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We describe a mean field free energy model that allows the computation of realistic

phase diagrams for a particular set of ordering transitions in face centered cubic
(FCC) binary alloys. The model is based on a sixth-order Landau expansion of

the free energy function in terms of the three nonconserved order parameters that

describe ordering on the underlying FCC lattice. When combined with appropri-

ate gradient energy terms, this model will allow the self-consistent calculation of

energetic and kinetic anisotropies of phase boundaries in future work.

1 Introduction

Equilibrium states of crystalline solids can undergo a variety of phase transitions as

the temperature and concentration of the material is varied [1]. In this paper we will

be concerned with order-disorder transitions for a face centered cubic (FCC) binary

alloy that is composed of A and B atoms. In such a transition, the structure and

spacing of the underlying lattice remains unchanged, but the arrangements of the A
and B atoms on the lattice sites can vary with temperature and concentration. For

this purpose the FCC lattice can be regarded as consisting of four interpenetrating

simple cubic sublattices. The origin of one sublattice can be taken as the corner

site of a unit cell and that of each of the other three sublattices is centered on one

of the faces (see Fig. 1). At high temperatures, but below the melting point, the

equilibrium state is typically a disordered phase, where the ratio of A and B atoms

on each sublattice is the same. The structure is FCC and the four sublattice axe

equivalent by the symmetry of the FCC lattice. At lower temperatures, ordered

phases can be favored, in which case there is a symmetry breaking. For the bulk

ordered phases we consider here, the ratio of A and B atoms are uniform on each

sublattice, but the ratio varies from sublattice to sublattice. An example of such

an ordered phase occurs in the copper-gold system, in which the CU3AU phase at

concentrations near 25% Au consists of gold atoms preferentially occupying one

sublattice, which for convenience is taken to be the one at the corner of the unit

cell. Since the gold enrichment could have occurred on any of the sublattices, there

are four variants. The symmetry of the ordered structure has become that of a

primitive cubic lattice. Then the copper atoms preferentially occupy the remaining
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three sublattices, a lattice complex composed of the cell faces, in which these three

sublattices remain equivalent by symmetry. The CU3AU phase is an example of

LI2 ordering in the Strukturbericht notation system [2]. Another example that we

consider here is the Llo phase, which represents an ordered phase such as CuAu
at concentrations near 50% Au; in this case the symmetry breaking splits the four

sublattice into two pairs of two equivalent sublattices, and the symmetry of a prim-

itive tetragonal lattice. The ordering results in alternating planes of Cu and Au
normal to one of the original cube axes, with six possible variants. In the original

FCC unit cell the Cu preferentially occupies the corners and one of the sets of faces,

and Au the other two sets faces.

Interfaces can occur between any two variants of the same phase over the range

of temperature and concentration where this phase is stable. Interfaces can also

occur between any two phases at temperatures where these phases coexist, with the

concentrations of the phases dictated by equilibrium conditions as depicted by phase

diagrams. In previous work we have examined gradient energy formulations of the

diffuse interfaces produced by such order-disorder transitions in FCC alloys [3-5]

and HCP alloys [6], the interphase boundaries (IPBs) between an Ll 2 phase and

the disordered FCC phase, and antiphase boundaries (APBs) that separate different

variants of the same ordered phase. The formulation permitted the examination of

the orientation dependences of the free energy of these interfaces and their mobility.

The derivation of these models focussed on obtaining a continuum free energy

functional with a form of the gradient energy terms that is consistent with the

underlying symmetry of the atomic lattice. However we employed a simplified

bulk free energy density that, while it permitted easy calculation of the interface

properties, has long been known to give an unrealistic phase diagram [7].

Efforts to compute a phase diagram for an FCC binary alloy date back to

Shockley and coworkers [7]; the diagram that resulted from the Bragg-Williams ap-

proximation used there was topologically different from, and a poor approximation

to, the experimental phase diagram for the prototype Cu-Au system [8]. Many
efforts to improve upon the situation followed [2,9,10]; realistic phase diagrams for

the Cu-Au system were obtained by using the cluster variation method (CVM) and

asymmetric multiparticle interactions [11]. CVM and Monte Carlo (MC) methods

have had a number of successes modeling alloy systems of varying complexity; the

reader is referred to recent reviews [2,12] for discussion of those methods.

