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FOREWORD

O nce again, it is a pleasure to be able to reflect on the accom-

plishments of the NIST Center for Neutron Research over

the past year. In the reactor operations area, 1 999 was another

outstanding year. In spite of an unsheduled maintenance shutdown,

the reactor operated 250 days, with a reliability factor of better than

90%. The cold source availability for the period was 98%; i.e. the

cold source held the reactor from operation 4 days during the year.

The remaining spent fuel in the storage pool was shipped, providing

space for at least five years operation. Also, an order has been

placed for a new cooling tower which will not only provide needed

capability for the next 25 years, but will also reduce the plume

visible during cold weather. Last, steady progress has been made in

preparing for a license renewal application to the Nuclear Regulatory

Commission, in order to extend the period of operation beyond 2004.

We have also made great progress in instrumentation, with

the back scattering spectrometer operational; with the spin echo

spectrometer now being used for real measurements; and with the

disk chopper spectrometer being commissioned. All three of these

instruments will be available to “friendly” users in the next proposal

cycle. Other work is also advancing well-the perfect crystal small

angle scattering spectrometer (part of the NSF/NIST CHRNS) is

being installed at the reactor; the first phase of the high intensity

filter analyzer spectrometer is ready to begin installation; and the

design and manufacture of new thermal neutron spectrometers is

underway. This simultaneous development program has put severe

strains on our resources, but we can now look forward to many years

of benefit from the results.

Finally, as always, the results are seen in the output of the

researchers who use the facility. As was done last year, we are

presenting highlights of this work in the following chapters of this

report. I think that all can agree that the results truly speak for

themselves.

IV



INTRODUCTION TO
. IE NIST CENTER FOR
NEUTRON RESEARCH (NCNR)

M odern technological society is dependent upon increasingly

sophisticated use of materials, many of whose attributes are

dictated by their sub-microscopic structural and dynamical proper-

ties. Our knowledge of these properties is provided by a wide range

of scientific techniques of which the many types of scattering (for

example, X-rays, light, electrons, neutrons) are arguably the most

important. Of these probes, neutrons are perhaps least familiar, but

they provide important advantages for many types of measurements.

Neutrons, as prepared for use at modern sources, are moving

at speeds comparable to those of atoms moving at room temperature,

thus providing the ability to probe dynamical behavior. At the same

time, neutrons are well matched to measurements at length scales

ranging from the distances between atoms to the size of biological

or polymer macromolecules. Neutrons are sensitive to the magnetic

properties of atoms and molecules, allowing study of the underlying

magnetic properties of materials. They also scatter quite differently

from normal hydrogen atoms than they do from heavy hydrogen

(deuterium), allowing selective study of individual regions of molec-

ular systems. Finally, neutrons interact only weakly with materials,

providing the opportunity to study samples in different environments

more easily (at high pressures, in shear, in reaction vessels, etc.), and

making them a non-destructive probe. These favorable properties are

offset by the relative weakness of the best neutron sources compared

to X-ray or electron sources, and by the relatively large facilities

required to produce neutrons. As a result, major neutron sources are

operated as national user facilities to which researchers come from

all over the U.S. (and abroad) to perform small scale science using

the special measurement capabilities provided.

In addition to scattering measurements, neutrons can be used

to probe the atomic composition of materials by means of capture

and resultant radioactive decay. The characteristics of the decay act

as “fingerprints” for particular atomic nuclei, allowing studies of

environmental samples for pollutants (e.g. heavy metals), character-

ization of Standard Reference Materials, and many other essential

measurements. While the scattering and capture users of neutrons

are little concerned with understanding the inherent properties of the

neutron, there are important areas in physics that can be explored

by carefully measuring fundamental neutron behavior. Examples

include the lifetime of the free neutron, an important quantity in the

theory of astrophysics; the beta decay process of the neutron, the

details of which are stringent tests of nuclear theory; and the effects

of various external influences such as gravity or magnetic fields on

neutrons.

The NCNR utilizes neutrons produced by the 20 MW NIST

Research Reactor to provide facilities, including the nation’s only

internationally competitive cold neutron facility, for all of the above

types of measurements to a national user community. There are

approximately 35 stations in the reactor and its associated beams that

can provide neutrons for experiments. At the present time 26 of these

are in active use, of which 6 provide high neutron flux positions in

the reactor for irradiation, and 20 are beam facilities. A schematic

layout of the beam facilities and brief descriptions of available

instrumentation are given below. More complete descriptions can be

found at http://www.ncnr.nist.gov.

These facilities are operated both to serve NIST mission needs

and as a national facility, with many different modes of access. Some

instrumentation was built years ago, and is not suited to general

user access; however, time is available for collaborative research.

NIST has recently built new instrumentation, and reserves 1/3 of

available time for mission needs with the balance available to general

users. In other cases, instrumentation was built and is operated

by Participating Research Teams (PRT). PRT members have access

to 75% of available time, with the balance available to general

users. In a special case, NIST and the National Science Foundation

established the Center for High Resolution Neutron Scattering at the

NCNR, with a 30-m Small Angle Scattering (SANS) instrument, a

cold neutron triple axis spectrometer, and a perfect crystal SANS

under construction. For these facilities, most time is available for

general users. While most access is for research, whose results are

freely available to the general public, proprietary research can be

performed under full cost recovery. Each year, approximately 1600

researchers (persons who participated in experiments at the facility,

but did not necessarily come here) from all areas of the country, from

industry, academe, and government use the facility for measurements

not otherwise possible. The research covers a broad spectrum of

disciplines, including chemistry, physics, biology, materials science,

and engineering.
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1 Horizontal Sample
Reflectometer

Horizontal surface of sample

allows reflectivity measure-

ments of free surfaces, liquid

vapor interfaces, as well as

polymer coatings.

2 Neutron Interferometry and

Optics Station

Includes perfect silicon inter-

ferometer; vibration isolation

system provides exceptional

phase stability and fringe

visibility.

3 Prompt Gamma Activation 6

Analysis

Cold neutron fluxes allow

detection limit for H of 1 to 10

micrograms. Focused beams

available for profiling.

4 NG-7 30m SANS

Small Angle Neutron Scattering

instrument for microstructure

measurement sponsored by

NIST, the Exxon-Mobil 7

Research and Engineering Co.,

the University of Minnesota,

and Texaco R&D.

5 Neutron Physics Station

A cold neutron beam
150 x 60 mm 2

,
available for

fundamental neutron physics

experiments.

Fermi Chopper TOF 8

Spectrometer

A hybrid time-of-flight spec-

trometer for inelastic scatter-

ing, with wavelengths between

0.23 and 0.61 nm. The wave-

length is chosen by focusing

pyrolytic graphite crystal, while

the beam is pulsed by a simple

Fermi chopper.

Spin Echo Spectrometer

A neutron spin echo spec-

trometer offering neV energy 9

resolution, based upon Julich

design, sponsored by NIST,

Julich and Exxon-Mobil.

SPINS Spectrometer

Spin Polarized Inelastic

Scattering, a cold neutron triple

axis spectrometer with spin

polarization capabilities for high

resolution studies, and position

sensitive detector capability,

sponsored by the National

Science Foundation and NIST;

part of Center for High

Resolution Neutron Scattering

(CHRNS).

Disk Chopper TOF
Spectrometer

Versatile time-of-flight spec-

trometer, with beam pulsing

and monochromatization effect-

ed by 7 disk choppers. Used

for studies of dynamics in

condensed matter, including

macromolecular systems.

i

i

|
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10 NG-3 30m SANS

Instrument for microstructure

measurement sponsored by the

National Science Foundation

and NIST; part of CHRNS.

11 Back Scattering Spectrometer

High intensity, very high reso-

lution back scattering spectro-

meter, with many innovative

features, and energy resolution

of approximately 1 (xeV.

12 8M SANS

Instrument for polymer

characterization, sponsored by

Polymers Division.

13 Vertical Sample Reflectometer

Instrument for measuring

subsurface structure with

polarization analysis capability.

Reflectivities down to 10 8 can

be measured.

14 BT-8 Residual Stress

Diffractometer

Diffractometer optimized for

depth profiling of residual

stress in large components.

15 BT-9 Triple Axis Spectrometer

Triple axis crystal spectrometer

for measurements of excita-

tions and structure.

16 BT-1 Powder Diffractometer

Powder diffractometer with 32

detectors; incident wavelengths

of 0.208, 0.154, and 0.159

nm, with highest resolution of

Sd/d = 8 x 10 4
.

17 BT-2 Triple Axis Spectrometer

Triple axis crystal spectrometer

with polarized beam capability

for measurement of magnetic

dynamics and structure.

18 BT-4 Filter Spectrometer

A triple axis crystal

spectrometer with a Be or

Be/Graphite filter analyzer

option for chemical

spectroscopy.

19 Cold Neutron Depth Profiling

A station for quantitative

profiling of subsurface

impurities and coatings, based

on neutron capture and

emission of a charged particle.

20 Thermal Column

A very well-thermalized beam

of neutrons used for radiog-

raphy, tomography, dosimetry,

and other experiments.

NIST CENTER FOR NEUTRON RESEARCH 3



Photograph

by

L.
A.

Shuman

1. An incoming SANS image excites

the interest of Martin Vigild (center)

as Frank Bates (standing), Newell

Washburn (right) and Ken Hanley,

all of the University of Minnesota,

look on.

2. NCNR’s Peter Gehring describes the

analyzer of the spin polarized triple

axis spectrometer (SPINS) to NCNR

Summer School participants.

3. The Spin Echo Spectrometer (NSE)

at NCNR, commissioned this year, is

described in a Research Highlight in

this issue.

4. Stephen FitzGerald (Oberlin

College) loads a sample at the HFBS.

5. Gudrun Schmidt (NIST, Polymers

Division) awaits the display of an

updated SANS image.

4

4 5



m
6. NCNR Summer School participants

interacting at the recently

commissioned high-flux back-

scattering spectrometer (HFBS).

7. Silke Rathgeber and So Hyun Park

(both at NCNR), ready to load a

sample at the NSE.

8. The science/engineering/technical

team which built and put the HFBS

into operation.

9 10
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Apowerful technique for optimizing material properties is to

deposit alternating layers of different materials to form a thin

film superlattice. In particular, magnetic and non-magnetic materi-

als grown as a superlattice exhibit a variety of tunable couplings

between the magnetic layers. Control of these couplings by varying

the layer materials and thicknesses has lead to dramatic increases in

performance in certain device applications. A prime example is the

recent use of layered magneto-resistive films in high-performance

magnetic recording heads and sensors. The inter-layer magnetic

coupling can survive across as many as 30 non-magnetic atomic

planes due to its one-dimensional nature, but the coupling strength

is always much weaker than bulk material magnetic interactions.

The behavior of the magnetic fluctuations (magnons) in

these weakly coupled layer systems

is of interest because it provides a

direct measure of the magnetic inter-

actions responsible for the magnetic

structure, and leads to a better under-

standing of the unique layer to layer

couplings. Until now, the only mea-

surements that have probed these

fluctuations have used Brillouin light

scattering [1], or ferromagnetic-reso-

nance techniques [2], both of which

measure only the longest wavelength

dynamics. These measurements have

found interesting resonances associ-

ated with the superlattice structure.

It is important to directly mea-

sure the magnons at shorter wave-

lengths in order to determine the

dispersion, which directly relates to

the magnetic interactions, both with-

in and between layers, and whether

or not the magnetic fluctuation waves propagate between layers.

Only inelastic magnetic scattering techniques can provide this infor-

mation, but with current neutron scattering sources the intensities

from such measurements can be prohibitively low, because the

amount of magnetic material in the films is so small.

In order to overcome this difficulty we have made neutron

inelastic scattering measurements on a very large superlattice of

alternating layers of dysprosium and yttrium. Dysprosium is the

magnetic constituent, and it has the strongest neutron magnetic-

scattering of all the elements. In order to maximize the amount

of Dy, 350 bi layers composed of 43 A of Dy and 28 A of Y

(designated [Dy
43
/Y

] ) were grown by MBE techniques on a 2.5

cm X 1.3 cm substrate resulting in 3 mg of Dy in the sample.

FIGURE 1. Inelastic magnetic scattering from a [Oy
43
/Y

28]350
superlattice,

obtained by subtracting 10K data from 75K data, shown as an intensity map

in Q-energy space. The highest intensity is 300 counts/ 30 minutes and

decreases by 30 counts for each level. A magnetic Bragg peak is just off the

graph at Q = 1.97 A 1
.

6 RESEARCH HIGHLIGHTS
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The magnetic structure of this superlattice has previously

been determined to be the basal-plane helical structure of bulk

Dy with a coherence length greater than 4 bilayers. The helix

progresses remarkably undisturbed through the conduction electrons

of the non-magnetic yttrium, but with a turn-angle that is different

than in the dysprosium. The coupling strength across the yttrium

has been measured by applying a uniform external magnetic field.

The coupling breaks down when the external field provides 0.2 meV

per Dy atom in the basal-plane, while the equivalent zone-boundary

magnetic fluctuation in bulk Dy is greater than 5 meV per Dy atom.

The inelastic neutron scattering measurements were per-

formed at the NIST Center for Neutron Research on the cold-

neutron spectrometer SPINS. A multi-component crystal was used

to analyze the energy of the scattered neutrons in order to enhance

the measured intensity while sacrificing wave-vector (Q) resolution.

Measurements were performed at 75 K as a compromise between

the size of the ordered magnetic moment and the thermal population

of magnons. The magnons of interest are those propagating along

the superlattice growth direction or the c-axis of the hep rare-earth

structure. Lower magnon energies produce higher thermal popula-

tions, but become contaminated with elastic background scattering.

FIGURE 2. The dispersion along the growth direction (c-axis) measured for the

[Dy
48
Y
23]350

superlattice is plotted against the energy scale on the left side.

It is compared to the measured dispersion in hulk dysprosium (solid lines)

expected to originate from each of the superlattice magnetic Bragg peaks.

(Only the negative Q branches from the two low Q Bragg peaks are shown).

On the right side the diffraction scan for this sample showing the superlattice

peaks is displayed. This film is so large that the sample diffraction peaks are

as strong as the substrate peak shown in blue on the right.

so it is necessary to subtract scans taken at low temperatures where

the magnons have become depopulated in order to remove this

background. The resulting magnetic signal is shown in Figure 1 as

a color-coded intensity map in Q-energy space. There is a clear

ridge of intensity which moves to higher energies as Q moves away

from the magnetic Bragg peak at 1.97 A'
1

. We have concentrated

on the magnon branches that extend towards smaller Q since they

move away from the intense magnetic and nuclear Bragg peaks

that produce a large elastic background. This measured dispersion

is compared with bulk Dy in Figure 2, which also shows the dif-

fraction pattern along the growth direction (c-axis) of the superlat-

tice. The bulk Dy dispersion is shown as lines originating from

the magnetic Bragg peaks at Q = 1.97 A ’
1 and Q = 2.06 A 1

. The

measured magnons are shown as bars centered on the measured

peak positions and with lengths representing the full-width-at-half-

maximum-intensity. The agreement with the bulk dispersion is quite

good. There is no evidence in these data of the influence of the

yttrium layers other than possibly the splitting of the dispersion

into two branches because of the superlattice structure as shown by

separate bars at both Q = 1.8 A -1

and at Q = 1 .75 A' 1

. The observed

modes are not over-damped, but we cannot measure the damping

under the current experimental conditions. Also, these data would

have to be extended to smaller Q, in order to approach the interface

thickness. We are currently designing additional focusing configura-

tions so that the instrumental resolution will be better optimized for

measurements of this dispersion surface.

REFERENCES
1 1] B. Hillebrands and G. Gtintherodt in Ultralhin Magnetic Structures / + //,

edited by B. Heinrich and .1. A. C. Bland (Springer Verlag, 1994).

[2] C. F. Majkrzak et al„ Adv. in Phys. 40, 99 ( 1991).
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nfQFERROMAGNETIC SPINNX
REORIENT (CHANGE-BIASED

ICES

T he magnetic hysteresis loop of a ferromagnetic material can be

displaced along the field axis as a result of magnetic exchange

coupling to an antiferromagnet. This “exchange-biasing” phenom-

enon was discovered over 40 years ago in oxidized Co particles [1]

and has been observed in a variety of thin films and multilayers.

Artificial spin-valve structures with exchange-biased layers show

great promise for applications as magnetoresistive sensors in read

heads. Recent theories [2-4] make specific predictions about the ori-

gin of exchange biasing and the response of the antiferromagnetic

layer.

High-angle neutron diffraction is an ideal probe as the anti-

ferromagnet gives rise to distinct reflections of magnetic origin.

We have performed neutron diffraction studies of exchange-biased

[001] Fe.O/NiO superlattices on the SPINS and BT-9 triple-axis

spectrometers. These measurements confirm that the NiO layers

retain their bulk antiferromagnetic structure in which ferromagnetic

[111] planes alternate direction along each < 1 1 1 > axis. Our data

show that exchange biasing is associated with domain walls that

form and “freeze” within the antiferromagnetic NiO layer. Upon

field cooling into the exchange-biased state, magnetic domains lock

within the NiO layers and do not change with subsequent applica-

tion of magnetic fields. In contrast, the antiferromagnetic domain

sizes in unbiased samples prepared by cooling in zero field depend

sensitively on the strength of the applied field.

We focus here on a Fe,O
4
(10 nm)/NiO(20 nm) superlattice

deposited using oxygen plasma-assisted molecular beam epitaxy.

Measurements of the magnetic hysteresis loop show little evidence

of exchange biasing after cooling in zero field. Strong exchange

biasing is induced upon field cooling the superlattices from high

temperatures. For our superlattice, the biasing field at 30 K is 0.043

T after field cooling from 550 K.

For the diffraction experiments the sample was oriented as

shown in the inset of Figure 1. Vertical magnetic fields, H, were

applied in the sample plane. In this configuration, the (1 1 1) and

(1 \ 1) NiO antiferromagnetic reflections lie in the scattering plane.

Using a horizontal-field magnet, the (1 1 1) and (1 1 1) reflections

could be accessed by rotating the sample 90° about the growth

axis. Figure 1 shows a typical growth-axis (00/) scan through the

(111) reflection for the superlattice. Structural stacking faults [5] at

the NiO/Fe,0, interfaces limit the coherence of the Fe,0, structural

and magnetic order to a single Fe,0
4
layer. As a result, we can

easily separate the broad Fe,0
4
and narrow NiO contributions to the

reflection and track the latter as a function of field.

