes both of these APIs depending on the task at hand.

Application Overview

The application is comprised of 3 major components including a parsing utility, a view/edit
utility, and an upload utility. The parsing utility handles the conversion of vendor formatted
machine tool performance data into an XML based data representation in accordance to the NIST
Machine Tool Data Dictionary. The view/edit utility provides capability to view and edit an
XML document in the form of a graphical tree. This utility also provides the capability to check
the validity of an XML document against NIST data structure and element content. The upload
utility communicates XML documents to a server using a standard network protocol. All of
these utilities operate independently, with an XML file being the input or output of the operation.
In addition to the three utilities, both online help and access to the NIST Machine Tool Data
Dictionary are provided as HTML utilities within the application.

The parsing utility implements several classes for parsing vendor performance data files.
Currently, data files that are supported include but will not be limited to:

Circular Position Angular Straight Spindle
(axis of rotation

Spindle
(thermal)

Automated
Precision Inc.

(API)
Renishaw Renishaw Renishaw API API

Heidenhain
ballbar API 5D/6D API 5D/6D API 5D/6D Lion Lion

Heidenhain
grid encoder Heidenhain

Hewlett-
Packard

(HP)
Heidenhain

Renishaw
RTB HP HP

Renishaw
XML

The result of a vendor parsing operation is a NIST Machine Tool Data Dictionary compliant
XML file that requires additional user input for required information that is not included in the
vendor data file. The input of this information is accomplished by parsing the XML file to create
a DOM tree structure. Based on the specific vendor file, information is extracted from the tree
and a form is produced for information input and modification as shown in Figure 1. Once the
form is completed, the DOM is updated and the XML file is regenerated. This is all
accomplished using the DOM API.

Figure 1. Parsing Utility

Viewing and editing operations are accomplished using a built-in JAVA API, called a J-Tree, in
conjunction with the DOM API. A J-Tree builds a graphical representation of a user selected
XML document. This “view” of the DOM can also be used as an interface for modifying the
DOM. A snapshot of the view/edit utility containing a J-Tree representation of an XML
document being edited is shown in Figure 2.

Figure 2. View/Edit Utility

Editing the XML file through this interface is limited to the confines of the NIST Machine Tool
Data Dictionary and to the type and content of the particular XML component being modified.
Only data values “text components” can be edited, added, or deleted and limitations are placed
on what text nodes can be edited. For example, using this interface, a user cannot edit raw data
values. Once an edit operation is performed, the user can then save the DOM to an XML
document. The capability for DTD based validation of XML documents that were not generated
using this application is also provided within the view/edit utility. This ensures that an XML
document is compliant with the NIST Machine Tool Data Dictionary prior to database upload.

Submit operations send XML documents to the server using HTTP, Multipurpose Internet Mail
Extensions (MIME) format. HTTP is a protocol for client server communication. MIME is a
specification for enhancing the capabilities of HTTP. A user simply selects an XML document
to upload to the database. Based on error feedback from an unsuccessful upload process (ie.
improper machine identification number), a user may edit and save the document using the
view/edit utility and resubmit it to the server. A user can also define the server and upload script
to use. The upload utility is shown in Figure 3.

Figure 3. Upload Utility

Conclusions

A JAVA-based utility has been developed for the conversion, inspection, validation,
modification and client/server upload of XML based machine tool performance data. This utility
is being used by NIST and other consortium members to generate and upload XML based
machine tool performance data to the NIST Machine Tool Data Repository. It currently provides
support for 19 vendor-specific data formats.

The modular software design provides the potential to add capabilities such as parsers for
additional vendor data formats and the retrieval and analysis of data from a machine tool data
repository. Currently, retrieval is accomplished using HTML form documents and analysis is
performed upon retrieval of data using Matlab, a commercially available mathematical analysis
software package which is running on the database server. HTML documents constructed by the
server using plot images and data from Matlab are returned to the client. This method presents a
burden to the server and could be implemented on the client side as an additional capability. The
only data that would be downloaded to the client would be the XML file returned from the
database query.

References

[1] Soons, Hans, “NIST Machine Tool Data Dictionary,” working draft.
 http://mtrws.nist.gov/dictionary/dictionary.htm

[2] XML101, http://www.xml101.com/, tutorial.

