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Abstract

What follows is the description of an experiment in which we investigated the possibility

that blurring techniques and lossless compression could be combined as an alternative to lossy

compression techniques for still images. Our results show that while blurred images compress

losslessly better than their originals, this technique offers relatively modest compression ratios

that can be matched by lossily compressed images (jpeg) having less noticeable artifacts.

1 Introduction

The dominant image compression techniques are derived from signal representation techniques

(e.g., the Fourier transform) and variants thereof (e.g., wavelets). Such techniques operate

alternatively on the rows and columns of the image to be processed and in the end represent

the image as a sum of sinusoidal functions (or wavelets).

Lossy compression is achieved by dropping the terms that lack visual significance, reducing

the precision of the remaining terms as applicable, and losslessly compressing the resultant

terms. Effective compression throws away as much precision as possible while retaining accept-

able quality levels. Nevertheless, we note that:

• Edges within an image are significant.

• If too many terms are dropped, then the edges are not sharp and blurring occurs; in

addition, if the filters used are not carefully chosen, ringing effects are observed (i.e.,

the reconstructed image contains homothetically displaced echoes of the edges). Both

artifacts relate to what is known as the Gibbs phenomenon (see below).

Therefore, acceptable compression presupposes careful choices (filter selection and suppres-

sion of information) to avoid the blurring and ringing effects near edges; this precision is re-

dundant over the portions of the image that are smooth. This has led researchers to consider

schemes (see [10], [17]) that operate in two steps:

• The first step extracts sufficient information to represent the edges; this information is

subtracted from the image to be compressed and the result of the subtraction is a smooth

image;
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• the resultant smooth image can be greatly compressed without undesirable side effects.

In the experiment we designed we investigated a different approach. Blurred images lack

strong edges and there exist efficient procedures for blurring and deblurring images (see [5], [11], [13]).

It is therefore conceivable that one could operate as follows:

• Blur the original image.

• Compress the resultant blurred image.

• Transmit/store the compressed blurred image and have the user deblur it.

We observe nevertheless that:

• blurring introduces artifacts; (more precisely: Artificially blurred images can be fully

deblurred if sufficient information is retained; sufficient information with the techniques

at hand translates to more bits that we can reasonably afford and, therefore, blurring

followed by truncation to the most significant eight bits introduces artifacts).

• deblurring does not tolerate errors well (they tend to be magnified);

• the user must have the software and the computing power necessary to deblur.

In short, the blur-compress technique incurs penalties whose extent must be investigated

and, even if it were superior to traditional compression (e.g., jpeg), it would only be practical

in constrained environments (low grade communication and/or storage facilities but sufficient

computing power).

The remaining sections of the paper provide a summary of the difficulties of efficiently rep-

resenting discontinuous functions through Fourier series, an overview of blurring and deblurring

algorithms, and the data we collected over eight gray scale images.

2 Fourier series, discontinuities, and the Gibbs Phenomenon

Infinite sums of the form

OO

a0/2 + "^2{akCos(kx) + bksin(kx)) (1)

k= 1

appear as early as 1753 ([6]) in the solution by D. Bernoulli of the problem of the vibrating

string and continue being used by others
[
Lagrange, D’Alembert, Euler, Clairaut] as tools in

the solution of problems that arose on partial differential equations and in astronomy. Never-

theless, they are used in a limited way in situations in which the existence of the series can be

demonstrated by ad hoc means. Fourier is the first to state that an arbitrary function could
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be expressed as a trigonometric series (1807 and 1811, ’’Theorie Analytique de la Chaleur”,

published in 1822).

Fourier’s proofs left something to be desired and the first rigorous treatment of the subject is

attributed to Dirichlet who proved that if f(x) is bounded over (—7r, ir) and piecewise monotonic,

then its Fourier series converges at each point x in (— 7r,7r) to
(f(x + 0) + f(x — 0))/2 and, in

addition, for x = 7r and for x = —tt the series converges to (/(— tt + 0) + f(ir — 0))/2.

We note that by definition f(x+0) and f(x-0) are, respectively, the limits of f(x+h) and

f(x-h) as h tends to 0 from above, i.e., h > 0. We also note that for ease of exposition and

without adverse effect, we may assume that f is defined over the real numbers, is periodic

with period 27r, and satisfies f(x) = (f(x + 0) + f(x — 0))/2 for all x; these assumptions

imply that if 0 < h < 2ir, then f(ir 4- h) = /(— tt + h ), /( tt — h) = /(— 7r — h ), and that

/(-tt) = /(tt) = (/(-tt + 0) + /(tt - 0))/2.

