
NAT'L INST. OF STAND & TECH R.I.C.

AlllDS blfiESB NISTIR 6443

Formalizing the NiST 4-D/RCS Reference
Modei Architecture Using an
Architecturai Description Language

C. Dabrowski
Software Diagnostics and
Conformance Testing Division

H. Huang
E. Messina
J. Horst
Intelligent Systems Division

U.S. DEPARTMENT OF COMMERCE
Technology Administration

Intelligent Systems Division

National Institute of Standards

and Technology

100 Bureau Drive Stop 8230
Gaithersburg, MD 20899-8230

QC

100

.058

H0.5^i43

NIST
U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards and
Technology

Formalizing the NIST 4-D/RCS Reference
Model Architecture Using an
Architectural Description Language

C. Dabrowski
Software Diagnostics and

Conformance Testing Division

H. Huang
E. Messina
J. Horst
Intelligent Systems Division

U.S. DEPARTMENT OF COMMERCE
Technology Administration

Intelligent Systems Division

National Institute of Standards

and Technology

100 Bureau Drive Stop 8230
Gaithersburg, MD 20899-8230

December 1999

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Cheryl L. Shavers, Under Secretary of

Commerce for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Director

Formalizing the NIST 4-D/RCS Reference Model

Architecture Using an Architectural Description

Language

C. Dabrowski, H. Huang, E. Messina, J. Horst

Contents

1 Introduction 1

1.1 Motivation and Potential Benefits of ADLs for RCS 1

1.2 Purpose and Scope of this Report 2

1.3 Method of Study 3

2 The RCS Reference Architecture 5

2.1 Overview of RCS Concepts 5

2.1.1 RCS as a Reference Model Architecture 5

2.1.2 The RCS Intelligent Control Node 6

2.1.3 The Behavior Generation Module 7

2.1.4 The 4-D/RCS Seven Level Hierarchy 7

2.1.5 Current State of Software Engineering for RCS 9

3 Architectural Description Languages 11

3.1 Overview of Architectural Description Languages (ADLs) 11

3.1.1 The Concept of Abstract Specification of Software System

Designs 11

3.1.2 Generic ADL Features for Specifying Software Architectures 12

3.1.3 Differences Between ADLs and Programming Languages . 13

3.1.4 Use of ADLs for Analysis and Verification of Software

System Designs 13

3.1.5 ADL Evaluation Criteria Used in the Study 14

3.2 The Rapide ADL 14

3.2.1 Rapide Language Features 14

3.2.2 The Rapide Computational Model 15

3.2.3 Conformance 17

3.2.4 The Rapide Toolset 18

4 The Experiment 19

4.1 Specifying a 4-D/ RCS Control Node in Rapide 19

4.1.1 Overview of the Prototype Specification 19

4.1.2 Details of Jobj^ssignor and Scheduler Functions 20

4.1.3 Specification of the Interfaces, Behavior, and Constraints 21

4.1.4 Specification of the Architecture 23

1

4.1.5 Execution of the 4-D/RCS Intelligent Control Node Ar-

chitecture 23

4.1.6 Verification of Individual System Designs Against the Ref-

erence Model Architecture 24

5 Conclusions 29

5.1 General Conclusions 29

5.1.1 Use of ADLs to Specify and Analyze 4-D/RCS 30

5.1.2 Using ADLs to Further Develop the 4-D/RCS 30

5.1.3 Transfer of ADL Concepts into Other Real-Time Devel-

opment Support Tools 31

5.2 Specifying 4-D/RCS System Structure and Behavior 31

5.2.1 Specifying Structure of 4-D/RCS Reference Model Archi-

tecture 31

5.2.2 Research Directions in Representing Hierarchical 4-D/RCS
Architectures 32

5.2.3 Specifying System Behavior for 4-D/RCS Systems 33

5.2.4 Other RCS Requirements 34

5.3 ADLs and Software Development Support Tools 35

5.3.1 Tool Support for Analysis of Specifications 35

5.3.2 Verification of Designs of RCS Systems Against the Stan-

dardized Reference Model Architecture 36

5.4 ADLs and Component-Based Software Reuse 37

References 41

Appendix A: The Rapide Specification 45

A.5 Global Declarations 46

A.5.1 Global Variables 46

A. 5.2 Global Complex Data Structures 46

A.6 4D/RCS Control Node 47

A.6.1 Interface for RCS Control Node 47

A. 6. 2 Rapide Architecture for RCS Node 47

A. 7 RCS Node Submodules 49

A. 7.1 Behavior Generation 50

A. 7. 1.1 Interface for Behavior Generation Module 50

A. 7. 1.2 Architecture for Behavior Generation Module . . 51

A. 7. 1.3 Behavior Generation Submodules 53

A. 7. 1.3.1 .lob Assignor 53

A. 7.1. 3. 2 Scheduler 55

A. 7. 1.3.3 Executor 56

A. 7. 1.3.4 Plan Selector 56

A. 7.2 World Modeling 57

A. 7. 2.1 Interface for World Modeling 57

A. 7. 2. 2 Rapide Architecture for World Modeling 58

A. 7. 2.3 World Modeling Submodules 59

11

A. 7. 2. 3.1 Simulator 59

A. 7. 2. 3.2 Knowledge Base 59

A. 7.3 Value Judgement 60

A. 7.4 Sensory Processing 61

iii

Abstract

The 4-D/Real-Time Control System (RCS) Reference Model Architecture

provides a well-defined strategy for development of software components for

applications in robotics, automated manufacturing, and autonomous vehicles.

This architecture has been in the process of definition and evolution for over

two decades. To further this work, an investigation has been conducted into

the use of Architectural Description Languages (ADLs) as a means to provide a

more formal, rigorous definition of the 4-D/RCS Reference Model Architecture

and to specify software components for 4-D/RCS systems. ADLs are formally

defined languages for specification of software system’s designs. Formal specifi-

cation of system designs is an important precursor to automation of the process

of developing software components. In this report, we describe the results of an

investigation into the use of ADLs to specify 4-D/RCS software systems, and

assess the potential value of ADLs as specification and development tools for

RCS domain experts. We conclude that ADLs not only can be used successfully

to specify the 4-D/RCS Reference Model, but that they also serve as effective

tools to enhance and extend this model. We also find that ADLs potentially

can provide a formal basis for automatically checking the consistency of archi-

tecture specifications and verifying designs of RCS-based systems against the

standardized 4-D/RCS Reference Model. The report discusses prospects for

automated reuse of components specified with an ADL, and makes recommen-

dations on improving ADLs as effective tools for specifying, communicating, and

validating 4-D/RCS system designs and software components. Finally, the re-

port discusses potential influence of ADLs for commercial software development

tools and provides future directions for research.

DISCLAIMER

Certain commercial products or company names are identified in this report

to describe our study adequately. Such identification is not intended to imply

recommendation or endorsement by the National Institute of Standards and

Technology, nor is it intended to imply that the products or names identified

are necessarily the best available for the purpose.

V

Chapter 1

Introduction

Architectural Description Languages (ADLs) are specification languages for rig-

orously describing and analyzing software system designs. This report provides

the results of an investigation into the use of ADLs for formally defining the

National Institute of Standards and Technology (NIST) 4-D/RCS Reference

Model Architecture (Albus, 1997). The project was conducted at NIST under

the auspices of the Advanced Technology Program (ATP).

1.1 Motivation and Potential Benefits of ADLs
for RCS

The NIST 4-D/RCS Reference Model Architecture provides well-defined guide-

lines for construction of control software for autonomous real-time systems. The
product of over twenty years of research at the NIST Manufacturing Engineering

Laboratory, 4-D/RCS prescribes a canonical hierarchical structure comprising

intelligent control nodes. This architecture has been widely used for system

design of applications in robotics, automated manufacturing, and autonomous

vehicles. For example, it has been selected as the software architecture for

Department of Defense Demo III experimental Unmanned Vehicle (XUV) Pro-

gram, managed by the Army Research Laboratories (Shoemaker and Bornstein,

1998; Huang et ah, 1999).

In recent years, research has progressed steadily to produce a common under-

standing of the structure and function of 4-D/RCS systems. Efforts have been

made to use software engineering disciplines to describe the results in a rigorous

manner. These efforts include Object-Oriented approaches (Huang and Messina,

1996), the RCS Generic Shell approach (Huang, 1999), the RCS libraries (Proc-

t Acknowledgements The authors wish to express their thanks to John Kenney, David

Luckham, and other members of the Stanford University Rapide Project for their generous

assistance with the Rapide ADL and software support tools. Thanks is also provided to NIST
staff members who reviewed this paper and the 4-D/RCS prototype specification and provided

critical commentary.

1

tor and Shackleford, 1999), component based software specifications (Messina

et ah, 1999; Horst et ah, 1997), and recently, the Unified Modeling Language

(UML).

These efforts provide motivation for developing a formal description of the

4-D/RCS Reference Model Architecture. The use of this Reference Model Archi-

tecture as a guideline for system development makes it desirable that any formal

description serve as a basis for verifying conformance of application system de-

signs. ADLs are the products of research into computer-processable languages

that provide formal description of a software system architecture. A number of

existing ADLs support verification of application system designs. Other aspects

of ADLs also potentially make them extremely useful in furthering the formal-

ization and continuing evolution of 4-D/RCS systems. In addition, ADLs could

provide important capabilities to existing software support tools that automate

real-time control system development.

It is important to note that 4-D/RCS is considered a control architecture,

and is not purely a software architecture. In this study, we focus on the software

aspects of the architecture. To be fully precise, we would upe the term Software

Architectural Description Languages. However, throughout this report, we will

use the commonly accepted term Architectural Description Languages to mean
those that focus on the software aspects of the architecture.

Commercial tools are available to help implement real-time control systems.

They typically provide graphical capabilities for users to design the control

system modules, to define the inputs and outputs among them, and to assemble

the modules into complete systems. Many of these tools also provide simulation

support and have the ability to generate source code for the desired target

systems. However, they lack the guidance on how to design a real-time control

system. This is analogous to the construction practice. Brick, mortar, wood,

and hammers are necessary for constructing a house, but underlying principles

of how to design the house and apply the component materials are essential.

ADLs have the potential to be married to these software tools to help guide

system designers.

1.2 Purpose and Scope of this Report

This report provides the results of an investigation into the applicability of ADLs
for specifying and developing the 4-D/RCS Reference Model Architecture. The
report:

1. Evaluates the use of ADLs for rigorously specifying the 4-D/RCS Refer-

ence Model Architecture and assesses their potential as a means to further

develop the Reference Model Architecture and define 4-D/RCS software

components.

2. Assesses the use of ADLs as a basis for software support tools that an-

alyze the Reference Model Architecture and system designs, providing

2

capabilities for simulation, verifying internal system consistency, and veri-

fying conformance of application system designs to the 4-D/RCS Reference

Model Architecture.

3. Identifies requirements and future research directions for ADLs from the

standpoint of RCS software development, including support for automated

component-based software reuse.

4. Assesses the potential benefits of ADLs as useful tools for 4-D/RCS do-

main experts.

1.3 Method of Study

The goal of the study was to address the issues posed in the previous section. A
portion of the 4-D/RCS Reference Model Architecture was selected that most

accurately reflected the structural characteristics and functionality of 4-D/RCS
systems. This was the Intelligent Control Node, described in Section 2.1.2. All

significant ADLs were reviewed in a literature search that identified key lan-

guage features relevant to RCS. Chapter 3 presents an overview of these salient

characteristics of ADLs and identifies assessment criteria used to determine

suitability for RCS. Individual ADLs were examined in detail to assess their

suitability as specification languages for capturing the structure and function of

the 4-D/RCS Control Node. A detailed, comparative analysis of ADL features

was not the scope of this study; readers interested in such an analysis should

consult (Medvidovic and Taylor, 1999).

A single ADL—Rapide (Luckham, 1996)—was selected to construct a pro-

totype specification of a significant portion of the 4-D/RCS Intelligent Control

Node. Resources were not available to develop additional prototypes in other

ADLs. The Rapide language is described in Section 3.2. Chapter 4 describes the

prototype specification. The draft Rapide specification is included in Appendix

A. The specific aspects of Rapide used in developing the prototype specifica-

tion were compared with features offered by the other ADLs. The conclusions,

presented in Chapter 5, provide a basis for both identifying requirements for

ADLs to specify 4-D/RCS software architectures and components as well as

recommending future research directions for ADLs.

3

,,v fl *;"
,f :s('^v.‘

K-^.:4 :
...

•Hi • {'My* ;4i|i||i. inn^ •»

>jt5»h '

'W'*), '

'

to Vi.

>

u%i

.VY^ tW-Si^ *
''
fcaHKMIHAH^^'iyi - yi<W^‘‘^WIWr ' WTMri/gW^ '^fyiWTOyiiy»rl^tML«M^P«ygJT^'iM>jMBLM*|Mpy||r.

f^i'
"'

m '-«^'

i"'^ Vr '

u

-'tel t(

:-^i,

VrlHflJw'T.’

4- ^,^1

.I.;,''
!' J

'
. la’r'i

Chapter 2

The RCS Reference

Architecture

2.1 Overview of RCS Concepts

Developed over the course of two decades at the National Institute of Stan-

dards and Technology and elsewhere, RCS has been applied to multiple and

diverse systems (Albus, 1995). In addition to the Army Demo III program,

RCS application examples include coal mining automation (Horst, 1993), the

NBS/NASA Standard Reference Model Architecture for the Space Station Teler-

obotic Servicer (NASREM) (Albus et ah, 1989), a control system for Multiple

Autonomous Undersea Vehicles (Albus and Blidberg, 1987), and a control sys-

tem for a U.S. Postal Service Automated Stamp Distribution Center (USPS,

1991). There are numerous manufacturing applications, including the Open Ar-

chitecture Enhanced Machine Controller (Albus and Lumia, 1994) and testbeds

within the National Advanced Manufacturing Testbed facility at NIST including

an Inspection Workstation and a welding cell.