The neutron scattering data reveal that the magnetic domain

sizes in the antiferromagnetic NiO depend on the presence or

absence of exchange biasing. Figure 2 shows the full-width-at-half-

maximum (FWHM) for the (1 1 1) NiO peak scanned along the (00/)

and ( 110 ) directions after cooling in a 6 T field (i.e., exchange-biased

state) and cooling in zero field (i.e., unbiased state). After field

cooling, the FWHM of the NiO reflection scanned along the (00/)

growth direction shows no dependence on field.

The antiferromagnetic domain size along the growth direc-

tion, determined from the inverse of the FWHM, remains constant

FIGURE 1. Growth-axis (00/) scan through the (111) reflection for the

Fe
3
0
4
(10 nm)/Ni0(20 nm) superlattice after cooling to 78 K in a 6 T field

parallel to [liO]. The broad Fe
3
0
4
peak is shown in red, and the remaining

scattering is from the NiO. The green arrow marks the FWHM of the NiO peak.

The inset shows the scattering diagram.

8 RESEARCH HIGHLIGHTS
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near 750 A after field cooling. This contrasts with the pronounced

field-dependence of the FWHM observed after cooling in zero held

(Figure 2). In this state, the FWHM is smallest near zero held, but

approaches the constant held-cooled value when the magnitude of

the held is greater than 2 T. The corresponding domain size varies

from approximately 1200 A in zero held to 800 A in high helds.

Growth-plane (//0) scans through the NiO reflection show a similar

difference between the held dependence of the FWHM after cooling

in zero held and cooling in a 6 T held (Figure 2).

Upon held cooling, domain walls both parallel and perpen-

dicular to the growth direction lock into the antiferromagnetic layer,

presumably due to the exchange coupling between the NiO antifer-

romagnetic moments and the Fe,0
4
moments that are aligned paral-

lel to the cooling held. After cooling in zero held, the domains are

larger, but reversibly decrease in size in high helds (Figure 2) as the

magnetic frustration increases. Consistent with several theoretical

FIGURE 2. Full-width-at-half-maximum (FWHM) of the (111) NiO reflection! as a

function of field at 78 K after cooling in a 6 T field and after cooling in zero

field. The top plots show the FWHM of the peak along the (00/) direction. The

bottom plots show the FWHM from (I/O) scans. The black, blue and red data

are from each field cycle.

D. M. Lind and P. G. Ivanov

Department of Physics, Florida State University

Tallahassee, FL 32306

Aron Qasba

Department of Physics

Massachusetts Institute of Technology

Cambridge, MA 02139

predictions [2,3] we believe that exchange biasing may originate

from magnetic frustration that leads to “frozen” domain walls in the

held-cooled state.

We also observe that the magnitude of the ordered NiO

moments in all four of the {111} domains in the Fe
3
0

4
/Ni0 super-

lattices depends upon applied held. After cooling in a large vertical

held, the intensity of the antiferromagnetic (111) NiO reflection

reversibly decreases as the held is increased. (The behavior is

qualitatively similar after cooling in zero held.) Analogous held-

cooled measurements of the (111) NiO peak were performed in

a horizontal held and surprisingly show a comparable intensity

decrease. Some of the NiO moments thus seem to disappear out

of all four [111) domains. We speculate that these NiO spins

may become disordered as a result of the high internal helds.

Simultaneously, some of the NiO moments reorient perpendicular

to the Fe,0
4
magnetization direction in high helds [6]. While this

“spin-flop” response is favored by some theoretical models [4], it

does not appear to be directly responsible for the exchange biasing

for these samples.

Future studies will focus on the characteristics and origin

of the “spin-flop” response of the NiO spin structure to large mag-

netic helds. In addition, we will further explore the differences

between the antiferromagnetic domains for the exchange-biased and

unbiased conditions.

REFERENCES:
[1] W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956); 105. 904

(1957).

[2] A. P. Malozemoff, J. Appl. Phys. 63, 3874 (1988).

[3] T. C. Schulthess and W. H. Butler, Phys. Rev. Lett. 81. 4516 (1998).

[4] N. C. Koon, Phys. Rev. Lett. 78, 4865 (1997).

[5] J. A. Borchers, R. W. Erwin, S. D. Berry, D. M. Lind. J. F. Ankner, E.

Lochner, K. A. Shaw and D. Hilton, Phys. Rev. B 51, 8276 (1995).

[6] J. A. Borchers, Y. Ijiri, D. M. Lind, P. G. Ivanov, R. W. Erwin, S.-H. Lee

and C. F. Majkrzak, J. Appl. Phys. 85, 5883 (1999).

S.-H. Lee

NIST Center for Neutron Research

National Institute of Standards and Technology

Gaithersburg, MD 20899-8562

and

University of Maryland

College Park, MD 20742

NIST CENTER FOR NEUTRON RESEARCH 9



I

n (he high temperature (high-T.) superconductors, the multiple

roles played by the electrons continue to defy theoretical under-

standing. It appears that all high-T superconductors are based on

structures with CuO, planes, in which the electrons on neighboring

copper ions are strongly coupled magnetically. In systems based

on La,Cu0
4

. antiferromagnetism is a dominant feature of the phase

diagram at low doping levels, and conventional itinerant-electron

behavior dominates in the high doping regime. Intermediate doping

levels are described by neither, but this is where the superconduct-

ing properties are optimal. In our experiments, we focus on the evo-

lution of magnetic properties from the insulating antiferromagnet to

the superconductor.

It is becoming increasingly apparent that incommensurate

spin structures are universal to the high-T superconductors.

Especially noteworthy is the observation of static incommensurate

magnetic ordering coexisting with superconductivity in

La,, Nd, ,Sr CuO, and recently in La, Sr CuO, [1, 21. Lurther

experiments are needed to understand the coexistence of the incom-

mensurate spin density waves (SDW) and superconductivity, the

details of the spin structure, and the influence of pinning potentials.

A crystal of La,Cu0
4^ with a superconducting transition at

~ 42K was produced by doping pure La,Cu0
4
electrochemically

with a large quantity of excess oxygen (y ~ 0.12). The supercon-

ducting shielding signal measured after cooling in zero field is

shown in Ligure 1A. The transition is very sharp with an onset

T ~ 42 K. Our initial characterization suggests that the crystal is

a bulk superconductor with a hole concentration similar in density

and homogeneity to that of La, Sr Cu0
4
crystals with x ^ 0.15.

At temperatures below the superconducting T , we observe

elastic magnetic scattering at a quartet of incommensurate positions

centered around (100), which is the Bragg position for the antifer-

romagnetism in the undoped insulator. Surprisingly, we find that the

incommensurate wavevectors are not precisely along the Cu-O-Cti

bond direction, but are rotated by about 3 .

In Ligure 2A we show elastic scans along the in-plane H

direction through an incommensurate position for various tempera-

tures using 5 meV neutrons. Below 42 K, the observed peaks

are extremely sharp and are resolution-limited, while above 42 K

FIGURE 1. A) Magnetic susceptibility measured after cooling in zero field.

B) Peak intensity of the incommensurate elastic scattering as a function

of temperature. The measurement was performed with two different neutron

energies of 13.7 meV and 5 meV. The solid line denotes the BCS

superconducting order parameter squared, with a T of ~ 41 K.

the peaks disappear. The solid fines in the figure are Gaussians

convolved with the instrumental resolution which indicate that the

in-plane static magnetic order is correlated over distances larger

than 400 A. Lrom this, we conclude that static long-range magnetic

order exists in the superconducting state of La,Cu0
4+

. Also, the

SDW order is not specific to a tetragonal crystal structure as previ-

ously believed since this crystal is orthorhombic; it is a more

general phenomenon.

We then investigated how the static spin arrangement is

correlated between CuO, planes. The L-dependence of the incom-

mensurate scattering is shown in Ligure 2B. The intensity modula-

tion of both the (10L)- and (OlL)-centered scattering is reminiscent

of the spin structure of the undoped parent compound La,Cu0
4

.

The solid lines in both panels represent fits to Gaussian lineshapes

convolved with the instrumental resolution, assuming a model for

the stacking arrangement and spin direction identical to that of

10 RESEARCH HIGHLIGHTS
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(H, 0.128, 0)

L (r.I.u.)

pure La
2
Cu0

4
. Here, the only free parameters are the width and

a single overall intensity scale factor. The agreement is clearly

satisfactory, with the fit indicating that the spins are correlated

across ~3 CuO, planes. We conclude that the stacking arrangement

of the magnetically ordered planes in our La,Cu0
4+y

sample follows

that of undoped insulating La,Cu0
4

, even though the magnetic

order in the CuO, planes is incommensurate. This is the first direct

evidence that the magnetism of the doped superconductor mimics

the magnetism in the undoped insulator in such a specific way.

We show in Figure IB the peak intensity of the elastic signal

as a function of temperature measured using both 13.7 meV and

5 meV neutrons. The fact that one obtains identical results for the

temperature dependences of the intensities with these two different

neutron energies and, concomitantly, energy resolutions indicates

that the scattering is truly elastic. The intensity of the elastic scat-

tering turns on at approximately the same transition temperature as

superconductivity. Noting that the intensity of the magnetic scatter-

ing is proportional to the square of the magnetic order parameter,

we plot the square of the BCS order parameter curve over the data

using a T of ~41K. The agreement indicates that the magnetism

exhibits mean field behavior just like conventional superconductiv-

ity. This is very surprising given the two dimensionality of the

ordered magnetism. The size of the ordered moment is 0. 1 5 p ,

which is 25% of the ordered moment in pure La
2
Cu0

4
. Our results

argue against an itinerant electron description of the incommen-

surate magnetism since it is difficult to see how a delocalized

model can support interplanar spin correlations and choose the

same preferred spin direction as in insulating La,Cu0
4

. It appears

that the spins are localized and ordered in this high temperature

superconductor.

REFERENCES
[1] J. M. Tranquada et al., Phys. Rev. Lett. 78. 338 (1997).

[2] H. Kimura et al., Phys. Rev. B59, 6517 (1999).

FIGURE 2 A) Scans along the in-plane H direction over one of the incom-

mensurate SOW peaks for various temperatures. B) The top panel shows the

L-dependence of the SOW scattering centered about the (10L) position. The

bottom panel shows scattering centered about the (OIL) position.
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M ost magnets order when the thermal energy drops below

a microscopic energy scale for magnetic interactions. The

topology of certain lattices can, however, reduce the energy gain

associated with long range ordering thus favoring more entropic

phases. Figure I shows one such lattice, the tetravalent site in

the pyrochlore structure that forms a network of corner-sharing

tetrahedra. As shown in the figure, antiferromagnetically (AFM)

interacting spins on the lattice cannot satisfy all their exchange

interactions simultaneously. This phenomenon, called geometrical

frustration, can lead to macroscopic classical ground state degen-

eracy and offers the possibility of qualitatively new states of matter.

Theoretical studies have in fact shown that spins with nearest neigh-

bor antiferromagnetic Heisenberg interactions on the pyrochlore lat-

tice do not have a long range ordered phase at all.

Pyrochlore magnets studied experimentally so far exhibit a

coninuous phase transition at a finite temperature, T
f

, into a glassy

phase with static short range correlations [1], Spinel antiferromag-

nets, AB,0
4

, in which the octahedral B site forms the same mag-

netic lattice as in the pyrochlore structure, however behave quite

differently. For instance, ZnCr,0
4
exhibits a first order phase transi-

tion to a long- range ordered Neel phase at T = 12.5 K , much less

than the Curie-Weiss temperature |0
|

= 393K. We have explored

this ordered phase and the corresponding phase transition through

inelastic neutron scattering [2],

Figure 2 provides an overview of our neutron scattering

results as a color image of T(Q, w) at three temperatures. For

T > T . Figures 2 (a) and (b) show a constant-Q ridge centered

at Q — 1.5 A 1 and extending beyond 10 meV. The ridge indicates

quantum critical fluctuations of small AFM clusters, most likely

antiferromagnetically correlated tetrahedra, and closely resembles

those obtained in similar experiments on other frustrated AFM. For

T < T , however, the low energy spectral weight concentrates into

a sharp constant-energy mode centered at hw = 4.5 meV |J|

» k T.. The wave vector dependence of this resonance intensity

reveals that it is an excitation among antiferromagnetically cor-

related nearest neighbor spins. Though they can not be seen in

Figure 2(c), there are in fact magnetic Bragg peaks in the elastic

scattering channel (see Figure 3(b)), which provide evidence for

long-range order for T < T . It is unusual that excitations of such

localized character exist in a long-range ordered phase. The reso-

FIGURE 1: A network of corner-sharing tetrahedra. When two spins in a

tetrahedron are aligned antiparallel to each other then the third spin

can not satisfy its antiferromagnetic interaction with the other two spins

simultaneously.

nance indicates the presence of weakly interacting spin clusters

within the ordered phase, which is a key feature of geometrically

frustrated magnets.

Theoretical work indicates that magnetic order cannot devel-

op in an isotropic spin aystem with nearest neighbor antiferromag-

netic Heisenberg interactions on the pyrochlore lattice. It is natural

to ask what deviation from this model causes order to develop

in ZnCr,0
4
? To answer the question we probed the temperature

dependence of static and dynamic features of this system in the

vicinity of the phase transition. Figure 3 shows that long range

antiferromagnetic order (blue squares in frame (b)) and the local

spin resonance (frame (a)) appear simultaneously in a spectacular

first order transition. It also shows that magnetic ordering is accom-

panied by a cubic to tetragonal lattice distortion (red circles in

frame (b)). The lattice distortion plays a crucial role in relieving

frustration and allowing long-range order to develop. It is well

known that exchange interaction between Cr3+
ions whose oxygen

coordination octahedra share an edge are strongly dependent on the

oxygen bond angles and hence the metal ion spacing. As a conse-

quence the tetragonal strain e > 0 and e < 0 yields weaker AFM

interactions between spins occupying the same basal plane and

stronger AFM interactions between all other spin pairs. This reduces

1 2 RESEARCH HIGHLIGHTS
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the energy of a particular long range ordered spin configuration with

respect to the low energy degenerate manifold thus allowing the

system to achieve long range order. The overall picture that emerges

is that of two distinct phases in competition: a cubic cooperative

paramagnet and a tetragonal long-range ordered antiferromagnet.

Though the spin Hamiltonian has a lower expectation value in the

latter phase, the lattice energy is greater and the entropy is lower

in the tetragonal phase. The phase transition occurs when the free

energy of the tetragonal low entropy phase drops below that of the

disordered cubic paramagnet.

There are strong analogies between the phase transition in

ZnCr,0
4
and the spin-Peierls (SP) transition. In both cases the

high T phase is nearly quantum critical and can lower its energy

through a lattice distortion. In both cases the transition occurs from

I (Q,M (1/meV/Cr)

0 0.1 0.2

0 0.5 1 1.5 2 2.5

Q (A'
1

)

I (Q = 1.5A-V) (1/meV/Cr)

0.5

3

o'

-2

FIGURE 3: (a) Image of inelastic neutron scattering for Q = 1.5 A 1

, (b)

T-dependence of magnetic Bragg scattering from a powder, am (blue squares),

and of lattice strains measured n a single crystal (red circles).

a strongly correlated paramagnet: T « 0CW , and in both cases low

energy spectral weight is moved into a finite energy peak.

There are also important differences between the two transi-

tions. The low T phases are qualitatively different, the transition in

ZnCr.O, is a first order one, while the SP transition is second order,

and the change in entropy at T plays an important role in ZnCi\0
4

,

but not in a SP transition. The central idea that finite lattice rigidity

can preclude a spin liquid at T=0 however does carry over and

should be relevant for any frustrated magnet when other symmetry

breaking interactions are sufficiently weak.

REFERENCES
[1] J. S. Gardner, B. Gaulin, S.-H. Lee, C. Broholm, N. P. Raju, J. E. Greedan,

Phys. Rev. Lett. 83. 21 1 (1999).

[2] S.-H. Lee, C. Broholm, T. H. Kim, W. Ratcliff 11 and S. W. Cheong. Phys.

Rev. Lett., in press.

FIGURE 2: Contour maps of the magnetic neutron scattering intensity at

temperatures spanning the phase transition at 1,.= 12.5(5) K. The data were

taken by utilizing a flat analyzer and two-dimensional position-sensitive

detector at the SPINS spectrometer.
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n the most favorable cases, cold neutrons can be deflected

through an angle of a degree or two by grazing incidence reflec-

tion. but by only an arc second or two by refraction. Hence grazing

incidence reflection optics has long been considered the most prom-

ising means for focusing neutrons for applications such as small-

angle neutron scattering (SANS). Numerous attempts over more

than 30 years to produce highly reflective surfaces for neutrons

have been vitiated, however, by SANS from the mirror surfaces

themselves, which blurs the focus. The best mirrors produced thus

far are only marginally better for SANS than pinhole collimation,

i.e„ circular apertures separated by long distances.

Scientists at Bell Laboratories recently took a fresh look at

this problem and proposed that multiple refraction from relatively

high index, low absorbing material could be superior to reflection

optics or conventional pinhole collimation for SANS. Initial mea-

surements (I
j
at Risp National Laboratory, Denmark, demonstrated

the proposed focusing effect, but did not make quantitative compari-

sons with reflection optics or pinhole collimation for application

in SANS instruments. Measurements made recently at the NCNR

in collaboration with the Bell Labs scientists [2] have addressed

these issues and have demonstrated and quantified the significant

FIGURE 1. Now installed in the pre-sample flight path ot the NG-7 30-meter

SANS instrument are two sets of MgF
2
biconcave lenses that can be inserted

into the beam under computer control. The 28-lens array in the foreground

focuses 8.44 A neutrons at a distance of 15 m from the ienses, and the

6-lens set focuses 18 A neutrons at the same distance. Each lens is 25 mm
in diameter, has a radius of curvature of 25 mm, and is 1mm thick in the

center.

FIGURE 2 Upper panel, conventional SANS pinhole collimation. The source and

sample apertures, A and A
2p

,
respectively, determine the shape and extent

of the beam profile, l(x), at the detector plane. Lower panel, focusing lens

geometry. Ideally, the source aperture, Au , alone determines the beam profile.

improvement in resolution that can be achieved with compound

refractive optics.

Our tests were made with the same set of cylindrical bicon-

cave MgF, (magnesium fluoride) lenses used in the Risp study. Up

to 30 lenses were placed end-to-end near the sample position of the

30-m SANS instrument to focus neutrons, emanating from a circu-

lar source aperture 15 m upstream, onto the plane of instrument’s

two-dimensional detector. Figure 1 shows an array of 28 lenses for

focusing 8.44 A neutrons at a distance of 15 m from the sample,

next to a set of 6 lenses for focusing 18 A neutrons at the same

distance.

