
Abstracting Formal Specifications to Generate
Software Tests via Model Checking

Paul E. Ammann
George Mason University

Information & Software Engineering

Dept.

Fairfax, VA 22033

Paul E. Black

U.S. DEPARTMENT OF COMMERCE
Technology Administration

Information Technology Laboratory

National Institute of Standards

and Technology

100 Bureau Drive

Gaithersburg, MD 20899

QC

100

.1)56

NO. 6*105

1999

NIST

NISTIR 6405

Abstracting Formal Specifications to Generate
Software Tests via Model Checking

Paul E. Ammann
George Mason University

Information & Software Engineering

Dept.

Fairfax, VA 22033

Paul E. Black

U.S. DEPARTMENT OF COMMERCE
Technology Administration

Information Technology Laboratory

National Institute of Standards

and Technology

100 Bureau Drive

Gaithersburg, MD 20899

October 1999

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Gary R. Bachula, Acting Under Secretary

for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Director

Abstracting Formal Specifications to Generate

Software Tests via Model Checking

Paul Ammann* 1 and Paul E. Black2

1
Information &; Software Engineering Dept., George Mason University,

Fairfax, Virginia 22033 USA
pannnann@gimi . edu

2 Information Technology Laboratory, NIST, Gaithersburg, Maryland 20899 USA
paul . blackOnist

.
gov

Abstract. A recent method combines model checkers with specifica-

tion-based mutation analysis to generate test cases from formal software

specifications. However high-level software specifications usually must be

reduced to make analysis with a model checker feasible.

We propose a new reduction, parts of which can be applied mechanically,

to soundly reduce some large, even infinite, state machines to manageable

pieces. Our work differs from other work in that we use the reduction

for generating test sets, as opposed to the typical goal of analyzing for

properties. Consequently, we have different criteria, and we prove a dif-

ferent soundness rule. Informally, the rule is that counterexamples from

the model checker are test cases for the original specification. The reduc-

tion changes both the state machine and temporal logic constraints in

the model checking specification to avoid generating unsound test cases.

We give an example of the reduction and test generation.

1 Introduction

The use of formal methods has been widely advocated to reduce the likelihood

of errors in early stages of system development. Some of the chief drawbacks to

applying formal methods are the difficulty of conducting formal analysis [6] and

the perceived or actual payoff in project budget. Testing is a substantial part of

the software budget, and formal methods offer an opportunity to significantly

reduce testing costs, thereby making formal methods more attractive from the

budget perspective.

The authors developed an innovative combination of mutation analysis, sym-

bolic model checking, and test generation which solves some problems previously

plaguing these approaches and automatically produces good sets of tests from

formal specifications [1,2]. This approach is useful only if there is a specification

amenable to model checking for a given application. Here we seek to widen the

class of applications for which automatic test generation via a model checker is

* Partially supported by the National Science Foundation under grant number CCR-
99-01030

feasible. Our approach is to define a reduction from a given specification to a

smaller one that is more likely to be tractable for a model checker. We tailor the

reduction for test generation, as opposed to the usual goal of analysis.

A broad span of research from early work on algebraic specifications [13]

to more recent work such as [21] addresses the problem of relating tests to

formal specifications. In particular, counterexamples from model checkers are

potentially useful test cases. In addition to our use of the Symbolic Model Ver-

ifier (SMV) model checker [19] to generate mutation adequate tests [2], Calla-

han, Schneider, and Easterbrook use the Simple PROMELA Interpreter (SPIN)

model checker [16] to generate tests that cover each block in a certain parti-

tioning of the input domain [8]. Gargantini and Heitmeyer use both SPIN and

SMV to generate branch-adequate tests from Software Cost Reduction (SCR)

requirements specifications [14].

The model checking approach to formal methods has received considerable

attention in the literature, and readily available tools such as SMV and SPIN
are capable of handling the state spaces associated with realistic problems [11].

Although model checking began as a method for verifying hardware designs,

there is growing evidence that model checking can be applied with considerable

automation to specifications for relatively large software systems, such as the

Traffic Alert &: Collision Avoidance System (TCAS) II [9]. The increasing use-

fulness of model checkers for software systems makes them attractive targets for

use in aspects of software development other than pure analysis, which is their

primary role today.

Model checking has been successfully applied to a wide variety of practi-

cal problems, including hardware design, protocol analysis, operating systems,

reactive system analysis, fault tolerance, and security. The chief advantage of

model checking over the competing approach of theorem proving is complete

automation. Whereas human interaction is generally required to prove all but

the simplest theorems, model checkers can explore the state spaces for finite, yet

realistic, problems without human guidance.

A model checking specification consists of two parts. One part is a state

machine defined in terms of variables, initial values for the variables, environ-

mental assumptions, and a description of the conditions under which variables

may change value. The other part is temporal logic constraints over states and

execution paths. Conceptually, a model checker visits all reachable states and

verifies that the temporal logic properties are satisfied over each possible path.

Model checkers exploit clever ways of avoiding brute force exploration of the

state space, for example, see [7]. If a property is not satisfied, the model checker

attempts to generate a counterexample in the form of a trace or sequence of

states. For some temporal logic properties, no counterexample is possible. For

example, if the property states that at least one possible execution path leads to

a certain state and in fact no path leads to that state, there is no counterexample

to exhibit.

Even though model checking are powerful formal “compute engines,” clever

abstractions are required for problems of even modest complexity to avoid the

2

state space explosion problem, which renders the model checker useless. Some of

these abstractions are informal, although there have been significant formaliza-

tions of the abstraction process [4,9, 18]. Other abstractions [20] axe formalized

to the extent of being paired with theorem provers and model checkers to cal-

culate and refine them. These abstractions are directed at the analysis problem,

that is, determining whether given properties expressed in a temporal logic hold

over a given state machine.

In this paper, we focus on test generation instead of analysis, and there-

fore test requirements drive our abstraction. The basic property needed for test

generation, which we term reduction soundness
,

is that if a counterexample is

generated in the abstraction, the counterexample is also a test case in the origi-

nal specification. Reduction soundness does not necessarily hold for abstractions

designed for analysis, although other soundness properties may hold.

Our contributions in this paper are:

1. We provide a new reduction called finite focus for abstracting state machine

specifications.

2. We develop a notion of soundness that is suitable for test generation, and

we show that the finite focus reduction is sound.

3. We define a notion of mutation adequacy for mutation testing of model

checking specifications, and describe the subset of mutants for which finite

focus generates a mutation adequate test set. Informally, they are mutants

that can be distinguished via traces from the finite focus reduction.

Section 2 is an overview of the mutation analysis approach for generating tests

and measuring coverage with a model checker described in [1,2], and Sect. 3 ex-

plains how the finite focus reduction fits into this approach. Section 4 formally

defines the reduction and proves soundness properties. Although significant parts

of the reduction are theoretically underconstrained, Sect. 5 describes additional

considerations, particularly for mutation adequacy. Section 6 presents an exam-

ple of using finite focus to generate tests for validation. Section 7 gives our plans

for future work. Finally, we present our conclusions in Sect. 8. Appendix A is

a full proof of the rewriting rules used in the reduction. Appendix B gives the

model used in the example and an alternate model, and App. C gives the tests.