2.1.1 RCS as a Reference Model Architecture

RCS provides a reference architecture and an engineering methodology to aid

designers of complex control systems. Guidelines are provided for decomposition

of the problem into a set of control nodes, which are arranged hierarchically. The

decomposition into levels of the hierarchy is guided by control theory, taking

into account system response times and other factors, such as planning horizons.

RCS is focussed primarily on the real-time control domain. It can be further

specialized into application-specific versions. 4-D/RCS (Albus, 1997) is one such

version, which is aimed at the design and implementation of control systems for

intelligent autonomous vehicles for military scout missions. The “4-D” portion

of the name comes from the integration of the work by the German Universitat

der Bundeswehr - Munchen VaMoRs approach to dynamic machine vision, in

5

which three spatial dimensions and time are tracked (Dickmanns et ah, 1994).

This particular flavor of RCS was studied with respect to ADLs.

2.1.2 The RCS Intelligent Control Node

RCS is based on the generalization of principles of intelligent processing and

control that are exhibited by human reasoning processes and behaviors, manu-

facturing systems, and military command structures. These principles form the

basis for a “building block” approach to designing and implementing systems

within RCS. A basic set of functions is defined to exist for each RCS control

node, which follow a “sense-model-act” paradigm. These functions were found

to be necessary (Albus, 1991) in order to accomplish complex behaviors. The
model therefore enables intelligent control. We define intelligent control as that

which causes a complex system to successfully perform complex physical tasks in

the presence of uncertainty and unpredictability. The RCS approach has the fur-

ther benefit of providing a framework in which to design and build the software

for intelligent control. Adopting a standard set of functions, communications

pathways, and interface specifications, along with the software decomposition

guidelines, provides a strong basis for facilitating development and promoting

reuse. Figure 2.1 depicts the model for an RCS control node.

Internal Elements in a 4-D/RCS node

Figure 2.1: Model for an RCS Control Node.

The model for an RCS control node contains a behavior generation (BG)

function that makes decisions based on the received task commands and on the

current state of the world. BG is supported by world modeling (WM), value

6

judgement (VJ), and sensory processing (SP) functions (Albus and Meystel,

1996; Barbera et al., 1984). System developers insert the appropriate algo-

rithms into the BG, WM, VJ, and SP modules. BG consists of job assignment,

planning, and control functionality. These functions are the focus of the ADL
prototype developed as part of this study. TheWM modules contain information

about the state of the problem domain. WM may provide simulation facilities to

estimate the state of the world at present or some future time. WM can be used

to answer questions about the outcomes of performing certain plans. WM also

contains longer-term information in a Knowledge Database (KD). KD includes

symbols and data structures containing information about entities, events, and

how the world behaves. VJ computes costs, risks, and benefits, and evaluates

the relative merits of certain courses of action, as may be simulated via WM. SP
modules process data from proprioreceptive, visual, auditory, and other sensors.

The sensed information is filtered, differenced, and correlated in order to extract

information about the environment and the system itself. Feature extraction,

pattern recognition, and data fusion are typical SP functions.

2.1.3 The Behavior Generation Module

Behavior Generation (BG), shown in further detail in Figure 2.2, is at present

the most fully developed element of RCS, hence the functionality of this compo-

nent provided ample material to develop the prototype specification described

in Chapter 4.

2.1.4 The 4-D/RCS Seven Level Hierarchy

The BG module parallels the planning and execution within a hierarchical or-

ganization, with a superior assigning tasks to its subordinates in order to ac-

complish the desired goals. Distinct sub-modules exist within the BG module.

They consist of a Job_Assignor (JA), a set of plan action Schedulers (SC), a Plan

Selector (PS), and a set of control Executors (EX). The Job_Assignor (JA) de-

composes input tasks into job assignments for each subordinate to the node.

The Scheduler (SC) accepts a job assignment and computes a schedule for its

subordinate. There is an SC submodule for each subordinate to the node. JA
and SC produce a tentative plan that uses the resources available to the node

(inclnding its immediate subordinates) to accomplish the commanded task. The

Plan Selector (PS) works with the WM plan simulator and the VJ plan eval-

uator to select the best overall plan for each of the subordinates. There is an

Executor (EX) corresponding to each subordinate. Each EX executes its portion

of the selected plan, coordinating actions between subordinates, and correcting

for errors between the plan and the evolntion of the world state reported by the

world model, effectively closing the loop between command and feedback.

The 4-D/RCS reference model architecture for intelligent, real-time control

of autonomous systems is composed of a number of intelligent control nodes

that work together to perform complex tasks. Figure 2.3 is a high-level diagram

depicting a portion of the 4-D/RCS hierarchy for an autonomous vehicle.

7

Commanded
Actions(subgoals) for

Behavior Generation
Components of

Subordinate Nodes

Behavior

Commanded Task
(goal)

.)nh

Assignor

.
:: Asstang^

> f

Scheduler Scheduler iss Scheduler

Plan selector

Coordinated plan)

y

Executor Executor Executor

> > > i 1

I.EXlEXj Exi

t y t
EX I EX I EX !

BG/-

EX I EX

y y y

Figure 2.2: Details of the Behavior Generation Module.

Each node in the hierarchy is built upon the SP-WM-BG-VJ internal el-

ements shown in Figure 2.1. There are seven levels in the vehicle’s control

hierarchy. Control nodes at one level decompose tasks into smaller units of

work, which are assigned to individual control nodes at the next lower level.

The upper levels (battalion, platoon, and section) correspond to the military

command chain and are resident on the vehicle itself to be invoked when higher

level decisions are required and the vehicle is out of contact with its superiors.

Hence the term “surrogate.”

Each level is designed to function in a particular spatial and temporal scope.

The temporal scope is based on the response times required for control. The
spatial scope for each level corresponds to the planning horizon required. The
time scale increases, typically by tenfold, at each higher level in the hierarchy, as

do spatial extents. The response times for the levels are correspondingly slower.

The spatial resolution is also correspondingly coarser at higher levels. Thus, the

complexity level is constant throughout the hierarchy. Figure 2.3 shows example

temporal and spatial scopes for each level. The servo level converts component

commands to actuator coordinates and does not typically use a spatial map.

8

Surrogate
Battalion

Plan for next 24 hours over 1 000 km^
300 m resolution map

Surrogate
Plat^oon

Surrogate
Section

Vehicle

Plan for next 2 hours over 100 km^
30 m resolution map

Plan for next 10 minutes over 10 km^
3 m resolution map

Plan for next 50 seconds over 1 km^
0.3 m resolution map

Figure 2.3: Example 4-D/RCS Hierarchy for an Autonomous Scout Vehicle

2.1.5 Current State of Software Engineering for RCS

Construction of RCS-based systems is based on the canonical hierarchical struc-

ture of RCS. All the RCS control nodes contain basic elements of decomposition

(BG, SP, WM, and VJ) and common processing or bookkeeping functions. The
control nodes follow a consistent pattern to process their input commands. RCS
defines a command and status execution model with standard interface channels

and messages, for which software templates (base classes) have been developed

(Huang et ah, 1999). Developers can use these templates as a starting point for

building their applications. The developers specify the actual interface channels

and add application-specific messages. They add their particular algorithms

within the provided slots in the corresponding module. A set of software tools

and libraries is under development at NIST to support the software development

of RCS systems (Shackleford and Proctor, 1998).

Although some tools and libraries are available, better communication of

RCS concepts and greater reuse continue to be desirable. The primary means of

communication of RCS reference architecture and methodology remains English

language description. Methodology and tool-independent diagrams are also used

to convey concepts, such as the job assignment, scheduling, and plan selection

functions of Behavior Generation shown in Figure 2.2. Work is underway in the

formalization of RCS component specifications in order to facilitate searching for

reusable algorithms or pieces of software (Horst et ah, 1997). The specification

9

research is part of a long-term effort aimed at achieving automated software

composition of systems from components. Given a formal specification of a

system’s requirements, an automated composition tool could find components

that match the requirements by checking the component’s specifications and

assemble the desired system automatically. The study presented in this paper

follows along the lines of that work by providing an ADL specification for the

Behavior Generation Module, discussed in more detail in Chapter 4.

Some aspects of RCS lend themselves naturally to adopting an object-

oriented representation. Since the design of a system under the RCS archi-

tecture focusses on physical devices and equipment, it has a natural affinity

to object-orientation. A primary driver of the system decomposition during

an RCS design phase flows from the concrete “objects” in the system, such as

motors, wheels, and brakes, that receive and act upon commands or messages.

A conceptual comparison of RCS and object-oriented methodologies was pub-

lished (Huang and Messina, 1996) in which several similarities were observed.

However, the RCS approach for system analysis and design was found to have

certain aspects that distinguished it from classical object-oriented techniques.

Primarily, RCS has a much greater focus on behavior analysis. RCS also re-

quires temporal and spatial decomposition as part of system analysis and design.

Beyond the contrasts noted in the Huang and Messina paper, there are other

areas where object-oriented approaches may not provide software engineering

support desirable for RCS-based development. These include full real-time sup-

port, analysis and verification for the architecture or implementation of the

architecture, execution or simulation capabilities based on the design specifica-

tion, and conformance validation.

NIST researchers have recently started investigating the use of UML to de-

scribe RCS and to model RCS applications. This effort includes applying the

sequence diagram and the collaboration diagram concepts to model the system

behavior. While we have obtained early positive results, some of the other ob-

servations that we made on the object-oriented representations still apply to

UML. This is due to the fact that a significant portion of the UML language is

based on the object-oriented paradigms.

Gaps in the support provided by object-oriented tools and methodologies fur-

ther stimulated interest in the potential of ADLs. For instance, UML provides

no support for real time systems and no direct support for modeling software

architectures. Object-oriented methods in general are data-centric, providing

only for some generic behavior description capabilities. Analysis of the archi-

tecture and simulation of the execution of an architecture are not possible in

most object-oriented tools. These gaps are recognized by the UML commu-
nity and are leading to evolution in the modeling language. For example. The

Object Management Group recently issued a Request for Proposals under the

title “UML Profile for Scheduling, Performance and Time” (OMG, 1999). This

proposal is aimed at expanding the UML to include support for modeling of

time-related paradigms, which are essential for the design and specification of

real-time systems.

10

Chapter 3

Architectural Description

Languages

3.1 Overview of Architectural Description Lan-

guages (ADLs)

Garlan and Perry define a software architecture as consisting of the “structure

of the components of a program/system, their interrelationships, and princi-

ples and guidelines governing their design and evolution over time” (Garlan and

Perry, 1995). A software architecture can be seen as an abstract system spec-

ification of the system’s functional components, their behavior, their external

interfaces, and interconnections with other components. A specification is cre-

ated using a language that is composed of a set of rigorously defined keywords

and operators coupled by a defined grammar (Feijs, and Jonkers, 1992). An
ADL is “a language that provides features for modeling a software system’s

conceptual architecture” (Medvidovic and Taylor 1999).

3.1.1 The Concept of Abstract Specification of Software

System Designs

Creating an abstract specification of a software system means describing only

the essential aspects of the system and omitting other details. An abstract spec-

ification may be limited to identifying the componerits that compose the system,

component inputs and outputs, and any other aspects needed to make the spec-

ification usable. Only a partial description of the computation performed by the

component would be provided, or this description could be omitted altogether.

The complete specification, including code, is worked out later by actual soft-

ware developers. By describing only the most essential elements, an abstract

specification reduces the size and complexity of the description, making it more

manageable and allowing easier comprehension. In this way, the abstracted de-

ll

scription of the entire design or its components can be reused many times to

develop different systems that share the same basic structure. In principle, an

abstract specification is implementation neutral, i.e., it can be implemented in

more than one programming language such as C++, PLl, or Java.

3.1.2 Generic ADL Features for Specifying Software Ar-
chitectures

ADLs provide language constructs for specifying the software system compo-

nents, the connections between those components, and the overall structure of

the system or its topology. A generic set of ADL capabilities has been identified

in (Garlan and Shaw, 1994; Medvidovic and Taylor, 1999; and Vestal, 1993).

These capabilities are summarized below.

Specifying Software Components. ADLs commonly describe software

components by defining interfaces for them. An interface definition may include

a signature, or description of the messages and commands accepted and sent by

a component together with arguments and outputs (results). The signature may
be accompanied by constraints upon the messages, such as the order in which

they must be sent or received, or upon the values that arguments may have. In

addition, a description of the behavior of the component in response to exter-

nally (or internally) generated messages may be provided either as part of the

definition of the component’s interface or its internal description. Specification

of behavior is described further below.

Specifying Connections Between Components and Software Architectures.

ADLs support definition of constrained connections between messages of differ-

ent components. Connections specify which components receive the messages

emitted by other components, thus defining a sort of pipe between components.

An architecture is, at a minimum, a description of a set of components or their

interfaces, together with the connections between those components. An archi-

tecture may define constraints on the connections, in which case argument values

are restricted or messages are prescribed to occur in a particular sequence.

Specifying System Behavior Using an Underlying Computational Model.