Dirichlet’s results have since been extended but they are adequate for a great number of

applications and what matters from our point of view is the convergence of the series that can

be summarized as follows:

Let

k=n

Sn (x )
= a0 /2 + ^2iakCos(kx) + bksin(kx)). (2)

k=

i

Then,

• For every x, Sn (x )
converges to f(x) as n —> oo.

• The convergence is uniform over every closed interval [a,b] that does not contain points

of discontinuity.

• If £ is a point of discontinuity, then Sn (x) oscillates around f(x) both before and after

£. The width of the oscillatory terms tends to 0 as n increases and they are dampened
out as we move away from £. Nevertheless the height of the oscillatory terms that occur

immediately before and after £ is insensitive to n and roughly equal to 9% of the jump of

f(x) at £.

The graphical implications of the convergence of 5n (x) were observed by Albert Michelson

who constructed in 1898 a harmonic analyzer capable of determining the first 80 components of

the Fourier series and of synthesizing them to produce Sn (x) (n <= 80) for graphically defined

functions f. Experimentation showed that for most functions f(x), the graph of Sn (x )
matched

the graph of f(x) with high degree of precision. Nevertheless, if f(x) were a square wave (i.e., a

step-function) as shown figure 1, then the resultant plot would extend the vertical lines as in

figure 2.

Michelson considered the possibility that the extensions of the vertical segments might be

due to defects in his equipment and communicated his observations to Josiah Gibbs. The latter

explained the phenomenon in a publication in 1899 (the Gibbs phenomenon which had already
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Figure 1: A square wave

Figure 2: Limit graph of the Fourier series of a square wave

been observed by Wilbraham in 1848 ([18], page 61). As he put it, at the discontinuity points

the limit of the graph of Sn (x) is not equal to the graph of the limit of Sn (x) (i.e., the graph of

f(x)). That is, while Sn (x) converges pointwise to f(x), the graph of Sn (x) does not converge

to the graph of f(x) around points of discontinuity.

In short, near the discontinuity of the step function Sn (x) looks, roughly, as in figure 3.

The sketch in figure 3 does not purport to be accurate. It does nevertheless illustrate the

following:

• Let M and m represent, respectively, the maximum and minimum value in {/(£+ 0), /(£
—

0)} and let D = M - m. If f is discontinuous at £ then Sn (x) overshoots M by an amount

roughly equal to 0.09D and undershoots m by the same amount.

• The height of the lobes that Sn (x) exhibits immediately before and after £ is insensitive

to the actual value of n while the widths of the lobes tend to 0 as n —> +oo and, therefore,

the lobes extend the vertical wall of the jump as illustrated above).

The practical consequences of the the Gibbs phenomenon are these:

• It impacts filter design because the lobes represent error that typically shows as an echo

(audio) or as a ghost image.

To illustrate the visual impact of ringing effects we include figures 4 and 5 which show,

respectively, an original image, Barbara, and the same image after some frequencies were

suppressed. The degraded image shows significant impairments including blurring and

ringing artifacts, most notably at the right elbow of Barbara and along the table’s leg.

Note: To obtain the degraded image we used the FBI fingerprint wavelet to decompose

the image as follows:
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Figure 3: Sn (x) near a discontinuity point

- By definition, Q6 is the original image.

- for all k, 1 < k < 5, Qk and Rk are respectively the LL band and the LH+HL+HH
bands obtained from the wavelet decomposition of Qk+i via the FBI fingerprint

wavelet.

— By definition R0 = Q ]_.

- The impaired image was reconstructed after the coefficients in R3 and R4 were zeroed.

• It impacts compression.

Indeed, in the presence of discontinuities the coefficients an and bn in the Fourier series

converge to 0 no faster than 1 /n. The same phenomenon occurs, albeit locally, when

wavelets are used. Compression typically works by dropping as much information as

possible because it is either numerically too small or because it does not materially af-

fect human perception. Fast convergence to 0 is therefore highly desirable and the rate

of convergence relates to the smoothness of the approximated function (i.e., number of

continuous derivatives available) [[12], [16]].

