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Abstract

We have simulated the fast streamer stage of liq-

uid dielectric breakdown as stochastic growth of a

branching fractal tree. Breakdown and threshold

properties of the fluid are represented in the ran-

dom filter procedure. A range of fractal densities,

from sparse to bushy, is approximated by the choice

of power-law (4th-power to linear). The choice of

threshold (cutoff) voltage also significantly affects

the growth form. These parameters combine with

the shape and concentration of the electric field, to

regulate the distribution and directedness of the lo-

cal discharge growth pattern. Inclusion of a volt-

age gradient along the streamer tree produces a sec-

ondary narrowing effect on the growth.

A large grid (128 cubed) is used for the discretiza-

tion. Diagonal growth paths to neighbor-vertices are

included, increasing the choice of available directions

for each discharge event.

We use a combination of data-parallel program-

ming and three-dimensional visualization. Com-
plete growth histories, evolving from the voltage

distribution, can be displayed in animation or in

color banding against the “trials” variable, which

simulates a time tick. Side views of the structures

provide comparison against sub-microsecond snap-

shots from experiment. Results include sparse, di-

rected trees evolving from a 4th-power-law filter;

also dense trees from a linear filter, whose conical

upper-envelope boundary is strongly influenced by

the choice of threshold (cutoff) potential.

Introduction

Filamentary streamers evolve rapidly in a surround-

ing voltage field, which influences their shape and

density. We explore a simplified “stochastic Lapla-

cian fractal” simulation for this phenomenon [1], We
do not include microscopic details of the physical

processes. Our purpose is to capture the global fea-

tures of the growth.

Elements of the numerical algorithm are as follows:

• Assume the streamer tree is conductive (either

with or without an internal voltage gradient),

and attached to the starting electrode.

• Solve Laplace’s equation throughout the full in-

terior region of the liquid dielectric. Boundary

conditions are set by the starting electrode plus

the tree (a growing, fractal object) at one polar-

ity; and the counterelectrode, which is assigned

the opposite-polarity voltage of 1.0.

• Examine neighbor sites one grid-step away from

the tree. Where voltage difference between the

site and the tree exceeds a sharp threshold level,

then compare against random numbers by a

method which yields a weighted distribution of

survivors. Attach these survivors to the tree.

• Cycle these two steps until the counter-

electrode is reached. Since the tree forms

one boundary condition for the electrostatic

field, the voltage field is redistributed after each

growth stage, and must be recalculated. This

give-and-take between the ambient field and

new streamer links dominates the growth pro-

cess.

• Record grid position for each new growth step,

together with the directional index for its link

(26 directions are possible) and the count num-

ber of the statistical trial. Thus the distribu-

tion, directions, and rate of growth are followed

in time, as they are controlled by the evolving

voltage field.

• Display the growth form in three dimensions.

Rotation, color banding, and animation can be

used to clarify the growth history.

In these simulations, the probability weighting for

survivors is taken to be a. power of the voltage dif-

ference. Figure 1, which is a log-log plot of break-

down probability, P(Vj) versus neighbor-site voltage

difference, V), sketches the assumed response law for
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differing powers. By varying the weighting power-

law exponent from 4 to 1 we demonstrate below that

the increasing visual bushiness (sparse to dense) re-

sults from the spread of forward directional concen-

tration, about the axes of the individual growth tips.

High geometric resolution, detailed three-

dimensional calculation of the voltage field,

and a plausible method for estimating time progres-

sion are necessary. As Biller has noted [2], length,

voltage, and time must be explicitly scaled in the

discretized model to approximate a history of the

physical growth, which is more than a geometrical

abstraction.

The model is non-specific with regard to the micro-

scopic mechanism of streamer growth. It does not

treat the microscopic electric field strength at the

tip surface. Neighbor-voltage values are taken at a

common radius (one grid step length, corresponding

roughly to a 30-50 micrometer segment) from the

tip; they are considered to be proportional to the

vector electric field strength at the neighbor sites.