Some, though not all, ADLs support specification of computations performed

by a system, referred to as system behavior. Usually, an ADL employs a for-

mally defined descriptive method or underlying computational model to provide

the necessary semantics. Constraints on behavior are also defined in terms of

the computational model. Examples of computational models are Finite State

Machines (FSM), Communicating Sequential Processes (CSP) and Partially-

Ordered Sets of Events (POSETS), though the formalisms employed vary widely

among different ADLs. An ADL may allow description of the behavior of com-

ponent interfaces, component internals, and component connections.

Defining Architectural Styles. Architectural styles (Shaw, 1994; Allen,

1997) provide rules or constraints that place limitations on how components

may be connected and on what system topologies may be described. One ex-

ample of an architectural style is a pipeline architecture in which components

are connected in a sequence so that the output of one component becomes the

12

input to at most, one other. Another example is a top-down hierarchical style

in which data flows from a single central node to sets of subordinates. The
4-D/RCS Reference Model Architecture is an instance of a top-down hierarchi-

cal architecture. Being able to explicitly declare an architectural style allows

the specification to be defined more formally and constrained more precisely.

It also provides an additional means for judging whether or not a particular

application system design conforms to a Reference Architecture—an important

consideration for 4-D/RCS domain experts. Some, but not all, ADLs allow

explicit declaration of architectural styles.

3.1.3 Differences Between ADLs and Programming Lan-
guages

Like a programming language, an ADL provides a well-defined syntax and se-

mantics. Unlike a programming language, an ADL provides a more abstract,

partial specification of a system. The major objects that can be explicitly de-

fined in an ADL—components, connections, and architectures—are first-class

objects. This means that these objects may be declared as types, instantiated,

subtyped, or passed as parameters and manipulated in the same way a program-

ming language manipulates structured data types such as arrays or records. The
use of a computational model as an underlying basis allows behavior to be de-

scribed at a more abstract level using restricted, well-defined semantics. For

instance, in the Rapide ADL (Luckham, 1996), behavior is described in terms

of events, event dependencies, and partial orderings of events (described further

below).

3.1.4 Use of ADLs for Analysis and Verification of Soft-

ware System Designs

The use of a well defined, rigorous specification language provides a basis for

formal analysis of a specification and the verification of software system designs.

Some ADLs employ formal proof techniques to determine whether desirable

properties, such as internal consistency, hold within a specification. Analysis

of ADL specifications may also take place through simulation support tools,

which allow the specification to be executed and a result to be computed, thus

simulating the computations to be performed by the system being specified.

System developers may then either review an animated simulation interactively

or analyze partial results using automated support tools. An important research

area for ADLs is the development of analysis capabilities for rigorous comparison

of specifications to verify system designs. Support for this form of verification

is of significant interest to the 4-D/RCS community, which has a long-standing

interest in verifying conformance of individual system application designs to the

canonical 4-D/RCS Reference Model Architecture.

13

3.1.5 ADL Evaluation Criteria Used in the Study

The study evaluated the applicability to 4-D/RCS of the ADL features described

in the preceding sections. It was important that ADLs be able to represent the

structural aspects of RCS software systems, including RCS modules, module

interactions, and the top-down decomposition structure of RCS systems. A
type system that allowed definition of the complex data types needed by RCS
was also critical. To model system behavior and internal component semantics,

it was necessary to determine if ADLs could represent the computational models

needed for the real-time processing required by RCS.

To meet the goal of formalizing the Reference Model Architecture, both the

ADL and the specifications produced by an ADL had to be rigorous. The extent

to which ADLs provided a formal basis for description of architecture, compo-

nents, and system behavior determined the degree to which it was possible to

define analysis functions that could be applied to a specification by a software

tool. The evaluation of the potential of ADLs as languages on which to base

software development and analysis support tools was particularly critical, be-

cause the RCS requirement for software development tools is substantial. A
closely related goal of this study was to determine how ADL research might

impact existing commercial tools for development of real-time systems. These

evaluations required in-depth examination and the development of a prototype

specification using an ADL. This is described in the next two sections. Chapter

5 provides the conclusions of the study.

3.2 The Rapide ADL
Rapide (Luckham, 1996) is an ADL and supporting tool set developed at Stan-

ford University in the mid-1990s. This ADL was chosen as the primary focus

of this study because of its well-developed capability for representing and sim-

ulating real-time system designs.

3.2.1 Rapide Language Features

Rapide supports most of the features described above that are common to ADLs.

Rapide permits definition of a set of component interface types each of which

has a signature that includes events generated and received by components

of that type and (optionally) a description of the component’s behavior. An
interface may also define constraints that require dependencies between events,

place limitations on the order of events, constrain parameter values, or make
other limitations. The internal details of the components themselves—known

as modules—may also be specified. A module description specifies internal

behavior and supporting data structures that allow the module to conform to

its interface. That is, the internal behavior of the module is defined so that

it responds to events received by the interface, generates events sent by the

interface, and conforms to any constraints defined in the interface.

14

In a specification of a Rapide software architecture created by a user, in-

terfaces and modules are used to specify system components. The software

architecture is formally described by connecting types of events generated in

one interface specification to events received by another interface. A module

conforming to an interface may be decomposed into a sub-architecture consist-

ing of a set of connected component interfaces^

Connections between types of events of different interfaces and the specihca-

tion of a component’s behavior define causal dependencies of the events. During

the simulated execution of a software architecture, these dependencies can be

aggregated to form POSETs, or partially ordered set of events. These aspects

are described in detail in the remainder of this section. Examples are provided

in Chapter 4.

3.2.2 The Rapide Computational Model

The focus of Rapide is the definition of software architectures for real-time sys-

tems. Rapide provides a sophisticated language for defining event types, event

causality, and behavioral constraints. Within the definitions of interfaces and

in the definition of component connections^ event types are defined to trigger,

or cause, other events. Thus, the behavior of an interface (or its underlying

module) may be defined to send an event to another interface through a con-

nection which, when received, causes the generation of additional events. This

is depicted graphically below in Figure 3.1.

Event2 Eventg

Figure 3.1: Graphical Depiction of Interfaces and Events.

Rapide also provides the ability to express time and timing constraints. In-

sufficient time and resources were available to explore this capability during this

Wnlike some ADLs, connections are not explicitly defined as first-class objects in Rapide,

but are specified directly as part of the architecture. Rapide also does not provide explicitly

for the definition of architectural styles.

15

study.

Example of a Rapide Interface. In Figure 3 . 1
,
Interfaces are depicted as

shaded areas or two-dimensional planes while underlying modules are shown

below as boxes. Dashed arrows between interfaces and modules indicate mod-
ules receiving or generating events in conformance to the architecture. Events

between interfaces are shown by solid lines.

A Rapide specification of “Interface2” in this example might be written as

follows:

TYPE Interface2 IS INTERFACE;
ACTION
IN

Event 1

;

OUT
Event 2;

Events;

BEHAVIOR
Eventi||> Events;

Eventfc ||> Event2;

CONSTRAINT
NEVER Eventill Event2;

END;

POSETs and Simulated Execution of an Architecture . The specification

shows “Interface2” defined as an interface type containing implicit event type

definitions. In the “Interface2” definition, “Eventi” is a received event type

while “Event2” and “Events” are generated event types. The behavior descrip-

tion in the definition shows “Eventi” as causing “Event j” to occur, denoted

by the “||>” symbol. “Event j” may be handled by the underlying conforming

module that performs a computation and generates another event, “Event

The occurrence of “Event*;” causes “Event2” to be transmitted through the in-

terface. A constraint on this interface is defined which states that “Eventi”

and “Event2” must never be independent, where independence is denoted by

“II”. This means “Eventi” and “Event2” must always be causally connected in a

POSET. A similar set of causal relationships could be defined between “Eventi”

and “Events”.

An event is said to be causally dependent on all events that either directly

result in its generation or in the generation of its predecessors. It is considered

independent of all other events. In actual Rapide specifications of architectures,

very large causal sequences of event types and event constraints can be defined

both in interface definitions and as part of connections between interfaces. The
causal sequences serve as a basis for “executing” a specification using Rapide

software support tools to produce simulations. During the simulation, the event

types defined in the specification result in instances that execute according to

16

their defined behavior. The execution of a software architecture specification

produces a partially ordered set of event instances, called a POSET, which

describes the generated events together with their causal dependencies.

Event

Event Event

Event

Event

Figure 3.2: Depiction of a Simple Rapide POSET

The sample POSET in Figure 3.2 shows a causal sequence consisting of

Eventi, Eventj, Events and Event2 which depicts the situation shown in the

interface definition above. However, note that Events is not dependent on (e.g.,

is independent of) Events.

In Rapide, significantly more complex system behavior may be defined in

which special operators can be used to create independent, parallel sequences of

events that can be either deterministic or non-deterministic (Luckham, 1996).

The resulting POSETs can be quite elaborate and almost unlimited in size.

3.2.3 Conformance

Rapide provides a capability for verifying that the behavior of an application

system design, called concrete architecture, conforrns to that of a more abstract

architecture, such as the 4-D/RCS Reference Model Architecture. This is ac-

complished by first declaring a set of constraints in the abstract architecture and

then declaring an equivalence, or mapping, of events from the concrete to the

abstract architecture. The mapping of events from the concrete to the abstract

architecture may be many-to-one. The abstract architecture is then executed

with the “mapped” events of the concrete architecture mapped onto it. Con-

formance to constraints of the abstract architecture is tested. If constraints are

17

violated, an error message appears and the concrete architecture can be deemed

as non-conformant.

3.2.4 The Rapide Toolset

In Rapide the POSET is the basis for automated analysis conducted by an asso-

ciated toolset. A Rapide specification may be defined using the RAPARCH tool,

which has a graphical front-end, to specify interfaces and interface connections

in a software architecture. A complete specification in the Rapide language is

translated into a C-f-t- program, which when compiled and executed, produces

a POSET for the defined architecture.

Rapide provides a simulation tool called RAPTOR for producing an interac-

tive graphical animation of the execution of the specification in which interfaces

and connections are depicted as icons while event icons move between inter-

faces. The POSET Viewer, or POV, gives a static picture of a POSET with

events and causal arrows between events. Query functions can be used to select

interesting subsets of the POSET and provide detailed information. A method

is provided for verifying system designs against a more general Reference Model

architecture based on comparison of POSETs.

18

Chapter 4

The Experiment

4.1 Specifying a 4-D/ RCS Control Node in Rapide

In order to help answer the questions about the applicability of ADLs to 4-

D/RCS set forth in Chapter 1, the Rapide ADL was used to specify a large

piece of the 4-D/RCS Intelligent Control Node. The basis for the Control Node
specification was NISTIR 5994, 4-D/RCS: A Reference Model Architecture for

Demo III (Albus, 1997). The specification was developed by two of the coau-

thors: one focusing on the study of ADLs; and the other, a domain expert in

design of 4-D/RCS systems who regularly reviewed the model and guided its

evolution. The specification was reviewed and verified by a larger group of ex-

perts in 4-D/RCS. In addition, the use of an ADL to ascertain conformance of

individual system designs to the Reference Model Architecture was examined.

Conclusions reached about the use of ADLs for RCS are provided in Chapter 5.

4.1.1 Overview of the Prototype Specification

Component interfaces were defined for each 4-D/RCS Intelligent Control Node
module together with the events handled, sent, and received and applicable

constraints for the module. The specification provided the decomposition of the

Control Node into its major subcomponents: Behavior Generation (BG), World

Modeling (WM), Value Judgement (VJ), and Sensory Processing (SP). Behavior

Generation was further decomposed into Job-Assignor (JA), a set of Schedulers

(SC), a set of Executors (EX), and a Plan Selector (PS). World Modeling (WM)
was decomposed into its Simulation and Knowledge Base components. The ar-

chitecture specification included the connections between the interfaces defined

for the modules. A sufficient amount of behavior was included to allow the

architecture to be simulated using the Rapide toolset. The entire specification

encompassed more that 1000 lines of Rapide code, which is included in Appendix

A.

19

4.1.2 Details of Job-Assignor and Scheduler Functions

The use of ADLs to specify 4-D/RCS is illustrated in a sample Rapide de-

scription of the interaction of two subcomponents of the 4-D/RCS Behavior

Generation Module: The Job-Assignor and a Scheduler (of which there may
be several instances). The conceptual design for this representative fragment

of the Reference Model functionality, described in Chapter 2, is shown graph-

ically in Figure 4.1. The fragment contains only a subset of the actual events

and behavior defined for these components. The specifications of algorithms

for computing schedules and selecting plans in underlying modules are omitted

from the Reference Model Architecture because they are application-specific.

Do_Task(?Job)

Figure 4.1: Job-Assignor and Schedulers in the Behavior Generation Module

The graphical notation from Figure 3.1 is supplemented by the use of vari-

able arguments for events denoted by ?Task, ?Job, or ?Status. Figure 4.1 shows

a Job-Assignor component defined as a Rapide interface. The Job-Assignor

interface signature receives a Do-Task event representing an input task in which

?Task is the argument variable for a task name. The Job- Assignor generates a

Fetch-task-frame event with the job name as an argument that is passed outside

Behavior- Generation to the World-Modeling module. World-Modeling returns

a task frame data structure containing information necessary to perform the

20

task that is received by Job_Assignor as a RCV-Task-Frame event. The under-

lying module for Job- Assignor decomposes the task frame into job assignments

(process not shown) for the schedulers. Figure 4.1 depicts the generation of a

Schedule-Job event, representing a job assignment to the Scheduler interface.

The Scheduler receives the Schedule-Job event. Its underlying module com-

putes a schedule, which is transmitted as an event through the interface outside

of Behavior-Generation to World-Modeling plan simulator. This is depicted as

a plan in Figure 2.1, “Model for an RCS Control Node.” Ultimately, the simu-

lated plans are evaluated by Value Judgement and returned to the Plan Selector

in the Behavior Generation module (described in Chapter 2 but not shown in

the example). The Scheduler interface is also shown as returning a Status event

with a ?Status variable. Values for specific status events would be generated in

underlying modules that conform to the interface.

