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1. The Problem

A standard problem of courts at all levels is the selection of a panel of potential jurors from a

jury pool, which is a list of people who are eligible to serve as jurors.

By some means beyond the scope of this report, we suppose that the pool of eligible jurors has

been identified in a court jurisdiction. Let M be the number of people in the pool. In a large

jurisdiction, M could be as large as a few million. Frequently, some of the pool members must be

chosen as potential jurors, to form a jury panel. Let N be the number to be chosen, where N is

less (and usually much less) than M.

The problem is to select N people out of the M possible people in a fair way. One definition (FI)

of “fair” is that each of the M people has an equal chance to be selected for any jury pool. A
much more rigorous definition (F2) is that each of the possible combinations ofN people has an

equal chance to be selected as the entire jury pool.

2. History

In 1994, the author received a request from Mr. David Schenken of the Administrative Office of

the United States Courts. The request was to produce a specification for a fair algorithm for the

problem stated above. The specification was to go into a Request for Proposal (RFP) for a

turnkey system for jury selection.

As producing a working computer program incorporating a fair algorithm seemed to be both

easier and less ambiguous than producing a specification, the author did the former. The program

and a brief testing program, both in the “C” language, are presented in Appendix 1. Two other

versions of the program were also produced, but are not included here. One was in a then-

common, but substandard, dialect of the C language, and one was in Fortran.

In this report we will describe the properties of this algorithm and present an improved version.

3. What Makes a Fair Algorithm?

We start with an artificially small value ofM in order to illustrate. Suppose that the jury pool

consists of four members: Chris, Dale, Lee, and Pat.
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IfN is one, what is a fair algorithm of choosing one out of the four? Clearly each should be

equally likely to be chosen, as in fairness definition FI. (This can be done in a fair way with

three coin flips. One flip chooses between Chris and Dale, the second chooses between Lee and

Pat, and the third chooses between the two winners. IfM is not one of the numbers 2, 4, 8, 16,

32, etc., it’s not as easy to do this using coins.)

IfN is two, life gets more complicated. At the very least, a fair algorithm will still choose each of

the four people with equal likelihood (FI). However, this might be done by flipping a coin and

choosing Chris and Dale if the coin comes up heads, or Lee and Pat if the coin comes up tails.

This procedure satisfies fairness definition FI, but not definition F2.

There are six ways of choosing two out of four: Chris and Dale, Chris and Lee, Chris and Pat,

Dale and Lee, Dale and Pat, Lee and Pat. Fairness definition F2 requires that each of the six

possibilities be chosen with equal likelihood. One way is to pick randomly one of the integers

from one to six, and choose the pair of people corresponding to that integer.

Unfortunately for the purposes of exposition, realistic values ofM and N are much larger, and the

number of ways to choose N out ofM people grows rapidly as M and N get larger. There may be

hundreds, thousands, or even millions, of people eligible to be jurors. Of these a much smaller

number, perhaps hundreds, are to be chosen. With realistic values ofM and N, enumerating the

possibilities is not realistic. For example, ifM is merely 50 and N is 25, there are

126,410,606,437,752 ways to choose N out of M. This number is much larger than the largest

integer that can be stored in a 32-bit computer word.

The number of ways to choose N out ofM is equal to the binomial coefficient (" ). (See

reference 1, pages 828-830, for a table of binomial coefficients forM up to 50 and N up to 25.)

,
Ml

The binomial coefficient is defined by — where the “factorial function,” M!, is

(M-N)lNl
defined as the product of all the integers from M down tol, M x (A# - 1) x (M - 2) x . . . x 2 x 1

.

in summary, a fair procedure according to definition F2 will randomly select one of the
)

possible sets of N people, and each possibility will have an equal chance of being selected.

4 Is There a Fair Algorithm?

Fortunately, the equivalent mathematical problem of choosing a random selection ofN integers

out of the integers from 1 through M has been solved. (See reference 2 and reference 3, pages

136-137, and references therein). An advantage of this algorithm (“Algorithm S”) is that it works

even ifM is so large that the integers from 1 through M cannot be stored in the computer being

used. This was useful in the days when even large, expensive computers had little memory. A
disadvantage is that the algorithm cannot be shown to be correct except by using mathematics

beyond the reach of the intended readers of this report.