Thus in the last twenty years it has been possible to obtain a realistic phase

diagram from statistical mechanical models, particularly for CVM [2,9,11,13]. CVM
models are cumbersome and their existence is often ignored [14]. They have been

used to make discrete calculations of the energy of the interfaces (e.g., [13, 15]).

But such discrete calculations of interfaces do not lend themselves to studying the

orientation dependent properties. In this paper we describe an improved bulk free

energy model for the bulk free energy density that allows a more realistic description

of the equilibrium phase diagram of the system, but still simple enough to be used

for describing the orientation dependence of the energy and motion kinetics of the

interfaces. It is our hope that its simplicity will find wider applications.

Our method has elements in common with the sublattice models developed by

Sundman, Dupin and others [16-19]. These models have been used successfully
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to produce realistic phase diagrams for FCC alloy systems. Their method fea-

tures many more parameters than our model; in practice, these parameters are

determined by fitting experimental measurements of the phase diagram and other

thermodynamic quantities, such as the latent heat and heat capacity. Here we show

that realistic phase diagrams may also be obtained using our simple model; we an-

ticipate that this simplicity will ultimately be advantageous in the self-consistent

calculation of energetic and kinetic anisotropies of phase boundaries.

The paper is organized as follows. The formulation is given in Section 2; the

method for finding phase diagrams and some results are given in Section 3. Finally,

discussion and conclusions are presented in the last two sections.

2 Formulation

2.1 The Concentration and Order Parameters

We briefly recall the mean-field description of the order-disorder transitions on an

FCC lattice given in Ref. [4]. A binary alloy (denoted A-B) on an FCC crystal

lattice is described geometrically by four interpenetrating cubic sublattices, with

sublattice occupation densities pj defined at the lattice points shown in Fig. 1. The

four densities represent the local atomic fraction of species A on each sublattice;

their specification is assumed to characterize the overall state of the crystal.

Figure 1. A schematic diagram of an FCC lattice. To describe ordering in this model there are

four distinguished sites corresponding to a corner and one each for the faces intersecting at that

corner.
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It is convenient to introduce four new parameters W, X
,
Y, and Z defined by

W — -
(pi + P2 + Pz + Pa) , (1)

X = -
(pi + p2 - Pz - Pa) , (2)

y -
^

(Pi ~ P2 + Pz ~ Pi ) , (3)

Z = - (pi - p? - p3 + Pi) (4)

These relations can be inverted to give

Pi=W + X + Y + Z, (5 )

p2 = W + X -Y - Z, (6 )

p3 = W -X + Y - Z,
(
7

)

Pa=W - X -Y + Z,
(8 )

which can be interpreted in terms of the expression [14]

p = W + X cos 27rx/a + Y cos2iry/a + Z cos27rz/a, (9)

which gives the relations (5-8) upon evaluation at the corners and face centers

of the conventional unit cell in Fig. 1
;
here a is the cubic lattice constant. Thus

parameter W represents the atomic fraction of the system as a whole, and is a

conserved order parameter. X, Y, and Z are non-conserved order parameters that

can vary between plus and minus one half, and are Fourier coefficients representing

density variations along the directions of the crystal axes.

In this model the disordered state is represented by pi = p3 = pz = pa = W,
which implies that X = Y = Z = 0. Ordered states axe characterized by non-zero

values for the non-conserved order parameters. For instance, the four equivalent

variants of A3B LI 2 ordering are |X| = |y| = \Z\ ^ 0 with XYZ < 0, and the four

variants of AB3 Ll 2 ordering are |A"| = |F| = \Z\ ^ 0 with XY

Z

> 0. The six

variants of Llo ordering are X = Y = 0 with |Z| ^ 0, Y = Z = 0 with |X| ^ 0, and

Z = X = 0 with |y| 7^ 0, with layering respectively in the xy, yz, and zx planes.

A bulk equilibrium state is characterized by constant values of the densities and

order parameters.