4.1.3 Specification of the Interfaces, Behavior, and Con-
straints

A partial Rapide specification of the Job-Assignor interface is given below.

The Job-Assignor is declared to be of type Interface. The signatures for the

events received by, and sent from, this interface are provided including variable

arguments and their types.

TYPE Job_AssignorJnterface IS INTERFACE;
ACTION

IN

Do_Task (Task : Task-Command_Frame),

RCV_task_frame (Task : Task_Command-Frame; TF : Task_Frame),

SC-Status (CR : Controlled_Resources; ST : String);

OUT
Schedule_Job (Job : Task_Command_Frame),

Fetch-task_frame (Task : Task_Command_Frame),

Decompose_task_frame (TF : Task-Frame),

JA_Status (?status);

BEHAVIOR
(?Task : Task_Command_Frame)

Do-Task (?Task) ||> Fetch_taskTrame (?Task);

(?Task : Task_Command_Frame; ?TF : Task-Frame)

RCV-taskTrame (?Task, ?TF) |1> Decompose_task_frame(?TF);;

END;

A portion of the behavior depicted in Figure 4.1 is also specified. The receipt

of a Do-Task command to perform a task triggers a request for a task frame con-

taining essential information needed to perform the task. A causal connection

is defined between these two events. The (?Task) is a variable placeholder that

denotes the task. Similarly the receipt of a RCV_taskJrame command results

in a Decompose_task_frame in which (?TF) denotes the variable placeholder for

21

the task frame which is transferred. The Schedule-Job and Status events are

generated through the interface by underlying conforming modules which also

instantiate the necessary arguments. These are omitted from this portion of the

specification example.

The specification of the Job-Assignor is supplemented by the declaration of

constraints shown below.

CONSTRAINT

- (Cl) Do not allow causally independent

- Do-Task and Schedule-Job events!

NEVER (?Task : String; ?Job : String)

Do-Task (?Task)
||
Schedule-Job (?Job);

- (C2) Do not allow causally independent

- Do-Task and Status Message events!

NEVER (?Task : String; ?status : String)

Do-Task (?Task)
||
JA-Status (?status);

Constraint Cl prohibits the independence of Do-Task and Schedule-Job

events, while constraint C2 prohibits independence of Do-Task and Status-Events

These constraints require that that these events must always be related in a

causal sequence.

A partial specification of the Scheduler interface is given below:

TYPE SchedulerJnterface IS INTERFACE;
ACTION

IN

RCV-Schedule-Job (JOB : Task-Command-Frame),

OUT
SC-Status (Cont-Res : Controlled-Resources; ST : String),

REQ-Simulate-Schedule (CR : Controlled-Resources;

Job : Task-Command-Frame Sched : Schedule),

END;

The signature declaration shows the Schedule-Job as a received event and

the REQ-Simulate-Schedule and SC-Status as transmitted events. The behav-

ior for computing schedules and determining status would be implemented in

application-specific modules.

22

4.1.4 Specification of the Architecture

The specification of the portion of the Behavior Generation architecture from

Figure 4.1 is given below. This specification shows the connection of the events

between the Job_Assignor, an array of Schedulers and the Plan Selector.

ARCHITECTURE BG_Module_Arch ()

IS

JA : Job_AssignorJnterface IS Job_AssignorJVIodule();

SC : array [integer] of SchedulerJnterface IS (1.. $Num_ControlledJlesources,

)

PS : Plan_SelectorJnterface IS Plan_Selector_Module();

CONNECT

(?Job : Task_Command_Frame)

JA.Schedule_Job(?Job) 1|> SC i.RCV_Schedule_Job(?Job);

(?CR : ControlledJlesources; ?ST : String)

SC[i].SC_Status (?CR, ?ST) ||>

JA.SC_Status (?CR, ?ST);

(?CR : ControlledJlesources; ?Job : TaskXommandJ'rame;
?Sched : Schedule; ?ST :string)

PS.SND_PS_Status (?CR, ?Job, ?Sched, ?ST) ||>

SC[i].RCV_PS_Status (?Job, ?Sched, ?ST);

Note that each of these components is first declared as an instance of one of

the types defined above. This is followed by explicit connections between OUT
events in the interface of one component and IN events declared in another in-

terface. The CONNECT keyword is used to establish the relationships between

outputs and inputs of interfaces. The Rapide symbol ”||>” is used to indicate

a causal connection between these events. For example, the ScheduleJob event

emitted by the Job^Assignor is sent to and received by the Scheduler, also as a

ScheduleJob event.

4.1.5 Execution of the 4-D/RCS Intelligent Control Node
Architecture

The declaration of causal connections between events in Rapide interfaces and

in the declaration of the architectures defines a causal sequence of events. The
execution of this architecture produces the POSET shown in Figure 4.2, which

omits intervening events not described in the partial specifications given above.

The figure shows the causal connection between the Do.Task event and a

Fetch_Task_Frame event that retrieves information necessary to initiate schedul-

ing activity in a control node. When the Job-Assignor receives the Task Frame,

23

(SC#1) (SC #2) (SC #3)

Figure 4.2: Event trace of Rapide Reference Model Specification

this triggers the Decompose_Task_Frame event, followed by the Schedule_Job

event that is forwarded to a set of Schedulers. This example could be ex-

tended to incorporate sophisticated Rapide capabilities for representing paral-

lelism, non-determinism, and time together with the resulting POSETs. While

of great interest for modeling 4-D/RCS systems in general (see Section 5.2.4),

specific processes that involve these properties are not defined at the level of

the Reference Model Architecture.

4.1.6 Verification of Individual System Designs Against

the Reference Model Architecture

Rapide provides a capability for verifying that the behavior of a system design,

or concrete architecture, conforms to that of a more abstract architecture, such

as the 4-D/RCS Reference Model Architecture. This is accomplished by first

declaring a set of constraints in the abstract architecture and then declaring an

equivalence, or mapping, of events from the concrete to the abstract architec-

ture. The mapping of events from the concrete to the abstract architecture is

explicitly defined in a specification (see example below) and may be one-to-one

or many-to-one. The abstract architecture is then executed with the “mapped”

events of the concrete architecture replacing events originally defined in the ab-

stract architecture. Conformance to constraints of the abstract architecture is

tested. If constraints are violated, an error message appears and the concrete

architecture can be deemed as non-conformant.

An example of a Job-Assignor System Design. An example of this approach

is described in which the JobAssignor definition in Section 4.1.3 is a component

of the abstract Reference Model Architecture. It has two previously defined

24

constraints; Cl and C2. A concrete Job_Assignor Interface that is part of an

application system design is declared below.

TYPE Job_AssignorJnterface_App IS INTERFACE
ACTION

IN Do_Task_App (task_commandTrame : String),

OUT Schedule_Job_App (task_commandJrame ; String),

JA_Status_App (?ST : string);

END;

The interface definition is accompanied by the specification of an underly-

ing module. This specification, though it conforms to the interface, generates

parallel Do_Task events that are independent of Schedule.Job and Status events.

MODULE Simulate_Events_JA_Bad()

RETURN Job_AssignorJnterfaceJJad IS

PARALLEL
Do_Task_Bad (’’Task #1”);

II

Schedule_Job.Bad (’’Job #la”);

JA_Status_Bad (’’Done”);

END;

The execution of this specification would result in the following POSET:

i

JAStatus Bad

Figure 4.3: POSET for non-conforming Job.Assignor

Mapping the Job_Assignor System Design to the Reference Model. To es-

tablish that this non-conforming Job_Assignor is in fact non-conformant, a

Rapide Map is defined that creates an equivalence to events of the Reference

model Job-Assignor.

MAP m 0 FROM JA_B;Job_AssignorJnterface_App to

Job-AssignorJnterface_RCS IS

RULE

25

#1
(?tcf : String)

JA_B.Do_Task_Bad(?tcf)

ll>

Do_Task(?tcf);; -

#2
(?tcf, ?status : String)

JA_B.Schedule_Job_Bad (?tcf) ->

JA_B.JA_Status_Bad(?status)

ll>

Schedule_Job(?tcf) ->

JA_Status(?status);;

END;

This segment shows the mapping of the two sets of independent events in

the Job_Assignor application-symbolized by “||>”-onto their equivalents events

in the Reference Model specification. The first set consists only of Do.Task; the

second contains Schedule_Job and Status. This mapping is illustrated graphi-

cally in POSET notation in Figure 4.4.

Application

Do Task Bad
Reference Model

N
#1

Do Task

Application

Schedule Job Bad

JAStatus Bad

Reference Model

N
#2

Schedule Job

Figure 4.4: Event Mappings from Application to Reference Model specification

Execution of the Specification to show non-conformance. The Reference Model

specification was then executed with mapped events from the Job_Assignor spec-

ification. The result is shown in Figure 4.5.

The POSET in Figure 4.5 replicates the POSET of the non-conforming Job_-

Assignor. In addition, two error message events are generated. One represents

26

Inconsistent q2

Figure 4.5: Result of execution of mapped events

the violation of constraint Cl on the Reference Model Job_Assignor, triggered by

the causal independence of the Do_Task and Schedule-Job Events. The second

violates constraint C2 since Do.Task and Status events are independent.

This capability aroused considerable interest among 4-D/RCS experts who
are interested in a means of establishing conformance of application systems to

the Reference Model Architecture. However as demonstrated above, in Rapide

the Map facility currently is limited to mapping of events associated with behav-

ior. 4-D/RCS domain experts maintain there is greater benefit in demonstrating

conformance of structure or system design. This kind of verification would in-

clude existence of particular modules, specific messages, and connectivity of

modules so that specific messages are exchanged between modules. Work on

extending Rapide to demonstrate conformance to system structure is reported

in (Vera et ah, 1998).

27

'I .;V ^ 1

.'if'""4

'C. 'v.;;®':

K,ni-

'
f .isv'iii-

iS

4imAK SPi^

’
'' " *''

{.''i-i 'U;>l''<<^V

'>'/ '

' >*1'
Mtl)

*'' (.'I'u u;>l''<.^V ^l.|'
'

! '.,; ‘'^''<

o/.-..rKk

f:
.•

ifwm ^<v'i>'r';ji'(V/^'KiiSj|’|f' ij:y ;;4m{ ^'^7W ' ^ ,

;

"'MS

:

;
' . ''-.r"

. ir ';'v-i,

' ('•• ’v '
:'^^,'^ ^'P'

' ' '

v’'^'v',

''‘'' •''4- '-'
'i'

’

>V4i

yfy
28

7. <'''!i

« •’

' /, '.viiV'^i
v;\y:'i I >.)t(

..'v '^''v: "^l£j?sj'' -J'

V.
'

<v 4 ::''.. : :v

„
' rxf.

,
^ V

. / jl

» .f'4j

s\n i'rti

M

Chapter 5

Conclusions

General conclusions are first provided on the use of ADLs for 4-D/RCS. This is

followed by specific conclusions of two kinds: (1) using ADLs for communicat-

ing RCS architectural structure and system behavior; and (2) using ADLs to

provide a formal basis for developing automated software support tools to check

specifications, including tools for verifying conformance of an application sys-

tem design against the Reference Model Architecture. Conclusions of the first

kind take into consideration direct interactions between the user and the ADL
while conclusions of the second kind may not. Conclusions are provided about

the use of ADLs for representing the 4-D/RCS Reference Model Architecture

and about the potential for using ADLs to define architectures and software

components for specific 4-D/RCS applications. The potential of ADLs in facil-

itating automated reuse of software architectures and component specifications

is discussed. These conclusions provide a basis for the ADL requirements and

research directions.

5.1 General Conclusions

The Rapide ADL proved to be a viable tool for formalizing 4-D/RCS structure

and behavior, though a number of specific improvements are recommended. To

date, it is the most rigorous representation of the Reference Model Architecture.

The specification also demonstrated that ADLs were potentially useful for ex-

tending and refining the 4-D/RCS Reference Model Architecture. The transfer

of ADL concepts, such as structure, components, interconnectivity, and anal-

ysis into other software development tools should provide benefits to software

technology in general. The focus of ADLs is on the design phase of the soft-

ware development process. Automated Component-based software development

cannot be fully realized until ADLs are integrated into a more comprehensive

methodology with other phases including system definition, analysis, and im-

plementation (Senehi and Kramer 1998; SPC 1992; STARS 1993).

29

5.1.1 Use of ADLs to Specify and Analyze 4-D/RCS

Based on informal review by 4-D/RCS experts, the Intelligent Control Node
specification was successful in capturing and representing major RCS architec-

tural concepts. There were no concepts that could not be represented. How-

ever, the specification had to be simplified, modified to allow the application

of specific RCS keywords, and supplemented by the use of graphical support.

Examination of other ADLs that have the same language features led to the

conclusion that some 4-D/RCS structural concepts could also be represented in

other ADLs including, but not limited to, Aesop (Melton, 1998), SADL (Mori-

coni and Riemenschneider, 1997), UniCon (Zelesznik, 1996), and Wright (Allen,

1997).

The simulated execution of the Control Node Architecture reinforced the

specification and proved to be a valuable aid in communicating the architec-

ture by enabling reviewers to visualize the topology and high-level execution of

the Intelligent Control Node. The successful representation of system behav-

ior, though limited by the amount of resources for this study, depended upon

support by the ADL for the 4-D/RCS computational model. Automated anal-

ysis functions based on formal methods approaches are much needed, but more

research is necessary in this area.

