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Abstract. Mars, RC6, Rijndael, Serpent and Twofish were selected as finalists for the

Advanced Encryption Standard (AES). To evaluate the finalists’ suitability as

random number generators, empirical statistical testing is commonly employed.

Although it widely believed that these five algorithms are indeed random,

randomness testing was conducted to show that there is empirical evidence

supporting this belief. In this paper, NIST reports on the studies that were conducted

on the finalists for the 192-bit key size and 256-bit key size. The results to date

suggest that all five of the finalists appear to be random.

1 Introduction

During the Advanced Encryption Standard (AES) Round I analysis period, NIST conducted randomness

tests focusing strictly on the 128-bit keysize case and reported on each of the fifteen candidate algorithms

being considered for the standard [3], On August 9, 1999, five encryption algorithms (i.e., Mars, RC6,

Rijndael, Serpent and Twofish) were selected as finalist candidates for the AES.

During the AES Round 2 analysis period. NIST further evaluated the suitability of the five finalists as

random number generators, focusing on the 192-bit and 256-bit keysize (under full round“ considerations)

and the 128-bit keysize (under partial round
1

considerations). As time permits, additional randomness

testing efforts will be conducted.

This paper describes how the output for each of the finalist algorithms was collected and then evaluated for

randomness. It discusses what was learned utilizing the NIST statistical tests [2] and offers an interpretation

of the empirical results. In Section 2, the Randomness Testing Experimental Setup is defined and

described. In Sections 3 and 4, the Full Round Testing and Partial Round Testing efforts are discussed,

respectively. Lastly, in Section 5, Summary and Conclusion , a final interpretation of the test results is

drawn.

2 Randomness Testing Experimental Setup

Randomness testing activities can be divided into two parts. NIST analyzed the output for each of the five

algorithms under full round and partial round considerations. All randomness testing was based on the

application of the NIST Statistical Test Suite. This suite consists of 16 core statistical tests that, under

different parameter inputs, can be viewed as 189 statistical tests. Table I lists each of the core statistical

1

For up-to-date information on the AES development effort visit http://csrc.nist.eov/encrvption/aes/ aes home.htm .

“ That is, examination of the output of an encryption algorithm upon completion of all prescribed rounds.

' That is. examination of the output of an encryption algorithm after each round for all prescribed rounds.



tests, followed by the number of P-values
4
reported by each core test and the test identifier. Each P-value

corresponds to the application of an individual statistical test on a single binary sequence. For a brief

description of each of these tests, see Appendix A. Full details documenting the derivation and description

of the tests may be found in a forthcoming NIST publication [2],

Statistical Test
No. of

P-values

Test

II)
Statistical Test

No. of

P-values

Test

ID

Monobit 1 1 Periodic Template 1 157

Block Frequency 1 2 Universal Statistical 1 158

Cusum 2 3-4 Approximate Entropy 1 159

Runs 1 5 Random Excursions 8 160-167

Fong Runs of Ones 1 6 Random Excursions

Variant

18 168-185

Rank 1 7 Serial 2 186-187

Spectral DFT 1 8 Fempel-Ziv Compression 1 188

Aperiodic Templates 148 9-156 Linear Complexity 1 189

Table 1 . Breakdown of the 1 89 statistical tests applied during experimentation

Randomness testing was performed using the following strategy:

(a) Input parameters such as the sequence length, sample size, and significance level

5

were fixed for each

sample
1
’. These parameters were set at 2

:" bits, 300 binary sequences, and 0.01, respectively. For each

binary sequence and each statistical test, a P-value was reported.

(b) For each P-value, a success/failure assessment was made based on whether or not it exceeded or fell

below the pre-selected significance level.

(c) For each statistical test and each sample, two evaluations were made. First, the proportion of binary

sequences in a sample that passed the statistical test was calculated. The P-value for this proportion is

equal to the probability of observing a value equal to or greater than the calculated proportion. Second,

an additional P-value was calculated, based on a X test (with nine degrees of freedom) applied to the

P-values in the entire sample to ensure uniformity.

(d) For both measures described in step (c), an assessment was made. A sample was considered to have

passed a statistical test if it satisfied both the proportion and uniformity assessments. If either of the

two P-values in step (c) fell below 0.0001. then the sample was flagged as suspect
7

. If this occurred,

additional samples were evaluated. Otherwise, the sample was believed to have satisfied the criterion

for being random (from the point of view of a specific statistical test).

