
The Process Specification Language (PSL)
Overview and Version 1.0 Specification

Craig Schlenoff
Josh Lubell
U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards
and Technology

Gaithersburg, MD 20899

Michael Gruninger
4 Taddle Creek Road
University of Toronto

Toronto, Ontario M5S 3G9

Florence Tissot
Knowledge Based Systems, Inc.

1408 University Drive East

College Station, TX 77840

John Valois
STEPTools Inc.

Rensselaer Technology Park

Troy, NY 12180

Jintae Lee
University of Colorado

Campus Box 419
Boulder, Colorado 80309

GC
100

.156

NO. 6459

2000

NIST
U.S. DEPARTMENT OF COMMERCE
Technology Administration
National Institute of Standards and
Technology

NISTIR 6459

The Process Specification Language (PSL)
Overview and Version 1.0 Specification

Craig Schlenoff
Josh Lubeil
U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

Michael Gruninger
4 Taddle Creek Road
University of Toronto

Toronto, Ontario M5S 3G9

Florence Tissot
Knowledge Based Systems, Inc.

1408 University Drive East

College Station, TX 77840

John Valois
STEPTools Inc.

Rensselaer Technology Park

Troy, NY 12180

Jintae Lee
University of Colorado

Campus Box 419
Boulder, Colorado 80309

February 2000

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Dr. Cheryl L. Shavers, Under Secretary

of Commerce for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Director

The Process Specification Language (PSL)

Overview and Version 1.0 Specification

Craig Schlenoff

National Institute of Standards and Technology

100 Bureau Drive - Stop 8260

Gaithersburg, MD 20899

Michael Gruninger

4 Taddle Creek Road
University of Toronto

Toronto, Ontario M5S 3G9

Florence Tissot

Knowledge Based Systems, Inc.

1408 University Drive East

College Station, TX 77840

John Valois

STEPTools Inc.

Rensselaer Technology Park

Troy, NY 12180

Josh Lubell

National Institute of Standards and Technology

100 Bureau Drive - Stop 8260

Gaithersburg, MD 20899

Jintae Lee

University of Colorado - Campus Box 419

Boulder, Colorado 80309

Keywords: manufacturing process specification language, PSL, KIF, ontology

This document describes Version 1.0 of the Process Specification Language (PSL). PSL
is an interchange format designed to help exchange process information automatically

among a wide variety of manufacturing applications such as process modeling, process

planning, scheduling, simulation, workflow, project management, and business process

re-engineering tools. These tools would interoperate by translating between their native

format and PSL. Then, any system would be able to automatically exchange process

information with any other system via PSL.

This document focuses specifically on PSL’s rationale, semantic architecture, informal

documentation, and the vision of how one would translate in and out of PSL.

1 Overview 4

1.1 Purpose 4

1 .2 Approach 4

1.3 Scope 5

2 Related Work 5

3 The Process Specification Language 7

3.1 The Need for Semantics 7

3.2 What is PSL? 8

3.2. 1 The Language 9

3.2.2 Model Theory 9

3.2.3 Proof Theory 10

3.3 Informal Semantics of PSL Core 12

3.4 Extensions in PSL 1 .0 13

3.4.1 PSL Outer Core 13

3.4.2 Generic Activities and Ordering Relations 14

3.4.3 PSL Extensions for Schedules 14

3.5 Approach for Developing Extensions 15

4 Informal Documentation 15

4.1 Introduction 15

4.2 PSL Core 16

4.2. 1 Kinds for the PSL Core 16

4.2.2 Individuals for the PSL Core 18

4.2.3 Primitive Relations for the PSL Core 19

4.2.4 Primitive Functions for the PSL Core 19

4.2.5 Defined Relations for the PSL Core 20

4.2.6 Definitions and Axioms for the PSL Core in the formal language 21

4.2.7 PSL Core Axioms 22

4.3 Subactivity Extension 24
4.3.1 Defined Classes in the Subactivity Extension 24

4.3.2 Defined Relations in the Subactivity Extension 25

4.3.3 Formal Axioms in the Subactivity Extension 25

4.4 Activity-Occurrences Extension 26

4.4. 1 Introduced Relations in the Activity-Occurrences Extension 26

4.4.2 Defined Relations in the Activity-Occurrences Extension 27

4.4.3 Formal Axioms in the Activity-Occurrences Extension 27

4.5 States Extension 29

4.5. 1 Classes of Objects in the States Extension 29

4.5.2 Introduced Relations in the States Extension 29

4.6 Integer and Duration Extension 29

4.6. 1 Primitive Kinds in the Integer Extension 30

4.6.2 Defined Kinds in the Integer Extension 30

4.6.3 Individuals in the Integer Extension 30

4.6.4 Functions in the Integer Extension 30

4.6.5 Relations on Integers 31

4.6.6 Formal Definitions and Axioms for Integers 32

4.6.7 Primitive Kinds in the Timedurations Extension 35

4.6.8 Individuals in the Timeduration Extension 35

4.6.9 Defined Properties and Relations in the Duration Extension 35

4.6.10 Defined Functions in the Duration Extension 36

4.6. 1 1 Functions in the Duration Extension 36

2

4.7 Ordering Relations over Activities Extension 40
4.7.1 Classes of Activities in the Ordering Relations Extension 40
4.7.2 Relations in the Ordering Relations Extension 41

4.8 Ordering Relations For Complex Sequences of Activities Extension 41
4.8. 1 Defined Relations in the Ordering Relations For Complex Sequences Extension 41

4.9 Nondeterministic Activities Extension 43
4.9.1 Classes of Activities in the Nondeterministic Activities Extension 43

4.9.2 Formal Axioms in the Nondeterministic Activities Extension 44

4.10 Reasoning about States Extension 44
4. 10. 1 Classes of Fluents in the Reasoning about States Extension 44

4.10.2 Relations In the Reasoning about States Extension 45

4.10.3 Formal Definitions for the Reasoning about States Extension 46

4.11 Interval Activities Extension 49
4.11.1 Classes of Activities in the Interval Activities Extension 49

4.11.2 Defined Functions in the Interval Activities Extension 50

4.11.3 Defined Relations in the Interval Activities Extension 50

4.1 1.4 Formal Definitions and Axioms for the Interval Activities Extension 50

4.12 Temporal Ordering Relations Extension 52
4.12.1 Defined Relations in the Temporal Ordering Extension 52

4.12.2 Formal Definitions for the Temporal Ordering Extension 53

4.13 Junctions Extension 54
4.13.1 Classes of Activities in the Junctions Extension 54

4. 1 3.2 Formal Definitions for the Junctions Extension 55

5 Translation Using PSL 57

5.1 Motivation 57

5.2 Overview of Semantic and Syntactic Translation 57

6 Conclusion 60

7 References 62

Appendix A: Sample PSL Instance 64

Appendix B: Mapping PSL Concepts to the EXPRESS Representation 72

Mapping the PSL Ontology to EXPRESS 72

UseofEXPRESS-X 74

Appendix C: Mapping PSL Concepts to the extensible Markup Language (XML)
Representation 76

XML’s Strengths and Weaknesses as a Presentation Language for PSL 76

Guidelines for Mapping PSL to XML 76

Appendix D: Basic PSL Syntax 80

BNF Conventions 80

Basic Tokens and Syntactic Categories 80

Lexicons 81

Grammars 8

1

Languages 82

Defined Quantifiers 82

3

1 Overview

1.1 Purpose

As the use of information technology in manufacturing operations has matured, the

capability of software applications to interoperate has become increasingly important.

Initially, translation programs were written to enable communication from one specific

application to another, although not necessarily both ways. As the number of

applications has increased and the information has become more complex, it has become

much more difficult for software developers to provide translators between every pair of

applications that need to exchange information. Standards-based translation mechanisms

have simplified integration for some manufacturing software developers by requiring

only a single translator to be developed between their respective software product and the

interchange standard. By developing only this single translator, the application can

interoperate with a wide variety of other applications that have a similar translator

between that standard and their application.

This challenge of interoperability is especially apparent with respect to manufacturing

process information. Many manufacturing engineering and business software applications

use process information, including manufacturing simulation, production scheduling,

manufacturing process planning, workflow, business process reengineering, product

realization process modeling, and project management. Each of these applications

utilizes process information in a different way, so it is not surprising that these

applications’ representations of process information are different as well. The primary

difficulty with developing a standard to exchange process information is that these

applications sometimes associate different meanings with the terms representing the

information that they are exchanging. For example, in the case of a workflow system, a

resource is primarily thought of as the information that is used to make necessary

decisions. In a process planning system, a resource is primarily thought of as a person or

machine that will perform a given task. If one were to integrate a process model from a

workflow with a process planning application, one’s first inclination would most likely

be to map one resource concept to the other. This mapping would undoubtedly cause

confusion. Therefore, both the semantics and the syntax of these applications need to be

considered when translating to a neutral standard. In this case, the standard must be able

to capture all of the potential meanings behind the information being exchanged.

The Process Specification Language (PSL) project at the National Institute of

Standards and Technology (NIST) is addressing this issue by creating a neutral, standard

language for process specification to serve as an Interlingua to integrate multiple process-

related applications throughout the manufacturing life cycle. This interchange language is

unique due to the formal semantic definitions (the ontology) that underlie the language.

Because of these explicit and unambiguous definitions, information exchange can be

achieved without relying on hidden assumptions or subjective mappings.

1.2 Approach

The approach in developing the PSL involved five phases: requirements gathering,

existing process representation analysis, language creation, pilot implementation and

validation, and submission as a candidate standard. The completion of the first phase

4

resulted in a comprehensive set of requirements for specifying manufacturing processes

[1]. In the second phase, twenty-six process representations were identified as candidates

for analysis by the PSL team and analyzed with respect to the phase one requirements [2].

Nearly all of the representations studied focused on the syntax of process specification

rather than the meaning of terms, the semantics. While this is sufficient for exchanging

information between applications of the same type, such as process planning, different

types of applications associate different meanings with similar or identical terms. As a

result of this, a large focus of the third phase involved the development of a formal

semantic layer (an ontology) for PSL based on the Knowledge Interchange Format (KIF)

specification [3], By using this ontology to define explicitly and clearly the concepts

intrinsic to manufacturing process information, PSL was used to integrate multiple

existing manufacturing process applications in the fourth phase of the project.

1.3 Scope

To keep this work feasible, the scope of study is limited to the realm of discrete processes

related to manufacturing, including all processes in the design/manufacturing life cycle.

Business processes and manufacturing engineering processes are included in this work
both to ascertain common aspects for process specification and to acknowledge the

current and future integration of business and engineering functions.

In addition, the goal of this project is to create a
“
process specification language,” not

a
“
process characterization language.” Our definition of a process specification

language is a language used to specify a process or a flow of processes, including

supporting parameters and settings. This may be done for prescriptive or descriptive

purposes and is composed of an ontology and one or more presentations. This is different

from a process characterization language, which we define as a language describing the

behaviors and capabilities of a process independent of any specific application. For

example, the dynamic or kinematic properties of a process (e.g., tool chatter, a numerical

model capturing the dynamic behavior of a process or limits on the process’s

performance or applicability), independent of a specific process, would be included in a

characterization language.

2 Related Work
PSL is a neutral language for process specification to serve as an interchange language to

integrate multiple process-related applications throughout the manufacturing process life

cycle (from initial process conception all the way through to process retirement). This

project is related to, and in many cases working closely with, many other efforts. These

include individual efforts (those involving only a single company or academic institution)

such as A Language for Process Specification (ALPS) Project [4], the Toronto Virtual

Enterprise (TOVE) Project [5], the Enterprise Ontology Project [6], and the Core Plan

Representation (CPR) Project [7]. In addition, the PSL project is in close collaboration

with various projects (those that involve numerous companies or academic institutions)

such as Shared Planning and Activity Representation (SPAR) Project [8], the Process

Interchange Format (PDF) Project [9], and the WorkFlow Management Coalition (WfMC)
[10].

ALPS was a NIST research project whose goal was to identify information models to

facilitate process specification and to transfer this information to process control. The

5

PSL project, which could be viewed as a spin-off of the ALPS project, has a goal to take

a much deeper look into the issues of process specification and to explore these issues in

a much broader set of manufacturing domains.

The TOVE project provides a generic, reusable data model that provides a shared

terminology for the enterprise that each agent can jointly understand and use. The
Enterprise Ontology project’s goal is to provide “a collection of terms and definitions

relevant to business enterprises to enable coping with a fast changing environment

through improved business planning, greater flexibility, more effective communication

and integration.” While both TOVE and the Enterprise Ontology focus on business

processes, there are common semantic concepts in both these projects and the

manufacturing process-focused PSL.

The CPR project is attempting to develop a model that supports the representation

needs of many different military-planning systems. The SPAR project is an ARP1-

(ARPA (Advanced Research Projects Agency)/Rome Laboratory Planning Initiative)

funded project whose goals are similar to CPR. Both of these projects are to similar to

PSL in the sense that they are attempting to create a shared model of what constitutes a

plan, process, or activity. There has even been coordination between the participants in

SPAR, CPR, and PSL. The core models have similar roots. However, both SPAR and

CPR are focusing more on military types of plans and processes.

PIF is an interchange format based upon formally defined semantic concepts, like

PSL. However, unlike PSL, PIF is focused on modeling business processes and offers a

single, syntactical presentation, the BNF (Backus-Naur Format) specification of the

Ontolingua
1

Frame syntax.

The Workflow Management Coalition has developed a Workflow Reference Model
whose purpose is to identify the characteristics, terminology, and components to enable

the development and interoperability of workflow specifications. Although the area of

workflow is within the scope of the PSL project, it is only one small component. The

Workflow Reference Model has and will be used by the PSL project to ensure

consistency.

In addition to the existing projects described above, there have been countless,

previous efforts to create process representations focusing specifically on various

representational areas or on different functionality. For example, representational areas

such as workflow, process planning, artificial intelligence planning, and business process

re-engineering have had representations developed focusing solely on their respective

areas. Equally important to the representational area in which the representations are

being developed is the role (functionality) that the representation will play. There have

been process representations developed which have focused merely on graphically

documenting a process, to those which are used as internal representations for software

packages, to those which are used as a neutral representation to enable integration. The

process representations that resulted from many of these efforts were analyzed in the

second phase of the PSL project (described above). A sampling of some of these existing

1 No approval or endorsement of any commercial product in this paper by the National Institute of

Standards and Technology is intended or implied. This paper was prepared by United States Government

employees as part of their official duties and is, therefore, a work of the U.S. Government and not subject

to copyright.

6

process representations is shown in Figure 1 . For more information about the

representations listed in the figure, please see [2],

• ACT formalism • O-Plan Formalism (Task Formalism)
• A Language for Process Specification • OZONE

(ALPS) © Parts and Action (Pact)
• Behavior Diagrams • PAR2 (Product-Activity-Resource 2)

j

• Core Plan Representation (CPR) • ISO/DIS 1 0303-49, Process Structure and
• Entity-Relationship (E-R) models Properties
• Petri Net Representation • PERT (Program Evaluation and Review
• Functional Flow Block Diagrams Technique) Networks
• Gantt Charts • Petri Nets
• Generalized Activity Networks (GAN) • Process Flow Representation (PFR)
• Hierarchical Task Networks (HTN) • Process Interchange Format (PEF) Version
• IDEFO (Information Definition 0) 1.1

• IDEF3 • Quirk Models
• <I-N-OVA> Constraint Model • Visual Process Modeling Language (VPML)

• AND/OR Graphs

• Data Flow Diagrams

• Directed Graphs

• State Transition Diagrams

• Tree Structures

Figure 1 : A Sampling of Existing Process Representations

3 The Process Specification Language

3. 1 The Need for Semantics

Existing approaches to process modeling lack an adequate specification of the semantics

of the process terminology, which leads to inconsistent interpretations and uses of

information. Analysis is hindered because models tend to be unique to their applications

and are rarely reused. Obstacles to interoperability arise from the fact that the systems

that support the functions in many enterprises were created independently, and do not

share the same semantics for the terminology of their process models.

For example, consider Figure 2 in which two existing process planning applications

are attempting to exchange data. Intuitively the applications can share concepts; for

example, both material in Application A and workpiece in Application B correspond to a

common concept of work-in-progress. However, without explicit definitions for the

terms, it is difficult to see how concepts in each application correspond to each other.

Both Application A and B have the term resource , but in each application this term has a

different meaning. Simply sharing terminology is insufficient to support interoperability;

7

the applications must share their semantics, i.e., the meanings of their respective

terminologies.

Figure 2: Why Semantics?

A rigorous foundation for process design, analysis, and execution therefore requires a

formal specification of the semantics of process models. One approach to generating this

specification is through the use of ontologies. An ontology is a formal description of the

entities within a given domain: the properties they possess, the relationships they

participate in, the constraints they are subject to, and the patterns of behavior they exhibit

[1 1]. It provides a common terminology that helps to capture key distinctions among
concepts in different domains, which aids in the translation process.

A goal of PSL is to facilitate application interoperability by means of the

development of translators between native formats of those applications and PSL.

Without an overarching language like PSL to serve as a medium of information

interchange between applications, a unique translator must be written for every two-party

exchange. However, this approach requires n(n- 1) translators for n different ontologies.

With PSL serving as a standardized medium of information interchange, the number of

translators for n different ontologies is reduced to n, since it only requires translators

between native ontologies and the interchange ontology. The other feature of this

approach is that the applications interact primarily through the exchange of files that

contain process information. This requires the explicit specification of the semantics of

these process descriptions. There can be no procedural interpretation of the application

constructs or any implicit assumptions about process behavior. Similarly, all

assumptions made by the application must be made explicit since translation must be

done using the input file alone.