For our purposes all this highly summarized discussion boils down to this: if our images

were edge free, we could have at the same time high compression rates and high quality.
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Figure 4: Original Barbara
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Figure 5: Barbara minus some middle frequencies

I



3 Image blurring, Fourier transforms and Levy kernels

An effective way of blurring an image f(x, y )
so as to smooth out edges and other sharp features,

is through convolution with an appropriate smoothing kernel h(x,y),

«)/(«, v)dudv = h(x, y) ® f(x, y) = g(x, y), (3)

where g(x,y
)

is the resulting blurred image and 0 denotes convolution. The prime example of

such a smoothing kernel is the Gaussian probability density

h\(x,y) = (Trd)~
1e~ (

'
x2+y2^a

,
a > 0. (4)

Another example is the Cauchy or Lorentzian probability density

h2 (x, y) = (a/27r)(a
2 + x2 + y

2)~3/2
,

a > 0. (5)

In both cases, a > 0 is a constant that controls the width of the blurring kernel. As a increases,

the width increases and blurring becomes more severe. As a 4- 0, the kernels approach the

Dirac ^-function and little or no smoothing takes place. To gain a fuller understanding of such

smoothing, it is helpful to use the Fourier transform

(F[v\ = f v(x,y)e~
27Tt<

'
x^+yv^dxdy = v(€,rf). (6)

J JR?

One advantage of Fourier methods is that convolution in the space variables corresponds to

multiplication in the transform variables. Thus, from (3)

F[h®f] = h(Z,rj)f(€,T})=g(t,rf). (
7

)

Another advantage is that a wide class of smoothing kernels h(x, y) have a simple functional

form in Fourier space. This is the case for the class of symmetric ‘stable’ Levy probability

densities defined by [7],

h{£, rj) = e
~a^W)\ a > 0

,
0 < (3 < 1 . (8 )

Here, a and (3 are constants. The constant a > 0 controls the width of the kernel h(x,y) in

real space, and blurring becomes more severe as a increases. The case (3=1 corresponds to

the Gaussian kernel (4) while the Cauchy kernel (5) is the case (3 = 1/2. For other values of

(3, h(x,y
)

is not known in closed form.

From (7) and (8), it is evident that convolution with such Levy densities produces attenua-

tion of high frequency components in f(x,y) through multiplication by a negative exponential

in the frequency domain. The constant (3 also plays an important role. For the same fixed

value of a > 0, high frequency attenuation is more severe for higher values of (3 than it is for

lower values of (3. A simple recipe for smoothing an image is to Fourier transform the image,

multiply the transformed image by /i(£, rj) in (8) with preselected values of a and /?, and then

inverse transform to obtain the smoothed version g(x
1 y).
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Figure 6 : Blurring of MRI brain image by convolution with Cauchy density

A. Sharp MRI brain image f(x, y)

B. Blurred MRI image gs (x,y) stored in 8-bit precision

Since f(x,y) > 0
,
we have

\f(Z,v)\< [ f(x,y)dxdy = /(0,0) = a > 0. (9)
Jr2

Also, since h{x,y) 0 f{x,y) = g(x,y) and h(x,y) is a probability density,

l<?(f> r
7)l < 5 (0 ,

0
) = [ g(x, y)dxdy = f f(x,y)dxdy = a>0.

(
10

)
Jr2 Jr2

We normalize /(^, 77 ), ^(^, 77 )
by dividing by a and let

l)
= = g{€,r))/a, (11)

denote these normalized quantities. The function |/*(^, t?)| is highly oscillatory, and 0 <

|/*| < 1 . The same is true for |<?*(£, 77 )
|. Since f(x, y), g(x, y) are real, their Fourier transforms

are conjugate symmetric. In particular, the functions |/*(£, 0)| and |y*(£,0)| are symmetric

about the origin on the line 77 = 0 in the Fourier transform plane.

For digitized 512 x 512 images /(x, y), the above smoothing is accomplished using discrete

Fourier transforms via FFT algorithms, [2]. The discrete Fourier transform of f(x,y) is a

512 x 512 array of complex numbers, which we again denote by /(£, 77)
for simplicity. Here,

the ‘frequencies’
, 77 are integers, which we assume reordered so as to lie between —256 and

256, with the zero frequency at the center of the transform array. This ordering is assumed
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A B

Figure 7: Blurring and truncation process in Fourier domain.

A. log |/*(£, 0)| in sharp MRI brain image.

B. log 1^64 0) i

in Cauchy blurred MRI image stored in 64-bit precision.