4 A P-value is the probability of obtaining a test statistic as large or larger than the one observed if the sequence is random. Hence,

small values (conventionally, P-values < 0.05 or P-values < 0.01 ) are interpreted as evidence that a sequence is unlikely to be random.
5 The significance level was fixed at 0.01 in each experiment. Thus, the expected number of rejections is 1 out of every 100 binary

sequences per sample. In practice, however, this will not necessarily be satisfied.
6

In addition, statistical test input parameters such as the block frequency block length, long runs substring length, apenodic template

length, periodic template length, universal statistical test block length, number of remaining blocks, number of initialization blocks,

approximate entropy block length, serial test block length and linear complexity substring length were also fixed for each sample.

They were set at 128, 10000. 9, 9, 7, 141577. 1280. 10, 16. and 500. respectively.

Based on the order (size) of the number of sequences and tests that were performed, I in 10,000 will not give an excessive number of

rejections when a generator is good.

2



3 Full Round Testing (FRT)

FRT activities were conducted over a period of several months on multiple SUN Ultra
1

"
1

workstations. All

data was generated and evaluated online. Only the data used as the plaintext and the 192-bit and 256-bit

keys were stored offline. These values were based on data generated using the Blum-Blum-Shub (BBS)

pseudorandom bit generator
1

. All 189 statistical tests were applied to each data set as described in

Appendix B.

3.1 Data Description

NIST harnessed and analyzed eight data types for each of the two keysizes (i.e., 192 and 256 bits) for each

of the algorithms, for a total of 80 different data sets
10

. These data sets were selected based on the belief

that they would be useful in evaluating the randomness of cryptographic algorithms. Table 2 lists the eight

data types. For a description of the data types, see Appendix B.

Key Avalanche

Plaintext Avalanche

Plaintext/Ciphertext Correlation

Cipher Block Chaining Mode
Low Density Plaintext

Low Density Keys

High Density Plaintext

High Density Keys

Table 2. Data types

3.2 Empirical Results & Analysis

The application of the aperiodic template" statistical test on Serpent's Plaintext/Ciphertext Correlation

(based on 256-bit keys) yielded 12 rejections out of a sample of 300 binary sequences. According to the

probability table in Appendix C, the P- value of such an event is 0.0000629219.

Subsequent experiments were conducted for this particular case. In all, a total of 1,167,600 binary

sequences were evaluated. This constituted 3,892 repetitions of the original experiment. In no other

instance did such an event occur. Therefore, the 12 rejections obtained from the original experiment could

be considered as an anomaly. If the 3,892 samples were collectively viewed as a single data set, the

resulting number of rejections was 1 1,758, a number well within acceptable limits (i.e., the ideal number of

rejections would be 1 1,676).

4 Partial Round Testing (PRT)

Partial round testing activities were conducted over a period of several months on several SUN Ultra

workstations. All data was generated and evaluated online. However, due to resource constraints, partial

round testing was limited to the low-density plaintext case using 128-bit BBS generated keys. As in FRT,

all 189 statistical tests were applied to each (round-by-round) data set.

x
"Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure

adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and

Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose."
11

The Blum-Blum-Shub pseudorandom bit generator (PRBG) was chosen because it has been shown to be a cryptographically secure

pseudo-random bit generator. For additional information see page 186, Section 5.5.2 in [1],
10
That is. 8 data types x 2 key sizes x 5 algorithms.

11
The specific template was 1 10010010.
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4.1 Data Description

Testing was conducted on partial round versions of the algorithms under 128-bit keys. Each data set

consisted of the low-density plaintexts described in Table 2 and Appendix B. Each data set was encrypted

under a distinct, randomly chosen key. For each algorithm, the round outputs were evaluated against all of

the applicable tests. Table 3 lists the earliest round for each algorithm at which the outputs appeared to be

random in all of the tests. As one might expect, the outputs of all subsequent rounds also appeared to be

random.

There were a few issues to address in defining partial round versions of the algorithms. If input whitening

was prescribed (MARS, RC6, Rijndael, Twofish), then it was left intact; however, output whitening

(MARS, RC6, Twofish) was omitted. In fact, the outputs of the final rounds for the algorithms were not

considered at all, because full round testing was previously conducted for low-density plaintexts under 128-

bit keys during AES Round 1 analysis. Subkeys were applied in their original order, as were rounds, so

that if a modified final round was prescribed (Rijndael, Serpent), then it was never used.