For this geometry, as depicted in Figure 2, the lenses ideally

produce a 1 : 1 image of the source aperture at the detector inde-

pendent of the size of the sample. Since the scattering signal is

proportional to sample size, the lens system can, in principle, be

used to improve resolution more efficiently, by reducing the size

of the source aperture, than is possible with pinhole collimation

where both the source aperture and sample size must be reduced

proportionally to improve angular resolution. Aberrations and small-

angle scattering by the lenses could, however, blur the image to

14 RESEARCH HIGHLIGHTS
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FIGURE 3. Red dots are measured points along the vertical profile of the image

formed by the 28 lens array shown in Fig. II of a 9.5 mm diameter source of

neutrons 15 m upstream from the lenses. The blue dots are a Monte Carlo

calculation of the profile that includes the effects of spherical and chromatic

aberrations as well as the broadening caused by gravity. The shoulder in the

measured profile at Y = 0 is due to a residual fast neutron component in

the beam.

such a degree that any advantage over pinhole collimation, which

does produce a sharply defined beam spot at the detector, would

be lost.

To accurately measure the intensity profile produced by the

lenses, a dysprosium foil was positioned at the focal plane and

exposed to the focused beam for approximately two hours. The

activated foil was then placed in contact with a high resolution

image plate which stored the image produced by the emitted gamma

rays with a spatial resolution of better than 0.1 mm. A typical

profile obtained from reading out the image plate is shown in Figure

3. Also plotted in the figure is a Monte Carlo calculation of the

profile that includes the effects of spherical and chromatic aberra-

tions as well as the broadening caused by gravity. The measured

profile agrees with the simulation down to intensity levels of 10
3

of the peak intensity and has an overall signal-to-background ratio

in the wings approaching 10
5

, which is highly satisfactory for most

SANS measurements.

The practical benefit provided by the lenses is demonstrated

by the SANS data from voids in a single crystal (2.5 cm in diameter

Q (A
_1

)

FIGURE 4. Small-angle scattering from voids in a single crystal (2.5 cm in

diameter and 1 cm thick) of fast-neutron-irradiated aluminum. The measure-

ments were made under equivalent resolution conditions (i.e. nearly identical

beam spot size at the detector) using both simple pinhole collimation and the

28 biconcave lens array shown in Figure 1. The integrated gain in intensity

due to the lenses is approximately 26.

and 1 cm thick) of fast-neutron-irradiated aluminum shown in

Figure 4. The measurements were made under equivalent resolution

conditions (i.e. nearly identical beam spot size at the detector) using

both simple pinhole collimation and the 28 biconcave lens array

shown in Figure I . The first data point unaffected by the beam stop

in both data sets occurs at Q 0.001 A 1

, but the scattered intensity

per unit area is more than 10 times higher by using the lenses to

illuminate a much larger area of the sample.

The focusing lenses shown in Figure 1 are now installed for

routine use in the NCNR's 30-meter SANS instrument on guide

NG-7. Further testing is planned to understand, and hopefully elimi-

nate, the sources of parasitic scattering that contribute to the tails of

the beam profile seen in Figure 3, prior to installing a lens system in

the NIST/NSF 30-meter SANS instrument on guide NG-3.

REFERENCES
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T he presence of polymer chains grafted or adsorbed onto a

surface can dramatically alter the forces that affect interactions

between surfaces. The equilibrium properties of such polymer brush

systems have been studied for the past two decades, yielding gener-

al agreement between theory and experiment. Conversely, the non-

equilibrium properties of polymer brushes are still under intense

theoretical and experimental investigation. Of particular interest

is the response of a brush to the frictional forces imposed by

solvent flow. The behavior of polymer brushes subjected to flow

has important technological implications for the rheology of col-

loidal dispersions stabilized by polymer layers, for the lubrication

properties of polymer coated interfaces, for biocompatibility of

medical implant devices, and for permeation flow through polymer-

containing porous media [1],

The height of a polymer brush is determined by the equi-

librium conformation of the tethered chains, which depends on

both the grafting density and quality of solvent. The basic physics

governing the static behavior of a polymer brush result from a

competition between two opposing tendencies: 1 ) elastic contrac-

tion, as the chains attempts to maximize their entropy by adopting

random walk configurations, and 2) monomer-monomer interac-

tions, such as polymer-polymer repulsions, and polymer-solvent

wetting [2, 3].

Polymer chain stretching in densely grafted brushes has been

studied by many different techniques including surface forces appa-

ratus [4], neutron reflectivity [5], and small angle neutron scattering

(SANS) [6]. In general, there is good agreement with results from

experiment, simulations and analytical calculations [3],

Oscillatory shear measurements performed with a surface

forces apparatus suggest that the normal forces between a pair of

brush surfaces are altered when sheared. However, these measure-

ments do not give the actual brush profile either with or without

shear. Effective hydrodynamic thickness measurements of polymer

brushes under shear indicate a thickening of the brush; whereas neu-

tron reflectivity experiments on adsorbed PS-PEO block copolymer

brushes on a silica surface show no effect of shear on the brush

density profile in good solvent, and a slight increase in poor solvent.

These earlier reflectivity measurements were limited to shear rates

of ~ 10,000 s'
1

[7] since the adsorbed PS-PEO block copolymer

FIGURE 1. Schematic illustrating the effect of shear on grafted brushes

predicted by Miao et al. [8] Such an effect would be consistent with the

present data.

pump and head
Si crystal

solvent reservoir ss shear base

FIGURE 2: Shear cell. Arrows denote solvent flow direction. The polystyrene

brush is grafted onto the Si crystal.

brushes have a tendency to come off the surface at higher shear

rates.

Predictions from theoretical calculations of brush profiles

under shear span the gamut of possibilities, ranging from brush

thickening to brush compression, including no effect of shear flow

on the density profile [3], Miao et al [8]. predict that the response of

a brush to the solvent shear flow is displayed as chain tilting toward

and chain stretching along the direction of flow. However, the

overall conformational properties such as brush thickness remain

essentially unaffected (Figure 1 ).

We have performed neutron reflectivity measurements on a

chemically grafted polymer in both good and poor solvents at shear

rates over an order of magnitude greater than previously reported.

Our neutron reflectivity experiments measure the segment density

profile of the polymer brushes under shear in an experimental

cell similar to the one used by Baker et al. [9], (Figure 2). We

use deuterated polystyrene (d-PS), 83 kg/mol, with a trichloro-

silane end group to bind the d-PS brush chemically onto a single

crystal Si surface [5], We used a good solvent, toluene, and a poor
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FIGURE 3: Representative shear data for deuterated polystyrene brush

under shear in cyclohexane (A), and toluene (B). In both cases, black

circles represent shear of 0 s \ whereas red squares represent data taken

at 30,000 s'
1
.

solvent, cyclohexane, as the solvent media. The dry brush height

was measured by x-ray reflectivity to be 17.5 nm. Without shear

the brush extends to 3 1 nm in cyclohexane and 75 nm in toluene.

We measured the brush profile at several shear rates, up to 130,000

s'
1

,
yet we see no effect of shear on the brush density profiles in

either solvent (Figure 3). No desorption of the polymer brush was

ever observed. In fact, the neutron reflectivity profiles at 0 s'
1 and

130,000 s'
1

look identical, indicating less than a 2-3% change in the

brush density profile.

We have also been able to establish that the slight shear

induced swelling reported by Baker et al. [7] for a poor solvent

(cyclohexane), was probably due to frictional heating of the solvent.

In high shear fields, heat generated from friction between the

solvent and interior surfaces of the apparatus does not readily

dissipate, causing a ~ 2-3 °C rise in the temperature of the

shear cell. We were able to demonstrate that the brush height in

cyclohexane is unaffected by shear when the cell temperature is

carefully controlled. An elevated cyclohexane temperature swells

the brush as the solvent quality improves. Naturally, these effects

were not observed in toluene.

Thus, our neutron reflectivity data represent the first compre-

hensive measurements of shear effects on the density profile of a

grafted polymer brush into regimes that are predicted by some to

display an effect. We cannot, at this time determine if the brush

responds as predicted by Miao et al. [8], or if there is insufficient

solvent penetration into the brush to exert enough force on the

chains to induce conformational changes. Future measurements will

distinguish between these cases.
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S ince thin polymeric films are ubiquitous in technological appli-

cations such as paints, lubricants, and adhesives, a critical

characterization of their thermophysical properties is essential. A

central premise in the development of theories for predicting the

properties of polymer melts in confined geometries is that chains

maintain their unperturbed Gaussian conformation, which they

adopt in the bulk, in the direction parallel to the surfaces under all

conditions [1,2], These assumptions, which form the foundations of

the important field of polymer thin films, have been questioned on

the basis of indirect experimental findings [3,4], We have utilized

the power of small angle neutron scattering, especially the high

neutron flux at NCNR, to unequivocally characterize the chain

structure and conformation in ultrathin polymer films, and thus have

resolved this important fundamental question.

The experimental measurements of chain conformations and

system thermodynamics in thin films have remained elusive due

to the small amounts of sample material involved. To illustrate

this point, a thin film of 10 nm incurs a decrease in signal by

== lxl04 from a typical bulk polymer sample. In this case, the noise

is comparable to the signal, complicating the experiments. Prior to

upgrades of the cold neutron source at the NCNR, data collection

times were prohibitive. Improvements in sample preparation, which

are discussed in detail elsewhere [5,6], have allowed us to measure

molecular size and conformation of an isotopically labeled blend

of polystyrene (25 wt% d-PS/75 wt% h-PS) in films as thin as

12 nm. Two blends of nominally matched molecular weight, Mn,

of 270,000 and 650,000, respectively, were utilized. These were

labeled 270k and 650k, respectively. Solutions of the blends were

spin cast on silicon substrates (Semiconductor Processing) and

annealed at 120°C (T ===
1 05°C).

The scattered intensity for a 15 nm thick film of the 270k

blend is compared to an analogous bulk sample in Figure 1. It is

clear from the figure that, on a unit volume basis, the thin film

scattering is higher than that of the bulk. We postulated that this

difference is attributable to the scattering from the imperfections

at both the air and the substrate interfaces, which is driven by the

relatively high neutron contrast at these boundaries. To evaluate

this component, films of pure d-PS were spin cast under identical

conditions and their scattering measured.

The pure d-PS film data were fit with a simple Debye-Bueche

form factor to obtain parameters for a roughness term. The blend

film data were then fit by scaling this roughness term and adding a

component obtained from the Random Phase Approximation (RPA)

model. In the fitting, two RPA model parameters were also varied:

the blend chain radius of gyration (R ) and the Flory interaction

parameter. The combined model is illustrated as the solid line in

Figure 1 along with the roughness term (long dashed line) and RPA

term (short dashed line). The fact that the RPA term is very close

to the data for the bulk blend illustrates that the film and bulk

Q (A’
1

)

FIGURE 1. Plots of l(Q) as a function of Q for dPS/hPS blends of Mn =

270k. Filled symbols, bulk sample; open symbols, data for a film of thickness

D = 18 nm. The fit to these data (solid line) was obtained by utilizing both

a roughness term (long dashed line) as well as the standard RPA form (short

dashed line).
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samples have nearly the same R . Using this combined model, R

was determined for films ranging in thickness over two decades

(0.5 R < D < 50 Rj. The molecular size was found to be indepen-

dent of film thickness (Figure 2). Since the scattering vector is

primarily in the surface plane, this conclusion is consistent with

theoretical assumptions and suggests that chain conformation in the

direction parallel to the surfaces are unaffected by confinement.

FIGURE 2. Plots of ratios of R
g
and 1(0), derived from the RPA component

(short dashed line in Figure 1) of the fits to the blend thin film data, to their

corresponding bulk values. The ratios are plotted versus the ratio of the film

thickness to the bulk R
g
. Data are displayed for blends with Mn = 270k (filled

circles) and Mn = 650k (open circles).

Our results clearly show that, in the thinnest films, the

volume pervaded by a coil is decreased as compared to the bulk.

This is because the R
,

in the direction parallel to the surfaces is

unaffected, while the corresponding quantity in the third direction is

strongly reduced. In conjunction with other studies, which indicate

a thickness-independent density in ultrathin polymer films, these

conclusions indicate decreased intermolecular entanglement in thin

polymer films. Since entanglement density directly affects the

dynamic properties of polymeric systems, we contend that unusual

thin film properties, such as the anomalous thickness dependence of

diffusion coefficients and glass transition temperatures, are caused

by this reduced entanglement density near a surface.

With thin films as a model system, and continuing increas-

es in cold neutron flux, SANS at the NCNR is now an appropriate

tool to study a host of problems involving interfacial structure,

finite size phase behavior, and nano-patterning in systems as far

ranging as engineering thermoplastics to biological systems. These,

and related problems, are the focus of investigation in our research

groups.
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PROBING THE LOCATION OF THE
TERMINAL GROUPS OF A DENDRIMER

Dendrimers represent a new class of macromolecules developed

in recent years. Typically, a dendrimer structure has a tri- or

tetrafunctional core, which is surrounded by several ‘generations’

of stepwise added trifunctional monomers, leaving the last genera-

tion with a large number of terminal units as shown in Figure

1 . The molecular weight doubles with each generation, leading to

high molecular weights, and causing the dendrimer to become very

compact and crowded.

Many of the potential technological applications of den-

drimers depend on their segment density distribution. Previous scat-

tering studies have shown that dendrimers have uniform interiors

and are quite spherelike in their shape [1], The location of the

terminal groups is also of importance, since they are usually differ-

ent chemically from the rest of the dendrimer. This invites a number

of applications such as the support of catalysts or drugs or their

use as hyperfunctional crosslink sites. The accessibility of these

terminal groups depends on their location compared to the other

dendrimer units.

FIGURE 1. Dendrimer structure with labeled terminal units.

The location of the terminal units can be measured by label-

ing the last generation of the dendrimer with deuterium and using

contrast matching techniques to determine their location. Figure 1

shows the labeled groups in red and the rest of the dendrimer in

blue. By choosing the proper mix of h- and d- solvents, the interior

of the dendrimer will be matched, making only the labeled end

groups visible in small angle neutron scattering (SANS).

A sixth generation polyamidoamine (PAMAM) dendrimer

was reacted with acrylonitrile (vinyl-d3) to give the deuterium

labeling for the SANS. Ethylene diamine was reacted with the

dendrimer to give a labeled seventh generation dendrimer. A similar

reaction was used to make a seventh and eighth generation den-

drimer without labeling. Solutions of unlabeled eighth generation

dendrimer were made in mixtures of CH,OH and CD,OH for deter-

mination of the match point. Three samples were analyzed, an

unlabeled dendrimer in CD,OH (high contrast), an unlabeled den-

drimer in the match mixture (dendrimer matched), and the labeled

dendrimer in the match mixture (interior matched).

0 0.05 0.1 0.15 0.2

q/A 1

FIGURE 2. SANS from G8 dendrimer in CD
3
0H/CH

3
0H mixtures.
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SANS was performed at the 30 m facilities at NIST. The

spectrometers were operated at a wavelength of A. = 6 A, and a

wavelength spread of AAA = 0.15.

Figure 2 is a plot of SANS of dendrimer solutions with differ-

ent CD,OH contents. The intensity is the strongest in pure CD,OH,

weakens as CH,OH is added and increases again when pure CH,OH

is used. The coherent scattering intensity varies as I ~ (b
s

- b
n )

2

where b
D

is the contrast of the dendrimer and b
s
is the average

contrast of the solvent mixture.

Figure 3 is a plot of the square root of the scattered intensity

versus solvent composition with the values to the right made nega-

tive so that a straight line can be put through all of the data points.

The zero intersection is at a mass fraction of 60.5 CH,OH which

was the composition used in the matching experiments.

Figure 4 is a plot of the SANS of the three G7 samples.

The circles give the scattering from the high contrast sample, show-

ing strong scattering typical of large spherical dendrimers. The

diamonds show the SANS of the same dendrimer, but under match

conditions. This sample has no measurable coherent scattering sig-

FIGURE 3. Location of the match point.

nal, demonstrating that the match conditions have been achieved.

The labeled dendrimer SANS is given by the squares. The scattering

is weak because only the labeled terminal groups scatter.

A Guinier analysis of the scattering of the high contrast

sample gives the radius of gyration (R ) of the whole dendrimer, and

the labeled - contrast match sample gives the R of only the terminal

groups. The R of the whole dendrimer is (34.2 ± 0.2) A, while the

R^ of the terminal groups is (39.3 ± 1.0) A.

The terminal groups of a seventh generation PAMAM

dendrimer are 15% larger than the average of all of the units.

Therefore, the terminal units of a dendrimer are concentrated in the

outer shell of a dendrimer.
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1

FIGURE 4. SANS of labeled and unlabeled G7 dendrimer in match and

high contrast solvents.
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I
n recent years we have made progress by neutron diffraction

in a major structural challenge, namely in detecting and analyz-

ing the structures of peptide assemblies in fluid membranes [1,2].

These experiments were performed with membranes in the form

of oriented multilayers. Originally the samples were investigated in

full hydration so that the physical properties of the lipid bilayers

were close to those at physiological conditions. However, it was

soon realized that new phenomena involving peptide-lipid inter-

actions occur when the sample hydration is varied. In general,

in full hydration, the peptide organization in each membrane

is uncorrelated to the neighboring membranes. As the hydration

level decreases, the peptides become correlated between bilayers,

even though the membranes are still fluid. In many cases, further

dehydration strengthens the correlation such that the peptide orga-

nization in the multilayers crystallizes [2], The crystallization

provides the possibility for high-resolution diffractional studies.

Investigations along this line might also lead to useful information

for crystallization of membrane proteins.

Antimicrobial peptides are inducible innate host defense mol-

ecules found in all multicellular organisms, including humans and

plants. These peptides have a folded size comparable to the mem-

brane thickness. All evidence indicates that antimicrobial peptides

act by permeabilizing the cell membranes of microorganisms. But

the molecular mechanisms of their actions are still not clear. We

have found that all peptides, when they are bound to lipid bilayers,

exhibit two distinct oriented circular dichroism spectra, one at low

peptide-to-lipid ratios ( P/L) and another at high P/L. This indicates

that each peptide has two different physical states of binding to a

membrane.