C. log |<7*
6 (£, 0)| in Cauchy blurred MRI image stored in 16-bit precision.

D. log |g* (£, 0)| in Cauchy blurred MRI image stored in 8-bit precision.

Rounding noise in C and D masks important high frequency information. This explains

why blurring followed by truncation is not fully reversible.

throughout this paper. With the same interpretation for ry in (8), we multiply / by h, and

inverse FFT the result to obtain the digitized smooth version g(x,y). The normalized discrete

transforms |/*(£, 0)| and \g*(£, 0)| have the same properties as their continuous counterparts.

These 1-D traces of the 2-D FFT are easily visualized, and are helpful in understanding the

blurring process.
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4 Blurring and truncation in the Fourier domain

We now illustrate the foregoing by applying it to a digitized sharp image. The image f(x,y)

in Fig. [6A] is a 512 x 512 MRI sagittal brain image quantized at 8-bits per pixel. Thus,

each pixel value is an integer lying between 0 and 255. The sharp image f(x,y) was blurred

computationally by convolution with a Cauchy density. A double precision calculation was used

to form

g(^v) = f(tv)e-0075{ew)
''\

(12)

where £, rj are integer frequencies and —256 < £, rj < 256. The inverse transform of <?(£, rf) when
calculated and stored in 64-bit precision will be denoted by g64 (x, y). We may also form #16 (rr, y)

by truncating and storing in 16-bit precision, and g8 (x,y), corresponding to truncating to 8-bit

precision. These three blurred images are distinct but visually indistinguishable. The blurred

image g8 (x,y) is shown in Fig. [6B]. Clearly, all the sharp features in the original image have

been attenuated. Evidently, compression of image [6B] should be easier than compression of

image [6A].

It is instructive to study these four images in the Fourier domain by displaying 1-D traces.

First, consider the original sharp image f(x,y). In Fig. [7A], we display log|/*(£, 0)| on the

interval —250 < £ < 250. As expected, the trace is oscillatory and symmetric about the origin.

Next, we examine the high precision blurred image g64 (x,y). In Fig. [7B], log 0)| is

plotted on —250 < f < 250. Due to the negative exponential in (12), the trace in Fig. [7B]

decays rapidly as |£| increases. This is again as expected. An important limitation of blurring

begins to emerge when we consider the 16-bit image g 16 (x,y). In Fig. [7C], log |<?*
6 (£, 0)| is

plotted on —250 < £ < 250. Comparison with Fig. [7B] reveals the effects of truncating to 16-

bits prior to storing the blurred image. In Fig. [7C], the signal amplitude at high frequencies

falls below 16-bit rounding noise. Therefore, in reconstructing f(x,y) from gl6 (x,y), we do not

have available all of the necessary information. For this reason, blurring followed by truncation

is never fully reversible. Truncation to 8-bits destroys considerably more information. In Fig.

[7D], log \gl (£, 0)| is plotted on —250 < £ < 250. Comparison of Figs. [7B] and [7D] shows

that signal amplitude at frequencies beyond |£|
= 50 falls below 8-bit rounding noise. Thus,

any reconstruction of f(x,y

)

from g8 (x, y) must be based on the partial information contained

in the narrow frequency range 0 < |£| < 50. Of necessity, any such reconstruction cannot be

expected to match the resolution and visual quality in the original f(x,y).

5 Image deblurring

Image deblurring is a prime example of a numerically unstable problem. Small errors or noise

in the blurred image data can become amplified if the deblurring procedure is not carefully

designed. In particular, for the class of blurs described in (8), there is the potential for explosive

error amplification. Consequently, the presence of 8-bit rounding noise in the blurred image,

even though it is invisible, is a matter of concern.

There is a large literature on image deblurring methods. The books [1] and [9] are clas-

sics in the field. Many deblurring methods are based on probabilistic considerations and are

iterative in nature. An instructive survey of such methods is given in [14]. Unfortunately, for

11



large size images, thousands of iterations are usually necessary to resolve fine detail, [5]. Such

iterative methods are therefore not appropriate in the present context of image compression.

The method used in this paper is the recently developed fast SECB method [3], [4]. This is a

direct non-iterative procedure, based on FFT algorithms. The method is designed for images

with edges. Noise amplification is suppressed by proper regularization. This requires user se-

lection of appropriate values for the regularization parameters, based on a-priori knowledge of

what the true image should look like. As noted in [5], such prior knowledge is a fundamental

requirement in all reconstruction methods.

Given the blurred image g(x, y) and the blurring kernel h(x,y ), the SECB method obtains

the deblurred image P{x,y) in the Fourier transform domain, through the following formula.

