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In a previously-developed phase-field model of solidification that includes convec-

tion in the melt [1], the two phases are represented as viscous liquids, where the

putative solid phase has a viscosity much larger than the liquid phase. In this

paper we report numerical computations on a simplified form of this model which
represents the growth of a two-dimensional dendrite in a thin gap between two
parallel thermally insulting plates. In these computations flow in the liquid arises

because of the differing densities of the solid and liquid phases.

1 Introduction

The notion of representing the boundary between two bulk thermodynamic phases

as a diffuse interface dates back to the work of Poisson [2], Gibbs [3], Maxwell [4],

Rayleigh [5], van der Waals [6] and Korteweg [7] in the 19th Century. The central

assumption is that there is an interfacial region of small but nonzero thickness

separating the two bulk phases. In such models, quantities such as surface tension,

that in a sharp-interface description are regarded as localized on the interfacial

surface, are instead recognized as being distributed through the interfacial region.

Diffuse interface models may be based on an extended thermodynamics that

incorporates effects involving gradients of the thermodynamic variables ( “nonclas-

sical terms”) to account for nonlocal effects. That a model incorporating a diffuse

interface in this way is referred to as “nonclassical” is perhaps ironic in light of the

above history, and speaks volumes for the success of the “classical” sharp-interface

description of interfacial free boundary problems.

Despite the overall success of the classical approach, there are still special sit-

uations in which a diffuse-interface description of an interface between two bulk

phases is a viable and even necessary approach. At least three types of situations

may be identified, (i): The thickness of the interface becomes comparable to or

larger than other mesoscopic length scales of interest in the problem. An example of

such a situation is in the case of a fluid near its critical point, where the thickness of

the interface diverges. Early diffuse interface models were developed to investigate

this problem (see, e.g., van der Waals [6] and Rowlinson and Widom [8]). (ii): The
length scales of interest in the problem under consideration are so small that they

are comparable to the thickness of the interface. Contact line problems in fluid
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mechanics (e.g. Davis [9]) are potentially in this category, as the diffuse nature of

a fluid-fluid interface may become important at the small scales of interest near a

contact line. In fact, recent calculations using diffuse-interface descriptions suggest

that the force singularity associated with the classical free boundary description of

a moving contact line (Dussan V. and Davis [10]) can be relieved when a nonzero

interface thickness is taken into account (Jacqmin [11,12], Seppecher [13]). (iii):

A diffuse-interface formulation becomes a viable computational alternative to the

classical free boundary problem when the morphology of the interface becomes

very complicated or changes its topology. An important example is the solidifica-

tion of dendrites, where sidearms branch from the main stem of the dendrite in

a complicated dynamical process that involves both growth and subsequent coars-

ening behavior. Many successful computations of dendritic growth have now been

performed [14-21].

Diffuse-interface theories have been developed and applied successfully in a wide

range of other physical situations as well, such as superconductivity [22], liquid

crystals [23], spinodal decomposition [24,25], ordering transitions in alloys [26-28],

and a variety of hydrodynamic phenomena [29]

.

Our interest here concerns a phase-field model that accounts for both solidifica-

tion and fluid motion. This work extends the phase-field model of the solidification

of a pure material that was first proposed by Langer [30,31] and subsequently de-

veloped by a number of researchers [32-37]. Phase-field models provide an example

of a diffuse-interface model in which an order parameter, 0, is postulated whose

value indicates the phase of the system at a particular point in space and time

(in this paper 0=1 and 0 = 0 denote the solid and liquid phases, respectively).

Langer represented the free energy of a single-component system by a gradient

energy functional of the form

^=^{je2|V0|2 + /(«,T)W, (1)

where e is the gradient energy coefficient and T is the temperature. The free energy

density, /(0, T), has a double-well structure with respect to 0 in which the two local

minima correspond to the solid and liquid phases. Langer proposed the following

governing equations for the phase field and temperature:

5JF_

6<f>

(
2

)

kv2T+L% (3)

where 1/M is a positive constant termed the mobility, c is the heat capacity, k is

the thermal conductivity and L is the latent heat per unit volume of the material.

