
AlllOti MDE3HT

NISTIR 6418

User’s Manual for Lidar

Target Simulator

NIST
QC

100

.U56

NO. 6418

2000

United States Department of Commerce
Technology Administration

National Institute of Standards and Technology

ABOUT THE LAW ENFORCEMENT AND CORRECTIONS
STANDARDS AND TESTING PROGRAM

The Law Enforcement and Corrections Standards and Testing Program is sponsored by the Office of

Science and Technology of the National Institute of Justice (NIJ), U.S. Department of Justice. The program

responds to the mandate of the Justice System Improvement Act of 1979, which created NIJ and directed it to

encourage research and development to improve the criminal justice system and to disseminate the results to

Federal, State, and local agencies.

The Law Enforcement and Corrections Standards and Testing Program is an applied research effort that

determines the technological needs ofjustice system agencies, sets minimum performance standards for specific

devices, tests commercially available equipment against those standards, and disseminates the standards and

the test results to criminal justice agencies nationally and internationally.

The program operates through:

The Law Enforcement and Corrections Technology Advisory Council (LECTAC) consisting of nationally

recognized criminal justice practitioners from Federal, State, and local agencies, which assesses technological

needs and sets priorities for research programs and items to be evaluated and tested.

The Office ofLaw Enforcement Standards (OLES) at the National Institute of Standards and Technology,

which develops voluntary national performance standards for compliance testing to ensure that individual items

of equipment are suitable for use by criminal justice agencies. The standards are based upon laboratory testing

and evaluation of representative samples of each item of equipment to determine the key attributes, develop test

methods, and establish minimum performance requirements for each essential attribute. In addition to the

highly technical standards, OLES also produces technical reports and user guidelines that explain in

nontechnical terms the capabilities of available equipment.

The National Law Enforcement and Corrections Technology Center (NLECTC), operated by a grantee,

which supervises a national compliance testing program conducted by independent laboratories. The standards

developed by OLES serve as performance benchmarks against which commercial equipment is measured. The

facilities, personnel, and testing capabilities of the independent laboratories are evaluated by OLES prior to

testing each item of equipment, and OLES helps the NLECTC staff review and analyze data. Test results are

published in Equipment Performance Reports designed to help justice system procurement officials make
informed purchasing decisions.

Publications are available at no charge through the National Law Enforcement and Corrections

Technology Center. Some documents are also available online through the Internet/World Wide Web. To
request a document or additional information, call 800-248-2742 or 301-519-5060, or write:

National Law Enforcement and Corrections Technology Center

P.O.Box 1160

Rockville, MD 20849-1160

E-Mail: asknlectc@nlectc.org

World Wide Web address: http://www.nlectc.org

The National Institute of Justice is a component of the Office

of Justice Programs, which also includes the Bureau of Justice

Assistance, Bureau of Justice Statistics, Office of Juvenile

Justice and Delinquency Prevention, and the Office for Victims

of Crime.

NISTIR 6418

User’s Manual for Lidar

Target Simulator

James A. Worthey
Electronics and Electrical Engineering Laboratory

Office of Law Enforcement Standards

National Institute of Standards and Technology

March 2000

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Dr. Cheryl Shavers, Under Secretary of Commerce for Technology

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
Raymond G. Kammer, Director

ACKNOWLEDGMENTS

This report was prepared by the Office of Law Enforcement Standards (OLES) of the

National Institute of Standards and Technology under the direction of A. George Lieberman,

Program Manager, Detection, Inspection and Enforcement Technologies, and

Kathleen M. Higgins, Director of OLES. The preparation of this report was sponsored by the

National Highway Traffic Safety Administration (NHTSA). The technical effort to develop

this report was conducted under Interagency Agreement DTNH22-98-X-05046.

1

Abstract

This is the operator’s manual for a target simulator for speed-measuring lidars, and for the

computer program VS, which is a key part of the simulator. This is the simulator referred to

in DOT HS 808 539, Model minimum performance specificationsfor lidar speed

measurement devices
,
published by the National Highway Traffic Safety Administration,

February 1997. The program is flexible and interacts with the user through menus and forms.

The components of the simulator include a commercial delay generator, a custom-made

receive-send unit, a PC with two commercial interface cards in it, plus cables, switches, and

the program VS. During the simulation, the program has the time-critical task of sending the

next delay to the delay generator. Before and after each simulation, the program aids the user

in recording the data.

The simulator works with lidar units that have a fixed pulse repetition rate, or PRR. The PRR
is measured in a preliminary experiment. The user selects the speed and initial range of the

simulated target vehicle. These settings, together with the PRR and the speed of light in air

are used to compute a sequence of delay times, modeling the echoes from a vehicle moving at

constant speed. The lidar under test should respond to the sequence of delays as it would to a

real moving target, and its reading should agree with the simulated speed. The software

guides the user through the description of the unit under test, the PRR measurement, the test

parameters, and the running of the simulation. Then it can record the data to computer disk.

The sequence of delays generated by the software, when graphed against elapsed time,

normally follows a straight-line graph, representing constant motion. The sequence can

optionally be perturbed by a periodic function that the user supplies. When constant motion is

simulated, this provides an accuracy reference for the unit under test. The accuracy of the

simulator itself can be checked against a suitable high-speed oscilloscope, and a detailed

method is presented for doing this.

While the simulator components are expensive to assemble, many parts of the program can

be exercised on a PC without the other equipment. In this way, readers may experiment with

the program before building a complete simulator.

Keywords: laser; lidar; motor vehicle; police; speed measurement; traffic.

2

User’s Manual for

Lidar Target Simulator

Chapter 1: Introduction and Technical Background 6

Introduction 6

Background issue: kinematics 6

Background issue: engineering particulars 6

Background issue: speed of light .7

Timing methods 8

Chapter 2: System Setup 8

Block diagram 8

Personal computer 8

IEEE-488 interface card 11

Serial port 11

Counter-timer card 11

Simulator software VS 12

Event Timing Issues Within the Simulator 12

Provision for Testing the Simulator Itself. 12

Perturbation feature 13

The original “official” perturbation 14

Why the simulated perturbation is periodic 14

Chapter 3: VS, the Top Menu 14

Introduction 14

Error messages 15

Top menu 16

VS = Velocity Simulator 16

Top menu items: 16

Files 16

Observe Pulse Rep Rate 17

Identify UUT, etc 17

Write Header to Results File 17

1 Speed, 1 Range 17

Standard Speed Series 19

DT2819 Experiment 20

Measure PRR repeatedly 20

Put Pulses on Screw #11 20

Alter Perturbation 20

Clock of DT2819 21

Option 12 21

3

Chapter 4: Further Menus and Data-Entry Screens 21

Files 22

Set Results File Name 23

File-Naming Considerations 24

Look at Basic Parameter Settings 24

Read Basic Settings from a File 25

Write Basic Settings <only> to a small File 25

Interactively Change Basic Parameters .25

Default Basic Parameters (Restore 'em) 25

UUT, Change Name of the Small UUT File 25

Quit to Top Menu 26

Observe Pulse Rep Rate 26

Identify UUT, etc : 26

Write Header to Results File 26

1 Speed, 1 Range 27

Standard Speed Series 27

Chapter 5: Overall Calibration Test 28

Timing issue #1 28

Timing issue #2 28

Some points of interest: 28

Conversion from slope to speed 29

Experimental Procedure: 30

Setting the time base 30

Appendix B:

Format of the Basic Settings File 34

Appendix P:

Format of the Perturbation File 34

Syntax 35

Appendix Q: The Role of the Queue and

“minimum depth reached by the queue.” 36

Appendix R:

Format of the “Results File” 37

Appendix S:

Format of the “Standard Speed Series” File 39

Example file 39

4

Syntax. 40

Appendix U:

Format of the UUT File 4i

Appendix W:
Wiring Details 41

Cabling context 41

One special cable 41

Connections at the DT-758 screw terminal board 42

Switch Panel 43

5

Chapter 1: Introduction and Technical Background

Introduction. This is the operator’s manual for a target simulator for speed-measuring lidars, and

for the software which is a key element of the simulator, called VS. The software is flexible and

interacts with the user through menus and forms. This chapter presents some engineering background

for lidar speed measurement, and the simulator itself. Later chapters deal with system setup and the

mechanics of running the computer program. Of 7 appendices, 5 pertain to the formats of files used

with the program, one concerns a technical issue in checking simulator operation, and the last

appendix concerns wiring.

Background issue: kinematics. A lidar speed measuring device transmits a series of laser

pulses in a narrow beam. If the beam is aimed at a stationary target, part of the pulse energy is

reflected, and a small part of the reflected energy is detected by the lidar device. Timing circuitry in

the lidar device measures the round-trip time-of-flight of the pulse. Since the round-trip distance is

twice the target range, the target range can be calculated:

d = c
Air ' , (1 _ 1)

where d is target range, cAir is the speed of light in air, and rRT is the round-trip time-of-flight.

Consistent units are assumed, so if cMt is in meters per second, and tRT is in seconds, d is in meters.

Equation (1-1) applies whether the target is stationary or moving. If the target is moving, and the

laser is pulsed repeatedly, then a series of ranges will be obtained. If the target is a vehicle receding

from the instrument, successive ranges will be steadily larger. If the target recedes at a constant

speed, a graph of d as a function of time is a straight line,

d = vt, (1-2)

where d is again range but t is elapsed time (rather than time-of-flight for the laser pulse) and v is the

speed of the target vehicle. If a graph of d versus t is determined experimentally, which is essentially

what a lidar gun does, then the slope of the line is the target speed, again assuming consistent units.

To phrase this more carefully, the slope is the time rate of change ofrange', it is the radial component

of the target’s velocity with respect to the instrument. This is implicit in any reference to speed

measurement by lidar, or by microwave doppler radar for that matter.

A practical police lidar unit pulses at a steady pulse repetition rate (PRR) on the order of 100 pulses

per second to 400 pulses per second. Whatever the PRR is, it is a stable crystal-controlled rate.

Internally, the lidar determines the slope in units such as “nanoseconds of delay per laser pulse

interval,” then multiplies by a constant to account for the speed of light, the factor of 2, the PRR, and

the conversion from m/s to km/h or mph.

Background issue: engineering particulars. The first two lidars introduced for police

use in the USA use diode lasers of wavelength 905 nm (1 nm = 1 nanometer = 10'9 m). They emit

a pulse with a rise time of a few nanoseconds (1 nanosecond = 1 ns = 10‘9 s) and a duration on the

order of 20 ns. The existing lidar devices require a minimum of about Vz s to collect data. Based on

6

the stated range of PRR’s, they work with something like 30 to 130 range measurements. The lidar

device’s internal computer checks these data for consistency, and if they fit a straight line, it

determines the slope by least-squares regression, then converts slope to speed in the proper units.

These facts impose a constraint on the accuracy with which the lidar must measure rRT , and the

accuracy with which a simulator must generate a series of values rRT in order to simulate a target

moving at an intended velocity.

A car traveling 100 km/h is going 27.78 m/s. The speed of light is approximately 3xl08
m/s, which

is about 0.3 meter per nanosecond, or about one foot per nanosecond. (Actually c = 0.29971 m/ns

= 0.98357 ft/ns.) If the measurement time is about Vh s, the car’s speed must be determined over a

baseline of about 10 m. If speed is to be determined to 1 % accuracy, the car’s actual movement must

be measured to an accuracy of 10 cm, meaning the round-trip distance covered by the light pulse is

measured to 20 cm. If the speed of light is 0.3 m/ns, the time-of-flight must be measured to an

accuracy of a fraction of a nanosecond.

This discussion is meant to promote general understanding, and not to assert precise legal or

engineering accuracy criteria. The process of fitting a straight line reduces the net effect of random

errors and truncation errors. For now, the simple conclusion is this:

A practical speed-measuring lidar must measure time-of-flight with split-

nanosecond accuracy. The lidar target simulator must generate delays with

similar split-nanosecond accuracy.

The finer the nanosecond is split, the better it will be. Resolution of 0.1 ns corresponds to range

resolution of about 1.5 cm. This pertains to measuring changes in range accurately so that speed can

be determined in a reasonable time; it has nothing to do with accuracy or precision in the lidar’

s

range display.