With z denoting the complex conjugate of z,

h{€,‘n)g(€,'n)

\H€,v)\
2 + K-2 \l-hs

(€,v)\
2

’

leading to P(x, y) upon inverse transforming. In (13), s and K are positive constants that serve

as regularization parameters. The value of s should be fixed in the range 0.001 < s < 0.01.

The optimal value for the parameter K is a function of the noise content in the blurred image.

In the case of the 64-bit blurred image g6i (x, y) discussed in Fig. [7B], a value of K — 100

would be appropriate, while a value of K « 1 is necessary to prevent noise amplification in the

8-bit blurred image g8 (x,y) in Fig. [7D]. With s fixed, the optimal value of K is best found

interactively. Small values of K produce reconstructions with low resolution. Increasing K
increases resolution, until a threshold value of K is reached. Further increases produce noisy

reconstructions. The optimal K is the largest value that can be used before noise artifacts

become unacceptable. For each choice of K
,
SECB deblurring of a 512 x 512 image can be

accomplished in under 5 seconds of CPU time on current desktop workstations.

6 Compression experiments

In the experiments discussed below, eight sample 512 x 512 images were blurred with a Levy

density (8), with a = 0.05 and (3 = 0.4. The blurred images g{x,y) were truncated and stored

as 8-bit images. These 8-bit images were deblurred with the SECB method (13), with s = 0.001

and K — 0.833. This value of K produced small artifacts in some of the deblurred images. A
lower value of K can be found that produces less visible artifacts, along with less resolution.

7 The results of the experiment

To compare the relative performance of the losslessly blurred technique versus jpeg we consid-

ered a set of relatively well known pictures and we proceeded as follows:

1. The original 512x512 grey scale image was blurred and truncated to eight bits.

2. The resultant image would be compressed near losslessly.
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3. The original image would also be compressed, lossily, using jpeg at a quality setting that

would match as closely as possible the compression ratio in step 2 above.

4. The original image, the blurred-truncated-deblurred version, and the compressed version

would be constructed for subjective evaluation of the blur-truncate-deblur technique.

Typically, the blurred image would compress at 4:1 while the original would compress, near

losslessly, at 2:1. But jpeg at about Q=90 matches the compression ratio obtained by the

lossless compression of the blurred-truncated version while maintaining superior quality (Q is a

jpeg quality knob that varies between 0 and 100; its default value is 75 and values above 95 are

NOT recommended for normal use because they severely degrade performance for marginal,

if any, quality gains). Indeed, the blurred-truncated-deblurred images display high frequency

systematic components which are noticeable in the light-colored and edge free parts of the

image (e.g., the sky portion GoldHill). Therefore, it is obvious that the scheme we investigated

does not compete with straightforward jpeg compression.

The sample images, shown below, are:

• Barbara: The blurred image compresses losslesly to 77K comparable to 76K of the jpeg

version at Q=92.

• Boat: The blurred image compresses losslesly to 70K comparable to 68K of the jpeg

version at Q=92.

• GoldHill: The blurred image compresses losslesly to 75K comparable to 72K of the jpeg

version at Q=90.

• Lena: The blurred image compresses losslesly to 69K comparable to 65K of the jpeg

version at Q=92.

• Mandrill: The blurred image compresses losslesly to 95K comparable to 93K of the jpeg

version at Q=86.

• Peppers: The blurred image compresses losslesly to 71K comparable to 67K of the jpeg

version at Q=91.

• WashSat: The blurred image compresses losslesly to 62K comparable to 59K of the jpeg

version at Q=90.

• Zelda: The blurred image compresses losslessly to 65K comparable to the 62K of the jpeg

version at Q=93.

The images that follow are printed three at a time with the top image being the original,

the bottom left the blurred-truncated-deblurred version and the bottom right the j-peg version,

after reconstruction, whose compression ratio matches the compression ratio of the blurred

image when compressed losslessly. We also include as separate full images the three versions of

GoldHill because the image contains several flat portions over which one can clearly identify the

systematic distortion introduced through truncation. Although not immediately visible in the

other images, the same type of image distortion is detectable when the images are magnified.
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Figure 9: Boat
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Figure 10: Gold Hill
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Figure 11: GoldHill, Original
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Figure 13: GoldHill, jpegged, Q=90
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Figure 14: Lena
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Figure 15: Mandrill
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Figure 16 : Peppers
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Figure 17: Washington by satellite
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