
NISTIR 6403

A Specification-Based Coverage
Metric to Evaluate Test Sets

Paul E. Ammann
George Mason University

Information & Software Engineering

Dept.

Fairfax, VA 22033

Paul E. Black

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

100 Bureau Drive

Gaithersburg, MD 20899

(£

100 NIST

A Specification-Based Coverage
Metric to Evaluate Test Sets

Paul E. Ammann
George Mason University

Information & Software Engineering

Dept.

Fairfax, VA 22033

Paul E. Black

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

100 Bureau Drive

Gaithersburg, MD 20899

October 1999

/iT OF

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Gary R. Bachula, Acting Under Secretary

for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Hammer, Director

A Specification-Based Coverage Metric to

Evaluate Test Sets

Paul E. Ammann*
George Mason University

pammann@gmu. edu

Paul E. Black

NIST
paul. black@nist.gov

Abstract

Software developers use a variety of methods, including both formal methods

and testing, to argue that their systems are suitable for building high as-

surance applications. In this paper, we develop another connection between

formal methods and testing by defining a specification-based coverage metric

to evaluate test sets. Formal methods in the form of a model checker supply

the necessary automation to make the metric practical. The metric gives

the software developer assurance that a given test set is sufficiently sensitive

to the structure of an application’s specification. In this paper, we develop

the necessary foundation for the metric and then illustrate the metric on an

example.

1 Introduction

There is an increasing need for high quality software, particularly for high-

assurance applications such as avionics, medical, and other control systems.

Developers have responded to this need in many ways, including improving

the process, increasing the attention on early development activities, and us-

ing formal methods for describing requirements, specifications, and designs.

Although all of these improvements contribute to better software, software

still requires testing, and thus precise criteria are required to evaluate such

’Supported in part by the National Institute of Standards and Technology and in part

by the National Science Foundation under grant CCR-99-01030.

1

testing. In this paper we define one possible such criterion and explain how

the criterion could be measured with respect to the software’s specifications.

There are many approaches to generating tests [3, 7, 15, 20, 24, 29, 30].

There are also measures of the completeness, adequacy, or coverage of tests

on source code [32]. However there are few objective measures of coverage

that are independent of the implementation [12]. We have developed an

innovative method that combines mutation analysis and model checking,

which is useful for evaluating the coverage of system tests, comparing test

generation methods, and minimizing test sets. Most coverage metrics apply

to source code, which makes them difficult to apply in cases of conformance

testing or developing tests before the code is finished. Since our method

measures coverage over specifications, it can be used to evaluate test sets

independent of code.

In this paper we categorize mutations of temporal logic formulae with

respect to specification coverage analysis (Sect. 2.1). We then explain re-

flection
.
,

in which a state machine description is rewritten into a temporal

logic (Sect. 2.2), and define expounding
,
in which implicit aspects of a model

checking specification are made explicit (Sect. 2.3). We describe how to

symbolically evaluate a test set for mutation adequacy (Sect. 2.4). Using

the preceding techniques as a foundation, we define the specification cov-

erage metric (Sect. 3). We illustrate these ideas with the Safety Injection

example [8, 9] (Sect. 4).

1.1 Background and Related Work

Traditional program mutation analysis [14] is a code-based method for de-

veloping a test set that is sensitive to any small syntactic change to the

structure of a program. A mutation analysis system defines a set of muta-

tion operators. Each operator is a pattern for a small syntactic change. A
mutant program

,
or more simply, mutant

,
is produced by applying a single

mutation operator exactly once to the original program. The rationale is

that if a test set can distinguish the original program from a mutant, the test

set exercises that part of the program adequately. Applying the set of oper-

ators systematically generates a set of mutants. Some of these mutants may
still be equivalent to the original program. A test set is mutation adequate

if at least one test in the test set distinguishes each nonequivalent mutant.

There are test data generation systems that, except for the ever-present un-

decidability problem, attempt to automatically generate mutation adequate

test inputs [15]. Very little work on mutation analysis for specifications has

been reported in the literature; however, Woodward did apply mutation

2

analysis to algebraic specifications [30].

The example we use in this paper was originally coded using the Soft-

ware Cost Reduction (SCR) method [19]. It is used to formally capture

and document the requirements of a software system. It is scalable and

its semantics are easy to understand; this accounts for the use of the SCR
method and its derivatives in specifying practical systems [16, 18, 27]. Re-

search in automated checking of SCR specifications includes consistency

checking and model checking. The NRL SCR toolkit includes the consis-

tency checker of Heitmeyer, Jeffords, and Labaw [17]. The checker analyzes

application-independent properties such as syntax, type mismatches, miss-

ing cases, circular dependencies and so on, but not application-dependent

properties such as safety and security. The toolkit also includes a backend

translator to the model checker SPIN [21]. Atlee’s model checking approach

[4, 5, 6] expresses an SCR mode transition table as a logic model and the

safety properties as logic formulae and uses a model checker to determine if

the formulae hold in the model. Owre, Rushby, and Shankar [26] describe

how the model checker in PVS can be used to verify safety properties in

SCR mode transition tables.

The model checking approach to formal methods specifies a system with

a state transition relation and then characterizes the relation with proper-

ties stated in a temporal logic. Model checking has been successfully applied

to a wide variety of practical problems, including hardware design, protocol

analysis, operating systems, reactive systems, fault tolerance, and security.

Although model checking began as a method for verifying hardware de-

signs, there is growing evidence that it can be applied with considerable

automation to specifications for relatively large software systems, such as

the ‘own-aircraft’ logic for TCAS II [11]. Mutation analysis of specifications

yields mutants from which the SMV model checker generates counterex-

amples that can be used as test cases [3]. The increasing utility of model

checkers suggests using them in aspects of software development other than

pure analysis, which is their primary role.

The chief advantage of model checking over the competing approach of

theorem proving is complete automation. Human interaction is generally

required to prove all but the most trivial theorems. Readily available model

checkers such as SMV and SPIN can explore the state spaces for finite, but

realistic, problems without human guidance [13]. We use the SMV model

checker. It is freely available from Carnegie Mellon University and elsewhere.

3

2 Our Technology

Our method begins with a specification of the system and a set of tests to be

evaluated against the specification; see Figure 1. Although the specification

need not be a complete description of the system, the more detailed the

specification, the more that can be checked. We generate many variants of

the original specification, or mutants. The set of tests are converted to finite

state machines and are symbolically executed, one at a time. Some mutants

are found to be inconsistent, that is, the model checker finds a difference

between the symbolic execution of the test case and this mutant. Since

we assume that the test cases are consistent with the original specification,

this indicates an inconsistency with the original specification. If a mutant

is found to be inconsistent by any of the test cases in the test set, it is

considered to be killed by the test set. The ratio of killed mutants to total

mutants is a coverage metric, similar to that ofWu et. al. [31], but applied to

specifications. In general, the higher the ratio, the better or more completely

the test set covers the specification. The lower the number, the less complete

the covering.

mutant

Figure 1: Specification coverage flow

Generally, testing is an attempt to assess the quality of a piece of soft-

ware. If a test set inadequately exercises some part of the software, the

assessment is less accurate. Since the software should correspond with the

specification, a test set with better coverage of the specification is likely to

more accurately assess the quality of a piece of software.