3.2 What is PSL?
An ontology is a set of specialized terminology along with some specification of the

meaning of terms in the lexicon. The primary component of PSL is an ontology designed

8

to represent the primitive concepts that, according to PSL, are adequate for describing

basic manufacturing, engineering, and business processes. Note that the focus of an

ontology is not only on terms, but also on their meaning. We can include an arbitrary set

of terms in our ontology, but they can only be shared if we agree on their meaning. It is

the intended semantics of the terms that is being shared, not simply the terms.

The challenge is that a framework is needed to make the meaning of the terminology

for ontologies explicit. Any intuitions that are implicit are a possible source of ambiguity

and confusion. For the PSL ontology, we must provide a rigorous mathematical

characterization of process information as well as precise expression of the basic logical

properties of that information in the PSL language. In providing the ontology, we
therefore specify three notions:

• language

• model theory

• proof theory

3.2.1 The Language

A language is a lexicon (a set of symbols) and a grammar (a specification of how
these symbols can be combined to make well-formed formulas). The lexicon consists of

logical symbols (such as boolean connectives and quantifiers) and nonlogical symbols.

For PSL, the nonlogical part of the lexicon consists of expressions (constants, function

symbols, and predicates) chosen to represent the basic concepts in the PSL ontology.

Notably, these will include the 1-place predicates ‘activity’, ‘activity-

occurrence’, ‘obj ect’, and ‘timepoint’ for the four primary kinds of entity in the

basic PSL ontology, the function symbols beginof and endof that return the timepoints

at which an activity begins and ends, respectively, and the 2-place predicates is-

occurring-at, occurrence-of , exists-at, before, and participates-in,
which express important relations between various elements of the ontology.

The underlying grammar used for PSL is based roughly on the grammar of OF
(Knowledge Interchange Format). OF is a formal language based on first-order logic

developed for the exchange of knowledge among different computer programs with

disparate representations. IGF pro\ides the level of rigor necessary to define concepts in

the ontology unambiguously, a necessary characteristic to exchange manufacturing

process information using the PSL Ontology. Like KIF, PSL provides a rigorous BNF
(Backus-Naur form) specification. The BNF provides a rigorous and precise recursive

definition of the class of grammatically correct expressions of the PSL language. In

addition to the simple clarity of such a definition, the BNF definition makes it possible to

develop computational tools for the transfer of process information, one of PSL’s central

goals. In particular, by fixing the definition of the language precisely (and only by so

fixing its definition), it is possible to develop translators between PSL and other,

similarly well-defined representation languages. The actual PSL BNF can be found

below in Appendix D.

3.2.2 Model Theory

The model theory of PSL provides a rigorous, abstract mathematical characterization

of the semantics, or meaning, of the language of PSL. This representation is typically a

set with some additional structure (e.g., a partial ordering, lattice, or vector space). The

9

model theory then defines meanings for the terminology and a notion of truth for

sentences of the language in terms of this model. The objective is to identify each concept

in the language with an element of some mathematical structure, such as lattices, linear

orderings, and vector spaces.

Given a model theory, the underlying theory of the mathematical structures used in the

theory then becomes available as a basis for reasoning about the concepts intended by the

terms of the PSL language and their logical relationships, so that the set of models

constitutes the formal semantics of the ontology.

3.2.3 Proof Theory

The proof theory consists of three components: PSL Core, one or more foundational

theories, and PSL extensions.

PSL Core

The PSL Core is a set of axioms written in the basic language of PSL. The PSL Core

axioms provide a syntactic representation of the PSL model theory, in that they are sound

and complete with regard to the model theory. That is to say, every axiom is true in

every model of the language of the theory, and every sentence of the language of PSL
that is true in every model of PSL can be derived from the axioms. Because of this tight

connection between the Core axioms and the model theory for PSL, the Core itself can be

said to provide a semantics for the terms in the PSL language. (And indeed, in this

document, we will frequently speak of a set of axioms “providing semantics” for a given

lexicon.)

Foundational Theories

The purpose of PSL Core is to axiomatize a set of intuitive semantic primitives that is

adequate for describing basic processes. Consequently, its characterization of them does

not make many assumptions about their nature beyond what is needed for describing

those processes. The advantage of this is that the account of processes implicit in PSL
Core is relatively straightforward and uncontroversial. However, a corresponding

liability is that the Core is rather weak in terms of pure logical strength. In particular, the

theory is not strong enough to provide definitions of the many auxiliary notions that

become needed to describe an increasingly broader range of processes in increasingly

finer detail. (Auxiliary notions are axiomatized in PSL extensions , discussed next.) For

this reason, PSL includes one or morefoundational theories. A foundational theory is a

theory whose expressive power is sufficient for giving precise definitions of, or

axiomatizations for, the primitive concepts of PSL, thus greatly enhancing the precision

of semantic translations between different schemes. Moreover, in a foundational theory,

one can define a substantial number of auxiliary terms, and prove important

metatheoretical properties of the core and its extensions.

There are several good foundational theories. Of these, set theory is perhaps the most

familiar, and perhaps, all in all, the most powerful. Set theory’s foundational capabilities

are well known. It is, in particular, capable of serving as a foundation for all of classical

mathematics, in the sense that all notions of classical mathematics - integers, real

10

numbers, topological spaces, etc. - can be defined as sets of a certain sort and, under
those definitions, their classical properties derived as theorems of set theory.

For PSL’s purposes, however, a more suitable foundation is a modified and extended

variation of the situation calculus. The reason for this is that the situation calculus’s own
primitives - situation

, action, fluent (roughly, proposition) — are already highly

compatible with the primitives of PSL; indeed, it is very natural to identify PSL
primitives with, or define them in terms of, the primitives of the situation calculus. In

addition, the situation calculus is also strong enough to define a wide variety of auxiliary

notions and, with the addition of some set theory, it can be used as a basis for proving

basic metatheoretic results about the Core and its extensions as well.

Extensions

The third component of PSL are the extensions. A PSL extension gives one the resources

to express information involving concepts that are not part of PSL Core. Extensions give

PSL a clean, modular character. PSL Core is a relatively simple theory that is adequate

for expressing a wide range of basic processes. However, more complex processes

require expressive resources that exceed those of PSL Core. Rather than clutter PSL
Core itself with every conceivable concept that might prove useful in describing one

process or another, a variety of separate, modular extensions have been (and continue to

be) developed that can be added to PSL Core as needed. In this way a user can tailor PSL
precisely to suit his or her expressive needs.

To define an extension, new constants and/or predicates are added to the basic PSL
language, and, for each new linguistic item, one or more axioms are given that constrain

its interpretation. In this way one provides a “semantics” for the new linguistic items. A
good example of such an extension is the theory of timedurations below. PSL Core itself

does not provide the resources to express information about timedurations. However, in

many contexts, such a notion might be useful or even essential. Consequently, a theory

of timedurations has been developed which can be added as to PSL Core, thus providing

the user with the desired expressive power.

When combined with a foundational theory like the situation calculus, a distinction can

be drawn between definitional and nondefinitional extensions. As the name suggests, a

definitional extension is an extension whose new linguistic items can be completely

defined in terms of the foundational theory and PSL Core. Theoretically, then,

definitional extensions add no new expressive power to PSL Core + foundational theory,

and hence involve no new theoretical overhead. However, because definitions of many
subtle notions can be quite involved, definitional extensions can prove extremely useful

for describing complex processes in as succinct a manner as possible. Nondefinitional

extensions, of course, are extensions that involve at least one notion that cannot be

defined in terms of PSL Core and the chosen foundational theory.

The three components of the PSL architecture and their relations are illustrated in Figure

3. The solid arrows indicate the definability relation. The dashed lines indicate partial

definability, i.e., the case where some, but not all the additional linguistic items in the

language of an extension are definable. Two or more solid arrows pointing to the same

11

oval indicate the possibility that more than one given theory might jointly be used to

define a new extension. Therefore, we might have connected PSL Core to foundational

theories, but this would not sufficiently distinguish the central role of the Core from the

more auxiliary roles of extensions. Hence, we picture PSL Core as sitting directly upon

the foundational theories. “(+ Foundational Theory) ” in the PSL Core box indicates that

PSL Core together with a foundational theory are typically used to formulate definitional

extensions.

3.3 Informal Semantics of PSL Core

PSL Core is based upon a precise, mathematical, first-order theory, i.e., a formal

language, a precise mathematical semantics for the language, and a set of axioms that

express the semantics in the language. Here we will provide a brief informal sketch of

the semantics. There are four primitive classes, two primitive functions, and three

primitive relations in the ontology of PSL Core. The classes are OBJECT, ACTIVITY,
ACTIVITY_OCCURRENCE and TIMEPOINT. The four relations are PARTICIPA'IES-

IN, BEFORE, and OCCURRENCE-OF. The two functions are BEGINOF, and ENDOF.
ACTIVITIES, ACTIVITY_OCCURRENCES, TIMEPOINTs (or "POINT’S, for short),

and OBJECTS are known collectively as entities, or things. These classes are all pairwise

disjointed.

Intuitively, an OBJECT is a concrete or abstract thing that can participate in an

ACTIVITY. The most typical examples of OBJECTS are ordinary, tangible things, such

12

as people, chairs, car bodies, NC-machines, though abstract objects, such as numbers, are

not excluded. OBJECTS can come into existence (e.g., be created) and go out of existence

(e.g., be “used up” as a resource) at certain points in time. In such cases, an OBJECT has

a begin and/or end point. Some OBJECTS, e.g., numbers, do not have finite begin and

end points. In some contexts it may be useful to model certain ordinary OBJECTS as

having no such points either.

An ACTrVITY-OCCURRENCE is a limited, temporally extended piece of the world,

such as the first mountain stage of the 1997 Tour de France or the eruption of Mt. St.

Helen. Any ACTIVITY-OCCURRENCE is simply taken to be characterized chiefly by

two things: its temporal extent, as determined by its begin and end POINTs (possibly at

infinity), and the set of OBJECTS that participate in that ACTIVITY at some point

between its begin and end POINTs.

TIMEPOINTs are ordered by the BEFORE relation. This relation is transitive, non-

reflexive, total ordering. In PSL Core, that time is not dense (i.e., between any two

distinct TIMEPOINTs there is a third TIMEPOINT), though it is assumed that time is

infinite. POINTs at infinity (INF+ and INF-) are assumed for convenience. (Denseness,

of course, could easily be added by a user as an additional postulate.) Time intervals are

not included among the primitives of PSL Core, as intervals can be defined with respect

to TIMEPOINTs and ACTIVITIES. TIMEDURATIONS are included in an extension of

the PSL Core that builds upon [14].

The basic notions of the PSL Core are axiomatized formally as a first-order theory.

These axioms simply capture, in a precise way, the basic properties of the PSL ontology.

The basic axioms for ACTIVITIES, OBJECTS, and TIMEPOINTs are listed in Section

4.2 below.

3.4 Extensions in PSL 1.0

The set of extensions in PSL 1.0 fall roughly into three “families”:

• PSL “Outer Core”

• Generic Activities

• Schedules

3.4.1 PSL Outer Core

There is a small set of extensions that are so generic and pervasive in their applicability

that we set them apart by calling them the PSL Outer Core. These three extensions are:

• Subactivity Extension

• Activity-Occurrence Extension

• States Extension

The Subactivity Extension describes how activities can be aggregated and decomposed. It

also defines the concept of primitive activity, which can not be decomposed into any

further activities. The Activity-Occurrence Extension defines relations that allow the

description of how activity-occurrences relate to one another with respect to the time at

which they start and end. The State Extension introduces the concept of state (before an

activity-occurrence) and post-state (after an activity-occurrence).

13

3.4.2 Generic Activities and Ordering Relations

Figure 4 illustrates the modules in PSL that are required to define the terminology for

generic classes of activities and their ordering relations. There are nine relevant

extensions to PSL Core, four dealing with generic process modeling concepts and five

dealing with schedules. The five focusing on schedules will be discussed in Section 3.4.3.

The four dealing with generic process modeling concepts are:

• Ordering Relations

• Nondeterministic Activities

• Complex Sequence Ordering Relations

• Junctions

Figure 4: PSL modules for generic classes of activities and their ordering relations

The first of these extensions characterize deterministic activities. The final three

extensions characterize nondeterministic activities in which not every subactivity occurs

when the activity occurs; for example, to fabricate an engine block, one may either use

the casting machine or modify an existing engine block. Junctions are a particular class of

nondeterministic activities used to define notions such as splits and joins. Within a split,

one of several activities may possibly occur next, whereas within a join, one of several

activities must occur before the next activity occurs.

3.4.3 PSL Extensions for Schedules

These extensions were motivated by the applications in the PSL pilot implementation, in

particular ELOG Scheduler 4.3. At the beginning of the pilot implementation of PSL,

14

there were no extensions capable of completely defining concepts such as temporal

constraints. It was therefore necessary to design new extensions containing terminology

whose definitions correctly and completely captured the intuitive meaning of the ILOG
Schedule concepts.

Scheduling can be characterized intuitively as the assignment of resources to

activities such that the temporal constraints are satisfied. Temporal constraints include the

duration of activities and the temporal ordering of activity-occurrences. These intuitions

lead to the introduction of five extensions within PSL 1.0, shown in Figure 4:

• Durations

• Activities and Duration

• Temporal Ordering Relations

• Reasoning about State

• Interval Activities

3.5 Approach for Developing Extensions

From the above list of extensions, one may see that certain representational areas within

PSL have been thoroughly worked out and some have not been addressed yet. For

example, the area relating to “ordering of activities” has been well addressed within the

extensions of “Ordering Relations for Complex Sequence Actions,” “Ordering Relations

over Activities,” and ‘Temporal Ordering.” However, other representational areas such

as “Process Intent” have not yet been addressed.

The development of PSL has proceeded on an as-needed basis. The initial PSL
ontology was developed using a single scenario, the EDAPS (Electromechanical Design

and Planning System) scenario developed by Steve Smith at the University of Maryland

[15]. The concepts introduced in that scenario were defined and modeled within PSL and

later extended as other scenarios were explored. The PSL ontology was then further

expanded to incorporate the concepts introduced in various manufacturing software

applications when PSL was used to exchange process information among these packages.

As more software applications become “PSL-compliant,” PSL will be continually

expanded to ensure that ALL process-related concepts are capable of being represented

within the language.

4 Informal Documentation

4. 1 Introduction

The purpose of this section is to provide an informal documentation of the PSL Core and

of its extensions. By informal documentation we mean a description in English of the

intended meaning of the concepts introduced or defined in the PSL Core and its

extensions. The formal definitions and axioms (expressed in the knowledge interchange

format) that constitute the PSL Core and extensions are included in this document for

reference purposes. The informal documentation is based solely and completely on the

available PSL formal definitions and axioms.

15

The classification used in this document is the one provided by the EDEF5 Ontology

Capture method. Briefly stated, kinds are similar to types or classes. They represent

groups of things that share the same characteristics or properties. Individuals are similar

to objects in the object-oriented paradigm. Each individual is uniquely identifiable and

distinguishable from all other individuals. Relations are used to express relationships.

Finally, functions are used to express properties.

4.2 PSLCore

This section provides both formal and informal documentation for the PSL Core.

4.2.1 Kinds for the PSL Core

The PSL Core introduces the following kinds of elements:.

Concept Informal Definition

activity

A class or type of action. For example, ‘paint-part’ is an activity. It is the class of actions in which

parts are being painted.

activity-

occurrence

An event or action that takes place at a specific place and time. An instance or occurrence of an

activity. E.g., paint-part is an activity, painting in Maryland at 2 PM on May 25, 1998 is an activ ity-

occurrence.

timepoint A point in time.

object Anything that is not a timepoint or an activity.

The following axioms pertain to these four kinds.

• Axiom 9. Everything is either an activity, an activity-occurrence, an object, or a

timepoint.

• Axiom 10. Activities, activity-occurrences, objects, and timepoints are all distinct

kinds of things.

4.2. 1.1 Activity

Activities are arguments to the following relations.

Relation Arguments Informal Definition

is-occurring-at Acti vity-occurrence,

timepoint

The activity corresponding to the specified activity occurrence is

occurring at the specified timepoint. I.e., there exists an occurrence of

the activity that is such that the specified timepoint is between or equal

to the begin timepoint and end timepoint of the occurrence.

occurrence-of

activity-occurrence,

activity The activity-occurrence is a particular occurrence of the given activity.

16

4.2. 1.2 Activity-Occurrence

Activity-occurrences are arguments to the following relations.

Relation Arguments Informal Definition

participates-in object, activity, timepoint

The given object plays some (indeterminate) role in an

occurrence of the given activity at the given timepoint.

occurrence-of activity-occurrence, activity

The activity-occurrence is a particular occurrence of the given

activity.

Activity-occurrences are arguments to the following functions.

Function Arguments Return value Informal Definition

beginof activity-occurrence timepoint The timepoint at which the occurrence begins.

endof activity-occurrence timepoint The timepoint at which the occurrence ends.

The following axioms pertain to activity-occurrences.

• Axiom 12. An activity-occurrence is the occurrence-ofa single activity.

• Axiom 14. The timepoint at which an activity-occurrence begins always precedes the

timepoint at which the activity-occurrence ends.

4. 2. 1.3 Objects

Objects are arguments to the following relations.

Relation Arguments Informal Definition

exists-at object, timepoint The object exists at the given timepoint.

participates-in

object, activity-

occurrence, time point

The given object plays some (indeterminate) role in the given activity

occurrence at the given timepoint.

Objects are arguments to the following functions.

Function Arguments Return value Informal Definition

beginof object timepoint The timepoint at which the object comes into existence.

endof object timepoint The timepoint at which the object ceases to exist.

17

4.2. 1.4 Timepoint

Timepoints are arguments to the following relations.