The transition from the low to the high P/L spectrum occurs

over a narrow range of P/L as if there is a threshold concentration,

called P/L*. At concentrations below P/L*, the peptides are embed-

ded in the headgroup region, as suggested by the peptide orientation

and the membrane thinning effect. At concentrations above P/L*,

neutron in-plane scattering showed that the peptides form pores

in the membranes, while no pores were detected below P/L*. The

detection was achieved by exploiting the sensitivity of neutrons to

FIGURE 1. In-plane SANS from alamethicin in DLPC lipid bilayers at a high

peptide-to-lipid ratio where the peptides self-assemble to form channels

through the lipid bilayer as depicted in Figure 2. In the upper panel, the

channels were filled with either D
2
0 (+), giving strong scattering contrast,

or H
2
0 (o). In the lower panel the lipid was deuterated, providing stronger

scattering contrast with H
2
0 in the channels (+) compared with 0

2
0 (o). These

data were taken at ANL.

D,0, which had replaced the water in the membrane pores. As an

example. Figure 1 A and B show neutron in-plane scattering taken

at Argonne National Laboratory (ANL) of alamethicin in protonated

lipid bilayers (1A) and in deuterated lipid bilayers (IB), with D,0

or H,0 filling the pore channels. The peak in these data is due

to the fairly regular pore spacing and is most pronounced when
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FIGURE 2. Model for the channels formed by octamers of alamethicin in BILPC

bilayers that is consistent with the in-plane SANS data shown in Figure 1.

FIGURE 3. Examples of SANS patterns from channel-forming peptides in lipid

bilayers at various temperatures and stages of dehydration. The upper left

panel is for magainin pores in fully hydrated fluid bilayers. As this and other

peptide/lipid systems studied are dehydrated, the pores in adjacent bilayers

become correlated and eventually crystallize.

there is a strong contrast, either between D,0 and protonated lipid,

or between H,0 and deuterated lipid. All four sets of data are

consistent with the model shown in Figure 2 once the differences in

contrast are taken into account (solid curves). Thus we concluded

that alamethicin in DLPC bilayers forms octameric pores in the

barrel-stave fashion.

Interestingly, the barrel-stave model is not the only possible

pore formation. We have detected another type, called toroidal

pores, in which the lipid monolayer bends continuously from one

leaflet to another like the inside of a torus [1 ]. However, while

the evidence for the pores is clear by the detection of the water

(D,0) channels through the lipid bilayers, the evidence for the pore

structures is indirect. Thus the discovery of the crystalline phases

is an important new development for the field of antimicrobial

peptides.

We developed a method of off-plane scattering [2] to record

the diffraction pattern on a SANS instrument that includes both the

in-plane and out-of-plane momentum components. Figure 3 exhibits

some typical diffraction patterns as recorded on the NG-3 30-meter

SANS instrument’s detector by this method. The top left panel

shows the diffraction pattern of magainin pores in fully hydrated

fluid bilayers. When the sample was slightly dehydrated, the pattern

changed to the top middle panel. Our analysis [2] showed that the

positions of the magainin pores in each bilayer become correlated

with the pores in adjacent bilayers, even though the bilayers are still

in the fluid phase. The cause of this correlation was hypothesized to

be due to the hydration force. Upon further dehydration or cooling,

the pore arrangement crystallized into a lattice (the left panel of

the middle row) having ABCABC stacking of hexagonally ordered

planes.
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OLUTIONS

S hear-induced structural changes in complex fluids of aniso-

tropic species are a very general phenomenon, occurring in

polymer solutions, liquid crystalline materials and block copolymer

melts. The purpose of our work is to investigate the influence

of shear on the structure of a highly viscoelastic, aqueous clay-

polymer solution. Many structural models have been proposed for

such solutions ( 1-3], but little is definitively known about meso-

scopic properties or shear behavior. This information is important in

the production of nanocomposite materials [4],

In our work, we use small-angle neutron scattering (SANS) to

study a solution of the synthetic hectorite type clay, Laponite LRD

(Laporte Industries Ltd.), and poly(ethylene-oxide) (PEO) (M
w
= 10

6

g/mol). The results reported here are for a highly viscoelastic solu-

tion containing a mass fraction of 3 % LRD and 2% PEO at room

temperature. The clay particles produce transparent dispersions of

disk shaped particles ca. 300 A in diameter and ca. 10 A thick [5,6].

The pH and ionic strength of the solutions were controlled by the

addition of NaOH and NaCl, respectively.

Figure 1 shows the shear rate dependence of the birefringence

of the clay-polymer solution. A distinct minimum in the birefrin-

gence is observed at a critical shear rate of approximately 40 s '.

The source of the shear dependence of the birefringence is due to

the alignment of the clay particles and the PEO. Previous work

demonstrated that the sign of the birefringence of the clay particles

oriented along a flow field is negative, therefore at low shear rates,

the orientation of the clay dominates the birefringence. Above the

critical shear rate, the birefringence due to the orientation of the

polymer chains dominates.

A double logarithmic plot of viscosity, tj, versus shear rate

shows that the solution is shear-thinning over the entire range

according to a power law with exponent m = -0.65. No signature of

the critical shear rate is observed in the viscosity behavior.

The SANS shear cell utilized has been described previ-

ously [2], The instrument was configured in both “radial” (incident

beam parallel to the shear gradient along the cylinder diameter) and

“tangential” (incident beam passing between the cylinders, parallel

to the flow direction) geometries. Using 9 A wavelength neutrons

gives a Q range between 0.0027 A'
1 and 0.0199 A' 1

. The primary

contrast in the SANS experiment used to detect the orientation of

100

50

0

o

= -50

-1 00

-50 0 50 1 00 1 50 200 2 50 300 3 50 40 0 4 50

(dy/dt) / s
1

FIGURE 1. Optical birefringence as a function of shear rate. The arrow

indicates (dy//dt)
critical , the shear rate where the minimum in the birefringence

occurs.

the clay platelets and polymer chains under shear is between D,0

and the other solution components.

The results obtained from the polymer-clay solutions in the

“radial” and “tangential” beam configurations are summarized in

Figure 2. At low shear rates, a diffuse isotropic ring of SANS

intensity is observed (Figure 2a). The diffuse ring corresponds to

an average spacing between platelets of 800-1 100 A. With increas-

ing shear rate, the ring becomes more diffuse (Figure 2b) and an

anisotropic streak develops parallel to the vorticity axis of the flow

field (the cylinder axis). If we neglect the main reflected beam

which appears as a background streak in the gradient direction for

tangential beam measurements (Figure 2d), the anisotropic streak

becomes the dominant feature in both scattering geometries with

increasing shear rate. After cessation of shear, the streaks relaxed to

an isotropic state in less than 2 minutes.

To account for the SANS and birefringence results, our cur-

rent understanding is that the polymer chains are in a dynamic

adsorption/desorption equilibrium with the clay particles to form

a network. The peak position in the quiescent scattering pattern

in Figure 2a is an indication of the mesh size of this network

(~ 1000 A). A 2% solution of only PEO, at the same pH, polymer

and salt concentration showed no anisotropic SANS scattering at

shear rates up to 100 sT Similarly a 3% aqueous clay solution
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shows no evidence of an anisotropic SANS pattern. Therefore, we

can conclude that the anisotropic SANS pattern observed in the

clay-polymer solutions is due to this coupling between clay platelets

and polymer, allowing a higher orientation than either single com-

ponent in solution can produce. From the birefringence data, the

clay particles orient at low shear rates, while strong orientation of

the PEO does not occur until the critical shear rate is exceeded.

Since the clay platelets and the PEO chains are of comparable size

(both about 300 A), the lack of internal flexibility of the rigid clay

particles makes them much easier to align than the flexible polymer

chains.

According to SANS patterns from both beam configurations

(Figure 2) the shear flow results in an alignment of clay platelets

orienting with their surface normals in the vorticity direction. One

would expect the surface normals to orient along the gradient direc-

tion of the flow field, however, the type of orientation observed

a) radial beam b) radial beam

c) radial beam d) tangential beam

o
FIGURE 2. SANS patterns of the clay-polymer solutions as a function of shear

rate in the radial geometry (a-c) and tangential geometry (d) at shear rates of

a) 0.5 s ’, b) 20 S'
1

, c) 90 S'
1

, d) 90 s 1

.

in these clay-polymer solutions is also observed in some liquid

crystalline lamellar phases, block copolymer solutions, and melts.

The critical shear rate is the shear rate at which the rate of chain

desorption is slower than the terminal relaxation time of the chain,

hence chain extension is observed in the birefringence.

On cessation of shear, the stress on the network decays

almost immediately, and the recovery of the isotropic structure is

controlled by the relaxation of the stretched chains. As the chains

retract, the coupling of the chains to the clay allows the platelets

to randomize in orientation in the local viscous environment. The

recovery from anisotropy is much faster than expected from simple

Brownian motion of only the clay particles in a medium of the

same viscosity as the clay-polymer solution exhibited macroscopi-

cally, and is indicative of the dynamic coupling of the polymer

chains to the clay. Future work will compare the relative rates of

the relaxation in the PEO and clay with the cooperative adsorption/

desorption kinetics which occur during deformation.
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N ew biomimetic membrane materials, of fundamental impor-

tance in understanding such key biological processes as

molecular recognition, conformational changes, and molecular self-

assembly. can be characterized using neutron reflectometry. In par-

ticular, scattering length density (SLD) depth profiles along the

normal to the surface of a model biological bilayer, which mimics

the structure and function of a genuine cell membrane, can be

deduced from specular neutron reflectivity data collected as a func-

tion of wavevector transfer Q. Specifically, this depth profile can be

obtained by numerically fitting a computed to a measured reflectiv-

ity. The profile generating the best fitting reflectivity curve can

then be compared to cross-sectional slices of the film’s chemical

composition predicted, for example, by molecular dynamics sim-

ulations [1], However, the uniqueness of a profile obtained by

conventional analysis of the film’s reflectivity alone cannot be

established definitively without additional information. In practice,

significantly different SLD profiles have been shown to yield

calculated reflectivity curves with essentially equivalent

goodness-of-fit to measured data [2], as illustrated in

Figure 1.

z (A)

FIGURE 1. Family of scattering length density profiles obtained by model-

independent fitting of the reflectivity data in the inset. The profile represented

by the blue dashed line is unphysical for this Ti/TiO film system yet generates a

reflectivity curve that fits the data with essentially equivalent goodness-of-fit

(all the reflectivity curves corresponding to the SLD’s shown are plotted in the

inset but are practically indistinguishable from one another).

The existence of multiple solutions, only one of which can be

physical, is especially problematic in cases where a key additional

piece of structural or compositional information is lacking as can

happen in the investigation of these biological membrane systems.

Why this inherent uncertainty? The neutron specular reflection

amplitude for a model SLD can be computed exactly from first

principles; the square of its modulus gives the measurable reflectiv-

ity. It is firmly established, however, that the complex amplitude

is necessary and sufficient for a unique solution of the inverse

problem, that of recovering the SLD from reflection measurements.

Unambiguous inversion requires both the magnitude and phase of

reflection. Once these are known, practical methods [3] exist for

extracting the desired SLD.

In fact, considerable efforts were made about a quarter century

ago to solve the analogous “phase problem” in X-ray crystallography

using known constraints on the scattering electron density [4] and by

the technique of isomorphic substitution [5]. Variations of the latter

approach have been applied to reflectivity, using a known reference

layer in a composite film in place of atomic substitutions. These

solution methods, however, were tied to the Born approximation.

FIGURE 2. Reflectivity curves for the thin film system depicted schematically in

the inset, one for a Si fronting (red triangles), the other for Al
2
0

3
(black circles).

The curve in the lower part of the Figure (blue squares) is the real part of the

complex reflection amplitude for the films obtained from the reflectivity curves

by the method described in the text.
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which generally is valid in crystal structure determination but which

fails catastrophically at low Q (low glancing angles) in reflection

from slab-shaped samples such as thin films. Exact inversion

requires accurate knowledge of the reflection amplitude over the

entire Q-range, especially at low Q.

In this decade the reflection phase problem has been exactly

solved using a protocol of three reflectivity measurements on com-

posite films consisting of the film of interest in intimate contact with

each of three known reference layers [6, 7], Subsequently, variations

using only two measurements have been shown to partially solve

the phase problem, an additional procedure being required to choose

between two solution branches, only one of which is physical [8,

9]. In the past year [10], an exact solution has been found for a

two measurement strategy in which the film surround, either the

fronting (incident) or backing (transmitting) medium, is varied. This

new approach is simpler to apply than reference layer methods

and is adaptable to many experiments. Surround variation neutron

reflectometry has been successfully applied to the challenging type

of biological membrane depth profiling described earlier.

-5

-4

5
0 50 100 150 200

z(A)

FIGURE 3. SLD profile (red line) resulting from a direct inversion of the Re r

of Figure 2 compared with that predicted by a molecular dynamics simulation

(white line) as discussed in the text. The headgroup for the Self-Assembled-

Monolayer (SAM) at the Au surface in the actual experiment was ethylene oxide

and was not included in the simulation but, rather, modelled separately as part

of the Au. Also, the Cr-Au layer used in the model happened to be 20 A thicker

than that actually measured in the experiment.

In Figure 2 are plotted a pair of neutron reflectivity curves

measured for the layered film structure schematically depicted in

the upper right inset, one with Si and the other with A1,0
?
as the

fronting medium. The lower part of Figure 2 shows the real part of

the complex reflection amplitude for the multilayer as extracted from

the reflectivity data, according to the method described above, and

which was subsequently used to perform the inversion to obtain the

SLD shown in Figure 3. For comparison, the SLD predicted by a

molecular dynamics simulation is also shown in Figure 3, along with

a slightly distorted version, corresponding to a truncated reflectivity

data set, which indicates the spatial resolution of an SLD obtainable

in practice. This latter SLD was obtained by inversion of the reflec-

tion amplitude computed for the exact model SLD, but using values

only up to the same maximum Q value (0.3 A'
1

) over which

the actual reflectivity data sets were collected. Overall, agreement

between the experimentally determined profile and the theoretical

prediction is remarkable, essentially limited only by the Q-range of

the measurement. Surround variation neutron reflectivity thus makes

it possible to measure complicated thin film structures without the

ambiguity associated with curve fitting. The veridical SLD profile is

obtained directly by a first principles inversion.
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MULTI-TECHNIQUE STUDIES OF
ULTRATHIN Si0

2
FILMS

C urrent gate dielectrics in silicon based devices are only a

few nm thick. Optical techniques such as ellipsometry are

used to monitor film thicknesses and optical properties in produc-

tion. However, for the current integrated circuit (IC) generation

the accuracy of ellipsometry degrades because parameters such

as thickness and index of refraction (which reflects the composi-

tion) become strongly correlated. Thus, it is difficult to unam-

biguously determine these parameters simultaneously, and the accu-

racy of ellipsometry would benefit from an independent calibration.

In reflectometry techniques, on the other hand, these parameters

are nearly decoupled. The thickness of a layer is approximately

inversely proportional to the oscillation period of the reflected inten-

sity, whereas the differences in scattering length density SLD (also

an indicator of composition) between the layers is related to the

amplitude of the oscillations. Neutron reflectometry (NR) is better

suited than X-ray reflectometry (XR) for the study of the SiC^/Si

system because there is a relatively large contrast (or difference in

SLD) between the scattering length densities of the two materials:

65%, vs. 7.6% for X-rays.

Consider as an example a sample with a nominally 10 nm

thick thermal oxide film on silicon. This moderate thickness was

chosen to increase our confidence in the results of the various

Photon Energy (eV)

FIGURE 1. Comparison of spectroscopic ellipsometry experimental data, 'R

and A, to the fits (solid line) for the clean and surface contaminated sample.

The inset shows < e1> and <e2> as a function of depth determined by the fit.

characterization methods, while remaining thin enough that the

results are relevant to film of technological interest. Figure 1 shows

spectroscopic ellipsometry (SE) data and corresponding best fits for

the sample with surface contamination and after an organic cleans-

ing. Nominally, the only change is a decrease in the thickness of the

contamination layer 1 1 ].

In XR data (Figure 2) two oscillation periods are observed

for the contaminated sample. The high frequency oscillation corre-

sponds to the SiCb film, whereas the low frequency modulation is

due to the thinner contamination layer (which is not present after

cleaning, indicating removal of the contamination.)

The NR measurements (Figure 3) were done in a vacuum to

reduce the air scattering background. This allowed us to achieve

a very large range in reflectivity, over 10^, which is among the

best examples in NR measurements to date. A slightly thinner

contamination layer in NR is consistent with the fact that the XR

was done in air, during which the contamination was growing. This

was confirmed by changes in XR scans immediately following those

in Figure 2. The average of the 5 measurements of the SiO, film

thickness was 10.27 ± 0.13 nm The excellent agreement among the

results for the three different techniques increases our confidence

in the parameters extracted via these models. Thus the XR and

Q [nm.
1

]

FIGURE 2. X-ray reflectivity and best fits for the clean and surface

contaminated sample. The inset shows the scattering length density profile

determined by the fits.
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]

FIGURE 3. Neutron Reflectivity data and best fit for a sample with surface

contamination. The inset is the scattering length density profile determined

by the fit.

particularly the NR corroborate the correct analysis required in SE

(which is the technique most practical in monitoring production).

To further investigate the applicability of these techniques

to thinner SiCb layers, we simulated the SE and the XR and NR

curves for 6 nm, 4 nm, and 2 nm thick layers of SiCb. For a

realistic and consistent set of roughness parameters in the models,

we used the average values obtained from the actual measurements

previously discussed. The SE simulation, Figure 4a, shows distinct

differences in both the magnitude and shape of D among the three

thicknesses shown. In models of XR, shown in Figure 4b, only

very weak oscillations are seen for even the thickest of the SiCb

layers because of the low contrast between SiCb and Si. However,

in NR, strong oscillations are clearly seen above the 10'^ lower

limit, demonstrated in Figure 3, for SiCb layers as thin as 2 nm.

Therefore both NR and SE are well suited for the study of SiCb

films as thin as 2 nm. Encouraged by these models, we obtained

NR data for a thinner, 2.4 nm, sample. While these data are not

yet fit to a model curve, we note that both the reflected intensities

and oscillation amplitude are similar to those of the 2.0 nm model,

indicating similar interface widths.

We have shown that three different techniques can offer com-

plimentary information on the structure of thin SiCb films on Si.

All offer a significant degree of sub-monolayer thickness sensitivity,

although in NR there is a much higher contrast between SiC>2 and

Si than in XR.

2.0 3.0 4.0 5.0 6.0

Photon Energy (eV)

FIGURE 4. Model calculations for thin Si02 films of thickness indicated in the

figure, on Si. a) Spectroscopic ellipsometry, and b) unless otherwise noted

solid lines are neutron reflectometry models. For clarity the 6 nm (4 nm)

films are shifted up by 2(1) orders of magnitude. The data points are for a

~ 2.4 nm film.
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CERTIFICATION OF AN ION-IMPLANTED
ARSENIC IN SILICON
STANDARD REFERENCE MATERIAL

T he secondary-ion mass spectrometry (SIMS) community in

the United States recently undertook a round-robin study to

calibrate the implanted dose of arsenic in silicon by consensus.