2



Though not easy to prove correct. Algorithm S is easy to state. We look at each of the integers

from 1 through M in turn and decide if each should be chosen. At any point in the algorithm, let t

be the total number of integers looked at so far and c be the number chosen so far.

51. Start with t = 0 and c = 0.

52. Choose a random number x, uniformly distributed between 0 and 1.

53. If (M - 1) x < (N - c), increase t by 1, choose t, and increase c by 1.

54. Otherwise, increase / by 1, but do not choose t.

55. If c equals N, we are done.

56 . Otherwise, go to step S2.

The key part of the algorithm is in step S3. If we have already looked at t integers and have

chosen c of them, we need to choose (N - c) of the remaining (M-t) integers. Step S3 chooses

the next integer with probability (N-c)/(M-t).

Thus the procedure for jury panel selection is to assign each of the members of the pool one of

the integers from 1 through M, with no duplications. Then use Algorithm S to choose a set ofN
integers out of the integers from 1 through M. Assigning an integer to a person can be done in

any way as long as there are no duplicates. The method used for assigning integers to people will

not affect the fairness of the procedure.

There is a simpler algorithm for choosing N ofM integers, although it requires that M be small

enough that an array ofM integers can be held in computer memory. They are then re-arranged

in random order and the first N are chosen. (See reference 3, page 139, Algorithm P).

PI. Put the integers 1 through M in a list in positions 1 through M.

P2. Set j to M.

P3. Choose a random number*, uniformly distributed between 0 and 1.

P4. Set k to 1 + xj, dropping any fractional part.

P5. Exchange the integers in the 7
th
and positions.

P6 . Decrease j by one. If /
= 1, go to P7. Otherwise go to P3.

P7. Choose the integers in positions 1 through N.

5. What About Choosing a “Random Number?”

Each of these algorithms requires a method for choosing a random real number between zero and

one. True random number generators (RNGs) require a physical random event, such as the decay

of an atomic nucleus. Their nature is that their results are not repeatable and that they are

difficult to test for randomness; they are rarely used in practice. Instead, we use a computer

algorithm that is both repeatable and whose outputs satisfy various properties of randomness.

Sometimes such algorithms are called Pseudo-Random Number Generators (PRNGs) to

emphasize the difference. These PRNGs exist in profusion. They have been and continue to be

the subject of numerous studies. Some examples are references 4, 5, and pages 1-177 of

reference 3. PRNGs require a starting value, usually called a “seed,” to begin the procedure.

They produce a repeatable sequence of random numbers (RNs), different for each seed.

3



Eventually the sequence starts repeating itself; the distance between repeats is called the

“period.”

The PRNG used for the program is uni , an example of a lagged-Fibonacci generator, which is

denoted F(17, 5, -) in reference 4. Programs implementing F(17, 5, -) have been tested

extensively and testing has shown that F(17, 5, -) is an excellent algorithm for a PRNG. Uni was

written in 1981 by the current author and David Kahaner, then of the National Institute of

Standards and Technology, and George Marsaglia, then of Washington State University. Uni

produces 31 -bit random numbers between 0 and 1, so it can produce about 2
31

, or more than

2,000,000,000 different numbers. Its theoretical period can be much longer, as much as

approximately 2
32 *2 17

, or more than 560,000,000,000,000, which is ample for our purposes, as

choosing N ofM integers requires at most a small multiple ofM random numbers. Each of the

2
31

possible RNs is produced many times in the sequence.

F(17, 5, -) requires an initial set of 17 random numbers. Strictly speaking, PRNGs based on

F(17, 5, -) have the above period only “with probability one.” An unlucky choice of the initial 17

numbers could result in a bad sequence of PJVs, but this is extremely rare. Uni uses another

PRNG to generate its initial set of 17 random numbers; it is not known under what conditions

uni's period is as long as the theoretical maximum, but for the current purpose it is unimportant.