As a long-term goal, ADLs should allow specifications to be stated at a

sufficiently high level of abstraction for non-computer scientists. Very abstract

architecture specifications should be possible that are easier to understand than

a program written in Fortran or Pascal. Ultimately, the existence of a domain-

specific ADL for 4D/RCS would provide significant advantage.

5.1.2 Using ADLs to Further Develop the 4-D/RCS

The ability to create a precise, communicable specification of the 4-D/RCS
Reference Model Architecture led to potential improvements to the architecture

itself. Two possible changes to the Architecture as described in (Albus and

Lumia,1994) were identified:

1. In the model described in Chapter 4, JobAssignor applies a Fetch_Task_frame

operation to retrieve the task knowledge necessary for task decomposition.

Although this operation is not explicitly stated in the 4-D/RCS Reference

Model, we found it consistent with the usage of task frames and found it

effective in our experiment. Therefore, this operation may be proposed as

one of the accepted JobAssignor functions in its specification.

2. A prototype set of exception and error handling messages was defined for

the modules in the Control Node specification. The flow of these mes-

sages was identified to create an error-handling “sub-architecture,” in the

Rapide context, whose operation may be simulated using the Rapide sup-

port tools. The message set, after being fully developed and tested in

Rapide^ may be proposed for inclusion in the Reference Model Architec-

ture.

30

These illustrate the potential of ADLs as practical tools for development of

the Reference Model Architecture and software designs in general.

5.1.3 Transfer of ADL Concepts into Other Real-Time
Development Support Tools

Presently, there are a number of public domain and commercially available

software support tools for design and simulation of real-time software systems.

These tools have well-developed facilities for designing and implementing indi-

vidual software systems. However, they do not typically provide any guidance

to users about how to structure their system or make other design decisions.

ADLs introduce notions of software architecture that could potentially provide

additional structure in order to improve the capabilities of these tools. Users or

enterprises could set preferences in term of which architecture or architectural

style is to be used in developing systems. The tools would then either guide

designers as the system is being developed or could flag situations where the

architecture or style are violated. For companies interested in building a sys-

tem that conforms to a given architecture, this type of support in a tool would

be extremely valuable in ensuring conformance throughout development. Fur-

ther effort is necessary to explore the potential of infusing ADL concepts into

real-time development support tools. This avenue could provide the benefits of

ADLs to end users while shielding them from having to learn a new language and

concepts. The real-time development tools would guide users in constructing

systems per rules for a prescribed architecture through their graphical user in-

terfaces. The users would not be burdened with the underlying mechanics of the

ADL specification. In addition to design, analysis and simulation capabilities

from the ADLs could be incorporated into the tools. The tools could generate

executable or source code. This would automatically assure traceability from

the desired architecture through to the executable code. Eventually, tools using

ADLs could support highly-automated composition of real-time systems from

existing or tailorable components.

5.2 Specifying 4-D/RCS System Structure and
Behavior

In this section, conclusions derived from the prototype specification are followed

by additional requirements that must be considered to use ADLs to specify 4-

D/RCS software architectures and components.

5.2.1 Specifying Structure of 4-D/RCS Reference Model
Architecture

Hierarchical Architectural Style. Aided by the simplification of the specifica-

tion and the use of graphics, the Control Node module Interfaces and signatures

31

were clearly defined. Module connections, even though not definable in Rapide

as explicit types-or first-class objects-were also easily communicated. The suc-

cessful representation of the 4-D/RCS Control Node hierarchy indicates that

representation of other parts of the seven-level architecture described in Chap-

ter 2 should be possible. The ability to communicate 4-D/RCS architecture

would be improved by defining a specific architectural style for top-down hier-

archical structures. The definition of architectural styles for real-time control

system software would further benefit from studies in control system software

architecture frameworks (Senehi and Kramer, 1998).

Domain-Specific Syntax. The syntactic description was simplified and al-

tered to conform to the descriptive forms familiar to 4-D/RCS experts. 4-

D/RCS experts found specifications much easier to understand when RCS ter-

minology was used. As an example of this approach, instead of declaring an

RCS module such as SCHEDULER as a component or interface type, it should

be possible to introduce a higher-level language type called RCS-Module in a

specification. Once defined, RCS-Module could serve as a “meta type” for the

definition of interface types that are specific to 4-D/RCS such as SCHEDULER.
This argues for the development of either a flexible ADL with an extensible syn-

tax; that can be specialized for 4-D/RCS or a domain-specific ADL that utilizes

RCS terminology.

5.2.2 Research Directions in Representing Hierarchical 4-

D/RCS Architectures

Owing to evidence in biological systems and theory of control science, RCS
prescribes rules for decomposing the control hierarchy for a system. In his

“Outline for a Theory of Intelligence,” (Albus, 1991), Albus proposed that:

“In a hierarchically structured, goal-driven sensory interactive, intelligent

control system architecture:

1. control bandwidth decreases about an order of magnitude at each higher

level,

2. perceptual resolution of spatial and temporal patterns decreases about an

order of magnitude at each higher level,

3. goals expand in scope and planning horizons expand in space and time

about an order of magnitude at each higher level, and

4. models of the world and memories of events decrease in resolution and

expand in spatial and temporal range by about an order of magnitude at

each higher level.”

These English language rules must be encoded into ADLs in order to repre-

sent fully the semantics of an RCS system. Temporal scales and spatial extents

relative to other levels of the hierarchy must be represented and validated. While

existing ADLs can meet some of these requirements, further work on ADLs

32

adding methods to define these measures and to express constraints among
them is needed to allow specifications such as those quoted to be stated and

applied.

5.2.3 Specifying System Behavior for 4-D/RCS Systems

Communication of behavior description for components of the 4-D/RCS pro-

totype specification proved more difficult than communication of component

structure. First, specifying behavior in ADLs involves use of a larger, more
complex set of language primitives than is needed for specifying interface sig-

natures, connections, and architectures. Second, specifying behavior normally

requires understanding the underlying computational model upon which the

language is based. Finally, system behavior in 4-D/RCS has very significant

complexity, being based on theory from artificial intelligence, control systems,

and other disciplines. Therefore, the effort needed in both learning more com-

plex behavior description language and comprehending complex specifications

is potentially greater.

To facilitate communication of 4-D/RCS system behavior, an ADL must

provide an effective means for abstractly specifying algorithms, component be-

havior, and performance. While some ADLs may allow representation of all

or most of the behavior needed for 4-D/RCS, this requirement may lead to

defining additional language constructs to more directly represent specific 4-

D/RCS behavior. It may also require additional facilities for guiding developers

in generating their component specifications, through for example, templates

that they can fill in, as proposed in (Horst et al, 1997) and (Messina et ah,

1999). As with system structure, such capabilities would allow ADLs to specify

essential aspects of behavior at a higher level of abstraction than for program-

ming languages. These capabilities could be part of a domain-specific ADL with

a syntax that is customized for 4-D/RCS systems.

Finite-State Machine (FSM). The predominant computational model for de-

scribing behavior in 4-D/RCS is the FSM. Experience gained from many years

of building 4-D/RCS systems led to the conclusion that, while any computing

language with if.. then.. else constructs can express FSM concepts, greater ad-

vantage is gained with a language that provides FSM-specific constructs such as

state-graphs. Examining language documentation led to the conclusion that the

Rapide POSET computational model can support specification of FSM behav-

ior (as can a number of other ADLs). For instance, state graphs can automate

the specification and hide the housekeeping details of states, transitions, stimuli,

and constraints on behavior. The development of ADL language primitives for

supporting specification of FSM-oriented behavior is preferable and provides a

basis for the possible development of a domain-specific ADL for 4-D/RCS.

Artificial Intelligence Programming Techniques. For certain applications, 4-

D/RCS planning functions require use of artificial intelligence search methods.

To represent system behavior in 4-D/RCS architectures for such applications,

an ADL should therefore facilitate specification of the high-level behaviors or

performance characteristics for processing algorithms using search methods such

33

as depth-first, breadth-first, and others. For example, real-time systems may
benefit from depth-first search, since the system will be more likely to have a

complete solution to act on, albeit suboptimal, if required by timing constraints.

Similarly, sensing subsystems will benefit from obtaining a suboptimal solution

quickly, improving the solution as time permits. These performance profiles

should be part of the system simulation in an ADL.
Control Theories and Hybrid System Constructs. In addition, an ADL should

support the ability to specify feedback and control theory and discrete time

and event theory. From the control system theory point of view, RCS pos-

sesses a hybrid system construct, meaning that RCS based systems utilize both

continuous-time based and discrete-event based algorithms.

Other Problem Solving Paradigms. Within 4-D/RCS application systems, a

wide variety of other types of algorithms are necessary for specific functions

involving intelligent planning, sensory processing, and value judgement. Much
of this functionality is application-specific, meaning that different algorithms are

necessary to accomplish a similar task in different domains such as, for instance,

autonomous vehicle control and manufacturing. To represent architectures for

such systems, it is desirable that an ADL based application system model could

link in these algorithms so that effective tests can be performed.

5.2.4 Other RCS Requirements

Additional RCS requirements need to be considered for real-time system pro-

cessing, parallel processing, and general, infrastructural types of tasks. While

not requirements for the 4-D/RCS Reference Model Architecture, these capa-

bilities are needed to provide complete definition of specific system designs.

Some existing ADLs including Rapide provide these capabilities. However,

these requirements could provide a basis for developing language constructs

for a domain-specific ADL for RCS with a syntax that is specific to RCS and

can be used to define RCS software architectures and components.

Additional requirements for real-time programming. Since 4-D/RCS is for

designing real-time systems, an ADL should define notions of

1. duration in time of processes,

2. mixed asynchronous and synchronous processing,

3. spatial scope of a process or set of processes,

4. algorithm and component complexity, and

5. determinism in execution.

Requirements for serial and parallel processing. It is often important to be

able to divide the processing into atomic processing components (versus a single

monolithic component) that can be executed serially or in parallel which will

facilitate process cessation and make it deterministic. Therefore, it is important

that an ADL be able to specify these processing characteristics, namely, process

34

cessation, process modularization, parallel and serial execution of atomic pro-

cessing components interlaced with other atomic processing components from

other processes. Serial and parallel processing capabilities are provided by some
ADLs, including Rapide.

Infrastructural Requirements- “Housekeeping”

.

RCS implementations con-

tain generic “housekeeping” types of actions. These include checking a module’s

input command, reading in the current world model, processing the current com-

mand, and writing out the updated world model. Following a convention, all of

these messages carry identification numbers that are to be matched between the

issuers and the responders. These can be readily captured in Rapide. Because

these behaviors were part of the implementation mechanics, the authors did not

attempt to represent them in the study.

Infrastructural Requirements-Performance. It is desirable to allow captur-

ing performance statistics, such as timing, states, and errors. These would be

useful in system diagnostics and maintenance. It should be noted that Rapide

does provide the capability to capture time-related data which could not be

exercised in this study due to resource limitations.

Infrastructural Requirernents-Human Interface. RCS requires that opera-

tors be able to interact with the control systems with various degrees of involve-

ment, ranging from monitoring the functioning of a subsystem to teleoperation

of a device or vehicle. This function may be implemented with text or graphics,

using whatever mechanism is appropriate, such as hand-held control devices or

Internet-based remote access. It is desirable that an ADL allow specifying this

function at a high level. For example, if an operator acknowledgement of an

alarm condition is required when certain events are triggered, there should be

some basic representation of this interaction. It is unclear whether it is neces-

sary for an ADL to support a higher-fidelity simulation of the device in order

to exercise the Operator Interface functionality.

5.3 ADLs and Software Development Support

Tools

Conclusions are provided on the relationship between ADLs and software sup-

port tools. These conclusions are based not only on the study but review of

existing ADL products.

5.3.1 Tool Support for Analysis of Specifications

One of the benefits of rigorously specifying 4-D/RCS designs is that it is pos-

sible to check the completeness and internal consistency of the reference model

architecture before it is used as a basis to develop individual system designs.

By providing a basis for formalized, or at least rigorous specification, most ADL
products surveyed also provide a basis for development of automated analysis

capabilities. In the case of Rapide, analysis is based on simulation of the execu-

35

tion of a system architecture and analysis of POSET traces. This proved to be

valuable for visualizing, understanding, and verifying system behavior.

Other ADLs take different approaches using automated tools for analysis

of specifications based on formal methods approaches. SADL (Moriconi and

Riemenschneider, 1997) uses w-logic, a weak second-order logic, as a basis for

proving the correctness of mappings between architectures at different levels of

abstraction. Wright (Allen, 1997) uses First-Order Logic to specify constraints

and a Communicating Sequential Processes (CSP) computational model to spec-

ify behavior of components and connections, providing a basis for a set of au-

tomated checks on specification consistency and completeness. Examples from

Wright are checks that determine the existence of a deadlock condition within

the specification of the behavior of an architecture and checks to determine

compatibility between connections and components (called part/role compati-

bility). Ideally, formal methods approaches and simulation should supplement

and complement each other. Further investigation is necessary to identify and

catalog checks supported by existing ADLs that are either under consideration

as being useful or have been demonstrated as being useful.

5.3.2 Verification of Designs of RCS Systems Against the

Standardized Reference Model Architecture

The use of an ADL to verify the behavior of an application system design

against the Reference Model Architecture is demonstrated as a proof-of-concept

in the Control Node prototype. However, 4-D/RCS domain experts maintain

that verification of the system topology is at least equally important for the

Reference Model Architecture. This form of verification involves showing that

the application system contains the same basic structure including components,

event connections, and data structures as the Reference Model. As a result, two

kinds of verification are important from the standpoint of 4-D/RCS:

1. Verification to the structure of the Reference Architecture including exis-

tence of specific components, events, and control flows.