2 Automatic Test Generation

Figure 1 shows the overall approach explained in detail in [1,2]. One begins

with some system specifications and, through finite modeling and with the aid

of automated tools, turns them into specifications suitable for a model checker.

After this point all processing can be automatic.

2.1 Background on Mutation Analysis

Standard mutation analysis [12] is a method based on program source code to

develop a set of test cases which is sensitive to small syntactic changes to a

3

Fig. 1. Automatic Test Generation in [1]

program. The rationale is that if a test set can distinguish a program from each

of its slight variations, the test set is exercising the program adequately.

A mutation analysis system defines a set of mutation operators. Each opera-

tor is a pattern for a small syntactic change. A mutant program
,
or more simply,

mutant, is produced by applying a single mutation operator exactly once to the

original program. Applying the set of operators systematically generates a set

of mutant programs. Some of these mutants may be semantically equivalent to

the original program. That is, a mutant and the original may compute the same

function for all possible inputs. Such mutants are termed equivalent. Equivalent

mutants present a serious problem for program-based mutation analysis, since

identifying equivalent mutants is, in general, an undecidable problem.

2.2 Test Generation Via Mutation Operators

The specification-based mutation analysis scheme in [1,2] is decidable since its

domain is the finite state space of a model checker specification. To provide a

richer set of constraints, the state machine specification is “reflected” in the con-

straints. For instance, a transition from state si to s2 on condition c becomes

the constraint SPEC AG si & c -> AX s2. Mutation operators are applied to

the constraints yielding a set of mutant specifications. A “condition substitute”

operator yields SPEC AG si & b -> AX s2, among other mutant specifications,

when applied to the above constraint. Other operators change constants, vari-

ables, or boolean operators, drop conditions, etc.

The model checker compares the (assumed-good) state machine with the

mutants. When it finds an inconsistency, it generates a counterexample. Equiv-

alent mutants produce no counterexamples and therefore are automatically dis-

regarded.

The set of counterexamples is reduced by eliminating duplicates and coun-

terexamples which are “prefixes” of other, longer counterexamples. The coun-

terexamples contain both stimuli and expected output values so they may be

4

automatically converted to complete test cases. The test cases generate exe-

cutable test code, including a test harness and drivers. For a given set of muta-

tion operators, the procedures in [1,2] generate a mutation-adequate set of test

cases.

3 Practical Test Generation

The preceding approach uses model checkers to process specifications. Unfortu-

nately, symbolic model checkers can only handle finite state machines. In fact,

spaces with more than a few thousand states must often be handled in special

ways. Yet specifications of realistic software often have enormous, even infinite,

state spaces.

It is often straight-forward for an analyst to come up with a smaller model

if the original model is too large for the model checker. However, it is generally

impractical to require large amounts of human time to devise smaller models.

To leverage scarce human expertise, we want reductions and abstractions which

are highly automated.

3.1 Other Reduction Approaches

We know of several existing, mechanical approaches to reduction or abstraction.

To be useful, abstractions must preserve some properties of the original. Two
useful measures are soundness and completeness.

In a sound abstraction, properties of the reduced or abstract specification

are also properties of the original specification. Soundness avoids false positives.

That is, any error found in the abstract specification (a “positive” result) is also

an error in the original specification. In a complete abstraction properties of the

original specification are also properties of the reduced specification. Complete-

ness avoids false negatives. That is, all errors in the original specification will be

found in the abstract specification.

Heitmeyer, et. al. [15] formalize an abstraction which removes irrelevant vari-

ables. Briefly, to check that some property q holds for a specification, one may
remove variables and inputs which do not occur in or contribute to q. Another

abstraction removes monitored or input variables which only contribute directly

to one other variable. Finally, they also describe a method which abstracts mon-

itored variables. That is, if only certain values or ranges of a monitored vari-

able influence the values of other variables, the monitored variable may be re-

placed with an abstract variable. For instance, consider an input variable, Water

Pressure, with a discrete range from 0 to 2000 whose influence is constant over

low values, over a range of moderate values, and over high values. This vari-

able may be replaced with a quantized variable which has the values Too_Low,

InJRange, or Too_High. All these abstractions are sound for analysis. The first

is complete, and the other two are complete under conditions which frequently

hold in practise.

5

Chan, et. al. [9] use another method to reduce the state size. Some specifica-

tions place time bounds on the intervals between events. The obvious specifica-

tion keeps time as an integer, uses variables to record the times of events, and

has predicates on the difference in times. Instead, they keep (bounded) timers

measuring the time since events. When the bounds are exceeded, the timers

enter a “satisfied” (or “unsatisfied”) state.

They also use a temporal strength reduction. Suppose there is a predicate

on the value from a previous state. Rather than saving the previous value and

computing the predicate, just save the value of the predicate. For instance, rather

than save the previous value of an integer y ,
and then compute prev(y

)
> 1000,

compute prev(y > 1000). The abstracted model only need save a boolean value.

Kurshan [18] explains how k verifications may be done on k reductions of a

system, each of which is a j part of the entire system. Since verification is often

exponential in the size of the system, a verification of the entire system may be

proportional to c
n while k verifications take kc% work.

In an overview presentation, Rushby [20] advocates “ubiquitous abstraction,”

that is, using abstractions in several different ways in all parts of analysis. For

instance, even for one given problem, different abstractions may be appropriate,

depending on the invariants used to prove a goal. The invariants may be au-

tomatically strengthened when the proof fails. Another noteworthy approach is

calculating transitions of a state abstraction using rules that guarantee correct-

ness, as opposed to taking a hand-crafted abstraction and proving it is sound

and complete. Abstractions may be refined automatically using information from

static analysis, such as reachable states. In contrast, we are still at the stage of

characterizing abstractions in our work, albeit for a different notion of soundness,

rather than computing them.

Bensalem, Lakhnech, and Owre [3] explain a semi-automated abstraction in

which the analyst chooses a state abstraction and then a conservative (sound) set

of corresponding transitions are computed. Construction begins with a complete

set of transitions, that is, a transition from every abstract state to every other

abstract state. If a transition can be (automatically) proven to be impossible, it

is removed. Since such proofs are in general too complex, they combine it with

three techniques based on partitioning the abstract variables, substituting, and

using the property being investigated.

3.2 A New Reduction

Since our goal is automatic test generation, rather than property analysis, we

can use different reductions. For analysis, reductions may summarize states and

discard details of transitions. A reduced model may still be quite useful even if

it is not precise. To automatically generate tests, we may wish to retain details

in order to easily determine if an implementation behaves properly. We can then

accumulate sets of tests generated from different precise reductions. In sum-

mary, an abstraction which is perfectly satisfactory for one purpose, property,

or specification may be unusable in another.

6

+1 +1 +1 +1

5 Uo Jr i JF2

+i

Jr4 • • •

Fig. 2. Focus on a Finite Subset of States

A typical abstraction is to map variables with large or unbounded domains

to a fixed subset of the possible values. For example, an integer variable x might

be modeled with a corresponding variable xmodei, having a bounded range of

0, 1, and 2. From the test generation perspective, the ranges simply need to cover

values which may be interesting when used in actual test cases.

