

NIST

NISTIR 6488

The Flawed-Cylinder Burst Test

John H. Smith

U.S. DEPARTMENT OF COMMERCE Technology Administration Metallurgy Division National Institute of Standards and Technology Gaithersburg, MD 20899

NIST

National Institute of Standards and Technology Technology Administration U.S. Department of Commerce

QC 100 .U56 #6488 2000 **€**.2

The Flawed-Cylinder Burst Test

John H. Smith

U.S. DEPARTMENT OF COMMERCE Technology Administration Metallurgy Division National Institute of Standards and Technology Gaithersburg, MD 20899

May 2000

U.S. DEPARTMENT OF COMMERCE William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION Dr. Cheryl L. Shavers, Under Secretary of Commerce for Technology

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Raymond G. Kammer, Director

THE FLAWED-CYLINDER BURST TEST

JOHN H. SMITH

NIST

METALLURGY DIVISION

TABLE OF CONTENTS

		SECTION	PAGE			
1.0	SCO	PE	1			
2.0	DEFI	NITIONS AND SYMBOLS	1			
3.0	INTR	ODUCTION	2			
4.0	EXPI	EXPERIMENTAL TEST PROGRAM				
	4.1	TYPES OF CYLINDERS TESTED	5			
	4.2	MATERIAL PROPERTIES TESTS	8			
	4.3	DESCRIPTION OF THE FLAWED-CYLINDER BURST TEST	10			
5.0	FLAV	VED-CYLINDER BURST TEST RESULTS	13			
	5.1	INTRODUCTION	13			
	5.2	FLAWED-CYLINDER BURST TEST RESULTS FOR GROUP A MATERIALS	15			
	5.3	FLAWED-CYLINDER BURST TEST RESULTS FOR GROUP B MATERIALS	16			
	5.4	FLAWED-CYLINDER BURST TEST RESULTS FOR GROUP C MATERIALS	16			
	5.5	FLAWED-CYLINDER BURST TEST RESULTS FOR GROUP D MATERIALS	17			
	5.6	FLAWED-CYLINDER BURST TEST RESULTS FOR GROUP E MATERIALS	17			
	5.7	FLAWED-CYLINDER BURST TEST RESULTS FOR TEST CONDUCTED UNDER SPECIAL CONDITIONS	18			
		5.7.1 LOW TEMPERATURE TESTS	18			
		5.7.2 PNEUMATIC TESTS	18			
6.0	DISC	USSION	19			
	6.1	INTRODUCTION	19			

i

	6.2	ISO 9809 Part 2 FLAWED-CYLINDER BURST TEST PROCEDURES AND ACCEPTANCE CRITERIA			19
	6.3	ANALY: TEST TO	SIS E D CH	BY WG 14 TO RELATE THE FLAWED-CYLINDER BURST ARPY-V-NOTCH ENERGY VALUES	21
	6.4	ADJUST FOR TH	'MEI E LC	NT TO THE MEASURED Pf/Ps RATIO TO ACCOUNT CAL CYLINDER WALL THICKNESS	23
7.0	SUMN	MARY AN	ID D	ISCUSSION	25
8.0	REFE	RENCES			26
ACK	NOWLE	DGMENT	٢S		28
TABI	LES				29
		TABLE	1.	CYLINDER DESCRIPTION FOR GROUP A MATERIALS	30
		TABLE	2.	CYLINDER DESCRIPTION FOR GROUP B MATERIALS	31
		TABLE	3.	CYLINDER DESCRIPTION FOR GROUP C MATERIALS	33
		TABLE	4.	CYLINDER DESCRIPTION FOR GROUP D MATERIALS	37
		TABLE	5.	CYLINDER DESCRIPTION FOR GROUP E MATERIALS	41
		TABLE	6.	MECHANICAL PROPERTIES OF GROUP A MATERIALS	42
		TABLE	7.	MECHANICAL PROPERTIES OF GROUP B MATERIALS	43
		TABLE	8.	MECHANICAL PROPERTIES OF GROUP C MATERIALS	45
		TABLE	9.	MECHANICAL PROPERTIES OF GROUP D MATERIALS	49
		TABLE	10.	MECHANICAL PROPERTIES OF GROUP E MATERIALS	53
		TABLE	11.	FRACTURE TOUGHNESS TEST RESULTS	54
		TABLE	12.	FLAWED-CYLINDER BURST TEST RESULTS FOR GROUP A MATERIALS	55

TABLE 13.	FLAWED-CYLINDER BURST TEST RESULTS FOR GROUP B MATERIALS	56
TABLE 14.	FLAWED-CYLINDER BURST TEST RESULTS FOR GROUP C MATERIALS	58
TABLE 15.	FLAWED-CYLINDER BURST TEST RESULTS FOR GROUP D MATERIALS	62
TABLE 16.	FLAWED-CYLINDER BURST TEST RESULTS FOR GROUP E MATERIALS	67
TABLE 17.	FLAWED-CYLINDER BURST TEST RESULTS FOR CYLINDER GROUPS TESTED AT ONLY ONE FLAW LENGTH	68
TABLE 18.	FLAWED-CYLINDER BURST TEST RESULTS FOR CYLINDER GROUPS TESTED AT ONLY ONE FLAW LENGTH AND ONLY LEAK OR FRACTURE OCCURRED	69
TABLE 19.	FLAWED-CYLINDER BURST TEST RESULTS FOR CYLINDER GROUPS TESTED AT ONLY ONE FLAW LENGTH AND ADJUSTED FOR LOCAL THICKNESS	70
TABLE 20.	FLAWED-CYLINDER BURST TEST RESULTS FOR CYLINDER GROUPS TESTED AT ONLY ONE FLAW LENGTH AND ONLY LEAK OR FRACTURE OCCURRED AND ADJUSTED FOR LOCAL THICKNESS	71
		72
FIGURE 1	TYPICAL SEAMLESS STEEL HIGH PRESSURE CYLINDERS	73
FIGURE 2.	FLAW GEOMETRY USED IN THE FLAWED-CYLINDER BURST TEST	74
FIGURE 3	EXAMPLES OF CYLINDERS THAT FAILED BY LEAKING AND BY FRACTURING	75
FIGURE 4.	UNUSED DATA POINTS	76
FIGURE 5.	DEFINING THE LEAK-FRACTURE BOUNDARY	77
	TABLE 13. TABLE 14. TABLE 15. TABLE 16. TABLE 17. TABLE 18. TABLE 19. TABLE 19. FIGURE 1 FIGURE 1 FIGURE 2. FIGURE 3 FIGURE 4. FIGURE 5.	 TABLE 13. FLAWED-CYLINDER BURST TEST RESULTS FOR GROUP B MATERIALS TABLE 14. FLAWED-CYLINDER BURST TEST RESULTS FOR GROUP C MATERIALS TABLE 15. FLAWED-CYLINDER BURST TEST RESULTS FOR GROUP D MATERIALS TABLE 16. FLAWED-CYLINDER BURST TEST RESULTS FOR GROUP E MATERIALS TABLE 17. FLAWED-CYLINDER BURST TEST RESULTS FOR CYLINDER GROUPS TESTED AT ONLY ONE FLAW LENGTH TABLE 18. FLAWED-CYLINDER BURST TEST RESULTS FOR CYLINDER GROUPS TESTED AT ONLY ONE FLAW LENGTH TABLE 19. FLAWED-CYLINDER BURST TEST RESULTS FOR CYLINDER GROUPS TESTED AT ONLY ONE FLAW LENGTH AND ONLY LEAK OR FRACTURE OCCURRED TABLE 19. FLAWED-CYLINDER BURST TEST RESULTS FOR CYLINDER GROUPS TESTED AT ONLY ONE FLAW LENGTH AND ONLY LEAK OR FRACTURE OCCURRED FABLE 20. FLAWED-CYLINDER BURST TEST RESULTS FOR CYLINDER GROUPS TESTED AT ONLY ONE FLAW LENGTH AND ONLY LEAK OR FRACTURE OCCURRED AND ADJUSTED FOR LOCAL THICKNESS FIGURE 1 TYPICAL SEAMLESS STEEL HIGH PRESSURE CYLINDERS FIGURE 2. FLAW GEOMETRY USED IN THE FLAWED-CYLINDER BURST TEST FIGURE 3 EXAMPLES OF CYLINDERS THAT FAILED BY LEAKING AND BY FRACTURING FIGURE 4. UNUSED DATA POINTS FIGURE 5. DEFINING THE LEAK-FRACTURE BOUNDARY

FIGURES

iii

FIGURE 6.	FLAWED-CYLINDER BURST TEST RESULTS FOR A-1 MATERIAL	78
FIGURE 7.	FLAWED-CYLINDER BURST TEST RESULTS FOR A-2 MATERIAL	79
FIGURE 8.	FLAWED-CYLINDER BURST TEST RESULTS FOR B-3 MATERIAL	80
FIGURE 9.	FLAWED-CYLINDER BURST TEST RESULTS FOR B-6 MATERIAL	81
FIGURE 10.	FLAWED-CYLINDER BURST TEST RESULTS FOR B-9 MATERIAL	82
FIGURE 11.	FLAWED-CYLINDER BURST TEST RESULTS FOR C-3 MATERIAL	83
FIGURE 12.	FLAWED-CYLINDER BURST TEST RESULTS FOR C-7 MATERIAL	84
FIGURE 13.	FLAWED-CYLINDER BURST TEST RESULTS FOR C-11 MATERIAL	85
FIGURE 14.	FLAWED-CYLINDER BURST TEST RESULTS FOR D-3 MATERIAL	86
FIGURE 15.	FLAWED-CYLINDER BURST TEST RESULTS FOR D-5 MATERIAL	87
FIGURE 16.	FLAWED-CYLINDER BURST TEST RESULTS FOR D-6 MATERIAL	88
FIGURE 17.	FLAWED-CYLINDER BURST TEST RESULTS FOR D-11 MATERIAL	89
FIGURE 18.	FLAWED-CYLINDER BURST TEST RESULTS FOR E-1 MATERIAL	90
FIGURE 19.	FLAWED-CYLINDER BURST TEST RESULTS FOR E-2 MATERIAL	91

FIGURE 20.	LOW TEMPERATURE TESTS (20 liter cylinders)	92
FIGURE 21.	LOW TEMPERATURE TESTS (50 liter cylinders)	93
FIGURE 22.	COMPARISON OF PNEUMATIC AND HYDROSTATIC TESTS	94
FIGURE 23.	FLAWED-CYLINDER BURST TEST RESULTS FOR A-1 MATERIAL ADJUSTED FOR LOCAL THICKNESS	95
FIGURE 24.	FLAWED-CYLINDER BURST TEST RESULTS FOR A-2 MATERIAL ADJUSTED FOR LOCAL THICKNESS	96
FIGURE 25.	FLAWED-CYLINDER BURST TEST RESULTS FOR B-3 MATERIAL ADJUSTED FOR LOCAL THICKNESS	97
FIGURE 26.	FLAWED-CYLINDER BURST TEST RESULTS FOR B-6 MATERIAL ADJUSTED FOR LOCAL THICKNESS	98
FIGURE 27.	FLAWED-CYLINDER BURST TEST RESULTS FOR B-9 MATERIAL ADJUSTED FOR LOCAL THICKNESS	99
FIGURE 28.	FLAWED-CYLINDER BURST TEST RESULTS FOR C-3 MATERIAL ADJUSTED FOR LOCAL THICKNESS	100
FIGURE 29.	FLAWED-CYLINDER BURST TEST RESULTS FOR C-7 MATERIAL ADJUSTED FOR LOCAL THICKNESS	101
FIGURE 30.	FLAWED-CYLINDER BURST TEST RESULTS FOR C-11 MATERIAL ADJUSTED FOR LOCAL THICKNESS	102
FIGURE 31.	FLAWED-CYLINDER BURST TEST RESULTS FOR D-3 MATERIAL ADJUSTED FOR LOCAL THICKNESS	103
FIGURE 31.	FLAWED-CYLINDER BURST TEST RESULTS FOR D-5 MATERIAL ADJUSTED FOR LOCAL THICKNESS	104
FIGURE 32.	FLAWED-CYLINDER BURST TEST RESULTS FOR D-6 MATERIAL ADJUSTED FOR LOCAL THICKNESS	105
FIGURE 33.	FLAWED-CYLINDER BURST TEST RESULTS FOR D-11 MATERIAL ADJUSTED FOR LOCAL THICKNESS	106

.

	FIGURE	34.	FLAWED-CYLINDER BURST TEST RESULTS FOR E-1 MATERIAL ADJUSTED FOR LOCAL THICKNESS	107
	FIGURE	35.	FLAWED-CYLINDER BURST TEST RESULTS FOR E-2 MATERIAL ADJUSTED FOR LOCAL THICKNESS	108
APPENDIX	A FI D	LAW DATA	ED-CYLINDER BURST TESTS RESULTS ALL POINTS	109
APPENDIX	B E I	VAL	UATION OF THE MEASUREMENT UNCERTAINTY E FLAWED CYLINDER BURST TEST	125

1.0 SCOPE

This report is a summary and compilation of the test results obtained during the development of the "Flawed-Cylinder Burst Test". The "Flawed-Cylinder Burst Test" was developed as part of a cooperative project under the direction of the International Standards Organization Technical Committee on Gas Cylinders (TC 58) -- Subcommittee on Cylinder Design (SC 3) -- Working Group on Cylinder Fracture (WG 14). The "Flawed-Cylinder Burst Test" is a test method to evaluate the fracture performance of steel cylinders that are used to transport high pressure compressed gases.

The concept and development of the flawed-cylinder burst test is described in the ISO Technical Report 12391 - Part 1 [1]. The details of the test method and the criteria for acceptable fracture performance of steel cylinders are given in the ISO Standard ISO 9809:2000 Part 2 Clause 9.2.5 "Flawed-Cylinder Burst Test" [2]. In this report, test results are reported for several hundred flawed-cylinder burst tests that were conducted on seamless steel cylinders that ranged in ultimate tensile strength from less than 750 MPa up to about 1400 MPa. The test is intended to be used both for the selection of materials and to establish design parameters in the development of new cylinders. The test may also be used as an efficient quality control test during the production of cylinders.

2.0 DEFINITIONS AND SYMBOLS

d = flaw depth, (mm)

Flaw depth in $\% = (d / t_d) \times 100$

 $l_0 =$ flaw length, (mm)

 $l_o = n \times t_d$ $n = l_o / t_d$

n = integer relating flaw length to the cylinder wall thickness

D = outside diameter of the cylinder, (mm)

 t_d = calculated minimum design wall thickness, (mm)

 t_a = actual measured wall thickness at the location of the flaw, (mm)

 R_{ea} = actual measured value of yield strength, (MPa)

 R_m = actual measured value of ultimate tensile strength, (MPa)

- R_{g. min.} = minimum value of ultimate tensile strength guaranteed by the manufacturer, (MPa)
- R_{g, max.} = maximum value of ultimate tensile strength guaranteed by the manufacturer, (MPa)
- P_{h} = calculated design test pressure for the cylinder, (bar)
- P_s = calculated design service pressure for the cylinder, (bar)
- P_f = failure pressure measured in the flawed-cylinder burst test (bar)
- NOTE: All pressure values in this report are expressed in units of "bar" instead of MPa. The bar has been adopted by ISO TC 58 as the official unit for expressing pressure.

3.0 INTRODUCTION

High-pressure industrial gases (such as oxygen, nitrogen, argon, hydrogen, helium, etc.) are stored and transported in portable steel cylinders. These cylinders are designed, manufactured, and maintained in accordance with National specifications, such as those of the U.S. Department of Transportation (DOT) 49 CFR Part 178 [3]. The cylinders are constructed from specified alloy steels which are generally modified versions of steel alloys such as AISI type 4130 and 4140 [4] or equivalent steels made to other National specifications. The cylinders are of seamless construction and are manufactured by either a forging process, a tube drawing process, or by a plate drawing-process. The required mechanical properties are obtained by using an austenitizing, quenching, and tempering heat treatment. Typical sizes of these cylinders are: 100 mm to 250 mm in diameter, 500 mm to 2000 mm in length, and 3 mm to 20 mm in wall thickness. Typical working pressure ranges are 100 bar to 400 bar. Examples of high pressure gas cylinders are shown in Figure 1.

Until recently, the ultimate tensile strength of the steels used in the construction of cylinders has been limited to a maximum of about 1100 MPa. This limitation for the maximum ultimate tensile strength is because the fracture toughness of the steels decreases with increase in the ultimate tensile strength and above an ultimate tensile strength of about 1100 MPa the fracture toughness is not adequate to prevent fracture of the cylinders. Recently developed new steel alloys that have both high ultimate tensile strength and high fracture toughness make it possible to construct lighter cylinders using higher ultimate tensile strength steels. This permits the use of cylinder designs in which the stress in the cylinder wall is increased. The use of higher strength steels will therefore achieve a lower ratio of steel weight to gas weight which reduces shipping and handling costs. A major concern in using higher strength steels for cylinder construction and correspondingly higher design wall stress is the ability to maintain the same level of safety throughout the life of the cylinder. In particular, increasing the ultimate tensile strength of the steels and increasing the stress in the wall of the cylinders could make the cylinders less fracture resistant than cylinders made from steels with the traditionally used lower ultimate tensile strength levels. In order to use steels with strength levels higher than 1100 MPA, it was determined that new requirements were needed to assure adequate fracture resistance of the cylinders.

To develop these requirements, a Working Group on Cylinder Fracture (WG 14) was formed under the International Standards Organization (ISO) Technical Committee on Gas Cylinders (TC 58), Subcommittee on Cylinder Design (SC 3). WG 14 was assigned the task to: "develop a suitable test method and specifications to assure adequate fracture resistance for gas cylinders made from steels with ultimate tensile strengths greater than 1100 MPa". WG 14 decided that the test method and specifications that were developed should demonstrate that the overall "fracture resistance" of cylinders made from higher strength steels was equivalent to that of cylinders made from lower strength steels. Adequate fracture resistance is defined as fracture initiation strength in the presence of a crack-like flaw to ensure leak rather than fracture performance of the cylinder at a specified failure pressure (usually the marked service pressure of the cylinder).

The test methods and procedures that have previously been used to evaluate the fracture performance of high pressure cylinders have been based either on fracture mechanics tests and analysis [5] or have been based on empirical correlations with the Charpy-V-notch (CVN) test impact energy [6]. The objectives of these tests and analyses are to predict the fracture initiation stress (or pressure) and fracture mode (leak or unstable fracture).

The fracture mechanics tests and analyses showed that to provide adequate fracture resistance, the cylinder wall should be in the plane-stress fracture state and that the fracture should occur under elastic-plastic conditions. To reliably evaluate the fracture performance of cylinders in the plane-stress fracture state requires that an elastic-plastic fracture mechanics analysis (i.e. J_{Ic} , J_{R}) be conducted. Using the fracture mechanics analysis approach to evaluate fracture performance may require that a complex and expensive finite-element analysis be done for each specific type of flaw on each specific cylinder design to establish the J_{Ic} or J_{R} requirements for adequate fracture resistance. Also, the J_{Ic} materials property test required to evaluate the cylinder material is expensive and time consuming. Such costly and time consuming tests have not proven to be practical for use with high volume cylinder production.

Empirical correlations have been used to predict the fracture performance of cylinders. These empirical correlations relate the fracture initiation stress level for specific flaw types to the Charpy-V-notch (CVN) test impact energy. Although the Charpy-V-notch (CVN) test is useful for evaluating the quality of the cylinder material during production, the Charpy-V-notch (CVN) test alone may not be reliable to evaluate the fracture resistance of new designs of steel cylinders or to evaluate new steel alloys for cylinder construction.

As a result of these limitations with fracture mechanics analyses and with empirical correlations based on CVN tests, it was concluded that an alternate approach was required to evaluate the fracture resistance of high strength steel cylinders. It was decided that the test method that was developed should measure the fracture resistance of the entire cylinder and not just the fracture toughness of the cylinder material.

Therefore, the WG 14 decided to use a direct approach to evaluate the fracture resistance of cylinders and this led to the development of the "Flawed-Cylinder Burst Test". In this test method, the fracture test is performed on an actual, full size, cylinder rather than by measuring the fracture properties of the material alone by taking small scale test specimens, such as for J_{Ic} tests, from the cylinder. This test method consists of testing cylinders in which flaws of specified sizes are machined into the external surface of the cylinders. The cylinders are then pressurized until failure occurs, and the failure pressure and failure mode (leak or fracture) is determined. This approach is only possible because the cylinders are required by the existing safety regulations to be produced in large, controlled groups of uniform cylinders. Therefore, randomly selecting and testing one cylinder from the production group of cylinders should adequately represent the behavior of all cylinders in that group.

The concept of the flawed-cylinder burst test and the development conducted under WG 14 is described in the ISO Technical Report 12391 - Part 1 [1]. The technical basis for the flawed-cylinder burst test is described in detail in reference [7].

Because the existing cylinders have provided fracture-safe performance during their many years of service, for the development of the test method and acceptance criteria for the flawed-cylinder burst test, it was decided that the fracture resistance of newer, higher-strength steel cylinders should be essentially the same as that of the existing lower, strength cylinders. Therefore, flawed-cylinder burst tests were conducted on cylinders with strength levels covering the full range of strength levels currently being produced in the world. Tests were conducted on cylinders made from steels ranging in ultimate tensile strength from 620 MPa to 1400 MPa. During the development of the flawed-cylinder burst test, several hundred flawed-cylinder burst tests were conducted by the participants in the ISO WG 14. Tests were conducted by ten different companies in seven different countries (Austria, France, Germany, Japan, Sweden, the United Kingdom, and the United States).

This report is limited to a summary and compilation of the results of the flawed-cylinder burst tests that were conducted by WG 14 during the development of the flawed-cylinder burst test method. Results of flawed-cylinder cycle burst tests that assess the fracture performance of the cylinders using pressure cycling instead of monotonic pressurization were also carried out by WG 14 and will be reported in a future report. This report is in the form of a data base of the test results that is intended to be used for further analysis of the fracture performance of steel cylinders.

4.0 EXPERIMENTAL TEST PROGRAM

4.1 TYPES OF CYLINDERS TESTED

Flawed-cylinder burst tests were conducted on cylinders that represented all of the currently used and proposed new types of seamless steel cylinders. A brief description of all the cylinders that were tested is shown in Tables 1 through 5. For this study, the cylinders were classified into Material Groups (designated Group A through E) based on the actual measured ultimate tensile strength (Rm) of the cylinders that were tested using testing methods described in section 4.2. The actual measured ultimate tensile strength (Rm) for each group of cylinders that was tested is shown in Tables 6 through 10. The general description of the cylinders in each Material Group is shown below. Cylinders made from materials in groups A through D are currently being produced and used throughout the world. For some of the cylinders in material groups C and D, conventional, production cylinders were reheat treated to vary their ultimate tensile strength for purposes of this study. Cylinders made from materials in group E are experimental and have ultimate tensile strength levels higher than currently authorized for use in any country.

Within each main Material Group (A through E) material subgroups are designated, for example, Material Subgroup A-1, A-2. All the cylinders within a given subgroup were made to the same specification, of the same size (diameter, thickness, and volume), the same material, the same specified ultimate tensile strength range, the same designated service pressure and test pressure, and were made by the same manufacturing process. The cylinders in a specific material subgroup (for example subgroup B-2) may be of a different alloy, size, design specification, or manufacturing process than cylinders in a different materials subgroup (for example B-3) in the same main Material Group (for example Group B). However, the actual measured ultimate tensile strength for all cylinders in a Material Group will be in the same range (for example, 750 MPa to 950 MPa for all cylinders in group B).

In Tables 1 to 5, it should be noted that the code numbers for some material subgroups (for example B-1, C-1, and C-2) are missing. The cylinders in these missing material subgroups were tested using the flawed-cylinder cycle burst test and the results are not reported here.

ULTIMATE TENSILE STRENGTH (UTS)	UTS < 750 MPa rring.	750 MPa < UTS < 950 MPa	950 MPa < UTS < 1080 MPa ive gases.	1080 MPa < UTS < 1210 MPa ive gases.	UTS > 1210 MPa
DESCRIPTION OF CYLINDER TYPE	Cylinders made from carbon steel. May be heat treated by normalizing, normalizing and tempering, or quenching and tempe	Cylinders made from alloy steel (Cr- Mo steels). Heat treated by quenching and tempering. These cylinders may generally be used for all gases.	Cylinders made from alloy steel (Cr- Mo steels). Heat treated by quenching and tempering. These cylinders are restricted to use with noncorros Made to ISO 9809-Part 1.	Cylinders made from alloy steel (Cr- Mo steels). Heat treated by quenching and tempering. High strength and high toughness steel cylinders. These cylinders are restricted to use with noncorros Made to ISO 9809-Part 2	Experimental cylinders. Extra high strength. Not currently authorized for use.
MATERIAL GROUP	A	В	C	Q	Щ

In Tables 1 to 5, each flawed-cylinder burst test is assigned a number in sequence, as shown in the first column, for purposes of tracking each test. The same number is then used to identify the cylinders in the tables for the results of the mechanical properties tests (Tables 6 through 10) and in the tables for the results of the flawed-cylinder burst test (Tables 12 through 16). In addition, each individual cylinder tested is assigned a number, such as A-1-1, as shown in the second column of the tables.

The specified ultimate tensile strength range shown Tables 1 through 5 is the range of "guaranteed" minimum ($R_{g, min}$) and maximum ($R_{g, max}$.) ultimate tensile strength designated by the cylinder manufacturer or the cylinder specification used for the design of the cylinder. These values are used to calculate the cylinder wall thickness when designing the cylinder. These are specified values rather than actual measured values of the ultimate tensile strength (R_m). In a few cases, the manufacturer did not provide a specified minimum or maximum ultimate tensile strength values.

The information required to calculate the wall thickness of the cylinder, the test pressure of the cylinder and the service pressure of the cylinder are shown in Tables 1 through 5. This information includes the outside diameter of the cylinder (D) and the particular National or International design specification used by the manufacturer to design the cylinder. These specifications are used to calculate the stress in the cylinder wall, the minimum design wall thickness of the cylinder (t_d), the maximum design test pressure (P_h), and the maximum design service pressure (P_s). Each of the National or International cylinder specifications has a different formula for calculating the stress in the wall of the cylinder and therefore the design wall thickness for a specified cylinder diameter and service pressure will be different depending on the specification used. In some cases the cylinders tested were not designed to an existing design specification so these cylinders are designated as experimental cylinders.

The other items shown in Tables 1 through 5, for information purposes only, are: (1) the type of manufacturing process used to make the cylinder, (2) the cylinder volume (in liters) and (3) the specific material used, when given by the manufacturer. The cylinders were manufactured either by backward extruding from a "billet" or were manufactured by spinning the ends on a seamless tube. This information is shown only to better identify the cylinders that were tested and is not used for any analysis of the test results.

In Tables 1 to 5, the results show that in some cases the same cylinder was tested several times. This was done by welding the cylinder shut after it had leaked and retesting it until it failed by fracturing. In this case the cylinder numbering sequence is shown repeatedly as the same cylinder number, for example as A-1-1, but the burst test number is shown sequentially as number 1, 2, 3, and 4. In other cases, a different cylinder was used for each burst test in the material subgroup series and each cylinder was tested only once. In these cases, each cylinder will have the same material subgroup number but will have a different cylinder number. An example of this is shown for material subgroup B-3 where the cylinders tested are numbered as B-3-1, B-3-2, etc.

In Tables 1 to 5, there are a few cases, such as material subgroup B-2, where the specified ultimate tensile strength range (for example 1069 MPa to 1207 MPa) does not agree with the ultimate tensile strength range for that particular material group (for example, 750 MPa to 950 MPa). In these cases, the cylinders were manufactured to a particular strength range (for example 1069 MPa to 1207 MPa) but were then retempered to change their actual strength for use in the studies reported here. For these studies, the test results for these cylinders were put into the Material Group represented by the actual measured ultimate tensile strength range and not the ultimate tensile strength range represented by the specified range.

It should be noted that in a few cases the actual measured ultimate tensile strength (R_m) for one or more cylinders in a particular material subgroup is slightly outside the designated range for the ultimate tensile strength of the particular material subgroup in which the cylinder is included. However, the measured ultimate tensile strength of the rest of the cylinders from that material subgroup that were tested are within the appropriate ultimate tensile strength range for that material subgroup. Examples of this occur in material subgroups A-1, B-9, C-5, D-9 and D-10.

4.2 MATERIAL PROPERTIES TESTS

Conventional mechanical properties tests, such as tensile tests and Charpy-V-notch tests, were conducted on the cylinders on which flawed-cylinder burst tests were performed. The results of these tests are shown in Tables 6 through 10 for each group of materials.

The tensile test results shown in Tables 6 through 10, are the actual measured yield strength (R_{ea}), the actual measured ultimate tensile strength (R_m), and the total elongation (%). These materials properties are required to be measured by all of the existing National or International cylinder design specifications. The actual measured ultimate tensile strength (R_m) value is used to determine that the cylinder meets the specification to which it is manufactured and is used in this test program to determine which Material Group the tested cylinder should be placed in. The actual measured yield strength (R_{ea}) is used to determine that the cylinder meets the requirement for the yield strength to ultimate tensile strength ratio when this ratio is a part of the specification. The actual measured ultimate tensile strength (R_m) value may also be used for additional analysis of the cylinder design. The total elongation (%) is used to determine that the requirement for minimum elongation is met when that is part of the specification to which the cylinder is manufactured. The elongation value is not used for any calculations in the design of cylinder.

For cylinders manufactured in the United States (such as those designated as DOT type 3A or 3AA) the tensile tests used to measure the properties of the cylinders were of the type specified by the CFR part 49 Section 178 [3]. These test specimens have a fixed gage length of 50 mm, a fixed width of 38 mm, and a thickness equal to the actual wall thickness of the finished cylinder from which the specimens were taken. For other cylinders, the tensile tests of the type specified

by the ISO Standard 6894:1984 [8] were used. The ISO test specimens have a gage length of 5.65 times the square root of the cross section of the specimen, a width of 4 times the specimen thickness, and a thickness equal to the actual wall thickness of the finished cylinder from which the specimens were taken. The ultimate tensile strength and the yield strength values should be essentially the same when measured with either the DOT or the ISO type of specimen. The measured elongation values will be different depending on the specific type of tensile specimen used.