Relation Arguments Informal Definition

participates-in

object, activity-

occurrence, time point

The given object plays some (indeterminate) role in the given activity

occurrence at the given timepoint.

before timepoint, timepoint This relation is used to impose a total ordering on timepoints.

between

timepoint, timepoint,

timepoint Strictly less than and strictly greater than.

beforeEq timepoint, timepoint Less or equal than.

betweenEq timepoint, timepoint Less or equal to and greater or equal to.

exists-at object, timepoint The object exists at the given timepoint.

is-occurring-at

Acti vity-occurrence,

timepoint

The specified activity-occurrence is occurring at the specified

timepoint. I.e., there exists an occurrence of an activity that is such

that the specified timepoint is between or equal to the begin timepoint

and end time point of the occurrence.

Timepoints are return values to the following functions.

Function Arguments Return value Return value

Beginof object timepoint The timepoint at which the object comes into existence.

Endof object timepoint The timepoint at which the object ceases to exist.

4.2.2 Individuals for the PSL Core

The PSL Core introduces the following individuals.

inf- The timepoint that is before all other timepoint.

inf+ The timepoint that is after all other timepoint.

The following axioms pertain to inf+ and inf-.

• Axiom 5. Inf- is before all other timepoints.

• Axiom 6. Every timepoint else than inf+ is before mf-t-

• Axiom 7. Given any timepoint t other than inf-, there is a timepoint between inf- and

t.

• Axiom 8. Given any timepoint t other than inf+, there is a timepoint between t and

inf-h

18

4.2.3 Primitive Relations for the PSL Core

The PSL Core introduces the following relations.

Relation Arguments Informal Definition

Before timepoint, timepoint This relation is used to impose a total ordering on timepoints.

occurrence-of

activity-occurrence,

activity The activity-occurrence is a particular occurrence of the given activity.

participates-in

object, activity-

occurrence, timepoint

The given object plays some role in the given occurrence of an activity

at the given timepoint.

4.2.3 . 1 Relation before

The following axioms pertain to the before relation.

• Axiom 1. The before relation only holds between timepoints.

• Axiom 2. The before relation is a total ordering.

• Axiom 3. The before relation is non-reflexive.

• Axiom 4. The before relation is transitive.

4.2.3.2 Relation occurrence-of

The following axioms pertain to the occurrence-of relation.

• Axiom 11. The occurrence-of relation only holds between activities and activity-

occurrences.

• Axiom 12. An activity-occurrence is the occurrence-ofa single activity.

• Axiom 17. Every activity-occurrence is an occurrence-ofan activity.

4.2. 3.3 Relation participates-in

The following axioms pertain to the participates-in relation.

• Axiom 15. The participates-in relation only holds between objects, activities, and

timepoints, respectively.

• Axiom 16. An object can participate in an activity only at those timepoints at which

both the object exists and the activity is occurring.

4.2.4 Primitive Functions for the PSL Core

The PSL Core introduces the following functions

19

Function Arguments Return type Informal Definition

endof activity timepoint The timepoint at which the activity ends.

endof object timepoint The timepoint at which the object ceases to exist.

beginof activity timepoint The timepoint at which the activity begins.

beginof object timepoint The timepoint at which the object comes into existence.

The following axioms pertain to the beginof and endof functions.

• Axiom 13. The begin and end ofan activity-occurrence or object are timepoints.

• Axiom 14. The timepoint at which an activity-occurrence begins always precedes the

timepoint at which the activity-occurrence ends.

4.2.5 Defined Relations for the PSL Core

The PSL Core defines the following relations.

Relation Arguments Informal Definition

Between

timepoint, timepoint,

timepoint Strictly less than and strictly greater than.

BeforeEq timepoint, timepoint Less or equal than.

BetweenEq

timepoint, timepoint,

timepoint Less or equal to and greater or equal to.

exists-at object, timepoint A point in time in which an object exists.

is-occurring-at

Activity-occurrence,

timepoint

The specified activity-occurrence is occurring at the specified

timepoint. I.e., the specified timepoint is between or equal to the

begin timepoint and end timepoint of the specified activity

occurrence.

4.2.5. 1 Relation between

The following is the formal definition for the between relation.

Definition 1. Timepoint q is between timepoints p and r ifand only ifp is before q and q
is before r.

4. 2. 5.2 Relation beforeEq

The following is the formal definition for the beforeEq relation.

Definition 2. Timepoint p is beforeEq timepoint q ifand only ifp is before or equal to q.

4.2.53 Relation betweenEq

The following is the formal definition for the betweenEq relation.

20

Definition 3. Timepoint q is betweenEq timepoints p and r ifand only ifp is before or

equal to q, and q is before or equal to r.

4.2.5.4 Relation exists-at

The following is the formal definition for the exists-at relation.

Definition 4. An object exists-at a timepoint p ifand only ifp is betweenEq its begin and
end points.

4.2.5.5 Relation is-occurring-at

The following is the formal definition for the is-occurring-at relation.

Definition 5. An activity occurrence is-occurring-at a timepoint p if and only if p is

betweenEq the activity'occurrence’s begin and end points.

4.2.6 Definitions and Axioms for the PSL Core in the formal language

In this section the definitions and axioms for the PSL Core are given explicitly in the

formal PSL language. (Note: The lexicon items ‘defrelation’, ‘exists’, ‘forall’,

‘and’, ‘or’, ‘not’, ‘=’, *<=>’, and ‘=>’ are defined in the KIF Reference Manual [3].)

Definition 1. Timepoint q is between timepoints p and r if and only if p is before q and q
is before r.

(defrelation between (?p ?q ?r) :=

(and (before ?p ?q) (before ?q ?r)))

Definition 2. Timepoint p is beforeEq timepoint q if and only if p is before or equal to q.

(defrelation beforeEq (?p ?q) :=

(and (timepoint ?p) (timepoint ?q)

(or (before ?p ?q)

(= ?P ?q))))

Definition 3. Timepoint q is betweenEq timepoints p and r if and only if p is before or

equal to q, and q is before or equal to r.

(defrelation betweenEq (?p ?q ?r) :=

(and (beforeEq ?p ?q)

(beforeEq ?q ?r)))

Definition 4. An object exists-at a timepoint p if and only if p is betweenEq its begin and

end points.

(defrelation exists-at (?x ?p) :=

(and (object ?x)

(betweenEq (beginof ?x) ?p (endof ?x))))

21

Definition 5. An activity occurrence is-occurring-at a timepoint p if and only if p is

betweenEq the activity occurrence’s begin and end points.

(deffelation is-occurring-at (?occ ?p) :=

(and (activity-occurrence ?occ)

(betweenEq (beginof ?occ) ?p (endof ?occ))))

4.2.7 PSL Core Axioms

Axiom 1. The before relation only holds between timepoints.

(forall (?p ?q)

(=> (before ?p ?q)

(and (timepoint ?p)

(timepoint ?q))))

Axiom 2. The before relation is a total ordering.

(forall (?p ?q)

(=> (and (timepoint ?p)

(timepoint ?q))

(or (= ?p ?q)

(before ?p ?q)

(before ?q ?p))))

Axiom 3. The before relation is non-reflexive.

(forall (?p)

(not (before ?p ?p)))

Axiom 4. The before relation is transitive.

(forall (?p ?q ?r)

(=> (and (before ?p ?q)

(before ?q ?r))

(before ?p ?r)))

Axiom 5. Inf- is before every other timepoint.

(forall (?t)

(=> (timepoint ?t)

(beforeEq inf- ?t)))

Axiom 6. Every timepoint else than inf+ is before inf+

(forall (?t)

(=> (timepoint ?t)

(beforeEq ?t inf+)))

Axiom 7. Given any timepoint t other than inf-, there is a timepoint between inf- and t.

(forall (?t)

22

(=> (and (tunepoint ?t)

(not (= ?t inf-)))

(exists (?u)

(between inf- ?u ?t))))

Axiom 8. Given any timepoint t other than inf+, there is a timepoint between t and inf+.

(forall (?t)

(=> (and (timepoint ?t)

(not (= ?t inf+)))

(exists (?u)

(between ?t ?u inf+))))

Axiom 9. Everything is either an activity, an activity-occurrence, an object, or a

timepoint.

(forall (?x)

(or (activity ?x)

(activity-occurrence ?x)

(object ?x)

(timepoint ?x)))

Axiom 10. Activities, activity-occurrences, objects, and timepoints are all distinct kinds

of things.

(forall (?x)

(and (=> (activity ?x)

(not (or (activity-occurrence ?x)

(object ?x)

(timepoint ?x))))

(=> (activity-occurrence ?x)

(not (or (object ?x)

(timepoint ?x))))

(=> (object ?x)

(not (timepoint ?x))))

Axiom 11. The occurrence-of relation only holds between activities and activity-

occurrences.

(forall (?a ?occ)

(=> (occurrence-of ?occ ?a)

(and (activity ?a)

(activity-occurrence ?occ))))

Axiom 12. An activity-occurrence is the occurrence-of a single activity.

(forall (?occ ?al ?a2)

(=> (and (occurrence-of ?occ ?al)

(occurrence-of ?occ ?a2))

(= ?al ?a2)))

Axiom 13. The begin and end of an activity-occurrence or object are timepoints.

(forall (?a ?x)

23

(=> (or (occurrence-of ?x ?a)

(object ?x))

(and (timepoint (beginof ?x))

(timepoint (endof ?x)))))

Axiom 14. The timepoint at which an activity-occurrence begins always precedes the

timepoint at which the activity-occurrence ends.

(forall (?a ?x)

(=> (or (occurrence-of ?x ?a)

(object ?x))

(beforeEq (beginof ?x) (endof ?x))))

Axiom 15. The participates-in relation only holds between objects, activities, and

timepoints, respectively.

(forall (?x ?occ ?t)

(=> (participates-in ?x ?occ ?t)

(and (object ?x)

(activity-occurrence ?occ)

(timepoint ?t))))

Axiom 16. An object can participate in an activity only at those timepoints at which both

the object exists and the activity is occurring.

(forall (?x ?occ ?t)

(=> (participates-in ?x ?occ ?t)

(and (exists-at ?x ?t)

(is-occurring-at ?occ ?t))))

4.3 Subactivity Extension

The purpose of this extension is to define the subactivity relation, which specifies how
activities can be aggregated and decomposed. It also defines the concept of primitive

activity, which cannot be decomposed into any further activities.

4.3.1 Defined Classes in the Subactivity Extension

The subactivity extension defines the following kind.

Kind Informal Definition

primitive-activity A primitive activity is an activity that does not have any subactivities.

24

4.3.2 Defined Relations in the Subactivity Extension

The subactivity extension defines the following relation.

Relation Arguments Informal Definition

subactivity activity, activity

This relation defines a partial ordering over the set of

activities with respect to aggregation and decomposition

4.3.3 Formal Axioms in the Subactivity Extension

Axiom 1. The subactivity relation is reflexive.

(forall (?a) (subactivity ?a ?a))

Axiom 2. The subactivity relation is asymmetric.

(forall (?al ?a2)

(=> (and (subactivity ?al ?a2)

(subactivity ?a2 ?al))

(= ?al ?a2)))

Axiom 3. The subactivity relation is transitive.

(forall (?al ?a2 ?a3)

(=> (and (subactivity ?al ?a2)

(subactivity ?a2 ?a3))

(subactivity ?al ?a3)))

Axiom 4. For any two activities, there exists another activity which contains them both as

subactivities.

(forall (?al ?a2)

(exists (?a3)

(and (subactivity ?al ?a3)

(subactivity ?a2 ?a3))))

Definition 1. A primitive activity is an activity that does not have any proper

subactivities.

(defrelation primitive-activity (?a) :=

(forall (?al)

(=> (subactivity ?al ?a)

(= ?al ?a))))

25

4.4 Activity-Occurrences Extension

The purpose of this extension is to define relations that allow the description of how
activity-occurrences relate to one another with respect to the time at which they start and

end.

4.4.1 Introduced Relations in the Activity-Occurrences Extension

The activity-occurrence extension introduces the following relations.

Relation Arguments Informal Definition

occurrence-contains

|

1

I---I

activity-occurrence,

activity-occurrence

An occurrence occl contains another occ2 if occl happens during

occ2.

occurrence-earlier

—
1

activity-occurrence,

activity-occurrence

An occurrence occl is earlier than another occ2 if occl ends

before occ2 begins.

occurrence-overlap

activity-occurrence,

activity-occurrence

Two occurrences occl and occ2 overlap if there is an interval of

time during which both occurrences are occurring and if occ2

starts before occl starts and ends before occl ends.

The following axioms pertain to these relations.

Axiom 1. If two occurrences stand in the successor relation, than they stand in the

occurrence-earlier relation.

Axioms 2 and 3. The relations occurrence-contains and occurrence-overlap are

reflexive.

Axiom 4. If an activity-occurrence stands in the relation occurrence-earlier with itself,

than its beginning and ending point are equal.

Axiom 7. If an activity-occurrence occl contains an activity-occurrence occ2, than the

beginning timepoint of occl is before or equal to the beginning timepoint of occ2, and the

ending timepoint of occ2 is before or equal to the ending timepoint of occl.

Axiom 8. If an activity-occurrence occl is earlier than an activity-occurrence occ2, then

the beginning timepoint of occl is before or equal to the beginning timepoint of occ2.

Axiom 9. If an activity-occurrence occl overlaps with an activity-occurrence occ2, then

the beginning timepoint of occ2 is before or equal to the beginning timepoint of occl, the

beginning timepoint of occl is before or equal to the ending timepoint of occ2 ,
and the

ending timepoint of occ2 is before or equal to the ending timepoint of occl.

26

4.4.2 Defined Relations in the Activity-Occurrences Extension

The activity-occurrence extension introduces the following relations.

Relation Arguments Informal Definition

successor

activity-occurrence,

activity-occurrence,

activity-occurrence

An activity-occurrence occ2 is the successor of an activity-

occurrence occl if occl occurs earlier than occ2 and if they are no

activity occurrence that occurs between occl and occ2.

subactivity-

occurrence

activity-occurrence,

activity-occurrence

An activity-occurrence occl is a subactivity occurrence of an

activity-occurrence occ2 if the activity of which occl is an

activity-occurrence is a subactivity of the activity of which occ2 is

an activity-occurrence and occl stands in the occurrence-contains

relation with occ2.

4.4.3 Formal Axioms in the Activity-Occurrences Extension

Definition 1. One activity-occurrence is the successor of another if and only if the fist

activity-occurrence is earlier and there does not exist any other activity-occurrence

between them.

(defrelation successor (?occl ?occ2) :=

(and (occurrence-earlier ?occ 1 ?occ2)

(not (exists (?occ3)

(occurrence-earlier ?occ 1 ?occ3)

(occurrence-earlier ?occ3 ?occ2)))))

Definition 2. An activity-occurrence occl is a subactivity-occurrence of an activity-

occurrence occ2 if the activity of which occl is an activity-occurrence is a subactivity of

the activity of which occ2 is an activity-occurrence and occl stands in the occurrence-

contains relation with occ2 .

(defrelation subactivity-occurrence (?occl ?occ2) :=

(and (forall (?al ?a2)

(=> (and (occurrence-of ?occl ?al)

(occurrence-of ?occ2 ?a2))

(subactivity ?al ?a2)))

(occurrence-contains ?occ2 ?occl)))

Axiom 1. If two activity-occurrences stand in the successor relation, than they stand in

the occurrence-earlier relation.

(forall (?occl ?occ2)

(=> (successor ?occl ?occ2)

(occurrence-earlier ?occl ?occ2))

27

Axioms 2 and 3. The relations occurrence-contains and occurrence-overlap are

reflexive.

(forall (?occ) (occurrence-contains ?occ ?occ))

(forall (?occ) (occurrence-overlap ?occ ?occ))

Axiom 4. If an activity-occurrence stand in the relation occurrence-earlier with itself,

than its beginning and ending point are equal.

(forall (?occ)

(=> (occurrence-earlier ?occ ?occ))

(=(beginof ?occ) (endof ?occ))))

Axioms 5. The relations occurrence-contains is transitive.

(forall (?occl ?occ2 ?occ3)

(=> (and (occurrence-contains ?occl ?occ2)

(occurrence-contains ?occ2 ?occ3))

(occurrence-contains ?occl ?occ3)))

Axioms 6. The relations occurrence-earlier is transitive.

(forall (?occl ?occ2 ?occ3)

(=> (and (occurrence-earlier ?occl ?occ2)

(occurrence-earlier ?occ2 ?occ3))

(occurrence-earlier ?occl ?occ3)))

Axiom 7. If an activity-occurrence occl contains an activity-occurrence occ2, than the

beginning timepoint of occl is before or equal to the beginning timepoint of occ2, and the

ending timepoint of occ2 is before or equal to the ending timepoint of occl.

(forall (?occl ?occ2)

(=> (occurrence-contains ?occl ?occ2)

(and (beforeEq (beginof ?occl) (beginof ?occ2))

(beforeEq (endof ?occ2) (endof ?occl)))))

Axiom 8. If an activity-occurrence occl is earlier than an activity-occurrence occ2, then

the ending timepoint of occl is before or equal to the beginning timepoint of occ2.

(forall (?occl ?occ2)

(=> (occurrence-earlier?occl ?occ2)

(beforeEq (endof ?occl) (beginof ?occ2)))

Axiom 9. If an activity-occurrence occl overlaps with an activity-occurrence occ2, then

the beginning timepoint of occ2 is before or equal to the beginning timepoint of occl, the

beginning timepoint of occl is before or equal to the ending timepoint of occ2 ,
and the

ending timepoint of occ2 is before or equal to the ending timepoint of occl.

28

(forall (?occl ?occ2)

(=> (occurrence-overlap ?occl ?occ2)

(and (beforeEq (beginof ?occ2) (beginof ?occl))

(beforeEq (beginof ?occl) (endof ?occ2))

(beforeEq (endof ?occ2) (endof ?occl)))))

4.5 States Extension

The extension introduces the concepts of state (before an activity-occurrence) and post-

state (after an activity-occurrence).

4.5.1 Classes of Objects in the States Extension

The following kind is defined in the state extension.

