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Abstract

Karma and Rappel [1] recently developed a new sharp interface asymptotic analysis

of the phase-field equations that is especially appropriate for modeling dendritic growth

at low undercoolings. Their approach relieves a stringent restriction on the interface

thickness that applies in the conventional asymptotic analysis, and has the added ad-

vantage that interfacial kinetic effects can also be eliminated. However, their analysis

focussed on the case of equal thermal conductivities in the solid and liquid phases; when

applied to a standard phase-field model with unequal conductivities, anomalous terms

arise in the limiting forms of the boundary conditions for the interfacial temperature

that are not present in conventional sharp-interface solidification models, as discussed

further by Almgren [2]. In this paper we apply their asymptotic methodology to a

generalized phase-field model which is derived using a thermodynamically consistent

approach that is based on independent entropy and internal energy gradient function-

als that include double wells in both the entropy and internal energy densities. The
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additional degrees of freedom associated with the generalized phase-field equations can

be chosen to eliminate the anomalous terms that arise for unequal conductivities.

PACS: 81.10.Aj ,
64.70. Dv, 66.10.Cb, 81.10.Mx

Keywords: phase-field model, sharp interface analysis, thin interface analysis, dendritic

growth, isothermal asymptotics.

1 Introduction

Various asymptotic limits can be used to relate diffuse interface models of solidification

to conventional free boundary problems that involve sharp interfaces of zero width (see,

for example, [3]). In particular, the size of the diffuse interface width i relative to other

characteristic length scales in the problem determines the specific form of the free boundary

problem that is obtained as i becomes small. In this paper we will be especially concerned

with the effects of capillarity and interface attachment kinetics, as described by the modified

Gibbs-Thomson boundary condition,

T-Tm
Lv /Cp

-4n - v/v0 ,
(i)

which relates the interface mean curvature 77, and normal velocity V, to the dimensionless

interface temperature, u = (T — TM )/[LV /cp], where T is the temperature, TM is the melting

point, Ly is the latent heat per unit volume, and cp is the heat capacity per unit volume. Here

4 = Tm7/[Ly/cP \
is a capillary length based on the surface free energy 7, and Vo = n[Ly/cp\

is a characteristic velocity based on the kinetic attachment coefficient, fi. For discussion

purposes we consider the growth of a dendrite with tip radius R into an undercooled melt

[4]; in more general circumstances, R might be representative of a typical macroscopic length

scale such as a container size. For dendritic solidification at large undercoolings the growth

is rapid and the radius of curvature of the tip is relatively small, so that the effects of

capillarity and kinetics on the interface temperature in Eq. (1) can be significant. In this

regime, sharp interface limits of the phase field equations have been performed [5-10] that

assume the interface temperature u is of order unity in the small parameter i/R, which allows
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the contributions from capillarity and kinetics to be of order unity as well. In this limit i is

also assumed to be small compared to £c ,
which presents a stringent resolution requirement

for a numerical computation that aspires to describe this limiting case. At low undercoolings,

on the other hand, dendrites grow more slowly and have a larger radius of curvature, so it

is reasonable to model the effects of capillarity and kinetics as small corrections. Karma

and Rappel [1] refer to the corresponding analysis as the “thin interface limit,” wherein one

assumes £ -C R but allows £ ~ £c . Almgren [2] has described this analysis as “isothermal

asymptotics,” since to leading order in £/R the temperature is isothermal throughout the

interfacial region, with u = 0(£/R). A technical difficulty with this analysis is that for

unequal thermal conductivities in the liquid and solid, the thin interface limit can lead to

a discontinuity in the temperature field across the interface as well as the appearance of

an anomalous term proportional to the interfacial temperature gradients in the modified

Gibbs-Thomson equation. Almgren shows that a continuous temperature field and a Gibbs-

Thomson equation independent of the interfacial temperature gradients can be achieved by

appropriate alterations of the interpolation functions that are used to represent the bulk

thermophysical quantities across the diffuse interface.