2.2 The Thermodynamic Description

A thermodynamic description of the crystal for the case of an isothermal system

is based on the bulk Helmholtz free energy density (per mole) F(X, Y, Z, W, T).

In Ref. [4], we considered an energy model based on pair-wise interactions, which

lead to an unrealistic phase diagram with a multiphase critical point. The problem

lies in the positive definiteness of the fourth-order terms in the expansion of the

entropic part of F. Pair-wise interaction energies make no contribution to these

fourth order terms. In the present work, we develop an improved model for the free

energy density, by introducing negative fourth-order contributions to the energy to

make the fourth-order free energy terms no longer positive definite. We are then

able to obtain a more realistic description of the binary alloy phase diagram.
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The idea behind our modification can be motivated by familiar examples from
the bifurcation theory of scalar systems [20]. For a fourth-degree free energy density,

Figure 2. Schematic bifurcation curves for the order parameter X versus the temperature T near

a critical point Tc . Stable and unstable solutions are indicated by solid and dashed curves, re-

spectively. (a) A fourth-degree theory results in a second-order phase transition: the disordered

state (A' = 0) changes continuously into the ordered state (A ^ 0) at Tc . (b) A sixth-degree

theory results in a first-order phase transition: locally stable ordered and disordered states exist

on either side of To, and have equal energies at To (dotted curve). The order parameter X (T) for

the minimum energy state jumps discontinuously as the temperature passes through Tq.

at W = 1/2 the Llo ordering is a second-order phase transition in which the order

parameter changes continuously from zero to non-zero values as the temperature

passes through its critical value Tc . A scalar model with Y = Z = 0 for the free

energy density of the Llo transition is

F(W,X,T) = f0 (W,T) + h(W,T)X
2 + f4(W,T)X\ (10)

with /4 (1/2,T) > 0 and /2 (1/2,T) ~ (T — Tc ). For T > Tc the system is in

stable equilibrium for the disordered state X = 0, whereas for T < Tc the lowest

energy state is an ordered phase with X 2 = —/2/(2/4 ). The ordered and disordered

states are never simultaneously stable, as illustrated in Fig. 2a. A first-order phase

transition can be obtained from a sixth-order model such as

F(W,X,T) = f0 (W,T) + f2(W,T)X
2 + f4 (W,T)X

4 + f6(W,T)X
6

, (11)

where /2 (1/2,T) ~ (T — Tc )
as before, but now /4 (1/2,T) < 0 and /e(l/2,T) > 0.

In this case, as illustrated in Fig. 2b, the minimum energy state changes discontin-

uously from a disordered phase to an ordered phase with X 2 = — /4 / (2/6 )
at the

temperature To > Tc for which /2 = /4 /(4/6 ).

A simplified model [4] that includes the Ll 2 transition with |X| = |y| = |Z| ^ 0

involves in addition a cubic term f3(W,T)XYZ. The coefficient f3 {W,T) of the

third order term in the free energy expansion depends strongly on the composition,

Interfaces for the Twenty-First Century 5



and in a symmetric model is antisymmetric about W = 1/2, and equals 0 there.

At compositions on either side of W — 1/2, the sign of XY

Z

can always be chosen

to make the term fz(W,T)XYZ negative, with X = ±Y = ±Z. Thus in a fourth-

degree theory, LI 2 is always favored over Llo near the critical point Tc ,
except

exactly at W = 1/2. In a sixth-degree theory with negative-definite fourth-order

terms, the Llo transition is first order and has a critical point at To > Tc . The
energy differences between the Llo and LI 2 phases at the lower temperature Tc

are then unimportant, and the Llo phase can be favored over the LI 2 phase near

W = 1/2 and T = T0 .