Program-based mutation analysis relies on the competent programmer

hypothesis: programmers are likely to construct programs close to the cor-

rect program, and hence test data that distinguish syntactic variations of a

given program are, in fact, useful. Here we assume an analogous “competent

specifier hypothesis,” which states that an analyst will write specifications

which are likely to be close to what is desired. Hence test cases which

distinguish syntactic variations of a specification are, in fact, useful.

4

2.1 Categories of Specification Mutations

A specification for model checking has two parts. One is a state machine de-

fined in terms of variables, initial values for the variables, and a description

of conditions under which variables may change value. The other part is

temporal logic constraints on valid execution paths. Conceptually, a model

checker visits all reachable states and verifies that the invariants and tem-

poral logic constraints are satisfied. Model checkers exploit clever ways of

avoiding brute force exploration of the state space, for example, see [10].

Figure 2 illustrates the difference between mutations to logic formulae

and mutations to program code. Code mutants are classified as either equiv-

alent or nonequivalent. An equivalent mutant is one which has exactly the

same input/output relation as the original program. 1

Logic Mutants Code Mutants

Consistent Inconsistent Equivalent Nonequivalent

Falsifiable Nonfalsifiable

Figure 2: Categories of mutants

Mutations to logic constraints in a model checking specification result

in a different situation. Instead of being either equivalent or nonequivalent,

mutants are either consistent or inconsistent with the state machine. A
consistent mutant is simply a temporal logic formula that is true over all

possible traces defined by the state machine. Just as equivalent mutants

cannot be distinguished from the original for program-based mutation anal-

ysis,
2 consistent mutants cannot be found false for model checking mutation

analysis. Fortunately, consistency is decidable for these temporal logics, and

model checkers are specifically designed to efficiently determine whether or

1We refer only to the “strong” version of program-based mutation analysis [14] here.

In it a test case kills a mutant if execution reaches the mutant (the execution property

[28]), the mutant corrupts the internal state (the infection property), and the corrupt

internal state eventually results in an incorrect output (the propagation property). For

weak mutation testing [22], only the execution and infection properties are required.
2
For strong mutation testing, equivalent mutants compute the same input output pairs

as the original program. Hence no test case can distinguish an equivalent mutant from

the original program.

5

not a temporal logic formula is consistent. So in this arena we do not have

the problem of undecidability or requiring human judgement.

We evade the undecidability problem by working in the finite state space

of the model checker. Not only is equivalent mutant identification possible in

the context of a model checker, but model checkers are designed to perform

this equivalency check efficiently. Therefore, equivalent mutants are not a

problem for the specification-based mutation analysis which we present in

this paper.

For inconsistent mutants, there are two possibilities. Some temporal

logic formulae can be shown inconsistent with a single trace through the

state machine. For example, if the assertion “the East-West light is never

green while the North-South light is green” were inconsistent, the inconsis-

tency could be exhibited with an execution trace that starts in some initial

condition and ends in a state where both lights are green. We call mutants

that are demonstrably inconsistent falsifiable. Other temporal logic formu-

lae may be inconsistent with respect to the state machine, but cannot be

shown inconsistent with a single trace. For example, an inconsistent asser-

tion that “eventually both the East-South and West-North left turn lights

are green simultaneously” cannot be shown to be false with any single trace

from the state machine. We call mutants that are inconsistent but lack a

counterexample nonfalsifiable.

2.2 Expressing Specifications in CTL

In our method, mutations are applied to temporal logic formulae. It is

possible, and indeed desirable, to take advantage of existing constraints,

such as safety assertions. However, such constraints may not be available,

and, in any case, they are typically relatively loose constraints on the state

machine. The difficulty with loose constraints is that mutants derived from

them may be insensitive to many possible variations of the state machine.

To overcome this problem, we mechanically derive a set of temporal

logic formulae for mutation. These formulae restate in temporal logic, or

reflect,
of the state machine’s transition relation. Although the process is

conceptually straight forward, there are subtle issues that require attention.

To our knowledge, the literature does not have a comprehensive treatment

of this topic for model checkers. Atlee and Buckley faced a similar problem

and developed their own solution [5].

In SMV, there are two ways to specify a state machine transition rela-

tion: either procedurally via next statements in the ASSIGN section, or via

constraints in the TRANS section.

6

The interesting next statements are conditionals of the form:

next (x) := case

bl : vl;

b2 : v2

;

1 : vN;

esac

;

The semantics are typical of a programming language case statement, bl

is evaluated; if it is true, vl is the next value for x. The right hand side,

vl may be a set, thereby allowing for nondeterminism. If bl is false, b2 is

evaluated. The case often ends in a default, which is 1, or true, in SMV.
To express the first case in CTL, one writes a formula such as:

SPEC AGCbl -> AX(x = vl))

This says that in all states (AG), if bl is true, all possible next states (AX)

have x = vl

.

If vl is a set, we write:

SPEC AGCbl -> AX(x in vl))

For b2
,
the situation is slightly more complicated. Preceding conditions, bl

in this case, need to be subtracted out:

SPEC AG(!bl ft b2 -> AX(x = v2))

There are more subtle aspects to the process of determining the guards that

we address in Sect. 2.3 below.

2.2.1 Expressing next Clauses

In the ASSIGN section, SMV allows the use of the next modifier for variable

references; it evaluates the variable in the destination state instead of the

current state. Unfortunately, the next modifier is not allowed in SPEC
clauses. There are two routes out of this: create “shadow” variables that

track the values from the previous state (this is the solution adopted in [5]),

or access the variable after the X operator in CTL.

The first approach is simple, but it increases the number of variables,

thereby potentially exploding the size of the state space. The second ap-

proach leads to a flat structure with potentially a large number of SPEC
clauses. Consider the following next clause:

7

next (x) := case

x = 2 & next(y) =3:5;

esac

;

Using the second approach, we refer to the value of y in the next state.

SPEC AG(x = 2 -> AX(y = 3 -> x = 5))

The potential for explosion arises when guards reference both current

and next values of a variable.

next (x) := case

x = 2 & y = next(y) : vl;

esac

;

Using the second approach, we must explicitly enumerate the possible

values for the variable, and test both before and after the X operator.