The standard phase-field model, a version of the Model H of Halperin, Hohenberg, and

Ma [11], was originally derived on the basis of a gradient functional for the free energy of the

system, with dynamics that ensure that the free energy decreases with time [12-16]. The

time rate of change of the order parameter is coupled to the energy equation to incorporate

the release of latent heat as solidification occurs. Penrose and Fife [17] (see also [18]) derived

the phase-field equations on the basis of positive entropy production for a system that is

based on a gradient functional for the entropy of the system. Here we consider a generalized

phase field model that is based on gradient functionals for both the entropy and internal

energy of the system; such models have been considered by a number of authors [19-23].

The generalized model contains additional degrees of freedom that we use here to eliminate

the anomalous terms that arise in the asymptotic analysis of Karma and Rappel in the case

of unequal thermal conductivities.
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The kinetic attachment coefficient p that appears in the characteristic velocity V
r

0 in

Eq. (1) has been measured for relatively few materials. For this reason, and because the

effect of kinetics is usually expected to be small at low to moderate rates of solidification

for metals and other molecularly-simple materials, many sharp interface models ignore the

effect of kinetics by setting \/ \i — 0. Karma and Rappel show how their approach allows

the effects of kinetics to be eliminated in the standard phase-field model by an appropriate

choice of the parameters in the model. We also address this issue for the generalized phase

field model, and find that the effects of kinetics can be eliminated for a significant range of

the ratio of thermal conductivities as well.

In the next section we describe the phase field models that we consider. Asymptotic

analyses of these models are presented in Section 3, followed by discussion and concluding

sections.

2 Phase-Field Model

A common version of the standard phase-field equations for a pure material can be written

in the form

jjt, = KVU - - Ly (2)

cPT, - Lv r' (<j>)<f> t
= V [*#)VT]

, (3)

where the phase field 0(T, t.) is a nonconserved order parameter that labels the phases, with

0 = 1 in the solid phase and 0 = 0 in the liquid phase. Here M > 0 is a mobility coefficient,

K > 0 is a gradient energy coefficient, W > 0 is a barrier height for the double well

potential function g(0) = 0
2
(1 — 0)

2 and p(0) = 0
2

(3 — 20). The function &;(0) permits

different thermal conductivities ki = A;(0) and k$ = &(1) in the bulk liquid and solid phases,

respectively; specific forms for k{4>) will be discussed below. The function r(0) is assumed

to have r(0) = 0 and r(l) = 1. Examples include the cases r(0) = p(0) and r(0) = 0.

Following Almgren we refer to the system with r(0) = p(0) and r(0) = 0 as the gradient
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equations and the nongradient equations, respectively; the reason for this terminology lies

in how the equations are derived (see [2] and below).

An isothermal version of this model has an associated bulk free energy density of the

form

^ ( ±\ ,

Lv(T-TM )T
) = ir9{</>) + ™ P(<t>)- (

4
)

l 1

M

In this case the phase-field equation (2) admits a one-dimensional traveling wave of the form

0(M) = \
{i - tanh (^T^)} ’ (

5
)

where the interface velocity is given by V — 6MLvP{Tm — T)/Tm • The interface width £,

surface energy 7, and kinetic coefficient /i that are associated with this solution are given by

(=Jk/W, 7 =
\/KW mLVi

v = —
J-M

(
6

)

where the latter expression follows from the definition V = n(TM — T). Karma and Rappel

[1] provide an alternate interpretation of the kinetic effect through their thin interface limit,

which is also discussed below; this limit is intrinsically non-isothermal, so that the above

interpretation does not apply.