The Charpy-V-notch tests were conducted according to test method ASTM E-23 "Standard Test Method for Notched Bar Impact Testing of Metallic Materials" [9] for cylinders manufactured in the United States. For other cylinders, the Charpy-V-notch tests were conducted according to test method ISO Standard 148:1983 "Steel-Charpy impact test (V-notch)" [10]. The Charpy-Vnotch impact test energy values should be essentially the same when measured with either the ASTM or the ISO test method. The Charpy-V-notch test specimens had cross sectional dimensions of either 10 mm deep by 5 mm (thick) or 10 mm deep by 4 mm (thick) depending on the available wall thickness of the cylinder and the orientation of the Charpy-V-notch test specimen. The exact dimensions of each Charpy-V-notch test specimen used is shown in Tables 6 through 10. The Charpy-V-notch tests were conducted either at ambient temperature (20 °C) or at low temperature (- 50 °C), as shown in Tables 6 through 10. NOTE: An exception is for material subgroup D-14 in which the low temperature tests were conducted at - 20 °C instead of at - 50 °C. The Charpy-V-notch test specimens were either oriented with the longitudinal axis of the specimen parallel to the longitudinal axis of the cylinder (designated longitudinal specimens) or with the longitudinal axis of the specimen perpendicular to the longitudinal axis of the cylinder (designated transverse specimens). As shown in Tables 6 through 10, not all combinations of test temperatures and specimen orientation were used on each cylinder that was tested. The total energy absorbed in breaking the Charpy-V-notch test specimens was measured in Joules (J). All Charpy-V-notch test results are reported as J/cm² where the total energy absorbed is divided by the area of the specimen ligament below the specimen notch.

In the specifications for certain cylinder designs, particularly for Material Groups C and D type cylinders, minimum Charpy-V-notch energy levels are required. The Charpy-V-notch tests were conducted on all cylinders to determine that these requirements were met. The Charpy-V-notch energy test results are not used to evaluate the results of the flawed-cylinder burst test. However, the Charpy-V-notch energy test results are reported here because these results may be used to evaluate the fracture performance of the cylinders using alternate analysis procedures to the flawed-cylinder burst test.

For certain material subgroups on which flawed-cylinder burst tests were conducted, mechanical properties test specimens were taken from each cylinder in the material subgroup after the burst test was completed. In this case, the test results are shown in the tables of results for each of the individual cylinders. Material subgroups in which each cylinder was tested are subgroups A-1, B-6 (tensile tests only), B-9 (tensile tests only), B-11, C-3 (tensile tests only), C-10 (tensile tests

only), C-12, C-13, D-2, D-3 and D-10.

For other material subgroups on which flawed-cylinder burst tests were conducted, a single cylinder was tested multiple times by welding the flaw shut after a flawed-cylinder burst resulted in a leak and then repeating the test. In this case, mechanical properties test specimens were taken after all of the burst tests had been completed. In this case, the test results shown in the tables are the same for each cylinder in the material subgroup. Material subgroups in which only one cylinder was tested are subgroups B-2, C-3, C-4, C-11, and D-4,

For some material subgroups on which flawed-cylinder burst tests were conducted, mechanical properties test specimens were taken only from selected cylinders in that particular material subgroup after the burst tests were completed. In these case, results are shown in the tables of results for the cylinders for which mechanical properties tests were conducted and blank spaces are shown for the other cylinders on which flawed-cylinder burst tests were conducted but mechanical properties tests were not conducted. Because the cylinders in a particular material subgroup are all of the same type and from the same production batch, the mechanical properties test results for the cylinders that were tested are considered to adequately represent the properties of all cylinders in that material subgroup. Material subgroups in which selected cylinders were tested are subgroups A-2, B-4, B-5, B-7, B-8, C-5, C-6, C-14, D-5, D-6, D-9, D-11, D-14, E-1, and E-2.

In a few cases, no mechanical properties tests were taken from cylinders on which flawed-cylinder burst tests were conducted. In these cases, the mechanical properties test results that are shown in the Tables are considered to be typical of cylinders of the type in the material subgroup. Generally these test results are taken from the production records for cylinders of the type that are represented by the material subgroup. These results are shown in Tables 6 through 10 with a (T) for typical only attached to the test result value. Material subgroups in which only typical properties are reported are subgroups C-7, C-8, C-8, and C-10.

The fracture toughness of the cylinders was measured on a limited number of the cylinders on which flawed-cylinder burst tests were conducted. All test were conducted according to ASTM 813-89 "Standard Test Method for J_{Ic} , A measure of Fracture Toughness" [11]. All fracture toughness tests were conducted at ambient temperature (+ 20 °C). Fracture toughness tests were conducted on materials subgroups B-3, D-5, D-6, and D-11. The results of all fracture toughness tests are shown in Table 11.

4.3 DESCRIPTION OF THE FLAWED-CYLINDER BURST TEST

The flawed-cylinder burst test is used to evaluate the overall fracture performance of the entire cylinder, not just the "fracture toughness" of the material as determined with conventional fracture toughness test specimens. The flawed-cylinder burst test is intended to be both a "design qualification approval test" and a "production lot test". The full details of the test and the criteria

for acceptable fracture performance of steel cylinders are given in the ISO Standard ISO 9809:2000 Part 2 Clause 9.2.5 "Flawed-cylinder Burst Test" [2].

In the flawed-cylinder burst test, the fracture performance of the cylinder is evaluated by pressurizing a cylinder with a designated type (shape and sharpness) and size (length and depth) of surface flaw to failure. Failure occurs either by leaking or by fracturing.

The cylinder to be tested has a flaw machined into the exterior surface of the cylinder wall. The flaw is machined in the location of probable maximum stress under pressurized loading, i.e. a longitudinal surface flaw at mid-length and at thinnest place in the cylinder wall. To make the tests adequately uniform and reproducible, a surface flaw with a standard geometry is required. A standard Charpy-V-notch milling cutter is used to machine the flaw to the designated length and depth. The milling cutter is required to meet the following specification:

Thickness of the cutter = $12.5 \text{ mm} \pm 0.2 \text{ mm}$ Angle of the cutter = $45^{\circ} \pm 1^{\circ}$ Radius at the tip of the cutter $0.2 \text{ mm} \pm 0.025 \text{ mm}$ For cylinders $\leq 140 \text{ mm}$ in diameter, cutter diameter = $50 \text{ mm} \pm 0.5 \text{ mm}$ For cylinders > 140 mm in diameter, cutter diameter = 60 to 80 mm

This results in a surface flaw geometry of the type shown in Figure 2.

Pressurization is carried out hydrostatically. In conducting the test, each cylinder is filled with water at room temperature and the pressure is increased continuously until the cylinder fails at a pressure designated as the failure pressure P_{f} . Failure occurs when the ligament of metal below the surface flaw fails.

The stress required to fracture the ligament of metal below the surface flaw and to cause failure of the cylinder does not change with the type of pressurizing medium (i.e. whether it is pneumatic using gas or hydraulic using water). Because this test method is intended only to evaluate fracture initiation and not fracture propagation, water can be used as the pressurizing medium to evaluate fracture initiation in the cylinder. This simplifies the testing and is safer than testing using a gas as the pressurizing medium. A few tests were conducted using nitrogen gas to confirm that the behavior of the flawed-cylinder burst test is the same for a pneumatic test as for a hydrostatic test. These results of these tests are described in section 5.7.2 below.

After the ligament fails, the cylinder will either leak or fracture. The length of the flaw is measured after the test is completed to determine if fracture has occurred. For this test the definition of fracture is: "an extension of at least 10 per cent in the length of the machined flaw in the longitudinal direction". The failure pressure and failure mode (either "leak" or "fracture") are reported as the test results. An example of a cylinder that failed by leaking is shown in Figure 3A. In this case, the cylinder looks essentially the same after the test as before pressurization. An

example of a cylinder that failed by fracturing is shown in Figure 3B. This example shows extensive crack extension that originates at the machined flaw.

Although for cylinders in service, flaws most often develop on the interior surface of the cylinder wall, it was determined that production of a standard internal flaw for testing purposes was not practical. However, the external flaw in "thin walled" cylinders should be reliable to evaluate the fracture performance of the cylinders.

For a specified flaw length, the flawed-cylinder burst test sequence requires that a series of cylinders be tested in which the depth (d) of the machined flaw is varied until failures occurs by leaking in at least one cylinder and by fracturing in at least one cylinder. For example, if the first cylinder tested with a specified flaw length leaks, similar cylinders with the same flaw length but with progressively smaller flaw depths will be tested until a sufficiently high failure pressure is reached to cause at least one cylinder to fail by fracturing. The test is defined only in terms of the flaw length rather than both the flaw length and the depth. The concept of the test is that the ligament below the flaw fails and converts the part-through flaw to a through-thickness flaw and then whether the cylinder leaks or fractures depends on the pressure (P_f) and the fracture resistance of the cylinder. For a specified flaw length, the depth of the flaw is used only to determine the pressure at which the cylinder fails (P_f). The pressure (P_f) determines the stress in the wall at the time of failure.

Once the ligament below the flaw fails and a through-thickness flaw of length (l_o) is created, whether the cylinder fails by leaking or by fracturing at the failure pressure (P_f), will depend on the fracture resistance of the cylinder. This testing sequence necessarily results in several redundant (and unused) test results at each specified flaw length because only the test results with highest pressure at which a leak occurs and the lowest pressure at which a fracture occurs are used to define the leak-fracture boundary. This is illustrated in Figure 4.

The fracture performance of the cylinder is determined with the flawed-cylinder burst test by determining the "leak-fracture boundary" for the specified flaw length. The "leak-fracture boundary" for a specified flaw length is defined as the average of the highest pressure at which a leak occurs and the lowest pressure at which a fracture occurs.

During the development of the flawed-cylinder burst test, tests were conducted on series of cylinders with a range of flaw lengths to define the "leak-fracture boundary" for each particular type of cylinder and material. This was done to evaluate the overall fracture performance of the cylinder type. An example of these test results is shown in Figure 5. This procedure to determine the full "leak-fracture boundary" over a range of flaw lengths will normally be used only for the "design qualification" evaluation of new cylinders (i.e. for new materials and production processes) to demonstrate that the cylinder type has adequate fracture resistance.

Once the full fracture performance is determined for a particular cylinder type from the flawed-

cylinder burst tests conducted during the "design qualification" procedure, the testing procedure used to evaluate cylinders during large scale production can be simplified and made more efficient. For production testing, a single specified flaw length, often 10 times the cylinder wall thickness, can be used and the criteria for a successful test are that cylinder failure occurs by leaking at a pressure in excess of the defined service pressure of the cylinder. If a cylinder fails by leaking at a pressure less than the defined service pressure, retesting of the same cylinder is allowed. The cylinder may be welded shut and a new flaw of the same length but with a smaller flaw depth can be machined into the cylinder and retesting to a higher failure pressure can be conducted.

To determine if the fracture resistance of the cylinders, as determined by the flawed-cylinder burst test is adequate, the failure pressure (P_f) at the leak-fracture boundary for a specified flaw length is compared with the designated service pressure (P_s) of the cylinder. For example, for a specified flaw length, such as 10 times the cylinder wall thickness, the measured failure pressure (P_f) should exceed the defined service pressure (P_s) for the cylinder design (i.e. $P_f / P_s > 1.0$). This will ensure that failure of the cylinder will not occur in service unless a very long and deep flaw occurs in the cylinder.

During the development of the flawed-cylinder burst test, it was decided that the acceptable level of fracture resistance for cylinders of any strength level should be equivalent to the fracture resistance of existing cylinders that have been used for extended periods of time. Therefore, flawed-cylinder burst tests were conducted on cylinders with ultimate tensile strength levels ranging from about 640 MPA to 1400 MPA. The existing cylinders (with ultimate tensile strength levels strengths levels less than 950 MPA) have provided fracture-safe performance during many years of service. From these results, it was determined that to have fracture resistance equivalent to the fracture resistance of existing cylinders, new higher strength steel cylinders should have a leak-fracture boundary of P_f/P_s greater than 1.0 when the designated flaw length was 10 times the cylinder wall thickness (t_d) [7].

5.0 FLAWED-CYLINDER BURST TEST RESULTS

5.1 INTRODUCTION

The results of all of the flawed-cylinder burst tests that were conducted are shown in Tables 12 to 16. For each cylinder tested, the crack length (l_o) in terms of a multiple of the design minimum cylinder wall thickness (t_d) is given as $l_o = n \ge t_d$ (for example $l_o = 10 t_d$). This term is used as a common reference to compare cylinders with different wall thicknesses. The flaw depth (d) is given as a percent of the design minimum cylinder wall thickness t_d (for example: 100 $\ge 10 t_d$) = 80 %).

The actual cylinder wall thickness (t_a) at the location of the machined flaw is measured after the test. It should be noted that during production of the cylinders, only the average cylinder wall thickness is measured. The actual cylinder wall thickness (t_a) at any location in the cylinder

should be greater than the design minimum cylinder wall thickness (t_d) . The difference between the actual cylinder wall thickness (t_a) and the design minimum cylinder wall thickness (t_d) depends on the method of manufacture used to produce the cylinder. The actual cylinder wall thickness (t_a) is generally 10 to 15 percent more than the design minimum cylinder wall thickness (t_d) , but may be as much as 30 percent more. The actual measured cylinder wall thickness (t_a) is included in the data to permit additional analysis of the results using this actual cylinder wall thickness instead of the design minimum cylinder wall thickness (t_d) . The pressure at the time that the cylinder fails, either by leaking or by fracturing, is given as P_f measured in bar. The failure mode, either leak or fracture, is reported.

The ratio of the failure pressure (P_f) to the marked service pressure of the cylinder (P_s) is given as (P_f / P_s). The marked service pressure (bar) is the maximum pressure to which the cylinder may be filled when in service and is specified by the cylinder manufacturer. It should be noted that the marked service pressure for the cylinders of the same size and ultimate tensile strength will be slightly different depending on the design specification used by the manufacturer. The cylinders were designed and the marked service pressure was specified according to the design specification used in the country of manufacture. The use of the parameter (P_f / P_s) permits the leak-fracture boundary to be defined in terms of the marked service pressure of the cylinder. This allows a comparison of cylinders of different sizes (diameters and wall thickness) to be made on a common basis.

As discussed in section 6.2 of this report, the ISO Standard [2] requires that the measured ratio of the failure pressure to the service pressure (P_f / P_s) be adjusted to account for the local thickness of the cylinder wall at the location of the flaw. This adjustment was made to the measured values of the (P_f / P_s) ratio for all of the flawed-cylinder burst tests conducted in this study. The adjusted ratio of the failure pressure to the service pressure $(P_{f, adjusted} / P_s)$ is shown as the last column in Tables 12 to 16

For completeness of the data base, the results of all tests that were conducted are shown in Tables 12 to 16. For some of the material subgroups, cylinders with a range of flaw lengths were tested to define the full leak-fracture boundary over a range of flaw lengths. The results of flawed-cylinder burst tests for these material subgroups are shown in Tables 12 through 16 and are plotted in the Figures 6 through 19. Only the data points necessary to define the leak-fracture boundary are plotted in Figures 6 through 19. That is, for each flaw length, only the lowest value of (P_f / P_s) for which a failure occurred by fracture and the highest value of (P_f / P_s) for which failure occurred by leaking are plotted. An estimate of the leak-fracture boundary is shown in the Figures for each material subgroup. The complete data (all of the values of P_f / P_s) for each of these materials subgroups in which data are available over a range of flaw lengths are shown in Figures A1 though A14 of Appendix A. Data for (P_f / P_s) over a range of flaw lengths is available for material subgroups A-1. A-2. B-3, B-6, B- 8, C-3, C-5, C-11, D- 3, D- 5, D- 6, D-11, E-1, and E-2.

For some of the other material subgroups, all the flawed-cylinder burst tests were conducted at a single defined flaw length and both leak results <u>and</u> fracture results were obtained. For these tests the leak-fracture boundary can be defined only for the single specified flaw length. These results are not plotted but the tests results are summarized and the estimated leak-fracture boundary for these material subgroups are shown in Table 17. It should be noted in Table 17 that occasionally the lowest value of (P_f/P_s) for which a failure occurred by fracture was slightly less than the highest value of (P_f/P_s) for which failure occurred by leaking. However, in all cases this difference is considered to be with the observed scatter of the data. Flawed-cylinder burst tests for material subgroups B-2, B-4, B-5, B-7, B-13, B-15, C-6, C-7, C-8, C-9, C-10, C-15, C-17, C-18, C-23, D-2, D-4, D-9, D-10, and D-14 were conducted at only a single value of flaw length. In some of these cases (for example material subgroup D-14), multiple (repeated) tests were conducted with similar cylinders with a single flaw length. These results are useful to assist in evaluating the uncertainty in the measurements made with the flawed-cylinder burst test as described in Appendix B.

For some of the material subgroups, all the flawed-cylinder burst tests were conducted at a single defined flaw length and only leak results <u>or</u> fracture results were obtained. These results are not plotted as separate Figures. These tests results are summarized in Table 18. An estimate of the leak-fracture boundary is reported as a failure pressure ratio (P_f / P_s) that is at least as high as the highest value of the failure pressure ratio for a cylinder in which failure occurred by leaking or as a failure pressure ratio that is lower that the value of the lowest failure pressure ratio for a cylinder in which failure occurred by fracturing. These results may be of value if there are similar cylinders in other material subgroups with which they may be combined to estimate the leak-fracture boundary more accurately. These test results may also be used to determine if this particular type of cylinder is likely to leak, that is if $(P_f / P_s) > 1.0$ or fracture, that is if $(P_f / P_s) < 1.0$, in service with a flaw of the specified length. Flawed-cylinder burst tests for material subgroups B-8, B-10, B-11, B-12, B-14, C-12, C-13, C-14, C-16, C-19, C-20, C-21, C-22, D-13, D-15, D-16, D-17, D-18 and D-19 were conducted at only a single value of flaw length <u>and</u> each test series resulted in failure only by leaking or by fracture.

5.2 FLAWED-CYLINDER BURST TEST RESULTS FOR GROUP A MATERIALS

The cylinders made from Group A materials were older cylinders made from carbon steel to the U.S. Department of Transportation (DOT) type 3A specification. These cylinders represent the lowest strength cylinders tested in this program. The cylinders, which have a service pressure (P_s) of 155 bar, were tested to serve as a bench mark for the fracture resistance of seamless steel cylinders. These cylinders have been manufactured and used for many years without any significant incidents of failure by fracture. These cylinders are made from steels that have an inherently low fracture toughness as indicated by the low Charpy-V-notch energy values (12 to 32 J/cm² at + 20 °C for transverse specimens). However, the stress in the cylinder wall at the service pressure is low enough to prevent fracture. In the flawed-cylinder burst tests, cylinders in both material subgroups A-1 and A-2, had a (P_f / P_s) ratio of greater than 1.0 for flaws lengths of at

least $l_0 = 12 \times t_d$, as shown by Figures 6 and 7. This represents a high level of fracture resistance.

5.3 FLAWED-CYLINDER BURST TEST RESULTS FOR GROUP B MATERIALS

The cylinders made from Group B materials were cylinders made from chromium-molybdenum alloy steel. These cylinders are representative of the largest number of cylinders that have been in worldwide use for about 60 years. Cylinders of this type normally have a designated service pressure of 150 to 200 bar. As shown by Figures 8, 9, and 10, the cylinders in material subgroups B-3, B-6, and B-9 have a leak-fracture boundary of at least $(P_f/P_s) = 1.0$ for flaw lengths of at least $l_o = 12 \times t_d$. As shown in Tables 17 and 18, the cylinders in the other Material Group B subgroups had an estimated (P_f/P_s) ratio equal to at least 1.0 for flaw lengths of at least $l_o = 10 \times t_d$. This represents an adequate level of fracture resistance for all cylinders in this group. There has been no adverse service experience with this type of cylinders during their widespread use.

Cylinders in material subgroup B-2 were originally produced to be of the type represented by the cylinders in Material Group D. The cylinder tested as material subgroup B-2 was tempered to reduce the ultimate tensile strength into the Group B range for comparison with the same type of cylinder at the higher strength range (Material Group D). The marked service pressure (310 Bar) is the rating for the cylinder as manufactured at the higher strength range. Using the marked service pressure of 310 bar provided by the manufacturer, the cylinders in this material subgroup had an estimated (P_f/P_s) ratio equal to at least 1.0 for flaw lengths of $l_o = 10 \times t_d$. This represents an adequate level of fracture resistance for the cylinders in this group. It should be noted that to compare these cylinders with others in this material group, the service pressure should be recalculated using the actual measured ultimate tensile strength.

Cylinders in subgroups B-7 and B-8 are conventional cylinders made in the strength range of Group B cylinders but are thicker than normal so that they can be used at higher pressure (276 bar marked service pressure for B-7 cylinders and 460 bar marked service pressure for B-8 cylinders). This series of tests was conducted to demonstrate that the flawed-cylinder burst test will adequately evaluate the fracture resistance of the cylinders even when they are unusually thick. Conventional fracture mechanics theory predicts that the fracture resistance of thick cylinders may be lower than that for thin cylinders made from the same steel. The cylinders in these material subgroups had an estimated (P_f / P_s) ratio equal to at least 1.0 for flaw lengths of $l_o = 10 \times t_d$. This represents an adequate level of fracture resistance for the cylinders in these material subgroups.

5.4 FLAWED-CYLINDER BURST TEST RESULTS FOR GROUP C MATERIALS

The cylinders made from Group C materials are higher strength steel cylinders that have been used worldwide for about 10 years. These cylinders are generally made from chromium-molybdenum alloy steel that is produced to higher levels of cleanliness to improve its fracture toughness. This permits the cylinders to be designed to a service pressure of about 300 bar.

As shown in Figures 11 and 12, the cylinders in material subgroups C-3 and C-7 have a leak-fracture boundary of at least $(P_f/P_s) = 1.0$ for flaw lengths of $l_o = 10 \times t_d$. As shown in Figure 11, the cylinders in material subgroups C-11 have a leak-fracture boundary of at least $P_f/P_s = 1.2$ for flaw lengths of $l_o = 8 \times t_d$. By extrapolation, the leak-fracture boundary for cylinders in material subgroup C-11 is estimated to be at least $(P_f/P_s) = 1.0$ for flaw lengths of $l_o = 10 \times t_d$. As shown in Tables 17 and 18, the cylinders in the other Group C material subgroups also had an estimated (P_f/P_s) ratio equal to at least 1.0 for flaw lengths of at least $l_o = 10 \times t_d$. This represents an adequate level of fracture resistance for all cylinders in this group.

5.5 FLAWED-CYLINDER BURST TEST RESULTS FOR GROUP D MATERIALS

The cylinders made from Group D materials are the highest strength steel cylinders that are now permitted to be used in any country in the world. They are restricted to use for shipping non-corrosive (non-hydrogen bearing) gases. These cylinders are generally made from modified chromium-molybdenum alloy steels that have a good combination of ultimate tensile strength and fracture toughness. These cylinders are intended to have service pressures at or above 300 bar.

As shown in Figures 14, 15, and 16, the cylinders in material subgroups D-3, D-5, and D-11 have a leak-fracture boundary of at least $(P_f/P_s) = 1.0$ for flaw lengths of at least $l_o = 10 \times t_d$. This indicates that the fracture resistance of these cylinders is equivalent to the cylinders in materials Group C and that these cylinders should have adequate fracture resistance for all normal use. As shown in Figure 17, the cylinders in material subgroup D-6 have a leak-fracture boundary of less than $(P_f/P_s) = 1.0$ for flaw lengths of about $l_o = 5 \times t_d$. This is less than that of any of the other cylinder groups tested and may indicate that the fracture resistance of these cylinders is not adequate to ensure fracture safe performance.

As shown in Tables 17 and 18, except for material subgroup D-19, all of the cylinders in the other Group D material subgroups had an estimated (P_f / P_s) ratio equal to at least 1.0 for flaw lengths of at least $l_o = 10 \times t_d$. This should represent an adequate level of fracture resistance for all cylinders in this group.

5.6 FLAWED-CYLINDER BURST TEST RESULTS FOR GROUP E MATERIALS

The cylinders made from Group E materials are made from higher strength steels than are currently permitted by any safety regulations in the world. These cylinders are experimental cylinders to evaluate the feasibility of using higher strength steels in cylinders without risking failure by fracture in service. As shown in Figure 18 for the cylinders from the material subgroup E-1, the leak-fracture boundary $(P_f/P_s) > 1.3$ at a flaw length of $l_o = 8 \times t_d$ indicated that these cylinders likely have adequate fracture resistance. However, no tests resulted in leaking for the cylinders that were tested at flaw lengths longer than $l_o = 8 \times t_d$ so it is not possible to make a complete assessment of the fracture resistance of these cylinders.

The cylinders made from the material subgroup E-2 have an ultimate tensile strength of about 1400 MPA. This was the highest strength steel tested in this program. As shown in Figure 19, for the cylinders from the E-2 material subgroup, the leak-fracture boundary (P_f/P_s) was slightly less than 1.0 for a flaw length of only $l_o = 8 \times t_d$. This indicates that at the high strength levels of the material subgroup E-2 steels, these cylinders will have a lower fracture resistance than that of the currently used lower strength cylinders and that the fracture resistance of these cylinders may not be adequate to ensure fracture safe performance of these cylinders.

5.7 FLAWED-CYLINDER BURST TEST RESULTS FOR TESTS CONDUCTED UNDER SPECIAL CONDITIONS

5.7.1 LOW TEMPERATURE TESTS

Cylinders in material subgroups C-8 and C-9 were tested at both room temperature and at - 50 °C to evaluate the low temperature fracture performance of the cylinders. All tests were done with a flaw length of $l_o = 10 \times t_d$. The results of these tests are shown in Figures 20 and 21. For both sets of test cylinders the fracture resistance was not reduced at low temperature. The (P_f / P_s) ratio was slightly higher at - 50 °C than at + 20 °C for both sets of test cylinders. However, the number of cylinders tested at both temperatures was too small to determine if this difference is significant. These test results indicate that cylinders made from the type of alloy steel used to manufacture cylinders in the C-8 and C-9 material subgroups that have adequate fracture resistance at low temperature. This is important because the cylinders may be used at temperatures as low as - 50 °C in service.

5.7.2 PNEUMATIC TESTS

Two cylinders in material subgroups D-5 were tested with nitrogen to produce pneumatic tests for comparison with the hydrostatic tests conducted for the rest of the cylinders in this test program. As shown in Figure 22 both of the pneumatic tests failed by leaking at about the same (P_f/P_s) ratio as cylinders with the same flaw size that were tested hydrostatically. This finding is significant because it indicates that the hydrostatic test is adequate to evaluate the fracture resistance of the cylinders and that it is not necessary to conduct the more complex pneumatic tests on a routine basis. In particular, it is important to note that a leak occurred in the pneumatic test under the same conditions as a leak in the hydrostatic test. This indicates that the hydrostatic test does not mispredict a fracture result in this test.

6.0 **DISCUSSION**

6.1 INTRODUCTION

The test results obtained in this program can be used to evaluate the effectiveness of the flawedcylinder burst test as a test method to measure the fracture performance of seamless steel cylinders and to derive suitable criteria for using the test to evaluate new designs of cylinders and cylinders during production. Only a limited discussion or analysis of the test data is presented in this report.

The objective of the flawed-cylinder burst test is to evaluate new designs of cylinders by determining the leak-fracture boundary for a range of flaw lengths. The leak-fracture boundary is defined in terms of the ratio (P_f/P_s) of the failure pressure (P_f) to the marked service pressure (P_s) of the cylinder. The recently published ISO Standard ISO 9809 Part 2 (2000) [2], requires that a flaw of the specified size and shape in the wall of the cylinder must fail by leaking at a pressure not less than the marked service pressure of the cylinder (P_s) .

6.2 ISO 9809 Part 2: FLAWED-CYLINDER BURST TEST PROCEDURES AND ACCEPTANCE CRITERIA

The flawed-cylinder burst test procedure and the acceptance criteria developed by WG 14 are included in the International Standards Organization document: ISO Standard ISO 9809 Part 2 (2000), (section 9.2.5) [2]. The specific test procedures finally adopted by WG 14 and published in the ISO Standard differ slightly from the procedures used to carry out most of the tests described in this report.

In the ISO Standard, the flaw shape used in the flawed-cylinder burst is the same as the flaw shape used in the tests conducted in this study and described in section 4.3 above and shown in Figure 2. The final procedure adopted by WG 14 and published in the ISO Standard specifies that cylinders with only a single defined flaw length are required to be tested to evaluate the fracture performance of the cylinders. This is in contrast to the test results reported here in which cylinders with a range of flaw lengths were tested for many of the Material Groups to evaluate the total fracture performance of the cylinders. In tests conducted during the development of the flawed-cylinder burst test and reported here, the flaw length was defined in terms of the design minimum thickness (t_d) of the cylinder alone. In these tests, a common flaw length was $l_0 = 10 x$ t_{d.} However, the single flaw length used in the tests conducted according to the ISO Standard is defined differently than the way the flaw lengths is defined in the tests results reported here. In the ISO Standard the flaw length is defined in terms of both the cylinder design minimum wall thickness (t_d) and the cylinder diameter (D). For tests conducted according to the ISO Standard, the single flaw length is defined as: $l_0 = 1.6 (D \times t_d)^{0.5}$. This has the effect of normalizing the flaw length in terms of both the cylinder diameter and the cylinder wall thickness and therefore makes the test equivalent for cylinders of all sizes and wall thicknesses. The basis for this choice

of flaw length is that the fracture strength of a flawed-cylinder is a known function of the cylinder diameter (D), the cylinder wall thickness (t_d), and the flaw length (l_o) [7]. Because many of the tests results reported here used cylinders with a nominal diameter of 235 mm in diameter and a nominal thickness of 6 mm, the flaw length calculated by the ISO equation requires that the flaw is the same (i.e. $10 \times t_d$) as that used in many of the tests results reported here.

In the tests conducted according to the ISO Standard, the cylinder is pressurized to failure, the failure pressure (P_f) is measured and recorded, and the failure mode (leak or fracture is recorded in the same way as for all of the tests reported here. However, in the ISO Standard, the failure pressure (P_f) is then adjusted to account for local variations in the cylinder wall thickness. This is done because the actual thickness in the vicinity of the flaw (t_a) is generally significantly different than the design minimum wall thickness of the cylinder (t_d). The adjusted failure pressure ($P_{f, adjusted}$) is calculated as $P_{f, adjusted} = (P_f \times t_d / t_a)$. This adjustment to the failure pressure is based on the assumption that the failure pressure of a cylinder without a flaw is directly proportional to the actual thickness of the cylinder wall (t_a). Because the actual cylinder wall thickness (t_a) is nearly always greater than the design minimum wall thickness (t_a), the effect of this adjustment is to lower the ratio of the adjusted failure pressure to the service pressure ($P_{f, adjusted} / P_s$) below that of the ratio of the measured failure pressure to the service pressure (P_f / P_s).