The free energy model used in our previous work featured a fourth-degree poly-

nomial expansion with positive definite fourth-order coefficients. This expansion

was adequate for the description of the LI 2 transition near W = 1/4, but neces-

sarily lead to a multicritical point at W = 1/2 and a second-order phase transition

for the Llo structure, whose temperature dependence is similar to Fig. 2a. Our
improved models in this paper are based on four-atom interactions in the energy

which add negative fourth-order terms of a large enough magnitude to make the

fourth-order term negative in a polynomial expansion at W = 1/2. As before the

sixth-degree terms result entirely from the entropy and are positive. The main goal

of the present work is to extend the model to higher degree in order to obtain a

more realistic treatment of all the transitions, and to find appropriate choices for

the dependence of the free energy density on temperature and concentration so that

realistic phase diagrams for these order-disorder transitions can be obtained. There

are enough parameters in a four-atom interaction model to affect the behavior when
W ± 1/2.

In the next two subsections, we describe the models of the internal energy

density E and entropy S that are used to obtain the improved free energy density

F = E — TS that we use in this work.

2.3 The Internal Energy

The internal energy per mole, E, of the system is assumed to be characterized

by four-atom cluster energies £40 ,
£31 ,

£22 ,
£13 ,

and £04 of the various occupa-

tions of the near-neighbor basic tetrahedral form by A4 ,
A3B, A2B2 ,

AB 3 ,
and B4 ,

respectively, that allow for four-particle interactions according to the scheme [11]

£ = E40P 1 P2P2P4 + £31 [pi P2P3 ( 1
— P4 ) + Pip2 (l

—
P3 )P4T

Pi (1 — Ps)PsPa + (1 — Pl)P2P3P4] +

£22 [PlP2 (l - P3)(l - Pa) + Pl(l — P2)P3(1
_

P4)+

Pi(l - P2 ) ( 1 - P's)

P

a + +(1 - Pi)(l - Ps)PsPa

+ (1 - Pl)P2(l - Ps)pA + (1 - P\)p2pS (1 - P4 )]

+ £13 [pi(l - P2XI - P3 ) (1 - Pa) + (1 - Pi )P2 (1 - P3)(l - P4 )

+ (1 — Pl)(l - P2 ) P3 ( 1 - P4 ) + (1 - Pl)(l - P2 )(l - Ps)Pa]

+Eoa( 1 - Pi)(l - p2 )(l - P3)(l - Pa). (12)

Interfaces for the Twenty-First Century 6



By substituting Eqns. (5-8) into the above expression, we obtain an internal energy
of the form

E = e0 + e2(X
2 + Y2 + Z2

) + e3XyZ + e41 (X
4 + Y4 + Z4

) +
e42(X

2Y2 + X 2Z2 + Y2Z 2
), (13)

and the e* are given in the appendix in terms of E40 , £31, E22 , £13 and E04 .

2-4 Entropy approximations

The point approximation to the molar entropy S of the system is given by the

expression

R .

4
„

S(pi,p2 ,p3 ,p4 )
= (14)

3=

1

where

l(x) = xln(r) + (1 - x) ln(l - x) (15)

and R is the ideal gas constant. This expression for the entropy is the sum of the

contribution from each sublattice.

We explore two choices based on Eqn. (14). One option is to use the expression

as is, which is somewhat complicated by the presence of the logarithmic terms,

which generally forces one to compute numerical solutions to the problem. Another

option is to expand this expression in a power series about the points pj = 1/2,

and truncate the series after sixth degree. The result allows more progress to be

made analytically.

s =
=f E{-‘°s 2 + Vn ~

^>
2
+ s<*

“ + §<« “ + °(pi ~H

'

j-1

(16)

Inserting the definitions (5-8) into this expression results in polynomial expressions

involving U = W — 1/2 and the order parameters X, Y, Z up to sixth degree.

2.5 Free Energy Approximations

The form of the Helmholtz free energy density, F = E-TS
,
follows from Eqn. (13),

and is given by an expression of the form

F(X, Y, Z, W, T) = e0 + e2 (X
2 + Y2 + Z2

) +

e3XYZ + e41 (X
4 + Y4 + Z4

) +

e42{X
2Y2 + X2Z2 + Y2Z2

) +~ J(p,-)- (
17

)

i=i

where we must use Equations (5-8) to get the entropy contribution in terms of the

order parameters. Using Eqn. (16) the resulting approximation for the free energy