Kind Informal Definition

Fluent A fluent is a property of the world that can change as a result of an activity occurring. A fluent is

said to hold before an activity-occurrence if the world had that property before the activity-

occurrence and to hold after an activity-occurrence if the world has that property after the activity-

occurrence.

4.5.2 Introduced Relations in the States Extension

The states extension introduces the following relations.

Relation Arguments Informal Definition

State fluent, activity-occurrence The state relation holds between a fluent and an activity-occurrence,

if the fluent holds before the activity-occurrence.

Post-state fluent, activity-occurrence The effect relation holds between a fluent and an activity if the fluent

holds after the activity-occurrence.

4. 6 Integer and Duration Extension

The primary purpose of this extension is to axiomatize the concept of a timeduration and

the auxiliary notion of integer. Intuitively, a timeduration is a measure of the “temporal

distance” between two points. Thus, in addition to a new predicate Timeduration, we
also introduce a new function duration and a new function symbol ‘Duration’. The

duration function takes two points as arguments. Intuitively, these two points represent

29

the start and end points of the interval from the first argument to the second. Note that it

turns out to be most convenient not to let duration be commutative. That is, the duration

from t to u is not the duration from u to t, unless t = u, in which case the duration from t

to u is zero (the “null” duration). Intuitively, then, the duration from point t to point u is a

vector that has a negative or positive direction depending on whether or not t is before u.

Durations can be added to each other, and multiplied by integers. Because there are

points at infinity, we need to allow for infinite durations (e.g., the duration from any

finite point to a point at infinite). For this purpose, in addition to a special zero duration,

we introduce an infinite negative duration max- and an infinite positive duration max+.

We will present the integer portion of the extension first, as the timeduration

extension builds upon it.

4.6.1

Primitive Kinds in the Integer Extension

Concept Informal Definition

Integer The class of integers: 0,-1, 1, -2, 2, etc.

4.6.2

Defined Kinds in the Integer Extension

Kind Informal Definition

Poslnt The class of positive integers: 1, 2, 3, etc.

Neglnt The class of negative integers: -1,-2, -3, etc.

4.6.3

Individuals in the Integer Extension

The integer xtension introduces the following individuals.

Individual Informal Definition

0 The integer 0

The following axioms pertain to this individual.

Axiom 8. The sum of any integer and 0 is that integer.

Axiom 10. The difference between any integer and 0 is that integer.

4.6.4

Functions in the Integer Extension

Integers are arguments to the following functions.

Function Arguments Return Type Informal Definition

+ 1 Integer Integer + 1 is the sucessor function on integers

30

-1 Integer Integer - 1 is the predecessor function on integers

+ Integer, Integer Integer + is the addition function

Integer, Integer Integer - is the subtraction function

The following axioms pertain to these functions.

Axiom 1. The successor and predecessor functions are one-to-one on the integers.

Axiom 6. An integer is less than its successor and greater than its predecessor.

Axiom 7. No integer is between a given integer and its successor or predecessor.

Axiom 9. The successor of any integer i with the successor of any integerj is the

successor of the sum of i and j; the successor of any integer i with the predecessor of

any integerj is the predecessor of the sum of i and j.

Axiom 11. The difference between an integer i and the successor of any integerj is the

predecessor of the difference between i and j; the difference between an integer i and the

predecessor of any integerj is the successor of the difference between i and j.

4.6.5 Relations on Integers

Integers are arguments to the following relation.

Relation Arguments Informal Definition

< Integer, Integer < is the less-than relation on integers

31

The following axioms pertain to this relation.

Axiom 3. The less-than relation is transitive on the integers.

Axiom 4. The less-than relation is irreflexive on the integers.

Axiom 5. The less-than relation is a total ordering on the integers.

Axiom 6. An integer is less than its successor and greater than its predecessor.

Axiom 7. No integer is between a given integer and its successor or predecessor.

4.6.6 Formal Definitions and Axioms for Integers

In order to give a theory of the integers we introduce the predicate Integer, the

constant ‘O’, the function symbols
l+V and ‘-1’ indicating the successor and

predecessor functions, respectively, the predicate ‘<’ indicating the less-than relation on

the integers, the addition and subtraction symbols *+’, and and the following

definitions and axioms.
2

4.6.6. 1 Definitions for Integers

Definition 1. A positive integer is an integer that is greater than 0.

(defrelation Posint (?i) :=

(and (Integer ?i) (< 0 ?i)))

Definition 2. A negative integer is an integer that is less than 0.

(defrelation Negint (?i) :=

(and (Integer ?i) (< ?i 0)))

It is convenient to introduce definitions for the traditional numerals, i.e.,

(defobject 1 := (+ 1 0))

(defobject 2 := (+1 1))

and so on. It is also convenient to use the string “-T,” for any term x to abbreviate “ (

-

0 x) (This can’t be considered a formal definition because strings beginning with

are not constants according to the BNF.)

2
Thanks are due to Tom Costello of Stanford University for providing an axiomatization of the integers

upon which the axioms in this document were based.

32

4.6.6.2 Axioms for Integers

Axiom 1. The successor and predecessor functions are one-to-one on the integers.

(forall (?i ?j : (Integer ?i) (Integer ?j))

(and (=>(=(+ 1 ?i) (+1 ?j))

Axiom 2. The successor and predecessor functions are one-to-one on the integers.

(forall (?i ?j : (Integer ?i) (Integer ?j))

(and (=> (= (+1 ?i) (+1 ?j))

(= ?i ?j))

(=> (= (-1 ?i) (-1 ?j))

(=

Aociom 3. The less-than relation is transitive on the integers.

(forall (?i ?j ?k : (Integer ?i) (Integer ?j) (Integer ?k))

(=> (and (< ?i ?j) (< ?j ?k))

« ?i ?k)))

Axiom 4. The less-than relation is irreflexive on the integers.

(forall ?i (not (< ?i ?i))

Axiom 5. The less-than relation is a total ordering on the integers.

(forall (?i ?j : (Integer ?i) (Integer ?j))

(or « ?i ?j) « ?j ?i) (= ?i ?j)))

Axiom 6. An integer is less than its successor and greater than its predecessor.

(forall (?i
:
(Integer ?i))

(and (< ?i (+1 ?i))

« (-1 ?i) ?i)))

Axiom 7. No integer is between a given integer and its successor or predecessor.

(forall (?i ?j : (Integer ?i) (Integer ?j))

(not (or (and (< ?i ?j) (< ?j (+1 ?i))

(and (< ?j ?i) (< (-1 ?i) ?j)))))

Aixiom 8. The sum of any integer and 0 is that integer.

(forall (?i : (Integer ?i))

(= (+ ?i 0) i))

33

Axiom 9. The successor of any integer i with the successor of any integerj is the

successor of the sum of i and 7 ; the successor of any integer i with the predecessor of

any integerj is the predecessor of the sum of i and j.

(forall (?i ?j : (Integer ?i) (Integer ?j))

(and (= (+ ?i (+1 ?j)) (+1 (+ ?i ?j)))

(= (+ ?i (-1 ?j)) (-1 (+ ?i ?j)))))

Axiom 10. The difference between any integer and 0 is that integer.

(forall (?i) : (Integer ?i))

(= (- ?i 0) 0))

Axiom 11. The difference between an integer i and the successor of any integer7 is the

predecessor of the difference between i and 7 ; the difference between an integer i and the

predecessor of any integer7 is the successor of the difference between i and7 .

(forall (?i ?j : (Integer ?i) (Integer ?j))

(and (= (- ?i (+1 ?j)) (-1 (- ?i ?j»)

(= (- ?i (-1 ?j» (+1 (- ?i ?j)))))

4.6.6 .3 Induction

The above axioms are sufficient for doing basic integer arithmetic. If more general

properties of the integers are needed (e.g., if one wished to show not simply that (= (

+

5 -5) 0) butthat (forall ?i (= (+ ?i -?i) 0)) generally, we should need

also some form of induction schema. The most general first-order induction schema is

the following; let cp be a sentence with the variable v free:

(=> (and (cp[v/0]

(forall (?i
:
(Integer ?i))

(=> cp[v/?i] cp[v/(+l ?!)]))

(forall (?i
:
(Integer ?i))

(=> cp[v/?i] tp[v/(-l ?i)]))

(forall (?i
:
(Integer ?i)) cp[v/?i]))

That is, roughly, any property true of 0 and true of both the predecessor and successor of

i when it is true of i, for any integer i , is true of all integers. Since basic integer

arithmetic is all we will need for most purposes, we will not include any instances of the

induction schema among our core axioms.

To be able to give local conditions involving integers, we specify that:

Axiom 12. Every integer participates in every activity.

(=> (and (Integer ?i) (activity ?a))

(In ?i ?a))

34

This condition simply enables us to use the “Holds” predicate below with respect to

sentences that refer to integers, and should not be thought of as capturing some deep

insight about the nature of activities.4.6.7

Primitive Kinds in the Timedurations Extension

The duration extension introduces the following primitive kind.

Concept Informal Definition

Timeduration

The class of timedurations, intuitively, the possible lengths of time that an activity

occurrence can last, represented simply as the pair of points that at which an activity

occurrence begins and ends, respectively.

4.6.8

Individuals in the Timeduration Extension

The timeduration extension introduces the following individuals.

Individual Informal Definition

zero The instantaneous duration

max+ The maximum positive duration

max- The maximum negative duration

The following axioms pertain to these individuals.

*5

Axiom 13: zero, max+, and max- are all timedurations.

Axiom 1 7. The result of adding any duration d to the duration zero is d.

Axiom 18. The sum of the duration from t to u and the duration from u to t is zero.

Axiom 19. The result of adding any duration other than max+ to max- is max-, and vice

versa.

Axiom 25. The duration from t to u is zero if and only if t and u are the same timepoint.

Axiom 26. The duration from any point other than inf- to inf- is max- and from any point

other than inf+ to inf+ is max+.

Axiom 27. The duration from inf- to any point other than inf- is max+ and from inf+ to

any point other than inf+ is max-.

4.6.9

Defined Properties and Relations in the Duration Extension

The duration extension defines the following properties and relations.

3
zero is not necessarily to be identified with the number 0.

35

Relation Arguments Informal Definition

Positive Timeduration

A timeduration is positive if, whenever it is the

value of the duration function applied to points t

and u, respectively, t is before u.

Negative Timeduration

A timeduration is negative if, whenever it is the

value of the duration function applied to points t

and u, respectively, u is before t.

Shorter

Timepoint,

Timepoint

One timeduration x is shorter than another z if and

only if z is the result of adding some positive

timeduration to x.

4.6.10 Defined Functions in the Duration Extension

The duration extension defines the following function.

Function Arguments Return Type Informal Definition

duration-of Object Timeduration

The duration-of an object x is the value of the

duration function applied to its begin and end

points.

4.6.1 1 Functions in the Duration Extension

The duration extension introduces the following functions.

Function Arguments Return Type Informal Definition

add

Timeduration,

Timeduration Timeduration

The add function yields the “duration sum” of two

timedurations

mult

Integer,

Timeduration Timeduration

The mult function applied to an integer n and

timeduration d yields the “duration product” of the

two, intuitively, a duration n times “longer” than d.

duration

Timepoint,

Timepoint Timeduration

The duration function applied to two timepoints

yields the timeduration that separates them.

The following axioms pertain to these functions.

Axiom 17. The result of adding any duration d to the duration zero is d.

Axiom 18. The sum of the duration from t to u and the duration from u to t is zero.

Axiom 19. The sum of any duration other than max+ and max- is max-, and the result of

adding any duration other than max- to max+ is max+.

Axiom 20. The product of an integer with a timeduration is a timeduration.

36

Axiom 21. The product of the sum of two integers i andj and a duration d is the duration

sum of the duration products of i and d andj and d.
4

Axiom 22. The duration function maps two points - intuitively, the “interval” between

them - to a timeduration.
5

Axiom 23. Every timeduration is the duration of two points.

Axiom 24. Given a point i other than inf- or inf+, the duration from i to any point is

unique, i.e., it differs from the duration from i to any other point.

Axiom 25. The duration from t to u is zero iff t and u are the same point.

Axiom 26. The duration from any point other than inf- to inf- is max- and from any point

other than inf+ to inf+ is max+.

Axiom 27. The duration from inf- to any point other than inf- is max+ and from inf+ to

any point other than inf+ is max-.

Axiom 28. The duration of an “interval” exactly comprising two “adjacent” intervals is

the sum of the durations of the adjacent intervals.

Axiom 29. The result of multiplying -1 and the duration from no u is the “inverse” of

that duration, i.e., the duration from u to t.

4.6. 11.1 Definitions for Timedurations

Definition 1. A timeduration is positive if, whenever it is the value of the duration

function applied to points t and u, respectively, t is before u.

(defrelation Positive (?d) :=

(and (Timeduration ?d)

(forall (?t ?u : (Point ?t) (Point ?u))

(=> (= ?d (Duration ?t ?u))

(Before ?t ?u)))))

Definition 2. A timeduration is negative if, whenever it is the value of the duration

function applied to points t and u, respectively, u is before t.

4
Note that, although mult is a total function (like all functions in first-order logic) we are only concerned

with the case where the first argument of the function is a natural number n and the second argument is a

timeduration d. In this case, mult yields a timeduration as value, intuitively, the duration that is n times as

long as d.
5 We don’t care what the duration function does when handed other objects. Note, again, that intervals are

vectors, in that, if t is not «, the duration from t to u is not the same as the duration from u to t.

37

(defrelation Negative (?d) :=

(and (Timeduration ?d)

(forall (?t ?u : (Point ?t) (Point ?u))

(=> (= ?d (Duration ?t ?u))

(Before ?u ?t)))))

Definition 3. The duration-of an object x is the value of the duration function applied to

its begin and end points.

6

(deffunction duration-of (?x) :=

(Duration (Beginof ?x) (Endof ?x)))

Definition 4. One timeduration x is shorter than another z iff z is the result of Adding
some positive timeduration to x.

(defrelation Shorter (?d ?e) :=

(exists! (?f) (and (Timeduration ?f)

(Positive ?f)

(= (add ?d ?e) ?f))))

4.6.11.2 Axioms for Timedurations

Timedurations are taken to be properties of pairs of timepoints. Timedurations will be

defined for activities and objects (and, trivially, timepoints) in terms of their begin and

end points. Timedurations can be compared, added together, and multiplied by integers,

as clocks measure duration by counting.

n

Axiom 14: zero, max+, and max- are all timedurations.

(and (Timeduration zero)

(Timeduration max+)

(Timeduration max-))

Axiom 15. The add function is symmetric and associative.

(forall (?d ?e ?f
:
(Timeduration ?d)

(Timeduration ?e)

(Timeduration ?f))

(= (add ?d ?e) (add ?e ?d))

(= (add ?d (add ?e ?f)) (add (add ?d ?e) ?f))))

Axiom 16. The result of adding two timedurations is a timeduration.

(forall (?d ?e : (Timeduration ?d) (Timeduration ?e))

(Timeduration (add ?d ?e)))

Axiom 17. The result of adding any duration d to zero is d.

6
Note that a consequence of this definition and the axioms for Beginofand Endof is that timepoints have a

duration-of zero, as they intuitively should.
7

zero is not necessarily to be identified with the number 0.

38

(forall (?d : (Timeduration ?d))

(= (add zero ?d) ?d))

Axiom 18. The sum of the duration from t to u and the duration from u to t is zero.

(forall (?t ?u : (Point ?t) (Point ?u))

(= zero (add (duration ?t ?u) (duration ?u ?t))))

Axiom 19. The result of adding any duration other than max+ to max

-

is max-, and the

result of adding any duration other than max- to max+ is max+.

(forall (?d : (Timeduration ?d))

(and (=> (not (= ?d max+))

(= (add ?d max-) max-))

(=> (not (= ?d max-))

(= (add ?d max+) max+)))

Axiom 20. The product of an integer with a timeduration is a timeduration.

(forall (?i ?d)

(=> (Integer ?i) (Timeduration ?d)

(Timeduration (Mult ?i ?d))))

Axiom 21. The product of the sum of two integers i andj and a duration d is the duration

sum of the duration products of i and d andj and d.
s

(forall (?i ?d ?j : (Integer ?i) (Integer ?j) (Timeduration ?d))

(and (= (mult (+ ?i ?j) ?d)

(add (mult ?i ?d) (mult ?j ?d)))))

Axiom 22. The duration function maps two points - intuitively, the “interval” between

them - to a timeduration.
9

(forall (?t ?u : (Point ?t) (Point ?u))

(Timeduration (duration ?t ?u)))

Axiom 23. Every timeduration is the duration of two points.

(forall (?d : (Timeduration ?d))

(exists (?t ?u : (Point ?t ?u))

(= ?d (duration ?t ?u))))

Axiom 24. Given a point i other than inf- or inf+, the duration from i to any point is

unique, i.e., it differs from the duration from i to any other point.

(forall (?i ?j ?k : (Point ?i) (Point ?j) (Point ?k)

8

Note that, although mult is a total function (like all functions in first-order logic) we are only concerned

with the case where the first argument of the function is a natural number n and the second argument is a

timeduration d. In this case, mult yields a timeduration as value, intuitively, the duration that is n times as

long as d.
9 We don’t care what the duration function does when handed other objects. Note, again, that intervals are

vectors, in that, if t is not u, the duration from t to u is not the same as the duration from u to t.

39

(not (= ?i inf-)) (not (= ?i inf+)))

(=> (and (= (duration ?i ?j) (duration ?i ?k)))

(= ?j ?k)))

Axiom 25. The duration from t to u is zero if and only if t and u are the same point.

(forall (?t ?u : (Point ?t) (Point ?u))

(<=> (= (duration ?t ?u) zero)

(=?t ?u)))

Axiom 26. The duration from any point other than inf- to inf- is max- and from any point

other than inf+ to inf+ is max+.