Variations in dose determination among laboratories were as high as

30%, reflecting primarily the errors of the respective in-house stan-

dards. By contrast, in an international round-robin exercise spon-

sored by the International Standards Organization (ISO), the United

States laboratories achieved a relative standard deviation of 4%

for nine independent determinations of the boron content in an

unknown boron-doped silicon sample. This level of agreement was

only possible because all the laboratories used SRM 2137 Boron

Implant in Silicon as a common reference material. These results

demonstrate the need for a common arsenic reference material to

improve inter-laboratory reproducibility. Furthermore, SEMATECH

(a consortium of semiconductor manufacturers) recently listed SRM

implants of phosphorus and arsenic in silicon as high priority indus-

trial needs. Consequently, a Standard Reference Material (SRM

2134 Ion-Implanted Arsenic in Silicon) was produced at NIST,

using a wafer from the SIMS intercomparison. The material for this

SRM was provided by a major ion implanter manufacturer who

supplied three 200 mm diameter wafers that had been implanted

with arsenic at an energy of 100 keV (in the same batch). One of the

wafers was diced and distributed to 12 participating laboratories for

the arsenic round-robin study described above. Each of the remain-

ing wafers could provide 221 SRM units, enough for an estimated

10 year supply. One of the remaining wafers was therefore diced

into 1 cm x I cm pieces with a wafer saw for use as SRM 2134.

Because of the specificity and matrix independence of instrumental

neutron activation analysis (INAA), this technique was chosen as

the primary method for certification of the arsenic implanted dose.

NIST currently certifies elemental concentrations in SRMs

using one of three modes: (1) a primary method at NIST with

confirmation by other method(s), (2) two independent critically-

evaluated methods at NIST, and (3) one method at NIST and differ-

ent methods by outside collaborating laboratories.

Certification using a primary method is only possible

when all potentially significant sources of uncertainty have been

evaluated explicitly for the application of the method and the

matrix under investigation. In addition, confirmation of measure-

ments by a primary NIST method is accomplished by one or

more of the following: determination of certified constituents in

Table 1. Individual Uncertainty Components for Determination of

Arsenic in SRM 2134

Gamma-Ray Interferences 0.00004

Peak Integration Method 0.033

Overall 0.189

’ "n" indicates degrees of freedom which are listed for Type A sources of uncertainty
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other Standard Reference Materials (SRMs) or Certified Reference

Materials (CRMs) of similar matrix and constituent concentration

range; a second NIST technique with appropriate controls; or results

of measurements from selected outside collaborating laboratories

with appropriate experience.

In order to certify the arsenic concentration in SRM 2134

using INAA as a primary method it is therefore necessary to evalu-

ate all significant sources of uncertainty explicitly. For this set of

measurements, we considered sources of uncertainty greater than

0.01% relative to be significant. The results of a complete evaluation

of all sources of uncertainty are listed in Table 1. This evaluation

yielded an expanded relative uncertainty of 0.38% (as defined by

ISO and NIST) and gives an approximate level of confidence of

95%. The arsenic concentration observed was 91.20 ng/cm2 ± 0.35

ng/cm2
. No evidence indicating significant heterogeneity among

samples could be seen when the observed sample-to-sample preci-

sion was compared to what was expected from counting statistics

combined with other sources of analytical variability.

In conclusion, we have successfully applied INAA as a pri-

mary method for the certification of this new SRM. The observed

relative expanded uncertainty of 0.38% is considerably smaller than

the 1% value desired by the semiconductor industry. This new SRM

should greatly enhance the U. S. semiconductor industry’s ability

to achieve accurate and reproducible analytical results for this key

dopant in silicon.
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THE ROTATIONAL DYNAMICS OF H
2
IN

POROUS VYCOR GLASS

Porous materials play an increasingly important role in the

exploration of fundamental scientific issues related to diverse

technological applications including adhesion, lubrication, tribology

and the engineering of materials. Surface interactions and finite size

effects both play a key role in the qualitative modification of the

properties of the materials contained within the porous host. Due to

its light mass and weak electronic interactions, molecular hydrogen

is an ideal system to probe the effects of surface interactions. H, is

well described as a quantum rigid rotor with discrete energy levels

labeled by the rotational quantum number, J, and energies given by

Ej = BJ (J + 1 ) where B is the rotational constant which is equal

to 7.35 meV for H,. These energy levels can be studied by using

neutrons to stimulate the J = 1 to J = 0 transition of the H, molecule,

a process that is normally doubly forbidden due to the quantum

statistics obeyed by Hr When neutron stimulated conversion occurs,

the neutron gains an amount of energy equal to the rotational energy

of the molecule. This results in an extremely clean signal since

all other processes are frozen out at the low temperatures of these

measurements.

Studies of the rotational levels of H, adsorbed in Vycor,

a commercially available porous glass, were carried out for pore

fillings ranging from 0.10 (corresponding to less than a single

monolayer on the pore surface) to 0.92 (corresponding to nearly full

pores). As can be seen in Figure 1, at low filling fractions only a

single broad peak at 10 meV is present which can be attributed to

the scattering from an adsorbed layer of H, strongly bound to the

pore surface. The appearance of scattering at 14 meV, correspond-

ing to the free molecule transition, for fillings above 0.45 is associ-

ated with the appearance of “bulk’Mike material in the pore center.

The clear separation of the scattering from molecules adsorbed

on the walls and in the pore center suggests that these are quite

distinct states which we refer to as the bound and bulk-like states,

respectively.

The shift in the energy of the rotational transition at low

fillings can be directly related to the interaction of the molecules

with the surface [2], Figure 2 shows the shift of the J = 1 to

J = 0 transition as a function of the rotational energy barrier for

the molecule. From Figure 2 one finds that the observed rotational

energy of 10 meV corresponds to an orientational potential with

a barrier height of V,/B
H
= 2.7 (V

|(
= 19.8 meV). The magnitude

FIGURE 1. The top panel shows a contour plot of the inelastic scattering from

H
2
in Vycor at various pore fillings at 6 K. The bottom panel is a cut through the

contour plot at f = 0.65 (indicated by the line).

of this potential is quite large, comparable to that seen in alpha

alumina, a catalyst used for ortho-H, enrichment [3], and on leached

glass [4],

Careful inspection of the data reveals that the peak due to

the bound state actually shifts from 9.1 meV to 10.1 meV between

filling fractions, f, of 0.20 and 0.27. Thus for f between 0.27 and

0.45, the bound state may be separated into a layer in direct contact

with the pore wall and a layer that feels a weaker orientational

potential. The scattering from these two layers can be separately

determined assuming the intensity from the first layer varies linearly

with filling.
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FIGURE 2. Shift of the rotational energy levels of H
2
as a function of

barrier height.

The scattering from the second surface layer can be obtained

from the difference of the monolayer and bilayer spectra. The scat-

tering from the second layer is centered at E = 11.3 meV, compared

to the first layer which is centered at 9.1 meV, indicating that the

second layer interacts less strongly with the wall.

The width of the peak we associate with the bulk- like mol-

ecules is due entirely to instrumental resolution. This is consistent

with the view of these molecules as being free rotors with a

single well defined value for B. On the other hand, the width of

the peak which we attribute to the bound layer is much broader

than the instrumental resolution. A single well defined orientational

potential would yield a shift in the peak location, as observed, but

no additional broadening, since the energy levels would still be well

defined. Thus, we attribute this additional width to a distribution of

orientational potentials which can also be directly extracted using

the model of White and Lassettre [2] (Figure 2). After correcting for

instrumental effects, the strength of the scattering at a given energy

is directly proportional to the number of molecules which feel the

corresponding orientational potential. Thus, plotting the scattering

as a function of V/B , directly yields the distribution of orientational

potentials shown in Figure 3. As can be seen, the orientational

potential for the first layer is broad, asymmetric, and centered at

V/B

FIGURE 3. Distribution of potential barriers felt by the molecules in the first

(red) and second (blue) layers.

V
B
= 3.5B

h , whereas the potential of the second layer is relatively

narrow and centered at V
B
= 2.0B

H
, indicating a weaker interaction

with the surface.

The data allow us to draw the following picture of the adsorp-

tion of molecular hydrogen on a porous glass surface. The first

monolayer is bound tightly to the rough pore surface. The rough

surface prevents free rotation of the molecule, altering the rotational

energy states. The second layer perceives the surface roughness

smoothed by the presence of the first layer, and accordingly, the

rotational transitions are affected to a lesser degree. Subsequent to

the completion of the second monolayer, the H, molecules sense

no significant orientational interaction from the glass surface. This

is in agreement with the picture presented by Katsaros et al [5],

in which surface roughness is created by dangling bonds on the

pore surface.
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F
uel cells, which produce electricity via hydrogen oxidation to

water, have emerged in the last decade as one of the key

technologies for meeting the world’s energy needs well into the

2
1' 1

century. Solid-oxide fuel cells (SOFCs) are the most promising

among the many different types of fuel cells being developed.

However, the required high operating temperature of an SOFC

places stringent requirements on its component materials. Potential

candidates to replace the oxygen-conducting electrolyte used in cur-

rent SOFCs include the perovskite-based high-temperature protonic

conductors (HTPCs), since switching from anionic to protonic con-

duction can lower the practical operating temperature from 1300 K

to around 1000 K.

We undertook neutron vibrational spectroscopy (NVS) mea-

surements of various HTPCs (namely, SrCeO, and SrZrO, aliova-

lently doped with different rare earth cations) in order to probe the

bonding potentials experienced by the residual protons incorporated

as OH' species via steaming. At high temperatures, these protons

migrate from site to site, giving rise to protonic conduction. The

NVS measurements revealed the existence of dopant-related pertur-

bations to the bending-mode energies of OH' in SrCe
095
M

005
H 0,_g

(M = Sc, Ho, and Nd), confirming the trapping effects of the

dopants. The bending-mode energy could be correlated with the

size of the dopant cation, generally increasing for smaller cations.

NVS measurements of SrZrno.MM,H O,
R
(M = Sc, Y, and Nd)

0.95 0.05 x 3-8 v ’ ’ 7

indicated differences in the OH bending-mode energies between

the cerates and zirconates. These differences reflect changes in the

lattice potential experienced by the protons, which ultimately effects

the proton jump rates and therefore the performance of these materi-

als for use in fuel cells.

An understanding of the dynamics of the undoped

perovskites is the first step towards a comprehensive picture of

the protonated doped materials. To explore this in more detail, we

performed ab initio total-energy calculations using the CAmbridge

Serial Total Energy Package (CASTEP). We calculated the

Q = 0 phonons in the primitive unit cell (i.e., Zr
4
Sr

4
O p ) of undoped

strontium zirconate and compared with the experimental density of

states (DOS) at room temperature, as shown in Figure 1 . While at

low energies, the calculated modes are almost at the same energies

as observed modes, at high energies, we overestimate the energies

of the modes by about 10%. However there is still a one-to-one cor-

respondence between the main experimental and calculated spectral

FIGURE 1. LEFT: A view of the structure of undoped SrZr0
3
in the [001] direc-

tion. RIGHT: Vibrational spectra for SrZr0
3
measured by neutron time-of-flight

spectroscopy. The space group and the lattice parameters are also shown.

Numbers in parentheses are the theoretical values. The lower solid line is the

DOS of the Q = 0 phonons calculated from first principles.
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features, allowing us to identify the modes observed by our NVS

measurements.

In order to model the dynamics of protons trapped in

Sc-doped SrZrO,, we replaced one of the Zr atoms in the

V2XV2X1 supercell by (Sc + H), which yields a cell formula

Sr
8
Zr

7
ScHO,

4
(See Figure 2). We performed calculations for protons

at either the “undoped” (U) or “doped” (D) sites. Even though the

MO
h
octahedra are quite rigid, the distortions due to the presence of

the proton at these sites are quite large.

These distortions are also reflected by the vibrational spec-

trum of the proton. The two tangential OH- bending modes depend

strongly on the proton siting. At the Sc site, the lowest tangential

mode is found at 122.9 meV. However at the Zr site, the mode is

much softer at 88.5 meV. Interestingly, we observe new features

in our NVS spectra at these energies upon proton addition. To

further investigate this effect, we performed “embedded cluster”

calculations in which the vibrational spectrum of the H-MO
h
cluster

is calculated while all other atoms are kept at their equilibrium

positions. The similarity between experiment and the calculated

spectrum from H-ZrO
(i
+ H-Sc0

6
clusters suggests that the mode

observed near 120 meV is due to protons trapped at the Sc sites

while some portion of the peak near 80 meV is due to protons at

the undoped sites. Thus NVS can be used to determine the hydrogen

occupancy of the various sites.

For a better understanding of the protonic conduction in

these materials, we calculated the total energy of the system as the

proton migrates from Zr to Sc sites. We found that the doped site

has a much lower energy (-1.13 eV) than the undoped site. The

two sites are separated by an energy barrier of 1 .5 eV. Hence, we

expect that most of the protons are trapped at the dopant site. This

is primarily because the proton prefers to be closer to the Sc cation,

which has a charge of +3 compared to +4 for Zr. Yet, one also

has to consider steric effects; i.e., if the dopant cation has a larger

radius, then the proton may prefer to occupy the Zr site, despite

the larger Coulomb interaction. Thus these calculations indicate

that the protonic transport is sensitive to the competition between

short-range repulsive and Coulomb interactions, and suggest that

the use of a large dopant cation is one important step in developing

a HTPC with increased protonic conductivity. We are currently

testing the usefulness of the calculated proton potentials for predict-

ing the protonic diffusional motions observed experimentally via

quasielastic scattering measurements.

Energy (meV)
Distance from U-site (A)

FIGURE 2. LEFT: Optimized structures when the proton is trapped at the undoped

site (top) and at the doped site (bottom). MIDDLE: Comparison of the neutron

vibrational spectrum of SrCe
1 ii

Sc
i
H

i
0

3
(top) and SrZr,JSc^Oj (calculated).

Dashed and dotted lines shown at the bottom are the contributions from the

H-M0
g
clusters, where M = Zr (undoped site) and Sc (doped site), respectively.

RIGHT: Potential energy of the crystal as the proton migrates from the undoped

site (U) to the doped site (D).
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T he first successful demonstration of magnetic trapping of neu-

trons was performed this past year at NIST [1]. The techniques

developed should lead to improved precision in the measurement of

the neutron beta-decay lifetime, thereby expanding our knowledge

of the weak nuclear force and our understanding of the creation of

matter during the Big Bang.

Magnetic traps are formed by creating a magnetic field mini-

mum in free space. The confining potential depth is determined by

the magnetic moment of the neutron and the difference between the

magnitude of the field at the edge of the trap and at the minimum. A

neutron in a low-field-seeking state (one with its magnetic moment

anti-aligned with the local magnetic field vector) feels a force push-

ing it towards the trap minimum and will remain confined within

the trapping region.

In order to load a neutron into a static conservative trap, its

energy must be lowered while it is in the potential well. We rely

on a loading technique that employs the “superthermal process” [2],

Superfluid helium fills the trapping region and serves as a neutron

scattering medium. A neutron with kinetic energy near 1 1 K (where

the free neutron and Landau-Feynman dispersion curves cross) that

passes through the helium can lose nearly all of its energy in a

single scattering event. Neutrons that scatter to energies less than

the trap depth ( 1 niK) and in the appropriate spin state are trapped.

Neutrons in this energy range are called ultracold neutrons (UCN).

Isotopically pure superfluid helium is contained in a tube

located inside the superconducting magnet and centered axially

within its trapping field (see Figure 1). The superconducting mag-

net, trapping region, and other key parts of the apparatus reside

within a cryogenic dewar. The incident neutron beam is collimated,

passes through the trapping region, and is absorbed by the beam

stop. As the beam traverses the trapping region, about 1% of the

neutrons scatter in the helium. Some of these neutrons are trapped

and the remainder are absorbed by shielding materials that surround

the helium. Low-field-seeking UCN are trapped and remain in the

trapping region until they decay.

Acrylic lightguide

Magnet form

Racetrack coil

Trapping region
Solenoid

Cupronickel tube

10 cm

Beam stop

TPB-coated acrylic tube

Neutron shielding Collimator

FIGURE 1. Half section view of the neutron trapping apparatus. A beam

of cold neutrons enters from the left, is collimated, passes through the trap-

ping region and is absorbed at the rear. Scattered neutrons (yellow) in the

low-field-seeking spin state and with energy below the trap depth are

magnetically confined. Electrons from neutron beta-decay create EUV

scintillations in the superfluid helium which are wavelength shifted to the

visible and transported to the photomultiplier (to the right).
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The trapped neutrons are detected when they decay. When a

trapped neutron decays (into an electron, proton and anti-neutrino),

the resulting high-energy electron travels through the helium leav-

ing a trail of ionized helium atoms. These ions quickly combine

with neutral helium atoms to form metastable diatomic molecules.

Most of these molecules decay within 10 ns, emitting a pulse of

light in the extreme ultraviolet (EUV), X ~ 70-90 nm. This pulse of

scintillation light is the signal of a neutron decaying in the trap.

In an experimental run, the cold neutron beam is allowed to

pass through the trapping region, after which the beam is blocked

and pulses of light are counted. A background signal, with both

constant and time-varying components obscures the trapped neutron

signal. These backgrounds are subtracted by collecting data where

the magnetic field is on during the initial loading phase, so that

FIGURE 2. Counting rate as a function of time after the neutron beam is

turned off (pooled background subtracted data), (a) Trapping data set I,

N, = 560 ± 160, (b) Trapping data set II, N
(l
= 240 ± 65, (c) Combined trapping

signal, t = 750 » s, (d) Combined 3He data, N
3He

= 53 ± 63.
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UCN are confined by the trap and subtracting data where the

magnetic field is off initially, so that no neutrons are trapped. Equal

numbers of each data set were taken, pooled and subtracted to give

the background subtracted data.

Two sets of background subtracted data were collected: set I

with a trap depth of 0.76 mK (Figure 2a) and set II with a lower

trap depth of 0.50 mK (Figure 2b) due to problems with the magnet.

For each set, the pooled background subtracted data are modeled to

extract the amplitude and lifetime of the decaying neutron signal.