This phase-field formulation replaces the free-boundary problem associated with

the sharp-interface model of an interface by a coupled pair of nonlinear reaction

diffusion equations. The location of the interface is represented by the level set

0=1/2.
An early attempt to include fluid motion within a phase-field model of solidifica-

tion is due to Caginalp and Jones [38,39]. They appended the inviscid momentum
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equation and the continuity equation to the phase-field model, but did not address

the issues of momentum balance in the solid and capillary contributions to the stress

tensor. Diepers et al. [40, 41] have employed the methodology of two-phase fluid

flow, where <j> is interpreted as a solid fraction. Their model is used to study coars-

ening in a binary solid/liquid mixture with and without fluid flow. Tonhardt and
Amberg have also performed two-dimensional numerical studies using adaptive fi-

nite elements. They study the effect of a shear flow on dendritic growth morphology
and show preferential side-branching on the upstream side of the dendrite [42,43].

In this paper we briefly describe a recently-developed phase-field model [1] which

allows for convection in the liquid phase. This model has three notable aspects:

first, we represent both the solid and liquid phases as Newtonian fluids in which

the viscosity of the putative solid phase is specified to be much larger than that

of the liquid phase. Second, the interface is ascribed an anisotropic surface energy.

Third, the phase transition is considered to be first order. These features are non-

standard for a model which treats the two phases as Newtonian fluids, but is in

keeping with our intention to model a solid-liquid system. We note that in many
solidification applications, a fluid model is used for the thermodynamic description

of the solid phase, in that the elastic properties of the solid are ignored. In order to

obtain the desired viscosity variation between the phases, the viscosity is assumed

to depend on the phase field, 4>. The anisotropic surface energy is achieved by

employing the generalized £-vector formalism [44]. Unlike previous diffuse interface

models, which incorporate fluid motion coupled to a conserved order parameter

description [29], we adopt a nonconserved order parameter, 4>, in line with our aim

of directly extending conventional phase-field models of solidification to account for

convection. This has the advantage that we may treat quasi-incompressible systems

[45], in which the density field is taken to be a prescribed function of <f>.

We sketch how the model may derived in the setting of irreversible thermody-

namics. The quasi-incompressibility assumption restricts the form of the thermody-

namic potentials that may be employed [45]. The model comprises the compressible

Navier-Stokes equations with a modified stress tensor that includes additional terms

related to gradients of
<f>,

an energy equation, and a phase-field equation involving

a material time derivative of
<fi.

We go on to describe computations based on a

simplified form of this phase-field model. In particular, we study a configuration

in which a dendrite grows into an undercooled liquid between two thermally insu-

lating plates. This allows us to avoid directly solving the generalized compressible

Navier-Stokes equations by adopting a Hele-Shaw approximation. The densities of

the solid and liquid phases are allowed to differ, and we study numerically the effect

of the density-induced flow on the growth of the dendrite.

2 The Model

We consider a non-isothermal system consisting of a pure material that may exist in

two distinct phases. We follow the standard phase-field methodology and introduce

a phase-field variable, <j>(x,t), whose value indicates the thermodynamic phase of

the system as a function of position, x
,
and time, t. A solid-liquid interface is

represented by a thin layer in which the phase field varies rapidly between zero
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(liquid) and unity (solid). The governing equations are derived by following the

formalism of irreversible thermodynamics [37,46^8] as described below.

2.1 Governing Equations

We assume that the total entropy, S, in a material volume, Q(f), of the system is

given by

<5

-sJQ{t)
ps - ^e%T2 (V0) dV, (4)

where p is the density and s is the entropy per unit mass. The first term in

the integrand, ps, is the classical entropy density per unit volume and the second

is a nonclassical term associated with spatial gradients of the phase field. Here

the gradient entropy coefficient es is assumed to be a constant for simplicity, and

T is a homogeneous function of degree unity. The function T allows for a general

anisotropic surface energy of the solid-liquid interface and allows the Cahn-Hoffman

vector formalism for sharp interfaces [49,50] to be generalized and extended to

diffuse interface models [44,51]. An isotropic surface energy results from the choice

T(V0) = |V0|.

The total mass, A4, linear momentum, V, and internal energy, £, associated

with the material volume are assumed to have the form

(5)

(6 )

(7)

respectively. Here u is the velocity, e is the internal energy density per unit mass

and is the gradient energy coefficient, which is assumed to be constant. The
thermodynamic relations

n de
de = T ds + dp + —d(j), (8)

p
-2

Q(p

e = Ts-p/p + p, (9)

are assumed to apply locally, where p is the thermodynamic pressure and p is the

chemical potential (or Gibbs free energy per unit mass).