(forall (?t :
(Point ?t))

(and (=> (not (= ?t inf-)) (= (duration ?t inf-) max-))

(=> (not (= ?t inf+)) (= (duration ?t inf+) max+))))

Axiom 27. The duration from inf- to any point other than inf- is max+ and from infA- to

any point other than inf+ is max-.

(forall (?t
:
(Point ?t))

(and (=> (not (= ?t inf-)) (= (duration inf- ?t) max+))

(=> (not (= ?t inf+)) (= (duration inf+ ?t) max-))))

Axiom 28. The duration of an “interval” exactly comprising two “adjacent” intervals is

the sum of the durations of the adjacent intervals.

(forall (?t ?u ?v: (Point ?t) (Point ?u) (Point ?v))

(=> (and (Before ?t ?u) (Before ?u ?v)

(= (duration ?t ?v) (add (duration ?t ?u) (duration ?u ?v))))

Axiom 29. The result of multiplying -1 and the duration from t to u is the “inverse” of

that duration, i.e., the duration from u to t.

(= (Mult -1 (duration ?t ?u)) (duration ?u ?t))

4.7 Ordering Relations over Activities Extension

The purpose of this extension is to provide relations to express temporal precedence

relations among activities and activity-occurrences. The relations can only be used to

talk about activity-occurrences that have occurred or will occur.

4.7.1 Classes of Activities in the Ordering Relations Extension

Kind Informal Definition

poset-activity A poset-activity is an activity that has a partially ordered set of primitive subactivities.

complex-poset- A complex-poset-activity is an activity that has a partially ordered set of subactivities. These

40

activity subactivities may be nondeterministic, leading to branches and junctions within the process flow

4.7.2 Relations in the Ordering Relations Extension

The ordering relations over activities extension defines the following relations.

Relation Arguments Informal Definition

subactivity-pre

cedes

1---

activity-occurrence,

activity-occurrence,

activity-occurrence

(subactivity-precedes occl occ2 occ3) means that occl and occ2 are

two activity-occurrences that are subactivity occurrences of occ3 and

that the beginning timepoint of occl is earlier than the start ing

timepoint of occ2.

next-activity activity-occurrence,

activity-occurrence,

activity-occurrence

(next-activity occl occ2 occ3) means that occl and occ2 are two

activity-occurrences that are subactivity occurrences of occ3 and that

occl directly precedes occ2. That is, occl precedes occ2 and no

other subactivity-occurrence of occ3 is such that occl precedes it and

it precedes occ2.

initial-activity activity, activity An activity al is an initial activity of an activity a2 if and only if,

whenever al occurs as a subactivity of a2, it is not the next activity

of any other activity.

final-activity activity, activity An activity al is a final activity of an activity a2 if and only if,

whenever al occurs as a subactivity of a2, no activity is its next

activity.

The formal definitions for the relations in Ordering Relations over Activities Extension

will be completedfor the next release.

4.8 Ordering Relations For Complex Sequences of Activities Extension

The purpose of this extension is to provide relations to express temporal precedence

relations among activities and among activity-occurrences.

4.8.1 Defined Relations in the Ordering Relations For Complex Sequences

Extension

The ordering relation extension defines the following relations.

Relation Arguments Informal Definition

before-start

1—

activity-occurrence,

activity-occurrence,

activity-occurrence

(before-start occl occ2 occ3) means that occl and occ2 are two

activity-occurrences that are subactivity occurrences of occ3 and that

the beginning timepoint of occ 1 is earlier than the beginning time

point of occ2.

before-end

-H

activity-occurrence,

activity-occurrence.

(before-end occl occ2 occ3) means that occl and occ2 are two

activity-occurrences that are subactivity occurrences of occ3 and that

41

1— activity-occurrence the beginning timepoint of occl is earlier than the ending time point

of occ2.

after-start

—I
1—

-

activity-occurrence,

activity-occurrence,

activity-occurrence

(after-start occl occ2 occ3) means that occl and occ2 are two

activity-occurrences that are subactivity occurrences of occ3 and that

the ending timepoint of occl is earlier than the beginning time point

of occ2.

after-end

---I

activity-occurrence,

activity-occurrence,

activity-occurrence

(after-end occl occ2 occ3) means that occl and occ2 are two activ

ity occurrences that are subactivity occurrences of occ3 and that the

ending timepoint of occl is earlier than the ending timepoint of occ2.

meets

—

1

|

activity-occurrence,

activity-occurrence,

activity-occurrence

(meets occl occ2 occ3) means that occl and occ2 are two activity-

occurrences that are subactivity occurrences of occ3 and that the

ending timepoint of occl is equal to the beginning timepoint of occ2.

starts activity-occurrence,

activity-occurrence,

activity-occurrence

(starts occl occ2 occ3) means that occl and occ2 are two activity-

occurrences that are subactivity occurrences of occ3 and that the

beginning timepoint of occl is equal to the beginning timepoint of

occ2.

finishes

--I—
1

activity-occurrence,

activity-occurrence,

activity-occurrence

(finishes occl occ2 occ3) means that occl and occ2 are two activ ity

occurrences that are subactivity occurrences of occ3 and that the

ending timepoint of occl is equal to the ending timepoint of occ2.

during

1-
1

|
1

activity-occurrence,

activity-occurrence,

activity-occurrence

(during occl occ2 occ3) means that occl and occ2 are two activity-

occurrences that are subactivity occurrences of occ3 and that the

beginning and ending timepoints of occl are between the beginning

and ending timepoints of occ2.

overlaps

I--I

I--I

activity-occurrence,

activity-occurrence,

activity-occurrence

(overlaps occl occ2 occ3) means that occl and occ2 are two activ ity

occurrences that are subactivity occurrences of occ3 and that the

beginning timepoint of occl is between the beginning and ending

timepoints of occ2, and the ending timepoint of occ2 is between the

beginning and ending timepoint of occl.

equals

l—l

activity-occurrence,

activity-occurrence,

activity-occurrence

(equals occl occ2 occ3) means that occl and occ2 are two activity-

occurrences that are subactivity occurrences of occ3 and that the two

activity-occurrences have same beginning and ending timepoints.

non-concur rence

I--I

|

1

or

1-
1

l-l

activity-occurrence,

activity-occurrence,

activity-occurrence

(non-concurrence occl occ2 occ3) means that occl and occ2 are two

activity-occurrences that are subactivity occurrences of occ3 and that

the two activity-occurrences do not overlap.

follows activity, activity, activity (follows al a2 a3) means that al and a2 are two activities that are

subactivities of a3 and that the ending timepoint of any activity-

occurrence of al is earlier than or equal to the beginning timepoint of

any occurrence of a2.

leq-expect activity, activity, activity (leq-expect al a2 a3) means that al, a2, and a3 are activities, that al

and a2 are subactivies of a3 and that whenever al occurs, a2 must

occur after the activity-occurrence of al.

next-expect-

activity

activity, activity, activity (next-expect-activity al a2 a3) means that al, a2, and a3 are activi

ties, that al and a2 are subactivies of a3 and that whenever al

occurs, a2 must occur after the activity-occurrence of al, and no

other activity can occur between the activity-occurrences of al and

42

a2.

leq-required activity, activity, activity (leq-required al a2 a3) means that al, a2, and a3 are activities, that

al and a2 are subactivies of a3 and that whenever a2 occurs, al must

occur before the activity-occurrence of a2.

next-required-

activity

activity, activity, activity (next-required-activity al a2 a3) means that al, a2, and a3 are

activities, that al and a2 are subactivies of a3 and that whenever a2

occurs, al must occur before a2, and no other activity can occur

between the activity-occurrences of al and a2.

mutually-occur

ring

activity, activity, activity (mutually-occurring al a2 a3) means that al, a2, and a3 are activi

ties, that al and a2 are subactivies of a3 and that whenever a2 occurs,

al must occur before a2, whenever al occurs, a2 must occur after al,

and no other activity can occur between the occurrences of al and a2.

start-synchroni

zation

activity, activity, activity (start-synchronization al a2 a3) means that al, a2, and a3 are activ

ities, that al and a2 are subactivies of a3 and that whenever al and a2

occurs, their activity-occurrences must start at the same time.

end-synchroni

zation

activity, activity, activity (end-synchronization al a2 a3) means that al, a2, and a3 are activ

ities, that al and a2 are subactivies of a3 and that whenever al and a2

occurs, their activity-occurrences must end at the same time.

full-synchroni

zation

activity, activity, activity (full-synchronization al a2 a3) means that al, a2, and a3 are activ

ities, that al and a2 are subactivies of a3 and that whenever al and a2

occurs, their activity-occurrences must start and end at the same

times.

The formal definitions for the relations in the Complex Sequences of Activitiies

Extension will be completedfor the next release.

4.9 Nondeterministic Activities Extension

This extension introduces concepts for describing special constraints on the occurrences

of activities that are related through the subactivity relation.

4.9.1 Classes of Activities in the Nondeterministic Activities Extension

The nondeterministic activities extension introduces the following kinds.

Concept Informal Documentation

nondeterministic-choice A nondeterministic choice is an activity that is such that whenever it occurs, at least one

of its subactivities occurs as well.

xor An xor is an activity that is such that whenever it occurs, one and only one of its subac

tivities occurs as well.

43

4.9.2 Formal Axioms in the Nondeterministic Activities Extension

Definition 1.

(defrelation nondeterministic-choice (?a) :=

(and (activity ?a)

(forall (?occ)

(=> (occurrence-of ?occ ?a)

(exist (?occl ?al)

(and (occurrence-of ?occl ?al)

(subactivity-occurrence ?occl ?occ)))))))

Definition 2.

(defrelation xor (?a) :=

(and (activity ?a)

(forall (?occ)

(=> (occurrence-of ?occ ?a)

(exist (?occl ?al)

(and (occurrence-of ?occl ?al)

(subactivity-occurrence ?occl ?occ)))

(forall (?occ2)

(=> (subactivity-occurrence ?occ2 ?occ)

(= ?occl ?occ2))))))))

4.10 Reasoning about States Extension

The purpose of the reasoning about states extension is to introduce and define relations to

talk about how activity-occurrences and fluents effect one another.

4.10.1 Classes of Fluents in the Reasoning about States Extension

The reasoning about states extension defines the following classes of fluents.

Kind Informal Definition

Achievement An achievement is an activity whose effects achieve the preconditions for some other activity.

Repairable-fluent A repairable fluent is a fluent such that, whenever the fluent does not hold, there exists an

activity-occurrence that causes the fluent to hold again.

Nonrepairable-

fluent

A nonrepairable fluent is a fluent such that, whenever the fluent does not hold, there exists no

activity-occurrence that can achieve the fluent.

44

Reversible-fluent A reversible fluent is a fluent such that, whenever the fluent holds, there exists an activity-

occurrence that falsifies the fluent.

Irreversible-fluent An irreversible fluent is a fluent such that, whenever the fluent holds, there exists no activity-

occurrence that can falsify the fluent.

4.10.2 Relations In the Reasoning about States Extension

The reasoning about states extension defines the following relations.

Relation Arguments Informal Definition

Changes activity-

occurrence,

fluent

This relation is used to capture the effect of an activity-occurrence on the

properties of the world. An activity-occurrence changes a fluent if either

the fluent held before the activity-occurrence and does not hold after it, or

the fluent did not hold before the activity-occurrence but holds after it.

Possibly-changes activity-

occurrence,

fluent, fluent

This relation is used to capture the effect of an activity-occurrence when
that effect is conditional on some property of the world. An activity-

occurrence possibly changes a fluent f2 given a fluent fl, if it changes f2

only when fl holds before the activity-occurrence.

achieved activity-

occurrence,

fluent

This relation is used to capture the fact that an activity-occurrence causes

the world to have a certain property. An activity-occurrence achieves a

fluent if the fluent does not hold before the activity-occurrence but holds

after the activity-occurrence.

falsified activity-

occurrence,

fluent

This relation is used to capture the fact that an activity-occurrence causes

the world to not have a property that it had before the activity-occurrence.

An activity-occurrence falsifies a fluent if the fluent holds before the

occurrence but does not hold after the activity-occurrence.

precondition-fluent activity, fluent A fluent is a precondition for an activity if the fluent must hold before any

activity-occurrence of that activity.

neg-precondition-

fluent

activity, fluent A fluent is a negative precondition for an activity if it must be the case that

the fluent does not hold before any occurrence of that activity.

possible-fluent fluent, timepoint A fluent is possible fluent at a given timepoint if there exist an activity-

occurrence that starts at the given timepoint and such that the fluent holds

before the activity-occurrence.

required-fluent fluent, timepoint A fluent is possible fluent at a given timepoint if there exist an activity-

occurrence that starts at the given timepoint and such that the fluent holds

before the activity-occurrence.

fluent-interval fluent, activity-

occurrence,

activity-occurrence

Two activity-occurrences occl and occ2 are an interval for a fluent if occl

achieves the fluent, occ2 falsifies the fluent, and there are no activity-

occurrences that occur between occl and occ2 and that falsifies the fluent.

neg-fluent-interval fluent, activity- Two activity-occurrences occl and occ2 are a negative interval for a fluent

45

occurrence,

activity-occurrence

if occl occurs before occ2, occl falsifies the fluent, occ2 achieves the

fluent, and there are no activity-occurrences that occur between occl and

occ2 and that falsifies the fluent.

temporal-fluent-

interval

fluent, time point,

timepoint

Informally, a temporal interval for a fluent is an interval over which the

fluent holds. More formally, a fluent has a temporal interval beginning at

time tl and ending at time t2 if there exist two activity-occurrences occl

and occ2 such that occl starts at tl, occ2 ends at t2 and occl and occ2 form

an interval for the fluent.

4.10.3 Formal Definitions for the Reasoning about States Extension

Definition 1.

(defrelation changes (?occ ?f) :=

(or (and (state-before ?f ?occ)

(not (state-after ?f ?occ)))

(and (not (state-before ?f ?occ))

(state-after ?f ?occ))))

Definition 2.

(defrelation possibly-changes (?occ ?fl ?f2) :=

(and (state-before ?f2 ?occ)

(or (and (state-before ?fl ?occ)

(not (state-after ?fl ?occ)))

(and (not (state-before ?fl ?occ))

(state-after ?fl ?occ))))

Definition 3.

(defrelation achieved (?occ ?f) :=

(and (not (state-before ?fl ?occ))

(state-after ?fl ?occ)))

Definition 4.

(defrelation falsified (?occ ?f) :=

(and (state-before ?fl ?occ)

(not (state-after ?fl ?occ))))

Definition 5.

(defrelation possible-fluent(?f) :=

(exist (?occ)

(state-before ?fl ?occ)))

46

Definition 6.

(defrelation precondition-fluent(?a ?f) :=

(forall (?occ)

(=> (occurrence-of ?occ ?a)

(state-before ?f ?occ))))

Definition 7.

(defrelation neg-precondition-fluent(?a ?f) :=

(forall (?occ)

(=> (occurrence-of ?occ ?a)

(not (state-before ?f ?occ)))))

Definition 8.

(defrelation possible-fluent(?f ?t) :=

(exist (?occ)

(and (= ?t (beginof ?occ))

(state-before ?f ?occ))))

Definition 9.

(defrelation required-fluent(?f ?t) :=

(forall (?occ)

(=> (and (activity-occurrence ?occ)

(= ?t (beginof ?occ)))

(state-before ?f ?occ))))

Definition 10.

(defrelation repairable-fluent(?f) :=

(forall (?occ)

(=> (not (state-after ?f ?occ))

(exist (?occl)

(and (occurrence-earlier ?occ ?occl)

(achieved ?occl ?f))))))

Definition 10.

(defrelation non-repairable-fluent(?f) :=

(forall (?occ)

(=> (not (state-after ?f ?occ))

(not (exist (?occl)

(and (occurrence-earlier ?occ ?occl)

(achieved ?occl ?f)))))))

Definition 11.

(defrelation reversible-fluent(?f) :=

(forall (?occ)

(=> (state-after ?f ?occ))

(exist (?occl)

(and (occurrence-earlier ?occ ?occl)

(falsifies ?occl ?f))))))

Definition 12.

(defrelation irreversible-fluent(?f) :=

(forall (?occ)

(=> (state-after ?f ?occ))

(not (exist (?occl)

(and (occurrence-earlier ?occ ?occl)

(falsifies ?occl ?f))))))

Definition 13.

(defrelation fluent-interval(?f ?occl ?occ2) :=

(and (occurrence-earlier ?occl ?occ2)

(achieved ?f ?occl)

(falsified ?f ?occ2)

(forall (?occ)

(=> (and (not (= ?occ ?occl))

(not (= ?occ ?occ2))

(occurrence-earlier ?occl ?occ)

(occurrence-earlier ?occ ?occ2))

(state-after ?occ ?f))))))

Definition 14.

(defrelation neg-fluent-interval(?f ?occl ?occ2) :=

(and (occurrence-earlier ?occl ?occ2)

(achieved ?f ?occ2)

(falsified ?f ?occl)

(forall (?Socc)

(=> (and (not (= ?occ ?occl))

(not (= ?occ ?occ2))

(occurrence-earlier ?occl ?occ)

(occurrence-earlier ?occ ?occ2))

(not (state-after ?occ ?f)))))))

Definition 15.

(defrelation temporal-fluent-interval(?f ?tl ?t2) :=

(exist (?occl ?occ2)

(and (= ?tl (beginof ?occl))

(= ?t2 (endof ?occ2))

(fluent-interval ?f ?occl ?occ2))))

4.11 Interval Activities Extension

The purpose of this extension is to introduce the concept of interruptible and

uninterruptible activities.

4.1 1 .1 Classes of Activities in the Interval Activities Extension

The interval activities extension introduces the following kinds.