Consider the example of a bank balance in an imaginary currency, the Florin

(i
7
), with operations to deposit and withdraw one Florin. The complete model,

depicted by the top row and labeled S in Fig. 2, uses type natural. However,

the model cannot be automatically examined by a model checker. To use the

analytical resources of a model checker, we must drastically reduce this model

to some finite size. For instance, a human analyst may naturally focus on what

happens when the balance is close to zero and ignore, for the moment, large

balances. Can we formalize this focusing on a subrange so that the analyst need

not worry about making an unsound reduction?

Suppose we choose to accurately model balances of J^O, JF1, and £2 ,
and

map anything greater than two to “other.” We need to indicate that the model

checker should ignore any set of operations in which the balance exceeds JF2,

since they may not be sound, i.e., may not be accurately represented.

Consider having one constraint on accounts with a balance of ^"3 and a differ-

ent constraint on those with a balance of JF4. Both of these balances are mapped
to “other” in the reduction. This loss of accuracy indicates that any execution

path entering “other” is suspect. We record this by adding a “soundness” state

variable which becomes unsound if the state becomes “other,” such as a deposit

when the balance is Jr2 . The bottom row, labeled Sr in Fig. 2, illustrates this

reduction. We can then have the model checker ignore any unsound inconsis-

tencies so that it returns only those which are problems in the full model. We
formalize the idea behind this example as a reduction we call “finite focus.”

3.3 Finite Focus and Test Generation

For our purposes, a system specification is a pair (S,T), where 5 is a state

machine description and T is a set of temporal logic constraints. S may be

unbounded, for instance, part of the state may be an integer.

7

To generate test cases using the method described in Sect. 2, we must be

able to analyze the specifications with a symbolic model checker. Figure 3 illus-

trates the steps to apply the reduction for finite focus or RFF. For test case

generation, the state machine, S, is reflected as temporal logic constraints to

provide a description for subsequent mutation analysis. Any existing temporal

logic constraints, r in the figure, may be added to the reflected constraints which

describe the state machine.

Some finite number of states, focused around the initial state, are mapped
to states in the reduced specification. All other states are mapped to a single

“other” state. The source and destination of each transition are mapped likewise.

The function RFFt maps temporal logic constraints, and RFFs maps the state

machine. The two functions, along with constraint rewriting
(CR)

for soundness,

explained below, constitute RFF.

System
specs

5

T
RFFt tr

M CR
Tr

mutant model counter-
(

specs checker examples

Fig. 3. Specification Transformations

RFFs also adds a separate state machine with the initial state sound. When-
ever the reduced state machine ends in the “other” state, this added machine

goes unsound. It remains unsound thereafter. This step yields a reduced state

machine, Sr.

RFFt yields reduced temporal logic constraints, Tr, but is less rigidly de-

termined than RFFs- Together Sr and Tr answer to the finite specifications of

Fig. 1.

To generate counterexamples, we repeatedly apply various mutation opera-

tors, M in Fig. 3, to the temporal logic constraints. Then, in order to prevent

unsound counterexamples, we rewrite the constraints so they are always satis-

fied when the state is unsound. This constraint rewriting, CR
,
yields mutated

constraints, T'R . Together Sr and T'R are given to the model checker which effi-

ciently computes a number of counterexamples. We prove the soundness of our

reduction in Sect. 4 as the central result of this paper. Soundness for test gen-

eration means that any counterexample of the reduced specification (Sr, Tr) is

a valid trace of the original state machine specification, 5.

3.4 Preventing Unsound Counterexamples

Along with the reductions RFFt and RFFs, we must make sure no counterex-

amples are produced if the state becomes unsound. We can prevent counterex-

amples by modifying the temporal logic specifications so there is no violation

if the model is unsound. Here we give a set of rewriting rules which force any

8

temporal logic expression to evaluate to true (or false, as appropriate) if the

state is unsound.

Let s be the variable representing soundness: if the state is sound, s is true.

If the machine takes an unsound transition, s becomes false. Note that once s

becomes false, it remains false; RFF soundness relies on this.

Specifications in computation tree logic (CTL) [10] are changed according to

the following rules, which we refer to as the constraint rewriting rules, CR. If

a CTL formula does not begin with a temporal operator, it is rewritten as an

implication so that it has the value True when the soundness variable is false.

Otherwise, the temporal operator rewriting rule is applied.

_ J
cr(/, True) if / begins with a temporal operator

' \s —> cr(f,True) otherwise

Formulae must be rewritten recursively so that embedded temporal operators,

which refer to future states, are rewritten to be True when the soundness vari-

able becomes false in those future states. Constraint rewriting with a value,

cr(/, v), tracks whether the formula has been negated. If the formula is a logical

negation, implication, or equivalence, the value is negated in rewriting some of

the subexpressions. Otherwise the subexpressions are rewritten with the value

unchanged.

cr(! f,v) =!cr(/,~t/)

cr(f&g,v) =cr(f,v)kcr(g,v)

cr(f
| g, v) = cr(f, v) |

cr(g, v)

cr(f —> g, v) = cr(f,~v) -> cr{g,v)

cr(f <-> g,v) = cr{f,~v)->cr{g, v) & cr(g,~v)->cr(f,v)

If the formula is a temporal operator, it is rewritten so the expression becomes

True (or False) when the soundness variable is false. The operators AG, AF, AX,

EG, EF, and EX follow these patterns. The meta-variable OP represents one of

the six operators.

cr(0P /, True) = OP s —> cr(f,True)

cr(0P /, False) = OP skcr(f, False)

The operators A. . . U and E. . . U follow these patterns.

cr (OPgUf, True) = OPgUs —> cr(f, True)

cr(0PgVf, False) — 0PpUs&cr(/, False)

If the formula is none of the above, say, a variable, it is unchanged.

cr(f,v) = f

For example, the following specification states that an instruction which

pushes one item on the stack of a Java1 virtual machine, increases the stack

size by one in the next state.

1 Java is a trademark of Sun Microsystems, Inc.

9

SPEC AG(instr=pushl -> AX(StkSize=PStkSize+l)

)

Rewriting for soundness yields the formula below which reads: if the current

state is sound and the instruction pushes one item, the stack is one larger in the

next state if it is (still) sound.

SPEC AG(s -> instr=pushl -> AX(s -> StkSize=PStkSize+l)

)

Our models and specifications for a Java virtual machine stack are in App. B.

We now want to argue a theorem that states, roughly, when s is false, every

constraint evaluates to true. First we define a finite execution path of a state ma-

chine, over which constraints are evaluated. We begin with a reference definition

of a state machine.

Definition 1 (after [4]). A state machine S is a 4-tuple (E,so,Em ,T), where

E is a set of states, so € E is the initial state, Em is the set of input events,

and T describes the state transitions. The transitions T are a relation s x e —> s

where s £ E, and e 6 Em .

Since T is a relation, this definition includes non-deterministic state machines.

Input events correspond to monitored variables in [4,5].