SPEC AG (x = 2 & y = 1 -> AX(y = 1 -> x = vl))

SPEC AG (x = 2 & y = 2 -> AX(y = 2 -> x = vl))

If we use the first approach instead, we add a new variable, prevy, which

keeps the previous value. The specification refers to previous values in future

states.

next (prevy) := y;

SPEC AG(x = 2 -> AX (prevy = y -> x = vl))

2.2.2 Expressing TRANS Clauses

For transition relations specified with the TRANS construct, reflection is sim-

pler, since the TRANS constructs already are in CTL. Prefixing the predicate

with the AG operator makes it a SPEC clause. The only issue is the use of

the next operator, which can be handled in the same way as before, either

with explicit “previous” values or judicious use of the X operator.

8

2.2.3 Expressing Processes

SMV also supports a process construct, whereby groups of changes to vari-

ables are gathered into modules. Process semantics are that one process is

chosen at a time. The process construct conveniently mirrors the notion of

an operation or transaction in traditional programming, including the no-

tion of atomicity. The SPEC clauses of the temporal logic do not have an

analogous structure associated with them. We suggest identifying explicitly

the different processes and using the identifiers to write tight SPEC clauses

for the reflection. So, changes to variables in process pi would be captured

in the following template for a SPEC clause:

SPEC AG(... -> AX(processID = pi -> ...))

2.3 Expounding

As noted in the preceding section, the structure of guards must be elaborated

when reflecting from the transition relations, since case statements have

an implicit semantics based on syntactic order, whereas SPEC clauses are

unordered. It turns out that for the purpose of mutation testing, more

care is needed. In particular, it is easy to overspecify a SPEC clause. An
overspecified clause yields a set of mutants that is not as sensitive as it could

be.

An example may clarify matters. Consider the following statement from

the Safety Injection problem:

next (Overridden) := case

Pressure = TooLow: case

! (Pressure = next (Pressure)) : 0;

! (Reset = On) & next (Reset) = On : 0;

Block = Off & next (Block) = On

& Reset = Off : 1; — Third case

1 : Overridden;

esac

;

... — cases for Permitted and High

esac

;

The third case, marked above, says that if Block is Off in the current

state but is On in the next state and Reset is Off in the current state,

Overridden is set to 1 (true) in the next state. Subtracting out the first

two cases and simplifying would write the condition of the third case as:

9

Pressure = next (Pressure) & Block = Off

& next (Block) = On & Reset = Off

& next (Reset) = Off : 1;

Notice that explicit consideration has been made for Pressure not changing,

due to the first guard in the case statement, and Reset not changing, due

to the second guard. This may be reflected in CTL as:

SPEC — Long version

AG (Pressure = TooLow & Block = Off &

Reset = Off -> AX (Pressure = TooLow &

Reset = Off & Block = On -> Overridden))

The following SPEC clause is also consistent because other parts of the

specification constrain the way in which the variables may change .

3

SPEC — Short version

AG (Pressure = TooLow & Block = Off & Reset = Off

-> AX (Block = On -> Overridden))

From a mutation analysis coverage metric perspective, this matters be-

cause a test set that kills all of the mutants generated from the long version

does not necessarily kill all of the mutants generated from the short version.

Consider what happens if a mutant operator changes the first occurrence

of the predicate Pressure = TooLow to Pressure = Permitted. The two

resulting SPEC clauses are as follows:

— Mutation of long version

SPEC AG(Pressure = Permitted & Block = Off &

Reset = Off -> AX (Pressure = TooLow &

Reset = Off & Block = On -> Overridden))

— Mutation of short version

SPEC AG (Pressure = Permitted & Block = Off & Reset = Off

-> AX (Block = On -> Overridden))

The mutation of the long version is still consistent with respect to the

state machine, because it is not possible for both Pressure and Block to

3
For details, look at the TRANS specification of the complete example in the appendix.

The relevant constraint is that only one of Pressure, Reset
,
and Block may change on any

one transition.

10

change on the same transition. Therefore, no valid test case can kill it.

However, the short version mutation is both inconsistent and falsifiable.

How does one get enough redundancy to express the semantics of non-

overlapping alternatives of case statements, but not add redundancy that

reduces with falsifiable mutants? Procedurally, it is quite simple: systemat-

ically drop predicates from the long version and run the model checker on

the result. If the result is still consistent, the dropped predicate is redundant

and can be omitted during mutation analysis.

An alternate strategy is to use the boolean derivative [1]. Consider

a predicate P that contains a boolean condition x. If dP/dx evaluates to

false, this implies that P does not depend on x, and x can safely be dropped

from P.

As a procedural aside, we found it helpful to use Karnaugh maps to sim-

plify the expressions resulting from expounding. We have not automated

this aspect of specification preparation yet. We have found it to be rel-

atively straight-forward using the model checker to examine the manual

simplifications.

2.4 Symbolic Execution of Test Cases

Conceptually, a test case is a single trace through the state machine. We
can express the test case as a constrained finite state machine

,
or CFSM,

by adding a special variable, State
,
which controls the machine. Each orig-

inal variable gets a new value depending solely on State. Otherwise it is

unchanged.

Expressing a test case as a CFSM allows the model checker to symboli-

cally execute the test case and check specifications for consistency. Consider

the following simplified test case, which essentially turns Reset on then off

again.

Reset = Off; Block = Off; Pressure = TooLow;

STEP; Reset = On; STEP; Reset = Off; STEP;

ASSIGN statements that execute this test case are the following. Since

Block and Pressure don’t change during the test, their next-state specifica-

tions are trivial. The value of Reset is driven solely by the State.

VAR

State : 0. .2;

ASSIGN

11

init (Reset) := Off;

init (Block) := Off;

init (Pressure) := TooLow;

init (State) :=0;

next (Block) := case 1 : Block; esac;

next (Pressure) := case 1 : Pressure; esac;

next (Reset) := case State =0 : On;

State = 1 : Off; 1 : Reset; esac;

next (State) := case State < 2: State + 1;

1 : State; esac;

In a reactive system, such as Safety Injection, freezing the state at the

end of the test is acceptable. However consider systems that have no qui-

escent state, such as a free-running counter. Consistent specifications may
indicate that the state always changes. The specification is inconsistent with

a CFSM generated as described, since the state freezes, but conceptually the

specification is not wrong.

One may elaborate the CFSM with a special variable, Check
,
and set

it false when the test ends. All the specifications may be automatically

rewritten to include Check and evaluate to true when Check is false. This

rewriting is detailed in [2].