Kind

Informal Definition

interval-activity An interval activity is an activity that has two subactivities: one that occurs at the beginning (the

initial subactivity) and one that occurs at the end of each occurrence of the activity (the termi nal

subactivity). The initial activity establishes a particular property of the world, namely, the

property of that occurrence of the activity being initiated. The terminal activity falsifies that

property. That property is called the ‘activity-fluent.’

uninterruptible-

activity

An uninterruptible activity is an interval activity that cannot be resumed once it has been

stopped.

interruptible An interruptible activity is an interval activity that can be resumed if it is stopped.

4.11.1.1 Interval-Activity

Interval activities are arguments to the following relations.

Relation

Arguments Informal Definition

suspends activity, interval-

activity

An activity suspends an interval activity if its activity-occurrence

causes the interval activity to be suspended.

Interval activities are arguments to the following functions.

Function

Arguments Return value Informal Definition

initiate interval-activity primitive-activ

in

This function returns the primitive activity that occurs when

the interval activity begins to be executed.

49

terminate interval-activity primitive-activ

fry

This function returns the primitive activity that occurs when
the interval activity ends its execution.

activity-fluent Interval-activity state This function returns the state which holds only between

occurrences of the initiation and termination of an interval

activity.

executing Interval-activity state This function returns the state which holds during the

occurrence of an interval activity.

suspended interval-activity state This function returns the state which holds after the occurrence

of a suspending activity.

4.1 1

.2

Defined Functions in the Interval Activities Extension

The following functions are defined in the interval activities extension.

Function

Arguments Return type Informal Definition

initiate interval-

activity

activity This function returns the initial activity of an interval activity

terminate interval-

activity

activity This function returns the terminal activity of an interval activ ity.

executing Interval

-

activity

state This function returns the state which holds during the occurrence

of an interval activity.

suspended interval-

activity

state This function returns the state which holds after the occurrence

of a suspending activity.

4.1

1.3

Defined Relations in the Interval Activities Extension

The following relations are defined in the interval activities extension.

Relation

Arguments Informal Definition

suspends activity, interval-

activity

An activity suspends an interval activity if its activity-occurrence causes

the interval activity to be suspended.

4.1 1

.4

Formal Definitions and Axioms for the Interval Activities Extension

Definition 1.

(defrelation interval-activity (?a) :=

(forall (?occ)

(<=> (occurrence-of ?occ ?a)

50

(exists (?al ?a2 ?occl ?occ2)

(and (subactivity ?al ?a)

(subactivity ?a2 ?a)

(= ?al (initiate ?a)

)

(= ?a2 (terminate ?a)

)

(subactivity-occurrence ?occl ?occ)

(subactivity-occurrence ?occ2 ?occ)

(= (beginof ?occl) (beginof ?occ)

(= (endof ?occl) (endof ?occ)))))))

Definition 2.

(deffunction initiate (?a) :=

(forall (?occ)

(=> (occurrence-of ?occ (initiate ?a)

(holds-after (activity-fluent ?a) ?occ))))

Definition 3.

(deffunction terminate (?a) :=

(forall (?occ)

(=> (occurrence-of ?occ (terminate ?a)

)

(not (holds-after (activity-fluent ?a) ?occ))))

)

Definition 4.

(def function activity-fluent (?a) :=

(forall (?ap ?occ)

(=> (occurrence-of ?occ ?ap)

(< => (holds-after (activity-fluent ? a) ?occ)

(or (= ?ap (initiate ?a)

)

(and (hold-before (activity-fluent ?a) ?occ)

(not (= ?ap (terminate ?a))))))))

)

Definition 5.

(def function executing (?a) :=

(forall (?a ?occ)

(<=> (holds-before (executing ?a) ?occ)

(and (holds-before (activity-fluent ?a) ?occ)

(legal-activity (terminate ?a) ?occ))))

)

51

Definition 6.

(deffunction suspended (?a) :=

(forall (?a ?occ)

(<=> (holds-before (suspended ?a) ?occ)

(and (holds-before (activity-fluent ?a) ?occ)

(not (legal-activity (terminate ?a) ?occ)))))

)

Definition 7.

(defrelation suspends (?al ?a2) :=

(forall (?occ)

(=> (occurrence-of ?occ ?al)

(holds-after (suspended ?a2) ?occ)))

)

Definition 8.

(defrelation uninterruptible (?a) :=

(nonrepairable (executing ?a))

)

Definition 9.

(defrelation interruptible (?a) :=

(repairable (executing ?a))

)

4. 12 Temporal Ordering Relations Extension

The purpose of the temporal ordering relation extension is to define relations that allow a

temporal ordering of activities that include the notion of delay.

4.12.1 Defined Relations in the Temporal Ordering Extension

The temporal ordering extension defines the following relations.

Relation Arguments Informal Definition

before-start-delay activity-occurrence,

activity-occurrence,

activity-occurrence,

duration

(before-start-delay occl occ2 occ d) means that occl and occ2 are

subactivity occurrences of occ and that occ2 begins at least d

timepoints after occl begins.

before-end-delay activity-occurrence,

activity-occurrence,

activity-occurrence,

duration

(before-end-delay occl occ2 occ d) means that occl and occ2 are

sub activity occurrences of occ and that occ2 starts at least d

timepoints after occl ends.

after-start-delay activity-occurrence,

activity-occurrence,

(after-start-delay occl occ2 occ d) means that occl and occ2 are sub

activity occurrences of occ and that occ2 ends at least d timepoints

after occl begins.

52

activity-occurrence,

duration

after-end-delay activity-occurrence,

activity-occurrence,

activity-occurrence,

duration

(after-end-delay occl occ2 occ d) means that occl and occ2 are

subac tivity occurrences of occ and that occ2 ends at least d

timepoints after occl ends.

start-equal-start activity-occurrence,

activity-occurrence,

activity-occurrence,

duration

(start-equal-start occl occ2 occ d) means that occl and occ2 are sub

activity occurrences of occ and that occ2 begins exactly d

timepoints after occl begins.

start-equal-end activity-occurrence,

activity-occurrence,

activity-occurrence,

duration

(start-equal-end occl occ2 occ d) means that occl and occ2 are

subac tivity occurrences of occ and that occ2 begins exactly d

timepoints after occl ends.

end-equal-start activity-occurrence,

activity-occurrence,

activity-occurrence,

duration

(end-equal-start occl occ2 occ d) means that occl and occ2 are

subac tivity occurrences of occ and that occ2 ends exactly d

timepoints after occl begins.

end-equal-end activity-occurrence,

activity-occurrence,

activity-occurrence,

duration

(end-equal-end occl occ2 occ d) means that occl and occ2 are

subac tivity occurrences of occ and that occ2 ends exactly d

timepoints after occl ends.

4.12.2 Formal Definitions for the Temporal Ordering Extension

Definition 1.

(defrelation before-start-delay (?occl ?occ2 ?occ ?d) :=

(and (subactivity-occurrence ?occl ?occ)

(subactivity-occurrence ?occ2 ?occ)

(beforeEq (timeAdd (beginof ?occl) ?d) (beginof ?occ2))))

Definition 2.

(defrelation before-start-delay (?occl ?occ2 ?occ ?d) :=

(and (subactivity-occurrence ?occl ?occ)

(subactivity-occurrence ?occ2 ?occ)

(beforeEq (timeAdd (endof ?occl) ?d) (beginof ?occ2))))

Definition 3.

(defrelation after-start-delay (?occl ?occ2 ?occ ?d) :=

(and (subactivity-occurrence ?occl ?occ)

(subactivity-occurrence ?occ2 ?occ)

53

(beforeEq (timeAdd (beginof ?occl) ?d) (endof ?occ2))))

Definition 4.

(defirelation after-end-delay (?occl ?occ2 ?occ ?d) :=

(and (subactivity-occurrence ?occl ?occ)

(subactivity-occurrence ?occ2 ?occ)

(beforeEq (timeAdd (endof ?occl) ?d) (endof ?occ2))))

Definition 5.

(defirelation start-equal-start(?occl ?occ2 ?occ ?d) :=

(and (subactivity-occurrence ?occl ?occ)

(subactivity-occurrence ?occ2 ?occ)

(= (timeAdd (beginof ?occl) ?d) (beginof ?occ2))))

Definition 6.

(defirelation start-equal-end(?occl ?occ2 ?occ ?d) :=

(and (subactivity-occurrence ?occl ?occ)

(subactivity-occurrence ?occ2 ?occ)

(= (timeAdd (endof ?occl) ?d) (beginof ?occ2))))

Definition 7.

(defrelation end-equal-star(?occl ?occ2 ?occ ?d) :=

(and (subactivity-occurrence ?occl ?occ)

(subactivity-occurrence ?occ2 ?occ)

(= (timeAdd (beginof ?occl) ?d) (endof ?occ2))))

Definition 8.

(defirelation end-equal-end(?occl ?occ2 ?occ ?d) :=

(and (subactivity-occurrence ?occl ?occ)

(subactivity-occurrence ?occ2 ?occ)

(= (timeAdd (endof ?occl) ?d) (endof ?occ2))))

4. 13 Junctions Extension

The purpose of the junctions extension is to introduce the concepts of branching (decision

and parallel activity-occurrences) and synchronization of activity-occurrences.

4.13.1 Classes of Activities in the Junctions Extension

The junctions extension defines the following kinds.

54

Kind Informal Definition

or-split An or-split is an activity such that whenever that activity occurs, at least one of it subactivities

occur as well.

and-split An and-split is an activity such that whenever that activity occurs, all of its subactivities occur as

well.

xor-split An xor-split is an activity such that whenever that activity occurs, one and only one of its sub

activities occur as well.

sync-start A sync-start activity is an activity such that whenever the activity occurs, if two or more of its

subactivities occur, their activity-occurrences start at the same time.

sync-finish A sync-finish activity is an activity such that whenever the activity occurs, if two or more of its

subactivities occur, their activity-occurrences end at the same time.

sync-start-and-

split

A sync-start-and-split activity is an activity that is both a sync-start and an and-split activity.

sync-start-or-split A sync-start-or-split activity is an activity that is both a sync-start and an or-split activity.

sync-finish-and-

split

A sync-fmish-and-split activity is an activity that is both a sync-finish and an and-split activity.

sync-finish-or-

split

A sync-finish-or-split activity is an activity that is both a sync-finish and an or-split activity.

4.13.2 Formal Definitions for the Junctions Extension

Definition 1.

(defrelation or-split (?a) :=

(and (activity ?a)

(forall (?occ)

(=> (occurrence-of ?occ ?a)

(exists (?occl)

(subactivity-occurrence ?occl ?occ))))))

Definition 2.

(defrelation and-split (?a) :=

(and (activity ?a)

(forall (?occ ?al)

(=> (and (occurrence-of ?occ ?a)

(subactivty ?al ?a))

(exists (?occl)

(and (occurrence-of ?occl ?al)

(subactivity-occurrence ?occl ?occ)))))))

55

Definition 3.

(defrelation xor-split (?a) :=

(and (activity ?a)

(forall (?occ)

(=>(occurrence-of ?occ ?a)

(and (exists (?occl)

(subactivity-occurrence ?occl ?occ))

(forall (?occ2 ?occ3)

(=> (and (subactivity-occurrence ?occ2 ?occ)

(subactivity-occurrence ?occ3 ?occ))

(= ?occ2 ?occ3))))))))

Definition 4.

(defrelation sync-start(?a) :=

(and (activity ?a)

(forall (?occ ?occl ?occ2)

(=> (and (occurrence-of ?occ ?a)

(subactivity-occurrence ?occl ?occ)

(subactivity-occurrence ?occ2 ?occ))

(= (beginof ?occl) (beginof ?occ2))))))

Definition 5.

(defrelation sync-finish(?a) :=

(and (activity ?a)

(forall (?occ ?occl ?occ2)

(=> (and (occurrence-of ?occ ?a)

(subactivity-occurrence ?occl ?occ)

(subactivity-occurrence ?occ2 ?occ))

(= (endof ?occl) (endof ?occ2))))))

Definition 6.

(defrelation sync-start-and-split(?a) :=

(and (sync-start ?a)

(and-split ?a)))

Definition 7.

(defrelation sync-start-or-split(?a) :=

(and (sync-start ?a)

(or-split ?a)))

56

Definition 8.

(defrelation sync-finish-and-split(?a) :=

(and (sync-finish ?a)

(and-split ?a)))

Definition 9.

(defrelation sync-finish-or-split(?a) :=

(and (sync-finish ?a)

(or-split ?a)))

5 Translation Using PSL

5. 1 Motivation

To guarantee correct and complete translation, translators must be based on theformal

specifications of the representation’s semantics. Translators written “by hand” provide no

such guarantee, and proving that they actually perform the intended “correct” translation

is so difficult that it is almost never done.

5.2 Overview of Semantic and Syntactic Translation

We consider translation to be a two-stage process — syntactic translation and semantic

translation. The syntactic translator is a parser between the PSL syntax (e.g. KIF) and the

native syntax of one of the applications; this parser keeps the terminology of the

application intact. Figure 5 illustrates the translation transaction between two

applications and the role played by the PSL Ontology.

Semantic translation substitutes terminology of one application with PSL definitions.

These translation definitions between an application ontology and PSL can be derived

from the ontological definitions that were written using the same foundational theories.

These are definitions for the terminology of the application ontology, using only the

terminology from the PSL Ontology, as well as definitions for the terminology of the

PSL Ontology using only the terminology of the application ontology.

57

PSL Ontology

KIF)

AppL B
OntologyKIF Syntax

Appl. B Terminology

Application B
Appl. B Syntax

AppL B Terminology

KIF Syntax

KIF Terminology

J
Appl. B Concepts Syntactic Translation

Appl. A Concepts Semantic Mapping

Figure 5: Translation to/from PSL

This procedure is best shown by an example. The resource construct is highlighted

during each stage of the example to show how it progresses through the translation

process. We begin with a simple file written in Application A’s syntax and using

Application A’s terminology.

{stock: wire (x)}

{stock: plug (x)}

{resource: inject_mold (x)}

{material: plug_head (x)}

{operation: fabricate_plug}

The syntactic translator takes this file and produces a corresponding file using PSL
syntax, but still preserving Application A terminology.

58

(forall (?r)

(=> (wire ?r)

(stock ?r)))

(forall (?r)

(=> (plug_head ?r)

(material ?r)))

(forall (?r)

(=> (inject_mold ?r)

(resource ?r)))

(forall (?r)

(=> (plug ?r)

(stock ?r)))

The semantic translator takes this file and produces a file containing only PSL
terminology by substituting the definitions of all Application A terms with their

definitions in PSL.

(forall (?r)

(=> (wire ?r)

(material ?r)))

(forall (?r)

(=> (plug_head ?r)

(wip ?r)))

(forall (?r)

(=> (inject_mold ?r)

(machine ?r)))

(forall (?r)

(=> (plug ?r)

(material ?r)))

We now follow reversed steps to translate the file into Application B. Using the

translation definitions for Application B, the PSL file is mapped to a file containing only

Application B terminology.

forall (?r)

(=> (wire ?r)

(resource ?r)))

(forall (?r)

59

(=> (plug_head ?r)

(workpiece ?r)))

(forall (?r)

(=> (inject_mold ?r)

(machine-tool ?r)))

(forall (?r)

(=> (plug ?r)

(resource ?r)))

Finally, the syntactic translator for Application B maps the file back into Application B
syntax.

(define-class wire

(Subclass-Of resource))

(define-class inject-mold

(Subclass-Of machine-tool))

(define-class plug

(Subclass-Of resource))

(define-class plug_head

(Subclass-Of workpiece))

(define-class fabricate_plug

(Subclass-Of task))

Note that this ontology-based approach to compliance is different from the traditional

approach to standards compliance. Rather than forcing the adoption of exactly the same

terminology, an application is PSL-compliant if there exist definitions for its terminology

using either some foundational theory or other ontology. Given these definitions,

translation definitions can be written between the application and PSL.

6 Conclusion

The purpose of the Process Specification Language is to provide a representation for

manufacturing process information that will serve as an Interlingua to facilitate the

exchange of information among manufacturing software applications. This paper

documents Version 1.0 of PSL.

Other efforts to develop mechanisms for the exchange of data, such as ISO 10303

(informally known as The STandard for the Exchange of Product model data (STEP))

[16], have focused on syntactical standards elements necessary for data exchange. This

focus works well for exchanging information among similar domains where the terms

used have roughly the same meanings. However, within the increasingly complex

manufacturing environment where process models are maintained in different software

60

applications, standards for the exchange of this information must address not only the

syntax but also the meanings or semantics of terms and concepts used. PSL uniquely

addresses this in its identification and development of semantics for specifying and

exchanging process information. The identification of the necessary concepts was based

on a thorough analysis of the requirements for specifying business and manufacturing

engineering processes in the manufacturing domain and then analyzing a broad set of

existing approaches to representing process models with respect to these requirements.

Version 1.0 of PSL represents the beginning point in the development of a complete

Process Specification Language. This initial version will be refined in an iterative fashion

to continuously increase the robustness of the language. A series of pilot

implementations, in which the specification language will be used to exchange process

information between existing manufacturing applications, will allow us to determine

which representational areas need to be expanded upon to ensure that the PSL will be

able to capture and exchange all current and future manufacturing process information.

61

7 References

[1] Schlenoff, C., Rnutilla, A., Ray, S., Unified Process Specification Language:

Requirements for Modeling Processes: NISTIR 5910, 1996, National Institute of

Standards and Technology, Gaithersburg, MD.

[2] Knutilla, A., et al., Process Specification Language: An Analysis of Existing

Representations, NISTIR 6133, 1998, National Institute of Standards and Technology,

Gaithersburg, MD.

[3] Genesereth, M., Fikes, R.: Knowledge Interchange Format (Version 3.0) - Reference

Manual, 1992, Computer Science Dept., Stanford University, Stanford, CA.