Definition 2 (after [10]). A finite path is a finite sequence of states (so,si,

. .
. ,

sn)
such that Vi

|

0 < i < n => (si, Sj+i) £ T

.

Definition 3. A finite path is irreducible if after removing the last state, the

path does not violate any constraint.

That is, a finite path (so, si, . .
.
,sn)

is irreducible if (s0 , 5i, . .
. ,

sn-i) does

not violate any constraint.

Theorem 1. Suppose that CR is applied to a set of constraints, Tr. Any irre-

ducible path that violates a constraint in CR(Tr) has s equal true in each state.

We give a proof sketch here; see App. A for a more formal proof. We first

argue the rules for universally quantified expressions. The AG rule describes

invariants on states; clearly this rule exempts a particular state if s is false in

that state. The AF rule describes a property of some future state; if s is false, it

remains false in all future states, and therefore the property is true for all future

states. The AX rule is a special case of the AF rule where the future state is

simply the next state.

Finally, the meaning of AglJf requires / to become true eventually and for

g to hold until it does. If s is false, the second rewritten predicate s —> f holds,

thus satisfying that the second predicate becomes true eventually. Also when

s is false, the second predicate is true immediately which satisfies the “until”

condition, too.

In case we need to rewrite the expression to be false, for instance, if the

specification is SPEC ! AG p, the rewriting rules for AG, AF, and A . . . U force

the value to be false when s is false. For AX we need the requirement on CTL

10

structures that every state has at least one outgoing transition. Otherwise, if a

state had no next state, AX False would be vacuously true.

The rules for rewriting existential quantifiers to be true or false follow simi-

larly, except for rewriting EX expressions to be true. If a state had no next state,

EX True would be false, since there is no next state at all. Since every state has

a next state, the rewriting works in all cases.

4 Proof of Reduction Soundness

In this section we formally define the properties which any reduction for finite

focus must have. We define soundness for our ultimate purpose of test generation

and prove that counterexamples from finite focus reductions are sound.

Definition 4. A trace of an execution is a list of inputs to a state machine

and the resultant states. Formally t = [(ei, Si), . .
. ,

(e„,sn)] is a trace of S if

\/i\l<i<n=>T : (si_i,ej) —> Sj.

Note that this definition allows non-deterministic state machines. However, any

particular trace is completely unambiguous, even if the state machine is non-

deterministic. That is, the particular sequence of transitions yielding a trace may
be unambiguously reconstructed from the trace: each transition is (sj_i,ej) —

>

Sj

where 1 < i < n.

Definition 5. A counterexample, c, from a state machine, S, and temporal logic

constraints, T, is an irreducible trace of S with a constraint violation of T

.

In other words, model checkers produce counterexamples just long enough

to demonstrate some combination of inputs and states which cause one or more

constraints to be false. If the model checker produced counterexamples longer

than necessary, it may find a contradiction in a sound state, then arbitrarily

continue the trace and eventually report an unsound state.

Some model checkers can generate counterexamples quite efficiently. The ac-

tual counterexamples often elide much of the redundant trace information, such

as values which stay the same in a new state. When we say that a counterex-

ample is produced from some S and T, we mean a trace which demonstrates a

constraint violation is found and reported.

Definition 6. A state machine reduction for finite focus, RFFs, has the fol-

lowing properties:

1. The reduction accurately copies the initial state. It may also copy some finite

number of states around the initial state.

RFFs
(a) The initial state is mapped one-to-one: so —

>

so-

(b) Other states are mapped one-to-one, also.

(c) Any remaining states are mapped to a new state, “other”: Si Er =>

11

2. Input events map identically: Em
3. The sources and destinations of transitions are mapped according to the

above, T : (s,e) -> s'
R-^s

Tr : (
RFFs (s),e)

RFFs (s')

f. The reduction adds a new “soundness” variable with two states: sound and

unsound.

(a) The initial state is sound.

(b) For every unsound transition (Tr : (s,e) other), add a transition

conditioned on the source state and event from sound to unsound, more

formally, (sound, s x e) -* unsound.

(c) Any other transition from sound remains in sound.

(d) All transitions from unsound remain in unsound.

RFFt
The temporal logic reduction T —> Tr is nearly unconstrained. Theoreti-

cally, soundness is preserved by any reduction, as long as the resulting constraints

are valid (e.g., no undefined variables or constants) in the state machine, Sr. In

Sect. 5 we describe practical requirements to achieve coverage.

Definition 7. A state s in Sr is sound if it is faithfully copied to Sr.

RFFs
That is, if s G F —> s 6 Ur, s is sound.

Lemma 1. Counterexamples include no unsound states.

Proof: Assume there is a first unsound state in the counterexample trace.

1. There was no contradiction in a previous state, by Definition 5.

2. Since this state is unsound, it is not part of a contradiction, by Theorem 1.

3. Since subsequent states are also unsound (part 4d of the definition of RFF),
they cannot be part of a contradiction, either.

So there is no contradiction at all. But this conflicts with the definition that

counterexamples have contradictions. Therefore there is no first unsound state.

Complementing Lemma 1, we argue that all sound transitions from soundly

reachable states may be used. Consider all sound states which are reachable

from the initial state through other sound states. Any transition from a soundly

reachable sound state to another sound state may appear in counterexamples.

To say which transitions actually appear in counterexamples would require

us to characterize the state machine duplication, possible mutation operators,

the temporal logic reduction function, and the model checker’s counterexample

selection scheme. We discuss a related issue, mutation adequacy, in Sect. 5.

Theorem 2. No soundly reachable sound transition is necessarily excluded from

counterexamples.

Proof:

1. By definition the initial state is reachable. Since it is also sound, it is soundly

reachable. Any sound state reachable from a soundly reachable state is

soundly reachable, too.

12

2. Since the machine always remains sound, any sound transition from a soundly

reachable state is not precluded by our scheme.

We now present our main result, namely that any reduction following the

above is sound, or that it produces only sound counterexamples. In other words,

the counterexample trace can be mapped back to a (valid) trace in the original

specification with a simple inverse mapping RFFg 1
.

The inverse mapping from sound states sr in Sr back to states s in S is

RFFg 1 = {(s/j,s)
|
sr other A (s,s/?) G RFFs}. Note that there is no

mapping for the unsound state, “other.” Since RFF is otherwise one-to-one,

RFFg 1
is a (partial) function. Events in Sr are the same as those in S, so they

map identically. The inverse mapping of a trace is the inverse mapping of each

state in the trace.

Theorem 3. Any counterexample, c, produced from Sr = RFFs(S) and

T'r — CR(M(Tr)) is sound.

Proof: By the definition of counterexample soundness, we must prove

RFFg 1

^) is a trace of S. If a state appears in c, it is sound, by Lemma 1.

Since all states are sound, RFFg 1 maps them back to 5, and the Sr transitions

implied by c are also transitions in S.

5 Mutation Analysis and Utility

Definition 6 does not require RFF to map any additional states beyond the

initial state. However, the more states which are mapped one-to-one, the more

traces there are in the reduced model. To be useful, the additional states must

also be soundly reachable. (If any state is reachable only through an unsound

state, no counterexample includes it.) Thus an analyst is free to reduce a speci-

fication to as few states as necessary for effective model checking, but may wish

to make the reduced specification as large as possible.