6. Testing the Random Number Generator

Testing a PRNG completely would take a very long time, as all possible aspects of a PRNG would

have to be tested for all possible seeds. In fact, it is inherent from the algorithmic nature of PRNGs
that every PRNG is guaranteed to fail some tests of randomness. A few tests clearly are always

important, and others may be important depending upon the application where the PRNG is to be

used. The few tests presented here do not constitute a complete test of uni. Rather, they

demonstrate that F(17, 5, -), the algorithm behind uni, has been programmed correctly and that the

RN sequences produced by uni have some of the most important properties of truly random

sequences. Additional sources of tests for randomness include the Computer Security Division at

NIST (see http://csrc.nist.gov/mg) and NETLBB (see the software library RANDOM at

http://www.netlib.org).

Uniformity

The random numbers should be uniform. In the long run, each number between 0 and 1 should be

chosen the same number of times. They shouldn’t be too uniform, though, as that wouldn’t be

truly random. Suppose we divide the interval from 0 to 1 into &bins, each of length UK, and also

choose an integer n. We choose a seed for the PRNG and generate nK random numbers. Perfect

uniformity would mean n numbers would fall into each bin. That is unlikely to happen, however.

Let yk
be the number that actually fall into bin k. One useful test of the deviation from uniformity

is the chi-square test (see Reference 6, pages 164ff, or any standard textbook on statistics). For
K

this, we use the quantity V = ^{yk
-n)

2
In as the measure of the deviation.

k-l
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What is a reasonable value for V? This is a well-known problem (see Reference 3, pages 39-45).

The answer is that V should have the “chi-square distribution with K- 1 degrees of freedom,”

denoted by j£
2
(A'-l). For K larger than 4 or 5, the mean value that V should take on is

approximately K - 5/3.

If Vis too large, the numbers aren’t uniform enough. If V is too small, the numbers are too

uniform. One such test isn’t sufficient, though. Any single test might by chance give an extreme

V-value In fact, if this test is done many times with different starting seeds, most of the Vs should

cluster near K - 5/3; occasionally a V should be rather small or rather large, even with a “perfect”

series of RNs.

As an example, take A' to be 101 ; some of the values for the chi-square distribution for 100

degrees of freedom are published in reference 1, pages 984-985. Take n to be 100; generate nK -

10,100 random numbers, put them into K bins, and calculate V. For one particular seed, this gave

V = 87.26, rather below the “expected” value of 99.33. How unusual is this? Rather than

answering this question, we calculate many Vs and see if they have the right distribution.

Do the above 100 times, starting w ith a different seed each time, and sort the V s according to size.

This gives a reasonable idea of the distribution of the V s. Figure 6.1 shows the result. The line

connects the 100 V points and the open diamonds show some theoretical values for the chi-square

distribution with 100 degrees of freedom. The fit is approximately right.

Figure 6.1
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Figure 6.2 is the same, except that 1000 Vs were used. The fit is excellent except near the ends.

Figure 6.2

Figure 6.3 is the same, except that 10,000 V’s were used. Now the fit is excellent even near the

ends.

Figure 6.3

Index of V Value

This demonstrates that uni behaves properly for this test, for this particular choice of n and K. As

there is nothing special about these values, we may conjecture that uni behaves properly for this

test in general.
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Serial Correlation

Even if a PRNG satisfies the chi-square test, it could be poor in other ways. For example, consider

successive pairs of random number produced by the PRNG. The second number ought to be

independent of the first number, but might not be. For example, a smallish number might tend to

be followed by a largish number, and vice versa.

Figure 6.4 shows 1000 consecutive pairs of numbers produced by uni, plotted as points in a

square. (Point 1 has RN 1 as the horizontal value and RN 2 as the vertical value. Point 2 uses RN 3

and RN 4, etc., through RN 1999 and RN 2000.) The 1000 points should be randomly distributed

throughout the square.

Figure 6.4

0.9
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0.3

0.2

0.1

0

This can be checked by using the chi-square test and distribution, as in the previous section.

Divide the square into 100 equal-sized boxes; there is an average count per box of 10. For this

figure, V = 102.6, a bit above the mean of 97.33 expected for a chi-square distribution with 99

degrees of freedom.