Thus, the round outputs of RC6 were evaluated from rounds 1 to 19; Rijndael, from rounds 1 to 9; and

Serpent, from rounds 1 to 31. For technical reasons, Twofish rounds were evaluated in pairs
1

', namely, the

even numbered rounds from 2 to 14. MARS has a heterogeneous structure, so three different partial round

versions were defined. First, the 8 preliminary, unkeyed, “forward mixing” rounds were left intact, and the

outputs of each of the 16 keyed, “core” rounds were evaluated. Second, the forward mixing was disabled,

and the outputs of the 16 core rounds were evaluated. Third, the outputs of the 8 forward mixing rounds

were evaluated.

4.2 Empirical Results & Analysis

Sections 4.2.1 through 4.2.5 depict the PRT results, illustrated up to the fourth round for each algorithm,

with the exception of Twofish, which is illustrated up to the eighth round. In each figure, the solid line at

99% depicts the expected proportion ( i . e . , 3 binary sequences rejected out of 300), whereas, the dashed line

at 96.33% depicts the smallest proportion that satisfies the 0.0001 acceptance criterion (i.e., 1 1 binary

sequences rejected out of 300). Proportions smaller than 96.33% correspond to events that are considered to

be unlikely. Thus, if a proportion fell below 96.33%, it was flagged and subjected to additional statistical

testing. See Appendix C for additional information.

Finalist Round where randomness is evident
1

1

Finalists Round where randomness is evident

Mars
14

1 RC6 4

Mars
16

4 Rijndael 3

Mars
16

6 Serpent 4

Twofish 2

Table 4. The earliest round for each algorithm at which the outputs appear to be random.

12
This did not affect the result for Twofish in Table 4, because, like MARS and RC6, Twofish is a Feistel network. Thus, each round

leaves some of the data hits essentially unchanged, so that after one round Twofish would not appear to be random under the test

conditions. However, all data bits are affected after two rounds.
1

' The evidence is based on data collected and analyzed using the NIST Statistical Test Suite.
14
Varying Mars full core rounds while preserving forward mixing and backward mixing.

14
Varying Mars full core rounds while disabling forward mixing and backward mixing.

Ifi

Varying Mars forward mixing while disabling the full core rounds and backward mixing.

4



4.2.1 Mars Algorithm
17
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Statistical Test

Comments:

By the end of the first round, it is evident that the output from the algorithm appears to be random for all

1 89 statistical tests. Subsequent rounds produce similar statistics.

17
Varying Mars full core rounds while preserving forward mixing and backward mixing.
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4.2.2 RC6 Algorithm

PTLD- 1 28 Round 1 RC6 PTLD- 1 28 Round 2 RC6

PTLD-128 Round 4 RC6

Statistical Test

Comments:

At the end of the first round, it is evident that the output from the algorithm is non-random, given that the

majority of the 189 statistical tests fall below 96%. At the end of the second and third round, it is still

evident that the output is non-random. It isn’t until the end of the fourth round that the results appear to be

random. Subsequent rounds produce statistics similar to those obtained at round 4.
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4.2.3 Rijndael Algorithm

PTLD-128 Round 1 RIJNDAEL PTLD-128 Round 2 RIJNDAEL
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Statistical Test
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Statistical Test

Comments:

At the end of the first round, it is evident that the output from the algorithm is non-random, given that the

majority of the 189 statistical tests fall below 96%. At the end of the second round, it is still evident that the

output is non-random. It isn’t until the end of the third round that the results appear to be random.

Subsequent rounds produce statistics similar to those obtained at round 3.

7



4.2.4 Serpent Algorithm

PTLD-128 Round 1 SERPENT PTLD-128 Round 2 SERPENT

PTLD-128 Round 3 SERPENT PTLD-128 Round 4 SERPENT
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Statistical Test

Comments:

At the end of the first round, it is evident that the output from the algorithm is non-random, given that the

majority of the 189 statistical tests fall below 96%. At the end of the second and third round, it is still

evident that the output is non-random. It isn’t until the end of the fourth round that the results appear to be

random. Subsequent rounds produce statistics that are similar to those obtained at round 4.