Theorem 3 describes conditions under which counterexamples generated by

a model checker from Sr are traces of S. Since RFFt and M precede CR ,
they

are unconstrained by soundness; indeed, any transforms may be used without

invalidating Theorem 3. (Intuitively, as long as the temporal logic constraints are

rewritten with CR
,
they can only induce more or fewer sound counterexamples.)

However, we wish to use the counterexamples for test cases for an implemen-

tation of S as outlined in Sect. 2. Clearly, the utility of test cases produced by

this method depends on the transforms RFFt and the set of mutation opera-

tors M. from which M is drawn. In the remainder of this section, we describe

constraints on RFFt which yield coverage with respect to M.
We first describe the ideal situation, which is different from the order depicted

in Fig. 3, and then introduce practical considerations. Consider applying some

mutant operator M G M to T, which produces T'

.

Then T' is transformed via

RFFt and CR to produce T'R . The model checker is run on (Sr, Tr), (possibly)

producing a counterexample tR. The existences of counterexample traces may
be characterized as follows:

13

If there is a trace t in 5 such that

1. t is a counterexample2 with respect to T'

,

and

2. RFFs(t)
is a sound trace in Sr

,

then some tR does in fact exist for the model checker to find, and the trace

RFF^^r) is a counterexample with respect to T'

.

Informally, this says that the set of counterexamples generated by the model

checker from Sr is as close to being mutation adequate with respect to S, T,

and M as possible. In other words, if a mutant T' can be distinguished by a

sound trace from Sr, the model checker finds such a sound trace.

From a practical perspective, the chief drawback of the above characteri-

zation is that the reduction RFFr is applied after each mutation operator is

applied. If RFFr can be completely automated for some application, this is not

a serious problem. If, however, some human intervention is required to apply

RFFr, multiple transformations are an expensive proposition. Instead, it may
be more practical to transform T with RFFt once, then apply mutation opera-

tors to Tr instead of T. The result of test generation is then a mutant adequate

set of tests with respect to Sr, Tr, and M, rather than S, T, and M.

6 Example

To validate the above proof, we apply finite focus to an example: the stack

of a Java virtual machine. Abstracting the stack to just the number of items

on the stack (stack size) and grouping instructions into those which push one

item (pushl), pop one item (popl), or pop two items (pop2) still leaves an

unbounded model much like the bank balance at the top of Fig. 2. It also includes

specifications such as “pushl then popl leaves the stack unchanged.”

We applied finite focus to get a usable model of a stack with zero, one,

two, three, or “many” items plus a variable which goes unsound if the stack

size exceeds three. We used two mutation operators. Ml changes constants in

phrases such as VAR = CONST, and M2 negates boolean expressions. Ml gave

279 mutants, and M2 gave 129 mutants, for a total of 408. These produced 254

counterexamples. Combining duplicates and discarding prefixes yielded 9 unique

tests with lengths from three to seven operations. By comparison, exhaustive

enumeration yields 45 tests of length seven.

The stack specifications are in App. B, and the nine tests are in App. C.

7 Future Work

Since the goal is test generation, other soundness definitions and thus useful

counterexamples are possible. In the bank account example in Fig. 2, we could

2 Note that, by assumption, we have no efficient means of computing such a counterex-

ample directly from 5 and T' . If there were an efficient means, we could simply run

the model checker on S instead of Sr and therefore avoid the finite focus transform.

14

map counterexamples with the “other” state to a loose test that the balance is

more than two. The inverse mapping, RFFg 1

,
would be more complex, but it

may allow more information to be derived from reductions.

We plan to investigate different sets of mutation operators. These experi-

ments, along with theoretical considerations of predicate test domination [17],

should help us develop good classes of operators.

8 Conclusions

Previously, we showed how to use a model checker to measure test set coverage

[1], and to develop mutation adequate tests for software specifications [2], Mu-
tation analysis in the finite domain of the model checker avoids many problems

which plague program mutation analysis. But applying it depends critically on

the feasibility of model checking specifications for realistic software system.

Here we address model checking feasibility for test generation, and present

a reduction called finite focus for it. We define soundness for test generation:

counterexamples generated from the reduced specification are test cases for the

original specification. We prove that finite focus is sound, and experimentally

show that it soundly reduces an unbounded model to a model which yields a

small, yet mutation adequate, test set.

Soundness only constrains the part of the finite focus reduction that trans-

forms the state machine and rewrites the temporal logic constraints. To maxi-

mize utility, we develop constraints on the transform of the temporal logic aspect

which improve mutation adequacy in the original specification.

Acknowledgments

We thank Vadim Okun and Yaacov Yesha for their specification mutation engine.

We appreciate reviewers’ comments which guided us to fix flaws.

References

1. Paul E. Ammann and Paul E. Black. A specification-based coverage metric to

evaluate test sets. In Proceedings HASE99
,
1999.

2. Paul E. Ammann, Paul E. Black, and William Majurski. Using model checking

to generate tests from specifications. In Proceedings of the Second IEEE Inter-

national Conference on Formal Engineering Methods (ICFEM’98), pages 46-54.

IEEE Computer Society, December 1998.

3. Saddek Bensalem, Yassine Lakhnech, and Sam Owre. Computing abstractions of

infinite state systems compositionally and automatically. In Proceedings of the

International Conference on Computer-Aided Verification (CAV’98), volume 1427

of Springer-Verlag Lecture Notes in Computer Science
,
pages 319-331, Vancouver,

BC, Canada, June/July 1998.

4. Ramesh Bharadwaj and Constance Heitmeyer. Verifying SCR requirements spec-

ifications using state exploration. In Proceedings of the First ACM SIGPLAN
Workshop on Automatic Analysis of Software

,
Paris, France, January 1997.

15

5. Ramesh Bharadwaj and Constance L. Heitmeyer. Model checking complete re-

quirements specifications using abstraction. Memorandum Report NRL/MR/5540-
97-7999, U.S. Naval Research Laboratory, Washington, DC 20375, November 1997.

6. Paul E. Black, Kelly M. Hall, Michael D. Jones, Trent N. Larson, and Phillip J.

Windley. A brief introduction to formal methods. In Proceedings of the IEEE
1996 Custom Integrated Circuits Conference (CICC ’96), pages 377-380. IEEE,

May 1996.

7. Jerry R. Burch, Edmund Melson Clarke, Jr., Ken L. McMillan, David L. Dill, and

L. J. Hwang. Symbolic model checking: 10
20

states and beyond. In Proceedings

of the ACM/SIGDA International Workshop in Formal Methods in VLSI Design.

ACM, January 1991.

8. J. Callahan, F. Schneider, and S. Easterbrook. Automated software testing using

model-checking. In Proceedings 1996 SPIN Workshop
,
Rutgers, NJ, August 1996.

Also WVU Technical Report #NASA-IVV-96-022.
9. William Chan, Richard J. Anderson, Paul Beame, Steve Burns, Francesmary Mod-

ugno, David Notkin, and Jon D. Reese. Model checking large software specifica-

tions. IEEE Transactions on Software Engineering
, 24(7) :498 - 520, July 1998.