Doing the same exercise for 1000 different seeds, sorting the V s, and plotting the results along

with some theoretical points for the chi-square distribution with 99 degrees of freedom is shown in

Figure 6.5. As the fit is excellent, we may say that uni behaves properly for this test. (The

theoretical chi-square points were calculated according to the formula on page 41 of reference 3;
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this formula is asymptotically correct for large K, and is certainly as accurate as can be seen on the

plot for K of 50 or more.)

Figure 6.5

A full test would divide the square into more and more boxes, and would also look at triples of

random numbers, quadruples, quintuples, etc.

A full test would also look at pairs of RNs that are not consecutive. As uni contains the parameters

17 and 5, those separations (as well as 12 = 17 - 5) are reasonable to test. These tests have been

performed and did not produce results that look different from the tests just done. Accordingly,

they are not shown.

Short-Sequence Testing

Most testing of PRNGs focuses on long runs of RNs, as many applications use billions of RNs; the

long-term behavior of PRNGs is crucial to many simulations and Monte-Carlo studies. For the

jury panel selection problem, however, no more than a small multiple ofM numbers are needed

per application.

How well-behaved is uni for short runs of RNs? Not very, if the short runs are taken from the

beginning of the RN sequence after starting with a new seed. Consider the uniformity test above,

where 10,100 RNs were divided into 101 bins and the chi-square statistic was calculated. Suppose

the first 50 RNs are the first 50 from a seed of 1, the next 50 are the first 50 from a seed of 2, and

so on. The calculated V-value is 60.84, well below the expected value of 99.33. The RNs are too

uniform! (They may have other imperfections, too.)
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Lagged-Fibonacci PRNGs, when just started out, do not produce high-quality sequences of RNs.

For long sequences, as seen in the earlier tests, the initial transient is outweighed by the excellent

long-term behavior. If only a relatively small number of RNs is wanted, then the initial transient

should be avoided; the initial RNs should be skipped. This effect is seen in Figure 6.6. This figure

corresponds to Figure 6.3, with 10,000 V-values calculated for each curve, except that only 50

RNs are taken for each seed. The five curves shown have, from top to bottom, the first 0, 1000,

and 100 RNs from each seed skipped before using the next 50. The diamonds show the theoretical

values. Skipping the first 10,000 RNs is indistinguishable on this plot to skipping the first 1000,

but is slightly closer to the theoretical curve.

Thus for best results, the initial transient from uni should be skipped. Since calling uni takes so

little time, skipping 1000 or 10,000 is recommended. This adds little to the computer time. For

example, skipping 10,000,000 RNs from uni takes only a few seconds on any reasonable computer

(about 3 seconds on a 400 MHz PC).

7. Using the Algorithm: Choosing the Seed

All PRNGs require a starting value, the “seed,” to begin the procedure. Different seeds produce

different choices for the N integers. With the original program, for example, with seed 1,

choosing 5 out of 100 produces (21, 45, 76, 79, 89); with seed 2, the results are (1, 36, 40, 82,

98). If seed 1 is used a second time to choose 5 out of 100, the same 5 integers will be produced,

so the same seed should not be used repeatedly.
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To produce fair results, either a new seed should be used each time the procedure is used, or the

PRNG should be resumed at the same point. The latter is not as feasible. A perfectly reasonable

method is to start with a seed of 1 and then keep increasing the seed by 1 at each use. Other

methods, such as the date (for example, 20001031 on Halloween in the year 2000), and

yesterday’s lottery number, are also fine.

8. Testing the Implementation of the Algorithm: Definition FI

Testing our implementation of Algorithm S completely would take a very long time, as all

possible aspects could be tested for all values of TV, all values of M, and all possible seeds. The

tests presented here do not constitute a complete test of Algorithm S. Rather, they demonstrate

that it has been programmed correctly and that the sets of TV integers chosen out ofM have some

of the most important properties of truly randomly chosen sets.