Interfaces for the Twenty-First Century 7



takes the form

F(X, Y, Z, W, T) = f0 + MX2 + Y 2 + Z2
) + f3XYZ +

f41 (X
4 + Y4 + Z4

) + f42 {X
2Y2 + X 2Z 2 + Y2Z2

) +

f51XYZ(X
2 + Y2 + Z2

) + /61 (X
6 + r6 + Z6

) +

fe2 [x
4 (Y2 + z2

) + y
4 {x2 + z2

) + z4 (x 2 + r 2
)] +

f63X 2Y2Z2
, (18)

where the coefficients /*, for parameter choices suggested by those of Kikuchi and

de Fontaine [11] discussed above, are given in the appendix. In Section 4.1 we shall

give the results for a phase diagram using this polynomial approximation.

3 Phase diagrams

A phase diagram consists of curves in the temperature-concentration plane that

describe conditions for equilibrium between various bulk phases at the same tem-

perature, but not necessarily at the same concentration. Mathematically, this is a

minimization of the free energy subject to a fixed amount of the total amount of

concentration W in the system, which results in a common tangent construction

in terms of the free energy of the system [21]. The free energy is also an uncon-

strained minimum with respect to the non-conserved order parameters Xj. This

procedure produces several sets of equations to solve for the concentration between

stable bulk phases that delineate regions where two or more phases can coexist. To
describe the computation of phase diagrams, we first discuss the bulk equilibrium

states that are supported by the model.

3.1 Bulk Phases

In the case of the disordered FCC phase, we have X = Y = Z = 0; for high

enough temperatures this will occur for any overall concentration W. We denote

the resulting free energy for the bulk FCC phase by Ffcc(W,T); for the case in

Eqn. (17), we then have

Ffcc{W,T) = F{0,0,0,W,T) = eo(W) + BT[1(W)\. (19)

For the Ll 0 variant with Z ^ 0, the corresponding free energy Fn 0
(Z,W,T)

becomes

FLl0 (Z,W,T) = F(0, 0, Z, W,T) = e0(W) + e2(W)Z
2 + e41 Z4 +

RT
[1(W + Z)+ X{W - Z)\ (20)

for this phase.

Finally, for the LI 2 variant with X = Y = Z / 0 the free energy Fn 2 (Z, W,T

)

becomes

Fli, (Z, W, T) = F(Z
,
Z, Z, W, T) = e0(W) + 3e2(W)Z2

+e3(W)Z
3 + 3(e41 +2e42)Z

4 +
RT

[1(W + 3Z) + 31(W - Z)]

.

(21)

Interfaces for the Twenty-First Century 8



3.2

FCC-L10 Transition

Conditions under which an equilibrium between the disordered FCC phase and the

ordered Llo phase can coexist are described by the system of nonlinear equations

9FL i 0

dZ
dFL ip

dW

(Zo,Wo) = 0,

(Z0,W0 ) = ^^(WFCc) = Ho,

(
22

)

(23)

and

Ffcc(Wfcc )
- Fli 0

(Z0 ,
W0 )

- no (Wfcc - Wo) = 0, (24)

for a given T. Eqn. (22) results from minimizing the free energy with respect

to Z, and Eqn. (22) is the result of minimizing with respect to W subject to a

specified overall concentration, leading the appearance of the Lagrange multiplier

Ho- Eqn. (24) completes the common tangent construction, and expresses the fact

that the energy is also stationary with respect to variations in the interface position.

The unknowns in these equations are the concentration of the disordered phase

Wfcc and the concentration and order parameter of the Llo phase, Wo and Zo,

respectively. These equations were solved using DNSQ [22,23] using suitable initial

guesses. These guesses were generated from the T0 curve, which is in turn found

by setting the free energies of the two phases equal and requiring dF/dZ = 0. This

strategy was used in all cases where there was coexisting ordered and disordered

states.

3.3

FCC-LI2 Transition

In this case, we must satisfy the system of nonlinear equations

9Fl i 2

dZ
dFn 2

dW

(Z2,W2)= 0

(Z2,W2 ) = ^^(WFCC)=p2 ,

and

(25)

(26)

Ffcc{Wfcc) ~ Fj_,i2 {Z2 )
W2 )

— H2 (Wfcc — W2 )
— 0, (27)

for a given T. The unknowns are the concentration of the disordered phase Wpcc
and the concentration and order parameter of the Ll 2 phase, W2 and Z2 respec-

tively.