The ISO Standard requires that an acceptable result of the flawed-cylinder burst test is that: (1) the failure is by leaking (any extension of the flaw is less than 10 %) and (2) that the ratio of the adjusted failure pressure to the service pressure ($P_{f, adjusted} / P_s$) > 1.0. In conducting the test, if the cylinder fails by leaking and the ratio ($P_{f, adjusted} / P_s$) < 1.0, then the cylinder may be welded to close the flaw and retested, as required, with a shallower flaw until the test fails by leaking and the ratio ($P_{f, adjusted} / P_s$) > 1.0 is obtained. However, if the cylinder fails by fracturing and the ratio ($P_{f, adjusted} / P_s$) > 1.0, then the cylinder fails by fracturing and the ratio ($P_{f, adjusted} / P_s$) > 1.0, then the cylinder may be welded to close the flaw and retested, as required, with a deeper flaw until the test fails by leaking and the ratio ($P_{f, adjusted} / P_s$) > 1.0, then the cylinder may be welded to close the flaw and retested, as required, with a deeper flaw until the test fails by leaking and the ratio ($P_{f, adjusted} / P_s$) > 1.0 is obtained. However, if the cylinder is considered to have adequate fracture resistance. It should be noted that the procedure specified by the ISO Standard only requires that the flawed-cylinder burst test results in leaking at a specified value of the P_f/P_s ratio and does not require that the leak-fracture boundary be determined by getting both leak and fracture results in the test.

The flawed-cylinder burst test is conducted according to the ISO Standard in two different ways for either prototype cylinders or for sample cylinders from a production "batch". Prototype cylinders must be produced and tested whenever there are changes in: (1) the manufacturing process, (2) the factory in which the cylinders are manufactured, (3) the steel alloy, (4) the heat treatment, (5) the guaranteed minimum yield strength (R_e) or the guaranteed minimum ultimate tensile strength (R_g), (6) the nominal diameter or design minimum wall thickness of the cylinder or (7) the length of the cylinder is increased by more than 50%. A production "batch" of cylinders is defined as a group of cylinders (less than 1000) that are produced from the same heat of steel

and produced under identical conditions. Sample cylinders are taken from each production batch and tested to destruction.

When used to evaluate the fracture performance of "prototype" cylinders, at least <u>two</u> cylinders from an initial production run of 50 cylinders must be tested and must successfully meet the performance criteria described above. It should be noted the procedure specified by the ISO Standard only requires that the flawed-cylinder burst test results in leaking at a specified value of the (P_f / P_s) ratio and does not require that the full leak-fracture boundary be determined. However, when a substantial change is made, such as when a new or higher strength steel alloy is used, the fracture performance of the "prototype" cylinders should be evaluated by conducting flawed-cylinder burst tests over a range of flaw lengths to establish the entire leak-fracture boundary.

When used to evaluate the fracture performance of cylinders from a production "batch", the flawed-cylinder burst test shall be conducted for cylinders in which the wall thickness is less than 3 mm thick. For cylinders in which the wall thickness is greater than 3 mm thick, the flawed-cylinder burst test may be conducted to evaluate the fracture resistance of the cylinder. However, because the Charpy-V-notch (CVN) impact test has been widely used as a quality control test for cylinder production for some time, the ISO TC58 / SC3 subcommittee decided to permit the use of the Charpy-V-notch (CVN) impact test as an alternate test method for evaluating the fracture performance of cylinders. As described below, the results of the flawed-cylinder burst tests reported here were used, in part, to establish the Charpy-V-notch (CVN) impact test energy requirements when the Charpy-V-notch (CVN) impact test is used to evaluate the fracture performance of production cylinders. If the Charpy-V-notch (CVN) impact test requirements are not met, then the flawed-cylinder burst test shall be conducted and all flawed-cylinder burst tests that are conducted must successfully meet the performance criteria described above. In evaluating the fracture performance of the production cylinders, the flawed-cylinder burst test is considered to be the definitive reference test.

6.3 ANALYSIS BY WG 14 TO RELATE THE FLAWED-CYLINDER BURST TEST TO CHARPY-V-NOTCH ENERGY VALUES

Empirical equations have been developed to predict the fracture performance of flawed pressure vessels (such as cylinders or pipes) in terms of the diameter, thickness, ultimate tensile strength, pressure, flaw size, and Charpy-V-notch (CVN) impact test energy [12]. These equations use the specified diameter, thickness, ultimate tensile strength, flaw size, and the Charpy-V-notch (CVN) impact test energy of the pressure vessel to predict the failure pressure and to predict whether failure will be by leaking or by fracturing. These equations were originally developed to predict the initiation of fracture in large diameter steel pipelines made from non-heat-treated steels. A large number of flawed pipe tests were tested to failure and the failure pressure and failure mode were related to the pressure vessel properties. These equations were developed from empirical correlations between the measured failure pressure and the pressure vessel properties. There is no

specific analytic basis to these equations.

WG 14 conducted a limited evaluation to determine if the same empirical correlations developed for predicting fracture in pipes could be used to predict the fracture performance of the high strength steel cylinders tested here. The properties of the cylinders tested in this investigation, particularly the Charpy-V-notch impact test energy, were used to predict the failure pressure and failure mode of the cylinders in the flawed-cylinder burst test. The results of these predictions were compared with the results of the flawed-cylinder burst test. The results of this evaluation have been described in previously published reports [13], [14].

WG 14 concluded that the performance of the flawed-cylinder burst test could be adequately predicted from the cylinder dimensions and the mechanical properties of the cylinders, particularly the Charpy-V-notch impact test energy. No analysis of the uncertainty in these predictions was carried out. On this basis, WG 14 established an alternate to the flawed-cylinder burst test in terms of the Charpy-V-notch impact test energy to predict acceptable fracture resistance of high strength steel cylinders. The alternate requirements that use the Charpy-V-notch impact test energy to predict acceptable fracture performance are permitted only for production batch testing of cylinders. For the evaluation of the fracture performance of "prototype" cylinders, flawed-cylinder burst tests must be conducted. These results are included in the ISO Standard as a minimum requirement for production batch testing of cylinders. The requirements for cylinders of all strength levels are:

Charpy-V-notch tests:

3 specimens from each cylinder

Transverse specimen orientation

Test Temperature to be at - 50 °C

Minimum Acceptable Test results (average of 3 specimens):

Cylinder minimum wall thickness (t _d), mm	Average CVN Energy, J/cm ²		
3 to 5	40		
> 5 to 7.5	50		
> 7.5 to 12	60		

6.4 ADJUSTMENT TO THE MEASURED Pf/Ps RATIO TO ACCOUNT FOR THE LOCAL CYLINDER WALL THICKNESS

As described above in Section 6.2, the ISO Standard requires that the ratio of the measured failure pressure to the service pressure (P_f / P_s) be adjusted to account for variations in the local thickness of the cylinder wall at the location of the flaw. The pressure at which the cylinder fails, P_f , (whether by leaking or fracturing) is controlled by the stress in the wall of the cylinder at the location of the flaw. The stress in the wall of the cylinder is determined by the pressure and the actual thickness (t_a) of the cylinder at the location of the flaw. The ISO Standard requires that the ratio of the measured failure pressure to the service pressure (P_f / P_s) be adjusted to account for the local thickness of the cylinder wall at the location of the flaw by multiplying the measured failure pressure (P_f) by the ratio of the actual measured wall thickness to the design minimum wall thickness at the point of failure is equal to the wall stress in a cylinder with a wall thickness at the design minimum wall thickness, which is the basis for the calculated service pressure (P_s).

This adjustment was made to the values of the (P_f / P_s) ratio for all of the flawed-cylinder burst tests conducted in this study. The adjusted ratio of the failure pressure to the service pressure $(P_{f^{\circ} adjusted} / P_s)$ is shown as the last column in Tables 12 to 16. The test results with adjusted $(P_{f^{\circ} adjusted} / P_s)$ ratios are also shown in Figures 23 to 36 for cylinders in material subgroups in which flawed-cylinder burst test were conducted over a range of flaw lengths. For cylinders in material subgroups that were tested at only one flaw length and in which both leak and fracture test results with adjusted $(P_{f^{\circ} adjusted} / P_s)$ ratios are shown in Tables 12. For cylinders in material subgroups that were tested at only one flaw length and in which both leak and fracture test results with adjusted $(P_{f^{\circ} adjusted} / P_s)$ ratios are shown in Table 19. For cylinders in material subgroups that were tested at only one flaw length and in which only leak or fracture test results were obtained, the results with adjusted at only one flaw length and in which only leak or fracture test results were obtained, the results with adjusted $(P_{f^{\circ} adjusted} / P_s)$ ratios are shown in Table 20.

Because the actual cylinder wall thickness (t_a) should always be thicker than cylinder design minimum wall thickness (t_d) , the adjusted failure pressure to service pressure ratio $(P_f, a_{djusted} / P_s)$ = $(P_f / P_s)(t_d / t_a)$ should be smaller than the measured failure pressure to service pressure ratio (P_f / P_s) . The actual wall thickness (t_a) of some cylinders was as much as 30 percent larger than the design minimum wall thickness (t_d) . More commonly, the actual wall thickness (t_a) was 10 to 15 percent larger than the design minimum wall thickness (t_d) . No pattern was noted, such as cylinder type or manufacturing process, of the amount by which the actual wall thickness exceeded the design minimum wall thickness. The amount by which the adjusted failure pressure to service pressure ratio $(P_{f}, a_{djusted} / P_s)$ differs from the measured failure pressure to service pressure ratio (P_f / P_s) is directly proportional to the ratio of the design minimum wall thickness to the actual wall thickness. Therefore, the effect of this adjustment is to make the adjusted failure pressure to service pressure ratio $(P_{f}, a_{djusted} / P_s)$ up to 30 percent smaller than the measured failure pressure to service pressure ratio (P_f / P_s) . Although the actual wall thickness is normally larger than the design minimum wall thickness, exceptions were noted for a few of the cylinders in Material Group A. These are older cylinders that have unusually large variations in the thickness of the cylinder wall due to the production practices used. In a few of these cylinders, the actual cylinder wall thickness (t_a) at the location of the machined flaw was approximately 10 percent less than the design minimum wall thickness (t_d). Therefore, for these cylinders the ($P_{f_r adjusted} / P_s$) ratio was approximately 10 percent larger than the measured failure pressure to service pressure ratio (P_f / P_s).
7.0 SUMMARY AND CONCLUSIONS

- 1. Extensive test results of flawed-cylinder burst tests and mechanical properties tests that were conducted on seamless steel cylinders are compiled.
- 2. The results of these tests were used to demonstrate the capability of the flawedcylinder burst to accurately evaluate the fracture performance of steel cylinders.
- 3. The results of these tests were used by ISO TC58 / SC3 to define the testing procedures and acceptance criteria for the flawed-cylinder burst test.
- 4. The flawed-cylinder burst test shall be conducted on steel cylinders by the recently published ISO Standard ISO 9809 Part 2:2000 for high strength steel cylinders.

8.0 **REFERENCES**

- ISO Technical Report No. 12391 "Gas Cylinders Steel with Strength Levels Above 1100 MPa -- Fracture Performance and Fatigue Cycle Life, Part 1 - Philosophy, Background, and Conclusions". International Organization for Standardization, Geneva, 2000
- ISO Standard: ISO 9809:2000 "Transportable Seamless Steel Gas Cylinders Design, Construction, and Testing - Part 2: Quenched and Tempered Steel Cylinders with Tensile Strength Greater than or Equal to 1100 MPa". International Organization for Standardization, Geneva, 2000.
- U. S. Code of Federal Regulations, Title 49 -Transportation, Part 178 Specifications for Packaging Subpart C --Specifications for Cylinders, Office of the Federal Register, National Archives and Records Administration, Washington, DC, 1999.
- 4. Anon., "The Steel Products Manual -- Standard Steels", The Iron and Steel Society, Warrandale, PA., U.S.A., 1999
- Rana, M. D. and Selines, R. J., "Structural Integrity Assurance of High-Strength Steel Gas Cylinders Using Fracture Mechanics," *Engineering Fracture Mechanics, Vol. 30, pg.* 877 - 894, 1988, Pergamon Press, London.
- 6. Duffy, A. R, McClure, G. M., Eiber, R. J., and Maxey. W. A., "Fracture Design Practices for Pressure Piping," Fracture, *An Advanced Treatise*, ed., H. Liebowitz, Vol V, Academic Press, New York, NY, pp. 160-231, 1969.
- Rana, M. D., Smith, J. H., and Tribolet, R. O., "Technical Basis for Flawed-Cylinder Test Specification to Assure Adequate Fracture Resistance of ISO High-Strength Steel Cylinders", ASME Journal of Pressure Vessel Technology, Vol. 119, pp. 475-480, 1997.
- 8. ISO Standard: ISO 6892:1984 "Metallic Materials -- Tensile Testing at Ambient Temperatures", International Organization for Standardization, Geneva, 1984.
- 9. ASTM E-23-96: "Standard Test Methods Notched Bar Impact Testing of Metallic Materials", American Society for Testing and Materials, West Consohocken, PA., 1996.
- 10. ISO Standard: ISO 148:1983 "Steel-Charpy Impact Test (V-notch)", International Organization for Standardization, Geneva, 1983.
- 11. ASTM E-813-89: "Standard Test Methods for J_{IC,} A Measure of Fracture Toughness", American Society for Testing and Materials, West Consohocken, PA., 1996.

- 12. Kiefner, J. F., Maxey, W. A., Eiber, R. J., Duffy, A. R., "Failure Stress Levels of Flaws in Pressurized Cylinders", ASTM STP 536, ed., J. G. Kaufman, Published by the American Society for Testing and Materials, West Consohocken, PA., pp. 461-481, 1973.
- Bruhl-Schreiner, H., Busch, K., Duren, C., Markhoff, K., "A Case Study in relation to European Standardization - Safety Concept for Seamless Steel Gas Cylinders", Markhoff, Vulkan-Verlag, May, 1992.
- Duren, C., Junker, G., "Toughness Requirements for Seamless Steel Gas Cylinders of Steels with Tensile Strength Values over 1100N/mm² ", unpublished, Presented to ISO TC58 / SC3 / WG 14, July, 1993,

ACKNOWLEDGMENTS

The tests reported here were conducted as part of the activities of part of a cooperative project under the direction of the International Standards Organization Technical Committee on Gas Cylinders (TC 58) -- Subcommittee on Cylinder Design (SC3) -- Working Group on Cylinder Fracture (WG 14). Contributions of the following members of WG 14 are gratefully acknowledged:

- G. Konul, Joseph Heiser, Inc., Austria
- H. Barthelemy, L' Air Liquide, France
- H. Potanas, Vallourec Group, France
- C. Duren, Mannesmann, Germany
- Y. Tohama, Arrowhead Industrial Services Inc., Japan
- J. Sandstrom, AGA AB, Sweden
- J. Walters, Chesterfield Cylinders Limited, UK
- C. Hall, Taylor-Wharton, USA
- A. Mallen, Consultant, USA
- M. Rana, Praxair, Inc., USA
- R Shafkey, Norris Cylinder Company, USA
- J. Smith, NIST, USA
- R. Tribolet, The Compressed Gas Association, USA
- J. Wedding, Coyne Cylinder Inc., USA

TABLES

			CYLINDER DESCRIPTION										
BURST TEST NO.	CYLINDER NO.	TYPE OF CYLINDER	SPEC TENSILE STRE Rg min.	IFIED ENGTH RANGE Rg max.	CYLINDER SPECIFICTION	MATERIAL (STEEL ALLOY & SPECIAL NOTES)	VOL.	DIA.	DESIGN TEST PRESSURE	DESIGN SERVICE PRESSURE	DESIGN THICK		
		MFG.	[MPa]	[MPa]			[liter]	[mm]	[bar]	[bar]	[tta]		
MATERIAL	GROUP A-1												
		BULET	640				42	220	222	465	66		
2	A-1-1	BILLET	640		USDOT 3A	CARBON STEEL	43	230	232	155	6.0		
2		BULET	640		U.S.DOT 3A	CARBON STEEL	43	230	232	155	6.0		
4	н	BILLET	640	_	U.S.DOT 3A	CARBON STEEL	43	230	232	155	6.6		
5	A-1-2	BILLET	640	-	U.S.DOT 3A	CARBON STEEL	43	230	232	155	6.6		
ь 7		BILLET	640	-	U.S.DOT 3A	CARBON STEEL	43	230	232	100	0.0		
		BILLET	640	_	U.S.DOT 3A	CARBON STEEL	43	230	232	100	0.0		
°		BILLET	640	_	U.S.DOT 3A	CARBON STEEL	43	230	232	100	0.0		
3		DILLET	040	_	0.3.001.34	CARBON STEEL	*2	230	2.52	150	0.0		
10	A-1-3	BILLET	640	-	U.S.DOT 3A	CARBON STEEL	43	230	232	155	6.6		
11		BILLET	640	-	U.S.DOT 3A	CARBON STEEL	43	230	232	155	6.6		
12	A-1-4	BILIET	640	_	USDOT3A	CARBON STEEL	43	230	232	155	66		
13		BILLET	640	_	USDOT 3A	CARBON STEEL	43	230	232	155	66		
14		BILLET	640		U.S.DOT 3A	CARBON STEEL	43	230	232	155	6.6		
15	A-1-5	BILLET	640	-	U.S.DOT 3A	CARBON STEEL	43	230	232	155	6.6		
16		BILLET	640	-	U.S.DOT 3A	CARBON STEEL	43	230	232	155	6.6		
17	"	BILLET	640	-	U.S.DOT 3A	CARBON STEEL	43	230	232	155	6.6		
MATERIAL	CROUP A 2												
MATERIAL	<u>okoor aa</u>												
18	A-2-1	BILLET	640	_	U.S.DOT 3A	CARBON STEEL	50	232	232	155	6.6		
19		BILLET	640	-	U.S.DOT 3A	CARBON STEEL	50	232	232	155	6.6		
20	A-2-2	BILLET	640	-	U.S.DOT 3A	CARBON STEEL	50	232	232	155	6.6		
21	A-2-3	BILLET	640	_	U S DOT 3A	CARBON STEEL	50	232	232	155	6.6		
22		BILLET	640	- 1	U.S.DOT 3A	CARBON STEEL	50	232	232	155	6.6		
			•										
23	A-2-4	BILLET	640	-	U.S.DOT 3A	CARBON STEEL	50	232	232	155	6.6		
24	A-2-5	BILLET	640	_	U.S.DOT 3A	CARBON STEEL	50	232	232	155	6.6		
25		BILLET	640	-	U.S.DOT 3A	CARBON STEEL	50	232	232	155	6.6		
26	A-2-6	BILLET	640		U.S.DOT 3A	CARBON STEEL	50	232	232	155	6.6		
27		BILLET	640	-	U.S.DOT 3A	CARBON STEEL	50	232	232	155	6.6		
				L		L			L				

TABLE 1. CYLINDER DESCRIPTION FOR GROUP A MATERIALS

BURST TEST NO.	CYLINDER NO.	TYPE OF CYLINDER MFG.	SPEC TENSILE STRE Rg min.	IFIED NGTH RANGE Rg max.	CYLINDER SPECIFICTION	MATERIAL (STEEL ALLOY & SPECIAL NOTES)	VOL	DIA.	DESIGN TEST PRESSURE Ph	DESIGN SERVICE PRESSURE Ps	DESIGN THICK. [td]
			[MPa]	[MPa]			(liter)	[mm]	[bar]	[bar]	[no] [mm]
MATERIAL	GROUP B-2										
28	B-2-1	BILLET	1069	1207	EXPERIMENTAL	Cr-Mo-V	45	236	465	310	6.6
29		BILLET	1069	1207	TEMPERED TO	Cr-Mo-V	45	236	465	310	6.6
30		BILLET	1069	1207	VARY STRENGTH	Cr-Mo-V	45	236	465	310	6.6
31		BILLET	1069	1207		Cr-Mo-V Cr-Mo-V	45	236	465	310	6.6
MATERIAL	GROUP B-3										
33	8-3-1	BILLET	724	_	U. S. DOT 3AA	Cr-Mo	50	236	276	184	5.8
34	8-3-2	BILLET	724		U.S.DOT 3AA	Cr-Mo	50	236	276	184	5.8
35	B-3-3	BILLET	724	_	U. S. DOT 3AA	Cr-Mo	50	236	276	184	5.8
36	B-3-4	BILLET	724	—	U.S. DOT 3AA	Cr-Mo	50	236	276	184	5.8
31	8-3-5	BILLET	/24 724	_	U.S. DOT 3AA	Cr-MO	50 50	236	2/6	164	5.8 5.8
39	8-3-7	BILLET	724		U.S. DOT 3AA	Cr-Mo	50	236	276	184	5.8
40	B-3-8	BILLET	724	_	U.S. DOT 3AA	Cr-Mo	50	236	276	184	5.8
41	B-3-8	BILLET	724	_	U. S. DOT 3AA	Cr-Mo	50	236	276	184	5.8
42	B-3-10	BILLET	724	—	U.S.DOT 3AA	Cr-Mo	50	236	276	184	5.8
43	B-3-11	BILLET	724	-	U.S. DOT 3AA	Cr-Mo	50	236	276	184	5.8
44	B-3-12	BILLET	724	-	U.S.DOT 3AA	Cr-Mo	50	236	276	184	5.8
MATERIAL	GROUP B-4										
45	B-4-1	TUBE	_	_	FRENCH NFA 49.901	Ni-Cr-Mo	50	230	221	147	6.5
46	B-4-2	TUBE	—	—	FRENCH NFA 49.901	Ni-Cr-Mo	50	230	221	147	6.5
47	B-4-3	TUBE	-	-	FRENCH NFA 49.901	Ni-Cr-Mo	50	230	221	147	6.5
48	B-4-4	TUBE	-	-	FRENCH NFA 49.901	Ni-Cr-Mo	50	230	221	147	6.5
MATERIAL	GROUP B-5										
49	B-5-1	TUBE	—	_	FRENCH NFA 49.901	Cr-Mo	50	230	300	200	6.0
50	B-5-2	TUBE	-	-	FRENCH NFA 49.901	Cr-Mo	50	230	300	200	6.0
51	B-5-3	TUBE	-	—	FRENCH NFA 49.901	Cr-Mo	50	230	300	200	6.0
52	B-5-4	TUBE	—	-	FRENCH NFA 49.901	Cr-Mo	50	230	300	200	6.0
53	B-5-5	TUBE	_	_	FRENCH NFA 49.901	Cr-Mo	50	230	300	200	6.0
		TODE			TRENGITINE 45.501	CI-IIIO	50	250			0.0
MATERIAL	GROUP B-6										
55	B-6-1	BILLET	724	_	U. S. DOT 3AA	Cr-Mo	45	230	276	184	6.4
56	B-6-2	BILLET	724	-	U.S.DOT 3AA	Cr-Mo	45	230	276	184	6.4
57	B-6-3	BILLET	724	-	U.S. DOT 3AA	Cr-Mo	45	230	276	184	6.4
58	B-6-4	BILLET	724	-	U.S. DOT 3AA	Cr-Mo	45	230	276	184	6.4
59 60	6-6-3 8.6.6	BILLET	724 724	_	U.S. DOT 3AA	Cr-Mo	45	230	276	184	6.4
		DIELET	124		0.0.001 044	G-INO	~~	200			0.4
MATERIAL	GROUP B-7										
61	B-7-1	BILLET	724	897	U.S. DOT 3AA	Cr-Mo	43	236	414	276	8.7
62	B-7-2	BILLET	724	897	U. S. DOT 3AA	Cr-Mo	43	236	414	276	8.7
63	B-7-3	BILLET	724	897	U. S. DOT 3AA	Cr-Mo	43	236	414	276	8.7
MATERIAL	GROUP B-8										
64	B-8-1	BILLET	724	897	U. S. DOT 3AA	Cr-Mo	38	238	690	460	14.4
65	B-8-2	BILLET	724	897	U. S. DOT 3AA	Cr-Mo	38	238	690	460	14.4
66	B-8-3	BILLET	724	897	U.S. DOT 3AA	Cr-Mo	38	238	690	460	14.4
					L	1			1	1	

TABLE 2 CYLINDER DESCRIPTION FOR GROUP B MATERIALS

					CYLINDER		ON				
BURST TEST NO.	CYLINDER NO.	TYPE OF CYLINDER	SPEC TENSILE STRI Rg min.	IFIED ENGTH RANGE Rg max.	CYLINDER SPECIFICTION	MATERIAL (STEEL ALLOY & SPECIAL NOTES)	VOL.	DIA.	DESIGN TEST PRESSURE	DESIGN SERVICE PRESSURE	DESIGN THICK.
		MFG.	[MPa]	[MPa]			[ilter]	D (mm)	Ph [bar]	Ps Ibarl	[bʃ] [mm]
MATERIAL											
MATERIAL	GROOP B-9										
67 68	B-9-1 B-9-2	BILLET	687 687	862 862	U. S. DOT 3AA	Cr-Mo Cr-Mo	22 27	178 178	232	155	3.8 3.8
69	B-9-3	BILLET	687	862	U. S. DOT 3AA	Cr-Mo	22	178	232	155	3.8
70	B-9-4	BILLET	687	862	U. S. DOT 3AA	Cr-Mo	22	178	232	155	3.8
71	B-9-5	BILLET	687	862	U.S. DOT 3AA	Cr-Mo	22	178	232	155	3.8
73	B-9-7	BILLET	687	862 862	U.S. DOT 3AA	Cr-Mo	22	178	232	155	3.8
74	B-9-6	BILLET	687	862	U. S. DOT 3AA	Cr-Mo	22	178	232	155	3.8
75	B-9-9	BILLET	687	862	U. S. DOT 3AA	Cr-Mo	22	178	232	155	3.8
76	B-9-10	BILLET	687	862	U. S. DOT 3AA	Cr-Mo	22	178	232	155	3.8
77	B-9-11 B-9-12	BILLET	687	862	U.S. DOT 3AA	Cr-Mo	22	1/8	232	155	3.8
79	B-9-13	BILLET	687	862	U. S. DOT 3AA	Cr-Mo	22	178	232	155	3.8
80	B-9-14	BILLET	687	862	U. S. DOT 3AA	Cr-Mo	22	178	232	155	3.8
81	B-9-15	BILLET	687	862	U. S. DOT 3AA	Cr-Mo	22	178	232	155	3.8
82	B-9-16	BILLET	687	862	U. S. DOT 3AA	Cr-Mo	22	178	232	155	3.8
84	B-9-17 B-9-18	BILLET	687	862	U.S. DOT 3AA	Cr-Mo	22	178	232	155	3.8
85	B-9-19	BILLET	687	862	U. S. DOT 3AA	Cr-Mo	22	178	232	155	3.8
86	B-9-20	BILLET	687	862	U. S. DOT 3AA	Cr-Mo	22	178	232	155	3.8
87	B-9-21	BILLET	687	862	U. S. DOT 3AA	Cr-Mo	22	178	232	155	3.8
88	B-9-22	BILLET	687	862	U. S. DOT 3AA	Cr-Mo	22	178	232	. 155	3.8
90	B-9-24	BILLET	687	862	U. S. DOT 3AA	Cr-Mo	22	178	232	155	3.8
91	B-9-25	BILLET	687	862	U. S. DOT 3AA	Cr-Mo	22	178	232	155	3.8
MATERIAL	GROUP B-10										
92	B-10-1	BILLET	800	950	ISO 9809 -1	Cr-Mo	50	232	300	200	6.0
MATERIAI	GROUP B-11										
MALENAL											
93	B-11-1	TUBE	750	880	ISO 9809 -1	Cr-Mo	47	232	255	170	5.4
MATERIAL	GROUP B-12										
94	B-12-1	TUBE	815	930	ISO 9809 -1	Cr-Mo	49	232	300	200	5.9
MATERIAL			1								
MATERIAL	GROOP B-13										
95	B-13-1	TUBE	890	1090	ISO 9809 -1	C-Mn	10	189	318	212	4.6
96	B-13-2	TUBE	890	1090	ISO 9809 -1	C-Mn	10	189	318	212	4.6
97	B-13-3	TUBE	890	1090	ISO 9809 -1	C-Mn	10	189	318	212	4.6
MATERIAL	GROUP B-14										
99	R-14-1	BULET	800	950	150 9809 -1	CHID	67	222	263	175	52
99	B-14-2	BILLET	800	950	ISO 9809 -1	C-Mn	47	232	263	175	5.2
100	B-14-3	BILLET	800	950	ISO 9809 -1	C-Mn	47	232	263	175	5.2
MATERIAL	GROUP B-15					1					
101	B-15-1	BILLET	800	950	150 9809 -1	Cr-Mo	50	232	295	197	55
102	B-15-2	BILLET	800	950	ISO 9809 -1	Cr-Mo	50	232	295	197	5.5
103	B-15-3	BILLET	800	950	ISO 9809 -1	Cr-Mo	50	232	295	197	5.5
		L	1	1			L	1			