The best fit values for the initial counting rates combined with the

measured detection efficiency gives N = 560 ± 160 and N
n
= 240

± 65. Calculations using the known beam flux, trap geometry and

the theory of the superthermal process predict Nj = 480 ± 100 and

N
n
= 255 ± 50, in good agreement with the measured values. The

best fit value for the trap lifetime, t = 750fioo s is consistent with

the presently accepted value of the neutron beta-decay lifetime of

886.7 ± 1.9 s [3],

To verify that our signal is in fact due to trapped neutrons, we

doped the isotopically pure 4He with
3He at a concentration of 2 x

10' 7 3He/4
He. This amount of

3He absorbs the trapped neutrons in

less than 1 s without affecting anything else in the experiment (less

than 1% of the cold neutron beam is absorbed by
3
He). The data

(Figure 2d) is modeled with the lifetime fixed at = 750 s, yielding

N,„ = 53 ± 63, consistent with zero. This confirms that our signal

is due to trapped neutrons.

Magnetic trapping of neutrons is a new technique that should

allow a higher precision measurement of the neutron lifetime, and

offers the prospect of precision much greater than the current limit

of one part in 10
3

. In order to realize the potential of this technique,

we are in the process of improving our apparatus in many ways,

including increasing the size and depth of the trap. We expect to

make a competitive neutron lifetime measurement in the near future.
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CHARGE DISPROPORTIONATION AND
MAGNETIC ORDERING IN CaFe0

3

Transition metal oxides adopting the perovskite crystal structure

(or one of its relatives) have occupied a place in the scientific

limelight for nearly fifty years now. Beginning with the discovery

of ferroelectricity in BaTiO,, following World War II. the dielectric

properties of perovskites have been extensively studied over this

entire period. Today perovskite dielectrics, due to their widespread

usage in telecommunication, are still extensively studied. The dis-

covery of superconductivity first in doped BaBi0
3

,
and later in

the cuprates, such as YBa.Cu^O, , triggered an unprecedented

avalanche of scientific activity in the late 1980’s and early

1990’s. More recently, phenomena such a collosal magnetoresi-

tance, (CMR), charge, orbital and spin ordering, and phase separa-

tion in the manganate perovskites, (Ln
(

A
x
)Mn0

3
(Ln = lanthanide

ion, A = alkaline earth ion) have captured the imagination of the

condensed matter scientific community.

Ultimately the electronic and magnetic properties of a mate-

rial depend upon the behavior of the outermost or valence electrons.

In a first row transition metal oxide the valence electrons are shared,

though not equally, between the 3d orbitals of the transition metal

ion and the 2p orbitals of oxygen. In compounds with the perovskite

structure the oxygen atoms are arranged in an octahedral geometry

about the transitional metal ion, each oxygen is then shared by

two transition metal ions to form a three dimensional network of

corner sharing MO
h
octahedra. The octahedral coordination removes

the energetic degeneracy of the 3d orbitals, forming the familiar

triply degenerate t, and doubly degenerate e set of orbitals. The

e
p
orbitals point directly at the oxygen ligands to form a strongly

antibonding cr* bond. In contrast, the t
2o

orbitals have a smaller

overlap with the oxygen 2p orbitals, which leads to a weakly

antibonding it* band. If this covalent bonding interaction between

the transition metal and oxygen is weak, the valence electrons

are localized and a magnetic insulator is typically observed. If

we increase the strength of the interaction sufficiently, either by

increasing the electronegativity of the transition metal ion or the

spatial overlap of the metal 3d and oxygen 2p orbitals, partial

delocalization of the valence electrons can occur. Frequently, this

leads to metallic conductivity. In a number of transition metal

oxides the metal-oxygen interaction strength is such that delocalized

FIGURE 1. The low temperature structure of CaFe0
3
. The green spheres depict

the calcium ions. The other shaded objects represent iron centered octahedra,

where an oxygen atom can be found at each vertex and an iron atom at

the center of each octahedron. The purple and blue objects represent Fe3*

centered and Fe5+ centered octahedra respectively.

electrons and metallic conductivity are seen at higher temperatures

but give way to a magnetically ordered, insulating ground state

upon cooling.

LaMnO,, SrFeO, and CaFeO, are isolectronic, they each have

an electronic configuration of t
1o

3
e According to the Jahn-Teller

theorem, the presence of a single localized electron in the doubly

degenerate e
,

set of orbitals is not a stable situation. LaMnO,

responds to this instability by undergoing a cooperative Jahn-Teller

distortion of the Mn0
6
octahedra, producing two long and four short

Mn-0 bonds. Thereby, removing the degeneracy of the e
,

orbitals.

SrFeO, takes a different approach, by delocalizing its e
,

electrons

to form a a* band. The contrasting behavior of these two materials

can be understood in terms of the strength of the metal-oxygen
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interaction. Contrasting LaMnO, to SrFeO,, the oxidation state of

the transition metal increases from +3 to +4. which leads to an

increase in the metal-oxygen interaction strength, increasing the

width of the <r* band and stabilizing a metallic ground state. Since

they both contain Fe4+
, one might expect that CaFeO, and SrFeO,

would behave very much alike. However, Ca2+
is smaller than Sr

2+
,

which causes a tilting of the Fe0
6
octahedra to satisfy the valence

requirements of calcium. This seemingly subtle distortion has sev-

eral important consequences. The Fe-O-Fe bond is distorted away

from the linear geometry observed in SrFeO, (the Fe-O-Fe angle

is 158° in CaFeO,). This reduces the spatial overlap of the Fe e,

and O 2p orbitals and the width of the cr* band, decreases. The

reduction in bandwidth triggers an electron localization that occurs

just below room temperature (290 K). Once electron localization

occurs, a cooperative Jahn-Teller distortion to the LaMnO, crystal

structure is expected.

However, CaFeO, refuses to conform with expectations.

Instead CaFeO, undergoes a charge disproportionation (CD), 2Fe4+

(C
3
e ') -» Fe 3+

(t
3
e

2
) + Fe5+

(t,
3
e °). Evidence for a CD in CaFeO

was first proposed over 20 years ago, based on Mossbauer studies

[1], However, crystallographic confirmation of this rare phenom-

enon has proven elusive. Through the combined use of synchrotron

x-ray (X7a-NSLS) and neutron powder diffraction (BT-1 at NCNR),

we have elucidated the crystal structure of CaFeO, in its CD state

for the first time. The resulting structure (Figure 1) clearly shows

the presence of two chemically and crystallographically distinct Fe

sites. The average Fe-0 bond length about the “Fe5+” site is 1.872(6)

A, while the same distance about the “Fe3+” site is 1.974(6) A.

The ordered arrangement of Fe3+
/Fe

5+
is such that each Fe3+

is sur-

rounded by six Fe5+
ions, and vice versa (NaCl or G-type ordering),

optimizing the Coulomb stabilization of the CD state. Alternately,

the CD process can be viewed as the condensation of a breathing

phonon mode.

In addition to electronic properties, there has long been both

technological and fundamental scientific interest in the magnetic

properties and interactions in perovskites containing transition metal

ions. Goodenough’s study of the various antiferromagnetic struc-

tures observed in the (La!
v
Ca

x
)MnO, system was vital in the devel-

opment of the Goodenough-Kanamori rules of superexchange [2],

These rules correctly predict an A-type antiferromagnetic structure

for LaMnO,. Using the same rules, we would expect CaFeO, to

have a simple ferromagnetic ground state. Perhaps not surprisingly,

our investigation showed that again CaFeO, defies expectations.

Low temperature neutron powder diffraction data reveals instead

an incommensurate antiferromagnetic ground state (T «*120 K).

Analysis of the data shows the magnetic structure to be either

a screw spiral or a sinusoidal amplitude-modulated structure. In

either case, it would appear that a long range AFM interaction

(probably between next-neighbors) is present in addition to the

nearest neighbor FM superexchange interaction.
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BOND VALENCE ANALYSIS
OF RUTHENATES

B ond valence analysis allows us to evaluate, for any compound

whose bonding scheme is known or assumed, the bond dis-

tances that the atoms would form in an ideal structure in which

all atomic valences are exactly balanced. In a significant number

of cases this information is sufficient to make accurate predictions

about the real crystal structure of the compound.

The bond valence method is based on two concepts that can

be stated in the following way.

(i) A bond valence v = v is assigned to a bond between

atoms i and of valences V(i) and V(j), so that

«(<) n(j)

X
j

V
tj
=V(i) and X

i

v
ji
= V U) (1)

1
i

where n(i) and n(j) are the number of atoms in the coordination

spheres of / and;, respectively. This principle of local valence

balance is a generalization of Pauling’s principle of local charge

balance in ionic crystals, and is known as the valence sum rule [1],

(ii) The sum of the bond valences around any loop in the

structure, taken with alternating signs, is equal to zero

Y v
,,
= 0 (2)

Equation (2) expresses the mathematical conditions that result

in the most regular distribution of the valences among the bonds in

a structure and is known as the equal valence rule [1], The system

of equations (1) and (2) allows us to evaluate the valences of all the

individual bonds if we know how the atoms are bonded together in

a structure [2], The description of atomic bonding in terms of bond

valences is useful because the length d of a bond between atoms

i and
j

is a function only of the bond valence n . The relationship

between these two quantities is expressed by the empirical formula

d
ij

= Rij -031 ln V.J (3)

where the bond valence parameter R .. depends on the nature and the

oxidation states of atoms i and j forming the bond, and expresses

the length of a bond of unit valence. Values of R can be evaluated

from the bond distances of known structures and are tabulated for

most chemical species [3,4], By means of equations (1-3) we may

evaluate the expected bond lengths for any known atomic configura-

FIGURE 1. Schematic representation of (a) the 4-layer structure of TRu0
3

(T = 0.875 Ba + 0.125 Sr); and (b) the 9-layer structure of BaRu0
3

. For clarity

only the Ru and 0 atoms are shown in the figure. The symbols c and f indicate

the layers on which the RuO
e
octahedra share corners and faces, respectively.

tion. These distances satisfy exactly the valence requirements of the

atoms and, in general, differ significantly from those determined

experimentally. The discrepancies are in some cases due to the elec-

tronic behavior of particular cations, which may cause distortions

not accounted for by the bond valence model (for example, lone

pair distortions around cations such as Bi3+ and Pb :+
, or Jahn-Teller

distortions around Mn3+ and Cu 2+
). In the majority of cases, how-

ever, the bond lengths calculated with equations (1-3) are incom-

mensurate under the constraints imposed by the crystal geometry,

and have to be stretched or compressed in order to fit them into a

particular configuration. Since these changes introduce strains into

the structure, the process of adapting the theoretical model to the

requirements of a space group symmetry must be carried out in

such a way that the violations of the bond valence sum rule and

of the equal valence rule are kept as small as possible. We have

recently applied the concepts discussed above to the determination

of the crystal structures of TRuO, (T = 0.875Ba + 0. 1 25Sr) [5] and

BaRuO, [6], using initially only the information obtained from the

indexing of the neutron diffraction patterns of these materials (i.e.

crystal system symmetry and lattice parameters), and ignoring any
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other structural details obtained in the experimental work. Since T 2+

and Ba2+ have ionic radii similar to that of O2
', we may expect that

the structures of TRuO, and BaRuO, are built with some sphere

packing mechanism. This assumption is corroborated by the fact

that in both cases the a-parameter calculated from the average r

of the ionic radii of A and 0 (A = 7, Ba) for the composition

AO, is in good agreement with the experimental values, and by

the fact that the ionic radius of Ru4+
is quite close to the radius of

the octahedral void formed by the close packing of oxygen anions.

The periodicity n of the stacking sequences of the AO, layers

in the vertical direction of the c-axis, evaluated with the formula

n = c/(2r v^/3), shows that TRuO, and BaRuO, have 4- and 9-layer

structures, respectively, in which the RuO
h
octahedra are related to

one another as indicated in Figures la and lb.

In order to fit this configuration, the theoretical bond lengths

calculated with equations (1-3) have to be changed, and in particular

the A-0 bonds have to be compressed, on the average, and the

Models of the Structure of BaRu0
3
(R3m).

1 2 3 4

Lattice parameters (A) and atomic positions

a 5.754 5.754 5.747(1) 0.007

c 21.142 21.626 21.602(1) 0.024

X 1/6 0.1769 0.1769(1) 0.0000

z
,

1/9 0.1087 0.1082(1) 0.0005

Z
2

2/9 0.2185 0.2175(1) 0.0010

Z
3

7/18 0.3844 0.3829(1) 0.0015

Bond distances (A)

Ba(1)-0(1) 2.877 2.877 2.8733(1) 0.004

-0(2) 2.877 2.938 2.926(2) 0.012

Ba(2)-0(1) 2.877 2.988 3.002(2) -0.014

-0(2) 2.877 2.882 2.880(2) 0.002

-0(2’) 2.877 2.957 2.945(3) 0.012

Ru(i)-0(i) 2.034 2.001 2.005(2) -0.004

Ru(2)-0(1) 2.034 1.995 1.974(1) 0.021

-0(2) 2.034 1.995 2.007(2) -0.012

Ru-0 bonds have to be stretched. This process of relaxation of

the initial model is carried out by modifying the structural param-

eters obtained from sphere packing geometry in such way that the

violations of equations (1) and (2) are contained within reasonable

bounds [7], The results of the bond valence analysis of BaRuO, are

reported in Table 1, where they are compared with the correspond-

ing values determined experimentally. Similar results, reported in

reference [5], were obtained for TRuO,. The agreement between

the observed and calculated structures is quite good for both com-

pounds, and the differences between bond distances are well within

0.02A. This result proves that, at least in favorable cases, the bond

valence method may yield an accurate model of the structure with-

out requiring more information than that needed to index a powder

pattern. More importantly, however, it shows that the need to satisfy

the valence requirements of the atoms with an acceptably regular

distribution of the bond valences, is the driving force in determining

the magnitude and the direction of the atomic shifts allowed by

the symmetry, and that, as a consequence, non-bonded metal-metal

and oxygen-oxygen interactions do not play an important role in

the way in which the structures of these ruthenates are built. In

particular, the shifts that pull together the oxygen atoms forming

the shared faces of the RuO
h
octahedra (thus providing a shielding

effect to Ru-Ru interactions) are specifically designed to improve

the local valence balance of the Ru and O atoms involved in the

Ru-0 bonds. Application of the method to structural types other

than perovskites is now under consideration.
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Note. 1, commensurate structure derived from sphere packing geometry

;

2, model obtained with the relaxation process discussed in the text; 3,

experimental results; 4, difference between calculated and observed values.

The theoretical bond distances calculated with equations (1-3) are:

T-0 = 2.932k, Ba-0 = 2.948k and Ru-0 = 1.984k.
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RESIDUAL STRESSES IN COLD-COILED
HELICAL AUTOMOMOTIVE SPRINGS

M ost front-wheel-drive automotive suspension systems use

helical springs. The process chosen to produce these is,

like any other engineering dilemma, determined by quality, perfor-

mance. price, environmental issues, etc. Ford Motor Company has

developed a potentially cost saving cold-coiling process in which

less time is spent treating spring metal at elevated temperatures.

The pronounced residual stress pattern within the as-cold-coiled

spring is undesirable for its unpredictable effect on fatigue and

coiTosion behavior, and Ford evaluates these stresses by X-ray mea-

surements of the surface stress field along with modeling of the

internal stresses. The success of these at-home procedures requires

an independent verification of the actual residual stress field over

the cross-section of the original wire stock. The only available well-

established method for this is neutron diffraction, and that is where

NCNR expertise comes into play.

Generally, there are two ways to coil a spring: hot coiling

and cold-coiling. Hot coiling implies that the spring is wound from

stock at or above the recrystallization temperature. The strength

and fatigue resistance are controlled afterwards by an appropriate

heat treatment. Cold-coiling means that the helical winding takes

place at a low temperature after the spring has been hardened and

tempered. Cold-coiling allows the high temperature heat treatments

to take place on the bar stock, which is easier to handle then the

coiled end-product. The resulting residual stresses can be essentially

eliminated by a relatively low temperature tempering treatment fol-

lowing the cold coiling.

The idea is to measure the residual stress field in a number of

specimens that represent various stages of the production process.

Using neutron diffraction one can determine the effect of the prior

processing on the residual stress state of that particular stage in

the process. Of equal importance, these measurements can serve to

verify well established elasto-plastic models that are being used to

predict the formation of residual stress. Finally one can look for a

way to correlate the residual stress at the surface to the stress field

as a whole.

We have looked at three cold-coiled springs. The first spring

is an as-cold coiled spring. The second one is cold-coiled followed

by a relatively low temper. The third one is identical to the second

one, but in addition to being tempered the spring has been com-

pressed to the point where the length of the spring is equal to the

FIGURE 1. Experimental setup. The three arrows indicate three directions of

measured lattice spacing with respect to the specimen: A = axial, R = radial,

T = tangential. In the current configuration, the spacing of planes whose

normal is parallel to T is being measured. The sampling volume is defined by

the primary aperture P and secondary aperture S, respectively.

number of windings times the wire thickness. After this the spring

was allowed to relax. A small part of this torsion strain is in the

plastic region, so this spring is slightly shorter than all the others. In

the automotive industry this process is know as “bulldozing”.

The measurements were carried out on the Double Axis

system for Residual stress, Texture and Single crystal analysis

(DARTS) at beam tube 8 (BT-8) in the NIST Center for Neutron

Research. This instrument is specifically designed for residual stress

measurements, and to that effect is equipped with very accurately

positioned apertures as is shown in Figure 1.

For these experiments the apertures were chosen to allow

a sampling volume of 2 x 2 x 2 mm3
. The residual stress in

the three springs across the cross-section of the originally 14 mm
thick wire stock was determined by detecting the diffracted mono-

chromatic neutron intensity with a position sensitive detector. The

neutron wavelength was chosen such that the [211] Fe planes would

scatter diffracted intensity over approximately 90°. The specimen

was rotated and translated in this geometry, such that the sampling

volume was scanned across this cross-section allowing the elastic

(residual) strain to be determined from the small shifts in scattering

angle. This was done in three mutually perpendicular directions.
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FIGURE 2. Contour map of the residual stress in the direction of the length of

the coiled bar stock, plotted on the bar stock cross-section. With reference

to Figure 1, this is the tangential direction. This map represents the as-cold-

coiled spring. The left and right side of the map represent the convex and

concave sides respectively.

These strain measurements allowed us to calculate the residual

stress in three perpendicular directions from the equations published

by Allen et al. [1J in each of the three specimens. For every speci-

men, the stress free lattice parameter was determined on the basis

that the net force on the cross-section under investigation had to

be zero.