2. Verification of behavior, including behavior within components and be-

havior across component connections and an entire architecture.

Verification of behavior is the focus of Rapide. Further research is necessary

to define techniques for demonstrating consistency with system topology. As

indicated earlier, work in extending Rapide'’s POSET model to verification of

system structure has been reported in (Vera et ah, 1998). In SADL, (Moriconi

et ah, 1995) describes a general approach, called architectural refinement, that

utilizes theorem proving techniques. In this approach, proofs are constructed to

show that in the case when a more general or abstract architecture is applied

to produce a more detailed design, that any system that correctly implements

the more detailed design also correctly implements the abstract architecture.

Refinement is used to demonstrate correctness with respect to the connectivity

of events between modules at different levels of abstraction; and this approach

36

may be applicable to the problem of verifying application system designs. As
with verification of internal consistency, further work is needed on the use of

theorem proving techniques on this problem.

It is possible that significant advantages could be provided by the use of

architectural styles to constrain architectures to specific topologies. Application

systems could be tested to determine if they conform to the constraints specified

in a particular style. The work of (Moriconi et ah, 1995), in part, does consider

the use of styles. Despite the need for additional research on the use of ADLs
for application system verification, ADLs do provide a viable conceptual basis

for automated verification of system designs against a canonical architecture

needed for RCS.

5.4 ADLs and Component-Based Software Reuse

Though this limited study did not have the resources to explore reuse possibil-

ities, there is potentially a strong relationship between ADLs and automated

component-based software reuse. Having an unambiguous definition of the RCS
architecture provides a framework for reuse as well. In a scenario where several

organizations collaborate on the implementation of an RCS-based system, not

only are they concerned with conformance to the reference architecture, but

also with communicating how the various components fit together and behave

together. An ADL can prove valuable in this function. ADLs go beyond provid-

ing just the signature specification for a component or subsystem. They allow

developers to see the big picture and where their particular pieces fit in and how
the pieces are expected to behave or interact with the rest of the system. The
feasibility of applying ADLs to facilitate reuse was somewhat limited by the

developers’ abilities to comprehend the specification in a given ADL and how to

interpret it for their particular implementation job. If developers can overcome

the initial challenges of becoming familiar with the ADL’s notation and conven-

tions, they may find them a valuable part of a reuse strategy. The development

of domain-specific ADLs can be expected to be helpful in this regard as well.

Simulation of components provides additional benefits not available in typical

notations or descriptions of software components.

Extending ADLs to Support Software Reuse. ADLs could be extended to

support reuse with additions of specific language features based on reuse con-

cepts from the literature on domain engineering (Kang et ah, 1990; SPC, 1992;

STARS, 1993), thus providing a basis for automation of software development.

Domain engineering is the process of developing reusable software for a family

of systems with similar requirements. One addition would be to make explicit

within a specification those parts that are invariant and those parts that vary

and can be adapted for individual systems designs. This is accompanied by

guidance to developers on how to modify and adapt the variable parts for reuse.

For instance, in the intelligent control node architecture, the Job_Assignor com-

ponent may always be required to be present in all 4-D/RCS systems. Certain

events generated by the JobJVssignor may be invariant such as the Do_Task

37

event. However, the type and number of parameters passed may need to be

varied depending on the application. Other events may be defined as being

optional. In addition, an architecture specification may identify optional com-

ponents, parameterizable components, or even entire subarchitectures that can

be varied. Guidelines would be used by developers with the aid of support

tools to select options and customize the specification for particular applica-

tions. This concept could be further extended by the use of software support

tools that assist developers in selecting and modifying system designs and com-

ponents. The resulting system specifications potentially could be automatically

composed and generated using the support tools. An example of such a sys-

tem for automated generation of system requirements is provided in (Dabrowski

and Watkins, 1994). The ample literature on research into domain engineering

methods provides a resource for identifying additional possibilities in this area.

This research together with the ongoing work on ADLs provides an important

basis for automation of software development.

Integrating ADLs into the Domain Engineering Process . Research in domain

engineering has resulted in the creation of methodologies that provide a com-

prehensive approach to development of reusable components that encompass

all phases of the software lifecycle (SPC, 1992; STARS, 1993). The use of this

approach for development of control system software architectures has been ad-

vocated in (Senehi and Kramer, 1998). Domain engineering is based on the

assumption that the development of reusable software components requires do-

main definition and analysis phases in addition to development of architectures

and components for domains. In the domain definition phase, the scope of a

family of systems is defined; in the domain analysis phase, software requirements

for the domain are set forth. Domain engineering provides languages for defining

domains and domain software requirements. To use ADLs in a domain engi-

neering process, it will be necessary to have some level of integration between

ADLs and languages for describing domain software requirements. Similarly,

it is important to have links between reusable requirements specifications and

software architecture specifications in order to define a clear component reuse

process and establish traceability. A consistent domain engineering process that

includes ADLs is one possible approach to realizing the potential of ADLs for

automated reuse of software components.

Domain-Specific ADLs and Software Reuse. ADLs can be significantly en-

hanced through the development of domain-specific syntax for abstractly de-

scribing structure and behavior in software architecture and components and

adding language features for supporting reuse. Basing ADL semantics on for-

malized theories of architecture and system behavior allows definition of analyt-

ical functions that can automatically determine internal consistency of reference

architectures, software system designs, and individual components. The com-

bination of these facilities with graphical software support tools would result

in powerful tools for automated component-based software engineering. It re-

mains a subject for future research as to whether this potential will be realized

in ADLs, will be incorporated into existing commercial development support

tools, or will emerge as a new genre of software technology.

38

This report has provided the results of an investigation into the use of ar-

chitectural description languages to represent the RCS Reference Model Archi-

tecture and RCS software components. ADLs have the capabilities to represent

RCS and to be useful tools for further developing RCS. However, several areas

of research are suggested in order to make ADLs more effective tools for RCS
software specifications. These include creation of a domain-specific syntax for

RCS, language features for describing behavior in terms of RCS computational

models, language features for verification of adherence to RCS Reference Model

structure, and support for software reuse. Transfer of ADL concepts into ex-

isting real-time software development tools is another important direction to

pursue. It is the hope of the authors that this work provides a contribution

towards both the development of ADLs as tools for software component tech-

nology and the formalization of the 4-D/RCS Reference Model Architecture.

39

40

References

Albus, J.S. and Blidberg, D.R. 1987. Control System Architecture for Mul-

tiple Autonomous Undersea Vehicles (MAUV). Proc. of the Fifth International

Symposium on Unmanned, Untethered Submersible Technology, Merrimack,

NH.
Albus, J.S., Lumia, R., Fiala, J., and Wavering, A. 1989. NASREM - The

NASA/NBS Standard Reference Model for Telerobot Control System Architec-

ture. Proc. of the 20th International Symposium on Industrial Robots, Tokyo,

Japan.

Albus, J. S. 1991. ’’Outline for a Theory of Intelligence. IEEE Transactions

on Systems, Man, and Cybernetics, Vol. 21, No. 3:473-509.

Albus, J.S., Lumia, R. 1994. The Enhanced Machine Controller (EMC):
An Open Architecture Controller for Machine Tools. Journal of Manufacturing

Review, Vol. 7, No. 3, pgs. 278-280.

Albus, J. S. 1995. The NIST Real-time Control System (RCS): An Appli-

cation Survey. Proc. of the AAAI 1995 Spring Symposium Series, Stanford

University, Menlo Park, CA.

Albus, J. S., and Meystel, A. 1996. A Reference Model Architecture for De-

sign and Implementation of Intelligent Control in Large and Complex Systems.

International Journal of Intelligent Control and Systems, Vol. 1, No. 1, pp.

15-30.

Albus, J. S. 1997. 4-D/RCS: A Reference Model Architecture for Demo III.

National Institute of Standards and Technology, Gaithersburg, MD, NISTIR
5994.

Allen, R. 1997. A Eormal Approach to Software Architecture. PhD Thesis,

Carnegie Mellon University, Pittsburgh, PA, Technical Report Number: CMU-
CS-97-144.

Barbera, A. J., Albus J. S., Fitzgerald M.L., and Haynes L.S. 1984. RCS:The
NBS Real-Time Control System. Proc. of Robots 8 Conference and Exposition.

Detroit, MI, pp. 1-19.

Dabrowski, C. and Watkins, C. 1994. A Domain Analysis of the Alarm

Surveillance Domain. National Institute of Standards and Technology, Gaithers-

burg, MD, NISTIR 5494.

Dickmanns, E. D. et al. 1994. The Seeing Passenger Car ” VaMoRS-P,” Proc.

International Symposium on Intelligent Vehicles ’194, Paris, Prance, pp.68-73.

41

Feijs, L.M.G. and Jonkers, H.B.M. 1992. Formal Specification and Design,

Cambridge University Press, Victoria, Australia.

Garlan, D., and Shaw, M. 1994. Characteristics of Higher-Level Languages

for Software Architecture. Software Engineering Institute, Carnegie-Mellon Uni-

versity, Pittsburgh, PA, CMU/SEI-94-TR-23.

Garlan, D., and Perry, D. 1995. Introduction to the Special Issue on Software

Architecture. IEEE Transactions on Software Engineering, Vol. 21, No. 4, pp.

269-274.

Horst, J. A. 1993. Coal Extraction Using RCS. Proc. of the 8th IEEE
International Symposium on Intelligent Control, Chicago, IL, pp. 207-212.

Horst, J. A., Messina, E., Kramer, T., Huang, H. M. 1997. Precise Defi-

nition of Software Component Specifications. Proc. of the 7th Symposium on

Computer-Aided Control System Design (CACSD ’97), Gent, Belgium, pp.l45-

150.

Huang, H. and Messina, E. 1996. NIST-RCS and Object-Oriented Method-

ologies of Software Engineering: A Conceptual Comparison. Proc. of the Intel-

ligent Systems: A Semiotic Perspective Conference, Vol. 2: Applied Semiotics.

Gaithersburg, MD, pp. 109-115.

Huang, H.M., Scott, H., Messina, E., Juberts, M., Quintero, R. 1999. In-

telligent System Control: A Unified Approach and Applications, Chapter in

Gordon and Breach International Series in Engineering, Technology and Ap-

plied Science, Volumes on ’’Expert Systems Techniques and Applications,” To

be published in 1999.

Kang, K., Cohen S.
,
Hess J., Novak W., and Peterson S. 1990. Eeature-

Oriented Domain Analysis (FODA) Feasibility Study. Software Engineering

Institute, Carnegie-Mellon University, Pittsburgh, PA, CMU/SEI-90-TR-21.

Luckham, D. 1996. Rapide: A Language and Toolset for Simulation of

Distributed Systems by Partial Ordering of Events. Stanford University, Palo

Alto, CA. CSL-TR-96-705.

Medvidovic, N. and Taylor R. 1999. Classification andComparison Frame-

work for Software Architecture Description Languages. Accepted for publication

in IEEE Transactions on Software Engineering.

Melton, R. 1998. The Aesop System: A Tutorial. Carnegie Mellon Univer-

sity, Pittsburgh, Pennsylvania.

Messina, E., Horst, J., Kramer, T., Huang, H. Michaloski, J. 1999. Compo-
nent Specifications for Robotics Integration. To appear in Autonomous Robots

Journal, Volume 6, No. 3.

Moriconi, M., Qian, X. and Riemenschneider, R. 1995. ’’Correct Archi-

tecture Refinement. IEEE Transactions on Software Engineering, Volume 21,

Number 4, pp.356-372.

Moriconi, M and Riemenschneider, R. 1997. Introduction to SADL 1.0: A
Language for Specifying Software Architecture Hierarchies. Stanford Research

Institute, Palo Alto, CA, TR SRI-CSL-97-01.

CMC. 1999. RFP: UML Profile for Scheduling Performance, and Time Ob-

ject Management Group Document ad/99-03-13. Object Management Group,

Framingham, MA. http://www.omg.org.

42

Proctor, F. M. and Shackleford, W. 1999. http://isd.cme.nist.gov/
projects/rcs_lib/.

Senehi, M. and Kramer, T. 1998. A Framework for Control Architectures.

International Journal of Computer Integrated Manufacturing, Volume 11, Num-
ber 4, pp. 347-363.

Shackleford, W., Proctor, F.M. 1998. JAVA-Based Tools for Development

and Diagnosis of Real-Time Control Systems. Proc. of the ASME: Computers

in Engineering Conference. Atlanta, GA.
Shaw, M. 1994. Comparing Architectural Design Styles. IEEE Software,

November, 1994, pp. 27-41.

Shoemaker, C. M. and Bornstein, J. A. 1998. Overview of the Demo III

UGV program. Proc. of the SPIE Robotic and Semi-Robotic Ground Vehicle

Technology
,
Vol. 3366, pp.202-211.

SPC 1992. Domain Engineering Guidebook, Software Productivity Consor-

tium. Herndon, VA. SPC-92019-CMC, Version 01.00.03.

STARS. 1993. Organizational Domain Modeling, Volume I - Conceptual

Foundations, Process And Workproduct Description, Informal Technical Report

for the Software Technology for Adaptable, Reliable Systems (STARS), Report

Number STARS-UC-05156/024/00.

USPS. 1991. Stamp Distribution Network, Advanced Technology & Re-

search Corporation, Burtonsville, MD. USPS Contract Number 104230-91-C-

3127 Final Report.

Vera, J., Perrochon, L., Luckham, D. 1998. Event-Based Execution Ar-

chitectures for Dynamic Software Systems. Proc. TC2 First Working IFIP

Conference on Software Architecture (WICSAl). San Antonio, Texas, USA.