We first consider fairness by definition FI, testing to see if each of the M integers is chosen with

equal likelihood when choosing TV ofM integers. One way to do this would be just the way we
did in earlier sections. Make M bins. Many times choose TV ofM , each time adding 1 to its bin

for each of the TV integers chosen, and calculate the V value. Do all of this m times, and compare

the resulting distribution of the V values to the theoretical distribution. The difficulty is that the

theoretical distribution is not known except when TV is 1, when it is the chi-square distribution

with M - 1 degrees of freedom. (Experiments show that, for TV > 1, the distribution is similar to,

but flatter than, the chi-square distribution with M - TV degrees of freedom, X\M-N) . We note

M
that the asymptotic distribution of V=

Jj(.yk
-NmJM)2

/(NmlM) is (M-N)/(M-i)x\M-l), which is

k=

i

indeed similar to j£
2
(M-TV), the latter having the same expected value. However, the variance of

X\M-N) is greater than the variance of (M-TV)/(M-1)j
2
(M-1), so that /

2
(M-TV) is more

“spread out.” Thanks to Dr. Andrew Rukhin for pointing this out.)

To get around this problem, instead of adding 1 to the bins of each of the TV integers chosen,

select one of the TV integers at random and add 1 only to its bin. Then the theoretical distribution

is just the chi-square distribution with M - 1 degrees of freedom. (Thanks to Dr. Mark Vangel for

this observation.)

We present a single example from the tests that were done. We choose 20 of 100 integers 1000

times with different seeds, each time adding 1 to the bin of a random one of the 20 integers

chosen, so that the average count per bin is 10, and calculate a V value. We do this 1000 times

and plot the distribution against the chi-square distribution with 99 degrees of freedom. The

result is shown in Figure 8.1. The dashed curve is for Algorithm S, and the solid curve for

Algorithm P. In each case uni is used as the PRNG with the first 1000 RNs skipped. The fits are

excellent.
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Figure 8.1

This test and the similar ones not reported here demonstrate that the program gives a fair method

for selection jurors from a jury pool according to definition FI.

9. Testing the Implementation of the Algorithm: Definition F2

We now consider the much more rigorous definition of fairness, definition F2, that all of the
)

possible sets ofN integers be chosen with equal likelihood. Such testing is unfortunately

impracticable for all but the smallest N and M.

Make the
)
bins, and identify each of the possible sets ofN integers with one of the bins.

Many times, choose N of M, each time adding 1 to the bin corresponding to the set chosen, and

calculate the V value. Do all of this many times, and compare the distribution of the V values to

the theoretical distribution, the chi-square distribution with
)
- 1 degrees of freedom.

We now look at a small enough problem to test in some detail, choosing 3 of 30 integers. There

are 30x29x28/(3x2x1) = 4060 different sets of integers possible: { 1, 2, 3}, { 1, 2, 4 },..., {28,

29, 30}. We choose 3 of 30 integers 40,600 times with seeds 1 through 40,600, each time adding

1 to the bin of the set chosen, so that the average count per bin is 10, and calculate a V value. We
do this 100 times, increasing the seed by 1 each time; the result is shown in Figure 9.1. The

upper curve is for Algorithm S, and the lower curve for Algorithm P, and the diamonds are the

chi-square distribution with 4059 degrees of freedom. . In each case uni is used as the PRNG
with the first 1000 RNs skipped. The fit is terrible for Algorithm S, good for Algorithm P.
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Algorithm S

4500 -
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Choose 3 out of 30. Definition F2
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25 50

Index of V Value

75 100

What is wrong with Algonthm S° Nothing - Algorithm S is correct if the PRNG used is perfect,

but no PRNG is. The problem is. presumably, that Algorithm S depends critically on the PRNG
used, and the small inherent correlations within uni somehow interact with Algorithm S to give

poor results. We can see some of what has happened by adding up the bin counts for all 100

trials, for a total of 4,060.000 runs. The over-all V-value is 275,246, far above the expected value

of 4058. Figure 9.2 has a plot of the bin counts. Clearly there is something odd happening here.