Existing speed measuring lidar units display speed as positive if the target is approaching, negative

if the target is receding. The simulator uses the same sign convention. That is, practical lidars insert

a minus sign (-) that is not present in equation (1-2).

Background issue: speed Of light. Internally, the simulator must use a value for the speed

of light to relate a simulated range to a delay value, via equation (1-1). The speed of light in vacuum

is c = 299 792 458 m/s (exact)
1

. The speed of light in air is c
Air = c/n

Air
where nAir is the index of

refraction of air. The index decreases with increasing temperature and also with increasing humidity.

The simulator is based on n = 1 .0002896, a value which applies at a pressure of 760 mm Hg, 0%
humidity, and temperature of 0° C. This is almost negligibly different from 1.0000000 exactly, but

it is easy to use the more accurate value. At temperatures above 0°C and elevations above sea level,

the change in index operates in the motorist’s favor. The effect of humidity is truly negligible,

amounting at most to 2 parts in 10
7

.

‘E. Richard Cohen and Barry N. Taylor, “The 1986 CODATA Recommended Values of the

Fundamental Physical Constants,” Journal ofResearch of the National Bureau ofStandards

92(2):85-95, March-April 1987.

7

Based on this fixed value for n,

c
Air = 299 792 458/1 .0002896 = 299 705 663 m/s . (1-3)

Timing methods. It was stated above that the lidar device must resolve time to a precision of

about 10- 10
s. It is routine to have digital integrated circuits operating at 10

7 Hz and an integrated-

circuit counter that can count at this rate. A counter gated by a signal of interest can time events with

a resolution of about 10'7
s— split-microsecond accuracy. To get split-nanosecond resolution, more

complicated timing measures are required.

One method for more precise timing involves a counter plus an analog “ramp” circuit which can

subdivide the oscillator period. This method is used in some lidar models.

The simulator incorporates both complex and simple timing devices. The digital delay generator can

be set in increments of 50 ps (1 ps = 1 picosecond = 10' 12
s); it uses a 100 MHz reference oscillator,

and a counter plus a system of delay lines. The counter-timer card, a smaller and simpler system

mounted inside the personal computer, provides a 5 MHz reference oscillator plus 5 programmable

counter-timers contained in a single integrated circuit. The counter-timer card measures time with

a resolution of 200 ns, while its big brother, the digital delay generator, resolves time to 0.050 ns.

In actual use, a lidar makes a series of range measurements that follow a ramp, subject to some

random error. The simulator, with its digital delay generator, will simulate the ramp as a stairstep,

again subject to random error. For the simulation to work, the unit under test must accept the

simulated ramp as an approximation to the ramp that it would see in clocking a vehicle. The 0.050 ns

step size meets the basic requirement of splitting the nanosecond rather finely, and the lidars tested

have accepted the simulated ramp. There is also the simulation accuracy question: when the effects

of step size and random errors combine in the laboratory, how well does the slope of the best-fit

ramp correspond to the speed that one intended to simulate? This is addressed in a later chapter.

Chapter 2: System Setup

Block diagram. On a subsequent page is a block diagram of the target simulator with a typical

lidar unit being tested. The same figure was used in DOT HS 808 214, Model minimum performance

specifications for lidar speed measurement devices. This block diagram shows the general

relationships among the components, but not the wiring details. Connections are altered during setup

and use of the simulator. A switch panel must be used, since the BNC connectors cannot withstand

numerous connect-disconnect cycles. A version of the switch panel is described in Appendix W.

Components

Personal computer. The general function of the subsystems may be reviewed in the diagram.

The personal computer is labeled “Fast PC,” which was a more apt description in 1993. Now it could

be labeled “Slow PC.” The ideal computer is an AT compatible with a 486 chip running at 66 MHz.

Hardware floating-point support is required. Useful data have been taken using a 20 MHz 386 PC.

A Pentium® PC or faster would not increase overall capability very much, and might cause timing

8

problems involving communication with the counter-timer card, for instance. Such problems could

potentially be fixed in software .

2

2
In the block diagram and elsewhere, commercial products are identified by brand name or model

number. This is done to help identify the components and not to indicate that they are endorsed by

the U. S. Government, or that they are best suited for the task.

9

Figure

1,

Block

diagram.

IEEE-488 interface card. IEEE-488 is a standard that permits computers and instruments to

transfer information at rates on the order of 1 MB/s (= 1 megabyte/second). IEEE-488 is also known

as GPEB, for General Purpose Interface Bus. To the casual observer, the IEEE-488 bus is a stiff

cable that connects the devices. Up to 15 devices may be connected, but in the simulator, only the

computer and the delay generator are connected. (The oscilloscope has a GPIB interface, but it has

not been used.) The computer has a card that provides an interface from the computer’s internal bus

to an IEEE-488 connector on the back of the computer. The card that has been used is a National

Instruments AT-GPIB or AT-GPIB/TNT model. (In 1997, even the AT-GPIB/TNT model is called

the “legacy” card in the catalog. The newest thing is plug-and-play.) This card comes with software:

an interactive configuration program, EBCONF.EXE, must be run at least once; and a driver that will

usually be loaded at boot time, so that it is present in memory before the simulator program is run.

The delay generator must be ordered with a GPEB interface; it will then have the appropriate

connector on the back.

Serial port. Most personal computers will have two or more serial ports. Either COM1 or COM2
must be used and the software configured accordingly. The serial port is not used for data transfer

in the normal way. Rather, it is used to synchronize the program running in the PC with the pulsing

of the unit under test (UUT). The DSR line of the serial port must be pulsed after the UUT has fired

a pulse. Normally, the trigger pulse is taken from the “initial pulse” output of the delay generator,

but it could be derived differently, so long as it occurs after the receive-send module has received

a laser pulse from the UUT.

Pulsing the DSR line of the serial port generates an interrupt, triggering an interrupt service routine

which then transmits a fresh delay value over the GPEB. Technically, a “race condition” is created.

That is, the computer is triggered to feed the delay generator a new delay value via the GPEB, before

the previous delay is completed. Tests have shown that this is not a problem; if it were, the trigger

pulse could be taken from the delayed pulse.

Counter-timer card. The counter-timer card that has been used is the DT2819 from Data

Translation, Inc. It is indicated by this model number in the block diagram. The primary function of

the counter-timer card is to measure the PRR of the unit under test. This is done in a preliminary step

before the actual simulation is run. The counter-timer card has a 50-pin connector on the back.

Optionally available from the same vendor is the DT758-C connection panel, which brings the 50

conductors out to screw terminals. The switch panel can be rigidly attached to the screw terminal

board. In one version of the switch panel, described in Appendix W, it is made from clear plastic,

so that a mysterious “black box” is not created, and the user can trace the wires to the numbered

screw terminals, switches, BNC connectors, etc.

Although the counter-timer card is extensively programmable in software, the simulator application

calls for one permanent external connection. On the DT758-C connection panel, screw terminals 3

and 20 must be connected by a length of wire. Screw 1 3 is the input for pulses whose PRR is to be

determined. When needed, screw 1 1 is a source for pulses of programmable PRR. There are multiple

signal grounds, including screw 21.

The counter-timer card comes with some software, but in this case the software was not used. All

interactions with the counter-timer card are done via C-language routines, written by the present

author. The source code is available, as is all the non-proprietary code. This is in distinction to the

11

IEEE-488 subsystem, where the handshaking problems are potentially more complicated, but are

handled through a vendor-supplied driver.

Simulator software VS. Before any lidar can be tested, certain setup steps must be taken, such

as putting software settings in line with hardware settings. The simulator program permits this to be

done interactively. In the testing of a lidar device, the first step is to measure the pulse repetition rate

(PRR) of the unit under test (UUT). This is done by the counter-timer card, under program control.

Once the PRR has been determined and the user has input the speed and initial range to be simulated,

the program prepares the simulation itself. The initial range, converted to a delay, is loaded into the

delay generator, and the next delay is calculated, ready for use.

When the lidar emits the first laser pulse, the receive path of the receive-send module sends an

electrical pulse to the delay generator. The delay generator measures off the delay time, then pulses

the input of the receive-send module, triggering a laser pulse to the UUT. In this data path, only the

receive-send unit, the delay generator, and the coaxial cables, take part. The delay generator must

be programmed with the proper delay value and fully ready when the UUT emits a pulse. When the

delay generator has been triggered, it pulses the computer’s serial port. This begins the chain of

events in which a new numerical delay is transmitted by the computer over the IEEE-488 bus, then

a further delay time is calculated.

The basic simulator function is to create a series of delays that increase or decrease along a single

straight line. The software has an additional feature that permits a sawtooth perturbation to be added

to the straight line. This simulates the series of delays that might occur if an operator did not track

the target perfectly, but swept the laser beam along a smooth body panel, such as the hood of a car.

Although a standard sawtooth is defined in the model minimum performance specification, the

software permits more complicated functions to be used. The perturbation must be periodic.

Event Timing Issues Within the Simulator. The system as described has been tested at

pulse repetition rates up to 400 Hz. This implies that the creation of the delay, and the programming

of the new delay can occur in as little as 2.5 ms (0.0025 s). There is no easy way to assign times to

all the component events which must occur, and some events can overlap. However, it is believed

that much of the 2.5 ms is consumed by the data transfer over the IEEE-488 bus, and the internal

“setup” of the delay generator.

Provision for Testing the Simulator Itself. The DT2819 counter-timer card incorporates

5 programmable counter-timer units within a single AM9513A chip. The function of timing the

pulses of the UUT occupies 3 counters. In routine use of the simulator, this is the only function of

the counter-timer card.

To test the simulator for calibrated and consistent operation requires a source of pulses with a

constant (crystal-controlled) repetition rate. A feature of the program VS permits the remaining two

counters to generate a frequency in the range of 76.2951 Hz to 2.5 MHz. This pulse train, generated

by dividing down the 5 MHz reference clock on the DT2819 card, appears on screw terminal 1 1.

Once started, this pulse generator functions entirely on the counter-timer card.

12

Putting aside the “perturbation” feature, the simulator’s task is to generate a series of delays that

track a “ramp,” a straight line whose slope is determined by the speed to be simulated. This

functionality can be tested with any source of pulses (at a stable repetition rate) routed to the

computer’s serial port input. The source need not be a lidar, and indeed a lidar is restrictive because

its PRR is fixed. Any laboratory pulse generator could be used, but the pulses provided on screw

terminal 1 1 are convenient because they are crystal controlled.

Perturbation feature. The perturbation feature exists entirely in software. If used, the

perturbation must be defined by an ASCII file that the user has prepared in advance. The operation

of this feature is such that:

1. The normal unperturbed simulation produces a series of delays that, if graphed versus time,

closely track a straight line. Such a straight-line variation is often referred to as a “ramp.” Applying

formula (1-1) to convert delay to range, this is a ramp of range versus time, and its slope is the

simulated speed. The perturbation adds a non-zero and non-random function so that simulated range,

when graphed against time, no longer follows a straight line.

2. The perturbation is always periodic. When the specified perturbation is used up, it immediately

starts over. This periodic function adds to the ramp.

3. The perturbation is specified as a disturbance in range, rather than velocity. A smooth change in

range implies a velocity, but the user specifies times and displacements in units of meters or feet.

4. The user specifies the perturbation at arbitrary times, but it then is converted to a series of

displacements at multiples of the pulse interval. The repetition period of the perturbation may be

adjusted slightly by the program. The exact pulse-by-pulse perturbation is precalculated and may be

reviewed interactively by the user. The detailed perturbation is derived from the given data by

straight-line interpolation.

5. The perturbation must be specified by no more than 32 time-distance pairs, and must be completed

within 200 pulses, whatever the PRR is. These parameters could be changed by a re-compilation of

the program, but those are the values as of 1 997 December.

6. The standard calls for a specific sawtooth perturbation, with optional shifts in the origin of time.

More general perturbations can be generated by changing only the ASCII data file.

Practical speed-measuring lidars are designed to “trap” bad data, and only to display a reading when

the data are consistent with the lidar tracking one spot on one vehicle. If the lidar is aimed at one car,

and a truck cuts the laser beam during the measurement period, this will put an abrupt discontinuity

in the series of range data, which should cause the data to be rejected.