3 A Specification Coverage Metric

The specification coverage metric for a test set, t, over a specification, r

(for “requirements”), is conceptually simple. It is similar to the test data

adequacy of Wu et al. [31], but must be applied to specifications, not pro-

grams. Given a method, At, for creating a set of mutants, the score, S, is

the number of mutants killed by the test set, A, divided by the total number

of mutants, AT, produced by M on r.

S(M,r,t) = (1)

When the method, specification, and test set parameters are understood,

we omit them, thus S =
-fa.

We usually express the score as a percentage.

The lowest, or worst, score is 0% when no mutants are killed. The highest,

or best possible, score is 100% when all mutants are killed.

12

3.1 Preparing the Specification

The method M for creating a set of mutants has three parts:

1. preparing the specification,

2. generating mutants, and

3. winnowing the mutants.

We use reflection, which is described in Sect. 2.2, to produce a fully explicit

temporal logic description of the state machine’s transition relation and

any TRANS constraints. A fully explicit specification yields a more precise

mutation analysis. We must shorten the resulting clauses as described in

Sect. 2.3

As pointed out there, a test set may kill all falsifiable mutants from

overly-specified clauses, but still not kill all falsifiable mutants of the shorter

versions. Let M s be a mutation process that shortens clauses before pro-

ducing mutants, and Mi be a mutation process that uses the longer, overly-

specified clauses. Suppose a test set t\, kills all mutants from Mi, but not

all those from M s ,
and another test set 12 ,

kills all mutants from both. The

scores using M s show the difference between the two test sets, while using

Mi does not:

S(Mi,r,ti) = S(Mi,r,t2)

S(M s ,r,ti) < S(M s ,r,t2)

We can see that mutation analysis on the shortened clauses, M s in this case,

is a more precise metric.

3.2 Mutation Operators

The heart of mutation analysis is generating mutants. Completely uncon-

strained changes would yield mostly syntactically incorrect mutants which

are entirely meaningless, so a set of mutation operators is used. Each oper-

ator specifies a small syntactic change that is likely to be meaningful. For

example, the “wrong variable” operator replaces a single occurrence of a

variable with another variable of compatible type. The specification a A b

might yield c A b. The “wrong relational operator” mutation operator re-

places any of <, <, =, 7^, >, or > with one of the other five possibilities. The

specification a < b Ac might yield a = b A c by replacing < with =.

Kuhn showed [23] that some operators subsume others. That is, any

test set that kills all mutants of a subsuming operator also kills all mutants

13

of the subsumed operator, while the opposite is not true. Thus if we use a

subsuming operator, we need not use the subsumed operator. This lets us

get the same precision with fewer mutants.

We could get maximum precision by using every conceivable operator

that is not subsumed by another operator. However we believe a carefully

chosen set of mutation operators will yield a fraction of the mutants, but

still give us excellent precision. Research is underway to determine good

sets of mutation operators for different conditions.

3.3 Winnowing Mutants

The first step in winnowing mutants is to discard those that are consistent

with the specification. For instance, here is a clause from an automobile

cruise control specification that says if the cruise control mode is Override

and the ignition is turned off, the cruise control goes Off

:

AG (CMode = Override -> AX(PIgnited &

! Ignited -> CMode=0ff))

A “replace constant” mutation operator may change the conditioning mode
to Cruise

,
as below, but that is still consistent since turning the ignition off

in Cruise mode should turn the cruise control off.

AG (CMode = Cruise -> AX(PIgnited &

! Ignited -> CMode=0ff))

Since consistent mutants are impossible to kill, leaving them makes it im-

possible for any test set to get 100%. If the number of consistent mutants is

some fraction, a, of the number of inconsistent mutants, the score without

consistent mutants, 5, is proportionally reduced by 1/(1 + a). Specifically,

the score distorted with consistent mutants, S", has the total number of

mutants increased by the number of consistent mutants, Nc . If Nc = aN ,

then by Equation 1:

S' =
k = k = 1 k = 1 e

N + Nc N + aN 1 + a N 1 a

We find a to be about 50%, so scores would be reduced by about a third.

Consistent mutants are easily detected by comparing them with the original

machine language specification in a single run of the model checker.

The next step in winnowing would be to eliminate “false” mutants, that

is, mutants that evaluate to false in all conditions. For instance, a “replace

14

variable” operator might change AG (P & !Q) into AG (Q & ! Q). Since false

mutants are killed by any test, leaving false mutants inflates the score. If

the number of false mutants is some fraction, j3, of the number of non-false

inconsistent mutants, the score is increased by yf^(l — -S')
,
where S is the

score without false mutants. More formally, the new score, S', has both the

number of killed mutants and the total number of mutants increased by the

number of false mutants, Nf. If Nf = /3N
,
then by Equation 1:

S'
k + Nf _ k + pN
N + Nf

~ N + pN
~

(1 +p)k + P(N-k)
(1 + P)N

(1 + P)k P(N-k)
(1 + P)N (1 + P)N
k_

N +
1 + p

k_

N +
1+p

P N -k

0

N

S + 0
1 + 0

(1 -S)

k + pN 4- pk — pk

(1 +P)N

We find P is about 7%, so a score of 80% is increased to 81%. Even

a score of 0% is only increased to 6%. False mutants may be detected by

comparing all mutants and their negations with the original machine speci-

fication in a single run of the model checker. If AG (p) is always false, the

negation, AG (
! p) ,

is always true. Thus a pair where AG (p) is inconsistent

and AG (
!
p) is consistent indicates that AG (p) is false. Alternatively, a

satisfaction checker can directly determine if a specification is false. Since

the number of false mutants is low, we don’t do this.

Another step in winnowing could be to eliminate semantic duplicates,

that is, mutants that evaluate the same for all possible tests. For instance,

suppose “negate expression” and “replace operator” are applied to AG (P<Q)

and produce AG (! P<Q) and AG (P>=Q) respectively. These are exactly

the same: any test either kills both or neither. Leaving duplicate mutants,

instead of removing all but one copy, adds more weight to the duplicates. In

the extreme, suppose we generate 100 mutants, but one has 200 copies. A
test set that kills the 99 unduplicated mutants but doesn’t kill the duplicated

mutant gets a score of 99/300 = 33%. But a test set that only kills the

duplicates gets a score of 201/300 = 67%

!

15

Duplicate mutants may be detected by essentially comparing every mu-

tant clause against every other mutant. For instance, if we have mutants

AG ml, AG m2 and AG m3, check the following.

AG ml = m2

AG ml = m3

AG m2 = m3

Only duplicates will be consistent. In practice, we can reduce the number

of comparisons by running a few tests to quickly determine mutants that

are not duplicates, then comparing possibly-duplicate mutants with each

other. We have not yet characterized the number or distribution of duplicate

mutants.