The electric field at the tip point (observed in ex-

periment to have radius 3 micrometers or less) is of

course very much higher - sufficiently strong to pro-

duce cascade ionization of the dielectric fluid. Here

the neighbor-voltage values are used only as direc-

tional probability indicators. (For statistical unifor-

mity, each diagonal-step voltage is down-weighted

by a 1/r factor.)

Probability Model

The shape and concentration of the neighbor-voltage

distribution, and the slope of the selected break-

down law affect the rate, the distribution
,
and the

directionality of the modeled growth at each stage.

Dissado et al [3] have shown that for an extended

projecting tip the ratio of axial to lateral field mag-

nitude in three dimensions is roughly 1.22:1. For

a linear-law survivor probability this regulates the

rates of forward vs. lateral growth. For square-law,

cube-law, and fourth-power cases the ratio would

change to 1.49:1, 1.82:1, and 2.22:1 respectively.

These ratios affect the extent of splitting and the

bushy-to-sparse appearance.

The power-law lines for different exponents are

sketched in Figure 1. These correspond to nominal

response curves for the fluid. Ordinate is the prob-

ability (or rate) of breakdown; the abscissa is the

voltage difference between the tree and the neighbor

site. Raising the exponent exerts an axial constric-

tion on the local growth cone, concentrating growth

ahead of the tip [3] . Lowering the exponent gives rise

to a more dense, spread pattern of twig growth in a

more rounded frontal zone. This effect is seen more

clearly when diagonal growth paths are included.

Voltage at Neighbor Site, Vi

Figure 1 . Local breakdown probability (for a link dis-

charge), P(Vi) as a function of neighbor-site voltage.

Scales are log-log. Choice of power-law exponent repre-

sents the nominal response of the fluid. Threshold (cut-

off) parameter determines where the left end of each line

drops to zero. Voltage distributions overlap this dropoff

point.

The vertical-scale level of each graph is arbitrary,

and corresponds to the rate (or probability) of the

physical process producing the growth. In practice,

streamers showing the cubic and 4th-power “sparse”

structure grow very rapidly relative to the growth

speed of the more dense, space-filling filamentary

streamers produced by a linear-law filter. Thus,

the corresponding experimental plot might show the

linear-growth line at a lower level on the graph.

Varying the threshold (cutoff) voltage parameter

also has a noticeable effect on the overall density of

discharged links. (The lines in Fig. 1 are limited by

a drop to zero at their left end, which is positioned

by this choice.) As we observe below, the choice

of a threshold value controls the conical sector angle

into which the dense linear-weighted fractal tree can

spread.

Clocking of Monte Carlo time is considered in this

model; thus the distribution, directions, and rate of
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growth are followed together, as they are controlled

by the evolving voltage field. In the examples we

give, the “Monte Carlo” time tick is extremely short

- each growth-stage interval is only a hundredth

or less of the overall growth duration, correspond-

ing therefore to a real time interval of the order of

nanoseconds. In cases of very low probability, as

on the lower half of Figure 1, the “waiting time”

between events is estimated by the BKL method[4].

Display is carried out in three dimensions. On a

work station, color banding can be used to mark
the time history of growth; dynamic rotation of the

image is extremely useful in distinguishing details of

the growth form. Animation of frames against the

time-tick variable is also readily achieved.

In the figures below, simulation has been performed

on a 128 x 128 x 128 grid. The top surface of

the cube represents the starting electrode, with an

attached central needle. The lower surface is the

counterelectrode; side boundary conditions are peri-

odic. Unless otherwise indicated, as in Figure 8, the

streamer growths are assumed to be perfectly con-

ducting, without a retained voltage gradient. The
heavy line denotes the connecting path, or “leader”

track, along which high-current breakdown will oc-

cur.

4th-Power-law

Figure 2 is a representative case of streamer simu-

lation, modeled with a probability filter which pro-

duces a 4th-power-law survivor population. Note

that the branches are sparse and forward-directed.

The bare-tree appearance results from differential

preference for tip extension versus lateral branching.