The physical balance laws for mass, linear momentum, and internal energy are

given by

— + [
dt JsQ(t)

H o (10)

dV f— — n • m dA,
dt JdQ(t)

(11)

qE-ndA— / n-m-udA,
JsQ(t)

(12)
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respectively, where n is the outward unit normal to 5Q.(t), m is the stress tensor, and

qE is the internal energy flux. The momentum balance (11) requires that the rate

of change of the total momentum of the material volume results from forces acting

on its boundary 6Q(t) (for simplicity we neglect body forces such as gravity; their

inclusion is straightforward). The energy balance (12) equates the rate of change

of the total internal energy of Cl(t) plus the energy flux through its boundary to

the rate of work of the forces at its boundary.

In addition, the entropy balance takes the form

dS f r— + / qs • n dA =
/

spTod dV, (13)
at JdQ(t) Jn(t)

where qs is the entropy flux and sprod is the local rate of entropy production. The
second law of thermodynamics is then expressed by the requirement that spTOd is

non-negative.

To proceed we recast the conservation laws (10)-(13) as differential equations.

These are used to express the local entropy production in terms of the fluxes m, qE,

and qs, as well as D(f>/Dt. We then identify forms for these quantities which ensure

that the local entropy production is non-negative. The fluxes that result from this

procedure involve both classical contributions and non-classical contributions that

depend on V0. In addition, we obtain an evolution equation for the phase field. The
details of this procedure axe given in Ref. [1] and result in the following governing

equations:

Du
p-—~ = V • m,y Dt

M^ = 4(T)v-[rW)«l-p|,

= v • [*VT] + e%V
•
[r(V*)|] ^ + ms : W,

(14)

(15)

(16)

(17)

where 1/M is a mobility, m is the stress tensor [see equation (23)], ms is a modified

stress tensor [see equation (24)], eF is the Helmholtz gradient energy coefficient

given by <rF (T) = e\ + Te|, g(T,p,<f>) = e - Ts + p/

p

is the Gibbs free energy

per unit mass, and £ is the generalized ^-vector [44] whose components are defined

by — dT{p)/dpj, where we have written p = V0. The density of the two bulk

phases may be different, and we will assume that p depends on <j> alone,

P(0) = Psr((t>) + Pl[ 1 - r(^)]. (18)

where r((j>) is a monotonic increasing function with r(0) = 0 and r(l) = 1; suitable

choices include r(<f>) = 0 or r{<j>) — 0
2 (3-20). This assumption, in which the density

does not depend on temperature or pressure, is known as quasi-incompressibility, as

it still allows a nonzero divergence of the velocity vector. This assumption places

a constraint on the form of the underlying thermodynamic potentials [45] which

requires the underlying Gibbs free energy (per unit mass) to have the form

g (T,p,<j)) = go{T,<t>)+
{^^, (19)
P\4>)
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where po is a reference pressure. Here we assume that the function go(T, <f>) has the

form

9o(T,(j)) = e0 - cTm - r(0)L - -

—

H{(p)
4as

1 -^)- cTln
(^)

+^w ’

(
20

)

in which case the corresponding expressions for the internal energy and entropy

densities are

e = e0 + c(T - TM )
- r(<f>)L +

AaE p[(p)

s =
Tm

e0 - r((f>)L -
4as

cln
Tm

(21 )

(22)

where 1/aE = 1/a— 1/as- Here 1/a is the height of the double well of the Gibbs free

energy density at T = Tm, and l/aE and 1/as are the heights of the double wells

in the internal energy and entropy densities, respectively. The double well potential

H{(p) is a prescribed function of <j> (see [56]). The quantity eo is a constant reference

energy and both the heat capacity per unit mass c and the latent heat per unit mass

L are assumed to be constant. Tm is the melting point at the reference pressure

Po-

The tensors m and ms are given by

m =

ms =

-P +
4cn r2r2

(V4>)

Te2

_p+ _s r2 (V0)

I - e^(r)r(V0)£ <g> + r,

I — Te|r(V0)|*0 V0 + r,

where r is the viscous stress tensor,

t = n
T 2Vu+ (Vu) J - -(V -u) I

O

and \i is the viscosity, which is a function of 0 ,

p(<t>) = Psr((p) + Pl[ 1 - r{(t>)}.

(23)

(24)

(25)

(26)

By examining the isothermal one-dimensional solution of the governing equa-

tions at the melting temperature Tm with ps = Pl, it may be shown that the

surface tension 7 ,
interface thickness /, and interface attachment coefficient po are

related to the phase-field parameters by

7(n) = ^dZkirta) l(ii) = eF (TM )T(n) Po (n) =
6pz,L/r(n)

TmM
(27)

We will henceforth confine our attention to case of isotropic surface energies and

set r(V0) = |V0|; in this case we note that T(n) = 1. It is also convenient to define

an associated capillary length by lc = TmI/{pl[L
2
/ c]).
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2.2 Dimensionless Governing Equations

We non-dimensionalize the governing equations by introducing the following di-

mensionless variables, which we denote with a prime:

I — IqOC
,

ll
,

t = — t'.