Current Mode Event New Mode
TooLow @T{WaterPres > Low) Permitted

Permitted @T{WaterPres > Permit

)

High
Permitted @T(WaterPres < Low) TooLow

High @T(WaterPres < Permit) Permitted

Initial State : Mode = TooLow
,
WaterPres < Low

Mode transition table for Pressure.

Mode Events

High False @T(Inmode)

TooLow @T(Block = On) @T(Inmode) OR
Permitted WHEN (Reset = Off) @T(Reset = On)

Overridden True False

Event table for Overridden.

Mode Conditions

High
,
Permitted True False

TooLovj Overridden NOT Overridden

Safety Injection Off On
Condition table for Safety Injection.

Table 1: Safety injection tables

4 Example

We applied our method to the Safety Injection problem. See App. A for

the complete specification for SMV. Table 1 is a higher-level, tabular speci-

fication. We used three progressively more elaborate preparation methods:

the reflected specification, the reflected specification with expounding, and

16

the reflected specification with expounding and TRANS clauses. The ex-

pounded clauses were also shortened. The appendix shows the specification

resulting from the third, most elaborate method. The specification resulting

from the first method may be obtained from that in the appendix by drop-

ping all the SPEC clauses tagged with an “e” or reflected from the TRANS
relation.

Using the method in [3] we automatically generated test sets from all

three versions of the specification. For comparison, we also manually pro-

duced a minimal test set that covered the tables expressed in Table 1. We
explain the notion of “table coverage” below.

4.1 Mutation Generation

We used Vadim Okun’s mutation engine with the following operators. We
illustrate each operator with a mutant it generates from the following clause.

Changes are emphasized by underlining.

AG (Pressure = TooLow & Reset = Off ->

AX (Reset = On ->
! Overridden)

)

1. replace_constant: replace one constant with another, e.g.,

AG (Pressure = High & Reset = Off ->

AX (Reset = On ->
! Overridden)

)

2. replace.oper: replace one operator with another operator, e.g., replace

“and” with “or”

AG (Pressure = TooLow Reset = Off ->

AX (Reset = On ->
! Overridden)

)

3. replace.vars: replace a variable with another variable, e.g.,

AG (Pressure = TooLow & Block = Off ->

AX (Reset = On ->
! Overridden)

)

4. remove_expr: remove a simple expression from conjunctions, disjunc-

tions, and implications, e.g.,

AG (Pressure = TooLow ->

AX (Reset = On ->
! Overridden)

)

17

No Expound
Expound
no TRANS

Expound
with TRANS

Mutant SPEC clauses 188 611 1131

Inconsistent SPEC mutants4 121 388 824

Test cases 16 27 36

Test cases after minimizing 10 16 18

Table 2: Mutations before and after expounding

The only winnowing we do is to exclude consistent mutants. Table 2

shows the results of applying mutation generation before expounding, after

expounding without reflecting the TRANS clause, and after expounding and

reflecting the TRANS clause. The table also shows the number of test cases

automatically generated by the method in [3] for each version.

We can use our mutation analysis method to minimize test sets. We
analyzed the mutants killed by different test cases and found a smaller set

which has the same coverage. The last row of the table shows the number

of test cases after this minimization. Interestingly, even though the number

of mutants grows enormously with expounding and consideration of the

TRANS clause, the number of test cases grows modestly.

4.2 Evaluation of Separately Developed Test Sets

Consider the SCR tables, shown in Table 1, that gave rise to the SMV
model. These tables are reproduced from [9]. Suppose we construct a test

set that satisfies the following criteria: each row in a mode transition table is

covered by one or more test cases. In addition, for each mode, the possibility

of remaining in that mode is covered by one or more test cases. In an event

table, the conditions that cause each event are forced to both true and

false ,
if possible, on one or more test cases. Finally, in a condition table,

each condition is forced to both true and false
,
if possible, on at least one

test case. We call this metric table coverage. We define any test set that

satisfies these criteria to be table adequate.

We produced a test set that satisfied the criteria for table coverage. 5 We
4We found that for this example, all inconsistent mutants are falsifiable.

5SMV can be used to check for table adequacy as follows. For each event in the

transition table, a SPEC clause was written stating that the desired transition did not

happen when the specified event occurred. SMV then generated a counterexample showing

that the desired transition did happen if the event occurred. A similar strategy was applied

to the event and condition tables. The result was 8 SPEC clauses for the mode transition

table (2 for each row), 6 for the event table (2 for each event except False), and 2 for

the condition table (all values for Overridden in mode TooLow), for a total of 16 SPEC

18

tests

table coverage

16 elements

No Expound
121 mutants

Expound
no TRANS
388 mutants

Expound
with TRANS
824 mutants

table adequate 4 100% (16) 89% (108) 77% (301) 70% (577)

No Expound 16 100% (16) 100% (121) 81% (317) 76% (629)
Expound
no TRANS 27 100%f 100%f 100% (388) 93% (767)

Expound
with TRANS 36 100%f 100%t 100%f 100% (824)

Table 3: Test set coverage scores with different criteria

build a table adequate test set by picking a subset of the test cases generated

for the unexpounded version of the safety injection problem. This turned

out to be sufficient; otherwise, we could have produced additional tests. The

result was a set of four test cases.

Table 3 shows the result of evaluating the table adequate test set and

the three automatically generated test sets against the table coverage met-

ric and also against our metric with mutant generation with no expounding,

expounding without TRANS, and expounding with TRANS. The scores

marked with f are derived rather than measured. We justify the derived

scores because the mutants that define adequacy for the second test set are

a subset of those that define the third, and the mutants that define adequacy

for the third test set are a subset of those that define the fourth. The 16

tests generated from No Expound scored 317/388 or 81% on mutants from

Expound, but no reflection of TRANS clauses. Similarly, the 27 tests gen-

erated from Expound, No TRANS scored 767/824 or 93% on mutants from

Expound with TRANS. Therefore, the additional mutants from reflection of

the TRANS clause and expounding result in a more precise metric.

Although we would not expect table coverage testing of the SCR table

to be as thorough as the mutation scheme used in this paper, it is still

instructive to evaluate such tests with respect to mutation adequacy. It

demonstrates how our method can be used to evaluate test sets developed

by other means. This is important because most existing software systems

have large regression test sets associated with them, and it is very useful

to analyze such test sets for gaps and redundancy. In the former case,

additional tests can be added. In the latter case, redundant tests can be

analyzed for removal.

All the test sets generated from mutation analysis turn out to be table

clauses. That is, a table adequate test set for the tables in Table 1 must satisfy these 16

elements.

19

coverage adequate. However, we note that a significant number of mutants

are not necessarily detected by the table coverage adequate test set. This

suggests that our specification-based mutation adequacy coverage metric has

practical utility.