[4] Catron, B., Ray, S., ALPS: A Language for Process Specification, Int. J. Computer

Integrated Manufacturing, 1991, Vol. 4, No. 2, 105-113.

[5] Fox, M., et al, An Organization Ontology for Enterprise Modeling: Preliminary

Concepts,” Computers in Industry, 1996, Vol. 19, pp. 123-134.

[6] Uschold, M., et. al., ‘The Enterprise Ontology,” The Knowledge Engineering

Review, Vol. 13(1), pp. 31-89, Special Issue on “Putting Ontologies to Use,” (eds.

Uschold, M. and Tate, A.), Cambridge University Press.

[7] Pease, A., Core Plan Representation (CPR), http://www.teknowledge.com/CPR2/ ,

November 13, 1998.

[8] Tate, A., “Roots of SPAR - Shared Planning and Activity Representation,” The

Knowledge Engineering Review, Vol. 13(1), pp. 121-128, Special Issue on “Putting

Ontologies to Use” (eds. Uschold, M. and Tate, A.), Cambridge University Press.

http://www.aiai.ed.ac.uk/~arpi/spar/

[9] Lee, J., et al, “The PIF Process Interchange Format and Framework,” The Knowledge

Engineering Review, Vol. 13(1), pp. 91-120, Special Issue on “Putting Ontologies to

Use” (eds. Uschold, M. and Tate, A.), Cambridge University Press.

[10] Workflow Management Coalition Members, Glossary: A Workflow Management

Coalition Specification, Belgium, 1994.

[11] Uschold, M. and Gruninger M., Ontologies: Principles, Methods, and Applications,

Knowledge Engineering Review, 1996, Vol. 11, pp. 96-137.

[12] Reiter, R., The frame problem in the situation calculus: a simple solution

(sometimes) and a completeness result for goal regression. Artificial Intelligence and

Mathematical Theory of Computation: Papers in Honor of John McCarthy, 1991, pages

418-440, Academic Press, San Diego.

62

[13] PSL Ontology - Current Theories and Extensions, http://www.nist.gov/psl/psl-

ontologv/ , June 28, 1999.

[14] Hayes, P., A Catalog of Temporal Theories, Tech Report UIUC-BI-AI-96-01, 1996,

University of Illinois.

[15] Smith, S J.J., at al.. Integrating Electrical and Mechanical Design and Process

Planning, Proceedings of the IEIP Knowledge Intensive CAD Workshop, 1996,

Camegie-Mellon University (CMU).

[16] ISO 10303-1:1994, Product data representation and exchange: Part 1: Overview and

fundamental principles.

[17] Extensible Markup Language (XML) 1.0, W3C Recommendation 10-February-

1998, http://www.w3.org/TR/1998/REC-xml-19980210.

[18] Resource Description Framework (RDF) Model and Syntax, W3C Recommendation

22 February 1999, http://www.w3.org/TR/REC-rdf-syntax/.

[19] Resource Description Framework (RDF) Schema Specification, W3C Proposed

Recommendation 03 March 1999, http://www.w3.org/TR/PR-rdf-schema/.

[20] ISO 10303-11: 1994, Product data representation and exchange: Part 11: EXPRESS
language reference manual

63

Appendix A: Sample PSL Instance

The following is an example instance of a PSL exchange file. For the completed pilot

implementation, the project has used a KJF-like syntax for the exchange (as shown
below). Future versions of this PSL specification document will go into more detail about

the syntax and grammar of the PSL exchange language, which may or may not resemble

KIF, as the specification evolves.

(doc make-gt350 "Make GT350")

(and (doc make-interior "Make Interior")

(forall (?a : (activation-of ?a make-interior))

(exists (?ol : (instance-of ?oI a002-bench)) (in ?ol ?a)))

(and (duration make-interior 5) (beginof make-interior 7)))

(and (doc make-drive "Make Drive")

(forall (?a : (activation-of ?a make-drive))

(exists (?ol : (instance-of ?ol a003-bench)) (in ?ol ?a))))

(and (doc make-trim "Make Trim")

(forall (?a : (activation-of ?a make-trim))

(exists

(?ol ?o2 : (instance-of ?ol a002-bench)

(instance-of ?o2 a005-bench))

(and (in ?ol ?a) (in ?o2 ?a)))))

(doc make-chassis "Make Chassis")

(doc final-assembly "Final Assembly")

(doc make-harness "Make Harness")

(doc make-wires "Make Wires")

(doc assemble-engine "Assemble Engine")

64

(doc machine-block "Machine Block")

(doc change-mould "Change Mould")

(doc setup-furnace "Setup Furnace")

(doc analyze-metal "Analyze Metal")

(doc melt "Melt")

(doc wait "Wait")

(doc clear-cavities "Clear Cavities")

(doc setup-racks "Setup Racks")

(doc pour "Pour")

(doc remove-racks "Remove Racks")

(doc batch-complete "Batch Complete")

(and (doc make-gt350-proc "Make GT350 Process")

(subactivity make-interior-1 make-gt350-proc)

(subactivity make-drive-1 make-gt350-proc)

(subactivity make-trim-1 make-gt350-proc)

(subactivity make-chassis- 1 make-gt350-proc)

(subactivity final-assembly- 1 make-gt350-proc)

(subactivity j2 make-gt350-proc) (subactivity jl make-gt350-proc)

(subactivity make-harness- 1 make-gt350-proc)

(subactivity make-wires- 1 make-gt350-proc)

(subactivity assemble-engine-1 make-gt350-proc)

(subactivity j4 make-gt350-proc) (subactivity j 3 make-gt350-proc)

(subactivity machine-block- 1 make-gt350-proc)

(subactivity change-mould- 1 make-gt350-proc)

(subactivity setup-furnace- 1 make-gt350-proc)

(subactivity analyse-metal-1 make-gt350-proc)

(subactivity melt-1 make-gt350-proc)

(subactivity wait-1 make-gt350-proc)

(subactivity clear-cavities-1 make-gt350-proc)

(subactivity j 8 make-gt350-proc) (subactivity j7 make-gt350-proc)

(subactivity j6 make-gt350-proc) (subactivity j 5 make-gt350-proc)

(subactivity setup-racks- 1 make-gt350-proc)

(subactivity pour-1 make-gt350-proc)

(subactivity remove-racks- 1 make-gt350-proc)

(subactivity batch-complete- 1 make-gt350-proc)

(idef-process make-gt350-proc))

(and (doc make-interior-

1

"The occurrence of Make-Interior in the Dec- 19 schematic")

(forall (?a : (activation-of ?a make-interior- 1))

(activation-of ?a make-interior))

(forall (?a : (activation-of ?a make-interior- 1))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?a ?p))))

(and (doc make-drive-

1

"The occurrence of Make-Drive in the Dec-19 schematic")

(forall (?a : (activation-of ?a make-drive- 1))

(activation-of ?a make-drive))

(forall (?a : (activation-of ?a make-drive- 1))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?a ?p))))

(and (doc make-trim-

1

"The occurrence of Make-Trim in the Dec- 19 schematic")

(forall (?a : (activation-of ?a make-trim- 1))

(activation-of ?a make-trim))

(forall (?a : (activation-of ?a make-trim-1))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?a ?p))))

(and (doc make-chassis-

1

"The occurrence of Make-Chassis in the Dec-19 schematic")

(forall (?a : (activation-of ?a make-chassis- 1))

(activation-of ?a make-chassis))

(forall (?a : (activation-of ?a make-chassis- 1))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?a ?p))))

(and (doc final-assembly-

1

"The occurrence of Final-Assembly in the Dec- 19 schematic")

(forall (?a : (activation-of ?a final-assembly- 1))

(activation-of ?a final-assembly))

(forall (?a : (activation-of ?a final-assembly- 1))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?a ?p))))

(and (doc j2 "J2")

(forall (?j : (activation-of ?j j2))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?j ?p)))

(follows j2 final-assembly- 1 make-gt350-proc)

(and (and_split j2 make-gt350-proc)

(subactivity make-interior- 1 j2)

(subactivity make-drive-1 j2) (subactivity make-trim-1 j2)

(subactivity assemble-engine-1 j2)

(subactivity make-chassis- 1 j2)))

(and (doc j 1 "Jl")

(forall (?j : (activation-of ?j j 1))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?j ?p)))

(and (and_split jl make-gt350-proc)

(subactivity make-interior- 1 jl)

(subactivity make-drive-1 jl) (subactivity make-trim-1 jl)

(subactivity j3 jl) (subactivity make-chassis- 1 jl)))

(and (doc make-harness-

1

"The occurrence of Make-Harness in the Dec-26 schematic")

(forall (?a : (activation-of ?a make-harness- 1))

(activation-of ?a make-harness))

(forall (?a : (activation-of ?a make-harness- 1))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?a ?p))))

(and (doc make-wires-1

"The occurrence of Make-Wires in the Dec-26 schematic")

(forall (?a : (activation-of ?a make-wires-1))

(activation-of ?a make-wires))

(forall (?a : (activation-of ?a make-wires-1))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?a ?p))))

(and (doc assemble-engine-1

"The occurrence of Assemble-Engine in the Dec-26 schematic")

(forall (?a : (activation-of ?a assemble-engine-1))

(activation-of ?a assemble-engine))

(forall (?a : (activation-of ?a assemble-engine-1))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?a ?p))))

(and (doc j4 "J4")

(forall (?j : (activation-of ?j j4))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?j ?p)))

(follows j4 assemble-engine-1 make-gt350-proc)

(and (and_split j4 make-gt350-proc)

(subactivity machine-block- 1 j4)

(subactivity make-harness- 1 j4)

(subactivity make-wires-1 j4)))

(and (doc j3 "J3")

(forall (?j : (activation-of ?j j3))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?j ?p)))

(and (and_split j3 make-gt350-proc) (subactivity j5 j3)

(subactivity make-harness- 1 j3)

(subactivity make-wires-1 j3)))

(and (doc machine-block-

1

"The occurrence of Machine-Block in the Dec-27 schematic")

(forall (?a : (activation-of ?a machine-block- 1))

(activation-of ?a machine-block))

(forall (?a : (activation-of ?a machine-block- 1))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?a ?p))))

(and (doc 193 "L93")

(follows clear-cavities-1 machine-block- 1 make-gt350-proc))

(and (doc change-mould-

1

"The occurrence of Change-Mould in the Dec-1 schematic")

(forall (?a : (activation-of ?a change-mould- 1))

(activation-of ?a change-mould))

(forall (?a : (activation-of ?a change-mould- 1))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?a ?p))))

(and (doc setup-furnace-

1

"The occurrence of Setup-Furnace in the Dec-1 schematic")

(forall (?a : (activation-of ?a setup-furnace- 1))

(activation-of ?a setup-furnace))

(forall (?a : (activation-of ?a setup-fumace-1))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?a ?p))))

(and (doc analyse-metal-1

"The occurrence of Analyze-Metal in the Dec-1 schematic")

(forall (?a : (activation-of ?a analyse-metal-1))

(activation-of ?a analyze-metal))

(forall (?a : (activation-of ?a analyse-metal-1))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?a ?p))))

(and (doc melt-1 "The occurrence of Melt in the Dec-1 schematic")

(forall (?a : (activation-of ?a melt-1)) (activation-of ?a melt))

(forall (?a : (activation-of ?a melt-1))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?a ?p))))

(and (doc wait-1 "The occurrence of Wait in the Dec-1 schematic")

(forall (?a : (activation-of ?a wait-1)) (activation-of ?a wait))

(forall (?a : (activation-of ?a wait-1))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?a ?p))))

(and (doc clear-cavities-1

"The occurrence of Clear-Cavities in the Dec-1 schematic")

(forall (?a : (activation-of ?a clear-cavities- 1))

(activation-of ?a clear-cavities))

(forall (?a : (activation-of ?a clear-cavities- 1))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?a ?p))))

(and (doc j8 "J8")

(forall (?j : (activation-of ?j j8))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?j ?p)))

(follows j8 setup-racks-1 make-gt350-proc)

(and (and_split j8 make-gt350-proc)

(subactivity analyse-metal-1 j8) (subactivity melt-1 j8)))

(and (doc j7 "J7")

(forall (?j : (activation-of ?j j7))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?j ?p)))

(follows setup-furnace- 1 j7 make-gt350-proc)

(and (and_split j7 make-gt350-proc)

(subactivity analyse-metal-1 j7) (subactivity melt-1 j7)))

(and (doc j6 "J6")

(forall (?j : (activation-of ?j j6))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?j ?p)))

(follows j6 setup-fumace-1 make-gt350-proc)

(and (xor_split j6 make-gt350-proc)

(subactivity change-mould- 1 j6)))

(and (doc j5 "J5")

(forall (?j : (activation-of ?j j5))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?j ?p)))

(and (xor_split j5 make-gt350-proc) (subactivity j6j 5)

(subactivity change-mould- 1 j5)))

(and (doc 1121 "LI 21")

(follows remove-racks- 1 batch-complete- 1 make-gt350-proc))

(and (doc 1122 "L122") (follows pour-1 remove-racks- 1 make-gt350-proc))

(and (doc 1124 "L124") (follows setup-racks-1 pour-1 make-gt350-proc))

(and (doc 1120 "L120")

(follows batch-complete- 1 wait-1 make-gt350-proc))

(and (doc 1123 "L123")

(follows wait-1 clear-cavities-1 make-gt350-proc))

(and (doc setup-racks-

1

"The occurrence of Setup-Racks in the Dec-1- 1 schematic")

(forall (?a : (activation-of ?a setup-racks-1))

(activation-of ?a setup-racks))

(forall (?a : (activation-of ?a setup-racks-1))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?a ?p))))

(and (doc pour-1 "The occurrence of Pour in the Dec- 1-1 schematic")

(forall (?a : (activation-of ?a pour-1)) (activation-of ?a pour))

(forall (?a : (activation-of ?a pour-1))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?a ?p))))

(and (doc remove-racks-

1

"The occurrence of Remove-Racks in the Dec-1-1 schematic")

(forall (?a : (activation-of ?a remove-racks- 1))

(activation-of ?a remove-racks))

(forall (?a : (activation-of ?a remove-racks- 1))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?a ?p))))

(and (doc batch-complete-

1

"The occurrence of Batch-Complete in the Dec-1-1 schematic")

(forall (?a : (activation-of ?a batch-complete- 1))

(activation-of ?a batch-complete))

(forall (?a : (activation-of ?a batch-complete- 1))

(exists (?p : (activation-of ?p make-gt350-proc))

(subactivity-occurrence ?a ?p))))

Appendix B: Mapping PSL Concepts to the EXPRESS
Representation

Mapping the PSL Ontology to EXPRESS
Within the architecture, there are five basic concepts; all the concepts in the EXPRESS
[20] presentation of PSL will fall into one (or possibly more, in the case of multiple

inheritance) of these categories.

The entity activity represents the concept of a PSL activity specification. This can be

thought of as a template in terms of possible occurrences of subactivities, described

below. Very little information is associated directly with an activity; in fact, other than a

human readable name, the only important aspect of an activity is its identity. All other

information pertaining to the activity is captured either in the occurrences within its

context, or via relations.

ENTITY activity;

name : STRING;
END_ENTITY;

The entity occurrence represents the concept of a PSL activity occurrence. This can be an

occurrence anywhere in the range from purely abstract (for example, an occurrence that

may happen at some unspecified time in either the past, present, or future) to a concrete

occurrence that represents something that happened or will happen at a specific time and

place.

All occurrences are “occurrences of’ an activity specification, and take place within the

context of another activity; in other words, occurrences are “occurrences of’ some
subactivity of another high-level activity. Occurrences by default carry no other

information (other than a human readable name). Information such as the ordering of

occurrences of common subactivities are captured via relations.

ENTITY occurrence;

name : STRING;
occurrence_of : activity;

context : activity;

ENDJENTITY;

The entity relation represents an abstract supertype of many of the concepts defined

within the PSL ontology, all of which relate two or more other concepts (often activities

or occurrences, but sometimes other relations also). For example, a relation would be

used to capture the fact that two particular (occurrences of) subactivities must occur in a

certain order.

The entity object represents the PSL concept of object, which may be anything that is not

an activity, occurrence, relation, or data value (described below). Objects can represent

72

physical objects, such as an NC milling machine, or people, or even conceptual objects

such as a fact about a certain situation. Extensions to PSL can refine the base concept of

object through subtyping.

ENTITY object;

name : STRING;
ENDJENT1TY;

The fifth and final basic concept is that of a data value. This concept is used to represent

miscellaneous, usually numeric types of data, for example time points and durations. This

concept does not exist independently, but rather will always occur in an attribute of some
other concept, typically either a relation or a more refined subtype of an activity,

occurrence, or object concept. Formally, the various concepts of data values are not

related in the EXPRESS model, although it is convenient to think of them in this way.

TYPE timepoint = SELECT (finite_value, infinite_value);

END_TYPE;

These five basic concept types form the core of the EXPRESS presentation of PSL, and

are grouped together into a single schema. Other EXPRESS schemas can define, in a

manner mirroring the definition of an extension to the PSL ontology, extensions to the

basic EXPRESS model. For example, the PSL extension dealing with ordering relations

for complex sequence actions would be mapped into a new schema and would define

various subtypes of the entity relation denoting various types of ordering relations that

might hold between subactivity occurrences.

Through appropriate extensions, it is possible to create as rich a model as is desired. The

basic model is quite abstract and high-level, but one can conceive of a model for

specifying processes that take place on a particular NC machine tool, in which subtypes

of activity, occurrence, etc. that were quite a bit more specific were used. This model

would consist of the core model plus appropriate extensions to add the required

semantics.

This modular approach to modeling is attractive for two reasons. First, it reduces the

amount of effort necessary to develop the models in the first place, by allowing a

reduction in the scope of individual extensions. Since we can always add new extensions

if additional semantics are required, we can avoid the urge to model every possible

concept that might conceivable occur. Secondly, from an application standpoint it is

necessary only to process the extensions that a particular application understands. In

particular the models are designed allow two applications to exchange data using models

based on multiple extensions, only some of which they may have in common. Data

defined in extensions, which fall outside of the scope of a given application, can be easily

ignored.