3.4

LI0 -LI2 Transition

In this final case, we must satisfy the system of nonlinear equations

^Fl io

dZ
dFL i 2

dZ

(Zo,Wo)=0

(Z2,W2 )
= 0

(28)

(29)
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^(2b,Wo) =^i (22,Wi) = W, (30)

and

Fli o (Z0 ,
Wq) - FLl2 (Z2 ,

W2 )
- hi (Wo - W2 )

= 0, (31)

for a given T

.

The unknowns are the concentrations and order parameters for the

respective ordered phases.

4 Results

We next present results of numerically-computed phase diagrams using these equa-

tions. The results are given in non-dimensional form by using the energy scale —u
to nondimensionalize the free energies and the temperature scale —u>/R to nondi-

mensionalize T.

4-1 Results Using the Sixth-Degree Landau Expansion

We first describe a phase diagram based on the free energy function given in

Eqn. (18), using the parameters

fo(U, T) = -
^ +

6C7
2 + T(ln ± + 2U2

), (32)

f2 (U,T) = -4 + 40J7
2 + 2T, (33)

MU) = -250(17 - aU3
), (34)

/« = -4, (35)

M = S, (36)

M = 4, (37)

M = -3, (38)

M = 6, (39)

where U — W — 1/2. With the choice a — 2 and 0 « 27.735894, we will have equal

dimensionless temperatures of T = 2.5 at the congruent points of the FCC-LI 2

and FCC-Llo order-disorder transitions near W = 1/4 and W = 1/2, respectively.

The choice of the last two parameters, f§2 and /63 ,
in the free energy function

(18) was made so that the sixth degree terms would drop out of the problem when

X = Y = Z and leave the analysis of the bulk Ll 2 phase unaffected.

By solving the required nonlinear equations using the sixth-degree polynomial

form and these coefficients, we arrive at the phase diagram shown in Fig. 3. This

phase diagram is an idealized, symmetric approximation to the CuAu binary system

[8]. The choice —u/R « 265K would locate the congruent points at about the

right temperatures for CuAu. The qualitative appearance of the phase diagram

for temperatures in the vicinity of the congruent points is satisfactory, but the

behavior of the system in the dilute limit is unrealistic. The situation is improved

by retaining the logarithmic terms in the entropy contribution to the free energy

density, and we focus our attention on this model in the remainder of the paper.
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Figure 3. A model phase diagram for the Cu-Au system, from the parameters listed in Eqn. (32).

Note that it is symmetric about W — 1/2.

Table 1. Coefficients used for the internal energy contribution to the free energy density; here

U = W -1/2.

Case I II III

eo(U) 6U 2 6U 2 6U 2

e 2 (U) -4 + U 2 -4 + U 2 -4 + U2

e3 (C0 2001/(1 - 2U2
)

2001/(1 - 2U2
) 100U(1 - 2U2

)

e4i -12 -5 -12

e42 15 10 15

4-2 Results Using the Free Energy with Logarithmic Terms

We next discuss examples of phase diagrams obtained by using the free energy

model given by Eqn. (17) with coefficients given in Table 1. The first case is a

qualitative model for the Cu-Au system, and the last two are for demonstration

purposes. We note that with these coefficients, the limit of metastability for the

disordered phase for W = 1/2 (corresponding to the temperature Tc in Fig. 2b)

occurs at a dimensionless temperature T = 2 in all three cases.

With the coefficients of case I, the phase diagram in Fig. 4 is obtained. This

diagram is qualitatively similar to that for the Cu-Au system [8], but with symmetry

about W = 1/2. This model diagram should be sufficient for the purposes of

studying the surface tension anisotropy of IPBs in our future work. a

“In order to obtain quantitative agreement with the congruent point of the FCC-LI 2 transition,
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2.7

W

Figure 4. A model phase diagram for the Cu-Au system, from the parameters of Case I. Note

that it is symmetric about W = 1/2.