The governing equations (2) and (3) can be derived from an entropy functional following

the formalism of irreversible thermodynamics [17, 18]. A generalized version of these equa-

tions can be derived by using both an internal energy functional 8 and an entropy functional

5, which we write in the form [19-24]

£ = ^
{e(^,T) + ^|V0| 2

}rfV,
( 7 )

S = Jv
^T)-^-\T/^dV,

( 8 )

where Ke and K$ are gradient coefficients that will be assumed to be constant, and e

and s are the internal energy and entropy densities, respectively. By starting with a free
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energy density /(T, </>), it is thermodynamically consistent to take s(T,(f>) = —df/dT and

e'r.d) -•/('/. o; • /*(/».

An associated free energy functional T can be defined for the system, which is given by

T = £ |/(0, T) +
{Kb +

2

TKs)
|

V0| 2

|

dV. (9)

Anisotropic versions of the model can be obtained by modification of the gradient terms

|V0|
2

,
as described in more detail below. For simplicity we will assume that the densities

and specific heats are uniform throughout the system.

The derivation of the governing equations may be based on conservation laws for energy

and entropy written in the form

dE r -
—— I Je ‘ n dA = 0, (10)
dt J6V

dS r -> r——\- Js ndA = spdV (11)
dt Jsv Jv

where Je and Js represent the flux of energy and entropy through the boundary 6V, which

has outward unit normal n, and sp represents the entropy production term. Governing

equations that guarantee positive entropy production can be obtained by the choice

Je — —k\7T — KeW^ (
12

)

Js = ~'^T + Ks <j>,V </>, (13)

where the terms proportional to the gradient coefficients represent non-classical fluxes asso-

ciated with the interfacial region [18]. The entropy production is then given by

TsP = ||VT| 2
+ [(Ke + TKS)V

Z
4> - U (14)

and the corresponding phase-field equation [cf. Eq. (17)] is chosen so that the latter expres-
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sion takes the form k\VT\ 2/T + 0
2/M, with M >0.

In this paper we consider a free energy of the form

(We + TWs ) Lv T - Tm
f{<P,T) = o W) + ™ PW) ~ cp{T\n[T/TM ]

- T). (15)
z i M

The corresponding internal entropy and energy densities may be found, using the relations

s = —df/dT and e = / + Ts, to be

T) = cPT+ ^g{(f)) - Lvp(<f>), s(</>, T) = cP ln[T/Tro ]
- ^fg{(f>) - (16)

Here Wp and Ws are constant double well heights for internal energy and entropy, respec-

tively. The phase-field models considered in Refs. [17] and [18] correspond to a specific

entropic version formulation obtained from our model when Kp = Wp = 0.

The generalized phase-field equations corresponding to this model take the form

1

M 4>t — {Kp + TKs)S7
2
4>
—

cPTt
- Lvp' {(f)) (f)t

We
2

(WE + TWS )
LV (T — Tm )

o 9 (0) ™ V (0)
z J-M

= v [A#)vr] + KE <j>tV2
<j>.

(17)

(18)

This generalized model includes two additional temperature-dependent terms {T—Tm)Ks'^ 2
4>

and (T—TM)Wsg ' ((/>)/ 2 in the phase-field equation, as well as two additional terms Wp(j)t g'{(j>)/

2

and Kp<f>t V2
</> in the energy equation, when compared to the standard version (2) and (3).

If these terms are omitted, these equations are similar to the standard version, but with

p'(4>) appearing in place of r'(</>) in the energy equation. We will refer to equations (17) and

(18) with p{(j)) replaced by r(0) in (18) as the generalized phase-field, equations. The forms of

the generalized phase-field equations corresponding to the particular cases r(0) = p((f>) and

r((f>) = 4> will be termed the generalized gradient equations and the generalized nongradient

equations
,
respectively.

The question of whether Kp
, A's, Wp and Ws represent measurable physical quantities

is an important issue that concerns the physical validity of Eqs. (17) and (18). Here we
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adopt a pragmatic approach, and view the formal derivation of these equations as a means

of suggesting modified forms of the governing equations that can be advantageous from the

viewpoint of asymptotics and computations. For example, Karma and Rappel [1] note that

there are computational advantages to using nongradient governing equations that do not

result from a formal thermodynamic derivation; they suggest the use of the function r(0 )
=

<f>

rather than r(0) = p(cf)) in the latent heat term of the energy equation. In a similar vein,

Almgren considers the question of choosing the specific form of the interpolation functions

p(4>), r(0 ), and k(4>) to eliminate unwanted terms in the thin interface asymptotics that arise

when kL / ks . Here we examine the effect on the thin interface asymptotics of introducing

the terms involving Kp
, Ks, We and Ws for fixed forms for the interpolation functions.