4.2.5 Twofish Algorithm

PTLD-128 Round 2 TWOFISH
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Statistical Test

PTLD- 1 28 Round 6 TWOFISH
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Statistical Test

PTLD- 1 28 Round 8 TWOFISH
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Statistical Test

Comments:

By the end of the second round (the first round pair), it is evident that the output from the algorithm appears

to be random for all 189 statistical tests. Rounds 4 and 6 produce results similar to those produced at round

2. However, at round 8, test identifier 165 (i.e., the random excursions test
18

) appears to have failed the

acceptance criterion rule with 9 rejections out of 183 binary sequences. Upon closer inspection, it was

determined that only 183 of the 300 sequences were processed because of a random excursion test

constraint. For 183 sequences, the cutoff percentage is 95.08%. With this cutoff point, test 165 passed the

test. Subsequent rounds pairs produced statistics that were similar to those obtained for round 2, 4, and 6.

18
Specifically, we concentrate on state x = +2.

9



5 Summary and Conclusion

During the AES Round 2 analysis period, NIST further investigated the randomness of the output for each

of the finalists. The range of analyses was extended beyond the 128-bit keysize case conducted during the

AES Round I analysis period. In this study, empirical statistical testing was performed on the 192-bit and

256-bit key sizes under full round considerations. In addition, partial round testing was conducted for the

1 28-bit keysize case.

In each of these cases, a total of 189 statistical tests were applied on the different data sets. These tests

collectively span many well-known properties that any good cryptographic algorithm should satisfy. These

properties include the absence of any detectable conelation between plaintext/ciphertext pairs and the

absence of any detectable bias due to single bit changes to a plaintext block, a 192-bit key or a 256-bit key.

In one instance there was a statistical anomaly. Serpent's plaintext/ciphertext correlation (based on 256-bit

keys) yielded 12 rejections out of a sample of 300 binary sequences, using the aperiodic template statistical

test. Subsequent experiments were conducted, and no other anomalies were detected.

The results for the partial round testing, based on 128-bit key plaintext low density data, indicate that Mars

achieves randomness at round 6, RC6 at round 4, Rijndael at round 3, Serpent at round 4, and Twofish at

round 2.

In spite of an isolated statistical anomaly in Serpent, it is fair to state that all of the algorithms appear to

have no detectable deviations from randomness.
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JO
Appendix A Description of the Statistical Tests"

Monobit Test: The purpose of this test is to determine whether the number of ones and zeros in a sequence

are approximately the same as would he expected for a truly random sequence.

Block Frequency Test: The purpose of the block frequency test is to determine whether the number of

ones and zeros in each of M non-overlapping blocks created from a sequence appear to have a random

distribution.

Cumulative Sums Forward (Reverse) Test: The purpose of the cumulative sums test is to determine

whether the sum of the partial sequences occurring in the tested sequence is too large or too small.

Runs Test: The purpose of the runs test is to determine whether the number of runs of ones and zeros of

various lengths is as expected for a random sequence. In particular, this test determines whether the

oscillation between such substrings is too fast or too slow.

Long Runs of Ones Test: The purpose of this test is to determine whether the longest run of ones within

the tested sequence is consistent with the longest run of ones that would be expected in a random sequence.

Rank Test: The purpose of this test is to check for linear dependence among fixed length substrings of the

original sequence.

Discrete Fourier Transform (Spectral) Test: The purpose of this test is to detect periodic features (i.e.,

repetitive patterns that are near each other) in the tested sequence that would indicate a deviation from the

assumption of randomness.

Aperiodic Templates Test: The purpose of this test is to reject sequences that exhibit too many
occurrences of a given non-periodic (aperiodic) pattern.

Periodic Template Test: The purpose of this test is to reject sequences that show deviations from the

expected number of runs of ones of a given length.

Universal Statistical Test: The purpose of the test is to detect whether or not the sequence can be

significantly compressed without loss of information. A compressible sequence is considered to be non-

random.

Approximate Entropy Test: The purpose of the test is to compare the frequency of overlapping blocks of

two consecutive/adjacent lengths (m and m + 1

)

against the expected result for a normally distributed

sequence.

Random Excursion Test: The purpose of this test is to determine if the number of visits to a state within a

random walk exceeds what one would expect for a random sequence.

Random Excursion Variant Test: The purpose of this test is to detect deviations from the distribution of

the number of visits of a random walk to a certain state.

Serial Test: The purpose of this test is to determine whether the number of occurrences of //7-bit

overlapping patterns is approximately the same as would be expected for a random sequence.

Lempel-Ziv Complexity Test: The purpose of the test is to determine how far the tested sequence can be

compressed. The sequence is considered to be non-random if it can be significantly compressed

Linear Complexity Test: The purpose of this test is to determine whether or not the sequence is complex

enough to be considered random.