It is of practical concern that under certain conditions speed might be falsified by an error which is

harder to trap. If, during a measurement, the laser beam is allowed to sweep along a surface of the

target vehicle, this can give rise to so-called sweep error. Suppose a lidar is aimed at an approaching

car, and during the measurement the beam sweeps down the engine bonnet, from the windshield

towards the radiator. If not discarded, data taken in this way could imply a speed greater than the tme

speed of the vehicle. The perturbation feature can simulate the sort of imperfect ramp that the lidar

may see when it is not held steady.

13

The original “official” perturbation. The test perturbation specified in the “Model minimum

performance specification” is defined by four points. It simulates sweeping towards the lidar, 1.52 m
(5 ft) along a smooth sheet-metal area in 0.178 s:

Time, s Distance, ft

0.0 0.0

0.010 0.0

0.012 5.0

0.200 0.0

Why the simulated perturbation is periodic. The reader may question why the simulator

adds a periodic perturbation. In real life, the perturbation might occur only once. With a periodic

perturbation, the UUT can do one of three things:

1. Give an error message or no reading (considered equivalent in this context). This is an

acceptable response.

2. Give an erroneous reading. This is an unacceptable response.

3. Give a correct reading based on a very sophisticated decoding of events after collecting

data for a long time. It is not expected that any practical lidar will do this, but it is a

theoretical possibility. This is a hypothetical acceptable response.

With a one-time perturbation, the UUT could:

1 . Give an error message or no reading. Acceptable.

2. Give an erroneous reading. Unacceptable.

3. Give a correct reading by detecting the perturbation and waiting for it to end; give a correct

reading by some chance process of errors canceling out; of give a correct reading by always

discarding the first 0.200 s (or more) of data. This is acceptable or not, depending on what

really happened.

In short, the periodic perturbation is intended toforce a reading of an error signal or a blank display.

Chapter 3: VS, the Top Menu.

Introduction. The program, VS, is menu-driven and interactive. This chapter will review the top-

level menu and the major activities accessed from the top menu. For further understanding, the user

may experiment with the program, or read the earlier chapters of this manual. The menus are

represented schematically and do not appear on paper exactly as on the screen. All interaction is

through the keyboard.

When the apparatus has been assembled and preliminary steps have been done,

such as loading the TSR driver for the PC’s DEEE-488 card, then this chapter is the

main “how-to manual” for the steps in collecting data. Chapter 4 tells more about

the lower-level menus.

14

To conduct an actual experiment, the program must be run under straight DOS, not within OS/2®
or Windows®. For the purpose of learning and experimentation, the program may be run with the

specialized hardware absent and may be run in a DOS window under OS/2. If it is run under such

circumstances, error messages should be ignored, and not all parts of the user interface will be

accessible.

The program was developed using Microsoft C 6, a Microsoft Quick Assembler, a text-windowing

package called Window Boss, and a subroutine library supplied with the IEEE-488 card. From the

user’s point of view, the key thing is the text windowing package, which allows for overlapping

windows and a moderately consistent user interface from one window to another. On menus, the Tab

key or space bar generally moves forward and Shift-Tab moves back; generally the four arrow keys

have some effect, and the Enter key selects a menu item. In most cases, hitting the initial letter of a

menu item will jump the highlight to that item.

From most places in the program, it is possible to “cancel” or back out to a previous level. There

may be a menu item to permit this and the Esc key will usually have this effect.

Data entry screens are more complicated than menus. In filling in a data item, the user is in effect

interacting with a tiny editor which permits a data value to be changed, from a default value which

may be other than a blank or a zero. This tiny editor is a feature of Window Boss, as modified

slightly by the present author. It may not work exactly like other familiar editors. The user should

experiment with data entry and double-check entries before accepting a data screen. In many cases,

the user must supply a special key-stroke, other than the Enter key, in order to accept a set of data.

This was done on purpose to promote a little extra checking.

Error messages. When a data entry screen is active, the user can see a help message concerning

the current data item by pressing FI. If the user enters an invalid string, an error message is

displayed, and the highlight returns to the faulty datum. The error message or help message appears

in a window at the bottom of the screen, and in the data entry situation, the error and help messages

are often the same.

Some instructional messages appear each time the program is run. For instance, when the user selects

from the top menu to “identify the unit under test,” this message appears in a window:

Time Check

Data will be labeled with a time and date referring to

a time right before the data are taken, based on the com-

puter’s internal clock. If the following date and time

are incorrect, please use NCC or some other utility to

set the computer’s clock.

1997 Sep 22, 15:36:52

Press Any Key to Continue

15

The time will be continuously updating according to the PC’s clock. If the clock is not correct, the

user will need to exit the program, in the usual way, in order to set it. The reference to “NCC or some

other utility” is archaic. In earlier versions of DOS, typing TIME at the DOS prompt did not lead to

an actual setting of the hardware clock. In DOS 5.x or 6.x, I believe that typing TIME at the DOS
prompt will lead to setting the real clock. No special utility is needed.

In any case, this is one example of specialized messages that appear as the program is run. The user

should take some time to read the messages when they appear. In some cases, a message appears

once, or a limited number of times, and then is gone “forever” (until the program is run again).

A number of error messages or suggestions will appear if the user attempts to do things out of

sequence.

A firm decision was made on one issue of sequencing. That is, each time the program is run, the

pulse repetition rate of the UUT must be measured before a simulation is run. There is no provision

for the user to type in the PRR or recall it from a previous run. It was felt that this gives the data

more credibility. This becomes a burden if the user is testing the equipment and not collecting “real”

data, but for right now, this sequencing is always enforced.

Top menu. The top menu is usually visible. Only one window is active at a time, so the top menu

may be visible but not active. The following table is a schematic representation of the top menu.

VS = Velocity Simulator

Files Standard Speed Series Alter Perturbation

Observe Pulse Rep Rate. DT28 1 9 Experiment Clock of DT2819.

Identify UUT, etc. Measure PRR repeatedly Option 12

Write Header to Results File Quit

1 Speed, 1 Range. Put Pulses on Screw # 1

1

James Worthey, OLES, 1992

VS = Velocity Simulator. This is not a menu item, but the title of the program.

Top menu items:

Files. This brings up the Files Menu. The first item on the Files Menu permits the Results File Name
to be set, something that will be done routinely. Other items on the Files Menu pertain to basic

settings that will seldom be changed.

In the routine testing of a lidar unit, after the program is started, the first 4 or 5 menu items down the

first column of the top menu should be selected in sequence. When one item among the first 4 has

been chosen and then control is returned to the top level menu, the highlight will move to the next

item. This is intended as a hint. The user remains in control.

16

Observe Pulse Rep Rate. Selecting this item starts the measurement of the PRR of the UUT.
Although the measurement begins immediately, it will wait “forever” for the user to trigger the lidar.

Also, the measurement repeats 6 times and is not considered complete until all 6 values are in close

agreement. The details of what is happening appear on the screen. To observe the pulse repetition

rate, the user must switch the pulse receiver output into the counter-timer input, screw 13; normally,

this signal is taken from the initial pulse output of the delay generator.

Measurement of the PRR may take from about one second, up to several seconds. Some lidar devices

are designed to pulse for less than one half second, then stop. To make such a lidar continue pulsing

while the trigger is held down, it is necessary to open the loop in some way so that the simulator is

not returning pulses into the lidar’ s detection circuit. An electrical part of the delayed-pulse path can

be opened, but it should not be done by putting wear and tear on BNC connectors. The switch panel

of Appendix W provides a switch for this purpose. In some cases, it may be easy to open the optical

path.

Identify UUT, etc. The simulator not only performs experiments, it records the data. In order for

the data to be recorded in a useful way, the user must identify the unit under test. This item brings

up a data-entry screen where the model, serial number, purpose of the experiment, etc., may be

entered. The data items may have non-blank default values, but because of a quirk in the software,

the default values appear one at a time as the user proceeds through the screen. The PRR is treated

as part of the description of the UUT; however, it cannot be entered manually. It must be measured

every time.

With no special effort by the user, the values entered on this screen are saved in a file called

PREVIOUS.UUT, and become the default values the next time the program is run. One of the

options on the Files menu is to substitute a different filename for the saved UUT description, giving

another level of control.

Before the data entry screen comes up, an informational window appears, displaying the current time

by the computer’s clock. The user should take a few seconds to verify this time reading. Data will

be automatically time-stamped when they are written to the results file, so it is important that the

computer clock be correct. To set the clock, exit from VS by hitting Escape several times, then use

a DOS utility or other program to set the hardware clock. (Be careful. In earlier versions of DOS
there is a command TIME that sets a temporary clock, but not the real hardware clock.)

Write Header to Results File. One goal is to have the computer generate a complete description

of each experiment in a “results file.” This item leads into a rather complicated, but self-explanatory

menu screen. The “header” can be the description of the UUT and/or the basic settings. Normally,

it will be both of these, but if one part has changed and the other has not, it is appropriate to save just

the changed part. The description of the UUT cannot be saved until PRR is measured. It will usually

suffice to accept the default on this screen; the current status determines what the default is. Read

the messages.

1 Speed, 1 Range. When the top level menu’s previous items have all been chosen in sequence

to choose a results file, measure the PRR, describe the UUT, and save the header information, then

an actual simulation may be run. If complete preparations have been made, when this item is chosen.

17

a data entry screen appears on which the speed and range of the simulation may be entered. If

preparations are not complete, a warning message appears with a menu of options.

The data entry screen has blanks for range and speed, and shows the numerical limits on each item.

Range is requested in feet or meters, while speed may be in meters per second, kilometers per hour,

or miles per hour. The units are those which were specified for the UUT on the “Identify UUT”
screen. Speed may be zero to simulate a stopped target; less than zero to simulate a target going

away; or greater than zero to simulate a target approaching.

When range and speed have been set, and the user has elected to “Keep” the values, the simulation

window itself appears. The title across the top and bottom of this window says “Run the ... Speed
Simulation.” An information line across the bottom says “UNTIL flashes start; Esc to exit or R
if a Reading is Ready.” When this screen appears, the first delay value has been loaded into the

delay generator, and a queue of further values has been calculated. The program is checking to see

if the first laser pulse (flash) has occurred and also polling the keyboard, looking for the Escape or

R key to be hit. When the first flash does occur, the program stops polling the keyboard and only

runs the simulation. The user regains control when the UUT stops flashing.

The simulation screen indicates initial range in both meters and feet. It shows speed in all three units:

km/hr, miles/hr, and m/s. It indicates if the perturbation is on or off. It shows the pulse repetition rate

last measured, and it shows “delta distance” in meters. Remembering that the UUT flashes with a

steady PRR, and the simulated target has constant speed, delta distance is the fixed distance that the

simulated car moves between flashes of the laser. There is then a statement that the simulated vehicle

is approaching, stopped, or receding, and a statement that the vehicle goes out of range after a certain

number of flashes, or a certain number of seconds. These calculated approximate values serve as

reminders of the kinematic constraints; for instance, a target that is near the maximum range and

receding at a high speed will quickly go out of range.

Two last numerical values are displayed with these words and symbols:

Flashes since reset to initial range = 6000 /
Minimum depth reached by queue = 11/.

Actual numbers may vary. The square-root symbols are intended to be check-marks; the square-root

happens to be available on the old-fashioned character mode display. The check-marks appear when

the numbers are final values, after the simulation has been run and then stopped. An important

function of the “flashes since...” value is to show when the simulation is running; the number will

be visibly changing, though not precisely correct until the simulation has stopped and the check-mark

is displayed.

The “minimum depth reached by the queue” requires deeper explanation. In Chapter 2, this sentence

appeared: “The initial range, converted to a delay, is loaded into the delay generator, and the next

delay is calculated, ready for use.” This statement is correct as far as it goes, but it fails to mention

the queue. For a more complete discussion, refer to Appendix Q.

While the simulation is running, the program does not respond to the keyboard. When the simulation

is not running, the user may hit the Escape key to exit directly or, as it says on the screen, hit “R if

18

a Reading is Ready.” After hitting R, the user sees a small data entry window in which to enter

the range reading and the speed reading from the unit under test. If the readings are entered, a

description of the entire trial, including the time and the simulation parameters is added to the results

file; if they are not entered, nothing is written to the file.

The data entry screen carries a notation Use -999.0 for range or speed to denote "no reading".