2.1 Dimensionless Equations

We make the governing equations (17) and (18) dimensionless by using the macroscopic

length scale R, the thermal time scale R2
/R, and the temperature scale Lv/cp ;

here R =

+ kl )/

2

is the average of the thermal diffusivities kl = kL/cp and ks = ks/cp in the

liquid and solid, respectively. We retain the original definitions of the interface width i and

surface energy 7 by using K —
(
KE + TMKS )

and W =
(
WE + TMWs) in Eq.

(6 ). The

resulting dimensionless equations can be written in the form

€
2
T(f)t

= e
2
(l + au)V2

(f)

- —
(19)

u t
- r' {(f))(j) t + ^'(0)^ = V • [Q{(f))¥u\ + e

2z^V2
<£, (20)

where we have defined the conventional dimensionless parameters

t . i RTmcp ,
,=

64’
T = mcML2

v
’

(21)
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that usually appear in the phase-field equations, as well as the parameters

Ks[Lv/cp\ Ws[Ly/cp\ WE Ke=—
K— -

/3 =—

W

’

i=
I7’

" =
ITP (

22
)

that appear in the generalized model. For now we will treat a, /3, 6
,
and v as independent

parameters, and will return to the question of the relationship between these parameters

below. We have also defined the dimensionless function Q{(f>) = k ((/))/ [tiep\ with Q(0) =

Ql = kl/k and Q(l) = Qs = acs/k. We note that since QL and Qs are normalized in terms

of their mean value, we have Ql + Qs = 2 and hence 0 < Ql < 2 and 0 < Qs < 2.

The relative sizes of the dimensionless parameters determine what type of sharp interface

analysis is appropriate in deriving the limiting form of the associated free boundary problem.

The original approach to the sharp interface analysis, which we will refer to as the “classical

analysis,” and the thin interface analysis of Karma and Rappel differ particularly in the

assumptions concerning the scaling of the factor Xu in Eq. (19).

3 Asymptotic Analyses

The various sharp interface limits use the method of matched asymptotic expansions, whereby

an outer solution, valid away from the interface, is matched to an inner solution that is valid

in the interfacial region [6]; for brevity we only sketch the procedure. The inner expansion

near a point x0 on the interface is described via a stretched coordinate Q with x = x0 + e(n,

where n is the local unit normal to the interface. The low order terms in an inner expansion

of the solution can be obtained by using the relations

V2 = k^ + -£>< + 0(1), 9, =—

9

c + 0( 1), (23)
s

e e

where the dimensionless mean curvature 'H = KH and the dimensionless interface speed

vn = VR/R are assumed to be of order unity. In the inner region the temperature and phase
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field are expanded in powers of e,

cj) — </>
(0) + e0 (1) + 0(e2

), (24)

u = u (0) + -1- 0(e2
), (25)

and the resulting equations are solved term by term in e, with far-held boundary conditions

that are obtained by matching to the outer solution. The outer solution has cf)(x) equal to

zero or one to all orders in the liquid or solid respectively, and the thermal held has the

expansion U(x) — U^^x) + eU^^x) + 0(e2
). The limiting behavior near a point x0

interface is given by

on the

arr(0)

U(x0 + e£h) — U± (rro) + e U± (xo) + C Q (^0 ) + 0(e ),
on

(26)

where U+
0)

and C/i
0)

denote the limits of U as ( —>• 0+ and £ —> 0_, respectively, as so forth.

The inner solution must match with this behavior as £ —> ±00 [6].