From these experiments a set of interesting observations can

be made. First is the notion that the residual stress pattern across the

wire stock in the as-coiled spring is very pronounced and exactly

matches what one would expect when a cylindrical bar is plastically

bent into a hoop, a process much resembling helical coiling. With

reference to Figure 2 we note essentially uniaxial residual stress in

the length direction of the original wire stock. Through the diameter

of the stock, the stress goes from highly compressive at the convex

side to highly tensile at the concave side. On its way through the

cross-section the stress level changes sign three times, while the

maximum compressive and tensile stresses are -600 MPa and +800

MPa respectively. For the tempered and bulldozed specimens the

pattern is roughly the same, albeit at a much reduced level. The

stress range being from -170 to +160 MPa as depicted in Figure 3.

Annealed 1 5coll tangerrtlal stress

x(mm)

FIGURE 3. Same as Figure 2, these data representing the as-tempered spring.

The data for the as-bulldozed spring, though not given here, look essentially

the same.

The uncertainties in these stress levels are around ±30 MPa.

This means that the bulldozing process does not introduce addition

residual stresses, a fact that can be well understood considering that

the plastic deformation under pure torsion is essentially uniform and

thus cannot contribute to the residual stress state.

These results will allow Ford to correlate their model pre-

dictions and X-ray residual stress measurements to the complete

residual stress field. This constitutes a powerful tool in optimizing

the parameters of the spring manufacturing process.
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T he first experiments have been performed on the NCNR’s

Neutron Spin Echo (NSE) Spectrometer, which is the only

spectrometer of its kind in the United States. This cold neutron

spectrometer allows studies of dynamic processes in macromolecu-

lar systems that are relevant to, among others, polymer [1 ]
and

biomedical [2] sciences. It covers a time-scale of 0.01-100 ns and

a length-scale of 2-200 A with the equivalent of extremely high

energy resolution and moderate Q-resolution. Unlike the other high-

resolution inelastic instruments at the NCNR which measure in

the energy domain, the NSE spectrometer measures, in the time

domain, the real part of the intermediate scattering function. I(Q,t).

This is done by using the neutron's spin precession in a magnetic

field as a clock to determine the energy transfer in the scattering

process.

The NSE spectrometer, developed in partnership with Exxon

Research and Engineering and the Forschungszentrum Jiilich in

Germany [3], is located at the end position of the NG-5 guide.

The guide is tapered horizontally and then deviated so that the

spectrometer is out of the direct line of sight of the reactor core,

thereby reducing the background and the radiation load on the

sample region [4], The taper is followed by a Neutron Velocity

Selector (NVS), which transmits a AA./X = 10% FWHM band of

neutrons to the spectrometer. The last element of the guide is a

transmission polarizer [5], which produces a polarized beam of

neutrons with spin anti-parallel to the beam direction for wave-

lengths greater than 5 A. The neutrons precess, from the first n/2-

flipper (1) to the sample, through a phase angle that is determined

by the time that the neutron spends in the solenoidal magnetic field

(4) and the field integral along the neutron path. Near the sample, a

Tr-fiipper (2) rotates the spin by 180° around the vertical axis. If the

solenoid on the second arm of the spectrometer provides the same

field integral for the scattered neutron and if the scattering is elastic,

the neutron will precess through the same phase angle as along the

first arm and will end up with the original spin orientation at the

final tt/2 flipper (3). This ir/2-flipper rotates the spin back into the

horizontal plane. If the neutron is scattered quasielastically, it will

precess a slightly different number of times in the second arm of the

spectrometer and end up at the second Tr/2-flipper rotated by some

angle that is proportional to the wavelength shift. The analyzer (7)

projects the component of the neutron spin that is parallel to the

field direction onto the detector.

Figure 2 shows the detector count rate as a function of current

in the phase coil (5), which changes the field integral on one arm

of the spectrometer. The field integrals for the first and second arms

of the spectrometer are equal at the echo point where the amplitude

is at a maximum, since for an elastic scatterer the neutrons all

arrive at the analyzer in phase. As the phase current is changed,

the neutron spins rotate away from the polarization axis of the

analyzer (7) and the count rate is changed. The period of this oscil-

lation is proportional to the mean wavelength. The envelope of the

Polarizer

tt/2 B tt B tt/2

8

FIGURE 1: (Top) Schematic plan view of the NSE spectrometer. The numbers

refer to spectrometer elements as described in the text. (Bottom) Changes

of neutron spin orientation passing through the spectrometer elements for

elastically (black) and inelastically (blue) scattered neutrons.
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FIGURE 2: Phase scan of an echo for an elastic scatterer (Grafoil). A is the

amplitude at the echo point; N
on
and N

0FF
are counting rates with the Tr-flipper

on and off, respectively, and the tt/2 flippers off.

10% SDS in D O
2
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oscillations gives the wavelength distribution. The amplitude A is

proportional to I(Q,t), which can be normalized by measuring the

difference in intensity with the Tr-ilipper on and off, N
on
-N

off
For

the normalizing measurement, which is proportional to I(Q,t=0), the

Tr/2-flippers are off since there is no precession of the neutrons in

this configuration. Instrumental resolution effects are removed by

dividing the normalized sample signal by the normalized values

from an elastic scatterer.

We have also verified the operation of the correction elements

(6) which allow non-axial and divergent neutrons to satisfy the echo

condition. These are essential for operation at high fields. The value

of the resolution amplitude at 25 ns in Figure 3 would be at least

a factor of ten smaller without the contribution of the correction

elements.

As an example of the science that is available through NSE,

we have reproduced the measurements of Hayter and Penfold [6]

on a micellar solution of 10% sodium dodecylsulfate (SDS) in D,0.

Figure 3 shows the normalized intermediate scattering function ver-

sus time at several Q values at, well below, and well above the inter-

action peak in the structure factor. The effective diffusion constant

D (Q), obtained from I(Q,t) ; exp(-D
ff
(Q)Q

2
t), varies inversely with

the structure factor, reaching a minimum at the structure factor

peak, an effect analogous to DeGennes narrowing. As a result, in

a dilute solution of interacting micelles, one may unambiguously

separate the structure factor from the form factor, which may not be

done with only a SANS measurement.
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FIGURE 3: Normalized and resolution-corrected measurements of the

intermediate scattering function at the indicated Q-values for 10% SDS in D
2
0

at room temperature. The resolution curve is a normalized measurement of an

elastic scatterer (Grafoil) at 10 A.
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SERVING THE SCIENTIFIC AND
TECHNOLOGICAL COMMUNITIES

Providing neutron beam methods to the US research community

is a central purpose of the NCNR. Intense neutron sources

are scarce, as are the advanced instruments needed to fully exploit

them. Expert scientists will always recognize opportunities to per-

form research with the most powerful tools available, so that the

existence of the NCNR as the nation’s premier reactor-based neu-

tron facility stimulates considerable demand from the community.

However, in order to foster the best possible science, many of our

procedures and activities are designed to encourage researchers to

learn more about our capabilities, and eventually to obtain instru-

ment time through proposals and collaborations. The first instru-

ments became operational in the NCNR guide hall in 1991, and

a formal proposal system was started to accommodate users from

universities, industry and government laboratories. Since then, the

quantity and the diversity of research carried out at the NCNR has

grown steadily, and the number of research participants (Figure 1 ) is

now several times larger than it was just a few years ago.

2000

In FY99 Research Participants were from:

23 NIST Divisions and Offices

Fiscal Year

FIGURE 1. Research participants at the NCNR.

THE USER PROGRAM

NIST has always relied on advice from accomplished scientists

to assist in formulating policy. The Program Advisory Committee

(PAC) is the body primarily responsible for proposal review and

recommending user policies for the NCNR, working closely with

the Center’s Director and staff. Its current membership includes

Sanat Kumar (Penn State University, chair), Robert M. Briber

(University of Maryland), Michael K. Crawford (DuPont), Dieter

K. Schneider (Brookhaven National Laboratory), Thomas P. Russell

(University of Massachusetts), Sunil K. Sinha (Argonne National

Laboratory), Emile A. Schweikert (Texas A&M University),

Laurence Passell (Brookhaven National Laboratory), and Gabrielle

G. Long (NIST).

At their meeting in May 1999, the PAC made several recom-

mendations for improving the current system. They felt that pro-

gram proposals for longer-term projects had not had their intended

effect of reducing the burden for external reviewers, and should

be discontinued for the time being. Noting a potential for large

increases in instrument time for biology-related proposals in the

next few years, the addition of another PAC member with expertise

in that area was recommended. The PAC discussed the results of

a recent independent survey of user satisfaction, coordinated by

Anne Mayes of MIT. Ideas for obtaining more feedback from users

were also considered. Incidentally, Professor Mayes, the head of the

NCNR User’s Group, recently won the American Physical Society’s

Dillon Medal, partly for work carried out using NCNR instruments.

Most of the PAC meeting was devoted to proposal review.

With the help of several written reviews for each proposal from

selected experts, the PAC considered 151 proposals requesting 1 138

instrument-days, and allocated 514 instrument-days to 95 proposals

for SANS, reflectometry, SPINS, and time-of-flight instruments.

The PAC usually meets twice a year, but because of a planned

shutdown for cold source and reactor upgrades, only one meeting

was held in 1999.
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FIGURE 2: Nick Rosov explains the operation of the Neutron Spin Echo

Spectrometer to summer school participants.

SOMMER SCHOOL ON METHODS AND
APPLICATIONS OF NEUTRON SPECTROSCOPY

Each summer for the past five years, the NCNR has held a one-

week school to introduce researchers to the methods of neutron

scattering. Organized by senior staff members John Copley and

Peter Gehring, the 1999 summer school was devoted to spectrosco-

py with neutrons, with an emphasis on the opportunities afforded by

new instruments in the guide hall. Most of the 32 participants, cho-

sen from almost 60 who applied, were graduate students and post-

doctoral fellows. The curriculum consisted of lectures by NCNR

staff and experts from other institutions, tours of the facility, and

four three-hour, hands-on, sessions at instruments in the guide hall.

Informal discussions among students and the resident staff were

also an important part of the school’s activities.

Beginning with lectures on the fundamental concepts of

nuclear and magnetic scattering, the agenda turned to talks on appli-

cations of neutron spectroscopy to a wide range of research topics.

Subsequent presentations covered the reactor and cold source,

specific scattering techniques, computer modeling and ab initio

calculations, and the operating principles of various spectrometers

used in the experimental sessions. In the latter, students and staff

used time-of-flight, backscattering, triple-axis, and neutron spin-

echo spectrometers to measure, respectively, quasielastic scattering

from water, rotational tunneling in solid methyl iodide, magnetic

excitations in a geometrically frustrated antiferromagnet, and

coherent scattering from the time domain in a system of spherical

micelles. (The last example is illustrated in the article on the

Neutron Spin Echo Spectrometer.) The lecture materials will be

placed on the NCNR website, in order to reach as wide an audience

as possible.

THE CENTER FOR HIGH-RESOLUTION NEUTRON
SCATTERING fCHRNS)

Supported by the National Science Foundation (NSF), CHRNS is a

very important component of the user program. It operates a suite of

three instruments, including a 30-m SANS machine, the SPINS tri-

ple-axis spectrometer, and a double-crystal, high-resolution SANS.

The last of these is under construction. Approximately 40% of the

instrument time allocated by the PAC goes to experiments carried

out on CHRNS instruments. The NSF is currently reviewing the

CHRNS renewal proposal, which requests support for upgrading

existing instruments and including an improved 9-m SANS instru-

ment within CHRNS. Approval would mean an increase of more

than 50% in CHRNS’ capacity to serve users.

COLLABORATIONS

Direct collaborations on specific experiments remain a common

way for users to pursue their ideas using NCNR facilities, account-

ing for approximately 60% of the number of instrument-days. The

thermal-neutron triple-axis spectrometers are mainly scheduled in

this way. Most of the time reserved for NIST on these and all

other NCNR instruments is also devoted to experiments that are

collaborations with non-NIST users.

Another mode of access to the NCNR is through Participating

Research Teams (PRTs). In this case, groups of researchers from

various institutions join forces to build and operate an instrument.

Typically, 50 to 75% of the time on the instrument is then reserved

for the PRT, and the remaining time is allocated to general user pro-

posals. For example, a PRT involving Exxon-Mobil, the University

of Minnesota, Texaco R&D and NIST cooperates on the NG-7 30-m

SANS instrument. Similar arrangements involving other PRTs apply

to the horizontal-sample reflectometer, the high-resolution powder

diffractometer, and the neutron spin-echo spectrometer.

NIST CENTER FOR NEUTRON RESEARCH 47



INDEPENDENT PROGRAMS

There are a number of programs of long standing located at the

NCNR which involve other parts of NIST, universities, industrial

laboratories, or other government agencies.

The Polymers Division of the Materials Science and

Engineering Laboratory has two major program elements at the

NCNR. In the first, the purpose is to help the U.S. microelectronics

industry in addressing their most pressing materials measurement

and standards issues. In today’s ICs and packages, the feature size

on a chip is ever shrinking, approaching 250 nm, while the size of a

polymer molecule is typically 5-10 nm. As feature size shrinks, the

structure and properties of interfaces play an increasingly important

role in controlling the properties of the polymer layers used in inter-

connects and packages. NIST scientists use both neutron reflectivity

and other neutron scattering methods to characterize polymer/metal

interfaces with regard to local chain mobility, moisture absorption,

glass transition temperature and crystalline structure. In the second

program element, the objective is to understand underlying prin-

ciples of phase behavior and phase separation kinetics of polymer

blends, both in the bulk and on surfaces, in order to help control

morphology and structure during processing. SANS and reflectivity

measurements in equilibrium, in transient conditions, and under

external fields, provide essential information for general understand-

ing as well as for specific application of polymer blend/alloy

systems. Customers include material producers and users, ranging

from chemical, rubber, tire, and automotive companies, to small

molding and compounding companies. The focus of research on

polymeric materials includes commodity, engineering and specialty

plastic resins, elastomers, coatings, adhesives, films, foams, and

fibers.

The Exxon-Mobil Research and Engineering Company

is a member of the Participating Research Team (PRT) that operates,

maintains, and conducts research at the NG-7 30m SANS instru-

ment and the recently commissioned NG-5 Neutron Spin Echo

Spectrometer. The mission is to use those instruments, as well as

other neutron scattering techniques, in activities that complement

research at Exxon-Mobil’s main laboratories as well as at its affili-

ates’ laboratories around the world. The aim of these activities is

to deepen understanding of the nature of Exxon-Mobil’s products

and processes, so as to improve customer service and to improve

the return on shareholders’ investment. Accordingly, and taking full

advantage of the unique properties of neutrons, most of the experi-

ments use SANS or other neutron techniques to study the structure

and dynamics of hydrocarbon materials, especially in the fields of

polymers, complex fluids, and petroleum mixtures. Exxon-Mobil

regards its participation in the NCNR and collaborations with NIST

and other PRT members not only as an excellent investment for the

company, but also as a good way to contribute to the scientific health

of the nation.

The Nuclear Methods Group (Analytical Chemistry

Division, Chemical Science and Technology Laboratory) has as its

principal goals the development and application of nuclear analytical

techniques for the determination of elemental compositions with

greater accuracy, higher sensitivity and better selectivity. A high

level of competence has been developed in both instrumental and

radiochemical neutron activation analysis (INAA and RNAA). In

addition, the group has pioneered the use of cold neutron beams

as analytical probes with both prompt gamma activation analysis

(PGAA) and neutron depth profiling (NDP). PGAA measures the

total amount of a particular analyte present throughout a sample

by the analysis of the prompt gamma-rays emitted during neutron

capture. NDP, on the other hand, determines concentrations of

several important elements (isotopes) as a function of depth within

the first few micrometers of a surface by energy analysis of

the prompt charged-particles emitted during neutron bombardment.

These techniques (INAA, RNAA, PGAA, and NDP) provide a

powerful combination of complementary tools to address a wide

variety of analytical problems of great importance in science and

technology, and are used to help certify a large number of NIST

Standard Reference Materials. During the past several years, a large
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part of the Group’s efforts has been directed towards the exploitation

of the analytical applications of the guided cold-neutron beams

available at the NIST Center for Neutron Research. The Group’s

involvement has been to design and construct state-of-the-art cold

neutron instruments for both PGAA and NDP and provide facilities

and measurements for outside users, while retaining and utilizing

our existing expertise in INAA and RNAA.

The Center for Food Safety and Applied Nutrition of the

U. S. Food and Drug Administration (FDA) directs and maintains

a neutron activation analysis (RNAA) facility at the NCNR. This

facility provides agency-wide analytical support for special investi-

gations and applications research, complementing other analytical

techniques used at FDA with instrumental (INAA), neutron-capture

prompt-gamma (PGAA), and Radiochemical Neutron Activation

Analysis (RNAA) procedures, radioisotope X-ray fluorescence spec-

trometry (RXRFS), and low-level gamma-ray detection. This combi-

nation of analytical techniques enables diverse multi-element and

radiological information to be obtained for foods and related materi-

als. The RNAA facility supports agency quality assurance programs

by developing in-house reference materials, by characterizing food-

related reference materials with NIST and other agencies, and by

verifying analyses for FDA’s Total Diet Study Program annually.

Other studies include the development of RXRFS methods for

screening foodware for the presence of Pb, Cd and other potentially

toxic elements, use of INAA to investigate bromate residues in

bread products, and use of PGAA to investigate boron nutrition

and its relation to bone strength. The FDA’s RNAA laboratory

personnel frequently provide intra-agency technical assistance, the

most recent example being participation in the production of the

document “Accidental Radioactive Contamination of Human Food

and Animal Feeds: Recommendations for State and Local Agencies”

by the Center for Devices and Radiological Health.

The Neutron Interactions and Dosimetry Group

(Physics Laboratory) provides measurement services, standards, and

fundamental research in support of NIST’s mission as it relates

to neutron technology and neutron physics. The national and indus-

trial interests served include scientific instrument calibration, elec-

tric power production, radiation protection, defense nuclear energy

systems, radiation therapy, neutron radiography, and magnetic reso-

nance imaging. The Group’s activities may be represented as three

major activities. The first is Fundamental Neutron Physics - includ-

ing operation of a neutron interferometry and optics facility, devel-

opment of neutron spin filters based on laser polarization of %e,

measurement of the beta decay lifetime of the neutron, and investi-

gations of other coupling constants and symmetries of the weak

interaction. This project involves a large number of collaborators

from universities and national laboratories. The second is Standard

Neutron Fields and Applications - utilizing both thermal and fast

neutron fields for materials dosimetry in nuclear reactor applications

and for personnel dosimetry in radiation protection. These neutron

fields include thermal neutron beams, “white” and monochromatic

cold neutron beams, a thermal-neutron-induced fission neutron

field, and ~~^Cf fission neutron fields, both moderated and unmod-

erated. The third is Neutron Cross Section Standards - including

experimental advancement of the accuracy of neutron cross section

standards, as well as evaluation, compilation and dissemination of

these standards.