In general, the program will not permit invalid numerical values to be entered, but this special value

may be entered to indicate that the UUT gave an error signal or other blank reading. Recall that a

blank reading may be the “right answer” if electromagnetic interference or a perturbed simulation

is used.

As in other data entry windows, the user must hit “K” for Keep, then Enter, in order to save the data.

The user is particularly advised to develop careful habits in entering these two numerical data. After

entering range and then speed, it is best to hit the Enter key several times, moving the data entry

cursor past the numbers. This has the effect of converting the displayed character string into a

number and back into a string, putting it into a standardized form.

After the user hits “K,” a special menu window appears. It displays the data line that will be written

to the results file, and gives a choice to save the string, to put a comment after the string, or to cancel.

If the user selects to put a comment, a line appears for its entry. The Enter key terminates the string

and saves the data.

Standard Speed Series. Choosing this item takes an alternate path to the simulation window just

described. Rather than set the speed and range manually, the user chooses from a list that was

prepared in advance. The PageUp and PageDown keys scroll the list itself, if there are more than

8 items. The up and down arrows move the highlight up and down. The Enter key selects the

highlighted value and runs the simulation. When the user exits from the simulation window, possibly

saving a set of readings along the way, then control returns to the Standard Speed Series screen,

with the highlight advanced to the next item.

An additional column in this window displays “Times_Tested.” This is an aid to the user, not

intended to be foolproof. If the user selects a range-speed pair, then exits from the simulation screen

without completing a simulation and recording the data, the “Times_Tested” number will

nonetheless be incremented.

The list of range-speed pairs resides in an ASCII file which must be prepared in advance using an

editor. The default filename is SPEEDS.LST, and an example file called SPEEDS.LST is supplied

with the program. A good method for creating a different list would be to make a couple copies of

the example file with other filenames, such as SPEEDS.BAK and SPEEDS.NEW, then edit

SPEEDS.NEW to create the new one that is needed. Further explanation appears in Appendix S.

19

DT2819 Experiment. During initial setup and test, the user may wish to verify that the DT2819

card is functioning properly. Selecting this item chains all 5 counters to divide down a 1 MHz clock.

The counters are sampled from time to time and the values displayed on the screen. Also, the output

of clock #5 appears on screw terminal 1 1 as positive pulses; an LED connected from terminal 1 1 to

ground (such as screw 12) will blink. In fact, pulses should appear on screws 3, 5, 7, 9, and 1 1, and

an LED could be attached to each screw. (The low-power Schottky outputs can supply only a limited

current, so no current-limiting resistor is needed.)

Measure PRR repeatedly. This selection brings up the same display as Observe Pulse Rep.

Rate. The pulse repetition rate is measured; the result is displayed briefly; then a new measurement

starts. This is intended for use in setting up and adjusting the hardware. For instance, the user might

be adjusting the external pulse trigger controls of the digital delay generator, or simply setting an

input pulse rate. If a consistent pulse repetition rate is measured, it will display on this screen, along

with the raw counts of 6 trials. Any inconsistency will show up as a failed measurement. The process

will repeat until terminated by hitting Esc.

Put Pulses on Screw #11. This selection permits a pulse train of calibrated frequency to be output

to screw terminal #1 1 of the DT758-C connection panel. Screw terminal #12 is one of several ground

points that can be used. Because it is crystal-controlled and adjustable, this pulse train is particularly

useful in calibrating the simulator against the digital sampling oscilloscope. The pulses are generated

using clock module #5 of the DT2819 card. Clocks #1 through #4 are used in measuring the PRR
of the UUT, so it is possible to run both functions at once.

On the input window for this function, the user may set the pulses on or off. If pulses are on when

the user exits the window, they will remain on during other activities, and will even continue after

the user exits from the program entirely. While the program continues, a small window is displayed

to indicate that screw #1 1 is being pulsed, and the PRR of the pulses being generated.

This pulse frequency is generated by dividing down a 5 MHz reference frequency. The divisor varies

from 2 to 2
16-

1 (= 65,535), giving a frequency from 2.5 MHz to 76.2951 Hz. Both the divisor and

the resulting frequency are displayed. The user increases or decreases frequency using the up or

down arrow key. To scroll through the frequencies faster, the user may hold down the Shift key; to

scroll fastest, hold down the Alt key.

Alter Perturbation. This selection on the top menu brings up a 4-item menu and a window that

displays some information about the perturbation currently selected. Chapter 2 above gave some

rationale for this feature. The perturbation must be entirely specified in an ASCII file prepared before

VS is run.

The perturbation is specified by a series of points of the form (time, displacement). The displacement

is linearly interpolated between these points. The points need not be at equal time intervals, but

should be chosen for convenience to give the desired piecewise linear function. The format of the

file is explained in Appendix P.

When Alter Perturbation is selected, two windows appear. The Perturbation Menu is active, with

4 items. Below it, the Perturbation Info Window gives a summary description of the perturbation

in use. The given perturbation points are displayed, or the first 15 if more than that number are given.

20

From those points, a peak-to-peak description is calculated and displayed. Other identifying

information is also displayed. A short sentence states if the perturbation is turned on or off.

On the perturbation menu, the first item toggles the perturbation on or off, the status being displayed

in the window below. The second menu item. Enter New File Name, brings up a data entry screen

for the new filename. The third menu item. View Perturbation Array, enables the user to review

the entire perturbation as it will play out, flash by flash. The array is generated from the given points,

combined with the measured pulse repetition rate, with necessary adjustment so that the period of

the perturbation is a multiple of the pulse period. The “info” window jumps to the top of the screen,

and a scrolling view of the perturbation array appears at the bottom. Arrow, PageUp and

PageDown keys control scrolling. The Esc key returns control to the perturbation menu.

B3P
Users have indicated a desire to use the perturbation feature with larger sets of

defining points, such as empirical instantaneous range data from a field test. It may
well occur that enhancements will be made to this section of VS. The reader may

then find that the functionality of the perturbation feature slightly exceeds what is claimed in

the present user’s manual.

Clock of DT2819. Like the earlier item, “DT2819 Experiment,” this item exists primarily for the

instance in which the user is assembling the apparatus and wants to verify that the counter-timer card

is working. The DT2819 is put into its time-of-day mode, the time of day is loaded from the

computer’s normal clock. The display then shows the time, constantly updated from the counter-

timer card.

Option 12. This is a do-nothing option, which displays the message “Option 12.” In the event that

a programmer wishes to add one more feature, a call to the new feature can be put in the main

routine, in place of the message display call.

Chapter 4: Further Menus and Data-Entry Screens.

Chapter 3 discussed primarily the top menu, omitting some details of the lower-level menus and

data-entry screens. This chapter explains more of the detailed workings of menus and screens below

the top menu.

21

Files. Selecting this item from the top-level menu displays the 8-item Files Menu:

Files Menu

Set Results File Name Interactively Change Basic Parameters

Look at Basic Parameter Settings Default Basic Parameters (Restore 'em)

Read Basic Settings from a File UUT, Change Name of the Small UUT File

Write Basic Settings <only> to a small

File

Quit to Top Menu

Choose 1 Action

Along with the Files Menu, this table of information is displayed:

file name:
stored name:
CommSelect :

QueueSize :

BOARD488 :

Current Basic Settings
parms . def
parms . def
1 {l=COMl, 2=COM2} TimeOut : 100000 {#loops to wait}
12 RtsPulseFlag : 0

0 BNC7095 : 6

Base Address of DT2819 Card : 230 hex
<display only Files Menu remains active>

The user is encouraged to run the program and experience the menus and data-entry

tables on the computer screen. The screen displays are colorful and interactive.

Even on a computer that lacks the counter-timer and IEEE-488 cards, many
program elements can be accessed, including the Files Menu and the functions that it calls.

Five of the items on the Files Menu pertain to the “Basic Parameter Settings,” which may be

explained as follows:

file name

stored name

CommSelect

QueueSize

BOARD488

The file from which the basic parameters were read. The

default file name is parms. def

.

The name of the file as stored within the file itself.

An integer that must equal 1 or 2. The value 1 chooses COM1
as the port whose DSR line will be pulsed to synchronize the

computer with the pulsing of the UUT. Value 2 chooses

COM2.
The number of delay values that are pre-calculated and ready

for use when the simulation starts. See Appendix Q. The

default is 12, and it is unlikely that a different value is needed.

The “reference number” of the IEEE-488 board to be used.

This is not an address on the computer’s bus and it is not an

address on the IEEE-488 bus either. It is a reference number

that would become important if there were more than one

EEEE-488 card in the computer. In most cases, this value is 0

22

TimeOut

RtsPulseFlag

BNC7095

Base Address of DT2819 Card

and the address of the card on the IEEE-488 bus is in fact 0

also. These issues may become more clear when you run the

program IBCONF, supplied by the vendor of the EEEE-488

card.

This is the number of iterations for a software timing loop.

The default is 100000. This parameter might indeed need to

be changed if the program is run on a computer that is much
faster than the ones originally used. When all the preparations

have been made, and the simulation is started by the first

pulse from the UUT, the program stops polling the keyboard.

If the UUT then stops pulsing, the program needs a measure

of time in order to “notice” that the next pulse is overdue.

While waiting for the next pulse of the UUT, the program

counts down from TimeOut to 0, then returns control to the

keyboard.

For diagnostic purposes, the interrupt service routine within

VS has the ability to pulse the RTS line of the comm port that

is being used after a delay value has been loaded to the delay

generator. If this value is nonzero, the pulse is enabled.

This is the address of the delay generator on the IEEE488 bus.

Permitted values are 0 to 30. The default is 6. The same

number must be set in switches on the delay generator, and

through the program IBCONF, supplied by the vendor of the

IEEE-488 card.

The base address of the timer-counter card, on the PC bus, in

hexadecimal. The default is 230.

For most users, the default values of these “basic settings” will suffice. These things have been put

under user control so that unusual cases can be handled without the need to recompile the program.

Set Results File Name. Results must be saved to a file which the user specifies. If the file already

exists, data will be appended. Each time the program is started, the user must specify the name and

there is no default name. The user should be familiar with DOS file-naming rules, including the use

of the path. The following box discusses file-naming issues. The discussion applies to all files used

by the program, but it is particularly important with regard to the results files, because the user must

invent the filenames and must keep track of all the data as they are collected.

Selecting this item brings up a data entry window with a text entry line. The user types the name of

a new or existing file. The shortest version of the file name is the relative path, relative to the

working directory. (A relative path does not begin with backslash, ‘V.) When the user hits Enter,

the full path is displayed. There are then 3 choices, explained in the window: A to accept the name

entered, E to edit the name further, or Esc to cancel the entire operation, leaving the results file

name as it was before this screen was opened.

23

File-Naming Considerations

First a caution: Proper DOS filenames do not contain blanks, but it has been found that this

program will accept names with embedded blanks, creating files that are difficult to deal with.

Use only legal DOS names of the form aaaaaaaa.xxx, where there are 1-8 alphanumeric

characters, followed optionally by a dot and 0-3 more characters, called “the extension,” with

no embedded blanks.

When the program is running, the current default directory is the same as it was when the

program was started. It is suggested that the current directory always be the one containing the

file VS . EXE. This directory should also contain key data files such as parms . def

,

perturbation files, files with lists of speeds, etc.

Here’s a simple idea for using directories properly. Put VS . EXE in a special directory, such as

C : \VS\ . Do not add this directory to the DOS path. Instead, in C : \ , or another directory that

is in the path, put a batch file VS . BAT. This short file could contain the single line CD
C:\VS . Then, the user can always get started by entering VS. The first time this is done, it sets

the current directory (by running the batch file). The second time, it runs the program. The

program is always run from the same “current” directory, and it will always use the same

copies of needed files, especially those files that have default names. The working directory

does not need to be C : \VS\ of course; it can be E : \SPEED\, or whatever is convenient.

In the scenario just described, where essential files are kept in a working directory, the author’s

preference is to keep the data files in a separate directory, or several of them. Suppose that the

working directory is E : \SPEED\. A single data directory could be called E : \SPEED \ DATA.