For the parameters of Case II, we find that the phase diagram has a lowered

and substantially reduced region where the FCC-Llo transition occurs; see Fig. 5.

From Fig. 5 we can see that the coexistence region for the FCC and Llo phases is

dramatically smaller than for case I. As e4i rises toward the value -8/3, the FCC-
Llo transition region disappears and becomes a multicritical point at e4 i

= —8/3.

The phase diagram for the parameters of case III is given in Fig. 6. In this

case, the congruent point for the FCC-LI 2 transition is just outside the FCC-L10

coexistence region; further decrease in e3 will result in a peritectoid phase diagram.

We can summarize the effects of the parameters as follows. The size of e3

controls the location of the congruent point for the FCC-LI 2 transition. If it

is sufficiently large, then the congruent point is shifted to values symmetrically

located about W = 1/2 with temperature greater than 2. The value of e4 i controls

the location of the congruent point for the FCC-L10 transition. If e44 < —8/3,

the congruent point remains at W = 1/2 but occurs at T > 2. IFe4 i > —8/3,

the congruent point is at T — 2 and the transition is second order. Using these

parameters we have been able to obtain satisfactory phase diagrams that would

allow the description of the variation of concentration across both interphase and

antiphase boundaries.

we would choose—ui/R ft 248K.
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w

Figure 5. The phase diagram from the parameters of Case II. The region where Llo is the sole

stable phase is near
(
W,T

) = (0.5,2). The multicritical point at e4 i
= —8/3 is being approached,

and the FCC-Llo transition is disappearing.

Figure 6. The phase diagram from the parameters of Case III.
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5 Discussion

The solutions to the nonlinear equations that give the curves on the phase diagram

become difficult to compute when the dimensionless temperature drops below about

2 for the case with logarithmic terms in the entropy. The difficulty appears to be

that the values of the order parameters and concentration axe approaching the

limits of the ranges allowed by the logarithmic terms. For example, in the free

energy density for the Ll 2 phase, there is a term in the argument of the In function

that requires

1 - W - 3Z > 0; (40)

solving for Z gives

Z <
1 - w

From the Ll 0 phase, we can also conclude that we must have

W > Z.

(41)

(42)

We may plot the boundaries of these inequalities along with the solutions to the

nonlinear equations that give the phase diagram in the (W,
Z)-plane: this has been

done in Fig. 7. The temperature is decreasing as the solid curves (re:: resenting the

coexistence region boundaries) approach the edges of their allowed ranges (dashed

lines). The jumps in slope occur at the ends of the tie line at the eutectoid tem-

perature for Case I. We hypothesize that when the solutions get too close to these

boundaries, the iteration procedure breaks down because the procedures allow it-

erates beyond the boundaries. We believe that we can recast the equations to

eliminate the logarithmic terms and thus alleviate this problem; this is allowed by

the special form of the free energy density.

6 Conclusion

We have been able to compute a simple model phase diagram with an approach

that is a modification to the quasi-chemical description. The modifications were

rooted in the choices of Kikuchi and coworkers [11, 15] in their successful CVM
approaches, but we have modified the coefficients to suit our needs in drawing the

phase diagram. We found that two coefficients (e^ and e-n) in the internal energy

contribution to the free energy made the biggest contributions to controlling the

resulting phase diagram.

The coefficient e^\ of the terms involving Xf strongly affects the temperature

of the congruent point for the FCC-Llo transition; there is a multicritical point at

e4 j
= —8/3, at which the first order nature of the transition disappears. Elsewhere

we will show that as one approaches the multicritical point for the FCC-L1 0 phase

transition, there is a quadratic decay in the interfacial energy of the interphase

boundaries for any orientation [24].