Detailed descriptions of these statistical tests may be found in [2].



Appendix B Description of the Data Types

1 Plaintext Avalanche

To examine the sensitivity of individual algorithms to changes in the plaintext, 300 binary sequences were

analyzed. The 300 sequences were parsed from a string constructed as follows: given 19,200 random 128-

bit plaintext blocks, and a 192-bit (or 256-bit) key of all zeroes, 2,457,600 derived blocks were

concatenated. Each derived block was based on the XOR of the “ciphertext formed using the fixed 192-bit

(or 256-bit) key and the random plaintext,” and the "ciphertext formed using the fixed 192-bit (or 256-bit)

key and the perturbed random plaintext with the i

th

bit changed, for I < i < 128.” A total of 128 sets of

derived blocks were formed for each random plaintext. All derived blocks were concatenated, and a total of

2,457,600 derived blocks resulted. The 300 sequences of 1,048,576 bits (8,192 blocks) were parsed from

the concatenated derived blocks.

2 192-bit (or 256-bit) Key Avalanche

To examine the sensitivity of individual algorithms to changes in the 192-bit (or 256-bit key), 300 binary

sequences were analyzed in each case. The 300 sequences were parsed from a string constructed as follows:

given 19,200 random 192-bit (256-bit) keys, and a plaintext of all zeroes, 2,457,600 derived blocks were

concatenated. Each derived block was based on the XOR of the “ciphertext formed using the fixed

plaintext and one of the random 192-bit (or 256-bit) keys,” and the “ciphertext formed using the fixed

plaintext and a perturbed form of the random 192-bit (or 256-bit) key with the i

lh

bit changed, for 1 < i
<

128.” Note that bits 129-192 (or 129-256) are unchanged. A total of 128 sets of derived blocks were

formed for each random key. All derived blocks were concatenated, and a total of 2,457,600 derived

blocks resulted. The 300 sequences of 1,048,576 bits (8,192 blocks) were parsed from the concatenated

derived blocks.

3 Plaintext/Ciphertext Correlation

In order to study the correlation of plaintext/ciphertext pairs, 300 sequences (1,048,576 bits per sequence)

were examined for each algorithm. Given a random 192-bit (or 256-bit) key and 8,192 random plaintext

blocks, a binary sequence was constructed concatenating 8,192 derived blocks (where a derived block is the

result of applying the XOR operator on the plaintext block and its corresponding ciphertext block computed

in the ECB mode). Using the 8,192 (
previously selected) plaintext blocks, the procedure was repeated 300

times, i.e., once for each (additional) random 192-bit (or 256-bit) key.

4 Cipher Block Chaining Mode

Given a random 192-bit (or 256-bit) key, a 128-bit initialization vector (IV) of all zeroes, and 8,192 128-bit

plaintext blocks (PT) of all zeroes, a binary sequence of 1.048,576 bits was constructed using ciphertext

computed in the CBC mode. That is, a binary sequence consisted of 8,192 concatenated 128-bit ciphertext

blocks. The first ciphertext block (CT,) is defined by CT| = Ek(IV © PT0 ). Subsequent ciphertext blocks

were defined by CT1+1 = E k(CT, © PT,) for 1 < i < 8,191. In all, 300 binary sequences were constructed,

each with a different random 192-bit (or 256-bit) key.

5 Low Density Plaintext

Data sets were created based on low-density plaintext blocks. Each data set consisted of 300 sequences.

Each sequence consisted of 8,257 ciphertext blocks, computed in the ECB mode, using a distinct random

key per sequence. For low-density plaintext, two data sets were created, one using a random 192-bit key,

and the other using a random 256-bit key. The first ciphertext block was calculated using an all zero

plaintext block. Ciphertext blocks 2-129 were calculated using plaintext blocks consisting of a single one

and 127 zeros, the one appearing in each of the 128 bit positions of the plaintext block. Ciphertext blocks

130 - 8,257 were calculated using plaintext blocks consisting of two ones and 126 zeros, the ones appearing

in each combination of two bit positions of the plaintext block.
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6 Low Density 192-bit (and 256-bit) Keys

Data sets were created based on low-density 192-bit (or 256-bit) keys. Each data set consisted of 300

sequences. Each sequence consisted of 8,257 ciphertext blocks computed in the ECB mode. For low-

density keys, data sets were created for each key size. For each key size and for each sequence, a different

random plaintext block was used. The first ciphertext block was calculated using a 192-bit (or 256-bit) key

of all zeroes. Ciphertext blocks 2-129 were calculated using a 192-bit key (or 256-bit key) with a single one

in each of the first 128-bit positions of the 192-bit (or 256-bit) key. All other key bits were set to zero.