Kluwer. pp. 303-317.

Vestal, S. 1993. A Cursory Overview and Comparison of Four Architecture

Description Languages. Honeywell Technology Center, February 1993.

Zelesnik, G. 1996. The UniCon Language Reference Manual. Carnegie Mel-

lon University, Pittsburgh, Pennsylvania, http ://www.cs. emu. edu:80/afs/

cs . emu. edu/project/vit/www/unicon/reference-manual/Reference_Majiual_

1 .html.

43

44

Appendix A: The Rapide
Specification

This appendix contains a draft Rapide specification of the software architecture,

module interfaces, and module connections for a single 4D/RCS Intelligent Con-

trol Node. The listing below provides a guide to the organization and content

of this specification. Please note that this specification excludes those parts of

the Rapide program that are necessary for animation of a sample execution of

the architecture. Also, the parts of the specification are reordered for purposes

of presentation.

Organization of Rapide Specification

Global Declarations

Global Variables

Global Complex Data Structures

4D/RCS Control Node
Interface for RCS Control Node
Rapide Architecture for RCS Node

RCS Node Submodules

Behavior Generation

Interface for Behavior Generation Module

Architecture for Behavior Generation Module

Behavior Generation Submodules

Job Assignor

Scheduler

Executor

Plan Selector

World Modeling

Simulator

Knowledge Base

Value Judgement

Sensory Processing

45

A. 5 Global Declarations

A. 5.1 Global Variables

** *
— ** THESE ARE VARIABLES USED IN **

— ** RCS CONTROL NODE AND ITS COMPONENT MODULES **

— ** **

*)|C********j|C*****j|Cj(C!(C*!|C!|C*j(C******=l<**>l'*=l<=l<=l<!|t=l<******JK*=|t*****

TYPE Plan IS string;

TYPE Schedule IS string;

TYPE result IS string;

— Declare resources controlled by control nodes
— at next lowest level in the RCS hierarchy.

3tc:|c3|c3tc9fc:|c3lc^9K^3|c9(e3lc3lc>|ea)c9|e3fc3jc3fe3|e3|e:tc3{c3lcafe^:f::)e9)e3|c3fc}|c3{(:^3(e^;|e3lca|c9fc^3tc3|e:(c3|c^:4c:le9)e3|(:te9)e)tc

Nuin_Controlled_Resources : var integer := 3;

resource : array [integer] of Controlled_Resources

IS (1..3, "Compl", "Comp2", "Comp3")

;

A. 5.2 Global Complex Data Structures

3jc:|c3)e;|e)|c:|c:|e:4c:)c9)c3tc9^3fc9)c;fc9|c9(ej|e3le:ie^:le3(c3|c3fc3)e]4c3tc3|ea)e3fc:fc3fc9)c3)e:f;3fc3|c3|e3fe3)c3|c^:fe3K^^^3(e3|c3(ea|c:fe:fc3|c3lc:fc:^:(c:|c:|e9^3le:|e:(c:|c:lc:lc:(c:4(3le:4c

Declare TASK_COMMAMD_FRAME as string variable for now.

Declare record structure for TASK_FRAME. This is highest

level abstract type for Task Frame from which subtypes may be

declared. Array of these record structures is indexed by TASK_NAME

TYPE Task_Command_Frame IS STRING;

TYPE Task_Frame IS RECORD

task_name : ref (string);

task_process : ref (plan);

END; — record

TYPE Move.Task IS RECORD

INCLUDE Task_Frame;

46

: ref (string);Coordinates

END; — record

A.6 4D/RCS Control Node

A.6.1 Interface for RCS Control Node

TYPE RCS_Node_Interface IS INTERFACE

ACTION

IN

Do_task (j : Task_Command_Frame)

,

RCV_SP_Data (Obj : string; Data : string),

RCV_SubNode_Status (ST : string)

,

RCV_Request_KB_Object (Obj : string),

RCV_KB_Object (Obj : string),

Operator_ Input (Inp : string);

OUT

SND_SP_Data (Obj : string; Data : string),

Do_sub_task (CR : ControIled_Resources
; J : Task_Conmaiid_Frame)

,

FWD_Request_KB_Object (Obj : string)

,

SND_KB_Object (Obj : string).

Status (CR : Controlled_Resources
; ST : string),

0perator_0utput (Outp : string)

;

END

A. 6.2 Rapide Architecture for RCS Node

ARCHITECTURE RCS_Node_Architecture () RETURN RCS_Node_Interface IS

BG : Behavior_Generator_Interface IS BG_Module_Architecture()

;

WM : World_Modeling_Interface IS World_Modeling_Architecture()

;

VJ : Value_Judgement_Interface IS Value_Judgement_Module()

;

SP : Sensory_Processing_Interface IS Sensory_Processing_Module ()

;

CONNECT

(?J : Task_Coimnand_Frame)

Do_task (?J) ||> BG.Do_task(?J)

;

(?CR ; Controlled_Resources
;
?ST : string)

BG.BG_Status (?ST) M> Status ("Node", ?ST) ;

47

(?CR ; Controlled_Resources ; ?J : Task_Coininand_Frame
; ?S : Schedule)

WM.FWD_REQ_Evaluate_Schedule (?CR, ?J, ?S) ||>

VJ.RCV_Evaluate_Schedule (?CR, ?J, ?S)
;

** Connections Between Value Judgement and **

** Behavior_Generation Interfaces **

(?CR : Controlled_Resources ; ?J : Task_Coimnand_Frame

;

?S : Schedule; ?RS : Result)

VJ.SND_Schedule_Evaluation (?CR, ?J, ?S , ?RS) ||>

BG.RCV_Schedule_Evaluation (?CR, ?J, ?S, ?RS) ;

(?CR : Controlled_Resources
;
?J : Task_Command_Frame

;

?S : Schedule; ?ST : String)

VJ.SND_VJ_Status (?CR, ?J, ?S, ?ST) ll>

BG.RCV_VJ_Status (?CR, ?J, ?S, ?ST)

;

** Connections Between World Modeling and **

** Behavior_Generation Interfaces **

(?J : Task_Coimnand_Frame)

BG.FWD_Fetch_task_frame (?J) ||>

WM.RCV_Fetch_task_frame(?J)

;

(?J : Task_Command_Frame ; ?TF : Task_Frame)

WM.FWD_task_frame (?J, ?TF) ||>

BG.RCV_task_frame (?J, ?TF)

;

(?CR : Controlled_Resources ; ?J : Task_Command_Frame ; ?S : Schedule)

BG.FWD_Post_Schedule (?CR, ?J, ?S) ||>

WH.RCV_Post_Schedule (?CR, ?J, ?S)

;

(?CR ; Controlled_Resources ; ?J : Task_Coinmand_Frame; ?S : Schedule)

BG.FWD_Simulate_Schedule (?CR, ?J, ?S) ||>

WM.RCV_Simulate_Schedule (?CR, ?J, ?S)

;

(?CR : Controlled_Resources ; ?J : Task_Command_Frame
; ?S : Schedule)

WM.FWD_Simulation_Failure_Notif ication (?CR, ?J, ?S) ||>

BG.RCV_Simulation_Failure_Notif ication (?CR, ?J, ?S)

;

** Connections Between External Device and **

** Sensory Processing Module **

(?Data ; string)

48

Sensor_Output (?Data) ||>

SP . SP_RCV_Observed_ Input (?Data)

;

— ** Connections Between Sensory Processing **

— ** Modules at different levels of RCS **

(?0bj : string; ?Data : string)

SP . SP_SND_Update (?0bj , ?Data) ||>

SND_SP_Data (?0bj , ?Data)

;

(?0bj : string; ?Data ; string)

RCV_SP_Data (?0bj , ?Data) M>
SP.SP_RCV_SP_Data (?0bj , ?Data)

;

— ** Internal Connections Between Sensory Processing **

— ** and World Modeling & Value Judgement **

(?0bj : string; ?Data : string)

SP.SP_SND_Update (?0bj , ?Data) ||>

VJ.RCV_Update (?0bj , ?Data)

;

(?0bj : string; ?Data : string)

SP.SP_SND_Update (?0bj , ?Data) ||>

WM.RCV.Update (?0bj , ?Data)

;

(?CR : Controlled_Resources ; ?J : Task_Coinmand_Frame)

BG.FWD_Do_Sub_Task (?CR, ?J) M>
Do_Sub_Task (?CR, ?J)

;

END;

— END of RCS Node Declarations

A. 7 RCS Node Submodules

DECLARATION OF BEHAVIOR GENERATION, WORLD MODELING

AND VALUE JUDGEMENT MODULES

— — J|e5(t:f::|cj|e:t:3<t3tsj|c3(c* + :t:*3tc + *:(c:^cs(cs|c5(c:*c:(e3|e;j£atc:<e3|c3|e3(e3|e3(c;^c*3|cj|e3|c***5|c:f: + :t:5^ste3|c******5*«*****

49

A. 7.1 Behavior Generation

A. 7. 1.1 Interface for Behavior Generation Module

TYPE Behavior_Generator_Interface IS INTERFACE;

ACTION

IN

Do_task (J : Task_Command_Fraine)
,

RCV_task_frame (J : Task_Conmiaiid_Frame; TF : Task_Frame)

,

RCV_Schedule_Evaluation (CR ; Controlled_Resources

;

J : Task_Command_Fraine

;

S : Schedule; RS : Result),

RCV_Simulation_Failure_Notif ication (CR : Controlled_Resources

;

J : Task_Conimand_Frame;

S : Schedule)

,

RCV_VJ_Status (CR : Controlled_Resources

;

J ; Task_Conmiand_Frame;

S : Schedule

;

ST : String)

;

OUT

FWD_Fetch_task_frame (J : Task_Conffliand_Frame)

,

FWD_Simulate_Schedule (CR : Controlled_Resources

;

J : Task_Conunand_Frame; S : Schedule),

FWD_Post_Schedule (CR : Controlled_Resources

;

J : Task_Coinmaiid_Fraine
; S : Schedule),

FWD_Do_Sub_Task (CR : Controlled_Resources

;

J : Task_Conimand_Frame) ,

BG_Status (ST : String)

;

CONSTRAINT

Do not allow Do Task and Do_Sub_Task events

to be causally independent

.

NEVER

(?J : Task_Conimand_Frame; ?CR : Controlled_Resources)

Do.task (?J) II FWD_Do_Sub_Task (?CR, ?J)

;

END;

50

A. 7. 1.2 Architecture for Behavior Generation Module

ARCHITECTURE BG_Module_Architecture ()

RETURN Behavior_Generator_Interface IS

JA : Job_Assignor_Interface IS Job_Assignor_Module ()

;

SC : array [integer] of Scheduler_Interface

IS (1.. $Nuin_Controlled_Resources
,

.

EX : array [integer] of Executor_Interface

IS (1.. $Num_Controlled_Resources , .

PS : Plan_Selector_Interface IS Plan_Selector_Module ()

;

CONNECT

— ** Connections Between Job Assignor and **

— ** higher-level Behavior_Generation Interface **

(?J : Task_Coininand_Frame)

Do_task (?J) I I
>

JA.Do_task(?J)

;

(?J : Task_Conmiand_Frame)

JA.Fetch_task_frame (?J) ||>

FWD_Fetch_task_frame (?J)

;

(?J : Task_Coin]nand_Frame ; ?TF : Task_Fraine)

RCV_task_fraine (?J, ?TF) ||>

JA.RCV_task_frame (?J, ?TF)

;

(?ST : string)

JA.JA_Status (?ST) ||> BG_Status (?ST)

;

— ** Generated Connections Between Job Assignor and **

— ** Scheduler Interfaces & Between Scheduler and Executor **

For i : integer in 1 . . $Num_Controlled_Resources GENERATE

(?J : Task_Coinmand_Fraine)

JA.Schedule_Job(?J) ||>

SC[i] .RCV_Schedule_Job(?J) ;

(?CR : Controlled_Resources
; ?J : Task_Command_Frame ; ?S :

Schedule)

SC[i] .REC)_Simulate_Schedule (?CR, ?J, ?S) ll>

51

FWD_Simulate_Schedule (?CR, ?J, ?S)

;

(?CR : Coiitrolled_Resources ; ?ST : String)

SC[i] .SC_Status (?CR, ?ST) ||>

JA.SC.Status (?CR, ?ST)

;

(?CR : Controlled_Resources ; ?J : Task_Commcind_Frame

;

?S : Schedule; ?ST : string)

EX[i] .SND_EX_Status (?CR, ?J, ?S, ?ST) ||>

SC[i] .RCV_EX_Status (?J, ?S, ?ST)

;

END GENERATE;

— ** Connections Between Scheduler and **

— ** higher-level Behavior_Generation Interface **

(?CR ; Controlled_Resources
; ?J : Task_Coinmand_Frame

; ?S : Schedule)

RCV_Simulation_Failure_Notif ication (?CR, ?J, ?S) ||>

SC [Get_Index (?CR)]. RCV_Simulation_Failure_Notif ication (?J, ?S)

;

(?CR : Controlled_Resources
;
?J : Task_Conimand_Fraine

;

?S : Schedule; ?RS : Result)

RCV_Schedule_Evaluation (?CR, ?J, ?S, ?RS) ll>

PS . RCV_Schedule_Evaluation (?CR, ?J, ?S, ?RS)

;

(?CR : Controlled_Resources
; ?J : Task_Coinmand_Frame; ?S : Schedule)