4t,h-power-law also tends to maximize the apparent

growth speed in the short-gap stages of the path,

so that the advance across the second half of the

interval occurs in a very small fraction of the total

elapsed time. Inclusion of a retained voltage gradi-

ent in the streamer tree, when this is set at 0.30 x

the voltage difference causing breakdown on the in-

dividual link, has no noticeable effect on the general

appearance of this sparse streamer form.

Experimental streamers, of similar sparse appear-

ance, can be identified in recent results by Miyano

et al. [6], which describe positive streamer propaga-

tion in perfluoro liquids.

Tentatively, we would identify this form of sparse,

forward-directed growth with the very fast “type

Figure 2. 4th-power-law example. Attached central

needle has length fifteen grid steps. The threshold (cut-

off) voltage is set at 0.0700, just slightly below the

largest voltage on a neighbor site to the needle. 20089

(est.) statistical tries have produced 956 discharged

links. Growth across the second half of the point-to

plane gap occurs in about 1/16 of the entire “Monte

Carlo” elapsed time. This speedup is a result of the low,

screened initial field near the originating electrode, and

the high power law assumed in the model.

4” streamers first characterized by Hebner [7], and

studied in more detail by Massala and Lesaint [8].

Square-law

Figures 3, 4, and 5 are representative growths ob-

tained with a square-law weighting. In Figure 3 a

relatively high threshold (cutoff) voltage has been

assumed (0.2000), corresponding to a. low overvolt-

age in experiment. In Figures 4 and 5 this thresh-

old is lowered to 0.1500 and 0.0500, respectively, to

simulate increased overvoltages applied to the elec-

trode gap. Noticeable features are the increase in

major side-branching, and the wider envelope shape.

The streamer tree has more branches and a generally

more dense, bushy appearance, because the relative

probability of lateral branching has increased. Indi-

vidual branches are less tightly forward-directed by

the voltage distribution.

Experimental cases having a similar structure are

found in results by Lesaint and Massala [9] on pos-

itive streamer propagation in large oil gaps. At in-

creasing levels of overvoltage, they find streamer
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Figure 3. Square-law streamer simulation. 314 statis-

tical tries have given rise to 1832 discharged links. The
needle has been lengthened to 47 grid intervals, which

more closely simulates the “point-to-plane” configura-

tion. Threshold (cutoff) voltage level is set at 0.2000,

just slightly below the largest neighbor voltage adjacent

to the needle tip.

forms with broader branching patterns and more
rapid growth.

Linear weighting

Figures 6 and 7 show the dense, widely-branched

structure which a linear-weighted growth filter pro-

duces. By contrast with the cube- and square-law

cases, these trees tend to divide immediately into

several (3 or 4) large major branches, which spread

densely through the volume but remain self-avoiding

and singly connected.

Figure 6 evolves from a threshold (cutoff) voltage of

0.1200, Figure 7 with 0.2000. The strong influence

of this parameter on the conical upper envelope of

the dense structure is noted. The effect of electri-

cal screening is pronounced, as the bushy growing

front intervenes between the counterelectrode and

the early portion of the growth. The upper devel-

opment of the tree, near the starting electrode, is

limited at a roughly conical envelope, where growth

has ceased as the voltage field is screened back below

the abrupt cutoff value.

A conical envelope, for dense positive streamers in

Figure 4. Square-law simulation, with threshold volt-

age set at 0.1500. 262 statistical tries have produced

3389 discharged links. Lateral branching density has in-

creased, especially near the origin at the starting needle.

n-hexane, has been noted experimentally by Strick-

lett et al. [10]. Badent, Kist, and Schwab [11] have

observed a constriction of the conical propagation

sector, associated with increasing pressure, in exper-

imental positive streamers in insulating oil. Thus,

the increase in pressure in their experiment is pro-

ducing a change which corresponds to the narrowing

of the cone, when our threshold (cutoff) parame-

ter is increased. Earlier high-resolution images by

Chadband [12] had demonstrated the fine filamen-

tary detail of dense positive streamers.