3.1 Classical Analysis

In this setting a standard model given by (19) and (20) with cn, (3, 5
,
and u all set to zero

is employed. The asymptotic analysis with £ << £c assumes that A = £/{§£c )
is a small

parameter, which allows one to take u to be of order unity while relegating to O(e) the term

Xu. If we write A = Ae, then the leading order phase-field equation is given by

with the solution

<f>a
~
^'(0

{O)

)
= 0

,

1

0
(o)

(O
1

2
1 — tanh

(27)

(28)
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The leading order temperature equation is

(Q(^°>)u<0)

) (
= 0. (29)

Integrating and matching with the outer solution twice in succession gives that u (0) =

U^\xo) = U^\xq) is constant.

The first order phase field equation is then

~ ^"(0
(O)

)0
(1) = -(rvn + U)^ + Aw (o

V(0
(o)

), (30)

and a solvability condition for this equation then gives (c.f. Eq. (38) below)

um =w-w = -e‘H - v/v°’ (31)

which recovers the modified Gibbs-Thomson boundary condition (1), where the kinetic term

agrees with the form of V0 = i[Lv/cp

]

given in Eqs. (6) and (21); thus both the isothermal

traveling wave solution and the classical asymptotic analysis lead to the same definition of

p in terms of the phase field parameters.

The first order temperature equation is then

vn r'{(t)
i0)

)(f)[

0) = (Q(0
(o)

)u[
1)

)^. (32)

Bv integrating this equation over the interval — oo < £ < oo and using the matching con-

ditions, the leading order heat flux boundary condition is recovered in the dimensionless

form

Vn — QlGl ~ QsGs, (33)

where Gl = dU+ /dn and Gs = dU_ /dn denote the local temperature gradients at the

interface.

Almgren has considered the forms of the terms that occur at the next order in the classical
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analysis, and has discussed strategies for eliminating anomalous terms at that order so as

to obtain higher-order accuracy in the Gibbs-Thomson equation [2]. Almgren also discusses

the thin interface analysis of Karma and Rappel [1], to which we turn next.

3.2 Thin Interface Analysis

In the thin interface, or isothermal, analysis, A is assumed to be of order unity, but Xu =

O(e) is still retained by taking u^ = 0 so that u = 0(e). We will show that for the

generalized phase-field equations the quantities a, (3, 6 and v may be chosen to ensure that

both the interfacial temperature is continuous and the modified Gibbs-Thomson equation is

independent of Gi and Gs-

With the assumption that the parameters A, r, vn , 77, a, (3, 6 and v are all of order unity,

the leading and first order phase-field equations are then

<t>«
- = 0, (34)

- |.9"(0
(o)

)0
(1> = Ru (35)

where

Ri = —au^ <1)^) + ^w (1

V(<^
0)

)
— (rvn + + Au (1)

p'(</>
(0)

). (36)

The leading order phase field solution is again given by Eq. (28). The first two terms of R x

given by Eq. (36) can be simplified using Eq. (34) to give

-a« (1)

^( + f
'

u

(1V(0
(o)

) = |y
(1
V(</>

(0)
), (37)

where we have defined ft = (3 — a. The solvability condition for Eq. (35) can then be written

in the form

/
OO . rOO rOO 1

\dC, = A [ u (1V(^(0)

)^
0) d(+ - [ u (1)

p
,

(^
(o)

)0f
) d( - -{rvn + U), (38)

-OO J —OO £ J— OO 0

12



which involves the first order temperature solution iWb We observe that only the combina-

tion /3 — a — f3 enters the solvability condition.