5 Summary and Conclusion

Testing, particularly system testing, consumes a significant portion of the

budget for software development projects. Formal methods, typically used

in the specification and analysis phases of software development, offer an

opportunity not only to reduce the cost of testing, but to increase confidence

in the software through formal metrics for test thoroughness. We pursued

this path by applying model checking and mutation analysis to the problem

of test set coverage. The resulting coverage metric can be used independently

of source code, and is appropriate for “black box” testing.

From an assurance perspective, we would like to say that a test set

guarantees some property for the software, but, with some exceptions, this

goal is beyond the limits of what testing can show. Instead, test metrics are

developed to capture desirable properties of a test set. Most of the testing

metrics available in the literature are defined at the unit or source code level.

We balance this bias by offering a metric at the software system level.

In this paper, we developed a metric for evaluating test sets against

state transition specifications in the context of model checker. The metric

is based on mutation analysis. Mutation adequate test sets are sensitive to

the precise structure of the artifact from which the mutations are generated,

which in this case is a model checking specification. We developed the

necessary foundation for defining the mutation metric, including the roles

of reflection, expounding, mutation operators, and winnowing procedures.

We showed how to take a set of externally developed test cases, turn each

test case into a constrained finite state machine, and score the set against

the metric.

Scalability is a concern for all realistic software engineering techniques.

The scalability of our technique depends in part on how well model checkers

can handle large software specifications. The successes of SPIN [21] and

SMV [11] suggest that a specification-based test coverage metric may apply

to a broad variety of software systems.

To evaluate scalability, we plan to apply this technique to a much larger

and richer specification, namely the generic Flight Guidance System devel-

oped by Rockwell Collins for the academic community and available in a

20

variety of forms [25]. We also plan to explore starting with higher level

specifications, say in Z, UML, or operational semantics, and automatically

generating model checker specifications. Additionally, we will devise other

mutation operators and determine which set of mutation operators give the

best coverage with the smallest set of tests. At the same time, we will theo-

retically and experimentally investigate the impact of duplicate mutants on

our metric.

Acknowledgments

It is our pleasure to thank Angelo Gargantini and Connie Heitmeyer of the

Naval Research Laboratory for supplying the SMV specifications for Safety

Injection and for many helpful exchanges of data and ideas. We also thank

Vadim Okun of the University of Maryland, Baltimore County, for the use

of his mutation engine mute.

References

[1] S.B. Akers. On a theory of boolean functions. SIAM Journal
, 7(4),

1959.

[2] Paul Ammann and Paul E. Black. Abstracting formal specifications to

generate software tests via model checking. In Proceedings of the 18th

Digital Avionics Systems Conference (DASC99), to be published 1999.

[3] Paul E. Ammann, Paul E. Black, and William Majurski. Using model

checking to generate tests from specifications. In Proceedings of the

Second IEEE International Conference on Formal Engineering Methods

(ICFEM’98), pages 46-54. IEEE Computer Society, December 1998.

[4] Joanne M. Atlee. Native model-checking of SCR requirements. In Pro-

ceedings of the Fourth International SCR Workshop
,
November 1994.

[5] Joanne M. Atlee and M. A. Buckley. A logic-model semantics for SCR
software requirements. In Proceedings of the 1996 International Sympo-

sium on Software Testing and Analysis
,
pages 280-292, January 1996.

[6] Joanne M. Atlee and J. Gannon. State-based model checking of event-

driven system requirements. IEEE Transactions on Software Engineer-

ing
,
19(l):24-40, January 1993.

21

[7] Jonathan Beskin. Human error simulation in test case generation. Tech-

nical report, Reliable Software Technologies Corp., Sterling, Virginia,

USA, 20166, 1998.

[8] Ramesh Bharadwaj and Constance Heitmeyer. Verifying SCR require-

ments specifications using state exploration. In Proceedings of the First

ACM SIGPLAN Workshop on Automatic Analysis of Software, Paris,

France, January 1997.

[9] Ramesh Bharadwaj and Constance L. Heitmeyer. Model checking com-

plete requirements specifications using abstraction. Technical Report

NRL/MR/5540- 97-7999, U.S. Naval Research Laboratory, November

1997.

[10] Jerry R. Burch, Edmund Melson Clarke, Jr., Ken L. McMillan, David L.

Dill, and L. J. Hwang. Symbolic model checking: 1020 states and be-

yond. In Proceedings of the ACM/SIGDA International Workshop in

Formal Methods in VLSI Design. ACM, January 1991.

[11] William Chan, Richard J. Anderson, Paul Beame, Steve Burns,

Francesmary Modugno, David Notkin, and Jon D. Reese. Model check-

ing large software specifications. IEEE Transactions on Software Engi-

neering.
,
24(7) :498 - 520, July 1998.

[12] Tsun S. Chow. Testing software design modeled by finite-state ma-

chines. IEEE Transactions on Software Engineering
,
SE-4(3): 178-187,

May 1978.

[13] Edmund Melson Clarke, Jr., Orna Grumberg, and David E. Long. Ver-

ification tools for finite-state concurrent systems. In A Decade of Con-

currency - Reflections and Perspectives. Springer Verlag, 1994. Lecture

Notes in Computer Science 803.

[14] Richard A. De Millo, Richard J. Lipton, and Frederick G. Sayward.

Hints on test data selection: Help for the practicing programmer. IEEE
Computer

,
1 1 (4) :34—41 ,

April 1978.

[15] Richard A. De Millo and A. Jefferson Offutt. Constraint-based auto-

matic test data generation. IEEE Transactions on Software Engineer-

ing
,
17(9):900-910, September 1991.

[16] S. R. Faulk, L. Finneran, J. Kirby Jr., S. Shah, and J. Sutton. Experi-

ence applying the CoRE method to the Lockheed C-130J. In Proceed-

22

ings of the 9th Annual Conference on Computer Assurance
,
pages 3-8,

Gaithersburg, MD, June 1994.

[17] Constance L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated

consistency checking of requirements specifications. ACM Transactions

on Software Engineering and Methodology
, 5(3) :231—261, July 1996.

[18] Constance L. Heitmeyer and J. Mclean. Abstract requirements speci-

fications: A new approach and its application. IEEE Transactions on

Software Engineering
,
SE-9(5):580-589, September 1983.

[19] K. L. Heninger. Specifying software requirements for complex systems.

IEEE Transactions on Software Engineering
,
SE-6(1):2-13, January

1980.

[20] Daniel Hoffman, Paul Strooper, and Lee White. Boundary values and

automated component testing. Software Testing, Verification & Relia-

bility
, 9(1), March 1999.

[21] Gerald J. Holzmann. The model checker SPIN. IEEE Transactions on

Software Engineering
, 23(5):279-295, May 1997.