TABLE 2 (CON'T). CYLINDER DESCRIPTION FOR GROUP B MATERIALS

			CYLINDER DESCRIPTION									
BURST TEST NO.	CYLINDER NO.	TYPE OF CYLINDER MFG.	SPEC TENSILE STRI Rg min.	CIFIED ENGTH RANGE Rg max.	CYLINDER SPECIFICTION	MATERIAL (STEEL ALLOY & SPECIAL NOTES)	VOL.	DIA.	DESIGN TEST PRESSURE Ph	DESIGN SERVICE PRESSURE Pa	DESIGN THICK.	
			[MPa]	[MPa]			[liter]	[mm]	[bar]	[bar]	[mm]	
MATERIAL	 <u>GROUP C-3</u>											
104	C-3-1	BILLET	724	-	EXPERIMENTAL	Сг-Мо	49	235	276	184	6.1	
105 106		BILLET	724		TEMPERED TO	Cr-Mo	49 49	235 235	276	184	6.1	
107	C-3-2	BILLET	724	_		Cr-Mo	49	235	276	184	6.1	
108	C-3-3 "	BILLET	724	_		Cr-Mo Cr-Mo	49 49	235 235	276	184	6.1	
		0.2221	124			CI-WIG		200	2,0			
110	C-3-4	BILLET	724	-	•	Сг-Мо	49	235	276	184	6.1	
111	C-3-5	BILLET	724	-	•	Cr-Mo	49 40	235	276	184	6.1	
112		DILLET	124	_		CI-MO	49	230	2/0	104	0.1	
113	C-3-6	BILLET	724	-	a	Cr-Mo	49	235	276	184	6.1	
MATERIAL	GROUP C-4											
114	C-4-1	BILLET	1069	1207	EXPERIMENTAL	SPECIAL ALLOY	45	236	465	310	6.6	
115		BILLET	1069	1207	TEMPERED TO		45	236	465	310	6.6	
116		BILLET	1069	1207	VARY STRENGTH		45	236	465	310	6.6	
118		BILLET	1069	1207			45	236	465	310	6.6	
119		BILLET	1069	1207	•	•	45	236	465	310	6.6	
400						0050W 4410V			105			
120	C-4-2	BILLET	1069	1207	EXPERIMENTAL TEMPERED TO	SPECIAL ALLOY	45	236	465	310	6.6 6.6	
121		BILLET	1069	1207	VARY STRENGTH		45	236	465	310	6.6	
123		BILLET	1069	1207	*	•	45	236	465	310	6.6	
124	"	BILLET	1069	1207		U	45	236	465	310	6.6	
MATERIAL	GROUP C-5											
125	C-5-1	TUBE	880	1030	1982 FRENCH SPEC	Cr-Mo	50	229	300	200	6.0	
126	C-5-2	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	50	229	300	200	6.0	
127	C-5-3	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	50	229	300	200	6.0	
128	C-5-4	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	50	229	300	200	6.0	
129	C-5-5	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	50	229	300	200	6.0	
130	C-5-6	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	50	229	300	200	6.0	
131	C-5-8	TUBE	880	1030	1982 FRENCH SPEC	Cr-Mo	50	229	300	200	60	
132	C-5-9	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	50	229	300	200	6.0	
133	C-5-10	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	50	229	300	200	6.0	
134	C-5-11	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	50	229	300	200	6.0	
135	C-5-12	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	50	229	300	200	6.0	
136	C-5-13	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	50	229	300	200	6.0	
13/8	C-5-15	TURF	880	1030	1982 FRENCH SPEC	Cr-Mo	50	229	300	200	60	
139	C-5-16	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	50	229	300	200	6.0	
140	C-5-17	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	50	229	300	200	6.0	
141	C-5-18	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	50	229	300	200	6.0	
142	C-5-19	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	50	229	300	200	6.0	
143	C-5-20	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	50	229	300	200	6.0	
	~~~ L I	, UBC		1050	ISSET RENOT OF EQ.	0	~~~	~~~		200	0.0	

TABLE 3. CYLINDER DESCRIPTION FOR GROUP C MATERIALS

					CYLINDER	DESCRIPTIC	<u>DN</u>				
BURST TEST NO.	CYLINDER NO.	TYPE OF CYLINDER MFG.	SPEC TENSILE STRE Rg min.	RIFIED INGTH RANGE Rg max.	CYLINDER SPECIFICTION	MATERIAL (STEEL ALLOY & SPECIAL NOTES)	VOL	DIA. D	DESIGN ' TEST PRESSURE Ph	DESIGN SERVICE PRESSURE Pa	DESIGN THICK. [1d]
			[MPa]	[MPa]			[liter]	[mm]	[bar]	[bar]	[mm]
MATERIAL	GROUP.C-6										
145	C-6-1	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	20	203	300	200	5.6
146	C-6-2	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	20	203	300	200	5.6
147	C-6-3	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	20	203	300	200	5.6
148	C-6-4	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	20	203	300	200	5.6
149	C-6-5	TURE	880	1030	1982 FRENCH SPEC.	Cr-Mo	20	203	300	200	5.6
150	C-6-7	TUBE	880	1030	1982 FRENCH SPEC	CT-MO	20	203	300	200	56
152	C-6-8	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	20	203	300	200	5.6
153	C-6-9	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	20	203	300	200	5.6
154	C-6-10	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	20	203	300	200	5.6
155	C-6-11	TUBÉ	880	1030	1982 FRENCH SPEC.	Cr-Mo	20	203	300	200	5.6
156	C-6-12	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	20	203	300	200	5.6
MATERIAL	GROUP C-7										
157	C-7-1	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	50	230	300	200	6.0
158	C-7-2	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	50	230	300	200	6.0
159	C-7-3	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	50	230	300	200	6.0
160	C-7-4	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	50	230	300	200	6.0
161	C-7-5	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	50	230	300	200	6.0
162	C-7-6	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	50	230	300	200	6.0
163	C-7-7	TUBE	880	1030	1982 FRENCH SPEC.	Cr-Mo	50	230	300	200	6.0
104	C-1-8	IUBE	880	1030	1982 FRENCH SPEC.	Сг-мо	50	230	300	200	6.0
MATERIAL	GROUP C-8					ALL Cr-Mo					
<u></u>						SPECIAL NOTES:					
165	C-8-1	TUBE	880	1030	1982 FRENCH SPEC.	TESTED AT + 20 C	20	203	300	200	5.6
166	C-8-2	TUBE	880	1030	1982 FRENCH SPEC.	TESTED AT + 20 C	20	203	300	200	5.6
167	C-8-3	TUBE	880	1030	1982 FRENCH SPEC.	TESTED AT - 50 C	20	203	300	200	5.6
168	C-8-4	TUBE	880	1030	1982 FRENCH SPEC.	TESTED AT - 50 C	20	203	300	200	5.6
169	C-8-5	TUBÉ	880	1030	1982 FRENCH SPEC.	TESTED AT - 50 C	20	203	300	200	5.6
170	C-8-6	TUBE	880	1030	1982 FRENCH SPEC.	TESTED AT + 20 C	20	203	300	200	5.6
MATERIAL	GROUP C-9					ALL Cr-Mo SPECIAL NOTES:					
171	C-9-1	TUBE	880	1030	1982 FRENCH SPEC.	TESTED AT + 20 C	50	230	300	200	6.0
172	C-9-2	TUBE	880	1030	1982 FRENCH SPEC.	TESTED AT - 50 C	50	230	300	200	6.0
173	C-9-3	TUBE	880	1030	1982 FRENCH SPEC.	TESTED AT + 20 C	50	230	300	200	6.0
174	6.94	IUBE	880	1030	1982 FRENCH SPEC.	TESTED AT - SUC	50	230	300	200	6.0
MATERIAL	GROUP C-10										
175	C-10-1	BILLET	930	1068	EXPT.	SPECIAL ALLOY	50	235	345	230	5.6
176	C-10-1	BILLET	930	1068	EXPT.	-	50	235	345	230	5.6
177	C-10-3	BILLET	930	1068	EXPT.	•	50	235	345	230	5.6
178	C-10-4	BILLET	930	1068	EXPT.	•	50	235	345	230	5.6
179	C-10-5	BILLET	930	1068	EXPT.	-	50	235	345	230	5.6
180	C-10-6	BILLET	930	1068	EXPT.		50	235	345	230	5.6
181	C-10-7	BILLET	930	1068	EXPT.		50	235	345	230	5.6
182	C-10-8	BILLET	930	1068	EAPI. FXPT		50	230	345	230	5.6
100	C-10-3	DILLET	330	1000	EAFI.		50	2.50	340	200	5.0

TABLE 3 (CON'T). CYLINDER DESCRIPTION FOR GROUP C MATERIALS

DUM         VIC         VIC <th></th> <th></th> <th></th> <th></th> <th></th> <th>CYLINDER</th> <th></th> <th><u>DN</u></th> <th></th> <th></th> <th></th> <th>:</th>						CYLINDER		<u>DN</u>				:
MATERIAL         ROUPC-11         PIEPa	BURST TEST NO.	CYLINDER NO.	TYPE OF CYLINDER MEG	SPEC TENSILE STRE Rg min.	HED ENGTH RANGE Rg max.	CYLINDER SPECIFICTION	MATERIAL (STEEL ALLOY & SPECIAL NOTES)	VOL	DIA.	DESIGN TEST PRESSURE	DESIGN SERVICE PRESSURE	DESIGN THICK.
ANTERIAL CROUP C-11         BILLET         1068         1708         EDFT, 1708         SPECIA ALLOT CPT, 2007         45         238         466         311         6.6           136			mrg.	[MPa]	[MPa]			[liter]	[mm]	[bar]	[bar]	[(U) [mm]
144         C-11-1 195         BILET 006         1006         1206 1206         DPT DPT DPT 1206         SPECMALCY 11         45 23         466 233         311 466         65 331           189         -         BILET         1006         1206         DPT 1206         DPT DPT         -         45 233         266         311         65 233           189         -         BILET         1006         1206         DPT         -         45         233         466         311         65           197         -         BILET         1006         1206         DPT         -         45         233         466         311         65           MATERIAL CROUPC-12         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </td <td>MATERIAL</td> <td>GROUP C-11</td> <td></td>	MATERIAL	GROUP C-11										
195       - BILET       1068       17065       EVPT, 1705       - EVPT, EVPT, 1705       - BILET       1068       1705       EVPT, EVPT, 1705       - BILET       45       228       466       311       65         198       - BILET       1068       1705       EVPT, 1068       - 1705       EVPT, EVPT,       - - 45       228       466       311       65         MATERIAL       GOUPC-12       BILET       1068       1705       EVPT, 100       - 180       - 228       466       311       65         MATERIAL       GOUPC-12       TUBE       950       1100       180 9809       C-M0       14       191       476       317       6.5         MATERIAL       GOUPC-13       BILET       1000       1150       180 9809       C-M0       47       232       245       163       43         192       C-14-2       BILET       900       1100       150 9809       C-M0       47       232       245       163       43         193       C-14-2       BILET       900       1100       150 9809       C-M0       47       232       245       163       43         194       C-14-2       BILET       950	184	C-11-1	BILLET	1068	1206	EXPT.	SPECIAL ALLOY	45	238	466	311	6.6
166         "         BULET         1068         1226         EVF1.         -         45         238         466         311         65           188         "         BULET         1068         1206         EVF1.         -         45         238         466         311         65           MATEBUA         GOUP C-12         BULET         1068         1206         EVF1.         -         45         238         466         311         65           MATEBUA         GOUP C-12         TUBE         950         1100         ISO 9809         Cr-Mo         14         191         476         317         6.5           MATEBUA         GOUP C-13         FUE         TUBE         950         1100         ISO 9809         Cr-Mo         47         232         245         163         4.3           112         C-13-1         BILET         900         1100         ISO 9809         Cr-Mo         47         232         245         163         4.3           113         C-14-1         BILET         900         1100         ISO 9809         Cr-Mo         47         232         245         163         4.3         4.3           1134	185		BILLET	1068	1206	EXPT.	•	45	238	466	311	6.6
167        BULET       1068       1206       EXPT.         45       238       466       311       6.6         MATERIAL       GROUP C-12              45       238       466       311       6.6         MATERIAL       GROUP C-12 <td>186</td> <td>•</td> <td>BILLET</td> <td>1068</td> <td>1206</td> <td>EXPT.</td> <td>•</td> <td>45</td> <td>238</td> <td>466</td> <td>311</td> <td>6.6</td>	186	•	BILLET	1068	1206	EXPT.	•	45	238	466	311	6.6
188         "         EILLET         1068         1206         EXPT.         ·         45         238         466         311         65           MATERIAL         GRUP C-12         TUBE         950         1100         ISO 9809         C-Mo         14         191         476         317         6.5           MATERIAL         GRUP C-12         TUBE         950         1100         ISO 9809         C-Mo         14         191         476         317         6.5           MATERIAL         GRUP C-13         TUBE         950         1100         ISO 9809         C-Mo         14         191         476         317         6.5           MATERIAL         GRUP C-13         BILLET         1000         1150         ISO 9809         C-Mo         47         232         245         163         4.3           192         C-14-1         BILLET         900         1100         ISO 9809         C-Mo         47         232         245         163         4.3           193         C-14-3         BILLET         900         1100         ISO 9809         C-Mo         47         232         245         163         4.3           193         C-14-	187	*	BILLET	1068	1206	EXPT.	•	45	238	466	311	6.6
189         1.00         1206         EUT.         1.00         1.00         EUT.         1.00         1.00         1.00         EUT.         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00	188	*	BILLET	1068	1206	EXPT.	•	45	238	466	311	6.6
MATERIAL GROUP C-12 190         TUBE         950         1100         150 9809         Cr-Mo         14         191         476         317         6.6           MATERIAL GROUP C-13 192         C-13-1         BILLET         1000         1150         ISO 9809         Cr-Mo         14         191         476         317         6.6           MATERIAL GROUP C-13 192         BILLET         DILLET         1000         1150         ISO 9809         Cr-Mo         47         232         225         190         4.6           MATERIAL GROUP C-14 193         BILLET         DOD         1150         ISO 9809         Cr-Mo         47         232         245         163         4.3           MATERIAL GROUP C-14 193         BILLET         DOD         1100         ISO 9809         Cr-Mo         47         232         245         163         4.3           MATERIAL GROUP C-15         DILLET         DOD         1100         ISO 9809         Cr-Mo         47         232         245         163         4.3           196         C-14-3         DILLET         DOD         1100         ISO 9809         Cr-Mo         10         191         420         280         5.8           196	189		BILLET	1068	1206	EXPT.		45	238	466	311	b.b
190         C-12-1         TUBE         950         1100         ISO 9809         Cr-Mo         14         191         476         317         6.6           MATERIAL         CROUP C-13         BILLET         1000         1150         ISO 9809         Cr-Mo         47         232         225         190         4.6           MATERIAL         CROUP C-13         BILLET         500         1100         ISO 9809         Cr-Mo         47         232         225         190         4.6           MATERIAL         CROUP C-14         BILLET         500         1100         ISO 9809         Cr-Mo         47         232         245         163         4.3           195         C-14-3         BILLET         500         1100         ISO 9809         Cr-Mo         47         232         245         163         4.3           195         C-14-3         BILLET         500         1100         ISO 9809         Cr-Mo         47         232         245         163         4.3           196         C-15-1         TUBE         950         1050         ISO 9809         Cr-Mo         10         191         420         280         5.8           199	MATERIAL	GROUP C-12										
191         C-12-2         TUBE         950         1100         ISO 9809         C-H6         14         191         490         317         6.6           MATERIAL         CRUP C-13         BILLET         1000         1150         ISO 9809         C-H6         47         232         285         190         4.6           MATERIAL         CRUP C-14         BILLET         900         1100         ISO 9809         C-H6         47         232         285         163         4.3           MATERIAL         CRUP C-14         BILLET         900         1100         ISO 9809         C-H6         47         232         245         163         4.3           MATERIAL         CRUP C-15         BILLET         900         1100         ISO 9809         C-H6         47         232         245         163         4.3           MATERIAL         CRUP C-15         BILLET         950         1050         ISO 9809         C-H6         47         232         245         163         4.3           199         C-15-1         TUBE         950         1050         ISO 9809         C-H60         10         191         420         280         5.8           199<	190	C-12-1	TUBE	950	1100	ISO 9809	Cr-Mo	14	191	476	317	6.6
MATERIAL GROUP C-13 192         BILLET         1000         1150         ISO 9809         Cr-Mo         47         232         285         190         4.6           MATERIAL GROUP C-14 193         C-14-1 C-14-2         BILLET         900         1100         ISO 9809         Cr-Mo         47         232         285         190         4.6           MATERIAL GROUP C-14 194         BILLET         900         1100         ISO 9809         Cr-Mo         47         232         245         163         4.3           MATERIAL GROUP C-15         BILLET         900         1100         ISO 9809         Cr-Mo         47         232         245         163         4.3           MATERIAL GROUP C-15         TUBE         950         1050         ISO 9809         Cr-Mo         10         191         420         280         5.8           198         C-15-3         TUBE         950         1000         ISO 9809         Cr-Mo         10         191         420         280         5.8           198         C-16-3         BILLET         950         1100         ISO 9809         Cr-Mo         50         232         330         220         5.5           200         C-16-3	191	C-12-2	TUBE	950	1100	ISO 9809	Cr-Mo	14	191	490	317	6.6
192         C-13-1         BILLET         1000         1150         ISO 9809         Cr-Mo         47         232         285         190         4.6           MATERIAL 193         C-14-1 C-14-2         BILLET         900         1100         ISO 9809         Cr-Mo         47         232         245         163         4.3           193         C-14-1 EILET         BILLET         900         1100         ISO 9809         Cr-Mo         47         232         245         163         4.3           MATERIAL 195         C-14-3         BILLET         900         1100         ISO 9809         Cr-Mo         47         232         245         163         4.3           MATERIAL 195         C-15-1 C-15-2         TUBE TUBE         950         1050         ISO 9809         Cr-Mo         10         191         420         280         5.8           196         C-15-1 TUBE         TUBE         950         1050         ISO 9809         Cr-Mo         10         191         420         280         5.8           197         C-15-2         TUBE         950         1100         ISO 9809         Cr-Mo         50         272         330         220         5.5	MATERIAL	SROUP C-13										
MATERIAL         GRUP C-14         BILLET         900         1100         150 9809         Cr-Mo         47         232         245         163         4.3           193         C-14-1         BILLET         900         1100         150 9809         Cr-Mo         47         232         245         163         4.3           195         C-14-3         BILLET         900         1100         150 9809         Cr-Mo         47         232         245         163         4.3           MATERIAL         GROUP C-15         BILLET         950         1050         150 9809         Cr-Mo         10         191         420         280         5.8           196         C-15-1         TUBE         950         1050         150 9809         Cr-Mo         10         191         420         280         5.8           197         C-15-3         TUBE         950         1050         150 9809         Cr-Mo         10         191         420         280         5.8           198         C-16-1         BILLET         950         1100         150 9809         Cr-Mo         50         232         330         220         5.5           200         C	192	C-13-1	BILLET	1000	1150	ISO 9809	Cr-Mo	47	232	285	190	4.6
193 194 194 C-14-2 BILLET       C-14-1 BILLET       BILLET BILLET       900 900       1100 1100       1SO 9809 ISO 9809       Cr-Mo Cr-Mo       47       232 232       245       163 163       4.3 4.3         MATERIAL 195       C-14-1 C-15-2       TUBE TUBE       950 950       1050 1050       1050 1050       ISO 9809 ISO 9809       Cr-Mo Cr-Mo       10       191 10       420 180       280 280       5.8 5.8         MATERIAL 198       C-15-2 C-15-3       TUBE TUBE       950 950       1050 1050       ISO 9809 1050       Cr-Mo ISO 9809       Cr-Mo Cr-Mo       10       191 191       420 420       280 280       5.8 5.8         MATERIAL 199       C-16-1 C-16-2       BILLET       950 950       1100 100       ISO 9809 ISO 9809       Cr-Mo Cr-Mo       50 50       232 230       230 220       25.5         MATERIAL 200       C-16-2 BILLET       BILLET       950 950       1100 100       ISO 9809 ISO 9809       Cr-Mo Cr-Mo       50 50       232 230       230 220       25.5         MATERIAL 201       C-17-1 C-16-3       TUBE       950       1050 1050       ISO 9809 ISO 9809       C-Mn       47       232 230       234       216 5.4       54 5.4         202       C-17-1 TUBE       TUBE       950 950       1050 1050 <th< td=""><td>MATERIAL</td><td>SROUP C-14</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	MATERIAL	SROUP C-14										
194 195         C-14-2 C-14-3         BILLET         900         1100         ISO 9809 ISO 9809         Cr-Mo         47         232         245         163         4.3           MATERIAL 195         C-14-3         BILLET         900         1100         ISO 9809         Cr-Mo         47         232         245         163         4.3           MATERIAL 195         C-15-1         TUBE         950         1050         ISO 9809         Cr-Mo         10         191         420         280         5.8           196         C-15-3         TUBE         950         1050         ISO 9809         Cr-Mo         10         191         420         280         5.8           MATERIAL 198         C-16-3         BILLET         950         1100         ISO 9809         Cr-Mo         50         232         330         220         5.5           201         C-16-3         BILLET         950         1100         ISO 9809         Cr-Mo         50         232         330         220         5.5           201         C-16-3         BILLET         950         1100         ISO 9809         Cr-Mo         50         232         330         220         5.5         5.5	193	C-14-1	BILLET	900	1100	ISO 9809	Cr-Mo	47	232	245	163	4.3
195         C-14-3         BILLET         900         1100         ISO 9809         Cr-Mo         47         232         245         163         4.3           MATERIAL 196         C-15-1         TUBE         950         1050         ISO 9809         Cr-Mo         10         191         420         280         5.8           197         C-15-3         TUBE         950         1050         ISO 9809         Cr-Mo         10         191         420         280         5.8           198         C-15-3         TUBE         950         1050         ISO 9809         Cr-Mo         10         191         420         280         5.8           MATERIAL GROUP C-16         BILLET         950         1100         ISO 9809         Cr-Mo         50         232         330         220         5.5           200         C-16-3         BILLET         950         1100         ISO 9809         Cr-Mo         50         232         330         220         5.5           201         C-16-3         BILLET         950         1100         ISO 9809         Cr-Mo         50         232         330         220         5.5           202         C-17-4	194	C-14-2	BILLET	900	1100	ISO 9809	Cr-Mo	47	232	245	163	4.3
MATERIAL GROUP C-15         TUBE         950         1050         ISO 9809         Cr-Mo         10         191         420         280         5.8           197         C-15-2         TUBE         950         1050         ISO 9809         Cr-Mo         10         191         420         280         5.8           198         C-15-3         TUBE         950         1050         ISO 9809         Cr-Mo         10         191         420         280         5.8           MATERIAL GROUP C-16         ISO 9809         Cr-Mo         50         232         330         220         5.5           201         C-16-1         BILLET         950         1100         ISO 9809         Cr-Mo         50         232         330         220         5.5           201         C-16-3         BILLET         950         1100         ISO 9809         Cr-Mo         50         232         330         220         5.5           202         C-17-1         BILLET         950         1050         ISO 9809         C-Mn         47         232         324         216         5.4           203         C-17-1         TUBE         950         1050         ISO 9809	195	C-14-3	BILLET	900	1100	ISO 9809	Cr-Mo	47	232	245	163	4.3
196       C-15-1       TUBE       950       1050       1SO 9809       Cr-Mo       10       191       420       280       5.8         197       C-15-2       TUBE       950       1050       150 9809       Cr-Mo       10       191       420       280       5.8         198       C-15-3       TUBE       950       1050       150 9809       Cr-Mo       10       191       420       280       5.8         199       C-16-1       BILLET       950       1100       150 9809       Cr-Mo       50       232       330       220       5.5         200       C-16-3       BILLET       950       1100       150 9809       Cr-Mo       50       232       330       220       5.5         201       C-16-3       BILLET       950       1100       150 9809       Cr-Mo       50       232       330       220       5.5         202       C-17-1       TUBE       950       1050       150 9809       C-Mn       47       232       324       216       5.4         203       C-17-2       TUBE       950       1050       150 9809       C-Mn       47       232       324       216<	MATERIAL	SROUP C-15										
197       C-15-2       TUBE       950       1050       ISO 9809       Cr-Mo       10       191       420       280       5.8         MATERIAL GROUP C-16	196	C-15-1	TUBE	950	1050	ISO 9809	Cr-Mo	10	191	420	280	5.8
198       C-15-3       TUBE       950       1050       ISO 9809       Cr-Mo       10       191       420       280       5.8         MATERIAL GROUP C-16       Image: Second Colspan="4">Image: Second Colspan= Tolspan="5" Second Cols	197	C-15-2	TUBE	950	1050	ISO 9809	Cr-Mo	10	191	420	280	5.8
MATERIAL GROUP C-16         BILLET         950         1100         ISO 9809         Cr-Mo         50         232         330         220         5.5           200         C-16-2         BILLET         950         1100         ISO 9809         Cr-Mo         50         232         330         220         5.5           201         C-16-3         BILLET         950         1100         ISO 9809         Cr-Mo         50         232         330         220         5.5           MATERIAL GROUP C-17         BILLET         950         1050         ISO 9809         C-Mn         47         232         324         216         5.4           202         C-17-1         TUBE         950         1050         ISO 9809         C-Mn         47         232         324         216         5.4           203         C-17-3         TUBE         950         1050         ISO 9809         C-Mn         47         232         324         216         5.4           204         C-17-3         TUBE         950         1050         ISO 9809         C-Mn         47         232         324         216         5.4           205         C-18-1         TUBE	198	C-15-3	TUBE	950	1050	ISO 9809	Cr-Mo	10	191	420	280	5.8
199       C-16-1       BILLET       950       1100       ISO 9809       Cr-Mo       50       232       330       220       55         201       C-16-3       BILLET       950       1100       1100       ISO 9809       Cr-Mo       50       232       330       220       55         MATERIAL CROUP C-17       BILLET       950       1050       ISO 9809       C-Mn       47       232       330       220       55         202       C-17-1       TUBE       950       1050       ISO 9809       C-Mn       47       232       324       216       54         203       C-17-2       TUBE       950       1050       ISO 9809       C-Mn       47       232       324       216       54         204       C-17-3       TUBE       950       1050       ISO 9809       C-Mn       47       232       324       216       54         204       C-17-3       TUBE       950       1050       ISO 9809       C-Mn       47       232       324       216       54         205       C-18-1       TUBE       950       1050       ISO 9809       Cr-Mo       49       232       309	MATERIAL	SROUP C-16										
CC       C - 16 - 2       BILLET       950       1100       ISO 9809       Cr-Mo       50       232       330       220       5.5         201       C - 16 - 3       BILLET       950       1100       ISO 9809       Cr-Mo       50       232       330       220       5.5         MATERIAL GROUP C - 17       TUBE       950       1050       ISO 9809       C - Mn       47       232       324       216       5.4         203       C - 17 - 2       TUBE       950       1050       ISO 9809       C - Mn       47       232       324       216       5.4         203       C - 17 - 2       TUBE       950       1050       ISO 9809       C - Mn       47       232       324       216       5.4         204       C - 17 - 3       TUBE       950       1050       ISO 9809       C - Mn       47       232       324       216       5.4         204       C - 17 - 3       TUBE       950       1050       ISO 9809       C - Mn       47       232       324       216       5.4         205       C - 18 - 3       TUBE       950       1050       ISO 9809       C - Mn       49       232	199	C-16-1	BILLET	950	1100	150 9809	Cr-Mo	50	232	320	220	55