Several universities have also established long term programs

at the NCNR. The University of Maryland is heavily involved

in the use of the NCNR, and maintains several researchers at

the facility. Johns Hopkins University participates in research

programs in solid state physics and in instrument development at the

NCNR. The University of Pennsylvania is working to help develop

biological applications of neutron scattering. It is also participating

in the construction of a new filter analyzer neutron spectrometer,

along with the University of California at Santa Barbara, DuPont,

Hughes, and Allied Signal. The University of Minnesota partici-

pates in two PRTs, the NG-7 30-m SANS and the NG-7 reflectom-

eter. The University of Massachusetts also participates in the latter

PRT.
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REACTOR OPERATIONS
AND ENGINEERING

T he reactor operated for 250 full power (20 MW) days during the

past year, or 68% of real time. This meets our goal, and was

achieved in spite of a shutdown for maintenance early in the fiscal

year. The reactor operated with better than 90% predictability— i.e.

days operated on the day originally scheduled. This is substantially

better operation than is specified in national goal of 85% reliability

for user facilities. Just after the end of the fiscal year, another fuel

shipment was made, thus clearing additional space in the spent fuel

storage pool. This completes our current round of scheduled spent

fuel shipments. There is now ample storage space for at least 5 years

of continuous 20 MW operation.

As part of preparing for another 20 years of operation past

2004, we have been assessing the present cooling tower. During the

past year, a contract for construction of a hybrid wet/dry tower was

signed. This new tower will not only meet our cooling needs; it

will also reduce the visible plume given off by the tower during the

winter months, a substantial additional benefit. The new tower will

be erected adjacent to the current one, and will not require an outage

until the switch is made. This outage will be scheduled when the new

tower is fully ready for use, so as to minimize down time. Extensive

planning for the piping changes that will be needed is now underway.

It is expected that the new second-generation cold source will be

installed at the same time, so as to maximize operating time.

During the coming year, we will take advantage of the normal

Christmas shutdown to replace the shim control arms. This operation

is required every 4 - 5 years, since the cadmium in the control

arms is burned up in service. By utilizing the time period of the

holiday shutdown, the entire operation will be done with only 3

weeks of additional shutdown time. Since this period will also be

used for required training and requalification of operations personnel,

there will be little lost operating time compared to our best possible

schedule.

A major highlight of the year was the annual conference of

the National Organization of Test, Research and Training Reactors

(TRTR) held at NIST, chaired and organized by the group. By all

accounts, it was highly successful with the largest number of partici-

pants ever. Many distinguished speakers addressed the conference

including the Chairman of the Nuclear Regulatory Commission and

the Undersecretary of Energy. Also, TRTR became the first profes-

sional organization to honor NIST on its forthcoming centennial.

Finally, preparations for a license renewal application are

proceeding as planned. We are fortunate to have attracted Dr.

Seymour H. (Sy) Weiss to our staff, as Deputy to NCNR Director. He

will be leading the relicensing effort and associated reactor upgrades

for the coming years, and has already started several tasks related

to this effort.

50



INSTRUMENTATION
DEVELOPMENTS

IMPROVEMENTS TO THE
PERFORMANCE OF HFBS

The recent commissioning of the high flux backscattering spectrom-

eter (HFBS) has opened up opportunities to a variety of users from

around the country to study the dynamics of condensed matter

systems with time scales on the order of nanoseconds (10'
CJ

) and

length scales up to 10 A. A careful design which incorporates state-

of-the-art neutron optics has resulted in a flux on sample as high

as that of any other backscattering spectrometer in the world with

comparable energy resolution. The first call for proposals for the

HFBS was made in FY 1999 and the response was outstanding.

Several successful user experiments have already been performed

(see Figure 1) with more scheduled in the near future. Although the

initial performance of the instrument was impressive, improvements

continue to be made.

One of the recent changes to the instrument has been a modi-

fication to the data acquisition system. Initially the data were binned

to the velocity of the reciprocating silicon monochromator. However

the method in which the velocity was determined overemphasized

local details of the monochromator motion which were not observed

-30 -20 -1 0 0 10 20 30

E („eV)

FIGURE 1. Measurement of quasi-elastic scattering from monolayer coverage

of alkanes on grafoil performed on the HFBS by H. Taub, D. Fuhrmann, L.

Criswell, and K. Herwig. The low temperature data (blue) is resolution limited

with a full-width at half maximum of 0.96 peV. The higher temperature data

(red) clearly displays broadening indicative of the diffusive motion of the

alkanes.

in the neutron data. A detailed analysis of the performance of the

monochromator system indicated that the quality of the data could

be improved making a rather simple change in the way that data is

collected and stored, namely by binning data versus time during a

period of the Doppler monochromator motion. The data are later re-

binned to velocity using the average monochromator motion profile.

This straightforward change to the way that the data is collected has

improved the quality of the data, suppressing the spurious effects

observed in the velocity-binning mode.

Improvements have also been made to the Doppler mono-

chromator system which have improved its reliability and perfor-

mance. One of the problems encountered is associated with the

fact that the monochromator is being driven to higher energy trans-

fers than any other Doppler monochromator system in the world.

The monochromator, which is vibrated over a distance of 9 cm at

high frequencies, can experience accelerations in excess of 100 g’s.

Prolonged vibration of the monochromator resulted in the silicon

wafers coming off of the monochromator surface. Recent changes

in the gluing method have dramatically increased the lifetime of the

silicon wafers on the monochromator.

Efforts to optimize shielding in various parts of the instru-

ment have resulted in improvements in the signal to noise ratio in

the detectors. During normal operation the instrument vessel (which

is made up of the sample, analyzer crystals, and the detectors) is

evacuated in order to reduce the background due to air scattering.

Additional shielding has been installed on the detector assembly

and on parts of the analyzer system in the vessel. Improvements

have also been made to the shielding on the phase space transform

chopper to handle the highly divergent beam from the converging

neutron guide. This has resulted in a substantial increase of the

signal to noise ratio to almost 600 to 1

.

THE UlStC CHOPPER SPECTROMETER

The Disk Chopper Spectrometer (DCS) is an extremely versatile

time-of-flight instrument, designed to achieve a broad range of

energy resolution full widths, from 12 peV to 1 meV, by changing

chopper speed, wavelength, and/or beam width. Once commis-

sioned, the DCS will be in high demand for experiments on a

variety of systems such as proteins, molecular crystals, disordered

materials and metal-hydrogen systems. The instrument is to be
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FIGURE 2. Photograph of the DCS detector bank and flight chamber.

included, on a limited basis, in the first Call for Proposals in

FY2000.

Over the past twelve months the DCS has seen major prog-

ress in a number of important areas. The sample chamber and flight

chamber were equipped with beam-handling components, and the

insides of both chambers were lined with cadmium. Flow tests were

performed in order to complete the design of the gas handling

system for the sample and flight chambers; the system had been

fabricated and had largely been assembled by the end of the fiscal

year. An overhead platform, to be used for sample environment

preparation and installation into the sample chamber, has also been

designed.

Problems with some of the amplifiers for the DCS detectors

prompted us to send the complete inventory to the manufacturer

for mutually agreed modifications. On their return discriminator

thresholds were individually set, and the full complement of 913

detectors and amplifiers was installed on the detector racks, which

were then installed and aligned at the spectrometer. The detectors

and voltage distribution assemblies were cabled and fully tested

prior to installation of the outer shields. Much work was devoted

to troubleshooting and greatly improving the reliability and perfor-

mance of the VME data acquisition electronics, and to the develop-

ment of data acquisition software.

PERFECT CRYSTAL SANS DIFFRACTOMETER

A perfect crystal diffractometer (PCD) used for very high resolution

small angle neutron scattering (SANS) is being developed jointly by

the NCNR and NSF as part of the CHRNS facility. The higher reso-

lution obtained by using perfect silicon crystals increases the maxi-

mum size of features that can be measured from 0.
1
pm obtained

using the current NCNR’s two 30 m, pinhole geometry SANS

instruments, to 10 pm with the new instrument. The monochromator

and analyzer use triple reflections before and after the sample using

large channel-cut silicon crystals suppress the “wings” of the beam

profile in order to improve the signal-to-noise to values comparable

to that obtained from the pinhole instruments. The PCD will cover

a Q-range from 0.0004 nnv 1

to 0.1 nnr 1

with an expected beam

current of 50,000 s '.

Located on the BT-5 beam tube in the Confinement Building,

the layout of the instrument is shown in Figure 3. A vertically

and horizontally focusing graphite premonochromator provides a

directs the neutron beam away from the main reactor beam towards

the perfect crystal monochromator. The monochromator reflects a

highly collimated beam to the sample. After the sample, a high

precision rotation stage rotates the analyzer crystal to scan the

small angle scattering obtained from the sample, which is then col-

lected by the detector. The shields supporting the premonochroma-

tor are set on kinematic mounts for accurate repositioning. The

monochromator and analyzer are isolated from room vibrations

using a heavy pneumatic vibration isolation table.

FIGURE 3. Schematic layout of the BT-5 Perfect Crystal Diffractometer.
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In 1999, all detailed design work was finished and all pur-

chased parts received. The beam shutter and premonochromator

shielding has been installed. Major components yet to be installed

are the detector housing, sample position table, and the small mono-

chromator shield. Preliminary characterization measurements lead-

ing to instrument commissioning are planned for early 2000.

THE FILTER ANALYZER NEUTRON
SPECTROMETER

The new Filter Analyzer Neutron Spectrometer (FANS) is designed

to give US researchers access to unprecedented sensitivity for mea-

suring the vibrational spectra of a wide variety of materials. This

spectrometer, which will replace the current BT4 instrument, uses

cryogenically cooled polycrystals as low energy band-pass filters

for neutrons scattered from the sample. A dramatic gain in signal

over the existing filter analyzer is achieved primarily through a large

increase in the solid angle covered by the secondary spectrometer.

The FANS instrument is being developed in two phases. Phase I

includes the first of two new filter assemblies and Phase II includes

the second filter analyzer and a new monochromator and monochro-

mator drum system.

FIGURE 4. The FANS filter assembly. The first Be filter is in

the foreground with the PG filter second and the final Be filter in the

background just before the detector hank. A radial collimator is

visible in the middle of the assembly.

During the past year, the detailed design of the first filter

wedge was completed, the vacuum chamber which encloses the

Be and graphite filters was delivered, and the Be and graphite

filter wedges were assembled (see Figure 4). Recent tests demon-

strated that these filters can be cooled to cryogenic temperatures

which is necessary to maximize the performance of the instrument.

Furthermore all of the parts for the undercarriage for Phase I have

been received, assembled, and operated successfully under load.

Most of the shielding and data acquisition system have also been

received. Major assembly and installation of Phase I will begin early

in 2000.

DEVELOPMENT OF AN ACTIVE DOUBLE
FOCUSSING MONOCHROMATOR SYSTEM

The use of vertical or horizontal focussing monochromators to

increase the intensity of selected neutrons incident on the sample

is well known and widespread. Less common are systems combin-

ing these features. Often the machinery employed to do this is

cumbersome and results in extraneous material in the beam, increas-

ing the background from unwanted neutrons. For horizontal focus-

sing it is desirable to have maximum flexibility by adjusting many

FIGURE 5. A drawing of the active double focussing monochromator system.
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monochromator elements while keeping the corresponding mechani-

cal components away from the beam area. By contrast, vertical

focussing can be confined to the problem of adjusting only one

parameter, the radius of curvature of the array, and admits a cor-

respondingly simpler mechanical solution.

We are currently developing a system that combines com-

pletely flexible horizontal focussing with vertical focussing that is

achieved by buckling the entire system of separately controllable

vertical crystal arrays. Cylindrical curvature is to be accomplished

by compressing the system of specially shaped strips upon which

the individual monochromating crystals are mounted. This design

eliminates extraneous material in the beam, which should result in

greatly reduced background.

AN ADVANCED LIQUID HYDROGEN
COLD SOURCE

The NIST liquid hydrogen cold source has completed over four

years of service. It was installed with three goals: at least double

the cold neutron intensity with respect to its predecessor (D,0

ice); operate simply and reliably; and pose no safety threat to

the reactor or personnel. It has successfully met or exceeded all

these goals. The cold neutron flux increased by a factor of 4 to 6,

for wavelengths in the range of 0.2 to 2 nm. The availability of

the source has been nearly 99% of the time that the reactor was

available (the reactor is shutdown if the source is inoperable). And

there have been no hydrogen leaks, nor have any of the insulating

vacuums or helium containments been compromised.

Even as Unit 1 was being installed in 1995, however,

improvements in the MCNP model (used for Monte Carlo simula-

tions) of the NIST reactor were pointing toward a new, but more

complicated cryostat assembly, with a possible additional gain of a

factor of two. Better coupling between the reactor fuel and the cold

source can be achieved by expanding the cooling jacket into the

volume now occupied by the insulating vacuum, so that it partially

surrounds the moderator vessel. In this way, the D,0 coolant also

serves as an extension of the reactor reflector. Additional changes

in the new source are based on our operating experience with the

existing LH, source and extensive MCNP calculations. Unit 2 will

be an ellipsoidal annulus rather than spherical, it will have an evacu-

ated inner vessel, rather than vapor-filled, and the LH
2
layer will

FIGURE 6. NCNR Mechanical Engineering Technician, Scott Slifer, welds the

aluminum moderator vessel for the advanced hydrogen cold source.

be up to 30 mm thick, rather than 20 mm, without increasing the

LH
2
volume.

The advanced liquid hydrogen cold source is currently being

fabricated and will be installed in the NIST reactor next year.

Enhanced mechanical design and manufacturing tools are exploited

in the fabrication of the advanced source. Components of the hydro-

gen, insulating vacuum, helium containment, and D,0 vessels are

cut from solid blocks of A1 6061 on a computer-controlled, high-

speed mill at the NIST Instrumentation shop, and are then welded

and thoroughly tested by NCNR staff (see Figure 6). It is expected

that the flux of cold neutrons will increase by a factor of 1.8.

IMPROVEMENTS TO NCNR SAMPLE
ENVIRONMENT EQUIPMENT

The sample environment equipment has seen a number of

changes in FY1999 at the NCNR. One of the most visible accom-

plishments has been the development of informative webpages

that detail sample environment resources, specifications, and even

the current operating condition and location for specific devices.

This information is easily accessible through the NCNR homepage

(http://www.ncnr.nist.gov), allowing guest researchers to plan their

experiments and design appropriate sample holders.
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Commissioning has begun on a new high magnetic field/

low temperature superconducting magnet system which is financed

through a joint collaboration of Johns Hopkins University, NCNR,

NEC Research Institute, Princeton, the University of Maryland,

and a National Science Foundation IMR grant. The 0.022 Kelvin

dilution refrigerator of this new system has already been tested

and used on triple axis spectrometers. A 7 Tesla magnet has been

temporarily outfitted in the system at this time, with replacement

by a much stronger superconducting magnet of 10-12 Tesla in the

coming months. The magnet is capable of operating with either

a homogeneous magnetic field at the sample position or with a

field gradient, a great aid for polarized neutron beam experiments.

Table 1.

Helium flow cryostat 1.5-300 K, dedicated to

backscattering spectrometer

Helium fiow cryostat 1 .5 - 300 K, dedicated to disk chopper

time-of-flight spectrometer

Helium flow cryostat 1.5-300 K

Pumped helium-3 cryostat insert 0.30 - 300 K, for use with 7 T

vertical field magnet

Closed-cycle helium refrigerator 7 - 320 K

Closed-cycle helium refrigerator 10-320 K, modified for

backscattering spectrometer

Poiseuille flow shear cell shear rate up to 130,000 S'
1 near surface

Light scattering particle sizer 2-100 nm diameter

Rheometer 1 .7x1
0~3

to 2.7x1

0

8 Pascal-seconds,

-60 to 600° C, for in-situ measurement

during SANS experiments

Lyophilizer freeze dryer for sample preparation

Kare Fisher titrator quantitative analysis of water in a sample

Freezer -20° C, for longer term storage of

biological samples

Superconducting magnet

power supply

0-120 Amps, bi-directional

Dual channel lock-in amplifier 1 mHz - 1 02 kHz frequency range

Four temperature controllers programmable, remote operation

Dual channel lock-in amplifier 0-120 Amps, bi-directional

Four temperature controllers programmable, remote operation

Single-crystal windowed tail for SANS low-temperature

electromagnet experiments

Sensitive equipment

transport carts

custom-designed to protect

valuable equipment

This system is top loading, which provides an important capability

for experiments requiring multiple sample changes or for quick

changeover between consecutive experiments.

From new capabilities to improved sample preparation and

screening, the sample environment resources have been significantly

expanded during the past year. Listed in Table 1 are further acquisi-

tions, notable modifications, and improvements that combine to

offer the researcher more control over the sample conditions. Figure

7 displays a typical cryorefrigerator sample environment. More

details are available at the web site mentioned above.

NCNR Sample Environment Geometry
Cryorefrigerators

FIGURE 7 Schematic diagram of the sample environment in a

cryorefrigerator in the neutron beam.
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Equilibrium Spinel Ferrites

V. G. Harris 111

Neutron Reflectivity Studies of

Fe
3
0

4
/Ni0 Exchange-Biased

Bilayers
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Zaag 147 and R. M. Wolf 147

Polarized Neutron
Reflectrometry Measurements of

CoPtThin Films

M. Toney63
,
A. Schreyer 114

,
J. A.

Borchers 114
,
C. F. Majkrzak 114
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Moment in (La,Sr)Mn0

3
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Broholm82
'
114
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Vortex Lattice in ErNi
2
BC
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S. T.

Krueger" 4
,
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D. Copley 114
,
D. A. Neumann" 4

,

J. J. Rush" 4
,
M. Tarek" 4 231

,
D.
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SANS Study of the Ferredoxin

TOL Component of Toluence
Dioxygenase from
Pseudomonas Putida FI

S.-L. Huang 104
,
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J.

Forbes220 and S. Greer220

Structure of Hybrid Bilayer

Membranes by Direct Inversion

of Neutron Reflectivity Data

C. F. Majkrzak 114
,
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,
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A Quasi-Elastic and Inelastic

Neutron Scattering Study of

Hydrogen in Zeolite

P. Sokol 146 and R. M. Dimeo 114

Bond Lengths and Ground State

Structure of the Fulleride

Polymer K,C
60

G. M. Bendele91
,
A. Huq 168 and
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Room Temperature and the
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The Dynamics of Potassium
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Silicate and Portland Cement
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