Some data on the XYZ company’s model ABC lidar gun may be in a file called

xyzabc . 001 . (The user must invent the name.) Assuming now that the program is run from

the working directory, the user can refer to this file as data\xyzabc . 0 01, or as

\speed\data\xyzabc . 001, or as e : \speed\data\xyzabc . 001 . The first form

gives the “relative path,” with the working directory as the starting point. Note that all forms

do specify data as the directory and within VS there is no way to make this a default; it must

be specified every time.

The data file can be put in any existing directory on the computer. The program does give the

user feedback on these issues by converting the given path to a “fully qualified path,” and

displaying it.

In many other respects, this software guides the user by providing informative messages and

disallowing actions that are out of sequence. In this one area of file naming, the program is a

little primitive and the user must take the lead by understanding DOS filenames and using

them constructively.

Look at Basic Parameter Settings. Selecting this item from the Files Menu displays the Current

Basic Settings in a window that cannot be directly edited. The meanings of these settings were

described above.

24

Read Basic Settings from a File. Selecting this item from the Files Menu allows the user to enter

the name of a file from which a set of basic settings will be read. The default file is PARMS.DEF,
in the working directory. In routine use, there is no need to read the settings from PARMS.DEF, as

this is done automatically when the program is started. This feature would be needed only in an

unusual scenario where alternate sets of parameters are in use.

PARMS.DEF, or another file of basic parameters is a short DOS text file (ASCII). It is fairly self-

explanatory and could be edited by the user with an ASCII editor. Keywords and data appear as

blank-delimited strings. Rather than edit the file with an editor, the user may change the settings

interactively within the program, and then save the file.

Write Basic Settings <only> to a small File. Selecting this item from the Files Menu allows the

user to name a file and save the current settings to that file. The default file is PARMS.DEF, in the

working directory. Changes made to the basic settings are not automatically saved, but may be saved

through this window.

Interactively Change Basic Parameters. Selecting this item from the Files Menu allows the user

to edit the basic parameters on a data entry screen. If the user exits by entering K, the changes take

effect immediately. They may be saved to PARMS.DEF or to another file through the Write Basic

Settings... selection on the Files Menu.

File PARMS.DEF has a special status. If this file exists in the working directory, it is read

automatically when VS starts. In most cases, the user need not give this any thought. If it is desired

to make permanent changes in the basic parameters, they should be set as needed and saved to

PARMS.DEF through the Write Basic Settings... option.

Default Basic Parameters (Restore 'em). Selecting this item from the Files Menu immediately

restores the basic parameters to their default values. The values are then displayed. The values set

are the absolute original defaults, stored in the program code. These are the values that are used if

PARMS.DEF does not exist when the program starts.

UUT, Change Name of the Small UUT File. Selecting this item from the Files Menu allows the

user to alter the file name of a file that, if it exists, will hold the description of the unit under test

(UUT). In the normal course of taking data, the user will enter a description of the UUT, and this will

be written to the results file. It is needed to identify the test data. As a convenience to the user, the

description of the UUT is also stored separately in the file referred to here. There are two ways to

use the UUT file:

1. Just forget about it. The UUT data will be stored under the default filename

PREVIOUS.UUT. They will be retrieved the next time the program is run and will appear

as the defaults on the appropriate data entry screen. In many cases this will be helpful, and

no special user action is required.

2. Any number ofUUT descriptions can be kept under different names by changing the name

of the UUT file through this screen. The reading and writing of this file occur at the time of

normal entry and exit of the Identify UUT, etc data screen. In this approach, the user would

choose this option on the files menu each time he starts the program.

25

Quit to Top Menu. Selecting this item from the Files Menu has the same effect as hitting Esc. It

closes the Files Menu and returns control to the top menu, with the highlight advanced to Observe

Pulse Rep Rate.

Observe Pulse Rep Rate. Selecting this item on the top menu causes the hardware immediately

to measure the pulse repetition rate, as discussed in Chapter 4. No further menu appears.

Identify UUT, etc. Choosing this item on the top menu brings up a data-entry first calls up the time

display and a reminder to set the clock. Then comes a window something like this:

Manuf: XYZ
123Model

:

Serial No:
Manuf. Date:

ft_or_m :

speed_unit :

Description

:

Comment

:

Keep these
Pulse Rep.

5385.
11/03/92 (Month/Day/Year)

1 {0=meters, l=feet}
2 {0=m/s, l=km/hr, 2=miles/hr}
our_permanent_test_unit
The new 486 PC_is_now_in_the_loop ._

changes? --> _ { Enter K to Keep, R
Rate = {Pulse Rep.

Hit FI for Help.

to Restore
Rate NOT MEASURED YET.}
<Works on other data screens.

earlier values }

too ! >

The items Manuf:, Model:, Serial No:, Description:, and Comment: are string fields which will

accept any combination of letters and numbers, up to a maximum size which is indicated by the

number of characters and blanks that are in the field initially. In fact, the 4 longer strings are limited

to 63 characters, and the serial number string is limited to 32 characters. It will be helpful to use

these strings for the purposes indicated: the manufacturer’s name, the model name or number, etc.

The date of manufacture must be input in the form indicated, with little flexibility. The items

ft_or_m : and speed_unit : are numeric inputs limited to the sets {0, 1 }, and {0, 1, 2} as indicated.

These parameters convey the system of units that the UUT uses. The settings entered here govern

the system of units which is employed on other screens when the parameters of the simulation are

entered.

The point bears repeating: This screen, with the heading Edit UUT description, is the key point

where the system of units is determined for other operations of data input and output. The only place

where an alternate system of units can be used is in the file from which a list of simulation settings

is read. (See Appendix S.)

The pulse repetition rate is a feature of the UUT, but it must be measured, not entered manually. If

it has been measured, it is displayed on this screen. In the results file, it is saved as part of the UUT
description.

Write Header to Results File. Choosing this item on the top menu is the means to save, to the

results file, information about the instrumentation setup and the UUT.

26

What is the “Results File?”

Traditionally, a scientist or engineer maintains a notebook which is a sequential record of what

was done, and what results came out of it. A goal in developing VS was that the user should

maintain such a notebook, but the computer should do much of the work. In a laboratory

notebook, there might be a block of information describing the experimental setup: test

instruments and unit under test, for instance. Following that there might be a table of data, in

which most of the setup stays the same, but one or two input variables vary, and the results

vary.

With this in mind, the “Results File” will have a “Header” followed by lines of data collected

in the laboratory. If the experiment is conducted properly, the header information applies to all

the lines of data immediately following. When part of the setup is changed, a new header

should be written, then more data can follow.

When the program opens a “results file,” it opens it “for appending.” This means that one

could continue indefinitely adding data to the same file. In normal operation, the program will

not delete or overwrite previous data. For added protection, additional copies of data files

should be made at every opportunity, perhaps saved to a different directory, or to a floppy.

Limiting the size of each results file also helps to guard against lost work. [Theoretically, the

results file could be over-written by saving the basic settings file or one of the other small files

using the same filename. Organizing the results files into one or more special data directories

makes this less likely.]

The results file is an ASCII file that can be read by humans, incorporated into a report, or

printed out. For convenience in controlling mechanical features such as margins and fonts, the

user might wish to read the file into a word processing program, then print it out. No special

data analysis program has been written to read the results file, although it is organized in such

a way as to make this feasible.

The program tracks whether the results file has been used at all; whether the basic parameters have

been written to the results file, or changed since; whether the UUT data have been filled in or saved;

and whether the pulse repetition rate (PRR) has been measured. According to the status of these

items, when the user selects Write Header to Results File, messages and a default action are

generated. The messages appear in yellow on black. In a separate window below the messages, a 7-

item menu appears. The default action is highlighted, and should be consistent with the status as

indicated by the messages

The following 9 items on the top menu were sufficiently discussed in Chapter 4:

1 Speed, 1 Range.

Standard Speed Series.

DT2819 Experiment

Measure PRR repeatedly

Put Pulses on Screw # 1

1

Alter Perturbation

Clock of DT2819.

Option 12

Quit

27

Chapter 5: Overall Calibration Test.

This is a test not mentioned in DOT HS 808 214, Model minimum performance specificationsfor

lidar speed measurement devices. It is not a test of a particular lidar device, but a calibration check

on the simulator itself.

The issue of “timing” arises twice in determining the accuracy of a speed-measuring lidar.

Timing issue #1 . When the laser pulses, a timing circuit is triggered which then measures the

round-trip time offlight of the laser pulse. If c
air

is the speed of light in air, then

range = (time of flight)*c
air
/2 . (1-1)

Since the speed of light is about 1 foot per nanosecond (actually 0.299706 m/s = 0.983286 ft/ns), the

lidar must measure time of flight with split-nanosecond accuracy. (1 ns = IQ'
9
second.)

Timing issue #2. To determine speed, the lidar must measure the target’s range at later times,

to determine how much the target has moved in the interval between flashes. Practical lidars flash

repeatedly at a steady Pulse Repetition Rate (PRR),

(Time between flashes) = 1/PRR . (5-1)

The time between flashes is a few milliseconds, so microsecond accuracy or split-microsecond

accuracy is needed in setting or measuring the PRR.

The simulator will do its thing with any source of pulses to the trigger input on the Berkeley

Nucleonics model 7095 delay generator. The pulses need not come from the flashing of a lidar unit,

but they must come from a source that can maintain a stable PRR. Suppose the simulator is set up

to simulate a target moving at 50 m/s. (m/s = meters/second.) For this example, it doesn’t matter

what the PRR is. Let the oscilloscope be set up to record a series of events, logging each trigger pulse

and its echo, for as many repetitions as possible. (More later about how to do this.) Then read out

the exact time of each trigger pulse and the exact delay from trigger to echo, for each event. Convert

delay (simulated time of flight) to range by Eq. (1-1) and graph the range values versus trigger time

in seconds. Now the y-axis is marked in meters and the x-axis is marked in seconds. The slope of this

graph should be 50 m/s, the speed being simulated.

Some points of interest:

1 . Timing reference. The oscilloscope is being used as the reference clock. The oscilloscope

could be checked against some other frequency standard. For starters, the oscilloscope can

be checked against the DT2819 card.

2. If we accept the oscilloscope as a reference clock, this test puts the whole simulator to a

comprehensive test. The DT28 1 9 card, the Berkeley Nucleonics delay generator, the IEEE-

488 interfaces, the 486 computer hardware and the simulator software all must do their jobs

in order for the series of ranges to plot as a straight line with the correct slope.

28

3. Besides checking the slope of the line, one can look for other glitches, such as little

horizontal flat spots on an otherwise steady slope. A flat spot would indicate that the

Berkeley Nucleonics 7095 did not receive a new delay value in time, and re-used the

previous value. If one would repeat the whole test at higher and higher PRR’s, at some point,

the computer and the IEEE-488 link would definitely fall behind, with flat spots as one

result. We need to be sure that there are no flat spots at the PRR’s of actual lidars being

tested. Section 1 of the standard, on page 9, in effect makes a promise that the simulator

will work up to 390 Hz. It is suggested that it be tested at 400 Hz, as well as a lower PRR
or two.

4. When some versions of the simulator have been assembled, a system problem arose in which

the BNC 4095 was getting data bytes down the bus faster than it could digest them, resulting

in grossly erroneous delays part of the time. This is distinct from the situation just described,

of the PRR being too high. If such a thing occurred during this comprehensive test, it would

create obvious spikes in the graph. (To eliminate this problem, the vendor of the delay

generator replaced some hardware components.)

5. If the graph would be drawn with nanoseconds on the y-axis and milliseconds on the x-axis,

and the simulator would be programmed in miles per hour, then a conversion factor would

be needed to convert the slope to miles/hour. The conversion factor would be based on exact

numbers such as 5280 feet in a mile, and would not include any mysterious correction factor.

6. This table gives the conversion factor on slope for some specific situations:

unit on x qty ony speed unit Conversion from slope to speed

s range, m m/s 1.0000

ms RT t-o-f, ns miles/hr 110'9V299 705 663V 1 000)13600') = 335.21 12

(2)(0.0254)(12)(5280)

ms RT t-o-f, ns km/hr 110"9V299 705 663V1000V3600) = 539.4702

(2)(1 000)

ms RT t-o-f, ns m/s (10'9)(299 705 663)(1 000)/2 = 149.8528

In this table, “qty” means quantity, “range” means target range, with everything taken into account,

in particular the speed of light and the factor of 2 for round-trip. “RT t-o-f ’ means “round trip time-

of-flight;” this means the raw data, taken right off the oscilloscope.