201       C-16-3       BILLET       950       1100       ISO 9809       Cr-Mo       50       232       330       220       5.5         MATERIAL GROUP C-17       TUBE       950       1050       ISO 9809       C-Mn       47       232       324       216       5.4         203       C-17-2       TUBE       950       1050       ISO 9809       C-Mn       47       232       324       216       5.4         203       C-17-3       TUBE       950       1050       ISO 9809       C-Mn       47       232       324       216       5.4         204       C-17-3       TUBE       950       1050       ISO 9809       C-Mn       47       232       324       216       5.4         205       C-17-3       TUBE       950       1050       ISO 9809       Cr-Mo       47       232       309       206       5.2         205       C-18-1       TUBE       950       1050       ISO 9809       Cr-Mo       49       232       309       206       5.2         206       C-18-2       TUBE       950       1050       ISO 9809       Cr-Mo       49       232       309       206       <	200	C-16-2	BILLET	950	1100	ISO 9809	Cr-Mo	50	232	330	220	5.5
MATERIAL GROUP C-17         TUBE         950         1050         ISO 9809         C-Mn         47         232         324         216         5.4           203         C-17-2         TUBE         950         1050         ISO 9809         C-Mn         47         232         324         216         5.4           203         C-17-2         TUBE         950         1050         ISO 9809         C-Mn         47         232         324         216         5.4           204         C-17-3         TUBE         950         1050         ISO 9809         C-Mn         47         232         324         216         5.4           204         C-17-3         TUBE         950         1050         ISO 9809         C-Mn         47         232         324         216         5.4           204         C-17-3         TUBE         950         1050         ISO 9809         C-Mn         47         232         324         216         5.4           205         C-18-1         TUBE         950         1050         ISO 9809         Cr-Mo         49         232         309         206         5.2           206         C-18-2         TUBE	201	C-16-3	BILLET	950	1100	ISO 9809	Cr-Mo	50	232	330	220	5.5
202       C-17-1       TUBE       950       1050       ISO 9809       C-Mn       47       232       324       216       5.4         203       C-17-2       TUBE       950       1050       ISO 9809       C-Mn       47       232       324       216       5.4         204       C-17-3       TUBE       950       1050       ISO 9809       C-Mn       47       232       324       216       5.4         MATERIAL GROUP C-18       TUBE       950       1050       ISO 9809       Cr-Mn       47       232       309       206       5.2         205       C-18-1       TUBE       950       1050       ISO 9809       Cr-Mo       49       232       309       206       5.2         206       C-18-2       TUBE       950       1050       ISO 9809       Cr-Mo       49       232       309       206       5.2         207       C-18-3       TUBE       950       1050       ISO 9809       Cr-Mo       49       232       309       206       5.2         207       C-18-3       TUBE       950       1050       ISO 9809       Cr-Mo       49       232       309       206 <t< td=""><td>MATERIAL</td><td>GROUP C-17</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	MATERIAL	GROUP C-17										
CL       CL       CL       SO       LOS       LOS 5005       CHIII       47       232       324       216       5.4         203       C-17-2       TUBE       950       1050       ISO 9809       C-Mn       47       232       324       216       5.4         204       C-17-3       TUBE       950       1050       ISO 9809       C-Mn       47       232       324       216       5.4         MATERIAL GROUP C-18       C-18-1       TUBE       950       1050       ISO 9809       Cr-Mo       49       232       309       206       5.2         205       C-18-1       TUBE       950       1050       ISO 9809       Cr-Mo       49       232       309       206       5.2         206       C-18-2       TUBE       950       1050       ISO 9809       Cr-Mo       49       232       309       206       5.2         207       C-18-3       TUBE       950       1050       ISO 9809       Cr-Mo       49       232       309       206       5.2         207       C-18-3       TUBE       950       1050       ISO 9809       Cr-Mo       49       232       309       206	202	C-17-1	TURE	950	1050	150 0800	C-Mn	47	222	324	216	54
204         C-17-3         TUBE         950         1050         ISO 9809         C-Mn         47         232         324         216         5.4           MATERIAL GROUP C-18         C-18-1         TUBE         950         1050         ISO 9809         Cr-Mo         49         232         309         206         5.2           205         C-18-2         TUBE         950         1050         ISO 9809         Cr-Mo         49         232         309         206         5.2           206         C-18-2         TUBE         950         1050         ISO 9809         Cr-Mo         49         232         309         206         5.2           207         C-18-3         TUBE         950         1050         ISO 9809         Cr-Mo         49         232         309         206         5.2	202	C-17-2	TUBE	950	1050	ISO 9809	C-Mn	47	232	324	216	5.4
MATERIAL GROUP C-18         TUBE         950         1050         ISO 9809         Cr-Mo         49         232         309         206         5.2           206         C-18-2         TUBE         950         1050         ISO 9809         Cr-Mo         49         232         309         206         5.2           206         C-18-2         TUBE         950         1050         ISO 9809         Cr-Mo         49         232         309         206         5.2           207         C-18-3         TUBE         950         1050         ISO 9809         Cr-Mo         49         232         309         206         5.2	204	C-17-3	TUBE	950	1050	ISO 9809	C-Mn	47	232	324	216	5.4
205         C-18-1         TUBE         950         1050         ISO 9809         Cr-Mo         49         232         309         206         5.2           206         C-18-2         TUBE         950         1050         ISO 9809         Cr-Mo         49         232         309         206         5.2           207         C-18-3         TUBE         950         1050         ISO 9809         Cr-Mo         49         232         309         206         5.2           207         C-18-3         TUBE         950         1050         ISO 9809         Cr-Mo         49         232         309         206         5.2	MATERIAL C	GROUP C-18										
206         C-18-2         TUBE         950         1050         ISO 9809         Cr-Mo         49         232         309         206         5.2           207         C-18-3         TUBE         950         1050         ISO 9809         Cr-Mo         49         232         309         206         5.2	205	C-18-1	TURE	950	1050	ISO 9809	Cr-Mo	49	232	309	206	52
207 C-18-3 TUBE 950 1050 ISO 9809 Cr-Mo 49 232 309 206 5.2	206	C-18-2	TUBE	950	1050	ISO 9809	Cr-Mo	49	232	309	206	5.2
	207	C-18-3	TUBE	950	1050	ISO 9809	Cr-Mo	49	232	309	206	5.2

TABLE 3 (CON'T). CYLINDER DESCRIPTION FOR GROUP C MATERIALS

			CYLINDER DESCRIPTION										
BURST TEST NO.	CYLINDER NO.	TYPE OF CYLINDER MFG.	SPEC TENSILE STRE Rg min.	IFIED NGTH RANGE Rg max.	CYLINDER	MATERIAL (STEEL ALLOY & SPECIAL NOTES)	VOL	DIA. D	DESIGN TEST PRESSURE Ph	DESIGN SERVICE PRESSURE Pa	DESIGN THICK. [td]		
							lineal		[Dui]	[bui]	Lund		
MATERIAL	GROUP C-19												
208	C-19-1	TUBE	950	1050	ISO 9809	C-Mn	10	140	343	163	3.1		
209	C-19-2	TUBE	950	1050	ISO 9809	C-Mn	10	140	343	163	3.1		
210	C-19-3	TUBE	950	1050	ISO 9809	C-Mn	10	140	343	163	3.1		
MATERIAL	GROUP C-20												
211	C-20-1	BILLET	900	1010	ISO 9809	C-Mn	47	230	316	210	5.5		
212	C-20-2	BILLET	900	1010	ISO 9809	C-Mn	47	230	316	210	5.5		
213	C-20-3	BILLET	900	1010	ISO 9809	C-Mn	47	230	316	210	5.5		
MATERIAL	GROUP C-21												
214	C-21-1	BILLET	930	1060	ISO 9809	Сг-Мо	50	232	363	242	6.2		
215	C-21-2	BILLET .	930	1060	ISO 9809	Cr-Mo	50	232	363	242	6.2		
216	C-21-3	BILLET	930	1060	ISO 9809	Cr-Mo	50	232	363	242	6.2		
MATERIAL	GROUP C-22												
219	C-22-1	BILLET	1000	1170	ISO 9809	Cr-Mo	50	232	390	260	6.2		
220	C-22-2	BILLET	1000	1170	ISO 9809	Cr-Mo	50	232	390	260	6.2		
221	C-22-3	BILLET	1000	1170	ISO 9809	Cr-Mo	50	232	390	260	6.2		
MATERIAL	GROUP C-23												
222	C-23-1	TUBE	830	1000	ISO 9809	C-Mn	47	232	288	192	5.5		
223	C-23-2	TUBE	900	1100	ISO 9809	C-Mn	47	232	288	192	5.5		
224	C-23-3	TUBE	900	1100	ISO 9809	C-Mn	47	232	288	192	5.5		

# TABLE 3 (CON'T). CYLINDER DESCRIPTION FOR GROUP C MATERIALS

			CYLINDER DESCRIPTION								
BURST TEST NO.	CYLINDER NO.	TYPE OF CYLINDER	SPEC TENSILE STRE Rg min.	HED NGTH RANGE Rg max.	CYLINDER SPECIFICTION	MATERIAL (STEEL ALLOY & SPECIAL NOTES)	VOL	DIA.	DESIGN TEST PRESSURE	DESIGN SERVICE PRESSURE	DESIGN THICK.
		MFG.	[MPa]	[MPa]			[liter]	D [mm]	Ph [bar]	Pa [bar]	[td] [mm]
MATERIAL	GROUP D-2	-			· · · · · ·						
225 225	D-2-1 D-2-2	BILLET BILLET	1100 1100	1160 1160	ISO 9809-2 ISO 9809-2	Cr-Mo Cr-Mo	50 50	230 230	300 300	200 200	4.5 4.5
226	D-2-3	BILLET	1100	1160	ISO 9809-2	Cr-Mo	50	230	300	200	4.5
227	D-2-4	BILLET	1100	1160	ISO 9809-2	Cr-Mo	50	230	300	200	4.5
228	D-2-5	BILLET	1100	1160	ISO 9809-2	Cr-Mo	50 50	230	300	200	4.5
230	D-2-7	BILLET	1100	1160	ISO 9809-2	Cr-Mo	50	230	300	200	4.5
231	D-2-8	BILLET	1100	1160	ISO 9809-2	Cr-Mo	50	230	300	200	4.5
232	D-2-9	BILLET	1100	1160	ISO 9809-2	Cr-Mo	50	230	300	200	4.5
233	D-2-10	BILLET	1100	1160	ISO 9809-2	Cr-Mo	50	230	300	200	4.5
234	D-2-11	BILLET	1100	1160	ISO 9809-2	Cr-Mo	50	230	300	200	4.5
235	D-2-12 D-2-13	BILLET	1100	1160	ISO 9809-2	Cr-Mo	50 50	230	300	200	4.5
237	D-2-14	BILLET	1100	1160	ISO 9809-2	Cr-Mo	50	230	300	200	4.5
238	D-2-15	BILLET	1100	1160	ISO 9809-2	Cr-Mo	50	230	300	200	4.5
MATERIAL	GROUP_D-3										
239	D-3-1	BILLET	934	-	EXPT.	Cr-Mo	50	230	300	200	5.2
240	D-3-2	BILLET	934	-	EXPT.	Cr-Mo	50	230	300	200	5.2
241	D-3-3	BILLET	934	-	EXPT.	Cr-Mo	50	230	300	200	5.2
242	0-3-4	BILLET	934	_	EXPI.	Cr-Mo	50	230	300	200	5.2 5.2
244	D-3-6	BILLET	934	_	EXPT.	Cr-Mo	50	230	300	200	5.2
245	D-3-7	BILLET	934	-	EXPT.	Cr-Mo	50	230	300	200	5.2
MATERIAL	GROUP D-4										
246			4000	4007				-	405	210	
240	U-4-1 "	BILLET	1069	1207	EXPI. EXPT	SPECIAL ALLOY	45	236	465	310	0.0 6.6
248		BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6
249		BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6
250	-н	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6
251		BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6
MATERIAL	GROUP D-5										
252	D-5-1	BILLET	1069	1207	ISO 9809-2	SPECIAL ALLOY	50	237	465	310	6.6
253	D-5-2	BILLET	1069	1207	ISO 9809-2	SPECIAL ALLOY	50	237	465	310	6.6
254	D-5-3	BILLET	1069	1207	ISO 9809-2	SPECIAL ALLOY	50	237	465	310	6.6
255	D-5-4	BILLET	1069	1207	ISO 9809-2	SPECIAL ALLOY	50	237	465	310	6.6
256	D-5-5	BILLET	1069	1207	ISO 9809-2	SPECIAL ALLOY	50	237	465	310	6.6
257	D-5-6	BILLET	1069	1207	ISO 9809-2	SPECIAL ALLOY	50 50	237	465	310	6.6
259	D-5-8	BILLET	1069	1207	ISO 9809-2	SPECIAL ALLOY	50 50	237	465	310	0.0 66
260	D-5-9	BILLET	1069	1207	ISO 9809-2	PNEUMATIC TEST	50	237	465	310	6.6
261	D-5-10	BILLET	1069	1207	ISO 9809-2	PNEUMATIC TEST	50	237	465	310	6.6
262	D-5-11	BILLET	1069	1207	ISO 9809-2	SPECIAL ALLOY	50	237	465	310	6.6
263	D-5-12	BILLET	1069	1207	ISO 9809-2	SPECIAL ALLOY	50	237	465	310	6.6
264	D-5-13	BILLET	1069	1207	ISO 9809-2	SPECIAL ALLOY	50	237	465	310	6.6
265	D-5-14	BILLET	1069	1207	ISO 9809-2	SPECIAL ALLOY	50 50	237	465	310	6.6
200	<b>D-2-1</b> 3	DILLEI	1009	1207	100 9009-2	SPECIAL ALLOY	50	231	400	310	0.0

TABLE 4. CYLINDER DESCRIPTION FOR GROUP D MATERIALS

					CYLINDER	R DESCRIPT	<u>ON</u>				
BURST TEST NO.	CYLINDER NO.	TYPE OF CYLINDER MFG.	SPEC TENSILE STRE Rg min.	IFIED INGTH RANGE Rg max.	CYLINDER SPECIFICTION	MATERIAL (STEEL ALLOY & SPECIAL NOTES)	VOL	DIA. D	DESIGN TEST PRESSURE Ph	DESIGN SERVICE PRESSURE Ps	DESIGN THICK. [td]
			[MPa]	[MPa]			[liter]	[mm]	[bar]	[bar]	[mm]
MATERIAL	GROUP D-6										
267	D-6-1	BILLET	1069	1207 1207	ISO 9809-2	Cr-Mo	50 50	236	465	310 310	6.6 6.6
269	D-6-3	BILLET	1069	1207	ISO 9809-2	Cr-Mo	50	236	465	310	6.6
270	D-6-4	BILLET	1069	1207	ISO 9809-2	Cr-Mo	50	236	465	310	6.6
271	D-6-5	BILLET	1069	1207	ISO 9809-2	Cr-Mo	50	236	465	310	6.6
272	D-6-8	BILLET	1069	1207	ISO 9809-2	Cr-Mo	50	236	465	310	6.6
MATERIAL	GROUP D-9										
273	D-9-1	BILLET	930	1068	ISO 9809-2	Cr-Mo	50	235	345	230	5.6
274	D-9-2	BILLET	930	1068	ISO 9809-2	Cr-Mo	50	235	345	230	5.6
275	D-9-3	BILLET	930	1068	ISO 9809-2	Cr-Mo	50	235	345	230	5.6
276	D-9-4	BILLET	930	1068	ISO 9809-2	Cr-Mo	50	235	345	230	5.6
MATERIAL	GROUP D-10										
277	D-10-1	BILLET	1068	1206	EXPT.	Cr-Mo	45	236	465	310	6.6
278	D-10-2	BILLET	1068	1206	EXPT.	Cr-Mo	45	236	465	310	6.6
279	D-10-3	BILLET	1068	1206	EXPT.	Cr-Mo	45	236	465	310	6.6
280	D-10-4	BILLET	1068	1206	EXPT.	Cr-Mo	45	236	465	310	6.6
281	0-10-5	BILLET	1068	1206	EXPT.	Cr-Mo	45	236	465	310	6.6
283	D-10-7	BILLET	1068	1206	EXPT.	Cr-Mo	45	236	465	310	6.6
284	D-10-8	BILLET	1068	1206	EXPT.	Cr-Mo	45	236	465	310	6.6
285	D-10-9	BILLET	1068	1206	EXPT.	Cr-Mo	45	236	465	310	6.6
286	D-10-10	BILLET	1068	1206	EXPT.	Cr-Mo	45	236	465	310	6.6
MATERIAL	GROUP D-11										
287	D-11-1	BILLET	1069	1207	EXPT.	Cr-Mo	50	230	450	300	6.4
288	D-11-2	BILLET	. 1069	1207	EXPT.	Cr-Mo	50	230	450	300	6.4
289	D-11-3	BILLET	1069	1207	EXPT.	Cr-Mo	50	230	450	300	6.4
290	D-11-4	BILLET	1069	1207	EXPT.	Cr-Mo	50	230	450	300	6.4
291	D-11-5	BILLET	1069	1207	EXPT.	Cr-Mo	50	230	450	300	6.4
292	D-11-6	BILLET	1069	1207	EXPT.	Cr-Mo	50	230	450	300	6.4
293	D-11-/	BILLET	1069	1207	EXPT.	Cr-Mo	50	230	450	300	6.4
294	D-11-8	BILLET	1069	1207	EXPT.	Cr.Mo	50	230	450	300	6.4
296	D-11-10	BILLET	1069	1207	EXPT	Cr-Mo	50	230	450	300	6.4
297	D-11-11	BILLET	1069	1207	EXPT.	Cr-Mo	50	230	450	300	6.4
298	D-11-12	BILLET	1069	1207	EXPT.	Cr-Mo	50	230	450	300	6.4
299	D-11-13	BILLET	1069	1207	EXPT.	Cr-Mo	50	230	450	300	6.4
300	D-11-14	BILLET	1069	1207	EXPT.	Cr-Mo	50	230	450	300	6.4
301	D-11-15	BILLET	1069	1207	EXPT.	Cr-Mo	50	230	450	300	6.4
302 303	D-11-16 D-11-17	BILLET	1069	1207 1207	EXPT. EXPT.	Cr-Mo Cr-Mo	50 50	230 230	450 450	300 300	6.4 6.4
MATERIAL	GROUP D-13										
304	D-13-1	BILLET	1050	1200	1509809	SPECIAL ALLOY	47	232	300	200	4.6
	L	1				L			1		

٦

Т

TABLE 4 (CON'T). CYLINDER DESCRIPTION FOR GROUP D MATERIALS

			CYLINDER DESCRIPTION									
BURST TEST NO.	CYLINDER NO.	TYPE OF CYLINDER	SPEC TENSILE STRE Rg min.	IFIED INGTH RANGE Rg max.	CYLINDER SPECIFICTION	MATERIAL (STEEL ALLOY & SPECIAL NOTES)	VOL	dia.	DESIGN TEST PRESSURE	DESIGN SERVICE PRESSURE	DESIGN THICK.	
		MFG.	[MPa]	[MPa]			[liter]	D [mm]	Ph [bar]	Ps [bar]	[td] [mm]	
MATERIAL	GROUP D-14											
305	D-14-1	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
306	D-14-2	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
307	D-14-3	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
308	D-14-4	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	. 310	6.6	
309	D-14-5	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
310	D-14-6	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
311	D-14-7	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
312	D-14-8	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
313	D-14-9	BILLES	1069	1207	EXPT.	SPECIAL ALLOY	30	229	465	310	5.0	
314	D-14-10	BILLET	1069	1207	EXPL.	SPECIAL ALLOY	30	229	465	310	5.0	
315	D-14-11	BILLET	1069	1207	EXPL.	SPECIAL ALLOY	30	229	465	310	5.0	
310	D-14-12	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	30	229	465	310	5.0	
317	D-14-13	DILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	0.0	
310	D-14-14	BILLET	1069	1207	EXPL.	SPECIAL ALLOY	45	230	400	310	0.0	
319	D-14-15	BILLET	1069	1207	EXPL.	SPECIAL ALLOY	45	230	400	310	0.0	
320	D-14-10	BILLES	1069	1207	EXPL.	SPECIAL ALLOY	40	200	465	310	6.6	
322	D-14-19	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	230	400	310	6.6	
323	D-14-19	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	5.6	
324	D-14-70	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	400	310	6.6	
325	D-14-21	BILLET	1069	1207	EXPT	SPECIAL ALLOY	45	236	465	310	6.6	
326	D-14-22	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	66	
327	D-14-23	BILLET	1069	1207	EXPT	SPECIAL ALLOY	45	236	465	310	66	
328	D-14-24	BILLET	1069	1207	EXPT	SPECIAL ALLOY	45	236	465	310	6.6	
329	D-14-25	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
330	D-14-26	BILLET	1069	1207	EXPT	SPECIAL ALLOY	45	236	465	310	66	
331	D-14-27	BILLET	1069	1207	EXPT	SPECIAL ALLOY	45	236	465	310	6.6	
332	D-14-28	BILLET	1069	1207	EXPT	SPECIAL ALLOY	45	236	465	310	6.6	
333	D-14-29	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
334	D-14-30	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
335	D-14-31	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
336	D-14-32	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
337	D-14-33	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
338	D-14-34	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
339	D-14-35	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
340	D-14-36	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
341	D-14-37	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
342	D-14-38	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
343	D-14-39	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
344	D-14-40	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
345	D-14-41	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
346	D-14-42	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
347	D-14-43	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
348	D-14-44	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
349	D-14-45	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
350	D-14-46	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
351	D-14-47	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
352	D-14-48	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	
353	D-14-49	BILLET	1069	1207	EXPT.	SPECIAL ALLOY	45	236	465	310	6.6	

TABLE 4 (CON'T). CYLINDER DESCRIPTION FOR GROUP D MATERIALS

			CYLINDER DESCRIPTION											
BURST TEST NO.	CYLINDER NO.	TYPE OF CYLINDER MFG.	SPEC TENSILE STRE Rg min. [MPa]	IFIED ENGTH RANGE Rg max. [MPa]	Cylinder Specifiction	MATERIAL (STEEL ALLOY & SPECIAL NOTES)	VOL.	DIA. D	DESIGN TEST PRESSURE Ph [bar]	DESKGN SERVICE PRESSURE Ps [bar]	DESIGN THICK. [td] fmm]			
MATERIAL	GROUP D-15													
354 355 356	D-15-1 D-15-2 D-15-2	TUBE TUBE TUBE	1050 1050 1050	1150 1150 1150	ISO 9809 ISO 9809 ISO 9809	Ст-Мо Ст-Мо Ст-Мо	10 10 10	191 191 191	426 426 426	284 284 284	5.3 5.3 5.3			
MATERIAL	GROUP D-16													
357 358 359	D-16-1 D-16-2 D-16-2	BILLET BILLET BILLET	1000 1000 1000	1 150 1 150 1 150	ISO 9809 ISO 9809 ISO 9809	Cr-Mo Cr-Mo Cr-Mo	50 50 50	232 232 232	347 347 347	231 231 231	5.5 5.5 5.5			
MATERIAL	SROUP D-17													
360	D-17-1	TUBE	1050	1150	ISO 9809	Cr-Mo	10	232	338	225	5.1			
361 362	D-17-2 D-17-2	TUBE TUBE	1050 1050	1150 1150	ISO 9809 ISO 9809	Ст-Мо Ст-Мо	10 10	232 232	338 338	225 225	5.1 5.1			
MATERIAL	GROUP D-18													
363	D-18-1	TUBE	1150	1250	ISO 9809	Cr-Mo	49	232	375	250	5.2			
364	D-18-2	TUBE	1150	1250	ISO 9809	Cr-Mo	49	232	375	250	5.2			
365	D-18-2	TUBE	1150	1250	ISO 9809	Cr-Mo	49	232	375	250	5.2			
MATERIAL	SROUP D-19													
366	D-19-1	BILLET	1100	1270	ISO 9809	Cr-Mo	50	232	420	280	6.2			
367	D-19-2	BILLET	1100	1270	ISO 9809	Cr-Mo	50	232	420	280	6.2			
368	D-19-2	BILLET	1100	1270	ISO 9809	Cr-Mo	50	232	420	280	6.2			

# TABLE 4 (CON'T). CYLINDER DESCRIPTION FOR GROUP D MATERIALS

			CYLINDER DESCRIPTION											
BURST Test NO.	CYLINDER NO.	TYPE OF CYLINDER MFG.	SPEC TENSILE STRE Rg min.	IFIED INGTH RANGE Rg max.	CYLINDER SPECIFICTION	MATERIAL (STEEL ALLOY & SPECIAL NOTES)	VOL.	DIA. D	DESIGN TEST PRESSURE Ph	DESIGN SERVICE PRESSURE P8 [bar]	DESIGN THICK. [td]			
MATERIAL	GROUP_E-1						(Ref)	1						
369 370 371 372 373 374 375 376 377	E-1-1 E-1-2 E-1-3 E-1-4 E-1-5 E-1-5 E-1-6 E-1-7 E-1-8 E-1-9	BILLET BILLET BILLET BILLET BILLET BILLET BILLET BILLET			EXPT. EXPT. EXPT. EXPT. EXPT. EXPT. EXPT. EXPT.	Cr-Mo-V Cr-Mo-V Cr-Mo-V Cr-Mo-V Cr-Mo-V Cr-Mo-V Cr-Mo-V Cr-Mo-V Cr-Mo-V	50 50 50 50 50 50 50 50 50	236 236 236 236 236 236 236 236 236 236	345 345 345 345 345 345 345 345 345 345	230 230 230 230 230 230 230 230 230 230	5.56 5.56 5.56 5.56 5.56 5.56 5.56 5.56			
MATERIAL	GROUP E-2													
378 379 380 381 382 383	E-2-1 E-2-2 E-2-3 E-2-4 E-2-5 E-2-6	BILLET BILLET BILLET BILLET BILLET BILLET			EXPT. EXPT. EXPT. EXPT. EXPT.	Cr-Mo-V Cr-Mo-V Cr-Mo-V Cr-Mo-V Cr-Mo-V Cr-Mo-V	45 45 45 45 45 45	238 238 238 238 238 238 238	466 466 466 466 466 466	311 311 311 311 311 311 311	6.60 6.60 6.60 6.60 6.60 6.60			

TABLE 5. CYLINDER DESCRIPTION FOR GROUP E MATERIALS

			ME	CHANICAL	PROPE	RTIES T	EST RE	SULTS		
		TEN	SILE TEST RES	ULTS		CHAR	PY- V- NOTO	H TEST RI	ESULTS	
BURST	CYLINDER	YIELD	TENSILE	ELONGATION						
TEST	NO.	STRENGTH	STRENGTH		TRANSV	ERSE ORIE	NTATION	LONGITU	JDINAL ORIE	
NO.		Rea	Rm		SIZE	at 20 C	at -50 C	SIZE	at 20 C	at -50 C
		MPa	MPa	[%]	[mm]	[J/cm 2]	[J/cm 2]	[mm]	[J/cm2]	[J/cm 2]
MATERIAL	GROUP A-1									
1	A-1-1	513	748	28.0	10 X 5	18.6	3.4	10 X 4	34.5	3.4
2		513	748	28.0	10 X 5	18.6	3.4	10 X 4	34.5	3.4
3	"	513	748	28.0	10 X 5	18.6	3.4	10 X 4	34.5	3.4
4	80	513	748	28.0	10 X 5	18.6	3.4	10 X 4	34.5	3.4
5	A-1-2	496	648	26.5	10 X 5	32.0	5.0	10 X 4	63.0	15.0
6	•	496	648	26.5	10 X 5	32.0	5.0	10 X 4	63.0	15.0
7	н	496	648	26.5	10 X 5	32.0	5.0	10 X 4	63.0	15.0
8		496	648	26.5	10 X 5	32.0	5.0	10 X 4	63.0	15.0
9	**	496	648	26.5	10 X 5	320	5.0	10 X 4	63.0	15.0
10	A-1-3	497	731	27.0	10 X 5	20.0	11.0	10 X 4	45.0	9.0
11		497	731	27.0	10 X 5	20.0	11.0	10 X 4	45.0	9.0
12	A-1-4	535	790	23.0	10 X 5	17.0	6.0	10 X 4	39.0	12.0
13		535	790	23.0	10 X 5	17.0	6.0	10 X 4	39.0	12.0
14		535	790	23.0	10 X 5	17.0	6.0	10 X 4	39.0	12.0
			_							
15	A-1-5	481	678	23.3	10 X 5	24.0	2.8	10 X 4	28.0	10.0
16		481	6/8	23.3	10 X 5	24.0	2.8	10 X 4	28.0	10.0
		401	678	23.3	10 X 5	24.0	2.8	10 X 4	28.0	10.0
MATERIAL	GROUP A-2									
18	A-2-1	413	641	35.0	10 X 5	23.0	5.6	10 X 5	41.8	5.7
19		413	641	35.0	10 X 5	23.0	5.6	10 X 5	41.8	5.7
20	A-2-2	-	-	-	-	_	-		_	-
21	A-2-3	510	751	24.0	10 X 5	12.7	4.2	10 X 4	28.2	6.7
22		510	751	24.0	10 X 5	12.7	4.2	10 X 4	28.2	6.7
23	A-2-4	-	-	-	10 X 5	-	-		-	-
24	A-2-5	483	696	21.0	10 X 5	127	42	10 X 4	27 1	3.4
25		483	696	21.0	10 X 5	12.7	4.2	10 X 4	27.1	3.4
									_/	
26	A-2-6	_	_	_	_	_	_	_		_
27		_		-	_	_	-	_		_

TABLE 6. MECHANICAL PROPERTIES OF GROUP A MATERIALS

			MECH	IANICAL	PROPE	RTIES	TEST F	RESULT	S	
		TEN	SILE TEST RES	ULTS		CHAR	PY- V- NOTC	H TEST RE	SULTS	
BURST TEST NO.	CYLINDER NO.	YIELD STRENGTH Rea MPa	TENSILE STRENGTH Rm MPa	ELONGATION	TRANSV SIZE [mm]	ERSE ORIEN at 20 C [J/cm2]	ITATION at -50 C [J/cm2]	LONGITU SIZE [mm]	DINAL ORIE at 20 C [J/cm2]	NTATION at -50 C [J/cm2]
MATERIAL	GROUP B-2									
28 29 30 31 32	B-2-1 " " "	832 832 832 832 832 832	910 910 910 910 910	23.0 23.0 23.0 23.0 23.0 23.0	10 X 5 10 X 5 10 X 5 10 X 5 10 X 5	103 103 103 103 103	105 105 105 105 105	 		
MATERIAL	GROUP B-3									
33 34 35 36 37 38 39 40 41 41 42 43 44	B-3-1 B-3-2 B-3-3 B-3-4 B-3-5 B-3-6 B-3-7 B-3-9 B-3-10 B-3-11 B-3-12	580 642 607 538 690 598 738 697 696 669 669 662 649	745 794 752 704 814 745 869 780 821 800 787 787							
<u>MATERIAL</u> 45 46	<u>GROUP B-4</u> B-4-1 B-4-2						_			
47 48	B-4-3 B-4-4	 683		 20.0	 10 X 5	 64	54		 92	— 78
MATERIAL	GROUP B-5									
49 50 51 52 53 54	B-5-1 B-5-2 B-5-3 B-5-4 B-5-5 B-5-6	890 — — — —	949 — — — —	16.7 — — — —	10 X 5 — — — — —	132    	94  -  -  -	10 X 4 — — — —	107    	99  -  -  -  -
MATERIAL	GROUP B-6									
55 56 57 58 59 60	B-6-1 B-6-2 B-6-3 B-6-4 B-6-5 B-6-6	655 657 755 577 635 658	778 788 870 743 748 731	22.0 20.0 23.0 27.0 28.0 27.0	10 X 5 10 X 5 10 X 5 — — — —	62 51 54 —	55 51 53 	10 X 4 10 X 4 10 X 4 	139 113 122 — —	122 104 117 —
MATERIAL 61 62 63	<u>GROUP B-7</u> B-7-1 B-7-2 B-7-3	648 — —	786  	28.0 — —	10 X 5 — —	64 — —	52 — —	10 X 4 — —	164 — —	138  
MATERIAL 64 65 66	<u>GROUP B-8</u> B-8-1 B-8-2 B-8-3	669  	807  	31.5 — —	10 X 5 — —	81 	55 — —	10 X 4 	165 — —	149 — —

ſ

TABLE 7. MECHANICAL PROPERTIES OF GROUP B MATERIALS

			MECH		PROPE	RTIES	TEST F	RESULT	S	
		TEN	SILE TEST RES	ULTS		CHAR	PY- V- NOTO	H TEST RES	BULTS	
BURST TEST	CYLINDER NO.	YIELD	TENSILE STRENGTH	ELONGATION	TRANSV	ERSE ORIEI		LONGITU		NTATION
NO.		Rea MPa	Rm MPa	[%]	SIZE [mm]	at 20 C [J/cm2]	at -50 C [J/cm2]	SIZE [mm]	at 20 C [J/cm2]	at -50 C [J/cm2]
MATERIAL	GROUP B-9									
67	B-9-1	570	776	26.7	10 X 5	28	24	10 X 4	113	96
68	B-9-2	577	774	23.6	10 X 5	32	27	10 X 4	96	89
69	B-9-3	584	817	22.9	-		_	-		
70	B-9-4 B-9-5	625	783	22.8		_	_		_	_
72	8-9-6	587	762	23.9	10 X 5	29	26	10 X 4	99	82
73	B-9-7	563	808	22.3	_			-		
74	B-9-8	577	800	22.4	-	-		-	-	
75	B-9-9	635	811	23.4	-	-		-	-	
76	B-9-10	604	825	20.1	-	_	_	-	_	
77	B-9-11	541	826	21.2	10 X 5	31	25	10 X 4	98	92
78	B-9-12 B-0.12	535	/36	23.1	-		_			
80	B-9-14	560	811	21.3	_	_	_		_	
81	B-9-15	630	832	24.2	_	_	-	_	_	
82	B-9-16	670	815	23.6	10 X 5	31	25	10 X 4	98	92
83	B-9-17	599	808	23.6	10 X 5	25	21	10 X 4	89	91
84	B-9-18	595	796	24.4	-			-	-	
85	B-9-19	643	829	23.8	-		-	-	-	_
86	B-9-20	557	838	21.1	-	-	-			
87	B-9-21	615	823	21.9	_			-		
89	B-9-22 B-9-23	603	787	20.2	10.3.5	24	22	10 X 4	91	78
90	B-9-24	665	843	24.6	_	_	_	-	-	
91	B-9-25	623	811	25.0	-	-	-	-	-	-
MATERIAL	GROUP B-10									
92	B-10-1	748	875	14.1	10 X 4	40	34	10 X 4	99	85
MATERIAL	GROUP B-11									
93	B-11-1	713	824	17.0	10 X 4	39	37	10 X 4	101	82
MATERIAL	GROUP B-12									
94	B-12-1	763 (T)	872 (T)	17.5 (T)	10 X 4	64	58	10 X 4	145	135
MATERIAL	GROUP B-13									
05	8-12-1	790	020	143	10 X 4	54	0	10 ¥ 4	86	77
96	B-13-2	821	950	14.5			45			<u> </u>
97	B-13-3	-		-	-	-		-	-	-
MATERIAL	GROUP B-14									
98	B-14-1	715 (T)	851 (T)	18.8 (T)	10 X 4	40	97	10 X 4	92	85
99	B-14-2	-		_				-		-
100	B-14-3		-	_	-		-	-	-	-
MATERIAL	GROUP B-15									
101	B-15-1	765 (T)	909 (T)	18.8 (T)	10 X 4	100	40	10 X 4	118	48
102	B-15-2	-	-	_	-	-		-	-	_
103	B-15-3	-	-	-	-	-	-	-	-	-

### TABLE 7. (CON'T) MECHANICAL PROPERTIES OF GROUP B MATERIALS

Image: state				MECH	IANICAL	PROPE	RTIES	TEST R	RESULT	<u>s</u>	
BURST HO.         VILD STRENCTN MM.         TENSLE STRENCTN MM.         ELONGATION STRENCT MM.         TRANSVERSE ORBITATION (MM.         COUNTURNAL DRENT ATON SCC MATERNAL (MM.           MATERNAL MODEL         MM.         STRENCTN MM.         FINAL MATERNAL (MM.         TRANSVERSE ORBITATION (MM.         SCC MATERNAL (MM.         MATERNAL (MM.         STRENCTN MM.         TRANSVERSE ORBITATION (MM.         SCC MATERNAL (MM.         MATERNAL (MM.         SCC MATERNAL (MM.         TRANSVERSE (MM.         MATERNAL (MM.         SCC MATERNAL (MM.         SCC MATERNAL (MM.         TRANSVERSE (MM.         MATERNAL (MM.         SCC MATERNAL (MM.         SCC MATERNAL (MM.        SCC MAT			TEN	TENSILE TEST RESULTS     CHARPY-V-NOTCH TEST RESULTS       LD     TENSILE							
MATERNA         CROUP C3         Image: Constraint of the con	BURST TEST NO.	CYLINDER NO.	YIELD STRENGTH Rea MPa	TENSILE STRENGTH Rm MPa	ELONGATION	TRANSV SIZE [mm]	ERSE ORIEN at 20 C [J/cm2]	ITATION at -50 C [J/cm2]	LONGITU SIZE [mm]	DINAL ORIEI at 20 C [J/cm2]	NTATION at -50 C [J/cm2]
104         C-3-1         1067         1121         172         10.55         18         15         10.55         64         55           106         -         1067         1121         172         10.55         18         15         10.55         64         55           107         C-3-2         1047         1108         20.0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<	MATERIAL	GROUP C-3									
107         C-3-2         1047         1108         200	104 105 106	C-3-1 "	1067 1067 1067	1121 1121 1121	17.2 17.2 17.2	10 X 5 10 X 5 10 X 5	18 18 18	15 15 15	10 X 5 10 X 5 10 X 5	64 64 64	55 55 55
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	107	C-3-2	1047	1108	20.0	-	_	-	-	-	-
110       C-3-4       935       999       13.5	108 109	C-3-3 "	1053 1053	1093 1093	17.8 17.8	_	_	-	_	_	_
111         C-3-6         955         1023         12.0 $                                                                                           -$	110	C-3-4	935	999	13.5	-	-	-	_	-	_
113       C-3-6       1016       1083       16.5	111 112	C-3-5 "	955 955	1023 1023	12.0 12.0	_	_	_	_	_	_
MATERIAL GROUP C-4         GROUP C-4           114         C-4-1         928         992         24.0         10 X 5         121         101         -         -         -           115          928         992         24.0         10 X 5         121         101         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td< td=""><td>113</td><td>C-3-6</td><td>1016</td><td>1088</td><td>16.5</td><td>_</td><td>_</td><td>-</td><td>-</td><td>-</td><td>-</td></td<>	113	C-3-6	1016	1088	16.5	_	_	-	-	-	-