73

Use ofEXPRESS-X
The goal of the EXPRESS-X language is to define mappings between information

models defined in EXPRESS. The EXPRESS-X language allows one to create alternate

representations of EXPRESS models and mappings between EXPRESS models and other

applications. These alternate representations are called views of the original

models. The algorithm for deriving the entity types in a view from the entities in an

original EXPRESS model is specified using various types of mapping declarations in the

EXPRESS-X language.

Once an extension gets beyond the primitive semantic concepts and into more complex

notions, it becomes necessary to use EXPRESS-X. The following is an example of the

type of concept that is captured in EXPRESS-X.

The concept of “processor activity” is described informally in the PSL ontology as:

...an activity that uses some set of resources, consumes or

modifies some other set of resources, and produces or modifies

a set of objects.

The concepts of activity and use, consumption, modification, etc. of resources are

described elsewhere in the ontology and are captured in EXPRESS using static modeling

techniques. (In particular, they would all be subtypes of a relation between an activity and

an object, the resource.) EXPRESS-X is then used to formally capture the

interrelationships among those static EXPRESS structures that are implied by the

informal definition above (and by the formal semantics in the ontology).

VIEW processor_activity;

FROM (a : activity; rl, r2, r3 : requires)

IDENTIFIED_BY a;

WHERE rl.act :=: a;

r2.act :=: a;

r3.act :=: a;

(

rRESOURCE_ROLE.REUSABLE' IN TYPEOF(rl))

OR ('RESOURCE_ROLE.POSSLBLY_REUSABLE' IN TYPEOF(rl));

('RESOURCE_ROLE.CONSUMABLE' IN TYPEOF(r2))

OR ('RESOURCE_ROLE.POSSffiLY_CONSUMABLE' IN TYPEOF(r2));

('PROCESSOR_ACTIONS.MODIFIES' IN TYPEOF(r3))

OR ('RES0URCE_QUANT1TY.CREATES' IN TYPEOF(r3));

SELECT a;

END_VTEW;

The view states that a processor activity consists of a relationship between an activity

instance and three distinct “requires” relationships. The unique identity of the processor

activity is derived from that of the activity. Finally, the three “requires” relations are all

constrained to be of certain types: the first must be reusable or possibly reusable, the

74

second must be (possibly) consumable, and the third must either modify or create its

associated object.

One of the most powerful features of EXPRESS-X is the ability to incrementally build

views on top of other views. For example, in PSL a “processor resource” is defined as an

object that is a required resource of a processor activity. Using the definition of processor

activity above, we can define:

VIEW processor_resource;

FROM (a : processor_activity; r : requires)

IDENTIFIED_BY r.res;

WHERE r.act :=: activity;

(’RESOURCEJROLE.REUSABLE’ IN TYPEOF(r))

OR CRESOURCE_ROLE.POSSIBLY_REUSABLE' IN TYPEOF(r));

SELECT r.res;

END_VTEW;

The use of the previously defined view for processor activity allows us to treat this as a

primitive concept, like activity or object, even though it is really a complex

interrelationship among other concepts.

75

Appendix C: Mapping PSL Concepts to the extensible Markup
Language (XML) Representation

XML’s Strengths and Weaknesses as a Presentation Language for PSL

Vendors of mainstream software applications such as Internet browsers, database

environments, and business productivity tools are either already supporting or intend to

support XML in their products. Mapping PSL instances to XML will enable process

specifications to be interpreted by these generic applications, lowering the barriers to data

sharing.

Another advantage of XML for representing process characterizations is its "tag-centric"

syntax. XML is a natural fit for representing ordered sequences and hierarchies. Thus it

is well-suited for describing PSL’s ordering and subactivity relationships.

The Resource Description Framework (RDF), a standard for specifying metadata, adds to

XML’s benefits. RDF has an XML serialization syntax, making it easy to embed
resource descriptions in an XML document. Therefore, resources in an XML
representation of a PSL instance can be referred to using RDF. Further, RDF Schema, a

type system defined for RDF, is useful for describing PSL objects.

Although XML has many strengths as presentation format for PSL, it has a major

weakness. XML is not as rich a representation as KIF, or EXPRESS for that matter. In

particular, there is no straightforward way in XML to describe arbitrary constraints

between data elements in an information model. Such constraints could be represented

using defrelation in KIF or by means of WHERE rules in EXPRESS. Because XML is

deficient when it comes to specifying constraints, its presentational abilities for PSL are

limited. Exactly what those limitations are is a topic for future research, but intuitively it

seems that the aspects of the PSL ontology specified in KIF with defrelation must either

be implicitly represented (as can be done with ordering and subactivity relationships) or

omitted in an XML presentation. Also, since portions of the ontology are hard to specify

in XML, XML is not suitable as an authoring environment for PSL.

Guidelines for Mapping PSL to XML
To leverage XML’s strengths while minimizing its weaknesses, we suggest some

guidelines for mapping PSL to XML. To illustrate these guidelines, we use as an

example a simple scenario adapted from the Camile Motor Works scenario consisting of

an activity "Finish product.” “Finish product” involves a “Paint activity, followed by a

Sand activity, followed by another Paint” activity, and concluding with a final "Sand"

activity. "Paint" has three sub-activities: “Mix paint,” “Apply paint,” and “Clean brush.”

Sanding is performed the first time using 100 grit sand paper and the second time using

200 grit sand paper.

1. Use RDF Schema to represent the objects used in a process.

76

Assuming that "c" is an XML namespace for Camile, the paint, brush, mixer, thinner,

and sand paper in our scenario could be specified as follows:

<rdf:RDF>

<Class ID="Paint"/>

<Class ID="PaintBrush"/>

<Class ID="PaintMixer7>

<Class ED="PaintThinner"/>

<Class ID="SandPaper"/>

<Property ID="grit">

<rdfs:range rdf:resource="#Grit"/>

<rdfs:domain rdf:resource="#SandPaper"/>

</Property>

<Class ID="Grit"/>

<c:Grit rdf:ID="1007>

<c:Grit rdf:fD="200
M
/>

<c:Paint rdf:rD="paint-primer’7>

<c:Paint rdf:ID="paint-blue7>

<c:PaintBrush rdf:ID="brush7>
<c:PaintMixer rdf:DD="mixer"/>

<c :PaintThinner rdf:ID="thinner'7>
<c:SandPaper rdf:ID="sl">

<c:grit rdf:resource="#1007>

</c:SandPaper>

<c:SandPaper rdf:ID="s2">

<c:grit rdf:resource="#2007>

</c:SandPaper>

</rdf:RDF>

2. Represent timepoints as sequentially ordered groups of elements, with each timepoint

element having a unique identifier. If the XML application uses a Document Type

Definition (DTD), the unique identifier should be represented using an ID attribute so

that references to the timepoint can be made using IDREF. Each timepoint element

may optionally contain character data documenting the meaning of the timepoint.

Here is what the timepoints for our scenario might look like:

<timepoints>

<timepoint id="p 1 ">start</timepoint>

<timepoint id="p2">done mixing paint</timepoint>

<timepoint id="p3">done applying first coat of paint</timepoint>

<timepoint id="p4">done cleaning brush</timepoint>

ctimepoint id="p5">done sanding with 100 grit sand paper</timepoint>

<timepoint id="p6">done mixing paint</timepoint>

<timepoint id="p7">done applying second coat of paint</timepoint>

ctimepoint id="p8">done cleaning brush</timepoint>

77

<timepoint id="p9">done sanding with 200 grit sand paper</timepoint>

</timepoints>

3. For each activity, specify a unique identifier (with an ID attribute if using a DTD) and

an activity name. If the activity contains subactivities, specify these within a

container element. If the activity has no subactivities, specify the resources used with

references to the appropriate class defined in the RDF Schema.

The "Paint" activity from our scenario could be represented as follows:

<activity id="a2">

<name>Paint</name>

<subactivities>

<activity id="a3">

<name>Mix paint</name>

<requires>

<resource rdf:resource="#Paint"/>

<resource rdf:resource="#PaintMixer"/>

</requires>

</activity>

<activity id="a4">

<name>Apply paint</name>

<requires>

<resource rdf:resource="#Paint"/>

<resource rdf:resource="#PaintBrush"/>

</requires>

</activity>

<activity id="a5">

<name>Clean brush</name>

<requires>

<resource rdf:resource="#PaintBrush"/>

<resource rdf:resource="#PaintThinner"/>

</requires>

</activity>

</subactivities>

</activity>

4. Specify occurrences of activities in sequential order with sub-activities enclosed

inside parent activities. Each activity occurrence should have a beginning and ending

time point and, if it cannot be decomposed into sub-activities, a list of RDF-defined

resource instances it uses. References to timepoints and activities should correspond

to their respective unique identifiers (and should be IDREFs if using a DTD).

The XML representing the first occurrence of the "Paint" activity from our scenario

might look like this:

78

occurrence activity="a2" begin="pl" end="p4">
<suboccurrences>

<!-- mix first coat -->

occurrence activity="a3" begin="pl" end="p2">

objects>

<resource rdf:resource="#paint-primer"/>

<resource rdf:resource="#mixer"/>

</objects>

</occurrence>

<!— apply first coat —>
occurrence activity="a4" begin="p2" end="p3">

objects>

<resource rdf:resource="#paint-primer"/>

<resource rdf:resource="#brush"/>

</objects>

</occurrence>

<!— clean brush —

>

occurrence activity="a5" begin="p3" end="p4">

objects>

<resource rdf:resource="#brush"/>

<resource rdf:resource="#thinner"/>

</objects>

</occurrence>

</suboccurrences>

</occurrence>

5. Primitive lexicons from PSL extensions should be explicitly mapped to XML.
Foundational theories and defined lexicons from PSL extensions should probably be

omitted from the mapping, unless they describe containing or ordering relationships

that can be easily represented implicitly.

79

Appendix D: Basic PSL Syntax

This section contains the definition of the PSL language using an extended Backus-Naur

form (BNF).

BNF Conventions

The following extended BNF conventions are used:

• A vertical bar “|” indicates an exclusive disjunction; thus, for example, if Cl and C2
are two syntactic categories “Cl

|

C2” indicates an occurrence of either an instance of

Cl or C2, but not both. The absence of such a bar between two constructs indicates a

concatenation.

• An asterisk “*” immediately following a construct indicates that there can be any

finite number (including 0) of instances of the construct.

• A plus sign “+” superscript immediately following a construct indicates that there can

be one or more instances of the construct.

• Braces “{” and “}” are used to indicate grouping. Thus, “{Cl
|

C2}+” indicates one

or more instances of either Cl or C2.

• A construct surrounded by brackets (e.g., “[Cl
|

C2]”) indicates that an instance of the

indicated construct is optional.

• Terminals of a grammar appear in courier font. Nonterminals— representing

categories of expressions— start with “<” and end with “>” are in Times Roman
font. For example, “<b-var> ::= ?<b-indcon>” indicates that a variable must start

with a question mark.

• Where necessary, the space character is represented by “<space>.”

Basic Tokens and Syntactic Categories

We first define a set of basic tokens and certain categories of expressions built up from

them that will be used to define any first-order PSL language. They are defined in the

following BNF.

<uc-letter> ::= A
|

B
|

\z

C
|

D
|

E
|

F
|

G
|

H
|

I
|

J

<lc-letter> ::= a
1

b
|

c
I
d

|
e|f

| g | h I i I

j

<letter> ::=

1

^

<uc-letter>
|

<lc-letter>

<digit> ::= 0
|

1
1
2 |

3 |4|5|6|7|8|9
<oper> ::= -I~l #l$l *1 + 1/

<punct> ::= -1 !
1 @l#l$l%hi&i

M 1
[

|
}

|

<space>

|K|L|M|N|0|P|Q|R|S|T|U|V|W|X|Y

|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y

*|(|)| +
I
= I'I : M ,

I

<
I

> M-I ? |/

80

An expression is any string of basic tokens. We define four basic categories of

expression.

<b-con>

<b-var> ::=

<b-func> ::=

<b-pred> ::=

<doc-string>

{<lc-letter>
|

<digit>} {<letter>
|

<digit>}* { { _ |

- } {<letter>
|

<digit>}+}*

?<b-con>[']

{<oper>
|

<uc-letter>} {<letter>
|

<digit>}* {{ _ |

- } {<lettei>
|

<digit>}+}*

{<uc-letter>} {<letter>
|

<digit>}* {{ _ |

- } {<letter>
|

<digit>}+}*

" { <letter>
|

<digit>
|

<punct>
|

\
" |

\ \ }
* "

Thus, a <b-con> (i.e., an expression derived from the nonterminal <b-con>) is a string of

alphanumeric characters, dashes, and underscores that begins with a lower case letter or

digit and in which every dash and underscore is flanked on either side by a letter or digit.

A <b-var> is the result of prefixing a <b-con> with a question mark and, optionally,

appending a single quote (a “prime”). A <b-func> is just like a <b-con> except that it

must begin with either an <oper>, a <punc>, or an upper case letter, and a <b-pred> is

just like a <b-con> except that it must begin with an upper case letter. (Every <b-pred>

is thus a <b-func>.) A <doc-string> is the result of quoting any string of tokens; double

quotes and the backslash can be used as well as long as they are preceded by a backslash.

Lexicons

A first-order PSL language L is given in terms of a lexicon and a grammar. The lexicon

provides the basic “words” of the language, and the grammar determines how the lexical

elements may be used to build the complex, well-formed expressions of the language.

An PSL lexicon X consists of the following:

• The expressions <space>, (,) , not, and, or, =>, <=>, forall, and exists;

• A denumerable recursive set V* of <b-var>s (i.e., expressions derived from the

nonterminal <b-var> in the above BNF), known as the variables of X',

• A recursive set C\ of <b-con>s, known as the constants of X which includes at least

the strings inf-, inf +, max-, and max+.

• A recursive set Fx of <b-func>s, known as the function symbols of X, which includes

at least the strings beginof and endof

.

• A recursive set P/L of <b-pred>s known as the predicates of X, which includes at least

the strings = activity, activity-occurrence, object, timepoint, is-

occurring-at, occurrence-of, exists-at, before, and participates-in.

Grammars

Given an PSL lexicon X, the grammar based on X is given in the following BNF.

<con> ::= a member of C\

<var> ::= a member of V*.

<func> ::= a member of F^

81

<pred> ::=

<term> ::=

<atomterm> ::=

<compterm>

<sentence> ::=

<atomsent> ::=

<boolsent> ::=

<quantsent> ::=

a member of Px

<atomterm>
|

<compterm>

<var>
|

<con>

(<func> <term>)

<atomsent>
|

<boolsent>
|

<quantsent>

(<pred> <term>+)
|

(= <term> <term>)

(not <sentence>)
|

(and <sentence> <sentence>+)
|

(or

<sentence> <sentence>+)
|

(=> <sentence> <sentence>)
|

(<=>

<sentence> <sentence>)

((forall
|

exists} {<var>
|

(<var>+)} <sentence>)

Languages

The PSL language Lx, based on a lexicon X, is the set of expressions that can be derived

from the nonterminal <sentence> in the above grammar. The members of Lx will also be

called (appropriately enough) the sentences of Lx- A subsentence of a given sentence <p

of Lx is a substring of <p (possibly identical with (p itself) that is also a sentence. An
occurrence of a variable v in a sentence (p of Lx is bound iff it is in a subsentence of cp

that is of the form (exists v \j/) or (forall v \|/). Otherwise the occurrence is

free. A sentence cp is closed iff no variable occurrence in cp is free. Let \j/ be a sentence

containing zero or more free occurrences of the pairwise distinct variables Vi, ..., v„, and

let Ti, ..., x„ be n pairwise distinct terms of Lx. Then \j/[Vi/Xi, ..., v/r„] is the result of

replacing all free occurrences of each variable v, in \|

t

with %. A term x is freefor a

variable v in cp iff no (free) occurrence of a variable in x is bound in \j/[v/x].

Defined Quantifiers

The following definitions are useful for expressing quantified propositions.

(forall (Vi . . . v„ : V) 0) -df (forall (Vi ... v„) (=> \p 0)

)

(forall (Vj . . . v„ : Vl •• • ¥«)0) ~df (forall (Vi ... v„)

(=> (and \|/i ... \|/m) 0))

(exists (Vj . . • v„ : ¥l •• • 1 0) —df (exists (Vi . . . V„)

(and V|/i ... \\fm 0))

(exists

!

V \\f) ~df (exists (v : \\f)

(forall v'

(=> \|/[v/v'] (= V V'))))),

where v' is free for v in \|/.

(exists! (Vi ... V„) \|/) -df (exists (Vi ... V„ : \|/)

(forall (|Xi ... (J.„)

(=> XJ/tVj/p!, . . ., V„/|Vl

82

where each]X, is free for v, in \|/.

(and (= Vi ... (= V„ p„))))),

Essentially (exists! v \|/) says that exactly one thing satisfies condition \j/, and, more

generally, (exists ! (Vj ... v„) \|/) says that exactly one sequence of n things

satisfies \|/. For instance, at the time of this writing (1997), it is true that

(exists! (?x ?y)
(and (US-president ?x)

(US-vice-president ?y))),

since only the pair (Clinton,Gore) satisfy the condition (and (US-president ?x)

(US-vice-president ?y)) . Notice that we are talking about sequences here, not just

sets. For instance, it is not true that

(exists! (?x ?y)

(and (Texas-US-senator ?x)

(Texas -US-senator ?y)))

,

since the condition (and (Texas-US-senator ?x) (Texas-US-senator ?y)) is

satisfied by both sequences (Hutchison,Gramm) and (Gramm,Hutchison).

83