KL
u — K-L

lo

U
'
m = PL^j

ll

m’, p = p0 + —pr^P
Iq

(28)

T = TM + —O', p = plp', P — Plp' ,
k = kL k'. (29)

c

Here the reference length scale l0 is a typical length scale associated with the in-

terface shape, such as a dendrite tip radius, the reference time scale is Iq/kl, and

the reference velocity scale is U = kl/Iq, where kl is the thermal diffusivity in the

bulk liquid phase. The dimensionless governing equations are

! + V. (/>u)=0, (30)

Du
p-=— = V • m,y Dt

(31)

e
2M^y = e

2
(l + ad)X7

2
(j) — p -(l+WH'W+Xer'W + ^p— -

2 7 <90 \pj J

,(32)

pTt
=v ' + e2^ + U ' (33 )

where, for simplicity, we have omitted the primes on the dimensionless variables.

The dimensionless internal energy density is given by

e — 0 — r{(t>) + ^P(0) — -p— (34)
2 A7 p

and the dimensionless stress tensors are

m = crv 4- (1 + aO)^ + Prr, (35)

ms = crp + a(9 + S
-1)^ + Prr, (36)

where Pr — ul/ kz. is the Prandtl number of the liquid phase, is the kinematic

viscosity of the liquid phase and

cr
v - - {p + P*) I ,

1
<7^ — 76

r = p(0)

|V0|
2I- V0

Vu + (Vu-7

The source term in the energy equation is

H = : Vu = [- (p + P*) I + a
A7 A7 L

(37)

<8> V0 (38)

- |(V -ff) / . (39)

(0 -1- S
-1

)
0^ -1- Prr] : Vu, (40)
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and the dimensionless parameters are given by

aL „ 1
a =

ce
2
F (TM )'

P =
<*scTm ’

6 =
2cleL ’

y =
/
2LPl 2aLe2

F(Tm) ’

(41)

-1 x__LC

/o’ 6/c
’ P = Po*o

PL«|
5 =

cTm
(42)

7 =
dlplcL2

_ 6/07

k2
lcTm Plk2

l
M =

klMTmc _ [kl/Ic ]

6pL llcL2 ~
[
L/c\fi0

’ (43)

and

W) ^(0), /i(0) = l+( — ~ 1

\PL
r(0),

Ps
P(0) = 1+ (^“ ~ 1

J
r (^)'

(44)

We note that the parameter 7 is related to the capillary (or crispation) number Ca
by 7 = 6Pr/Ca, where Ca = o7)-

In the absence of flow these equations reduce to the generalized phase-field

equations recently studied in Refs. [52] and [53]. The leading-order free boundary

problem that emerges from a sharp-interface limit of these equations depends on

the distinguished limit that is taken [54,55,52]. The limit in which A = 0(1) as

e -)• 0 corresponds to the so-called ‘thin interface’ limit studied by Karma and

Rappell [55]. In this analysis when the thermal conductivities of the solid and

liquid phases are unequal the leading-order temperature is discontinuous across the

interface and the leading-order modified Gibbs-Thomson equation contains terms

dependent on the interfacial temperature gradients. However, if A = 0(e) as e —

>

0,

the so-called ‘classical’ limit, the temperature is continuous across the interface

at leading order and a nonlinear form of the modified Gibbs-Thomson equation is

obtained at leading order. However, if we formally set the coefficients a, (3, 5, and

v to zero, thereby omitting the nonstandard terms in the generalized phase-field

equations, then the classical sharp interface analysis recovers, at leading order, a

standard free boundary problem in which the interfacial temperature is continuous

and the conventional modified Gibbs-Thomson equation is obtained.