10. Edmund M. Clarke, Jr., E. Allen Emerson, and A. Prasad Sistla. Automatic

verification of finite-state concurrent systems using temporal logic specifications.

ACM Transactions on Programming Languages and Systems
, 8(2):244-263, April

1986.

11. Edmund Melson Clarke, Jr., Orna Grumberg, and David E. Long. Verification tools

for finite-state concurrent systems. In A Decade of Concurrency - Reflections and

Perspectives. Springer Verlag, 1994. Lecture Notes in Computer Science 803.

12. Richard A. De Millo, Richard J. Lipton, and Frederick G. Sayward. Hints on test

data selection: Help for the practicing programmer. IEEE Computer
,
11(4):34-41,

April 1978.

13. J. Gannon, P. McMullin, and R. Hamlet. Data-Abstraction Implementation, Speci-

fication, and Testing. ACM Transactions on Programming Languages and Systems,

3(3):211-223, July 1981.

14. Angelo Gargantini and Constance Heitmeyer. Using model checking to generate

tests from requirements specifications. In Proceedings of the Joint 7th European

Software Engineering Conference and 7th ACM SIGSOFT International Sympo-

sium on Foundations of Software Engineering, Toulouse, France, September 1999.

To Appear.

15. Constance Heitmeyer, James Kirby, Jr., Bruce Labaw, Myla Archer, and Ramesh
Bharadwaj. Using abstraction and model checking to detect safety violations

in requirements specifications. IEEE Transactions on Software Engineering,

24(1 1) :927—948, November 1998.

16. Gerald J. Holzmann. The model checker SPIN. IEEE Transactions on Software

Engineering

,

23(5):279-295, May 1997.

17. D. Richard Kuhn. Fault classes and error detection in specification based testing.

ACM Transactions on Software Engineering Methodology, to be published 1999.

18. Robert P. Kurshan. Computer-aided verification of coordinating processes: the

automata-theoretic approach. Princeton University Press, New Jersey 08540, 1994.

19. Ken L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

20. John M. Rushby. Ubiquitous abstraction: A new approach to mechanized formal

verification. In Proceedings of Second IEEE International Conference on Formal

Engineering Methods (ICFEM’98), pages 176-178. IEEE Computer Society, De-

cember 1998.

16

21. Phil Stocks and David Carrington. A framework for specification-based testing.

IEEE Transactions on Software Engineering
, 22(11), November 1996.

A Proof that Rewrites Prevent Checking

In this appendix we prove that when rewritten with the constraint rewriting

rules, CR, any expression evaluates to True or False as appropriate in any

state in which s is False. We use definitions of temporal logic operators from

Clarke, et. al. [10].

Proof that cr(AX f,True) — AX s —> cr(f,True) yields True when s is False.

u 1= AX False —> cr(/, True
)
— u |= AX True
= Vu

|

(u,v) eT —> v f= True
= Vu

|

(u, v) € T —> True
= Vu

|

True
= True

Proof that cr(AX /, False) = AX s&cr(f, False) yields False.

u 1= AX False & cr(f, False) = u \= AX False

= Vu
|
(u,v) 6 T —» v j= False

= Vu
|

(u, v) 6 T —> False

= Vu
j

(u,u) ^ T
and since every state has at least one outgoing transition

= False

Proof that cr(EX f,True) = EX s —> cr(f,True) yields True.

u [= EX False —> cr(f,True) = u [= EX True
= 3v

|

(u, v) € T A v]= True
= 3u

|

{u,v) € T A True
= 3u

|

(u,v) € T
and since every state has at least one outgoing transition

= True

Proof that er(EX /, False) = EX skcr(f, False) yields False.

u |= EX False&icr(f', False) = u |= EX False

=
|

(u, v) € T A v (= False

— 3v
|

(u,u) £ T A False
- 3v

|

False

— False

17

Proof that cr(Ag\]f,True) — Ag\Js -> cr(f,True)
yields True. Note that we are

quantifying over paths; S{ means “the i
th

state of the path.”

u |= AglJ False —> cr(f,True)
= u |= AgUTrue

= Vpath(s0 = u, Si , . .
. ,

sn) [

3* [i > 0 A Si f= True A Vj [0 < j < i —> Sj |= 5]]]

= Vpath(s0 = u,si,...,sn) [

3i [i > 0 A Vj [0 < j < i -» sj f= g}]]

choosing i — 0

= Vpath(s0 = u, si , . .
. ,

sn) [

0 > 0 A V7 [0 < j < 0 —» Sj |= #]]

= Vpath(so = u, si , . .
. ,

sn) [Vj [False -» Sj |= 5]]

= Vpath(so = u,Si, . .
. ,

sn)
[True]

- True

Proof that cr(Ag\Jf, False) = AgUs$zcr(f, False) yields False.

u AgU Falsefocr(f
,
False) = u |= AgVFalse

= Vpath(s0 = u,si,...,sn) [

3i [f > 0 A Sj |= False A Vj [0 < j < i -» Sj (= </]]]

= Wpath(s0 = u,si, . .
.
,sn) [

3i [i > 0 A False A Vj [0 < j < i —> Sj |= <7]]]

= Vpath(s0 = u, Si , . .
. ,

sn)
[3i [False]]

= Vpath(so — u,si, . .
.
,sn)

[False]

= False

The proofs of cr(Eg\Jf,True) = E<?Us —> cr(f,True) and cr(Eg\Jf, False) =
Eg\Js&ccr(f, False) are the same as the proofs of AgUTrue and AgVTrue respec-

tively, except that they use 3path instead of Mpath.

Proof that cr(AF f,True) = AF s —> cr(f,True) yields True.

u |= AF False —> cr(f,True) = u [= ATrueUFalse —> cr(f,True)
— True

Proof that cr(AF /, False) = AF s&cr(f. False) yields False.

u |= AF Falsefocr(f, False) = u \= ATrueUFalse&cr(f, False)

= False

Proof that cr (EF /, True) = EF s —> cr(f,True) yields True.

u [= EF False —> cr(f,True) = u (= ETrueUFalse —> cr(f,True)

= True

Proof that cr(EF /, False) — EF s&ccr(f, False) yields False.

u |= EF False$zcr(f, False) = u (= ETrueUFalse$zcr(f, False)

= False

18

Proof that cr(AG /, True) = AG s —> cr(f,True) yields True.

u (= AG False —> cr(/, True) — u \= AG True
= u |= ~EF ~True
= u |= ~EF False

= u (= ~ETrue\JFalse

= u |= ~False
= u |= True
= True

Proof that cr(AG /, False) = AG sSzcr(f, False) yields False.

u |= AG Falsek.cr{f
,
False) = u |= AG False

= u f= ~EF ~False
= u |= ~EF True
= u (= ~ETrueUTrue
= u (= ~True
= u |= False

= False

Proof that cr(EG /, True) = EG s —> cr(f,True) yields True.

u [= EG False —> cr(f,True) — u (= EG True
similar to AG True case

= True

Proof that cr(EG /, False) — EG s$zcr(f, False) yields False.

u |= EG False&cr(f, False) = u |= EG False

similar to AG False case

= False

We proved that expressions whose outermost operators are temporal opera-

tors always evaluate to the desired True or False value when rewritten according

to the rules. However, specifications may be some boolean function of tempo-

ral operator expression. For instance, for a specification such as SPEC ! AG p
to evaluate to True, the temporal operator expression must evaluate to False.