With «<°) = 0 the temperature equation is satisfied identically to leading order. The first

order temperature equation is

vn r'{(f)
{0)

)(f)[

0) - |un (/(0
(O)

)<^
O) = (Q(</>

(0) )w[
1)

)^
- (/$

,

(39)

which, when simplified by using Eq. (34) as above, may be integrated to yield

O(0
<O)

)4
1> - V(0(O>

) -T K0)

]

2

= QlGl = QsGs - vn , (40)

where we have defined V = v — S. Here the constant of integration has been evaluated in

two ways by taking ( —

>

Too and applying the matching conditions (26). Note that only

the combination u — 5 — V appears in this expression. The solution can then be expressed

in the equivalent forms

U(I)

(C) = +

- Jc {
<,»r (^

,(0)
) + K 1

]

2

- GL [Q(4>
m

)
- Qz,])rfi? (41)

= C/
a)

(fo) + CGs

+ qJ(0
))

~ !] +y K”
1

]

2
~ Gs[W(0>

)
~ Qs]} dr,

i

(42)

3.2.1 Continuity of Temperature

Subtracting the two equivalent forms for wd'(0) provides an expression for the jump in the

temperature across the interface,

U (+\x0 )
- 1/iVo) =f {v(0<O)

) +^ N0)

]

2
- GL [Q(4>

m
)
- QL])dV

+ /
o 1

-oo W<°>)
vn [r{(f)

{0)
)
- 1] +~ " - Gs [Q((f)

(0)
)
- Qs] \

dr].

-i 2

(43)
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For V = 0, Karma and Rappel [1] found that this expression vanishes for either r(<j>) =

(f)
or r((f>) = p((j)) if the thermal properties in the liquid and solid phases are the same.

Almgren [2] considered the more general case of unequal thermal properties, and noted that

it is convenient to interpolate 1 /Q(<j>), since that quantity appears in the above integrand.

Almgren discusses how to eliminate possible temperature discontinuities by choosing more

elaborate interpolation functions for the case with v — 0. Here for f / 0 we consider the

simple choice

1

+ t
1 - r{(f>)]

(44)
Q{ 4>) Qs Ql

where we interpolate using r (</>). For r(</) = 0 the integrals in Eq. (43) can then be evaluated

directly to yield

(45)

and for the choice r(</>) = p(4>) = </
2

( 3 — 2(f)) we similarly find

^)-™ =
-is(Ql

+^ +
35(t-Q7,

r(D / 1 1 \ 19/1
(46)

In performing the integration, we note that the terms involving Gl and Gs in the integrands

of Eq. (43) combine and simplify upon using the heat flux condition (40). Thus the leading

order temperature field is continuous across the interface if we choose

u — 12 (Ql — Qs) — 24
/ kl ~ ks

V KL + KS

in the case r(<f)) = 0, and choose

- ks \

I^L T Ks )

(47)

(48)

in the case r(0) — p(cf)). Values of u for other choices for r(<f>) can be calculated in a similar

manner to ensure that the interfacial temperature is continuous. Almgren [2] discusses

14



strategies for the standard model to ensure that the usual boundary conditions are satisfied

with 0(e2
)
errors as well.

3.2.2 The Modified Gibbs-Thomson Equation

We now investigate the solvability condition (38) to determine the form of the modified

Gibbs-Thomson equation in the thin interface limit. Evaluating the integrals in Eq. (38)

and using the relation

G<
vn

Gl “T
1 1

'

1 1

_Ql Qs.
-G

Ql Qs.
(49)

where G —
(QlGl +QsGs)/2 is the (conductivity-weighted) average temperature gradient,

gives that the solvability equation can be written in the form

A '3Av f3
'

560
+

240

1 1

Ql Qs
+

5A (3u

12 1120

1 1

Q~l
+

Q~s

g(—
) 6

1 1

Ql Qs
+ l

24

1 1

Ql Qs

n
6 ’

for r(4>) = 0, and

A
(u {

+
i]

+ u {

y) = vr

Xu (3

144
+

144

1 1

Ql Qs
+

19A (3u

60 1120

1 1

Ql Qs

(50)

- G f
19A '

1 1

'

\ 30 _Ql Qs.
+ U

1 1

Ql Qs

n
6 ’

(51)

for r(0) = p(4>).