Here we study a simplified form of our model by setting the constants a, /?,

6, and v to zero, and we neglect the source term T-L in the energy equation. The
dimensionless governing equations of the simplified model are

dp

a?
+ v (pu) = 0, (45)

DuP^ = V-m, (46)

e
2M^- -- e

2V 2
0 — p

Dt
l-H

1

(cfr) + \0r' ((j>) +
8 (l

7 <90 \p) J

(47)

p^ = v-[<3(0 ,v«]. (48)
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where the dimensionless stress tensor is

m = crp + + Prr. (49)

We have recently examined the full system of governing equations, including

flow, in the sharp-interface limit [56]. Our investigations reveal that, in the classical

sharp-interface limit, the boundary conditions at a sharp interface in equilibrium

comprise the normal stress balance including surface tension and the Clausius-

Clayperon equation all under isothermal conditions. In the nonequilibrium case we
find hydrodynamic conditions on the normal and tangential velocities represent-

ing the conservation of mass and the no-slip condition. Jumps conditions on the

normal and tangential stresses are also obtained. The temperature is found to be

continuous across the interface while the jump in heat flux across the interface is

modified by nonequilibrium effects. The temperature of the interface found to obey
a nonequilibrium version of the Clausius-Clapeyron relation.

3 Model Computations

We now describe computations, based upon the phase-field model given by equa-

tions (45), (46), (47), (48) and (49), that represent the density change flow associ-

ated with the growth of a dendrite from an undercooled melt. To proceed we make
a number of additional approximations in order to develop a simplified phase-field

model that captures the qualitative features of this situation. First, we consider

the dendrite to be two-dimensional and growing in a uniform thin gap of width d

between two thermally insulated flat plates. This allows us to ignore the effects of

inertia and to model the flow using a Hele-Shaw approximation. The momentum
equation may then be written as

- eV • [V0 ® V0] 4- V • [/x(0)t] = 0. (50)
6

V

In the absence of flow it is known that it is essential to include surface energy

anisotropy in order to compute dendritic structures using a phase-field model [14].

We will accordingly retain anisotropic surface energy terms in the phase-field equa-

tion alone. Specifically, an isotropic surface energy term is used in the momentum
equation (50) while the phase-field equation, given by (47), is modified to allow for

anisotropic surface energy by using the Cahn-Hoffman ^-vector formalism

= e
2V • [r(V)| - p ijT(« + W(« (51)

so that the direct effect of anisotropy is upon the interfacial surface energy rather

than the flow. We note we have also omitted the pressure dependence in the free

energy term in the phase-field equation. This is a reasonable approximation for

density-driven flows, as evidenced by the insignificant variations of the melting

temperature due to pressure fluctuations in the Clausius-Clayperon relation under

these conditions.

In order to simplify the system further we make the approximation V • (V0 <g>

V0) « V(|V0| 2
). This approximation is exact in one space dimension, but not
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higher dimensions. We justify it by observing that the phase-field variable only

changes in the thin interfacial regions where it depends primarily on the perpendic-

ular distance through the layer and hence is approximately one dimensional. Using

this approximation the momentum equation (50) becomes

-Vp+^V-[/z(#r]
= 0, (52)

where

P=h>+5|V<A| 2
. (53)

7 ^

We now integrate these equations across the narrow gap of width d <£ 1 [58] to

obtain

u =
-3d2

/ z\ (

d

- z\

ca n(<t>) \d) v^d
-

;
(54)

where here and below the operator V acts in the plane parallel to the thin gap. We
now apply the continuity equation (45) to find that p satisfies

V2 "
P =

d2
p'W

p(<t>) dt [p(<f>) p(0).
V</> • Vp. (55)

In our numerical computations we solved the energy equation (48), phase-field

equation (51) and pressure equation (55) using VLUGR [57]. This freely distributed

package is designed to solve systems of parabolic partial differential equations in

which the solution exhibits regions in space with large gradients. It employs a

finite-difference discretization allied to local grid refinement and a variable time

step integration of the underlying discretized equations.

Computations were conducted on the rectangular domain [0, X] x [0, T]. Neu-

mann boundary conditions were employed on <j> and 6 on all four sides. However,

for the pressure, Neumann boundary conditions were only invoked on the sides

x = 0 and y = 0, with Dirichlet boundary conditions on the other two sides. The
initial condition represented a small circular solid region centered on the origin in

a uniformly undercooled melt with dimensionless temperature T = c[Tm — To)/L,

where Tq is the initial dimensional temperature.

The governing equations were solved with p{4>) given by Eqn. (44), r'(0) =
3O02

(1 — (p)
2 and H(cj)) = <j)

2
( 1 — d>)

2
. The surface energy had a four-fold anisotropy

with T(n) = 1 + 0.005 cos(40), where n = V0/|V0| is a unit vector in the (x,y )

plane and © is the angle between n and the x-axis. The values of the dimensionless

parameters used in the computations are given by Ca = 30, p-s/pl — 1, ks/ki = 1,

A = 7.5, and M = 10.