[3] XML.COM, http://www.xml.com, information repository

[4] Web Developers Virtual Library, “XML & JAVA : The Perfect Pair,”
 http://www.wdvl.com/Authoring/Languages/XML/Java/index.html

[5] Sun Microsystems Inc., “Portable Data / Portable Code: XML & JAVA Technologies,”
 http://java.sun.com/xml/ncfocus.html

[6] Sun Microsystems Inc., “The JAVA API for XML Parsing (JAXP) Tutorial,”
 http://java.sun.com/xml/docs/tutorial/index.html

[7] Sun Microsystems Inc., “The JAVA API for XML Parsing – Version 1.0,”
 http://java.sun.com/xml/docs/api

Appendix

Example HP Position raw data file:

HP 5529A: Linear Error Plot - X-Axis
Filename: c:\lasercal\sample.lin
Acquisition date: 5/25/94 9:47:22 AM
Current date: 7/29/80 1:46:03 PM
Measurement Type: LINEAR / Algebraic Sign Convention
Axis: X
Travel Mode: Bidirectional
Number of Target Positions: 11
Number of total data pairs: 110
Number of total data runs: 10
Expansion Coefficient: 11.7 PPM/°C
Position Value Units: millimeters
Error Value Units - micrometers

environmental data - MIN MAX AVG
Air Temp (C) 020.00 020.00 020.00
Air Prs (mm) 760.73 760.73 760.73
Air Hmd (%) 050.00 050.00 050.00

Sorted by run number
Run # Pos # Target Value Error Value Out of spec.
 1 1 0.E+00 -2.7E+00
 1 2 1.50041E+02 1.E-01
 1 3 3.00082E+02 -5.0999999E+00
 1 4 4.50123E+02 5.E-01
 1 5 6.00164E+02 -8.5E+00
 1 6 7.50205E+02 -5.E+00
 1 7 9.00246E+02 -6.3999996E+00
 1 8 1.050287E+03 -5.5999999E+00
 1 9 1.200328E+03 -8.3000002E+00
 1 10 1.350369E+03 -7.5E+00
 1 11 1.50041E+03 -7.8999996E+00
 .
 .
 .
 10 1 0.E+00 1.4000001E+00
 10 2 1.50041E+02 5.8000002E+00
 10 3 3.00082E+02 -8.9999998E-01
 10 4 4.50123E+02 2.8E+00
 10 5 6.00164E+02 -7.8999996E+00
 10 6 7.50205E+02 -3.E+00
 10 7 9.00246E+02 -3.4000001E+00
 10 8 1.050287E+03 -2.1000001E+00
 10 9 1.200328E+03 -2.1000001E+00
 10 10 1.350369E+03 -1.4999999E+00
 10 11 1.50041E+03 -2.8000002E+00

Example HP Position XML data file:

<?xml version="1.0" encoding="UTF-8"?>

<TESTS>
 <TEST>
 <ID>c:\lasercal\sample.lin</ID>
 <TEST_CLASS>AxisPosition</TEST_CLASS>
 <DATE>1994-5-25</DATE>
 <TIME>9:47:22</TIME>
 <WHY>Periodic</WHY>
 <MACHINE>
 <ID>Machine08</ID>
 <MANUFACTURER />
 <MODEL />
 <SERIAL_NUMBER />
 <LOCATION />
 </MACHINE>
 <CONDITIONS>
 <CLAMPED_AXES />
 <COMPENSATION />
 <COMPENSATION_ID />
 <COOLANT />
 <DRIVE_STATUS />
 <TEMP_ENVIRONMENT>020.00</TEMP_ENVIRONMENT>
 </CONDITIONS>
 <OPERATOR />
 <STANDARD>
 <ORGANIZATION />
 <NUMBER />
 <NAME />
 <YEAR />
 </STANDARD>
 <EQUIPMENT>
 <ID />
 <COMPONENT>
 <ID />
 <DESCRIPTION>Laserhead</DESCRIPTION>
 <MANUFACTURER>Hewlett Packard/Agilent</MANUFACTURER>
 <MODEL>5519A</MODEL>
 <SERIAL_NUMBER />
 <CALIBRATION_DATE />
 <CALIBRATION_EXP_DATE />
 <CERTIFICATE_NUMBER />
 <CALIBRATION_ORGANIZATION />
 </COMPONENT>
 <COMPONENT>
 <ID />
 <DESCRIPTION>AirSensor</DESCRIPTION>
 <MANUFACTURER>Hewlett Packard/Agilent</MANUFACTURER>
 <MODEL>10751C</MODEL>
 <SERIAL_NUMBER />
 <CALIBRATION_DATE />
 <CALIBRATION_EXP_DATE />
 <CERTIFICATE_NUMBER />