114       C-4-1       928       992       24.0       10 X 5       121       101            115       "       928       992       24.0       10 X 5       121       101            116       "       928       992       24.0       10 X 5       121       101            117       "       928       992       24.0       10 X 5       121       101            118       "       928       992       24.0       10 X 5       64       49            120       C-4-2       973       1049       19.0       10 X 5       64       49	MATERIAL	GROUP C-4									
116       "       928       992       24.0       10 X 5       121       101       -       -       -         117       "       928       992       24.0       10 X 5       121       101       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td>114 115</td> <td>C-4-1 "</td> <td>928 928</td> <td>992 992</td> <td>24.0 24.0</td> <td>10 X 5 10 X 5</td> <td>121 121</td> <td>101 101</td> <td>_</td> <td>_</td> <td>_</td>	114 115	C-4-1 "	928 928	992 992	24.0 24.0	10 X 5 10 X 5	121 121	101 101	_	_	_
117       "       928       992       24.0       10.X 5       121       101       -       -       -         118       "       928       992       24.0       10.X 5       121       101       -       -       -         119       "       928       992       24.0       10.X 5       121       101       -       -       -       -         120       C.4.2       973       1049       19.0       10.X 5       64       49       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	116		928	992	24.0	10 X 5	121	101	_	_	
118       "       928       992       240       10 X 5       121       101       -       -       -         119       "       928       992       240       10 X 5       121       101       -       -       -         120       C-4-2       973       1049       190       10 X 5       64       49       -       -       -         121       "       973       1049       190       10 X 5       64       49       -       -       -         123       "       973       1049       190       10 X 5       64       49       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td< td=""><td>117</td><td>**</td><td>928</td><td>992</td><td>24.0</td><td>10 X 5</td><td>121</td><td>101</td><td>_</td><td>_</td><td></td></td<>	117	**	928	992	24.0	10 X 5	121	101	_	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	118 119	46 64	928 928	992 992	24.0 24.0	10 X 5 10 X 5	121 121	101 101	_	_	_
121       "       973       1049       19.0       10 X 5       64       49            122       "       973       1049       19.0       10 X 5       64       49            123       "       973       1049       19.0       10 X 5       64       49            124       "       973       1049       19.0       10 X 5       64       49	120	C-4-2	973	1049	19.0	10 X 5	64	49	_	_	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121	**	973	1049	19.0	10 X 5	64	49	—	—	-
123       973       1049       19.0       10 x 5       64       49            124       "       973       1049       19.0       10 x 5       64       49	122		973	1049	19.0	10 X 5	64	49	_	-	-
MATERIAL GROUP C-5         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	123 124		973 973	1049	19.0 19.0	10 X 5 10 X 5	64 64	49 49	_	_	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MATERIAL	GROUP C-5									
126       C.5-2       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -<	125	C-5-1	_	_	_	_	_	_	_	_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	126	C-5-2	_	_	_	_	_	_	_	_	_
128       C-5-4       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -<	127	C-5-3	—	-	—	-	_	-	—	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	128	C-5-4	-	-	-	-	-	-	—	-	-
150       C 550       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I <thi< th="">       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       <thi< th="">       I       <thi< th=""> <thi< th=""></thi<></thi<></thi<></thi<>	129	C-5-5	-	_	-	-	_	-	-	-	-
131       C-5-8       887       989 $                                                                                                     -$ <t< td=""><td>130</td><td>C-5-7</td><td>878</td><td>996</td><td>_</td><td>10 X 5</td><td>118</td><td>88</td><td>10 X 5</td><td>125</td><td>57</td></t<>	130	C-5-7	878	996	_	10 X 5	118	88	10 X 5	125	57
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	131	C-5-8	887	989	_				_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	132	C-5-9	867	992	-	10 X 5	118	88		125	57
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	133	C-5-10	855	961	-	-	-	-	-	_	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	134	C-5-11	-	—	-	—	-	-	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	135	C-5-12	840	940	_	10 X 5	107	90	-	132	90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	137	C-5-14	_	_	_	_		_	_	_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	138	C-5-15	-	_	-	_	_	_	_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	139	C-5-16	-	-	-	-	-	-	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	140	C-5-17	-	-	-	-		-	-	-	-
143 C-5-20	142	C-5-18 C-5-19	835	949		10 X 5	125	110	-	82	81
144 C-5-21	143	C-5-20	_	-	_	_	_	_	_	_	_
	144	C-5-21	-	-	-	-	-	-	-	-	-

TABLE 8. MECHANICAL PROPERTIES OF GROUP C MATERIALS

			MI	ECHANICAL		RTIES 1	EST RE	SULTS		
		TEN	ISILE TEST RES	ULTS		CHAR	PY-V-NOTO	H TEST RE	SULTS	
BURST TEST NO.	CYLINDER NO.	YIELD STRENGTH Rea MPa	TENSILE STRENGTH Rm MPa	ELONGATION	TRANSV SIZE [mm]	ERSE ORIEI at 20 C [J/cm2]	NTATION at -50 C [J/cm2]	LONGITU SIZE [mm]	JDINAL ORIE at 20 C [J/cm2]	NTATION a1 -50 C [J/cm2]
MATERIAL	GROUP C-6									
145 146 147 148 149 150 151 152 153 154 155	C-8-1 C-8-2 C-8-3 C-8-4 C-8-5 C-6-6 C-6-7 C-6-8 C-6-9 C-6-10 C-6-11						 124   			57
156	C-6-12	-	-	-	-	-	-		-	
MATERIAL	GROUP C-7									
157 158 159 160 161 162 163 164	C-7-1 C-7-2 C-7-3 C-7-4 C-7-5 C-7-6 C-7-7 C-7-8		 1000 (T) 950 (T)  1000 (T)  1000 (T) 	-		150 — 126 — 109 —				
MATERIAL	GROUP C-8									
165 166 167 168 169 170	C-8-1 C-8-2 C-8-3 C-8-4 C-8-5 C-8-5	850 (T)    	960 (T)    			96   74 	76   74 	-	-	
MATERIAL	GROUP C-9									
171 172 173 174	C-9-1 C-9-2 C-9-3 C-9-4	898 (T)  	1000 (T)  			 74		-	-	-
MATERIAL	GROUP C-10									
175 176 177 178 179 180 181 181 182 183	C-10-1 C-10-1 C-10-3 C-10-4 C-10-5 C-10-5 C-10-6 C-10-8 C-10-8	896 862 828 896 938 793 979 979 952 952	1000 972 938 986 1027 862 1048 1041 1027	21.0 23.0 21.0 21.0 25.0 20.0 20.0 21.0	10 X 5   10 X 5  	38   63  	34 	10 X 4 — — — 10 X 4 — —	119   147  	119   133  

### TABLE 8 (CON'T). CYLINDER DESCRIPTION FOR GROUP C MATERIALS

46

			ME		PROPE	RTIES 1	EST RE	SULTS		
		TEN	SILE_TEST RES	ULTS		CHAR	PY- V- NOTC	H TEST RE	SULTS	
BURST TEST NO.	CYLINDER NO.	YIELD STRENGTH Rea MPa	TENSILE STRENGTH Rm MPa	ELONGATION	TRANSV SIZE [mm]	ERSE ORIEN at 20 C [J/cm2]	TATION at -50 C [J/cm2]	LONGITU SIZE {mm}	DINAL ORIE at 20 C [J/cm2]	NTATION at -50 C [J/cm2]
MATERIAL	GROUP C-11									
184 185 186 187 188 188	C-11-1 " " "	1003 1003 1003 1003 1003 1003	1069 1069 1069 1069 1069 1069	21.5 21.5 21.5 21.5 21.5 21.5 21.5	10 X 5 10 X 5 10 X 5 10 X 5 10 X 5 10 X 5	- - - -	40 40 40 40 40 40	10 X 4 10 X 4 10 X 4 10 X 4 10 X 4 10 X 4	- - - -	118 118 118 118 118 118 118
MATERIAL	GROUP C-12					<del></del>				
190 191	C-12-1 C-12-2	842 969	962 1067	13.7 12.7	10 X 4 10 X 4	77 56	75 53	10 X 4 10 X 4	132 100	123 92
MATERIAL	<u>GROUP C-13</u> C-13-1	999	1072	14.4	10 X 4	98	89	10 X 4	141	128
MATERIAL	GROUP C-14									
193 194 195	C-14-1 C-14-2 C-14-3	921 — —	985 — —	16.2 — —	10 X 4 — —	52 —	43  -  -	10 X 4 — —	134 — —	130 — —
MATERIAL	GROUP C-15									
196 197 198	C-15-1 C-15-2 C-15-3	865 861 —	969 964 —	16 15 —	10 X 4  	70 — —	8   	10 X 4 — —	114  	117 — —
MATERIAL	GROUP C-16									
199 200 201	C-16-1 C-16-2 C-16-3	886 (T) — —	1013 (T) — —	14.7 (T) — —	10 X 4 — —	42 — —	37 — —	10 × 4 — —	97 	81 — —
MATERIAL 0 202 203 204	<u>GROUP C-17</u> C-17-1 C-17-2 C-17-3	841 (T) — —	960 (T) — —	15 (T) — —	10 X 4 — —	45 — —	41 — —	10 X 4 — —	85 — —	47 — —
MATERIAL / 205 206 207	GROUP C-18 C-18-1 C-18-2 C-18-3	919 (T) — —	991 (T) — —	14 (T)  	10 X 4 — —	58 — —	54 — —	10 X 4 —	129 — —	117 — —

TABLE 8 (CON'T). CYLINDER DESCRIPTION FOR GROUP C MATERIALS

			ME	ECHANICAL	PROPE	RTIES 1	EST RES	SULTS		
		TEN	SILE TEST RESI	ULTS		CHAR	PY-V-NOTC	H TEST RE	SULTS	
BURST TEST NO.	CYLINDER NO.	YIELD STRENGTH Rea	TENSILE STRENGTH Rm	ELONGATION	TRANSV SIZE	ERSE ORIEN at 20 C	ITATION at -50 C	LONGITU SIZE	DINAL ORIE	NTATION at -50 C
MATERIAL	GROUP C-19	MPa	MPa	[%]	ຼຸເຕຫງ		[J/cm2]	്ന്ന്	[J/cm2]	[J/cm2]
208 209 210	C-19-1 C-19-2 C-19-3	920 (T) — —	980 (T) — —	14 (T) —	10 X 4 — —	48 —	42 —	10 X 4 — —	94 — —	48  
MATERIAL	GROUP C-20									
211 212 213	C-20-1 C-20-2 C-20-3	827 — —	956 — —	14 	10 X 4 — —	36 — —	34 — —	10 X 4 — —	101 — —	94 
MATERIAL	SROUP C-21									
214 215 216	C-21-1 C-21-2 C-21-3	857 — —	955 — —	15 — —	10 X 4 — —	40 — —	34 — —	10 X 4 — —	107 — —	105 — —
MATERIAL	GROUP C-22									
219 220 221	C-22-1 C-22-2 C-22-3	965 — —	1041 —	13 — —	10 X 4 — —	33 	28 — —	10 X 4 — —	88 — —	89 —
MATERIAL	GROUP C-23					add an brack and a branch of the				
222 223 224	C-23-1 C-23-2 C-23-3	876 — —	983 — —	15 — —	10 X 4 — —	92 —	52 — —	10 X 4 — —	104 — —	85 — —

ĩ

Т

### TABLE 8 (CON'T). CYLINDER DESCRIPTION FOR GROUP C MATERIALS

48

			ME		PROPE	RTIES 1	EST RES	SULTS		
		TEN	SILE_TEST RES	ULTS		CHAR	PY- V- NOTC	H TEST RES	SULTS	
BURST TEST NO.	CYLINDER NO.	YIELD STRENGTH Rea MPa	TENSILE STRENGTH Rm MPa	ELONGATION	TRANSV SIZE [mm]	ERSE ORIER at 20 C [J/cm2]	NTATION at -50 C [J/cm2]	LONGITU SIZE [mm]	DINAL ORIE at 20 C [J/cm2]	NTATION at -50 C [J/cm2]
MATERIAL	GROUP D-2									
225 226 227 228 229 230 231 232 233 234 235 236 237 238	D-2-1 D-2-2 D-2-3 D-2-4 D-2-5 D-2-8 D-2-7 D-2-8 D-2-7 D-2-8 D-2-9 D-2-10 D-2-11 D-2-11 D-2-12 D-2-13 D-2-14 D-2-15	1087 1054 1072 1060 1070 1042 1063 1052 1060 1059 1069 1056 1067 1041 1017	1154 1122 1135 1128 1135 1112 1136 1117 1124 1127 1143 1126 1135 1117 1104	14.3 15.3 15.2 14.4 14.0 15.6 14.0 15.3 14.4 14.0 15.0 14.1 14.0 15.1 15.2	10 X 5 10 X 5	46 68 53 55 53 56 56 57 61 59 58 36 85 94 60	26 42 39 38 46 38 43 44 43 28 52 58 41	10 X 5 10 X 5	91 103 96 97 95 105 93 99 102 103 100 109 108 117 111	    104 68 69
<u>MATERIAL</u> 239 240 241 242 243 243 244 245	D-3-1 D-3-2 D-3-3 D-3-4 D-3-5 D-3-6 D-3-7	1023 1005 995 1004 1039 987 1017	1092 1076 1061 1069 1104 1060 1104	14.7 14.2 14.2 14.2 14.2 15.0 15.2	10 X 5 10 X 5 10 X 5 10 X 5 10 X 5 10 X 5 10 X 5	28 25 24 40 25 69 60	26 22 24 36 22 58 41	10 X 5 10 X 5 10 X 5 10 X 5 10 X 5 10 X 5 10 X 5	95 98 103 124 101 124 111	86 85 87 101 84 107 69
MATERIAL	GROUP D-4									
246 247 248 249 250 251	D-4-1 " " "	1024 1024 1024 1024 1024 1024 1024	1111 1111 1111 1111 1111 1111 1111	18.5 18.5 18.5 18.5 18.5 18.5	10 X 5 10 X 5 10 X 5 10 X 5 10 X 5 10 X 5	68 68 68 68 68 68	56 56 56 56 56 56			
MATERIAL	GROUP D-5									
252 253 254 255 256 257 258 259 260 261 261 261 263 263 264 265	D-5-1 D-5-2 D-5-3 D-5-4 D-5-5 D-5-6 D-5-7 D-5-8 D-5-9 D-5-10 D-5-11 D-5-12 D-5-13 D-5-14	1098             		18.0 — — — — — — — — — — — — — — — — — — —	10 X 5 	67 	37	10 X 5 	85             	
266	D-5-15				-	-	-	-	_	_

TABLE 9. MECHANICAL PROPERTIES OF GROUP D MATERIALS

			ME	ECHANICAL	PROPE	RTIES	TEST RES	SULTS		
			SILE TEST RES	ULTS		CHAP	RPY- V- NOTC	H TEST_RE	SULTS	
BURST TEST NO.	CYLINDER NO.	YIELD STRENGTH Rea MPa	TENSILE STRENGTH Rm MPa	ELONGATION	TRANSV SIZE [mm]	ERSE ORIE at 20 C [J/cm2]	NTATION at -50 C [J/cm2]	LONGITU SIZE [mm]	IDINAL ORIE at 20 C [J/cm2]	NTATION at -50 C [J/cm2]
MATERIAL	GROUP D-6									
267 268 269 270 271 272	D-6-1 D-8-2 D-6-3 D-8-4 D-6-5 D-6-6	1139 1118 1139 1076 1083 1063	1166 1139 1173 1111 1118 1097	- - - - -	10 X 5 — — — — —	24 — — —	17    	10 X 5 — — — — —	68    	
MATERIAL	GROUP D-9									
273 274 275 276	D-9-1 D-9-2 D-9-3 D-9-4	1027 1039 1061 1124	1103 1089 1110 1179	18.0 20.0 20.0 17.0		44 	41  34	 10 X 4  10 X 4	 107  94	98 
MATERIAL	GROUP D-10									
277 278 279 280 281 282 283 284 285 285 286	D-10-1 D-10-2 D-10-3 D-10-4 D-10-5 D-10-6 D-10-7 D-10-8 D-10-9 D-10-10	1045 1046 1073 1034 943 1115 993 1060 1096 1001	1139 1140 1168 1134 1036 1206 1077 1146 1182 1083	21.0 22.0 21.0 19.0 23.0 21.0 23.0 21.0 20.0 20.0	10 X 5 10 X 5	70 74 99 106 104 63 102 95 76 70	63 66 88 96 89 54 95 85 67 70	10 X 5 10 X 5	126 138 138 130 137 125 140 132 117 129	
MATERIAL	GROUP D-11									
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303	D-11-1 D-11-2 D-11-3 D-11-4 D-11-5 D-11-5 D-11-7 D-11-8 D-11-7 D-11-8 D-11-18 D-11-10 D-11-11 D-11-12 D-11-13 D-11-14 D-11-15 D-11-16 D-11-17	1027             		15.7 — — — — — — — — — — — — — — — — — — —	10 X 5 		83 			128 
MATERIAL 304	<u>GROUP D-13</u> D-13-1	1072	1124	15.0	10X4	88	79	_	131	_

### TABLE 9 (CON'T). MECHANICAL PROPERTIES OF GROUP D MATERIALS

			ME	ECHANICAL	PROPE	RTIES 1	EST RES	SULTS		
		TEN	SILE TEST RES	ULTS		CHAR	PY- V- NOTC	H TEST RE	SULTS	
BURST	CYLINDER	YIELD	TENSILE	ELONGATION						
TEST	NO.	STRENGTH	STRENGTH		TRANSV	ERSE ORIEN	TATION	LONGITI	JDINAL ORIE	NTATION
NO.		Rea	Rm		SIZE	at 20 C	at -50 C	SIZE	at 20 C	at -50 C
		MPa	MPa	[%]	[mm]	[J/cm2]	[J/cm2]	[mm]	[J/cm2]	[J/cm2]
MATERIAL	GROUP D-14									
305	D-14-1	1010	1137	21.0	10 X 5	_	36	_	_	_
306	D-14-2	_	_	-	_	_	_	_	_	_
307	D-14-3	1065	1139	20.0	10 X 5	_	56	-	-	-
308	D-14-4	-	-	-	—	-	-	-	-	_
309	D-14-5	1085	1156	19.5	10 X 5	-	37	-	_	_
310	D-14-6	-	—	-	-	_	-	_	-	-
311	D-14-7	1086	1157	18.5	10 X 5	_	31	-	-	-
312	D-14-8	1069	1135	20.0	10 X 5	_	33	-	_	_
314	D-14-9	1012	1076	21	10 1 5	_	80	_	_	_
315	D-14-11	_	_	_		_		_	_	_
316	D-14-12	_	_	_	_	_	_	_	_	_
317	D-14-13	1086	1157	18.5	10 X 5	_	31	_	_	_
318	D-14-14	_	_		_	_	_	_	_	_
319	D-14-15	-	-	-	—	_	-	_		_
320	D-14-16	_	-	-	-	-	-	—	-	-
321	D-14-17	-	-	-	—	_	-	-	-	_
322	D-14-18	-	-	-	-	_	-	-	-	_
323	D-14-19	-	-	-	-	_	-	-	_	_
324	D-14-20	-	_	-	_	_	-	-	_	-
325	D-14-21	_	-	-	_	_	-	_	_	_
320	D-14-22	_	_		_	_	_	_	_	_
328	D-14-24	_		_	_	_	_	_	_	
329	D-14-25	_	_	_	_	_	_	_	_	_
330	D-14-26	_	_	_	_	_	-	-	_	_
331	D-14-27			-	_	_	-	-		_
332	D-14-28	-	-	-	_	_	-	-		-
333	D-14-29	-	-	-	—	-	-	-	-	-
334	D-14-30	-	-	-	-	-	-	—	-	-
335	D-14-31	1020	1081	20.0	10 X 5	_	80	-	-	-
336	D-14-32	-	-	-	-	-	-	-	-	-
337	D-14-33	-	-	-	_		_	_	-	_
330	D-14-34	1069	1091	20.0	10 1 5	_	80	_	_	-
340	D-14_36	-		20.0		_	_		_	_
341	D-14-37			_	_	_	_	_	_	_
342	D-14-38	_	_	_	_	_	_	_	_	_
343	D-14-39	1000	1073	21.0	10 X 5	_	80	_	_	
344	D-14-40	_	-	_	-	_	_	-	_	_
345	D-14-41	-	-	-	-	_	-	-	-	_
346	D-14-42	-	-	-	-	-	-	-	-	_
347	D-14-43	-	-	-	-	-	-	-	-	
348	D-14-44	1022	1077	20.0	10 X 5	-	65	-	-	-
349	D-14-45	-	-	-	-	-	-	-	-	-
350	D-14-46	-		-	10 7 5	_	-	-	_	_
301	D-14-47	1020	1081	20.0	10 X 5	_	00	_	_	_
353	D-14-49	_	_	_	_	_	_	_	_	_

TABLE 9 (CON'T). MECHANICAL PROPERTIES OF GROUP D MATERIALS

			MECH		PROPE	RTIES	TEST F	RESULT	S	
		TEN	SILE_TEST RES	ULTS		CHAR	PY-V-NOTC	H TEST RE	SULTS	
BURST	CYLINDER	YIELD	TENSILE	ELONGATION						
TEST	NO.	STRENGTH	STRENGTH		TRANS	ERSE ORIEN	TATION	LONGITU	JDINAL ORIE	NTATION
NO.	[	Rea	Rm		SIZE	at 20 C	at -50 C	SIZE	at 20 C	at -50 C
		MPa	MPa	[%]	[mm]	[J/cm2]	[J/cm2]	[mm]	[J/cm2]	[J/cm2]
MATERIAL	GROUP D-15									
354	D-15-1	989	1084	13.1	10 X 4	59	57	10 X 4	107	100
355	D-15-2	986	1078	13.8	_	_		_	_	_
356	D-15-2	-	-	-	-	_	-	-	-	-
MATERIAL	GROUP D-16								11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	
357	D-16-1	963 (T)	1079 (T)	13.8 (T)	10 X 4	35	26	10 X 4	78	53
358	D-16-2	_	_	_	_	_	_	_	_	_
359	D-16-2	-	-	-	-		-	-	_	-
MATERIAL	GROUP D-17									
360	D-17-1	1024 (T)	1098 (T)	12(T)	10 X 4	49	42	10 X 4	100	62
361	D-17-2	_	_	_	_	_	_	_	-	_
362	D-17-2	-	-	-	-	-	-	_	_	-
MATERIAL	GROUP D-18									
363	D-16-1	1107 (T)	1180 (T)	12 ( <b>T</b> )	10 X 4	42	37	10 X 4	89	46
364	D-18-2	-	—	-	-	_	_	-	-	_
300	0-10-2	_	_	_					_	
MATERIAL	GROUP D-19									
366	D-19-1	1084	1155	11.1	10 X 4	24	22	10 X 4	78	76
367	D-19-2	_	-	_	_	_	_	_	_	_
368	D-19-2	-	-	-	-	_	_	-	_	_
		1								

TABLE 9 (CON'T). MECHANICAL PROPERTIES OF GROUP D MATERIALS

			ME	CHANICAL	PROPE	RTIES T	EST RES	BULTS		
		TENS	SILE TEST RES	ULTS		CHAR	PY- V- NOTC	H TEST RE	SULTS	
BURST TEST NO.	CYLINDER NO.	YIELD STRENGTH Rea	TENSILE STRENGTH Rm	ELONGATION	TRANSV	ERSE ORIEI at 20 C	NTATION	LONGITU	DINAL ORIE at 20 C	NTATION at -50 C
		MPa	MPa	[%]	[mm]	[J/cm2]	[J/cm 2]	[mm]	[J/cm 2]	[J/cm 2]
MATERIAL	GROUP E-1									
311	E-1-1						_			
312	E-1-2	1186	1317	12.5	10 X 5		17.0	10 X 4	_	24.3
313	E-1-3		-						_	
314	E-1-4	1123	1275	15.5	10 X 5	_	17.0	10 X 4	_	24.2
315	E-1-5		-		-		-	_		-
316	E-1-6		-			_	-	—		-
317	E-1-7				—		-			
318	E-1-8	-					-			
319	E-1-9	-		-					_	_
MATERIAL	GROUP E-2									
320	E-2-1	1331	1386	15.0	10 X 5		19.2	10 X 4		33.9
321	E-2-2	-					_		_	
322	E-2-3						_			
323	E-2-4	1330	1399	14.0	10 X 5		19.2	10 X 4		33.2
324	E-2-5	-	_			_	-			-
325	E-2-6	-			_		-	—		-

TABLE 10 MECHANICAL PROPERTIES OF GROUP E MATERIALS

FRACTURE TOUGHNESS TEST RESULTS										
BURST TEST NO.	CYLINDER NO.	SPECIMEN TYPE	SPECIMEN ORIENTATION	TEMPERATURE [C]	KIC(J) VALUE MPa/m					
MATERIAL	GROUP B-3									
44 45 46 47 48 49 50 51 52 53 54 55	B-3-1 B-3-2 B-3-3 B-3-4 B-3-5 B-3-6 B-3-7 B-3-8 B-3-9 B-3-9 B-3-10 B-3-11 B-3-12	COMPACT TENSION COMPACT TENSION	TL TL TL TL TL TL TL TL TL TL TL	20 20 20 20 20 20 20 20 20 20 20 20 20 2	52 94 75 85 90 116 90 83 59 96 80 57					
MATERIAL GROUP D-5		COMPACT TENSION	ΤL	20	140					
MATERIAL	GROUP D-6									
225 226 227 228 229 230	D-6-1 D-6-2 D-6-3 D-6-4 D-6-5 D-6-5	COMPACT TENSION COMPACT TENSION COMPACT TENSION COMPACT TENSION COMPACT TENSION COMPACT TENSION	TL TL TL TL TL TL	20 20 20 20 20 20	63 68 67 47 67 68					
MATERIAL	<u>GROUP D-11</u> D-11-1	COMPACT TENSION	ΤL	20	118					

# TABLE 11. FRACTURE TOUGHNESS TEST RESULTS

	I	TEST RESULTS									
BURST TEST	CYLINDER NO.	DESIGN TEST	DESIGN SERVICE	FLAW LENGTH	FLAW DEPTH	THICKNESS [at flaw]	FAILURE	FAILURE MODE	MEASURED	ADJUSTED	
NO.		[Pt] [bar]	[Ps] [bar]	[n = lo / td]	[% of td]	[ta] [mm]	[Pf] [bar]		[Pf/Ps]	[(Pf/Ps)(td/ta)]	
MATERIAL	GROUP A-1										
1	A-1-1	232	155	5.0	95	6.70	166	LEAK	1.07	1.06	
2		232	155	5.0	90	7.40	152	LEAK	0.98	0.88	
3		232	155	5.0	85	7.20	172	LEAK	1.12	1.02	
4	"	232	155	5.0	80	7.10	290	FRACTURE	1.87	1.74	
_											
5	A-1-2	232	155	8.5	90	6.00	172	LEAK	1.12	1.23	
5		232	100	8.5	85	6.80	172	LEAK	1.12	1.08	
,		232	100	8.5	80	6.90	1/4	LEAK	1.13	1.00	
9		232	155	6.5 8.5	75	6.70	203	EPACTURE	1.52	1.50	
9		232	155	6.5	70	0.00	234	FRACTORE	1.52	1.52	
10	A-1-3	232	155	10.0	85	6.30	172	LEAK	1.12	1.17	
11		232	155	10.0	80	6.70	190	FRACTURE	1.23	1.21	
12	A-1-4	232	155	12.5	85	6.80	172	LEAK	1.12	1.08	
13		232	155	12.5	80	7.20	193	LEAK	1.25	1.15	
14		232	155	12.5	75	7.00	199	FRACTURE	1.29	1.21	
15	A-1-5	232	155	15.0	90	6.30	100	LEAK	0.65	0.68	
16		232	155	15.0	85	7.10	169	LEAK	1.09	1.02	
17		232	155	15.0	80	6.60	1/2	FRACTURE	1.12	1.12	
MATERIAL	GROUP A-2										
18	A-2-1	232	155	10.0	80	6.65	179	LEAK	1.15	1.15	
19		232	155	10.0	80	6.76	186	FRACTURE	1.20	1.17	
20	A-2-2	232	155	12.5	80	7.54	189	FRACTURE	1.22	1.07	
24	4.7.2		155	0.5		5.00	200	1.54%			
21	A-2-3 "	232	100	0.D	90 95	5.90	∠00 107	ERACTURE	1.29	1.44	
"		232	100	0.0	65	5.50	197	FRACTORE	1.27	1.42	
23	A-2-4	232	155	5.5	90	6.90	260	FRACTURE	1.68	1.60	
24	A-2-5	232	155	15.0	90	6.42	126	LEAK	0.81	0.84	
25	••	232	155	15.0	80	6.86	138	FRACTURE	0.89	0.86	
26	A-2-6	232	155	12.5	85	6.48	155	LEAK	1.00	1.02	
27	••	232	155	12.5	80	7.51	172	FRACTURE	1.11	0.98	

TABLE 12. FLAWED - CYLINDER BURST TEST RESULTS FOR GROUP A MATERIALS

	1	TEST RESULTS								
BURST TEST NO.	CYLINDER NO.	DESIGN TEST PRESSURE	DESIGN SERVICE PRESSURE	FLAW LENGTH	FLAW DEPTH	THICKNESS [at flaw]	FALURE	FALURE	MEASURED	adjusted
		[Pt]	[Ps]	Par - 1	PR/ . # 4.43	[ta]	[Pf]		[Pf/Ps]	[(P!/Ps)(td/ta)}
		(bar)	[bar]	[n ± lo / td]	[% of td]	[៣៣]	(bar)			
MATERIAL	GROUP B-2									
28	B-2-1	465	310	10.0	90	7.40	197	LEAK	0.63	0.56
29		465	310	10.0	85 80	6.30 7.90	293	LEAK	0.94	0.75
31	-	465	310	10.0	75	7.60	328	LEAK	1,06	0.92
32	-	485	310	10.0	70	7.50	324	FRACTURE	1.04	0.92
MATERIAL	GROUP B-3									
33	B-3-1	276	184	3.4	67	7.50	379	FRACTURE	2.06	1.59
34	B-3-2	276	184	3.7	76	6.80	348	FRACTURE	1.89	1.61
35	B-3-3	276	184	3.4	86	7.30	360	LEAK	1.96	1.55
36 37	B-3-4 B-2-5	276	184	7.0	67 76	7.20	307	FRACTURE	1.67	1.34
38	B-3-6	276	184	6.6	86	7.40	276	LEAK	1.50	1.16
39	B-3-7	276	184	9.9	67	6.90	270	FRACTURE	1.47	1.23
40	B-3-8	276	184	9.6	76	7.10	236	FRACTURE	1.28	1.05
41	B-3-9	276	184	9.5	86 67	7.20	245	LEAK	1.33	1.07
43	B-3-11	276	184	10.6	76	7.20	268	FRACTURE	1.46	1.17
44	B-3-12	276	184	10.3	86	7.40	203	LEAK	1.10	0.86
MATERIAL	GROUP B-4									
45	8-4-1	221	147	13.0	80	7.30	212	LEAK	1.44	1.29
46	B-4-2	221	147	13.0	70	6.80	277	FRACTURE	1.88	1.80
47	B-4-3	221	147	13.0	60	7.20	310	FRACTURE	2.10	1.90
48	B-4-4	221	147	13.0	75	7.30	252	LEAK	1.71	1.52
MATERIAL	GROUP B-5									
49	B-5-1	300	200	13.0	71	6.90	233	FRACTURE	1.17	1.01
50	B-5-2	300	200	13.0	72	7.60	260	FRACTURE	1.30	1.03
51	B-5-3 B-6-4	300	200	13.0	75	7.60	217	LEAK	1.09	0.86
53	B-5-5	300	200	13.0	79	7.30	200	LEAK	1.09	0.85
54	B-5-6	300	200	13.0	83	7.80	176	LEAK	0.88	0.68
MATERIAL	GROUP B-6									
55	B-6-1	276	184	10.0	75	6.80	260	FRACTURE	1.41	1.32
56	B-6-2	276	184	10.0	80	6.80	241	LEAK	1.31	1.26
57	B-6-3	276	184	15.0	85	6.80	143	LEAK	0.76	0.72
58	8-6-4	276	184	10.0	80	6.30	220	LEAK	1.20	1.21
59 60	B-6-5 B-6-6	276 276	184 184	6.0 15.0	85 70	6.90 6.70	269 194	FRACTURE	1.46 1.05	1.35 1.00
MATERIAL	GROUP B-7									
£-	0.74		370				-	FRACE		0.7
62	B-7-2	414	276	10.0	80 75	9.20 9.70	269	LEAK	0.97	0.97
63	B-7-3	414	276	10.0	80	9.90	236	LEAK	0.86	0.75
MATERIAL	GROUP B-8									
64	B-8-1	690	460	10.0	60	15.90	462	LEAK	1.00	0.91
65	B-8-2	690	460	10.0	75	15.90	441	LEAK	0.96	0.67
66	B-8-3	690	460	10.0	70	16.20	527	LEAK	1.15	1.02

TABLE 13. FLAWED - CYLINDER BURST TEST RESULTS FOR GROUP B MATERIALS

	,	TEST RESULTS									
BURST	CYLINDER NO.	DESIGN TEST	DESIGN SERVICE	FLAW LENGTH	FLAW DEPTH	THICKNESS [at flaw]	FAILURE PRESSURE	FAILURE MODE	MEASURED	ADJUSTED	
NU.		[Pt] [bar]	[Ps] [bar]	[n = lo / td]	[% of td]	[ta] [mm]	[Pf] [bar]		[Pf/Ps]	[(Pf/Ps)(td/ta)]	
MATERIAL	GROUP B-9										
67	B-9-1	232	155	7.6	51	5.35	328	FRACTURE	2.12	1.51	
68	B-9-2	232	155	7.4	59	5.48	331	FRACTURE	2.14	1.48	
69	8-9-3	232	155	7.6	71	5.58	324	FRACTURE	2.09	1.43	
70	8-9-4	232	155	7.4	91	5.00	293	IFAK	1.69	1.42	
72	B-9-6	232	155	8.7	51	5.10	314	FRACTURE	2.03	1.51	
73	B-9-7	232	155	8.4	60	5.35	310	FRACTURE	2.00	1.42	
74	B-9-8	232	155	8.6	71	5.51	296	FRACTURE	1.91	1.32	
75	B-9-9	232	155	8.5	80	5.33	283	FRACTURE	1.83	1.31	
76	<b>B-9-10</b>	232	155	8.5	90	5.20	234	LEAK	1.51	1.11	
77	<b>B-9-</b> 11	232	155	10.1	50	5.53	321	FRACTURE	2.07	1.43	
78	<b>B-9-</b> 12	232	155	9.7	58	5.43	290	FRACTURE	1.87	1.31	
79	<b>B-9-</b> 13	232	155	10.2	71	5.33	265	FRACTURE	1.71	1.22	
80	B-9-14	232	155	9.8	78	5.33	245	FRACTURE	1.58	1.13	
81	8-9-15	232	155	10.0	91	5.33	214	LEAK	1.38	0.99	
82	B-9-16	232	155	12.4	49	5.25	269	FRACTURE	1.74	1.20	
84	B-3-17	232	155	13.1	70	5.02	245	ERACTURE	1.00	1.20	
85	B-9-19	232	155	12.4	78	4.53 5.41	210	FRACTURE	1.33	0.91	
86	B-9-20	232	155	12.6	91	5.36	152	LEAK	0.98	0.70	
87	B-9-21	232	155	15.0	80	5.41	159	FRACTURE	1.03	0.72	
88	B-9-22	232	155	15.4	62	4.95	224	FRACTURE	1.45	1.11	
89	<b>B-9-</b> 23	232	155	14.6	68	5.10	190	FRACTURE	1.23	0.92	
90	<b>B-9-</b> 24	232	155	14.7	79	5.20	172	FRACTURE	1.11	0.81	
91	B-9-25	232	155	14.9	89	5.53	103	LEAK	0.66	0.46	
MATERIAL	GROUP B-10										
92	B-10-1	300	200	9.9	83	6.58	186	LEAK	0.93	0.85	
MATERIAL	GROUP B-11										
93	<b>B-11-1</b>	255	170	10.0	84	6.20	220	LEAK	1.29	1.13	
MATCONAL											
MATERIAL	<u>GROUP B-12</u>										
94	B-12-1	300	200	10.3	86	6.40	225	LEAK	1.13	1.04	
MATERIAL	, GROUP B-13										
95	B-13-1	318	212	10.2	63	5.20	255	LEAK	1.20	1.06	
96	B-13-2	318	212	10.2	72	5.00	294	FRACTURE	1.39	1.28	
97	B-13-3	318	212	9.8	76	4.90	265	FRACTURE	1.25	1.17	
MATERIAL	GROUP B-14										
98	B-14-1	263	175	9,7	65	6,05	230	LEAK	1,31	1,13	
99	B-14-2	263	175	10.0	70	6.14	218	LEAK	1.25	1.06	
100	B-14-3	263	175	9.9	75	6.01	225	LEAK	1.29	1.11	
MATERIAL	GROUP B-15										
98	B-15-1	295	197	9.9	63	6,05	277	FRACTURE	1,41	1.28	
99	B-15-2	295	197	9.8	70	6.14	275	FRACTURE	1.40	1.25	
100	B-15-3	295	197	9.9	74	6.01	255	LEAK	1.29	1.18	

TABLE 13. (CON'T ) FLAWED - CYLINDER BURST TEST RESULTS FOR GROUP B MATERIALS

	1	TEST RESULTS								
BURST TEST NO.	CYLINDER NO.	DESIGN TEST PRESSURE	DESIGN SERVICE PRESSURE	FLAW LENGTH	FLAW DEPTH	THICKNESS [at flaw]	FAILURE PRESSURE	FAILURE MODE	MEASURED	ADJUSTED
		[Pt] [bar]	(Ps) (bar)	[n = lo / td]	[% of td]	[ta] [mm]	(Pf) (bar)		[Pt/Ps]	[(Pl/Ps)(td/ta)]
			ł							
MATERIAL	GROUP CAS									
104	C-3-1	276	184	9.0	90	6.80	159	LEAK	0.86	0.77
105	-	276	184	8.0	80	7.20	234	LEAK	1.27	1.08
106	-	276	184	10.0	70	7.10	231	FRACTURE	1.25	1.08
107	C-3-2	276	184	10.0	75	6.70	214	FRACTURE	1.16	1.06
108	C-3-3	276	184	10.0	80	6.80	207	LEAK	1.12	1.04
109	-	276	184	8.0	70	7.80	290	FRACTURE	1.57	1.23
110	C-3-4	276	184	15.0	85	6.40	152	FRACTURE	0.62	0.79
111	C-3-5	276	184	15.0	90	6.80	124	LEAK	0.67	0.62
112	-	276	184	8.0	75	7.40	241	FRACTURE	1.31	1.08
113	C-3-6	276	184	5.0	70	6.50	352	FRACTURE	1.91	1.79
MATERIAL	GROUP C-4									
114	C-4-1	465	310	10.0	90	7.00	210	LEAK	0.68	0.64
115	-	465	310	10.0	85	6.70	303	LEAK	0.98	0.74
116	_	465	310	10.0	80	7.80	310	LEAK	1.00	0.65
116	-	465	310	10.0	75	7.30	328	LEAK	1.06	0.95
119	-	465	310	10.0	65	6.70	355	FRACTURE	1.14	1.13
										0.00
120	C-4-2	465	310	10.0	90	7.00	134	LEAK	0.43	0.41
121		465	310	10.0	85	6.70	238	LEAK	0.77	0.58
122		465	310	10.0	80	7.80	283	LEAK	0.91	0.77
124	-	465	310	· 10.0	70	7.30	341	FRACTURE	1.10	0.99
MATERIAL	GROUP C-5									
125	C-5-1	300	200	10.0	70	6.80	367	FRACTURE	1.84	1.61
126	C-5-2	300	200	10.0	70	6.70	368	FRACTURE	1.84	1.64
127	C-5-3	300	200	10.0	75	6.80	348	LEAK	1.74	1.53
128	6.54	300	200	10.0	75	6.70	330	FRACTURE	1.65	1.47
130	C-5-8	300	200	10.0	65	6.80	380	FRACTURE	1.90	1.67
131	C-5-7	300	200	10.0	70	6.80	370	FRACTURE	1.85	1.62
131	C-5-8	300	200	10.0	75	6.80	340	LEAK	1.70	1.49
132	C-5-9	300	200	10.0	75	6.70	340	LEAK	1.70	1.51
133	C-5-10	300	200	10.0	80	6.90	320	LEAK	1.60	1.38
135	C-5-12	300	200	10.0	76	6.50	300	LEAK	1.50 1.80	1.30
136	C-5-13	300	200	13.0	71	6.90	233	FRACTURE	1.17	1.01
137	C-5-14	300	200	13.0	72	7.60	260	FRACTURE	1.30	1.02
138	C-5-15	300	200	13.0	75	7.80	217	LEAK	1.09	0.85
139	C-5-16	300	200	13.0	76	7.30	200	LEAK	1.00	0.82
140	C-5-17	300	200	13.0	79	7.70	217	LEAK	1.09	0.84
141	C-5-18	300	200	13.0	83 78	7.80	176		0.88	0.67
143	C-5-20	300	200	10.0	80	7,00	305	LEAK	1.53	1.30
144	C-5-21	300	200	10.0	75	6.80	332	LEAK	1.66	1.46

TABLE 14. FLAWED - CYLINDER BURST TEST RESULTS FOR GROUP C MATERIALS

	1	TEST RESULTS								
BURST	CYLINDER NO.	DESIGN TEST	DESIGN	FLAW LENGTH	FLAW DEPTH	THICKNESS (at flaw)	FAILURE PRESSURE	FAILURE MODE	MEASURED	ADJUSTED
NO.		PRESSURE [Pt] [Darl	PRESSURE [Ps] [bar]	in=lo/tdī	D% of tc∏	[ta] (mm)	[Pf] Derf		[PI/Ps]	{{Pl/Ps}(td/ta)]
MATERIAL	GROUP C-6									
145	C-6-1	300	200	10.0	75	6.70	370	LEAK	1.85	1.55
146	C-6-2	300	200	10.0	75	6.60	345	LEAK	1.73	1.46
147	C-6-4	300	200	10.0	80	6.70	350	LEAK	1.75	1.46
149	C-6-5	300	200	10.0	76	6.50	350	LEAK	1.75	1.51
150	C-6-6	300	200	10.0	70	6.60	382	FRACTURE	1.91	1.62
151	C-6-7	300	200	10.0	65	6.70	400	FRACTURE	2.00	1.67
152	C-6-6	300	200	10.0	75	6.40	328	LEAK	1.64	1.44
153	C-6-9	300	200	10.0	75	6.50 6.40	357	LEAK	1.79	1.54
155	C-6-11	300	200	10.0	70	6.20	397	FRACTURE	1.99	1.79
156	C-6-12	300	200	10.0	72	6.40	385	FRACTURE	1.93	1.68
MATERIAL	GROUP C-7									
	1									
157	C-7-1	300	200	13.0	73	7.50	200	FRACTURE	1.00	0.80
158	C-7-2	300	200	13.0	77	6.90 7.40	170	LEAK	0.85	0.74
160	C-7-4	300	200	13.0	71	7.50	210	FRACTURE	1.05	0.84
161	C-7-5	300	200	10.0	76	7.30	265	FRACTURE	1.33	1.09
162	C-7-6	300	200	10.0	80	6.90	265	FRACTURE	1.33	1.15
163	C-7-7	300	200	10.0	80	7.10	250	LEAK	1.25	1.06
164	C-7-8	300	200	10.0	79	6.50	270	FRACTURE	1.35	1.25
MATERIAL	GROUP C-8									
165	C-8-1	300	200	10.0	74	6.80	325	LEAK	1.63	1.34
166	C-8-2	300	200	10.0	69	6.90	365	FRACTURE	1.83	1.48
167	C-8-3	300	200	10.0	70	6.50	376	LEAK	1.88	1.62
168	C-8-4	300	200	10.0	75	6.80	360	LEAK	1.80	1.53
169	C-8-5	300	200	10.0	67	6.80	405	FRACTURE	2.03	1.67
	~~~	300	200	10.0	67	0.80	362	FRACTORE	1.91	1.57
MATERIAL	GROUP C-9									
171	C-8-1	300	200	10.0	70	7.40	338	FRACTURE	1.69	1.37
172	C-8-2	300	200	10.0	70	7.40	356	FRACTURE	1.76	1.44
173	C-9-3	300	200	10.0	75	7.50	323	LÉAK	1.62	1.29
174	C-9-4	300	200	10.0	75	7.50	333	LEAK	1.67	1.33
MATERIAL	GROUP.C-10									
175	C-10-1	345	230	10.0	85	6.80	223	LEAK	0.97	0.79
176	C-10-1	345	230	10.0	85	6.40	228	LEAK	0.99	0.86
177	C-10-3	345	230	10.0	80	6.70	285	LEAK	1.24	1.03
176	C-10-4	345	230	10.0	70	6.70	303	FRACTURE	1.32	1.09
1/9	C-10-5	345	230	10.0	85	6.00 6.60	226	LEAK	0.99	0.92
181	C-10-7	345	230	10.0	75	6,30	245	LEAK	1.17	1.03
182	C-10-8	345	230	10.0	70	6.70	279	FRACTURE	1.21	1.01
183	C-10-9	345	230	10.0	75	6.80	282	FRACTURE	1.23	1.00