(Thus the need for rewriting so the expression will be True or it will be False.)

Assuming subsequent rewrites make the subformulae True or False
,
we show

that these rewrites make the formula True or False
,
as appropriate.

19

Proof that cr(! /, v) =! cr(f,~v) yields True or False appropriately.

cr(\ f,True) = ! cr(f,~True)

= ! cr(/, False
)

= \False

= True

cr(! /, False) = ! cr(f, ~False)
= ! er(/, True)

= \True

— False

Proof that cr(f & g,v) = cr(/, v) & cr(g, u) yields True or False appropriately.

cr(f&g,True) — cr(f,True) & cr(g,True)

= True & True
= True

cr(f & g, False) = cr(/, False) & cr(<7, False)

— False & False
— False

Proof that cr(f
\

g,v) — cr(f,v)
\

cr(g,v) yields True or False appropriately.

cr(f\g,True) = cr(f, True)
\

cr(g, True)

= True
|

True
— True

cr(f
| g ,

False) = cr(f ,
False)

\

cr(g
,
False)

— False
|

False

- False

Proof that cr(/ — > = cr(f,~v) — > cr(g,v) yields True or False appro-

priately.

cr(/ —> g,True) = cr(f,~True) —> cr(g,True)
— cr(f, False) —> cr(g,True)

= False —> True
= True

cr(f —> g, False) = cr(f,~ False) —> cr(g, False)

- cr(f,True) —> cr(g, False)

— True —> False

= False

20

Proof of cr(f <—> g,v) = cr(f,~v)—>cr(g,v) & cr(g,~v)—> cr(f,v).

cr(f <—> g,True) = cr(f,~True)—>cr(g,True)

& cr(g,~True)—> cr(f, True)

= cr(f, False)—> cr(g, True) & cr(g, False)— >cr(f, True)

= False—> True & False—>True
= True & True
= True

cr(f <—> g, False) = cr(f,~False)->cr(g, False)

&: cr(g,
~
False)—> cr(/, False)

= cr(/, True)—> cr(g, False) cr(g,True)—>cr(f
,
False)

— True—> False & True—> False

= False & False

= False

B Java Virtual Machine Stack

This section gives the model and specification we used to generate tests. We
enumerate the stack size. Following this we give a second SMV file which models

the stack size as a number.

— $ Id: i avaSt ack. smv,v 1.2 1999/08/05 13:50:20 black Exp $— ^created "Fri Jun 26 11:20:23 1998" *by "Paul E. Black"— *modified "Thu Aug 5 09:46:25 1999" *by "Paul E. Black"— first try at state machine abstraction of
Java Smart Card virtual machine— this just models the first few places of the operand stack

MODULE main
VAR — system inputs

instr : {in_pushl, in_popl, in_pop2};— internal states
Sound : boolean;
StackSize : {sizeO, sizel, size2, size3, sizeBig,

s izeUndef ined}

;

— SKIMP stack overflow is an exception which— is not caught and terminates the program.

ASSIGN
init (Sound) := 1; — state begins sound
next (Sound) := case— abstraction looses accuracy

StackSize=size3 & instr=in_pushl : 0;
1 : Sound; — otherwise soundness is unchanged

esac;

— allow only instructions which don’t cause stack underflow— Java compilers should ensure this
init (instr) := in_pushl;
next (instr) := case

next (StackSize)=sizeO : in.pushl;
next (StackSize)=sizel : {in_pushl, in_popl>;

21

1 : {in_pushl, in_popl, in_pop2};
esac;

init (StackSize) := sizeO; — stack begins empty
next (StackSize) := case

— push one item on the stack
StackSize=sizeO & instr=in_pushl : sizel;
StackSize=sizel & instr=in_pushl : size2;
StackSize=size2 & instr=in_pushl : size3;
StackSize=size3 & instr=in_pushl : sizeBig;
StackSize=sizeBig & instr=in_pushl : sizeBig;
— pop one item from the stack
StackSize=sizel & instr=in_popl : sizeO;
StackSize=size2 & instr=in_popl : sizel;
StackSize=size3 & instr=in_popl : size2;— Size after popping from a "big" stack is nondeterministic— since we lost information.
StackSize=sizeBig & instr=in_popl : {size3 , sizeBig}

;

— pop two items from the stack
StackSize=size2 & instr=in_pop2 : sizeO;
StackSize=size3 & instr=in_pop2 : sizel;— Size after popping from a "big" stack is nondeterministic— since we lost information.
StackSize=sizeBig & instr=in_pop2 : {size2, sizeBig}

;

— anything else is undefined
1: sizeUndef ined;

esac

;

— These are erroneous in JVM. They should never be generated by
compilers and should be caught by the verifier.

TRANS
StackSize=sizeO ->

! (instr=in_popl)
TRANS

StackSize=sizeO ->
! (instr=in_pop2)

TRANS
StackSize=sizel ->

! (instr=in_pop2)

SPEC AG (Sound -> (! StackSize=sizeUndef ined)

)

— push one item on the stack
SPEC AG (Sound -> (StackSize=sizeO & instr=in_pushl ->

AX(Sound ->(StackSize=sizel))))
SPEC AG (Sound -> (StackSize=sizel & instr=in_pushl ->

AX (Sound ->(StackSize=size2))))
SPEC AG (Sound ->(StackSize=size2 & instr=in_pushl ->

AX (Sound ->(StackSize=size3)))

)

SPEC AG (Sound -> (StackSize=size3 & instr=in_pushl ->

AX (Sound ->(StackSize=sizeBig))))
SPEC AG (Sound -> (StackSize=sizeBig & instr=in_pushl ->

AX (Sound ->(StackSize=sizeBig))))— pop one item from the stack
SPEC AG (Sound -> (StackSize=sizel & instr=in_popl ->

AX (Sound ->(StackSize=sizeO))))
SPEC AG (Sound ->(StackSize=size2 & instr=in_popl ->

AX(Sound ->(StackSize=sizel))))
SPEC AG (Sound -> (StackSize=size3 & instr=in_popl ->

AX (Sound ->(StackSize=size2))))
SPEC AG (Sound ->(StackSize=sizeBig & instr=in_popl ->

AX (Sound ->(StackSize=size3 I StackSize=sizeBig)))

)

— pop two items from the stack
SPEC AG (Sound -> (StackSize=size2 & instr=in_pop2 ->

22

SPEC AG (Sound -

SPEC AG (Sound -

— pushl, popl
SPEC AG (Sound -

SPEC AG (Sound -

SPEC AG (Sound -

SPEC AG (Sound

— pushl
,
pushl

SPEC AG (Sound -

SPEC AG (Sound -

SPEC AG (Sound -

SPEC AG (Sound -

AX(Sound -> (StackSize=sizeO)))