Ciphertext blocks 130 - 8,257 were calculated using a 192-bit (or 256-bit) key with two ones in each

combination of two bit positions of the first 128 bits of the key. All other key bits were set to zero.

7 High Density Plaintext

Data sets were created based on high-density plaintext blocks. Each data set consisted of 300 sequences.

Each sequence consisted of 8,257 ciphertext blocks computed in the ECB mode, using a distinct key. For

high-density plaintext, two data sets were created, one using a different random 192-bit key for each

sequence, and the other using a different random 256-bit key for each sequence. The first ciphertext block

was calculated using an all ones plaintext block. Ciphertext blocks 2-129 were calculated using plaintext

blocks consisting of a single zero and 127 ones, the zero appearing in each of the 128 bit positions of the

plaintext block. Ciphertext blocks 130 - 8,257 were calculated using plaintext blocks consisting of two

zeros and 126 ones, the zeros appearing in each combination of two bit positions of the plaintext block.

8 High Density 192-bit (and 256-bit) Keys

Data sets were created based on high-density 192-bit (or 256-bit) keys. Each data set consisted of 300

sequences. Each sequence consisted of 8,257 ciphertext blocks computed in the ECB mode. For high-

density keys, data sets were created for each key size. For each key size and for each sequence, a different

random plaintext block was used. The first ciphertext block was calculated using a 192-bit (or 256-bit) key

of all ones. Ciphertext blocks 2-129 were calculated using a 192-bit (or 256-bit) key with a single zero in

each of the first 128-bit positions of the 192-bit (or 256-bit) key. All other key bits were set to one.

Ciphertext blocks 130 - 8,257 were calculated using a 192-bit (or 256-bit) key with two zeros in each

combination of two bit positions of the first 128 bits of the key. All other key bits were set to one.
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Appendix C
”)

j

The likelihood of q failures in a data set“

A B C D E

No. of

successes

(p)

No. of

failures

(q)

Proportion of

successes out of

300

Probability of each

event in column C
P-value associated with

each event

300 0 1 .0000 0.0490408940700000 1 .0000000000000000

299 1 0.9967 0.1486087699000000 0.9509591059000000

298 2 0.9933 0.2244142536000000 0.8023503360000000

297 3 0.9900 0.2251698571000000 0.5779360824000000

296 4 0.9867 0.1688773928000000 0.3527662253000000

295 5 0.9833 0.1009852692000000 0. 1 838888325000000

294 6 0.9800 0.0501526168800000 0.0829035633000000

293 7 0.9767 0.0212768677700000 0.0327509464000000

292 8 0.9733 0.0078713664860000 0.01 14740786000000

291 9 0.9700 0.0025796172990000 0.0036027121000000

290 10 0.9667 0.000758251 1453000 0.0010230948000000

289 1

1

0.9633 0.0002019217926000 0.0002648437000000

288 12 0.9600 0.0000491207054500 0.0000629219000000

287 13 0.9567 0.0000109920459800 0.0000138012000000

286 14 0.9533 0.0000022761307320 0.0000028092000000

285 15 0.9500 0.0000004383659188 0.0000005331000000

[284,0] [16,300] [0.9467,

0.0000]

[0.0000000788726559,

0.0000000000000000]

[0.0000000947000000,

0.00000000000000001

To facilitate the interpretation of each of the experiments, NIST enumerated all possible events

corresponding to the likelihood that q binary sequences are rejected out of 300, using a binomial

distribution, with the significance level set at 1%. Each row corresponds to a single event, with the

exception of the last one. This last row contains an interval that accounts for all remaining events from 16

to 300 (rejections). Note: Entries in the table reflect events that are represented in the graphs depicted in

sections 4.2. J to 4.2.5.

Column A denotes the number of binary sequences that are accepted as being random by a statistical test at

the 1% significance level. Column B denotes the number of binary sequences that are rejected as being

random by a statistical test at the 1% significance level. Columns C and D denote the proportion of binary

sequences that passed a statistical test at the 1% significance level, and its associated likelihood,

respectively. Finally, column E denotes the P-values, which correspond to the probability of observing the

number of failures or greater.

1

Each data set consists of 300 binary sequences, each of which is 2
20

bits, with a significance level of 0.01

.
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