The meanings of the constants are: 10'9 s/ns; 299 705 663 m/s = c
air ; 1000 ms/s; 3600 s/hr;

0.0254 m/in; 12 in/ft; 5280 ft/mile; 1000 m/km; 2 to account for round-trip time of flight.

29

This chapter describes the overall calibration test by reference to a specific

oscilloscope, the Hewlett-Packard Model 54522A. The test uses the oscilloscope in

a mode that the oscilloscope manufacturer refers to as “repetitive” or “repetitive

single shot.” This is a specialized mode for recording a series of fast events with long delays

between events. Among other things, this chapter addresses some rather non-trivial issues in

setting up the oscilloscope and then reading the data out. If another oscilloscope is used, these

issues may take a different form, with different terminology.

Experimental Procedure:

7. To generate the graph of delays versus trigger time, it is first necessary to set up the

oscilloscope and collect the data. It is then necessary to manipulate the oscilloscope further

to get the data out. The following directions assume a Hewlett-Packard 54522A

oscilloscope.

8. Setting the time base. The mode in which the oscilloscope can record a series of pulse pairs

is called “sequential single-shot.” In this mode, the sampling rate bears a fixed relationship

to the time base, even though in other modes these parameters can be set independently.

“Time base” is what you might think of as the scaling on the x-axis, expressed in

time/division. In order to set up the oscilloscope with confidence, refer to Table 4-1 from the

oscilloscope manual, page 4-13.

The delay generator can be programmed in increments of 50 ps. (ps = picosecond = 10
12

s)

The jitter on delay may exceed 50 ps. Pulse timing should be measured with split-

nanosecond accuracy. Since the highest available sampling rate is 2 GSa/s, or twice per

nanosecond, it is desirable to take all data at the highest sampling rate. (GSa/s =

gigasamples/second = 10
9
samples/second; ns = nanosecond = 10'9 s) This means that the

time basefor data collection should be set between 500 ps/div and 20 ns/div. (div = division

on the scope screen ~ 1 cm.) After the data have been collected, the time base can be

changed for display purposes.

Even though the oscilloscope can “only” make a measurement every Vi nanosecond, it can

measure delays with better than V^-nanosecond precision, by interpolation. Letting the

sampling rate drop to some lower value such as 1 GSa/s or 250 MSa/s, however, will

introduce erroneous flat spots into the graph of delay versus time.

Let me re-iterate the original point here. When you use the oscilloscope in a normal way to

watch a series of similar waveforms as they happen, you can control the display time base

and the sampling rate independently. When you set the oscilloscope to collect repetitive

single-shot data, you set the time base, and the sampling rate is set automatically

according to Table 4-1 in the oscilloscope user’s manual.

9. What pulses to clock? It would be most logical to capture the pulse going into the delay

generator, at the trigger input, and the delayed pulse coming out on the right-hand side of the

delay generator. This would involve the fewest assumptions. Unfortunately, this might give

problems of available signal power, false triggering due to ringing at a coaxial tee, etc. It is

30

easier to measure the delay from the “initial pulse” output of the delay generator to the

delayed pulse. It might be even easier to use one oscilloscope channel only, and measure the

width of the “gate” pulse that is also available from the delay generator. Measuring the width

of the gate pulse will make the manipulations of the oscilloscope easier. You might want

to verify the relationships of the pulses as described in Fig. 1-1 of the Berkeley

Nucleonics manual.

In any event, you choose two pulses to clock, or the gate pulse. For purposes of discussion,

assume that you are going to clock the delayed pulse with respect to the initial pulse. This

is the more complicated case.

10. Oscilloscope connections. Connect the Berkeley Nucleonics 7095’s “initial pulse” output

to the scope’s Channel 1. Connect the delayed pulse output to Channel 2. The initial pulse

output will also be going to the serial port on the computer, so you need a “tee,” or some

other means to tap into that circuit. If you can arrange to bring the signal to a small screw or

a loop of wire, then you can use an oscilloscope probe for the initial pulse signal, causing less

loading and less ringing. You can bring the output pulse directly to the oscilloscope via coax.

Set each scope input for the proper input impedance. If you use a probe, manually notify the

scope of the x 10 multiplier. Adjust the scope to trigger on the initial pulse, and adjust the

vertical scales to display the pulse shapes fully without clipping. In general, expanding the

vertical display without clipping reduces digitization error.

Set the trigger level near the midpoint of the initial pulse leading edge; this gives reliable

triggering and is especially important because of the way the data will be read out later.

“Near the midpoint” means something like the middle 1/3 of the rising edge; it does not

mean that you have to locate the midpoint exactly.

11. Oscilloscope timing setup. When the connections, triggering, and voltage gain are all set

to display one data set at a time, you can set up the sequential data collection. The sequential

softkey is explained in the User's Reference, pp 4-23 to 4-28. The illustration on p. 4-23

shows the softkey display for this step. On this one screen, the time base, the number of

points, and the number of segments can be set. The number of points per segment and the

number of segments are limited by the size of “sequential memory.” Consider an example:

a. Target will have an initial range of 500 ft, and approach the observer (speed > 0).

The round-trip distance is 1000 feet, and the speed of light is about 1 ft/ns, implying

a maximum delay of about 1000 ns. Using the value c = 0.983286 ft/ns shows that

the maximum delay should be 1017 ns. We actually want more than 1017 ns worth

of data, in order to see the second pulse in more detail. Say that we would like 1050

ns of data.

b. The time base can be set to any of the 6 fastest settings, so that the sampling rate is

2 GSa/s = 2 samples/ns. Therefore, the number of points should be set to 1050x2 =

2100. When this is set, the number of segments box will show max# = 93.

(According to page 4-24 of the User’s Reference, 200K points can be recorded;

simple math suggests max# = 97.)

c. The number of segments in one simulation depends on target speed and PRR. Say

speed = 60 mph = 88 ft/s, and PRR = 125 Hz. Working in very approximate

numbers, we can see that it will take over 5 s for the target range to run down to zero.

31

and the memory segments will be used up in less than a 1 s. Therefore, the number

of segments should be set to the maximum, to collect as many data as possible,

d. Actually, it may take more than 93/125 s to fill the oscilloscope’s memory, because

the scope may not be ready for some events. This does not invalidate anything so

long as the data are plotted based on actual trigger times.

12. Run the test. When all this setup is done, record all setup conditions on the data sheet,

especially PRR, initial range, and simulated speed. Double-check that simulated speed is

recorded with proper units. Interrupt the pulse input to the delay generator, so the simulator

is inactive and reset to initial range.

a. Press the oscilloscope’s Run button; the display should show that it is waiting for a

trigger.

b. Now start the pulses. The scope will show that it is “Acquiring.”

c. Within a second or two, the data will be collected. Then the display will show

“stopped - sequential data processed, select DISPLAY menu.”

13. Record the data. Now the numbers are in the scope, but they are not displayed in a list. You

have to find what you want.

a. Press the Display button.

b. Press the blue button, then Atime. Using the entry knob and various buttons, set the

Atime measurement to display (channel 2) - (channel 1). Chapter 13 in the user’s

manual discusses the meaning of this and other measurements. Essentially, you are

finding the time from the midpoint of the rising edge in channel 1 to the midpoint of

the rising edge in channel 2. Channel 1 is acting as a proxy for the trigger time.

c. Be sure that the display is set to display channel 2. Actually, both channels will be

displayed, but this means that the “entry” knob in the upper right-hand comer of the

front panel will control which segment of channel 2 is displayed.

d. Note that now you can adjust the time base as you wish, to display the waveforms.

The data are “in the can” and sampling rate is now independent of time base.

e. Now as you slowly turn the “entry” knob, the successive channel 2 pulses will be

displayed; in the example above, you would see the target approaching the

policeman, as each pulse shows a little less delay. There is an irrational element here,

in that the channel 1 display is static. The Atime measurement will give you the delay

between pulses that are not part of the same event. This may seem irrational, but it

works, because the channel 1 pulse simply serves as a proxy for the triggering event;

the trigger should have occurred in response to channel 1, but probably not at the

exact threshold used here.

Theoretically, you could advance through the segments in both channels, but it takes

a lot of button pushing and knob twisting to do so. This method should suffice.

Keeping the trigger level near the midpoint of the channel 1 waveform makes the

channel 1 time and the trigger time better proxies for each other. (Trigger level was

set in step 10 above.)

f. When it is clear that the entry knob is stepping through segments of Channel 2 data

in the expected way, go to Segment 1 and begin to write down the data with a pencil.

The trigger time will be indicated as something like “ch 2 segment x.ddddddddd ms,”

and the delay will be shown as Atime. It is suggested that you record all or most of

the significant figures.

32

14. Graph the data. When the numbers are written down, you need to graph them. The most

practical way to do this is with a computer program that can draw the graph and fit the best

straight line by the method of least squares. This will give a slope value, which can be

compared to the simulated speed using the unit conversion factors given previously.

15. Evaluating results. In one trial of this test, the simulated speed was set to 160 mph, with

PRR = 381. The slope of the graph showed the simulated speed to be 160.123 mph. In this

case, the error was slightly less than 1 part in 1000. A similar test with PRR = 400 gave a

slope corresponding to 159.98 mph, even better agreement. No specific tolerance has been

established, but if results come out significantly worse than these, you should look for a

source of trouble. Any obvious departure from straight-line data is a concern and should not

be there.

It is important that a detailed record of the test be preserved, including the PRR, the setup of the

simulator, and the setup of the oscilloscope, as well as the data.

33

Appendix B:

Format of the Basic Settings File

Seven of the parameters that govern hardware-software interactions are stored in this file. The use

of this file, and the meanings of the parameters, are discussed in Chapter 4. The default filename is

PARMS.DEF, and there are default parameter values, which are used in this example:

BasicParms 1997 Nov 3, 15:10: 11

filename parms . def
CommSelect 1 { l=COMl

,

2=COM2

}

TimeOut 100000
QueueSize 12

RtsPulseFlag 0

BOARD488 0

BNC7095 6

DT2819Base 230

When read by the program, each line is treated as a collection of blank-delimited strings. Each line

begins with a keyword, and the 9 lines must appear with the 9 keywords exactly as shown, except

that case (capitalization) is ignored. One blank terminates a string, such as the keyword, and then

additional blanks are ignored. On the first line, the keyword is followed by 4 strings noting the time

that the file was written by the program. When the file is read by the program, the time information

is ignored. On the remaining 8 lines, the string after the keyword is the parameter value, as explained

in Chapter 4. Any strings after the parameter value are ignored. For instance, on the third line, the

comment { l=COMl , 2=COM2 } is ignored. It is not a comment because of the curly braces, but

because it consists of strings number 3 and number 4 on the line, and only strings 1 and 2 are used.

Since the keywords are always the same, one could say that they are redundant. The idea is to make
the file human-readable in a critical way. A human can display the file with a command as simple

as type parms.def . The keywords are trustworthy labels, because if any keyword is missing or out

of place, the program will give an error message.

In this file, all the numeric values are clearly integers. The last is a hexadecimal integer that could

include symbols { A-F } . In this and allfiles provided to VS, it will be safest and most logical to write

integers as integers, without a decimal point. In other files, numerical values such as range and speed

values are “real numbers,” not necessarily integers.

Appendix P:

Format of the Perturbation File

The perturbation must be specified through an ASCII file that the user prepares before running VS.

The lines below in this courier font are the listing of a file, which has been called

NISTPERT . STD ,
but could be called anything:

34

PERTURBATION
this_f ile NISTPERT . STD
ft_or_m 1 {0=meters, l=feet}
DESCRIP "This is the NIST standard perturbation file."
* This is a comment line, but the previous line isn't!

First time MUST BE 0.0; first range could be nonzero
Try to catch 1 flash before jump

* tSec dRangeFt
0 .

0

0.0
0 . 010 0.0
0 . 012 5 .

0

0.200 0.0
-1.0 -1.0 *

* time < 0.0 (i. .