)

> (StackSize=size3 & instr=in_pop2 ->

AX (Sound ->(StackSize=sizel))))
> (StackSize=sizeBig & instr=in_pop2 ->

AX (Sound ->(StackSize=size2 I StackSize=sizeBig)))

)

returns stack to the same state
> (StackSize=sizeO & instr=in_pushl ->

AX(Sound ->(instr=in_popl ->

AX (Sound ->(StackSize=sizeO))))))
> (StackSize=sizel & instr=in_pushl ->

AX(Sound ->(instr=in_popl ->

AX (Sound -> (StackSize=sizel)))))

)

> (StackSize=size2 & instr=in_pushl ->

AX(Sound ->(instr=in_popl ->

AX(Sound ->(StackSize=size2))))))
> (StackSize=size3 & instr=in_pushl ->

AX (Sound ->(instr=in_popl ->

AX (Sound ->(StackSize=size3))))))
,
pop2 returns stack to the same state

> (StackSize=sizeO & instr=in_pushl ->

AX (Sound -> (instr=in_pushl ->

AX (Sound -> (instr=in_pop2 ->

AX (Sound -> (StackSize=sizeO))))))))
>(StackSize=sizel & instr=in_pushl ->

AX (Sound -> (instr=in_pushl ->

AX (Sound ->(instr=in_pop2 ->

AX (Sound -> (StackSize=sizel))))))))
>(StackSize=size2 & instr=in_pushl ->

AX (Sound ->(instr=in_pushl ->

AX(Sound ->(instr=in_pop2 ->

AX (Sound -> (StackSize=size2))))))))
>(StackSize=size3 & instr=in_pushl ->

AX(Sound -> (instr=in_pushl ->

AX (Sound ->(instr=in_pop2 ->

AX (Sound -> (StackSize=size3))))))))

— $ Id: javaStack2 . smv,v 1.3 1999/08/05 13:51:05 black Exp $— *created "Fri Jun 26 11:20:23 1998" *by "Paul E. Black"— ^modified "Thu Aug 5 09:48:18 1999" *by "Paul E. Black"— first try at state machine abstraction of
Java Smart Caxd virtual machine— this just models the first few places of the operand stack

— This version models the stack size with an integer subrange so

we can succinctly model next size (just +1, -1, or -2).
However we must save previous values of StackSize since
SPEC clause values axe no longer based entirely on cases.

MODULE main
VAR — system inputs

instr : {in_pushl, in_popl, in_pop2};
— internal states
Sound : boolean;
StackSize : 0..5; — 4 is Big, 5 is undefined
PStackSize : 0..5;
PPStackSize : 0..5;
PPPStackSize : 0. .5;— SKIMP stack overflow is an exception which— is not caught and terminates the program.

23

DEFINE
sizeBig := 4;
sizeUndef ined := 5;

ASSIGN
init (Sound) := 1; — state begins sound
next (Sound) := case— abstraction looses accuracy

StackSize=3 & instr=in_pushl : 0;
1 : Sound; — otherwise soundness is unchanged

esac;
— allow only instructions which don’t cause stack underflow— Java compilers should ensure this
init(instr) := in_pushl;
next(instr) := case

next (StackSize)=0 : in_pushl;
next (StackSize)=l : {in_pushl, in_popl>;
1 : {in_pushl, in_popl, in_pop2>;

esac;

init(StackSize) := 0; — stack begins empty
next (StackSize) := case— push one item on the stack

StackSize<sizeBig & instr=in_pushl : StackSize+1;
StackSize=sizeBig & instr=in_pushl : sizeBig;

— pop one item from the stack
StackSize>0 & StackSize<sizeBig & instr=in_popl :

StackSize - 1;— Size after popping from a "big" stack is nondeterministic— since we lost information.
StackSize=sizeBig & instr=in_popl : {3, sizeBig};
— pop two items from the stack
StackSize>l & StackSize<sizeBig & instr=in_pop2 :

StackSize - 2;— Size after popping from a "big" stack is nondeterministic— since we lost information.
StackSize=sizeBig & instr=in_pop2 : {2, sizeBig};— anything else is undefined
1: sizeUndef ined;

esac;
— maintain "Previous" values of stack size
next (PStackSize) := StackSize;
next (PPStackSize) := PStackSize;
next (PPPStackSize) := PPStackSize;
— These are erroneous in JVM. They should never be generated by

compilers and should be caught by the verifier.
TRANS

StackSize=0 ->
! (instr=in_popl)

TRANS
StackSize=0 ->

! (instr=in_pop2)
TRANS

StackSize=l ->
! (instr=in_pop2)

SPEC AG (Sound -> (! StackSize=sizeUndef ined)

)

— push one item on the stack
SPEC AG (Sound -> (StackSize<sizeBig & instr=in_pushl ->

AX (Sound -> (StackSize=PStackSize+l)))

)

SPEC AG (Sound -> (StackSize=sizeBig & instr=in_pushl ->

AX (Sound ->(StackSize=sizeBig))))
— pop one item from the stack

24

SPEC AGCSound -> (StackSize>0 & StackSize<sizeBig
& instr=in_popl ->

AX (Sound ->(StackSize=PStackSize - 1))))
SPEC AGCSound ->(StackSize=sizeBig & instr=in_popl ->

AX (Sound ->(StackSize=3
I StackSize=sizeBig)))

)

— pop two items from the stack
SPEC AGCSound -> (StackSize>l & StackSize<sizeBig

& instr=in_pop2 ->

AX (Sound ->(StackSize=PStackSize - 2))))
SPEC AGCSound -> (StackSize=sizeBig & instr=in_pop2 ->

AX(Sound -> (StackSize=2 | StackSize=sizeBig)))

)

— pushl, popl returns stack to the same state
SPEC AGCSound -> (instr=in_pushl ->

AX(Sound ->(instr=in_popl ->

AX (Sound ->(StackSize=PPStackSize))))))— pushl, pushl, pop2 returns stack to the same state
SPEC AGCSound -> (instr=in_pushl ->

AXCSound ->(instr=in_pushl ->

AXCSound ->(instr=in_pop2 ->

AXCSound -> (StackSize=PPPStackSize))))))))

C JVM Stack Tests

Table 1 shows the nine tests which resulted from applying our test generation

method. We only show the instruction for each step: the stack size is easily

determined. In the model, the type of instruction in a step changes the stack

size in the next step. Thus the final step of each test checks the stack size, and

the choice of final instruction is irrelevant. The SVM model checker [19] chose

pushl as the last instruction of each test; we leave out that last instruction from

this table.

Test Instruction types

1 pushl popl

2 pushl pushl popl pushl pop2

3 pushl pushl popl popl

4 pushl pushl pop2

5 pushl pushl pushl popl pop2

6 pushl pushl pushl popl pushl pop2

7 pushl pushl pushl popl popl

8 pushl pushl pushl pop2 popl

9 push! pushl pushl pop2 pushl pop2

Table 1. Generated Stack Tests

Although there are similarities between tests, we need all nine tests for 100%
mutation coverage.

25

...