PS.Post.Schedule (?CR, ?J, ?S) |i>

FWD_Post_Schedule (?CR, ?J, ?S)

;

(?CR : Controlled_Resources
; ?J : Task_Command_Fraine

;

?S : Schedule; ?ST : String)

RCV_VJ_Status (?CR, ?J, ?S, ?ST) ll>

SC[Get_Index (?CR)] . RCV_VJ_Status (?J, ?S, ?ST)

;

— ** Connections Between Executor and **

— ** higher-level Behavior Generation Interfaces **

(?CR : Controlled_Resources; ?J : Task_Command_Frame)

EX[Get_Index (?CR)] .Do_Sub_Task (?CR, ?J) ||>

FWD_Do_Sub_Task (?CR, ?J)

;

— ** Connections Between Plan Selector and **

— ** Scheduler Interfaces **

(?CR : Controlled_Resources ; ?J : Task_Coinmand_Frame

;

?S : Schedule; ?ST : string)

52

PS.SND_PS_Status (?CR, ?J, ?S, ?ST) ||>

SC[Get_Index (?CR)] .RCV_PS_Status (?J, ?S, ?ST)

;

— ** Connections Between Plan Selector and **

— ** Executor Interfaces **

(?CR : Controlled_Resources
; ?J : Task_Coinmand_Frame

; ?S : Schedule)

PS.SND_Execute_Schedule (?CR, ?J, ?S) M>
EXCGet_Index (?CR)] .RCV_Execute_Schedule (?J, ?S)

;

— CONSTRAINT
— NEVER

(?J : Task_Cominand_Frame) Do_task (?J) || JA.Do_task(?J)

;

END; — ARCHITECTURE BG_M0DUL

A. 7. 1.3 Behavior Generation Submodules

— JOB ASSIGNOR, PLAN SELECTOR, ARRAY OF N SCHEDULERS &

— EXECUTORS FOR CONTROL NODES AT NEXT LOWEST LEVEL THAT
— ARE CONTROLLED BY THIS NODE

A. 7. 1.3.1 Job Assignor

— ** JOB ASSIGNOR INTERFACE **

TYPE Job_Assignor_Interf ace IS INTERFACE;

ACTION

IN

Do_task (J : Task_Commaiid_Frame) ,

RCV_task_frame (J : Task_Command_Fraine
;
TF : Task_Fraine) ,

SC_Status (CR : Controlled_Resources
; ST : String);

OUT

53

Schedule_Job (J : Task_CommcLnd_Frame) ,

Fetch_task_frame (J : Task_Conffliand_Fraine) ,

Decompose_task_frame (TF ; Task_Fraine) ,

JA_Status (ST : String)

;

BEHAVIOR

Decompose_function : FUNCTION (TF : Task_Fraine) ;

—NOTE: Should this function return a list of Scheduler/job pairs?

The exact definition still needs some attention.

BEGIN

(?J : Task_Coimnand_Frame)

Do.Task (?J) ||>

Fetch_task_frame (?J) ; ;

(?J : Task_Command_Frame
;
?TF : Task_Frame)

RCV_task_frame (?J, ?TF) ||>

Decompose_Task_Frame (?TF)
;

;

(?TF : Task_Frame)

Decompose_Task_Frame (?TF) ||>

Decompose_function (?TF)
;

;

CONSTRAINT

— (1) Do not allow causally independent Do task

and Schedule Job events!

NEVER

(?J1, ?J2 : Task_Command_Frame)

Do_Task (?J1) I I Schedule.Job (?J2)

;

— (2) Do not allow causally independent Do task

and Status Message events!

NEVER

(?J1 : Task_Command_Frame
; ?ST : string)

Do.Task (?J1) II JA.Status (?ST)

;

— (3) Do not allow Do Task eoid Fetch Task Frame events

to be causally independent

.

54

NEVER

(?J1, ?J2 : Task_Command_Frame)

Do_Task (?J1) M Fetch_task_frame (?J2)

;

— (4) Do not allow a causally dependent pair of Do Task
and Fetch Task Frame events for different jobs.

NEVER

(?J1, ?J2 : Task_Command_Frame)

Do_Task (?J1) -> Fetch_task_frame (?J2)

WHERE ?J1 /= ?J2;

END; — Job_Assignor_Interface

A. 7. 1.3.2 Scheduler

— ** SCHEDULER INTERFACE **

— 9|c3)c34c94e3f(3fc:tc9|c3(c:f(94c9(c)|c3|cj(0fc:{e9|c3|(](c:4c3|c3(c3tc^9fc)|c)|e:(c:t;3ic:fc:|c3^3|c

TYPE Scheduler.Interface IS INTERFACE;

ACTION

IN

RCV_Schedule_Job (J : Task_Command_Frame)

,

RCV_PS_Status (J : Task_Command_Frame
;
S : Schedule; ST : string),

RCV_EX_Status (J : Task_Command_Frame
; S : Schedule; ST : string),

RCV_VJ_Status (J : Task_Command_Frame ; S : Schedule; ST : String),

RCV_Simulation_Failure_Notif ication (J : Task_Command_Frame

;

S : Schedule)

,

RCV_Check_Schedule_Consistent (CR : Controlled_Resources

;

J : Task_Command_Frame

;

S : Schedule)

,

RCV_Schedule_Consistency_Evaluation (CR : Controlled_Resources

;

J : Task_Command_Frame

;

S : Schedule)

;

OUT

REQ_Simulate_Schedule (CR : Controlled_Resources

;

J : Task_Command_Frame
; S : Schedule),

Checkif_Schedule_Consistent (CR : Controlled_Resources

;

J ; Task_Command_Frame; S : Schedule),

55

SND_Schedule_Consistency_Evaluation (CR : Controlled_Resources

;

J : Task_Coinmaiid_Frame

;

S : Schedule)

,

SC_Status (CR : Controlled_Resources
;
ST : String);

BEHAVIOR

Resource_name

resource

END;

Controlled_Resources ;
— the lower-level controlled

A. 7. 1.3.3 Executor

— ** EXECUTOR INTERFACE **

TYPE Executor_Interface IS INTERFACE;

ACTION

IN

RCV_Update_Schedule (J : Task_Command_Frame; S : Schedule),

RCV_Execute_Schedule (J : Task_Coinmand_Frame
; S : Schedule);

OUT

Do_Sub_task (CR : Controlled_Resources
; J : Task_Coiiunand_Frame) ,

SND_EX_Status (R: Controlled_Resources
;

J : Task_CommcLnd_Frame;

S : Schedule; ST : string);

BEHAVIOR

Resource_name : Controlled_Resources
;
— the lower-level controlled

resource

END;

A. 7. 1.3.4 Plan Selector

— ** PLAN SELECTOR INTERFACE **

TYPE Plan_Selector_Interface IS INTERFACE;

ACTION

56

IN

RCV_Schedule_Evaluation (CR : Controlled_Resources

;

J : Task_Commajid_Frame

;

S : Schedule;

RS : Result)

;

OUT

SND_PS_Status (R: Controlled_Resources

;

J : Task_Command_Frame
; S : Schedule; ST : string),

Post_Schedule (R: Controlled_Resources

;

J : Task_Coiiunand_Frame
; S : Schedule),

SND_Update_Schedule (R: Controlled_Resources

;

J : Task_Command_Fraine
; S : Schedule),

SND_Execute_Schedule (R: Controlled_Resources

;

J : Task_Coiiimaiid_Frame
; S : Schedule);

END;

A. 7.2 World Modeling

— ** WORLD MODELING INTERFACE and ARCHITECTURE **

— ** INCLUDING SIMULATOR AND KNOWLEDGE.BASE COMPONENTS **

A. 7.2.1 Interface for World Modeling

TYPE World_Modeling_Interface IS INTERFACE;

ACTION

IN

RCV_Fetch_task_frame (J : Task_Conmiand_Frame)

,

RCV_Request_KB_Object (Obj : string)

,

RCV_KB_Object (Obj : string)

,

RCV_Simulate_Schedule (CR ; Controlled_Resources

;

J : Task_Command_Frame
; S : Schedule),

RCV_Post_Schedule (CR : Controlled_Resources

;

J : Task_Command_Frame ; S : Schedule),

RCV_Update (Obj : string; Data : string)

;

OUT

FWD_task_frame (J : Task_Command_Frame
;
TF : Task_Frame)

,

FWD_REQ_Evaluate_Schedule (CR : Controlled_Resources

;

J : Task_Conmiand_Frame

;

S : Schedule)

,

57

FWD_Simulation_Failure_Notif ication

(CR : Controlled_Resources ; J : Task_Command_Fraine

;

S : Schedule)

,

FWD_REQ_KB_Object (Obj : string),

FWD_KB_Object (Obj : string),

FWD_Predicted_Input (Obj : string)

;

CONSTRAINT

Do not allow RCV_Simulate_Schedule and

FWD_Simulation_Failure_Notif ication events to be causally independent.

NEVER

(?CR : Controlled_Resources
; ?J : Task_Command_Fraine

; ?S : Schedule)

RCV_Simulate_Schedule(?CR, ?J, ?S) II

FWD_Simulation_Failure_Notif ication (?J, ?S)

;

END

A. 7. 2. 2 Rapide Architecture for World Modeling

ARCHITECTURE World_Modeling_Architecture ()

RETURN World_Modeling_ Interface IS

SI ; Simulator_Interface IS Simulator_Module ()

;

KB : Knowledge_Base_Interface IS Knowledge_Base_Module ()

;

CONNECT

— ** Connections Between Knowlege_Base and **

— ** higher-level World Modeling Interfaces **

(?J : Task_Command_Frame)

RCV_Fetch_task_frame (?J) ll>

KB . RCV_Fetch_task_frame (?J);

(?J : Task_Coinmand_Frame
;
?TF : Task_Frame)

KB.SND_task_frame (?J, ?TF) ||>

FWD_task_frame (?J, ?TF)

;

— ** Connections Between Simulator and **

— ** higher-level World Modeling Interfaces **

(?CR : Controlled_Resources ; ?J : Task_Coinmand_Frame; ?S : Schedule)

58

RCV_Simulate_Schedule (?CR, ?J, ?S) ||>

SI.RCV_Simulate_Schedule (?CR, ?J, ?S)

;

(?CR : Controlled_Resources
; ?J : Task_Command_Frame

; ?S : Schedule)

SI.REC)_Evaluate_Schedule (?CR, ?J, ?S) M>
FWD_REQ_Evaluate_Schedule (?CR, ?J, ?S)

;

(?CR : Controlled_Resources
; ?J : Task_Coiinnand_Frame

; ?S : Schedule)

SI . SND_Simulation_Failure_Notif ication (?CR, ?J, ?S) ||>

FWD_Simulation_Failure_Notif ication (?CR, ?J, ?S)

;

END; — Architecture

A.7.2.3 World Modeling Submodules

A. 7. 2.3.1 Simulator

— ** SIMULATOR INTERFACE **

TYPE Simulator_Interface IS INTERFACE;

ACTION

OUT

REQ_Evaluate_Schedule (CR : Controlled_Resources

;

J : Task_Coininaiid_Fraine
;
S ; Schedule),

SND_Simulation_Failure_Notif ication (CR : Controlled_Resources

;

J : Task_Cominand_Fraine;

S : Schedule)

,

SND_Predicted_ Input (Obj : string)

;

IN

RCV_Simulate_Schedule (CR : Controlled_Resources

;

J : Task_Command_Frame ; S : Schedule);

END;

A. 7. 2. 3.2 Knowledge Base

— KNOWLEDGE BASE INTERFACE **

59

TYPE Knowledge_Base_Interface IS INTERFACE;

ACTION

OUT

SND_task_frame (J : Task_Coininajid_Frame
;
TF : Task_Frame) ,

REQ_KB_Object (Obj : string)

,

SND_KB_Object (Obj : string);

IN

RCV_Fetch_task_frame (J : Task_Coimnand_Frame)

,

RCV_Request_KB_Object (Obj : string)

,

RCV_KB_Object (Obj : string)

,

RCV_Post_Schedule (J : Task_Command_Frame
; S : Schedule),

RCV_Update (Obj : string; Data : string)

;

END

A. 7.3 Value Judgement

— ** VALUE JUDGEMENT INTERFACE **

TYPE Value_Judgement_Interface IS INTERFACE;

ACTION

OUT

SND_Schedule_Evaluation (CR : Controlled_Resources

;

J : Task_Commajid_Frame;

S : Schedule;

RS : Result)

,

SND_VJ_Status (CR : Controlled_Resources

;

J : Task_Coinmand_Frame;

S : Schedule

;

ST : String)

;

IN

RCV_Evaluate_Schedule (CR : Controlled_Resources

;

J : Task_Command_Frame; S : Schedule),

RCV_Predicted_ Input (Obj : string)

,

RCV_Update (Obj : string; Data : string)

;

CONSTRAINT

— Do not allow causally independent receive evaluate requests
— and evaluation outputs

NEVER

60

(?CR : Controlled_Resources
; ?J : Task_Command_Frajne

;

?S : Schedule; ?RS : Result)

RCV_Evaluate_Schedule (?CR, ?J, ?S) II

SND_Schedule_Evaluation (?CR, ?J, ?S, ?RS)

;

END;

A. 7.4 Sensory Processing

— ** SENSORY PROCESSING INTERFACE **

TYPE Sensory_Processing_Interface IS INTERFACE;

ACTION

OUT

SP_SND_Update (Obj : string; Data : string);

IN

Observed_Input (Data : string)

,

SP_RCV_SP_Data (Obj : string; Data : string),

Predicted_Input (Data : string)

;

END;

61