The term proportional to G is eliminated if we choose

(3 = 10A (Ql — Qs )
= 20A

Kl — Ks

kL +
(52)
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in the case r{(j>) — 4>, and

0 = ^X(Ql-Qs) = ^-\
O 0

/ «L ~ KS

\KL + KS
(53)

in the case r{<f>) = p{(f>).

Inserting the expressions (52) or (53) for /? and (47) or (48) for v into the solvability

condition then gives

6AK (1) = C\ A

QlQs
i — c2 (Ql — QsY n (54)

where C\ and C2 are purely numerical constants whose values are given by c\ — 5 and

C2 = 269/700 for r(<j>) — 0, and c\ — 19/5 and c2 = 173/525 for r((f>) = p{(t>). This expression

can be written in terms of dimensional variables as

u = eU{1) = -V/Vq - £CH, (55)

where V0 = p\Lv/cp

]

and

1 Tm C\lR,[Ly /Cp\

p UMLy 6K^Ks

Following Karma and Rappel [1], we note that the elfects of kinetics can be eliminated

(1/p = 0) by the choice

1-4c2 (^—^Y
&L T Us '

(56)

J_ _ ^
/ kl - Ks \

2

M klksTm
2
\Ki + ksJ

(57)

In order that the phase-field equation is well posed we require that M > 0 and so (57) may

be satisfied providing that the ratio ks/^l is not too extreme; specifically

2y/C2 — 1 Ks_ + 1

2a/C2 + 1 Kl 1
(58)
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which evaluates to 0.107 < ks/kl < 9.34 for r(0) = (j) and 0.0689 < ks/^l < 14.5 for

r ((f>) = p{(f>). Both of these criteria are met by most semiconductors and metals as well as

succinonitrile.

4 Discussion

In this section we address a number of related issues that concern the asymptotic analysis.

We first discuss the elimination of anomalous terms by using the generalized phase-field

model, followed by an indication of how surface tension anisotropy can be included in the

model. The magnitudes of the anomalous terms in the thin interface analysis of the standard

phase-field model are then estimated. We conclude the section by comparing the assumed

scalings for the classical and thin interface asymptotics.

4.1 Elimination of Anomalous Terms

In the isothermal analysis, we find that of the four parameters a, /?, 3, and u that occur in the

generalized phase field equations, only two parameters, (3 = (3 — a and u = v — 5, appear as

degrees of freedom that are available in the first order analysis to ensure that the interfacial

temperature U^> is continuous and that, the anomalous term that is proportional to the

temperature gradient in the Gibbs-Thomson equation vanishes. If, instead of assuming the

independence of the dimensionless parameters a, /3, 3, and v we consider their definitions

in terms of the parameters Ke , Ws, We and Ws that appear in the internal energy and

entropy functions, we find that (3 and v are actually not independent, but are related, since

Eq. (22) implies that

P = ^ = -t^W(WeKs-WsKe ). (59)

Thus, if the parameters in the generalized phase-field equations have values that are derived

from an underlying internal energy and entropy functions in a thermodynamically-consistent

manner, only a single degree of freedom, namely WeKs — WsKe-, is available to satisfy the

two conditions. However, we note that for the generalized gradient equations
,
these conditions
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given by (48) and (53) are linearly independent and reduce to

P = Xu = A//*, (60)

where

_ 76 / kl k,s

5 \k,l + ks

Hence, in the fully thermodynamically consistent treatment, represented by the generalized

gradient equations, we can choose the four parameters a, ft, 6 ,
v so that both the tempera-

ture at the interface is continuous and the Gibbs-Thomson equation is independent of the

interfacial temperature gradients. In addition, for a wide range of values of ks/^l M may

be chosen using equation (57) so that kinetic effects are not present, i.e.
,
the dimensional

boundary conditions on the value of the interfacial temperature are

Ts = Tl = Tm - (62)
Cp

where T$ and Tl are the interfacial temperatures in the solid and liquid respectively. We

observe that the choice of a, P, 6, v consistent with (60) is not unique. For example, we

may choose a = 6 = 0, P/X = u = u*, which corresponds to allowing the bulk free energy

double well height W = Wp + TWs to depend on T and the gradient energy coefficient