[22] W. E. Howden. Weak mutation testing and completeness of test sets.

IEEE Transactions on Software Engineering
,
8(4):371-379, July 1982.

[23] D. Richard Kuhn. Fault classes and error detection in specification

based testing. ACM Transactions on Software Engineering Methodol-

ogy
,
to be published 1999.

[24] Peter M. Maurer. Generating test data with enhanced context-free

grammars. IEEE Software
,
pages 50-55, July 1990.

[25] S. P. Miller. Specifying the mode logic of a flight guidance system in

CoRE and SCR. In Second Workshop on Formal Methods in Software

Practice
,
Clearwater Beach, FL, March 1998.

[26] Sam Owre, John M. Rushby, and N. Shankar. Analyzing tabular

and state-transition requirements specifications in PVS. Technical Re-

port CSL-95-12, Computer Science Laboratory SRI International, June

1995. Revised April, 1996.

[27] A. J. van Schouwen, D. L. Parnas, and J. Madey. Documentation of

requirements for computer systems. In Proceedings of the IEEE Inter-

national Symposium on Requirements Engineering
,
pages 198-207, San

Diego, CA, January 1993. IEEE Computer Society Press.

23

[28] Jeffrey M. Voas. PIE: A dynamic failure-based technique. IEEE Trans-

actions on Software Engineering
, 18(8), August 1992.

[29] Elaine Weyuker, Tarak Goradia, and Ashutosh Singh. Automatically

generating test data from a boolean specification. IEEE Transactions

on Software Engineering
, 20(5) :353—363, May 1994.

[30] Martin R. Woodward. Errors in algebraic specifications and an ex-

perimental mutation testing tool. Software Engineering Journal
,
pages

211-224, July 1993.

[31] D. Wu, M. A. Hennell, D. Hedley, and I.J. Riddell. A practical method

for software quality control via program mutation. In Proceedings of

the 2nd Workshop on Software Testing, Verification and Analysis
,
pages

159-170, Banff, Canada, July 1988.

[32] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit

test coverage and adequacy. ACM Computing Surveys
,
29(4):366-427,

December 1997.

A Safety Injection Problem

The specification given below is a modification of one supplied by the Navy

Research Laboratory. The specification corresponds to Table 1. See [9] for

a closely related specification in all of SCR, SPIN, and SMV.
The numerical comments to the right of case statement branches below

provide a cross reference between the transition relation and the reflection

into SPEC clauses. Branches marked with an “e” require expounding prior

to reflection. After expounding, it is often convenient to use multiple SPEC
clauses for reflection; hence the multiple SPEC clauses for each of the “e”

branches. In this example, only the default cases require expounding.

MODULE main

VAR
Reset : {On, Off};
Overridden : {0,1}; —boolean
Block : {On, Off};
WaterPres : 0..200;
Pressure : {TooLow, Permitted, High};

DEFINE
Low := 90;
Permit := 100;

SafetyInjection:= case
Pressure = Permitted: Off;
Pressure = High: Off;

24

Pressure = TooLow: case
Overridden : Off

;

! Overridden :0n;
esac;

esac

;

ASSIGN
init (Block) : = Off

;

init (Reset) : = On;
init (WaterPres) := 2;
init (Overridden) : = 0

;

init (Pressure) := TooLow;

next (Block) := {On, Off};
next (Reset) := {On, Off};
next (WaterPres) : = 0 . . 200

;

next (Overridden) : = case
Pressure = TooLow: case

! (Pressure = next (Pressure)) : 0

;

— 1

! (Reset = On) & next (Reset) = On : 0

;

— 2
! (Block = On) & next (Block)
1 : Overridden;

On & Reset = Off:l; — 3
4e

esac;
Pressure = Permitted: case

! (Pressure = next (Pressure)) :0; — 5
! (Reset = On) & next (Reset) = On : 0

;

— 6
! (Block = On) & next (Block)
1 : Overridden;

= On & Reset = Off:l; — 7— 8e
esac

;

Pressure = High: case
! (Pressure = next (Pressure)
1 : Overridden

;

) : 0

;

— 9— lOe
esac

;

esac

;

next (Pressure) := case
Pressure = TooLow: case

!((WaterPres >= Low)) & (next (WaterPres) >= Low) : Permitted
;
— 11

1: Pressure; — 12e
esac;
Pressure = Permitted: case

!((WaterPres < Low)) & (next (WaterPres) < Low) :TooLow; — 13
!((WaterPres >= Permit)) & (next (WaterPres) >= Permit) :High; — 14
1: Pressure; — 15e

esac;
Pressure = High: case

! (WaterPres < Permit) & (next (WaterPres) < Permit) : Permitted; — 16
1: Pressure; — 17e

esac

;

esac

;

TRANS
(! (next (Reset) =Reset) & next (Block) =Block & next (WaterPres) =WaterPres) I

(! (next (Block) =Block) & next (Reset)=Reset & next (WaterPres)=WaterPres) I

(! (next (WaterPres) =WaterPres) & (next (WaterPres) - WaterPres) <= 3 &
(WaterPres - next (WaterPres)) <= 3 & next (Reset) =Reset & next (Block) =Block)

— The following SPEC clauses reflect the logic of the transition— relation expressed above.
SPEC — 1

AG(Pressure=TooLow -> AX(! (Pressure=TooLow) ->
! Overridden)

)

SPEC — 2
AG(Pressure=TooLow & Reset=0ff -> AX(Reset=0n ->

! Overridden)

)

SPEC — 3
AG(Pressure=TooLow & Block=0ff & Reset=0ff -> AX(Block=0n -> Overridden))

SPEC — 4e :

1

AG(Pressure=TooLow & Reset=0n & Overridden -> AX (Pressure=TooLow ->
Overridden)

)

25

SPEC — 4e :

2

AG (Pressure=TooLow & Reset=On & ! Overridden -> AX (Pressure=TooLow ->
! Overridden)

)

SPEC — 4e :

3

AG(Pressure=TooLow Sc Block=On Sc Overridden -> AX (Pressure=TooLow Sc

Reset=Off -> Overridden))
SPEC — 4e :

4

AG(Pressure=TooLow & Block=On & ! Overridden -> AX(Pressure=TooLow &
Reset=Off ->

! Overridden)

)

SPEC -- 4e :

5

AG (Pressure=TooLow & Overridden -> AX(Pressure=TooLow Sc Block=Off &
Reset=Off -> Overridden))

SPEC — 4e :