Effect of Voltage Gradient in the Tree

A further narrowing and “squeezing” effect can be

produced in the model by assuming a retained volt-

age gradient, from tips to base of the tree, as it

grows. In Figure 8 we show the additional effect

of assuming that each breakdown leaves a retained

voltage gradient in its segment of the tree, equal to

0.40 of the voltage difference causing that segment,

of the discharge. Noticeable here is the very sparse

“trunk” portion starting from the needle. The ef-

fect of the introduced gradient is to reduce voltage-

difference values between the tree and the candidate

neighbor sites, so that the constriction effect of the

cutoff potential is more strongly felt.

Massala and Lesaint [13] have reported measure-
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Figure 5. Square-law simulation. Threshold voltage is

set at 0.0500, well below the largest neighbor voltage.

92 statistical tries have produced 7476 discharged links.

merits relating to the voltage drop within streamers.

They note that raising the applied voltage may give

rise to higher internal conduction, i.e. lower voltage

drop inside the streamer.

Overall Growth Rates

Figure 2 and Figure 6 represent extremes of growth

rates. Figure 2, with 4th-power filtering in the short-

needle, “uniform field” configuration, makes a slow

start followed by high acceleration across the sec-

ond half of the gap. Figure 6, with linear-law fil-

tering in the long-needle, “point-to-plane” configu-

ration, grows as an enlarging, space-filling sphere

whose radius increases linearly with time, to a first

approximation. In this case the effect of diminish-

ing gap to the counterelectrode is evidently offset

by the brush-tip spreading, which reduces local field

around individual tips.

Growth rates for individual processes, using square-

law and cube-law filters, are intermediate between

these extreme cases. Introducing a retained voltage

gradient appears to have very little effect on rates

of forward growth; its principal effect is to constrain

the lateral branching.

Summary of Results

Simplified programming has allowed us to build de-

tails into the model in easy steps: high geomet-

Figure 6. Linear response law. Growth is dense. 91

statistical tries have produced 27,837 discharged links.

The front of the growth, facing the counterelectrode,

has become rounded and brush-like; this rounding coun-

teracts the field enhancement from the diminished gap

distance, so that forward growth proceeds at a nearly

constant rate. The upper envelope of growth is a flat

cone, almost level with the tip of the needle.

ric resolution on a large grid, inclusion of diagonal

paths, a method for scaling time and growth rates,

and effect of statistical filters with power laws, volt-

age thresholds, and a retained voltage gradient in

the tree.

The model is put forward as a simplified means
for standardized comparisons of different features

of streamer behavior. Thus, as its parameters are

changed, we have simulated a range of effects with

experimental counterparts.

Comparison with Other Models

Our simulation has several features in common
with the recent work of Karpov and Kupersh-

tokh [14], including simultaneous (concurrent) dis-

tributed growth, and growth along diagonal links to

neighbors. They calculate a “stochastic time”, with

an intent similar to our “Monte Carlo” time tick.

In our case the time tick is directly counted unless

the waiting time is very long, in which case it is

estimated by a method [4] adapted from molecular

mechanics.

Some differences include:
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Figure 7. Linear filter. The threshold (cutoff) voltage

has been raised to 0.200. Branches next to the narrower

conical upper envelope show a more sparse appearance

than the dense structure approaching the cathode. Total

number of discharged links has been reduced to 10,000,

in 127 statistical tries. The cutoff from screening is hav-

ing a pronounced narrowing effect on the conical sector

of propagation.

Figure 8. Linear filter. With the threshold voltage re-

maining at 0.200, a retained internal voltage gradient

has been added throughout the growth of the streamer,

the gradient across each segment being set equal to 0.40

x the voltage difference causing breakdown in that seg-

ment. 164 statistical tries have led to 4482 discharged

links. The growth is very sparse or constricted for a

considerable distance away from the needle tip.