The size of the coefficient ez plays a crucial role in setting the temperature

and concentration of the congruent point in the FCC-L1 2 transition. When it is

larger, the congruent point occurs at larger temperatures. When it decreases, the
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Figure 7. The dashed lines show the limits of the allowed ranges for the arguments of the In

functions. The solid curves are plots of the order parameters found along the coexistence region

boundaries for the parameters of Case I. The lower curves near the middle of the plot are for the

LI 2 boundaries and the curves in the upper right are for the L1 q boundaries.

congruent point disappears inside the FCC-L1 0 coexistence region and a peritectoid

phase diagram occurs. We have not yet computed the peritectoid phase diagram

due to numerical difficulties with the logarithmic terms; recasting the root-finding

procedure to eliminate these terms should alleviate this difficulty.
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Appendix

If we begin with Eqn. (12), and substitute the expressions (5-8) to eliminate the

occupation densities pi, we obtain the expression

£ = — [4£?3i + 6£22 + 4£i3 + Eq4 + E40 ]
+ U[Esi — £13 — £04 /2 + £'

40 /2 ]
lb

+ (7“[3£4o/2
— 3£22 + 3£o4/2] + Uz

[—AEz\ + 4£i3 — 2£o4 + 2£io]

+ 17
4
[—4^31 + 6£22 — 4£i3 + £04 + £40]

+ {X 2 + Y2 + Z2
){£22 - £40/2 - £04/2 + £[4£31 - 4£13 + 2£04 - 2£40 ]

+ £"[8£3i — 12£22 + 8£i3 — 2£o4 — 2£4o]

}

+ XY Z{—8E21 + 8£43 — 4£o4 + 4£io

+ U[—32£3i + 48£22 — 32£i3 + 8£o4 + 8£4o]

}

+ {X2Y2 + X 2Z2 + F 2Z2
){8£3 1

- 12£22 + 8£i 3 - 2£04 - 2£40 )

+ (X 4 + Y 4 + Z4
){—4£3 i + 6£22 - 4£13 + £04 + £40 }, (43)

where U = W - 1/2. We note that if £40 = £31 = £22 = £13 = £04 = 1, then

£= 1 .

A simple bond counting argument is based on the bond energies Eaa, Eab
and Ebb between the A-A, A-B, and B-B pairs of atoms, respectively. If we

assume that £4,4 = Ebb and use a reference energy corresponding to Eaa, then

the energies of the different configurations according to this scheme are

£40 — 0, £31 = 3u>, E22 = 4w, £3 = 3u
, £04 = 0, (44)

where u — Eab — Eaa ,
so that the configurational energies are thus characterized

in terms of the energy u. Substituting these expressions into Eqn. (43) gives that

£ = £0 + 4u[X 2 + Y 2 + Z2
]. (45)

This expression for the internal energy density is inadequate for the purposes of

drawing phase diagrams [7].

A better model for the multiparticle interactions in the internal energy, as given

by Kikuchi and de Fontaine [11] and used in Kikuchi and Cahn [15], is to take

£40 = 0, £31 = 3u(l + a), £22 — 4cj, Ei 3 — 3cu(l + b), £04 = 0. (46)

where the constants o, b and u> were determined from a best fit to the phase diagram

for the case of Cu-Au system:

a = 0.01, b = -0.08, ^ = -663 K. (47)

With this scheme we obtain more terms in the internal energy density of Eqn. (13),

and the coefficients e; in that expression are given by

e0 = ^u(U2 - 1/4) [4 + a + b + 4(a - b)U + 4 (a + b)U2

]

e 2 = 2cj + GujU[ci — b + 2(a + 5)17]

e 3 = 12u(a + b)[b - a - 4(a + b)U],

e4 i
= —6u(a + b), e42 = 12cj(o + b). (48)
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These expressions axe used to motivate the choices made for the energy coefficients

shown in table 1.

For the polynomial free energy (18) we have the coefficients

h = 2w + uU[a - b + 2(a + b)U] + RT [2 + 8U2 + 32U4

]

h = 12u[b - a- 4{a + b)U] + RT [32U + 256U3

] ,

/41 = —6w(a + b) + RT — + 32U2
,

O

Ja2 — 12w(a + b) + [8 + 192f/^]
,

hi = 256RTU, hi = 32RT/15, /62 = 32RT, /63 = 192RT, (49)

and R = kNo is the gas constant, where No is Avogadro’s number. These expres-

sions are used to motivate the choices made for the energy coefficients shown in

Eqns. (32-39).
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