In Figure 1 we display the results of a typical computation in which ps/

P

l = 0.9,

X = 1, and Y = 3. This figure shows the pressure field, the velocity field and the

phase field at time t = 0.3. The solid curves are isobars, the arrows represent the

local velocity, and the shading indicates the phase field. The x and y axes represent

planes of symmetry in the calculation, although since 1^7 the resulting shape

has two-fold but not four-fold symmetry due to the presence of the sidewalls. The
dendrite growing in the x direction has a blunter tip than the dendrite growing in
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Figure 1. The phase-field, pressure field and velocity field for a computation at £ = 0.3 with

Ps/Pl — 0.9 on a 1 x 3 domain with four-fold anisotropy. The colors indicate the liquid (</> = 0)

and solid (<p — 1} region, the solid curves are the isobars, and the small arrows represent the

velocity field.

the y direction due to its closer proximity to the sidewall, which has a significant

effect on the growth dynamics at this stage.

Since the density of the solid is less than that of the liquid, a given amount of

material will expand upon solidification, which drives a flow away from the interface

into the melt. For a sharp-interface model, the conservation of mass boundary

condition takes the form

un = ~vn ~
1^ , (56)

where un = n • u is the normal component of the fluid velocity at the interface, and

vn is the normal velocity of the interface. Thus for solidification with vn > 0, the

flow is away from the interface
(
un > 0) for ps < Pl, and is toward the interface

(un < 0) for ps > Pl- The computation shows that the flow is greatest in the

vicinity of the tip of the dendrite. For this calculation with equal viscosities in the

solid and liquid phases, there is also a significant flow in the solid region. This
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artifact is reduced for computations with ps/pl 1; here we are illustrating an

extreme example of this effect.

Figure 2. The phase-field, pressure field and velocity field at t — 0.75 for a computation with

Ps/pL = 1.1 on a 2 x 4 domain with four-fold anisotropy. The colors indicate the liquid (<£ = 0)

and solid {<f>
— 1) regions, the solid curves are the isobars, and the small arrows represent the

velocity field.

Figure 2 shows a similar situation but with the density in the solid greater

than that of the liquid, Ps/pl — 1.1, with X = 2 and Y = 4 at a time t = 0.75.

In this case the advection is toward the interface, as expected. Between the two

dendrite tips is a narrow liquid intrusion where little solidification is taking place;

the flow velocities that are induced by the density change upon solidification are

correspondingly small in this region.

4 Conclusions

In this paper we have shown that computations based on a simplified form of a

recent phase-field model that includes convection [1] exhibits numerical solutions

which show the expected physical behavior. In particular, we considered the growth

of a dendrite in a thin gap between two thermally insulated plates and allowed the
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density of the solid and liquid phases to be different. We found that the flow was
directed towards or away from the dendrite depending on whether the density of

the solid phase was greater or less than that of the liquid phase, respectively.

Our model for solidification with convection is derived using the formalism of ir-

reversible thermodynamics, and allows the systematic incorporation of a consistent

thermodynamic description of the two-phase system. It allows a unified treat-

ment of both equilibrium and non-equilibrium effects in a single set of governing

equations. Sharp-interface limits of the diffuse-interface description then lead to

boundary conditions of the solid-liquid interface which recover the usual conditions

at equilibrium, and provide thermodynamically-consistent generalizations of these

conditions under non-equilibrium conditions [56]. The detailed nature of the non-

equilibrium conditions at the interface can be sensitive to the specific forms that

are assumed to describe the variation of the thermophysical parameters through

the interfacial region; for example, the non-equilibrium solute trapping behavior of

a diffuse-interface model of a binary alloy depends quantitatively on the exact form

that is assumed for the variation of solute diffusivity, near the interface [59].

In this model the solid is treated as a liquid with high viscosity. This allows

residual convection to occur in the solid, with a magnitude that is determined by

the viscosity ratio. The consideration of extreme viscosity ratios tends to elimi-

nate velocity gradients in the solid, but allows states of uniform convection that

correspond to rigid body motion. This is an attractive feature for dealing with

such issues as fragmentation and subsequent motion of sidearms through the melt.

Such transported fragments can serve as sites for the growth of independent grains

when the fragments are incorporated into the growing phase, which is a problem of

considerable technological importance. It is thus beneficial to have a model which

allows for both topological changes in the interface as well as possible rigid-body

motion of the solid phase.
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