Either Algorithm P depends less critically than Algorithm S on the properties of the PRNG used,

or the small inherent correlations within uni do not interact as much with Algorithm P as with

Algorithm S. Algorithm P as stated in Section 4 also has problems, though. Its over-all F-value is

6181, and the plot of its bin counts in Figure 9.3 shows some difficulties, though of a lesser

magnitude than for Algonthm S.
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Algorithm P can be rescued, however, even with an imperfect PRNG. Further testing has shown

that all that needs to be done is to repeat the randomization process (steps P2 - P6 in Section 4) a

few times. (This might not suffice with a sufficiently bad PRNG.) With two stages of

randomization, the bin count plot for Algorithm P, shown in Figure 9.4, is much improved, with

only slight evidence of non-random regularity. With three steps of randomization, the bin count

Choose 3 out of 30, Algorithm S
100 trials

J I I L
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Bin

Count

Bin

Count

plot, shown in Figure 9.5, shows no evidence of non-random regularity. The over-all V-values

are 4148 and 4015 for two and three stages of randomization. Four stages do not provide further

improvement.
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Tests choosing 3 out of 35, 40, 45 or 50 show the same kind of behavior and so are not shown

here. It is reassuring that matters do not seem to get worse as M grows. Unfortunately, as stated

earlier, it is impractical to test realistic values ofN and M.

Thus, if fairness definition F2 is required, using Algorithm P with three stages of randomization

is recommended. Appendix 2 contains revised code for choosing N ofM integers. If the

computer can allocate enough space for M integers. Algorithm P with three stages of

randomization is used. If not, an error message is printed and Algorithm S is used.

10. Conclusions

1. Uni is a stable implementation of F(17, 5, -), a theoretically sound PRNG.

2. Uni passes well-known tests of randomness, provided the initial segment of its sequence of

RNs is discarded.

3. Both Algorithm S and Algorithm P are theoretically sound methods for choosing N out ofM
integers. If used with an ideal PRNG, they would produce results satisfying fairness criteria

FI and F2.

4. Algorithms S and P have been implemented and tested.

5. Testing for fairness definition F2 is impractical for practical sizes ofN and M.

6. Algorithm S used with uni satisfies fairness definition FI, but not definition F2.

7. Algorithm P used with uni satisfies fairness definition FI, but not definition F2.

8. Algorithm P, modified to use a total of three stages of randomization, used with uni satisfies

fairness definition FI and definition F2, at least for small values of N and M.

11. Final Recommendations

• If fairness definition FI is deemed adequate, the original program provided suffices, although

skipping the first 1000 or 10,000 RNs is worth doing.

• If fairness definition F2 is deemed necessary, the original program provided in Appendix 1

will not suffice. The code provided in Appendix 2 should be used instead. This uses

Algorithm P with three stages of randomization.
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Appendix 1. An Implementation in the C Language

Note: The following differs from the original distribution in that “float” has been replaced with

“double.” This makes no difference in the standard usage, but is needed for running millions of

tests. It is appropriate for modem computers, especially those that support 64-bit floating-point

computations.

/*

Random number package with simple test program.
James L. Blue
Mathematical Modeling Group
Mathematics and Computational Sciences Division
Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899

This package provides a portable method for choosing N integers from
the first M integers, with no duplications. There are four routines.

1. A simple test program
2. An initialization program,, init. Init should be called with a different
argument for each call; the simplest method is to call it with argument 1 on
the first call, 2 on the second, and so on.

3. A program for choosing N of the first M integers.
4. The underlying uniform, random number generator.

*/

#include <stdio.h>

#def ine mbig 2147483647

extern void init(int lseed)

;

extern void nofm(int n, int m, int *irnd)

;

extern double uni (int j d )

;

/* test program
Correct results are

uni 0.3564443
uni 0.3584030
choosing 3 out of 20 with seed 12345

12345 1 9 13

nofm requires n <= m; have n 21 and m 20
*/

main (

)

{

int irnd [ 100 ]

;

init ( 1 )

;
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print f
( "uni %12.7f\n" , uni(O));

printf("uni %12.7f\n", uni(O));

printf ( "choosing 3 out of 20 with seed 12345\n");
init ( 12345 )

;

nofm(3, 20, irnd);
printf ("%12d %12d %12d %12d\n" , 12345, irnd[0], irnd[l], irnd[2]);

nofm(21, 20, irnd);

exit ( 0 )

;

}

/* init:
Initialize the random number generator, uni. As a seed,
uni requires an odd number in the range 1 to 2147483647, inclusive.
Allow the caller to use the positive integers in order as initializers.