• They assume an ohmic potential drop from tips

to base along the streamer tree. In the absence

of a clear experimental determination of the fac-

tors which set this voltage gradient, we have ar-

bitrarily simulated it as an adjustable fraction

of the individual voltage drop causing break-

down in each link. Experiments by Badent

and colleagues have shown the possibility of a

lengthwise internal voltage gradient.

• They assume a spherical outer boundary condi-

tion about a starting point, with the tree grow-

ing as a ball. They find the local fractal dimen-

sion declining as the tips reach larger radii. Our
simulation, confined between electrode plates,

shows some increase in local fractal density, as

the tips progress.

• They assume a statistical spread of lower

threshold (cutoff) values; whereas we take a

sharp threshold [5].

R. Badent [15] has presented a detailed theoretical

sketch of possible electron-transport modes within

the streamer. Tentatively, he identifies each ob-

served type of streamer(types 2,3,4 [7]) with a dif-

ferent electron-transport mode.

In search of a microscopic origin for these streamer-

shaping effects, we call attention to a model for the

microscopic growing tip of streamer filaments, which

was proposed by D’yakonov and Kacharovskii [16]for

streamers in semiconductors, and has been extended

by Atrashev [17] for liquids. At present, this model

considers physical parameters which may determine

the tip-radius (roughly 3 micrometers) and speed of

advance of the individual filament, by affecting the

size and shape of the high-electric-field breakdown

zone (presumably a region of impact ionization). Fu-

ture extensions of their model might include consid-

eration of a preference for lateral spreading versus

axial concentration of growth, at the microscopic

level of the streamer-head radius.

Programming methods

Keeping track of the voltage field surrounding the

streamer tree, which is a growing highly irregular

object, poses the major difficulty. We re-evaluate

the voltage field at each growth stage, throughout
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the full interior volume. The enormous flow of nu-

merical activity is handled by parallel (SPMD) com-

puting methods.

We have developed a scalable block-parallel program

to realize this model. It exploits the power and lo-

cal memory of multiprocessors to handle the bulky

Laplacian calculation. Each process is assigned a

rectangular slab subdivision of the cube volume.

Data is passed through the face-planes between ad-

joining blocks. Details are given in earlier articles

[18, 19, 20],

To simplify programming, we adopt Fortran 90 as

the high-level language, taking advantage of its ex-

cellent variety of array-directed commands. The
physics is made clear by writing the code as if for a

single serial processor, but addressing each instruc-

tion to large arrays, which include the entire volume

of dielectric fluid (for the Laplacian calculation) or

the complete group of neighbor sites which must be

examined at each growth stage. Because it is fully

scalable, the code may be run interactively at small

sizes (say 48 x 48 x 48) with three processes, then

scaled up to 128-cubed size, with eight processes for

a full-sized run.

As in conventional Fortran programming, the arith-

metic operations are simplified through intermedi-

ate temporary variables, which in this case become

very large arrays. All of this is made practical by

the large amounts of random access memory (RAM)
available to individual processes, on modern mul-

tiprocessors. Typically, our code, running on four

processors can require from 100 to 200 Mbyte of

RAM per processor. Often, in physical problems, it

is memory accesses rather than simple computation

time which limits the extent of detail that can be

obtained.

The program CADMUS is written in a readable

high-level language, which leaves the physics clear.

Fortran 90 is supplemented by NIST’s DPARLIB, a

set of subroutines which extend Fortran 90 instruc-

tions across block-process boundaries [21], in the en-

vironment of the Message Passing Interface (MPI)

[22]. It has run on networks of workstations, in the

LAM environment [23], but is faster on more tightly

coupled multiprocessors, such as the IBM SP2 and

SGI Origin 2000 *.

‘Certain commercial equipment and software may be iden-

tified in order to adequately specify or describe the subject

matter of this work. In no case does such identification im-

ply recommendation or endorsement by the National Insti-

tute of Standards and Technology, nor does it imply that the

We offer the source code for interested users, via

Internet:

http : //www . itl .nist.gov/div895/sasg/

dielectric/dielabs .html
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