Comments may follow the data
Provided they start with * or ;

minus time) may be used to terminate the list

Comments should begin with *, but this line will not cause trouble.
* Don't put more than 32 separate strings on a line.
* This line has 5 strings.
"This is only one string because it has quote marks!"

Syntax. Broadly speaking, the file is free-form. The necessary words and numbers may be

separated by one or more spaces or tab characters. The user can create a valid file with different data

by systematic editing of the example file. It should not be necessary to study the syntax rules closely.

Nonetheless, here they are:

1. The file is read one line at a time. Each line is then processed one string at a time, where a string

is

• a group of characters separated by white space, or

• any characters, including white space, enclosed in double quotation marks, such as

"This is one string because it is enclosed in quotes."

The quotation marks are not part of the string. For the purpose of all files read by this program, white

space includes space, tab, and comma. Where certain strings have special meanings, the program is

not case-sensitive.

2. The first line of the file must read PERTURBATION . In accordance with rule 1, capitalization

is optional.

3. The next three lines specify parameters. The first string is the parameter name and the second

string is the parameter:

a. Parameter this_file should be the name of the file itself; it could be either the

complete path, or the path from the working directory. If it does not agree with the actual file

from which the data are being read, a warning is issued.

b. Parameter ft_or_m should be 0 or 1. 0 means the range values are in meters; 1 means

they are in feet.

c. Parameter DESCRIP is a string that will be displayed when the file is put in use.

These parameters may be given in any order. Note that only the first 2 strings on each parameter line

are interpreted, so additional strings may be added as comments. In most parts of the program, the

units of measure used are those of the unit under test, as specified by the user. This is the one other

place where units may be specified; the range and speed values from this table will be converted to

the units of the unit under test, if different.

4. Any line beginning with * is a comment. Comments may appear anywhere.

35

5. If a line after the first does not begin with a parameter name or a *, it is considered to be a time-

distance pair, and the first two strings should be a time and a displacement, given as decimal

numbers. If the string following the displacement begins with asterisk (*) or semicolon (;), the rest

of the line is treated as a comment. Up to 32 pairs may be used; further data will be ignored. The

special pair (-1,-1) may be used to terminate the list. All data after (-1, -1) are ignored.

6. The first time value must be 0.0 . After that, each time value must be greater than the one

preceding. In other words, the time series must begin with 0.0 and increase monotonically. The last

time value must be less than 200 pulse periods of the UUT, approximately. This limit is approximate

because of the intricate method by which these inputs get translated into a repeating perturbation.

7. In general, if one of these rules is violated, an explanatory message is displayed.

Appendix Q: The Role of the Queue and

“minimum depth reached by the queue.”

Computer magazines in the era 1990-1995 made much of the fact that OS/2, Windows NT, and Unix

are multitasking operating systems, while Windows 3.1 is not. The reality is messier: even the

original PC BIOS is multitasking; the BIOS forces the PC to stop whatever it is doing 18.2 times per

second in order to update the real-time clock. Operating systems such as DOS 5.0 perform operations

such as parking the heads on the hard disk, possibly interrupting a program to do so.

The simulator program is written in a somewhat intricate way to make sure that the computer

responds quickly after the UUT has flashed, in spite of any unpredictable actions by the operating

system. In setting up a simulation, the program loads one delay into the delay generator, and pre-

calculates 12 more values that are put into a queue. (Queue depth is a parameter that the user can set,

but the default is 12.) When the UUT flashes, and a pulse is relayed to the computer via the serial

port, an interrupt service routine, which is fast and has high priority, pulls one delay from the queue

and transmits it over the IEEE-488 bus. In the absence of any other activity, the interrupt service

routine would pull a delay from the queue with each flash of the lidar, until they were all used up.

The higher level program, in the subroutine that runs while the simulation window is displayed,

monitors the queue depth. When the queue size drops below the target value, the next delay is

calculated and put on the queue, incrementing the queue size. This scheme puts some flexibility into

the software, so that it can transmit all delay values on schedule. The development of this method

and the programming of the interrupt service routine were done by Sam Andrews of Laser

Technologies Incorporated.

If the simulation hardware and software interact in the smoothest possible way, the queue size will

only drop to one less than its maximum. It will repeatedly drop to this value, but it will be

immediately refilled, before the next flash of the lidar. This is what has usually been found to happen

at the pulse repetition rates of commercial lidars, and even at higher PRRs. If the queue would

occasionally drop below its maximum by more than one count, this could be construed to mean that

it is doing its job. To this extent, the minimum queue depth means nothing.

36

Now consider the practical problem of verifying simulator operation, when a new simulator is

assembled, or an existing simulator is operated under new conditions, such as a higher pulse

repetition rate. During a simulation, complex events are happening very quickly, and there is no

comprehensive way to track the entire sequence of pulses, program steps, and data moving down the

cable. In this context, it is valuable to have some simple clue that the simulator is or is not operating

smoothly. The minimum queue depth is one such indicator.

Consider some hypothetical examples. Suppose that pulses to drive the simulator are taken from a

controllable source, such as the internal counter-timer card. (In Chapter 3, see the section Put

Pulses on Screw # 1

1

, on page 20.) Initially, PRR is set to 200 Hz. The queue depth is 12. After

a simulation has run for 30 seconds and terminated, the program reports “Minimum depth reached

by queue = 1 1 /.” This is a perfect score, meaning that whatever is happening, there is enough time

for it to happen. Now PRR is set to 450 Hz, and the simulator again is run for 30 seconds. This time

the queue depth falls to 5. At a slightly higher PRR, queue depth falls to zero. (When queue depth

has fallen to zero, the user may well find that the entire computer program has crashed.)

After running simulations at several pulse repetition rates, we can infer that the particular simulator

is reaching its speed limit at 450 Hz. Further testing would be in order if an actual lidar required

testing at this PRR. Again note that the PRRs given are hypothetical and the detailed test of

Chapter 5 is sensitive to various errors, including those that may arise as PRR is increase.

Appendix R:

Format of the “Results File”

The “Results File” is the primary means for recording data from experiments with the simulator. The

simplest results file will have a header block describing the “basic settings” of the simulator itself,

and describing the unit under test, UUT. Following the header, some number of data lines will

appear, stating the parameters of the simulated target, and the associated readings from the UUT.

In fact, the header consists of two parts:

The “Basic Parameters” block. In 9 lines, this block records 7 of the settings that govern

the interactions of hardware and software. This block is the same as the Basic Settings file

explained in Appendix B.

The “Unit Under Test” block. This is the same as the UUT file explained in Appendix U.

The program user normally saves both parts of the header at the beginning of a session, and then may

save either or both parts at will, normally after some information has changed. Following is a

fragment from an actual data file, except that various information identifying the UUT has been

edited.

37

BasicParms
filename
CommSelect
TimeOut
QueueSize
RtsPulseFlag
BOARD488
BNC7095
DT2819Base

1994 Sep 15, 15:38:08
parms . def
1 { 1=C0M1 , 2=COM2

}

100000
12
0

0

6

230

UUT
manuf
model
serial
mfgdate
UnitOfLength
Uni tOfSpeed
descrip
XYZ rcvr .

"

comment

"1994 Sep 15, 15:38:10"
"XYZ Lidar Company"
"Super Laser"
"SL0013

"

"1994 Jul 1, 00:00:00"
1 {0=meters, l=feet}
2 {0=m/s, l=km/hr, 2=miles/hr}
"Using fiber optics, with 2 bundles back into the

"Simulated FM transceiver, RF pwr lOmW, deviation 5

kHz .
"

PRR 1381.4175

result 1994 Sep 15, 15:38:21 4400 . 00 40 . 00 -999.00 - 999 . 00
* Just get " RFI

"

when we squeeze the trigger at 10 o'clock.
result 1994 Sep 15, 15:39:56 4400 . 00 40 . 00 4420 . 00 39 . 00
* 9 o'clock, still +10 dBm, 1500 Hz.
result 1994 Sep 15, 15:40:53 4400.00 40 . 00 4420 . 00 39.00
* 8 o'clock, + 10 dBm, 1500 Hz
result 1994 Sep 15, 15:41:30 4400 . 00 40 . 00 4439 . 00 39.00
* 7 o'clock. + 10 dBm; 1500 Hz
result 1994 Sep 15, 15:42:06 4400 . 00 40 . 00 4438.00 39 . 00
* 6 o'clock, still +10 dBm, 1500 Hz
result 1994 Sep 15, 15:42:50 4400 . 00 40 . 00 4420 . 00 39 . 00
* 0 dBm, 3 o'clock on the vernier, 1500 Hz

Following the header blocks are the actual results. The data are from a radio-frequency interference

test. References such as “8 o ' clock ,

” refer to the setting of a knob, not a real clock. After the

user runs a simulation, he must type in the readings from the display of the UUT. (There is no

provision in the software for accepting the data over a wired connection.) Then he may optionally

add a comment. On the actual data line appears the keyword result, followed by the time, the

range and speed settings of the simulation, followed by the range and speed readings from the UUT.
If the comment appears, it is on the line following the related data, and the line begins with *.

The units of the data are those specified in the UUT segment of the header. In this case, the ranges

are in feet, and the speeds are in miles per hour. Recall that the range setting of the simulation is the

initial range, and is not corrected for the insertion delay of the delay generator and the cabling. The

unit under test will read some sort of average range during the measurement. The simulated and

measured speeds are expected to agree closely, but the range numbers will in general not agree.

38

Appendix S:

Format of the “Standard Speed Series” File

Example file. The “standard speed series” file must be prepared in advance using an ASCII editor.

The lines which appear below in this Courier font are from a file which is properly read

by the program. A file similar to this is supplied with the program and other speed series may be

generated by editing that file.

STANDARD SPEED SERIES
this_file SPEEDS. LST
ft_or_m 1 {0=meters, l=feet)
speed_unit 2 (0=m/s, l=km/hr, 2=miles/hr)
* Example file of the type from which we read a set of ranges &

speeds !

* Jim Worthey, 1993 August 10
* Range Speed
200 oo

210 10 .

0

220 20 .

0

230 30 .

0

240 40 .

0

250 50 .

0

260 60 .

0

270 70 .

0

280 80 .

0

290 90 .

0

300 100 .

0

310 110 .

0

320 120 .

0

330 130 .

0

340 140 .

0

400 200 .

0

600 . -200 .

0

590 -190 .

0

580 -180 .

0

570 -170 .

0

560 -160 .

0

550 -150 .

0

540 -140 .

0

530.0 -130 .

0

520.0 -120 .

0

510 .

0

-110 .

0

500 .

0

-100 .

0

490 -90 .

0

480 .

0

i oo o o

470 -70 .

0

460 -60.0
450 -50 .

0

440 -40 .

0

430 -30 .

0

39

420
410
400
-1

. 0

- 20 .

0

- 10 .

0

-0 . 0

-1 . 0

Syntax. Broadly speaking, the file is free-form. The necessary words and numbers may be

separated by one or more spaces or tab characters. The user can create a valid file with different data

by systematic editing of the example file. It should not be necessary to study the syntax rules closely.

Nonetheless, here they are:

1. The file is read one line at a time. Each line is then processed one string at a time, where a string

is

• a group of characters separated by white space, or

• any characters, including white space, enclosed in double quotation marks, such as

"This is one string because it is enclosed in quotes."

The quotation marks are not part of the string. For purpose of this file, white space includes space,

tab, and comma. Where certain strings have special meanings, the program is not case-sensitive.

2. The first line of the file must read STANDARD SPEED SERIES . In accordance with rule 1,

capitalization is optional and additional white space could appear between the words.

3. The next three lines specify parameters. The first string is the parameter name and the second

string is the parameter:

a. Parameter this_f ile should be the name of the file itself; it could be either the

complete path, or the path from the working directory. If it does not agree with the actual file

from which the data are being read, a warning is issued.

b. Parameter ft_or_m should be 0 or 1. 0 means the range values are in meters; 1 means

they are in feet.

c. Parameter speed_unit should be 0 (meaning m/s), 1 (km/hr), or 2 (miles/hr).

These parameters may be given in any order. Note that only the first 2 strings on each parameter line

are interpreted, so additional strings may be added as comments. In most parts of the program, the

units of measure used are those of the unit under test, as specified by the user. This file and the

perturbation file are the other places where units may be specified; the range and speed values from

the table will be converted to the units of the unit under test, if different.