Also, since very small seeds start off poorly, do a few random
numbers to get over the transient, then use the last for a new seed.

*/

void
init(int iseed)

{

int i
, j ;

double x;

i = iseed;
if (i < 0) i = -i;

if (i > mbig) i = mbig;
if ( (i % 2) == 0)

i = mbig - i

;

x = uni ( i )

;

for (j = 0; j < 10; j++)
x = uni ( 0 )

;

i = x * mbig;
x = uni ( i )

;

/*

nofm:
Select n items randomly from a total of m items.
Return an array of the ones chosen.
Method:
Algorithm S, p. 137 of
D.E. Knuth,
"The Art of Computer Programming,
Volume 2: Seminumerical Algorithms",
Addison-Wesley , 1969.

In the absence of roundoff, the algorithm always chooses n out of m.

With roundoff, it might come up one short. This happens rarely, but
if it does, just start over. (For example, in 10,000,000 different
choosings of 19 out of 20, there were 3 startovers.)

Sample values returned: If choosing 3 out of 20 after calling init(12345),
the items chosen are 1, 9, and 13.
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/

void
nofm(int n, int m, int *irnd)

{

int ihave, it, nn;

double x;

if (n > m)

{ printf ( "nofm requires n <= m; have n %d and m %d\n", n, m)

;

exit (4)

;

}

nn = m;

ihave = 0

;

do
{

for (it = 0; it < nn; it++)

{ x = uni ( 0 ) ;

if { (nn - it) * x < (n - ihave))

{ irnd[ihave++] = it + 1;

if (ihave == n) break;

}

}

if (ihave != n)

printf (
" start over: got %d, wanted %d\n" , ihave, n)

;

}

while (ihave != n) ;

/* uni
***date written 810915
revision date 940629 (JLB)

***authors
Blue, James L., Applied and Computational Mathematics Division, NIST
Kahaner, David K. , Applied and Computational Mathematics Division, NIST
Marsaglia, George, Florida State University

***purpose This routine generates quasi uniform real random numbers in the
range 0 to 1 , and can be used on any computer which allows
integers at least as large as 2147483647 (in practice, any
computer with 32 or more bits)

.

use
first time ....

z = uni
( jd)

here jd is any non-zero integer,
this causes initialization of the program
and the first random number to be returned as z.

subsequent times...
z = uni ( 0

)

causes the next random number to be returned as z

.

machine dependencies...
mdig = 32; the machine must have at least 32 binary digits available

for representing integers, including the sign bit.
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mbig = 2147483647; the machine must allow positive and negative
integers of this size.

remark
This program gives repeatable results on different computers, within
roundoff, since internal calculations are in integers.

***reference Marsaglia G., "a Current View of Random Number Generators, "

Proceedings Computer Science and Statistics: 16th
Symposium on the Interface, Elsevier, Amsterdam, 1985.

***routines called: none
***end prologue uni
*/

double
uni(int jd)

{

int k;

static int i, j, ihist[17], notyet = 1;

if (jd ! = 0)

{ int jO, jl, jseed, kO , kl , n, m;
/*

Fill up the history array, taking care not to overflow.

mbig is the largest positive integer, 2**(mdig-l) - 1

m = 2** (mdig/2

)

We use the simple congruential generator x(n) = [ 9069*x (n-1 ] mod (mm)

,

with mm = ( 2 * * (mdig-1 ) ) , to fill up the history array with integers in
the range 0 to mbig, inclusive.
Note that mm = (m**2)/2 = mbig + 1.