TABLE 14. (CON'T). FLAWED - CYLINDER BURST TEST RESULTS FOR GROUP C MATERIALS

	1			TEST R	ESULTS					
BURST	CYLINDER NO.	DESIGN TEST	DESIGN SERVICE	FLAW LENGTH	FLAW DEPTH	THICKNESS [at flaw]	FALURE	FAILURE MODE	MEASURED	ADJUSTED
NO.		PRESSURE (Pt) [bar]	PRESSURE [Ps] (bar)	(n = lo / td)	[% of td]	[ta] [mm]	(Pf) [bar]		[Pf/Ps]	[(Pf/Ps)(td/ta)]
MATERIAL	GROUP C-11									
184	C-11-1	466	311	6.0	75	7,80	414	FRACTURE	1.33	1.13
185	-	466	311	6.0	85	7.32	345	LEAK	1.11	1.00
186	-	466	311	6.0	80	7.72	355	LEAK	1.14	0.98
167	-	466	311	6.0	80	6.60	434	FRACTURE	1.40	1.40
186	-	466	311	6.0	85	6.83	434	FRACTURE	1.40	1.35
189	-	466	311	6.0	90	6.83	414	LEAK	1.33	1.29
MATERIAL	GROUP C-12									
190	C-12-1	478	317	10.0	85	8.50	333	LEAK	1.05	1.07
191	C-12-2	490	317	10.0	86	6.30	353	LEAK	1.11	1.17
MATERIAL	GROUP C-13									
192	C-13-1	285	190	9.9	86	4.71	255	LEAK	1.34	1.31
MATERIAL	GROUP C-14									
193	C-14-1	245	163	10.0	83	4.75	227	LEAK	1.39	1.26
194	C-14-2	245	163	10.0	86	4.90	196	LEAK	1.20	1.05
195	C-14-3	245	163	10.0	85	4.70	191	LEAK	1.17	1.07
MATERIAL	GROUP C-15									
196	C-15-1	420	280	9.6	65	6.20	436	FRACTURE	1.56	1.46
197	C-15-2	420	280	10.3	71	6.50	397	FRACTURE	1.42	1.27
198	C-15-3	420	280	9.9	75	6.70	368	LEAK	1.31	1.14
MATERIAL	GROUP C-16									
199	C-16-1	330	220	9.5	63	6.55	304	FRACTURE	1.38	1.16
200	C-16-2	330	220	9.7	68	6.38	279	FRACTURE	1.27	1.09
201	C-16-3	330	220	9.6	75	6.41	255	FRACTURE	1.16	0.99
MATERIAL	GROUP C-17			•						
202	C-17-1	324	216	9.6	65	6.23	306	FRACTURE	1,42	1.23
203	C-17-2	324	216	10.2	70	6.16	272	FRACTURE	1.26	1,10
204	C-17-3	324	216	9.6	74	6.42	280	LEAK	1.30	1.09
MATERIAL	GROUP C-18									
205	C-18-1	309	206	9.9	65	5.86	317	FRACTURE	1.54	1.37
206	C-18-2	309	206	9.6	69	5.96	294	FRACTURE	1.43	1.25
207	C-18-3	309	206	10.5	75	5.86	243	LEAK	1.16	1.04

TABLE 14. (CON'T). FLAWED-CYLINDER BURST TEST RESULTS FOR GROUP C MATERIALS
	1		TEST RESULTS								
BURST TEST	CYLINDER NO.	DESIGN TEST PRESSURE	DESIGN SERVICE PRESSURE	FLAW LENGTH	FLAW DEPTH	THICKNESS [at flaw]	FAILURE PRESSURE	FAILURE MODE	MEASURED	ADJUSTED	
		[Pt] [bar]	[Ps] [bar]	[n = lo / td]	[% of td]	[ta] [mm]	[Pf] [bar]		[Pf/Ps]	[(Pf/Ps)(td/ta)]	
MATERIAL	GROUP_C-19										
208 209 210	C-19-1 C-19-2 C-19-3	343 343 343	163 163 163	9.9 10.0 10.0	65 70 75	3.23 3.32 3.23	214 214 193	LEAK LEAK LEAK	1.31 1.31 1.18	1.26 1.22 1.13	
MATERIAL	GROUP C-20										
211 212 213	C-20-1 C-20-2 C-20-3	316 316 316	210 210 210	10.2 10.5 10.2	65 70 74	7.80 7.32 7.72	250 236 222	FRACTURE FRACTURE FRACTURE	1.19 1.12 1.06	0.84 0.84 0.75	
MATERIAL	GROUP C-21										
214 215 216	C-21-1 C-21-2 C-21-3	363 363 363	242 242 242	9.9 10.3 10.5	64 70 75	7.00 7.10 7.00	273 268 245	FRACTURE FRACTURE FRACTURE	1.13 1.11 1.01	1.00 0.97 0.90	
MATERIAL	GROUP C-22										
219 220 221	C-22-1 C-22-2 C-22-3	390 390 390	260 260 260	10.1 10.3 10.3	64 70 76	7.10 6.90 6.90	270 218 236	FRACTURE FRACTURE FRACTURE	1.04 0.84 0.91	0.91 0.75 0.82	
MATERIAL	GROUP C-23										
222 223 224	C-23-1 C-23-2 C-23-3	288 288 288	192 192 192	10.0 10.0 10.0	83 86 85	6.43 6.54 6.46	309 255 264	FRACTURE LEAK LEAK	1.61 1.33 1.38	1.38 1.12 1.17	

TABLE 14. (CON'T). FLAWED - CYLINDER BURST TEST RESULTS FOR GROUP C MATERIALS

	1		TEST RESULTS								
BURST	CYLINDER NO.	DESIGN TEST	DESIGN SERVICE	FLAW LENGTH	FLAW DEPTH	THICKNESS [at flaw]	FAILURE	FAILURE	MEASURED	ADJUSTED	
NO.		[Pt] [bar]	[Ps] [bar]	[n≖lo/td]	[% of td]	[ta] [mm]	[Pf] [bar]		[Pf/Ps]	[(Pi/Ps)(td/ta)]	
MATERIAL	I GROUP D-2										
225 225 226 227 228 230 231 232 233 234 234 235	D-2-1 D-2-2 D-2-3 D-2-4 D-2-5 D-2-8 D-2-7 D-2-8 D-2-9 D-2-10 D-2-11 D-2-12	300 300 300 300 300 300 300 300 300 300	200 200 200 200 200 200 200 200 200 200	8.3 7.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	83 94 90 85 80 75 71 77 72 68 77 86	4.80 4.80 5.00 5.00 5.00 5.10 5.20 5.10 5.10 5.20 5.10 5.20 5.20 5.50	300 300 300 300 300 300 300 300 300 300	LEAK LEAK LEAK LEAK FRACTURE FRACTURE FRACTURE FRACTURE FRACTURE LEAK LEAK	1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	1.41 1.41 1.35 1.35 1.35 1.35 1.32 1.30 1.32 1.32 1.32 1.32 1.23 0.88	
236 237 238	D-2-13 D-2-14 D-2-15	300 300 300	200 200 200	10.0 10.0 10.0	76 75 78	5.90 6.00 6.00	290 310 282	LEAK LEAK LEAK	1.45 1.55 1.41	1.11 1.16 1.06	
MATERIAL	GROUP D-3										
239 240 241 242 243 244 245	D-3-1 D-3-2 D-3-3 D-3-4 D-3-5 D-3-6 D-3-7	300 300 300 300 300 300 300	200 200 200 200 200 200 200	8.8 8.9 10.0 10.0 7.5 9.6 10.0	73 74 79 89 79 76 78	5.50 5.70 5.60 5.50 5.60 6.00 6.00	256 259 219 125 295 310 282	LEAK LEAK LEAK LEAK FRACTURE FRACTURE	1.28 1.30 1.10 0.63 1.48 1.55 1.41	1.21 1.18 1.02 0.59 1.37 1.34 1.22	
MATERIAL	GROUP D-4										
246 247 248 249 250 251	D-4-1 " " "	465 465 465 465 465 465	310 310 310 310 310 310	10.0 10.0 10.0 10.0 10.0 10.0	90 85 80 75 70 65	7.50 7.80 7.70 7.70 7.70 7.70 7.70	214 241 279 203 314 390	LEAK LEAK LEAK LEAK FRACTURE	0.69 0.78 0.90 0.66 1.01 1.26	0.61 0.66 0.77 0.56 0.87 1.08	

TABLE 15. FLAWED - CYLINDER BURST TEST RESULTS FOR GROUP D MATERIALS

			TEST RESULTS							
BURST TEST	CYLINDER NO.	DESKGN TEST	DESIGN SERVICE	FLAW LENGTH	FLAW DEPTH	THICKNESS [at flaw]	FAILURE PRESSURE	FAILURE	MEASURED	ADJUSTED
NO.		PRESSURE [Pt] [bar]	PRESSURE [Ps] [bar]	[n = lo / td]	[% of td]	[ta] [mm]	[Pf] (bar)		[Pf/Ps]	[(Pf/Ps)(td/ta)]
MATERIAL	GROUP D-5	-								
25 2	D-5-1	465	310	3.6	62	7.00	632	FRACTURE	2.04	1.92
253	D-5-2	465	310	3.4	74	7.40	658	FRACTURE	2.12	1.89
254	D-5-3	465	310	3.3	84	7.80	634	LEAK	2.04	1.73
255	D-5-4	465	310	6.9	70	7.40	554	FRACTURE	1.7 9	1.59
256	D-5-5	465	310	6.8	69	7.50	500	FRACTURE	1.61	1.42
257	D-5-6	465	310	6.7	75	7.60	516	FRACTURE	1.66	1.44
258	D-5-7	465	310	6.7	82	7.60	457	LEAK	1.47	1.28
258	0-5-8	400	310	9.4	70	7.50	440	FRACTURE	1.42	1.25
260	0-5-10	465	310	9.5	65	7.40	330		0.96	0.97
267	D-5-11	465	310	9.4	86	7.40	324	LEAK	1.04	0.97
263	D-5-12	465	310	9.5	91	7.10	316	LEAK	1.02	0.91
264	D-5-13	465	310	10.2	68	7.40	442	FRACTURE	1.42	1.27
265	D-5-14	465	310	9.8	71	7.70	421	FRACTURE	1.36	1.16
266	D-5-15	465	310	10.7	86	7.10	281	LEAK	0.91	0.84
MATERIAL	<u>GROUP D-6</u>									
267	D-6-1	465	310	3.4	76	7.50	417	FRACTURE	1.34	1.18
268	D-6-2	465	310	3.5	86	7.20	359	FRACTURE	1.16	1.06
269	D-6-3	465	310	7.1	76	7.20	252	LEAK	0.81	0.74
270	D-6-4	465	310	6.5	86	7.80	266	LEAK	0.86	0.73
271	D-6-5	465	310	9.7	76	7.80	228	FRACTURE	0.74	0.62
272	D-6-6	465	310	10.3	86	7.40	200	FRACTURE	0.64	0.58
MATERIAL	<u>GROUP D-9</u>									
273	D-9-1	345	230	10.0	75	6.50	296	FRACTURE	1.29	1.10
274	D-9-2	345	230	10.0	80	6.50	256	LEAK	1.11	0.95
275	D-9-3	345	230	10.0	75	6.60	289	FRACTURE	1.26	1.06
276	D-9-4	345	230	10.0	75	6.80	263	FRACTURE	1.14	0.93