6

AG(Pressnre=TooLow & ! Overridden -> AX(Pressure=TooLow & Block=Off Sc

Reset=Off -> (Overridden))
SPEC — 5

AG(Pressure=Permitted -> AX (! (Pressure=Permitted) -> (Overridden))
SPEC — 6

AG(Pressure=Pennitted & Reset=Off -> AX(Reset=On -> (Overridden))
SPEC — 7

AG(Pressure=Permitted & Block=Off & Reset=Off -> AX(Block=On ->
Overridden)

)

SPEC -- 8e :

1

AG(Pressure=Permitted & Reset=On & Overridden -> AX(Pressure=Permitted ->
Overridden)

)

SPEC — 8e :

2

AG(Pressure=Pennitted Sc Reset=On Sc (Overridden -> AX(Pressure=Permitted ->
! Overridden)

)

SPEC -- 8e :

3

AG(Pressure=Permitted Sc Block=On Sc Overridden -> AX(Pressnre=Permitted &
Reset=Off -> Overridden))

SPEC — 8e :

4

AG(Pressure=Permitted & Block=On Sc (Overridden -> AX(Pressure=Permitted &
Reset=Off -> (Overridden))

SPEC — 8e:5
AG(Pressure=Pennitted Sc Overridden -> AX(Pressure=Permitted Sc Block=Off Sc

Reset=Off -> Overridden))
SPEC — 8e :

6

AG(Pressure=Permitted Sc (Overridden -> AX(Pressure=Permitted & Block=Off &
Reset=Off ->

! Overridden)

)

SPEC — 9
AG(Pressure=High -> AX (! (Pressure=High) -> (Overridden))

SPEC — lOe :

1

AG(Pressure=High Sc Overridden -> AX (Pressure=High -> Overridden))
SPEC -- lOe :

2

AG(Pressure=High Sc (Overridden -> AX(Pressure=High -> (Overridden))
SPEC — 11

AG((Pressure=TooLow) Sc ! (WaterPres >= Low) -> AX((WaterPres >= Low) ->

Pressure=Permitted)

)

SPEC — 12e:

1

AG((Pressure=TooLow) Sc (WaterPres >= Low) -> AX(Pressure=TooLow)

)

SPEC — 12e :

2

AG((Pressure=TooLow) -> AX (! (WaterPres >= Low) -> Pressure=TooLow)

)

SPEC — 13
AG((Pressure=Permitted) Sc ((WaterPres < Low) -> AX ((WaterPres < Low) ->

Pressure=TooLow)

)

SPEC — 14
AG((Pressure=Permitted) Sc ((WaterPres >= Permit) ->

AX ((WaterPres >= Permit) -> Pressure=High)

)

SPEC — 15e :

1

AG((Pressure=Permitted) -> AX (! (WaterPres < Low) Sc WaterPres < Permit ->
Pressure=Permitted)

)

SPEC — 16
AG((Pressure=High) Sc ((WaterPres < Permit) -> AX((WaterPres < Permit) ->

Pressure=Permitted)

)

SPEC — 17e :

1

AG((Pressure=High) Sc (WaterPres < Permit) -> AX(Pressure=High)

)

SPEC — 17e:2
AG((Pressure=High) -> AX (! (WaterPres < Permit) -> Pressure=High)

)

26

— The following SPEC clauses reflect (an abstraction of) the TRANS section

SPEC AG (Reset = Off & Block = On -> AX (Reset = On -> Block = On))
SPEC AG(Reset = Off & Block = Off -> AX(Reset = On -> Block = Off))
SPEC AG (Reset = Off & Pressure = TooLow -> AX (Reset = On ->

Pressure = TooLow))
SPEC AG (Reset = Off & Pressure = Permit -> AX (Reset = On ->

Pressure = Permit))
SPEC AG (Reset = Off & Pressure = High -> AX (Reset = On ->

Pressure = High))

SPEC AG (Reset = On & Block = On -> AX (Reset = Off -> Block = On))
SPEC AG (Reset = On & Block = Off -> AX (Reset = Off -> Block = Off))
SPEC AG (Reset = On & Pressure = TooLow -> AX (Reset = Off ->

Pressure = TooLow))
SPEC AG (Reset = On & Pressure = Permit -> AX (Reset = Off ->

Pressure = Permit))
SPEC AG (Reset = On & Pressure = High -> AX (Reset = Off ->

Pressure = High))

SPEC AG (Block = Off & Reset = On -> AX (Block = On -> Reset = On))
SPEC AG (Block = Off & Reset = Off -> AX (Block = On -> Reset = Off))
SPEC AG (Block = Off & Pressure = TooLow -> AX (Block = On ->

Pressure = TooLow))
SPEC AG (Block = Off & Pressure = Permit -> AX (Block = On ->

Pressure = Permit))
SPEC AG (Block = Off & Pressure = High -> AX (Block = On ->

Pressure = High)

)

SPEC AG (Block = On & Reset = On -> AX (Block = Off -> Reset = On))
SPEC AG (Block = On & Reset = Off -> AX (Block = Off -> Reset = Off))
SPEC AG (Block = On & Pressure = TooLow -> AX (Block = Off ->

Pressure = TooLow))
SPEC AG (Block = On & Pressure = Permit -> AX (Block = Off ->

Pressure = Permit))
SPEC AG (Block = On & Pressure = High -> AX (Block = Off ->

Pressure = High)

)

SPEC
SPEC
SPEC
SPEC

AG(Pressure=TooLow &
AG(Pressure=TooLow &
AG(Pressure=TooLow &
AG(Pressure=TooLow &

Reset=0n
Reset=0ff
Block=0n
Block=0f

f

->
->
->
->

AX(! (Pressure=TooLow)
AX (! (Pressure=TooLow)
AX(! (Pressure=TooLow)
AX (! (Pressure=TooLow)

-> Reset=0n))
-> Reset=0ff))
-> Block=0n))
-> Block=0ff))

SPEC
SPEC
SPEC
SPEC

AG (Pressure=Permit
AG (Pressure=Permit
AG (Pressure=Permit
AG(Pressure=Permit

& Reset=0n
& Reset=0ff
& Block=0n
& Block=0ff

->
->
->
->

AX(! (Pressure=Permit)
AX (! (Pressure=Permit)
AX (! (Pressure=Permit)
AX(! (Pressure=Permit)

-> Reset=0n))
-> Reset=0ff))
-> Block=0n))
-> Block=0ff))

SPEC AG(Pressure=High
SPEC AG(Pressure=High
SPEC AG(Pressure=High
SPEC AG(Pressure=High

& Reset=0n
& Reset=0ff
& Block=0n
& Block=0ff

-> AX(! (Pressure=High
-> AX(! (Pressure=High
-> AX (! (Pressure=High
-> AX(! (Pressure=High

) -> Reset=0n))

) -> Reset=0ff))
) -> Block=0n))

) -> Block=0ff)

)

27