4. Any line beginning with * is a comment. Comments may appear anywhere.

5. If a line after the first does not begin with a parameter name or a *, it is considered to be a range-

speed pair, and the first two strings should be a range and a speed within the simulator’s range, given

as decimal numbers. Again, strings after the second are ignored. Up to the 100 pairs may be used;

further data will be ignored. The special pair (-1,-1) may be used to terminate the list. All data after

(-1, -1) are ignored.

40

Appendix U:

Format of the UUT File

As explained in Chapter 4, the description of the UUT is read from and written to a file with default

filename PREVIOUS.UUT. Here is an example of such a file:

UUT
manuf
model
serial
mfgdate
UnitOfLength
UnitOfSpeed
descrip
comment
PRR

"1995 Jun 6, 16:35:37"
" XYZ

"

"123 "

"5385"
"1992 Nov 3, 00:00:00"
1 {0=meters, l=feet)
2 {0=m/s, l=km/hr, 2=miles/hr}
"our permanent test unit"
"The new 486 PC is now in the loop."
149.9999

As with other files, the file is read by lines, and the lines are read as a series of blank-delimited

strings. Material in quotation marks is treated as a single string. Each line begins with a keyword,

and the 10 keywords always appear in the order shown. When the file is read, keywords must appear

as shown, except that case (capitalization) is ignored. The first keyword, UUT, identifies the file

type. It is followed by a time stamp, showing when the file was saved. On the next three lines, the

keywords are followed by strings as input by the user. The user inputs the date of manufacture in

numerical format, but on the next line it is presented as a string. The unit of length and unit of speed

are designated by integers; when the file is read, comments are ignored, not because of the curly

braces, but because strings after the second are ignored.

“Descrip” and “comment” are further strings input by the user. The PRR is a measured value which

is not used when the file is read. The user must re-measure PRR each time the program is run. (The

numerical PRR given here is a made-up number.)

Appendix W:
Wiring Details

Cabling context. Pulses pass in and out of the digital delay generator through BNC connectors

on the front panel. The receive-send unit is not tightly specified, but can also have BNC’s for the

pulse inputs and outputs. If the terminations at the switch panel are made with BNC connectors, then

most of the signal cables can be lengths of coax with a BNC on each end, everyday laboratory items.

One special cable. A special cable must be made up to bring a trigger pulse from some point

such as the “initial pulse” output of the digital delay generator to one of the serial ports on the PC,

either COM 1 or COM2.

41

One end of this cable terminates in a BNC, while the other end is a 9-pin RS-232 connector (DB-9),

or conceivably a 25-pin RS-232 connector (DB-25).

The wiring at the RS-232 end can be summarized in this way:

Signal

name
Pin# if 9-pin Pin# if 25-pin Connect to

Signal

ground

5 7 Shield of coaxial cable.

Signal

ground

5 7 Bring out on a short black lead with a

termination such as a test clip.

DSR 6 6 Central conductor of coaxial cable.

DSR 6 6 Short red lead with a termination such as a

test clip. Makes the pulse available to an

oscilloscope probe, for instance.

RTS 7 4 Short yellow lead with a termination such as a

test clip. If “basic setting” RtsPulseFlag is

nonzero, the program will pulse this line after

a delay value has been loaded to the delay

generator.

The function of this cable is to notify the software (VS.EXE) that the lidar has fired a pulse. The

notification pulse is taken from the “initial pulse” output of the digital delay generator. This pulse

can be sent to COM1 or COM2; an interactive screen lets you set the port in software. The initial

pulse output serves a pulse-stretching function, since it can be adjusted in amplitude and width.

When this pulse is received by the COM port, it triggers an interrupt service routine which uses the

IEEE-488 bus to set up the next delay in the delay generator. Technically, a race condition is set up,

because the interrupt is triggered before the delay generator has measured off the previous delay.

The race is over in a MICROsecond or 2, and this has caused no trouble. It can take a couple

MILLIseconds to complete the data transfer over the IEEE-488 bus.

Connections at the DT-758 screw terminal board. The usage of the connections to the

counter-timer card is discussed repeatedly in the body of this user manual. It is assumed in every case

that the optional cable with screw terminal board has been purchased. The following table will

summarize the usage of all the screw terminals that must or may be used in the target simulator

application.

42

Connections at the DT-758 screw terminal board

Screw Terminal(s) Function Comment

3 Pulse output of counter/timer 1

.

Must be connected by a jumper to

terminal 20.

20 Gate input of counter/timer 3 Receives input from terminal 3.

2,4, 6, 8, 10, 12, 15,

18,21,24, 27, 29

Digital ground

11 Pulse output of counter/timer 5. Source of pulses for test purposes,

controlled by the program

13 Pulse input for counter/timer 1. Input for the program’s

determination of the UUT’s PRR.

3, 5, 7, 9, 11 Outputs of counter/timers 1 -5 LED’s connected from these

terminals to ground will blink in

the DT2819 Experiment,

selectable from the top menu. Since

there is also a screen display, this is

non-essential, unless one would

encounter a stubborn problem

involving the counter-timer card.

For further explanation of the screw panel, see the DT2819 User Manual, Table 1, p. 15.

Switch Panel. In everyday use of the simulator, the PRR of the unit under test is first measured,

then the simulation is run. For the PRR measurement, the Initial Pulse output of the delay generator

must go to screw 13, but during the actual simulation, the same Initial Pulse must go to the

computer’s serial port. A switch must be provided to make this wiring change conveniently and

without excessive wear to the connectors. Other wiring changes may be needed to interrupt pulses

to the transmit input of the receive-send unit, to run the calibration procedure of Chapter 5, or for

setup and troubleshooting.

The table on the next page shows switching requirements for some potential modes of operation. On

the pages after that, figures 2-4 offer plans for a switch panel. Simpler switch panels have been used,

but this design gives great flexibility. It is intended that the substrate holding the switches and

connectors be clear plastic so that the signal paths are obvious. Referring to figure 4, the BNC
connectors should be labeled as indicated, Com Port, Initial Pulse, Rx, Delayed Pulse, Tx, and

7095 Trigger. The label Screw 1 1 Pulses should also be affixed. The other items should not be

labelled on the actual panel. The table following figure 2 gives the hole diameters for that figure, and

can be adjusted if non-identical parts are used.

43

Suntcfiing Requirements

Count real pulses in context of a real

experiment

#1 1 to noplace or to LED

Rx pulse to 7095 trigger input.

Initial pulse output to #13 for counting.

Delayed pulse from 7095 must not go to Rx-Tx unit, or

the loop must be broken optically, for some UUTs.

Simulation running. #1 1 to noplace or to LED

Rx pulse to 7095. trigger input.

Initial pulse output of 7095 goes to the com port input of

the computer.

Delay output of 7095 must now go to the Tx input of the

Rx-Tx unit.

Run phony pulses to 7095 for testing. For

instance, troubleshooting or refined

calibration of the delay series, with receive-

send unit out of the loop.

#1
1
goes to trigger input of 7095.

Rx can go noplace.

Initial pulse output of 7095 goes to the comm, port input

of the computer.

Counter-timer testing only. Screw #1
1 goes to LED.

No input to 7095. Rx can go noplace.

Initial pulse output of 7095 open.

Count phony pulses from screw #11. #1
1
goes to #13 for counting.

No input to 7095. Rx can go noplace.

Initial pulse output of 7095 can go open.

Count phony pulses through 7095. #1
1 goes to trigger input of 7095.

Rx can go noplace

Initial pulse output of 7095 to #13 for counting.

44

203.2

k

—

57.15

134.62

<—31

.75

109.22

+

CD

V \r v

h-a-H
LD —
CM

^ OO w
00

LO
co

CD
—

<

o0 o

°o °o Do
Ll_ ©

°o O0

LL © °o o0

Eo O0 o0

i

f°

B o
B o
B o

58.42 B o
<

B ~o O

> <

1

1— 4-

ID
00

05
CD

g s
5 CO
O _Q

CD
C $
>

"O -O
'• E0

1 s
iS C/5Q co

E
E
c
CO
c
o
co
c
0
E

g
1c:

E
E

o
00

,g“

"co

_0
CL
i—

0
0
o

0

T
CM
CD

00
00

T

“T
oo
00

T
ID

00
CD

ID
-CM

00

o
ID

T
r^.

i-si

ID
N-

00

00
00

IT)

Figure

2,

front

panel.

Hole

diameters

according

to

table.

Table of Hole Diameters for Switch Panel

Designator Description Estimated

Diam.

Final Diameter

or Drill #

A To clear 6-32 screws that anchor this

panel to the base.

0.136" 5/32 = 0.156"

= 3.962 mm

B LEDs - care in drilling or reaming these

holes can give a snug fit, avoiding glue.

5 mm
5.00 mm
meas

#9 = 0.1960"

= 4.978 mm
(real tight)

C Mounting hole for subminiature toggle

switch.

6.28 mm
meas

0.250" =

6.35 mm

D Mounting hole for BNC chassis

connector

9.525 m
m

3/8 = 0.375 =

9.525 mm

E Mounting hole for banana socket 7.72 mm 5/16 = 0.3125

= 7.938 mm

F Hole for test point. Suggested test point

is a 4-40 x 1-3/4 or 1

V

2 screw with 4 or

more nuts, set so that it protrudes front

and back of the panel. Stiff wire may be

soldered on to provide additional

anchorage for scope probe. Solder lugs in

back allow wiring.

2.92 mm #32 = 0.1160

= 2.946 mm

Please note These diameters are based on parts available in Gaithersburg and work

done by a professional machinist. For instance, the 5 mm LEDs are a

common size. By doing a little trial-and-error on scrap material, it was

possible to achieve a friction fit on the LEDs and an attractive result.

Parts should be obtained first, and checked for size. For identity of

parts, see figure 4, the wiring diagram, and its accompanying table.

46

Figure

3,

base.

The

author’s

preference

is

to

assemble

the

front

panel

and

the

screw

terminal

board

to

this

piece

with

cap

screws.

I)
x:
*—

»

c
o
s-
c3
03
Oh
Oh
cd

3
O
X!
CO

*00

03
C/3

3
Oh

£
<U
s-
03

00

<L)

-O

CDX
T3
C
c3

C/3
C-h

o
o
03
C
e
o
o
U
2
00
03
_C
•4—*

c
o

03

•3 o3 cd
>—I 03

. Oh
C Oh
S *

wb o
2 c
3 2
w) 3
c o
•£ -C

C/3

^ 00

"O 03

C O

3 03O _c
*H

3 O
c/3 ;

tO 03
CCS C
Oh £Oh
•'t -o

a X
3 co

Oh c+0

00
St

Key to Wiring Diagram, Figure 4.

Designation Description Switch positions

LEDs 3, 5, 7, 9 Connected from screw 3, 5, 7, 9 to a ground screw. Cathode to ground;

ballast resistor not needed.

LED 11 According to switch, either unused or displays pulses from screw 1 1.

SI Subminiature toggle switch, SPDT, on-off-on.

Select destination for pulses from screw #11.

LED 11

open

Pulses go onward.

S2 Same device as SI. Select PRR counting

input, screw #13.

Direct from screw #11

open

From initial pulse output of

delay generator

S3 Same device as SI. Trigger source for the

delay generator.

Pulses from screw #11

open

Pulses from Rx (receive)

output of receive-send unit.

S4 Subminiature toggle switch, SPDT, on-none-

on. On-off switch for the Tx (transmit or

send) input of the receive-send unit.

Optical return pulses on.

Optical return pulses off.

S5 Same device as SI. Select use for initial pulse

output from delay generator.

To screw #13 for counting

(PRR measurement)

open

To com port for simulation.

6 BNCs Inputs and outputs as labeled. Solder lugs, separately purchased, facilitate

the ground connection.

Screws #11, 13 Shown for wiring. They are on the screw panel.

TP1, TP2 : Test Points, long screws such as 4-40x50 mm, with bits of solid wire

soldered on to accept oscilloscope probe. As many as 6 nuts per screw

permit attachment to panel and solder lugs front and rear.

Binding post Green banana binding post. May also have bits of wire attached. Ground for

oscilloscope probe, for instance. Bridge all BNC shells and wire them to this

post and to some of the ribbon cable grounds.

49