We use m to avoid overflow in the calculation, as follows:
Any integer j, 0<=j<=mbig, can be expressed as jl*m + jO, with jl=j/m
(discarding fractions) and j0=[j]mod m; then 0<=j0<m and 0<=jl<m.
To multiply two numbers modulus mm, we do

[

j *k] mod (mm) = [jl*kl*m*m + ( j 0*kl+ j l*k0 ) *m + j 0*k0 ] mod (mm)

The first term is 0 modulus mm, since m*m = 2*mm.
We let j0*k0 = nl*m + nO, and combine nl*m with the 2nd term, giving

[nl+j0*kl+jl*k0) *m + n0]mod(mm)
The final term [n0]mod(mm) is just nO = [ j 0*k0 ] mod (m)

The remaining term is
[nl+ j 0*kl+ j l*k0 ) *m] mod (m* *2/2

)

Write this as
[a*m] mod (m** 2/2

)

And expand a = (a/ (m/2 )
)
* (m/2 ) + [a]mod(m/2). Then the first term is

[a/ (m/2) )

* (m/2) *m]mod(m**2/2) = 0

and the second term is just
[a] mod (m/2 ) *m

since it is clearly already less than m**2/2.
*/

jseed = jd;

if (jseed < 0) jseed = -jseed;
if (jseed > mbig) jseed = mbig;
if ((jseed % 2) == 0) jseed--;
m = 65536;
kO = 9069 % m;
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kl = 9069 /m;

jO = jseed % m;

jl = j seed/m;
for (i = 0; i < 17; i++)

{ n = j0*k0;
jl = (n/m+ j 0*kl+ j l*k0 ) % (m/2);

j 0 = n % m

;

ihist[i] = j0+m*jl;

}

i = 4;

j = 16;

notyet = 0

;

}

/* Begin main loop here. */

if (notyet)

{ printf (" first call to uni must have nonzero argument")
exit (2 ) ;

}

k = ihist[i] - ihist[j];
if (k<0) k+= mbig;
ihist[j] = k;

if ( - - i < 0) i = 16;

if ( — j < 0) j = 16;

return (double) (k) / (double) (mbig)

;

}

/* end of program */
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Appendix 2. Modifications to the Implementation in the C Language

Note: The following code should replace the nofm(

)

module in the original if fairness definition

F2 is required. This code uses Algorithm P with 3 stages of randomization if sufficient space can

be allocated. Otherwise, it prints an error message and uses Algorithm S.

#include <stdio.h>

static void nofmP(int, int, int *, int*);
static void nofmS(int, int, int *);

static void randomize ( int *, int);

extern double uni (int);

/*

nofm:

Do Algorithm P if possible, otherwise Algorithm S.
*/

void
nofm (int n, int m, int *irnd)

{

int *list;

if (n > m)

{ printf("nofm requires n < = m; have n %d and m %d\n", n, m)

;

exit (4)

;

}

list = (int *)malloc(m * sizeof ( int ) )

;

if (list == NULL)

{

printf ( "malloc failed to get %d integers; changing algorithms'^" , m)

;

nofmS(n, m, irnd);

}

else
{

nofmP(n, m, irnd, list);
free (list )

;

}

/* nofmP

Algorithm P:

Put integers 1 through m in a list.
Randomize them.
Pick the first n of them.

*/

#def ine RPT_MAX 3

void
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nofmP ( int n, int m, int *irnd, int *list)

{

int j , rpt

;

for (j = 0; j < m; j++)
list [ j ] = j + 1;

for (rpt = 0; rpt < RPT_MAX; rpt++)
randomize ( list , m)

;

for (j = 0; j < n; J++)
irnd [ j ]

= list
[ j )

;

}

/* randomize a list of ir. integers. Pick a random location before m and
exchange its contents with the m-th location. Reduce m by 1 and
continue. */

void
randomize ( int *list, int m)

{

while (m > 1)

{

int j , tmp;

j = m-- * uni ( 0 )

;

tmp = 1 i s t [ j ] ;

list [ j ] = list [mi

;

list[m] = tmp;

}

}

/* nofmS

Algorithm S
*/

void
nofmS (int n, int m, int 'irad)

{

int ihave, it, nn;

double x;

nn - m;

ihave = 0

;

do
{

for (it =0; it < nn; it++)

{ x = uni ( 0 )

;

if ( (nn - it) *x< (n- ihave)

)

{ irnd [ ihave++ ]
= it + 1;

if (ihave == n) break;

}

}

if (ihave != n)

printf(" start over: got %d, wanted %d\n", ihave, n)

;

}

while (ihave != n)

;

}

/* j is random [0:m-l] */

/* exchange j, m-1 */
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/* end of nofm module */
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