TABLE 15 (CON'T) . FLAWED CYLINDER BURST TEST RESULTS FOR GROUP D MATERIALS

	l	TEST RESULTS								
BURST TEST	CYLINDER NO.	DESIGN TEST	DESIGN SERVICE	FLAW LENGTH	FLAW DEPTH	THICKNESS [at flaw]	FAILURE PRESSURE	FAILURE MODE	MEASURED	ADJUSTED
NO.		PRESSURE [Pt] [bar]	PRESSURE [Ps] [bar]	[n = io / td]	[% of td]	[ta] [mm]	[Pf] [bar]		[Pf/Ps]	[(Pf/Ps)(td/ta)]
MATERIAL	GROUP D-10									
277	D-10-1	465	310	10.0	80	7.40	331	FRACTURE	1.07	0.95
278	D-10-2	465	310	10.0	85	7.50	345	FRACTURE	1.11	0.98
279	D-10-3	465	310	10.0	90	7.20	262	LEAK	0.85	0.77
280	D-10-4	465	310	10.0	85	7.20	307	LEAK	0.99	0.91
281	D-10-5	465	310	10.0	80	7.20	338	LEAK	1.09	1.00
282	D-10-6	465	310	10.0	75	6.70	348	FRACTURE	1.12	1.11
283	D-10-7	465	310	10.0	80	7.30	328	LEAK	1.06	0.96
284	D-10-8	465	310	10.0	60	7.40	310	LEAK	1.00	0.89
285	D-10-9	465	310	10.0	50	7.40	310	LEAK	1.00	0.89
286	D-10-10	465	310	10.0	45	7.50	310	LEAK	1.00	0.88
MATERIAL	GROUP D-11									
287	D-11-1	450	300	8.0	85	7.11	392	LEAK	1.31	1.18
288	D-11-2	450	300	10.0	85	6.86	250	LEAK	0.83	0.78
289	D-11-3	450	300	12.0	85	7.11	220	LEAK	0.73	0.66
290	D-11-4	450	300	8.0	90	6.86	362	LEAK	1.21	1.13
291	D-11-5	450	300	10.0	90	6.86	180	LEAK	0.60	0.56
292	D-11-6	450	300	12.0	90	7.11	190	LEAK	0.63	0.57
293	D-11-7	450	300	10.0	60	7.11	440	FRACTURE	1.47	1.32
294	D-11-8	450	300	10.0	60	7.11	493	FRACTURE	1.64	1.48
295	D-11-8	450	300	10.0	60	7.37	465	FRACTURE	1.55	1.35
296	D-11-10	450	300	20.0	65	6.90	270	FRACTURE	0.90	0.83
297	D-11-11	450	300	17.0	60	8.10	347	FRACTURE	1.16	0.91
298	D-11-12	450	300	18.0	68	7.80	255	FRACTURE	0.85	0.70
299	D-11-13	450	300	13.5	72	7.10	290	FRACTURE	0.97	0.87
300	D-11-14	450	300	13.2	72	6.80	292	FRACTURE	0.97	0.92
301	D-11-15	450	300	13.4	73	6.70	273	LEAK	0.91	0.87
302	D-11-16	450	300	12.5	75	7.20	265	LEAK	0.88	0.79
303	D-11-17	450	300	13.8	74	6.90	267	LEAK	0.89	0.83
MATERIAL	GROUP D-13									
304	D-13-1	300	200	10.2	84	5.12	260	LEAK	1.30	1.17

TABLE 15. (CON'T). FLAWED - CYLINDER BURST TEST RESULTS FOR GROUP D MATERIALS

			TEST RESULTS								
BURST TEST	CYLINDER NO.	DESIGN TEST	DESIGN SERVICE	FLAW LENGTH	FLAW DEPTH	THICKNESS [at flaw]	FAILURE PRESSURE	FAILURE	MEASURED	ADJUSTED	
NO.		PRESSURE [Pt] [bar]	PRESSURE [Ps] [bar]	[n = lo / td]	[% of td]	[ta] [mm]	(Pf) [bar]		[Pf/Ps]	[(Pf/Ps)(td/ta)]	
MATERIAL	GROUP D-14										
305	D-14-1	465	310	10.0	70	7.30	362	FRACTURE	1.17	1.06	
306	D-14-2	465	310	10.0	80	7.50	297	LEAK	0.96	0.84	
307	D-14-3	465	310	10.0	72	7.60	341	FRACTURE	1.10	0.96	
308	D-14-4	465	310	10.0	78	7.60	324	FRACTURE	1.05	0.91	
309	D-14-5	465	310	10.0	74	7.40	338	FRACTURE	1.09	0.97	
310	D-14-8	465	310	10.0	78	7.10	324	LEAK	1.05	0.97	
311	D-14-7	465	310	10.0	73	7.20	366	FRACTURE	1.18	1.08	
312	D-14-6	465	310	10.0	77	7.00	309	LEAK	1.00	0.94	
313	D-14-9	465	310	10.0	73	5.40	319	FRACTURE	1.03	0.95	
314	D-14-10	400	310	10.0	74	5.70	280	LEAK	1.06	0.01	
316	D-14-12	465	310	10.0	77	5.00	300	LEAK	0.97	0.85	
317	D-14-13	465	310	10.0	70	7.00	310	LEAK	1.00	0.94	
318	D-14-14	465	310	10.0	71	7.10	369	FRACTURE	1.19	1.11	
319	D-14-15	465	310	10.0	71	7.30	369	FRACTURE	1.19	1.08	
320	D-14-16	465	310	10.0	72	7.10	362	FRACTURE	1.17	1.09	
321	D-14-17	465	310	10.0	72	7.20	359	FRACTURE	1.16	1.06	
322	D-14-18	465	310	10.0	73	7.30	345	FRACTURE	1.11	1.01	
323	D-14-19	465	310	10.0	73	6.90	355	FRACTURE	1.15	1.10	
324	D-14-20	465	310	10.0	74	7.20	345	FRACTURE	1.11	1.02	
325	D-14-21	465	310	10.0	74	7.40	352	FRACTURE	1.14	1.01	
326	D-14-22	465	310	10.0	74	7.50	313	LEAK	1.01	0.89	
327	D-14-23	465	310	10.0	75	7.40	310	LEAK	1.00	0.89	
328	D-14-24	465	310	10.0	76	7.40	328	FRACTURE	1.06	0.94	
329	D-14-25	465	310	10.0	79	7.60	279	LEAK	0.90	0.78	
330	D-14-26	465	310	10.0	80	7.70	276	LEAK	0.89	0.76	
331	D-14-27	465	310	10.0	72	7.30	352	FRACTURE	1,14	1.03	
332	D-14-28	465	310	10.0	73	7.30	341	FRACTURE	1.10	0.99	
333	D-14-29	465	310	10.0	73	7.40	341	FRACTURE	1.10	0.98	
225	D-14-30	403	310	10.0	74	7.50	333	EDACTURE	1.00	0.95	
336	D-14-32	465	310	10.0	70	7.70	459	FRACTURE	1.17	1.00	
337	D-14-33	465	310	10.0	72	7.50	386	FRACTURE	1.25	1.10	
338	D-14-34	465	310	10.0	73	7.00	395	FRACTURE	1.27	1.20	
339	D-14-35	465	310	10.0	74	8.00	324	LEAK	1.05	0.86	
340	D-14-36	465	310	10.0	75	7.90	290	LEAK	0.94	0.78	
341	D-14-37	465	310	10.0	75	8.00	262	LEAK	0.85	0.70	
342	D-14-38	465	310	10.0	77	8.00	297	LEAK	0.96	0.7 9	
343	D-14-39	465	310	10.0	71	7.20	396	FRACTURE	1.28	1.17	
344	D-14-40	465	310	10.0	74	7.40	389	FRACTURE	1.25	1.12	
345	D-14-41	465	310	10.0	72	7.10	381	FRACTURE	1.23	1.14	
346	D-14-42	465	310	10.0	73	7.10	383	FRACTURE	1.24	1.15	
347	D-14-43	465	310	10.0	73	7.50	403	FRACTURE	1.30	1.14	
348	D-14-44	465	310	10.0	71	7.20	393	FRACTURE	1.27	1.16	
349	D-14-45	465	310	10.0	73	7.10	367	FRACTURE	1.18	1.10	
350	D-14-46	465	310	10.0	74	7.30	352	FRACTURE	1.14	1.03	
351	D-14-47	465	310	10.0	76	7.50	321	LEAK	1.04	0.91	
352	D-14-48	465	310	10.0	74	7.30	352	FRACTURE	1.14	1.03	
333	U-14-49	400	310	10.0	/0	7.50	321	LEAK	1.04	0.91	

TABLE 15. (CON'T) . FLAWED - CYLINDER BURST TEST RESULTS FOR GROUP D MATERIALS

	1		TEST RESULTS								
BURST	CYLINDER NO.	DESIGN TEST	DESIGN SERVICE	FLAW LENGTH	FLAW DEPTH	THICKNESS [at flaw]	FAILURE PRESSURE	FAILURE MODE	MEASURED	ADJUSTED	
NO.		[Pt] [bar]	[Ps] [bar]	[n = lo / td]	[% of td]	[ta] [mm]	[Pf] [bar]		[Pf/Ps]	[(Pf/Ps)(td/ta)]	
MATERIAL	I GROUP D-15										
354 355 356	D-15-1 D-15-2 D-15-2	426 426 426	284 284 284	9.7 10.2 9.8	66 70 73	6.20 6.00 6.00	382 368 353	FRACTURE FRACTURE FRACTURE	1.35 1.30 1.24	1.15 1.14 1.10	
MATERIAL	GROUP D-16										
357 358 359	D-18-1 D-16-2 D-18-2	347 347 347	231 231 231	9.8 10 9.9	63 67 75	6.40 6.20 6.30	275 270 250	FRACTURE FRACTURE FRACTURE	1.19 1.17 1.08	1.02 1.04 0.94	
MATERIAL	GROUP D-17										
360 361 362	D-17-1 D-17-2 D-17-2	338 338 338	225 225 225	9.5 9.7 9.8	61 70 74	5.90 5.90 6.00	338 280 278	FRACTURE FRACTURE FRACTURE	1.50 1.24 1.24	1.30 1.08 1.05	
MATERIAL	GROUP D-18										
363 384 365	D-18-1 D-18-2 D-18-2	375 375 375	250 250 250	10.2 9.9 9.7	66 64 74	5.80 5.90 5.80	288 289 285	FRACTURE FRACTURE FRACTURE	1.15 1.16 1.14	1.03 1.02 1.02	
MATERIAL	GROUP D-19										
366 367 368	D-19-1 D-19-2 D-19-2	420 420 420	280 280 280	10.4 10.3 10.5	65 69 75	7.10 7.00 7.10	235 226 203	FRACTURE FRACTURE FRACTURE	0.84 0.81 0.73	0.73 0.71 0.63	

TABLE 15. (CON'T). FLAWED - CYLINDER BURST TEST RESULTS FOR GROUP D MATERIALS

	1	TEST RESULTS								
BURST TEST NO	CYLINDER NO.	DESIGN TEST PRESSURE	DESIGN SERVICE PRESSURE	FLAW LENGTH	FLAW DEPTH	THICKNESS [at flaw]	FAILURE PRESSURE	FAILURE MODE	MEASURED	ADJUSTED
		[Pt]	[Ps]			[ta]	[Pf]		[Pf/Ps]	[(Pf/Ps)(td/ta)]
		[bar]	[bar]	[n = lo / td]	[% of td]	[mm]	[bar]			
MATERIAL	GROUP E-1									
369	E-1-1	345	230	6.0	75	6.42	401	FRACTURE	1.74	1.51
370	E-1-2	345	230	6.0	85	6.78	400	FRACTURE	1.74	1.43
371	E-1-3	345	230	6.0	90	6.65	322	LEAK	1.40	1.17
372	E-1-4	345	230	8.0	75	6.32	334	FRACTURE	1.45	1.28
373	E-1-5	345	230	8.0	85	6.78	288	LEAK	1.25	1.03
374	E-1-6	345	230	8.0	85	6.63	262	LEAK	1.14	0.96
375	E-1-7	345	230	15.0	80	6.55	174	LEAK	0.76	0.64
376	E-1-8	345	230	15.0	85	6.42	134	LÉAK	0.58	0.50
377	E-1-9	345	230	12.0	80	6.58	219	LEAK	0.95	0.80
MATERIAL	GROUP E-2									
378	E-2-1	466	311	8.0	75	7.57	328	FRACTURE	1.05	0.92
379	E-2-2	466	311	8.0	85	7.24	276	LEAK	0.89	0.81
380	E-2-3	466	311	8.0	80	7.64	310	FRACTURE	1.00	0,86
381	E-2-4	466	311	6.0	80	7.75	426	FRACTURE	1.37	1.17
382	E-2-5	466	311	6.0	85	7.87	360	LEAK	1.16	0.97
383	E-2-6	466	311	6.0	90	7.49	426	FRACTURE	1.37	1.21

TABLE 16. FLAWED - CYLINDER BURST TEST RESULTS FOR GROUP E MATERIALS

MATERIAL		FAILURE	PRESSURE	PI	/Ps	
SUBOROUP	LENGTH	HIGHEST LEAK	LOWEST FRACTURE	HIGHEST LEAK	LOWEST FRACTURE	BOUNDARY
	[n = lo / td]	[bar]	[bar]			F 1/1 3
B-2	10.0	328	324	1.06	1.04	1.05
B-4	13.0	252	277	1.71	1.88	1.79
B-5	13.0	217	233	1.09	1.17	1.13
B-7	10.0	269	283	0.97	1.03	1.00
B-13	10.0	255	265	1.20	1.25	1.28
B-15	9.9	255	275	1.29	1.40	1.35
C-6	10.0	270	382	1.85	1.91	1.88
C-7	10.0	250	265	1.25	1.33	1.28
C-7	13.0	185	200	0.93	1.00	0.97
C-8 + 20 C	10.0	325	365	1.63	1.83	1.73
- 50 C	10.0	376	405	1.88	4.05	1.97
C-9	10.0	302	229	1.62	1 60	1.66
÷ 20 C	10.0	525	350	1.02	1.09	1.00
- 50 C	10.0	333	356	1.67	1.78	1.73
C-10	10.0	285	279	1.24	1.21	1.23
C-15	10.0	397	368	1.31	1.41	1.37
C-17	10.0	306	280	1.42	1.30	1.86
C-18	10.0	243	294	1.18	1.43	1.31
C-23	10.0	264	309	1.38	1.61	1.50
D-2	10.0	300	300	1.50	1.50	1.50
D-4	10.0	314	390	1.01	1.26	1.14
D-10	10.0	328	331	1.06	1.07	1.07
D-14	10.0	321	319	1.04	1.03	1.04

TABLE 17. FLAWED - CYLINDER BURST TEST RESULTS FOR CYLINDER GROUPS TESTED AT ONLY ONE FLAW LENGTH

MATERIAL	FLAW LENGTH	FAILURE PI	RESSURE	Pf/P	S	ESTIMATED
		HIGHEST	LOWEST FRACTURE	HIGHEST LEAK	LOWEST FRACTURE	BOUNDARY
	[n = lo / td]	[bar]	[bar]			Pf/Ps
B-8	10.0	527		1.15		> 1.15
B-10	9.9	186		0.93		> 0.93
B-11	10.0	220		1.29	_	> 1.29
B-12	10.3	225	—	1.13		>1.13
B-1 4	10.0	230	—	1.31	—	> 1.31
C-12	9.9	353	—	1.11		> 1.11
C-13	9.9	255	—	1.34		> 1.34
C-14	10.0	227		1.39		>1.39
C-16	9.7		255		1.16	< 1.16
C-19	10.0	214		1.31		> 1.31
C-20	10.2		222		1.06	< 1.06
C-21	10.3		245	_	1.01	<1.01
C-22	10.3		218	_	0.84	< 0.84
D-13	10.2	260		1.30		> 1.30
D-15	10.0		353		1.24	< 1.24
D-16	10.0		250		1.08	< 1.08
D-17	9.7		278	_	1.24	< 1.24
D-18	9.9		285		1.14	<1.14
D-19	10.3		203		0.73	< 0.73

TABLE 18. FLAWED - CYLINDER BURST TEST RESULTS FOR CYLINDER GROUPS TESTED AT ONLY ONE FLAW LENGTH AND ONLY LEAK OR FRACTURE OCCURED

MATERIAL SUBGROUP	FLAW LENGTH	Pf/Ps AI FOR LOCAL	DJUSTED THICKNESS	ESTIMATED LEAK-FRACTUE
	[n = lo / td]	HIGHEST LEAK	LOWEST FRACTURE	BOUNDARY Pf/Ps
B-2	10.0	0.92	0.92	0.92
B-4	13.0	1.52	1.80	1.66
B-5	13.0	0.86	1.01	0.94
B-7	10.0	0.87	0.97	0.92
B-13	10.0	1.06	1.09	1.08
B-15	9.9	1.18	1.25	1.22
C-6	10.0	1.55	1.62	1.59
C-7	10.0	1.06	1.09	1.08
C-7	13.0	0.75	0.80	0.78
C-8	10.0	1 3/	1 49	1.41
50.0	10.0	1.54	1.40	1.41
C-9 + 20 C	10.0	1.29	1.37	1.33
- 50 C	10.0	1.33	1.44	1.39
C-10	10.0	1.03	1.00	1.02
C-15	10.0	1.14	1.27	1.21
C-17	10.0	1.09	1.10	1.10
C-18	10.0	1.04	1.25	1.15
C-23	10.0	1.17	1.38	1.28
D-2	10.0	1.23	1.23	1.23
D-4	10.0	0.87	1.08	0.98
D-10	10.0	1.00	0.95	0.98
D-14	10.0	0.97	0.91	0.94

TABLE 19.FLAWED - CYLINDER BURST TEST RESULTS FOR
CYLINDER GROUPS TESTED AT ONLY ONE FLAW
LENGTH AND ADJUSTED FOR LOCAL THICKNESS

MATERIAL SUBGROUP	FLAW LENGTH	Pf/Ps Al FOR LOCAL	DJUSTED THICKNESS	ESTIMATED LEAK-FRACTUE
		HIGHEST LEAK	LOWEST FRACTURE	BOUNDARY
	[n = lo / td]			Pf/Ps
B-8	10.0	1.02	9759	> 1.02
B-10	9.9	0.85		> 0.85
B-11	10.0	1.13		> 1.13
B-12	10.3	1.04	\$1500	> 1.04
B-14	10.0	1.13	(\$%88.00	> 1.13
C-12	9.9	1.17	****	> 1.17
C-13	9.9	1.31	0558	> 1.31
C-14	10.0	1.26	0000	> 1.26
C-16	9.7		0.99	< 0.99
C-19	10.0	1.26		> 1.26
C-20	10.2		0.75	< 1.26
C-21	10.3		0.90	< 0.90
C-22	10.3		0.75	< 0.75
D-13	10.2	1.17		> 1.17
D-15	10.0	6004	1.10	< 1.10
D-16	10.0		0.94	< 0.94
D-17	9.7		1.08	< 1.08
D-18	9.9	942 8 9	1.02	< 1.02
D-19	10.3		0.63	< 0.63

TABLE 20. FLAWED - CYLINDER BURST TEST RESULTS FOR CYLINDERGROUPS TESTED AT ONLY ONE FLAW LENGTH AND ONLY LEAK ORFRACTURE OCCURRED -- ADJUSTED FOR LOCAL THICKNESS

FIGURES

FIGURE 1. TYPICAL SEAMLESS STEEL HIGH PRESSURE CYLINDERS

•

EXAMPLE OF A CYLINDER THAT FAILED BY FRACTURING

FIGURE 3B.

EXAMPLE OF A CYLINDER THAT FAILED BY LEAKING

FIGURE 3A.

FIGURE 6. FLAWED - CYLINDER BURST TEST RESULTS FOR A-1 MATERIAL

FIGURE 19. FLAWED - CYLINDER BURST TEST RESULTS FOR E-2 MATERIAL

APPENDIX A

This Appendix is a collection of graphs that show all of the original data for material subgroups in which the flawed-cylinder burst tests were conducted with a range of flaw lengths.

FIGURE A-4. FLAWED - CYLINDER BURST TEST RESULTS FOR B-6 MATERIAL

FIGURE A-6. FLAWED - CYLINDER BURST TEST RESULTS FOR C-3 MATERIAL

FIGURE A-14. FLAWED - CYLINDER BURST TEST RESULTS FOR E-2 MATERIAL

APPENDIX B

EVALUATION OF THE MEASUREMENT UNCERTAINTY IN THE FLAWED-CYLINDER BURST TEST

INTRODUCTION TO THE EVALUATION OF STANDARD UNCERTAINTY

During the development of the flawed-cylinder burst test, no specific tests were conducted to evaluate the measurement uncertainty in the test method. However, it is possible to make some estimate of the measurement uncertainty in the flawed-cylinder burst test from an analysis of the test itself and from some of the test data that was obtained during the development of the test method. The evaluation of the measurement uncertainty in the flawed-cylinder burst test will follow procedures given in the ISO "Guide to the Expression of Uncertainty in Measurement" [B1].

To evaluate the measurement uncertainty in the test method, it is first necessary to identify the parameters that may lead to uncertainty in the final measurement. The primary measurement that is made in the flawed-cylinder burst test is the failure pressure (P_f) for a cylinder with a certain defined size of part through, machined flaw. The factors that affect the uncertainty of the measured failure pressure (P_f) are: (1) the uncertainty in the pressure measurement (P_f) , (2) the flaw length, (3) the flaw depth, (4) the cylinder wall thickness at the location of the flaw (t_a) , (5) the depth of the uncracked ligament beneath the flaw, and (6) the strength of the cylinder at the location of the flaw:

The ISO "Guide to the Expression of Uncertainty in Measurement" **[B1]** requires that the evaluation must include: (1) "a type A evaluation of Standard Uncertainty" by statistical analysis and (2) "a type B evaluation of Standard Uncertainty" by other means (usually based on scientific judgement of the specific measurement process.

EVALUATION OF THE TYPE A STANDARD UNCERTAINTY

To evaluate the Type A uncertainty in the measurements requires that a sufficient number of replicate tests be conducted so that a statistical analysis can be performed to determine the size of any random uncertainties in the measurement. For the flawed-cylinder burst test, this requires that several duplicate cylinders of the same material, size (diameter and wall thickness`), ultimate tensile strength, length, and flaw depth be tested and the test results in the same failure mode. Unfortunately, of all of the flawed-cylinder burst test that were conducted, the only test series in which at least three replicate tests of identical cylinders that met these requirements was for the material subgroup D-14.

For the test results for material subgroup D-14 the following analysis shows the Type A uncertainties in the measurement:

F	OR LEAK FAILURE MODE	FOR FRACTURE FAILURE MODE
Mean Value of (P_f)	280 bar	331 bar
Standard Deviation of ((P_f) 38 bar	21 bar
Mean Value of P_f/P_s	0.904	1.068
Standard Deviation of 1	P _f /P _s 0.021	0.080

These values were estimated from the results of 17 tests in which the failure mode was by leaking and 32 tests in which the failure mode was by fracture. The flaw length was $l_o = 10 \times t_d$ for all cylinders tested. The cylinders range in actual wall thickness (measured at the flaw) from 5.4 mm to 8.0 mm. The ultimate tensile strength was measured on 12 of the 49 cylinders tested. The ultimate tensile strength ranged from 1078 MPa to 1157 MPa. The flaw depth ranged from 74 to 80 percent of the cylinder wall thickness for the cylinder that failed by leaking and from 70 to 78 percent of the cylinder wall thickness for the cylinder that failed by fracturing. Because the range of wall thickness and ultimate tensile strength was as wide as is likely to be found in conventional cylinders, this estimate of type A standard uncertainty should adequately include the uncertainty due to variations in cylinder wall thickness and ultimate tensile strength. No additional type B standard uncertainty should be required for variations in wall thickness and ultimate tensile strength.

As noted above, material subgroup D-14 was the only data set that was adequate to evaluate the type A uncertainty in the flawed-cylinder burst test. These estimates should be used with caution as the estimate of type A uncertainty for the cylinders in the other material groups until the estimates of uncertainty are confirmed by sufficient replication of tests on cylinders made from steels of the other alloys and strength levels.

SUMMARY OF TYPE A STANDARD UNCERTAINTY

Failure by Leaking:	(Measured Failure Pressure - P_f) \pm 13.8 %
Failure by Fracturing:	(Measured Failure Pressure - P_f) ± 6.8 %

EVALUATION OF THE TYPE B STANDARD UNCERTAINTY

To evaluate the Type B standard uncertainty in the measurements, the uncertainty in each of the

test parameters that affect the measurement was made by technical analysis and judgement of the test method. No experimental confirmation of these uncertainty estimates could be made from the test conducted here.

The measured failure pressure (P_f) may have an uncertainty due to: (1) the uncertainty in the measured pressure and (2) overshooting of the measured pressure by not detecting the exact moment when the failure event occurs. The pressure measurements have been reported by the personnel conducting the tests to have been made to within ± 1 %. This accounts for any uncertainties in the pressure gages and related pressuring equipment. The measured failure pressure may be in error due to overshooting of the measured pressure. That is, the pressure may continue to rise after the initial point of failure. This is expected to be more significant with cylinders that leak than for cylinders that fracture because the pressure may continue to rise after the initial point of failure. This seems to be accounted for in the evaluation of the type A standard uncertainty discussed above where the standard uncertainty is larger for tests that fail by leaking than for those that fail by fracturing. The value of the type B standard uncertainty from this source should be ± 1 %.

The failure pressure and failure mode are affected by the flaw length (l). The flaw length is defined in terms of the design minimum thicknesses of the cylinder. (Ex. $10 \times t_d$ or $6 \times t_d$)The machined flaw length is specified and machined within the operating tolerances of the milling cutter. The length of the flaw is measured after the test. The length of the flaw is reported to within ± 0.25 mm. Because the total flaw length in the cylinders that were tested here ranged from 40 mm to 80 mm, the uncertainty in the actual flaw length (± 0.25 mm) should not have a measurable effect on the failure pressure or failure mode. The value of the type B standard uncertainty from this source may be considered to be negligible.

The actual flaw depth (t_a) is one factor that determines the failure pressure and the failure mode. The flaw depth is defined in terms of the design minimum wall thicknesses of the cylinder. (Ex. 80 % t_d or 90 % t_d). The depth of the flaw is measured after the test. The depth of the flaw is reported to within ± 0.25 mm (0.01 in.). Because the total flaw depth in the cylinders that were tested here ranged from 3 mm to 6 mm, the uncertainty in the actual flaw depth (± 0.25 mm) could have a measurable effect on the failure pressure. However, in the evaluation of type A standard uncertainties discussed above, the flaw depth for cylinders that failed by fracturing ranged from 4.62 mm to 5.15 mm (average depth ± 0.27 mm). No noticeable effect on the failure pressure that could be due to variations in the flaw depth was determined. Therefore, The value of the type B standard uncertainty from this source may be considered to be negligible.

The cylinder wall thickness at the location of the flaw (t_a) is expected to have an effect on the measured failure pressure. The cylinder wall thickness is measured after the test at the location of the flaw. The wall thickness is reported to within ± 0.25 mm. The wall thickness of the cylinder is variable throughout the cylinder diameter and length. Variation in thickness of up to 2 mm may be found on a given cylinder.

The actual strength (ultimate tensile strength and yield strength) of the cylinder varies with location within the cylinder. The estimated variation in the strength is \pm 50 MPa. In the test used to evaluate the type A standard uncertainties discussed above, the ultimate tensile strength ranged from 1078 MPa to 1157 MPa. Therefore, the value of uncertainty due to variations in ultimate tensile strength is included in the estimate of type A standard uncertainty and the value of the type B standard uncertainty from this source may be considered to be negligible.

The specified service pressure of the cylinder (P_s) is defined by the manufacturer when the cylinder is designed. The defined service pressure for a given cylinder is specified by the cylinder type (strength and pressure range) and by the design code to which it is manufactured (Ex. DOT, ISO, other). Each of the design codes will define a different service pressure for a cylinder of the same diameter, thickness, and material properties. Because the specific service pressure Ps is a calculated value using defined rather that measured values of cylinder diameter, cylinder thickness, and specified minimum materials properties, there should be no uncertainty in this parameter. Therefore, the value of the type B standard uncertainty from this source may be taken as 0.

The leak-fracture boundary at a specified flaw length is used here to estimate the fracture resistance of the cylinder. This parameter is estimated from the highest failure pressure that caused a leak and the lowest failure pressure that caused a fracture at the specified flaw length. In addition to the uncertainties in the measured failure pressure P_f , the leak-fracture boundary depends on how close together the measured leak pressure and fracture pressure are for the specific flaw length. In some of the test series, sufficient tests were conducted so that the value of the P_f for a cylinder that leaks and the P_f for a cylinder that fracture d are close together or in a few cases may even overlap. In these cases the leak-fracture boundary can be estimated quite closely. The uncertainty in defining the leak-fracture boundary will vary for each test series and can only be evaluated on a case by case basis. The uncertainty in the definition of the leak-fracture boundary can often be reduced by repeating the tests until the difference between the highest failure pressure at which a leak occurs and the lowest pressure at which a fracture occurs is minimized. No general value of the uncertainty for defining the leak-fracture boundary that can be used for all cylinder tests can be established.

REFERENCE:

[B1] ISO Guide to the Expression of Uncertainty in Measurement, 1st Edition, 1993, International Organization for Standardization, (Geneva, Switzerland).