 <CALIBRATION_ORGANIZATION />
 </COMPONENT>
 <SOFTWARE>
 <ID />
 <MANUFACTURER>Hewlett Packard/Agilent</MANUFACTURER>
 <NAME>HP5529A Dynamic Calibrator</NAME>
 <VERSION_NUMBER>2.1</VERSION_NUMBER>
 </SOFTWARE>
 <RESOLUTION>0.00001</RESOLUTION>
 <SAMPLE_RATE_RAW>33000</SAMPLE_RATE_RAW>
 <EQUIPMENT_CLASS>LaserInterferometer</EQUIPMENT_CLASS>
 <FILTER_OFFSET>No</FILTER_OFFSET>
 <TEMP_REFERENCE_COMP>Yes</TEMP_REFERENCE_COMP>
 <TEMP_REFERENCE_SENSOR />
 <AIR_HUMIDITY_COMP>Yes</AIR_HUMIDITY_COMP>
 <AIR_PRESSURE_COMP>Yes</AIR_PRESSURE_COMP>
 <DEADPATH_COMP>Yes</DEADPATH_COMP>
 <VOL_COMP_METHOD>Sensor</VOL_COMP_METHOD>
 </EQUIPMENT>
 <SETUP>
 <ID />
 <MEAS_MODE>Static</MEAS_MODE>
 <MEASURAND>X</MEASURAND>
 <MEAS_METHOD>Direct</MEAS_METHOD>
 <AXIS>X</AXIS>
 <START_POINT>
 <AXIS_POSITION>
 <AXIS>X</AXIS>
 <POSITION>100.00</POSITION>
 </AXIS_POSITION>
 <AXIS_POSITION>
 <AXIS>Y</AXIS>
 <POSITION>200.00</POSITION>
 </AXIS_POSITION>
 <AXIS_POSITION>
 <AXIS>Z</AXIS>
 <POSITION>200.00</POSITION>
 </AXIS_POSITION>
 </START_POINT>
 <TOOL_VECTOR>
 <X />
 <Y />
 <Z />
 </TOOL_VECTOR>
 <SPINDLE_NUMBER />
 <TURRET_NUMBER />
 <FEEDRATE />
 <DEADPATH />
 <OVERSHOOT />
 <TEMP_MATERIAL_COMP>No</TEMP_MATERIAL_COMP>
 <TEMP_MATERIAL_SENSOR />
 <TEMP_ADDITIONAL_SENSOR />
 <SAMPLES_AVERAGED />
 <SENSOR_OFFSET />
 <REVERSAL />
 <TARGETS>0.0 150.041 300.082 450.123 600.164 750.205 900.246 1050.287 1200.328 1350.369 1500.41

 </TARGETS>
 <REPETITIONS>1</REPETITIONS>
 <TRIGGER_MODE>Target</TRIGGER_MODE>
 <TRIGGER_DWELL />
 <TRIGGER_WIDTH />
 <TRIGGER_STABILITY />
 </SETUP>
 <RUN_DATA>
 <APPROACH_DIRECTION>Positive</APPROACH_DIRECTION>
 <LS_OFFSET_ERROR />
 <TEMP_REFERENCE>
 <NAME />
 <DATA>020.00</DATA>
 </TEMP_REFERENCE>
 <TEMP_MATERIAL />
 <TEMP_ADDITIONAL />
 <AIR_HUMIDITY>050.00</AIR_HUMIDITY>
 <AIR_PRESSURE>0.101422</AIR_PRESSURE>
 <ELAPSED_TIME />
 <POINTS>-0.002700 0.000100 -0.005100 0.000500 -0.008500 -0.005000 -0.006400 -0.005600 -0.008300 -
0.007500 -0.007900 </POINTS>
 </RUN_DATA>

 .
 .
 .
 <RUN_DATA>
 <APPROACH_DIRECTION>Negative</APPROACH_DIRECTION>
 <LS_OFFSET_ERROR />
 <TEMP_REFERENCE>
 <NAME />
 <DATA>020.00</DATA>
 </TEMP_REFERENCE>
 <TEMP_MATERIAL />
 <TEMP_ADDITIONAL />
 <AIR_HUMIDITY>050.00</AIR_HUMIDITY>
 <AIR_PRESSURE>0.101422</AIR_PRESSURE>
 <ELAPSED_TIME />
 <POINTS>-0.002800 -0.001500 -0.002100 -0.002100 -0.003400 -0.003000 -0.007900 0.002800 -0.000900
0.005800 0.001400 </POINTS>
 </RUN_DATA>
 <COMMENT />
 </TEST>
</TESTS>