Kp = Kp + TKS to be independent of T. Similarly, the choice P = v = 0, a/X = 6 = —v*,

corresponds to the opposite situation where W is independent of T and Kp is dependent on

T. This latter choice may be advantageous in numerical computation using the generalized

gradient equations since it eliminates the <f>tV
2

(j) term in the Eq.(20). In the nongradient

case it is still possible to eliminate the anomalous terms using the choices for P and v given

by equations (53) and (48), respectively; however, in this case the condition between them

given by equation (59) will not be satisfied.

The isothermal asymptotics applied to either of the generalized phase-field equations

gives interfacial conditions that depend on the forms adopted for the functions r(0), Q{(f>)
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and p(0). In particular, the results given above for the generalized gradient equations are

for the specific choice p((f>)
— 0

2
(3 — 20) and the form of (2(0) given by equation (44). We

conjecture that for a more general form of p(0) the elimination of the anomalous terms

will still require the relationship /3 = XV to hold but will alter the expression for P*. In

contrast, the classical asymptotics gives interfacial conditions on the temperature that are

independent of the forms of r(0),Q(0) and p{<j>).

In the thin interface limit, the sensitivity of the limiting interfacial boundary conditions

to the details of the model within the interface can be attributed to the relatively large

interfacial thickness allowed by this limit as compared to the classical sharp interface limit.

A similar sensitivity was also observed in a different thin interface analysis of solute trapping

for a phase held model of a binary alloy [28]. In this situation the dependence on the details

of the phase-held model in the interfacial region was apparent in an asymptotic regime

where the interface thickness was also comparatively large, in fact comparable to the solute

boundary layer thickness.

We note that for both the classical analysis and the thin interface analysis the temperature

held near the interface is spatially uniform to leading order in e; in the thin interface analysis

T = Tm to leading order, and in the classical analysis there are corrections to TM of order

unity due to capillary and kinetic terms. The hrst order correction to the temperature held

is non-constant in each analysis, with an O(e) spatial variation in temperature through the

interface.

4.2 Anisotropic Surface Energy

The phase held equations (19) and (20) are based on isotropic forms of the gradient energy

and gradient entropy represented by the |V0| 2 terms in the functionals (7) and (8). A

model with anisotropy can be obtained by replacing |V0| 2
in these expressions by the term

[r(V0)] 2
,
where T(pj is a homogeneous function of degree one [8,25-27]. The introduction

of the function r(V0) provides a phase-held model of interfaces whose anisotropic surface

free energy is proportional to T(h) in the sharp interface limit, where n is the outward unit
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normal to the interface. For example, the function

r (V</>) = |V0| {1 + 74 cos (4arctan[0
2//0a;])} , (63)

models a two-dimensional interface with a four-fold surface energy proportional to T (n) =

( 1+74 cos 46), where 6 is the orientation of n = (cos 6
,
sin 6). The resulting anisotropic forms

of the generalized phase-field equations are obtained by the substitution

V2
</> -+ V

• [re] (64)

in equations (19) and (20), where £(V0 )
is the Cahn-Hoff'man £-vector [30] with components

£,j(p) = dT (p) /dpj . The sharp interface analysis of the anisotropic equations parallels the

treatment in Ref. [25]; for brevity, we omit the details. The final result is that the mean

curvature term 7-t in the Gibbs-Thomson equation (55) is replaced by the weighted mean

curvature term Vs-£ involving the surface divergence of the £-vector, which is the appropriate

generalization of the Gibbs-Thomson equation for the anisotropic case [31,32].

4.3 Magnitudes of Anomalous Terms in the Thin Interface Limit

In Section 3.1 we sketch the classical analysis for the standard model. It is straightforward

to perform the classical analysis for the generalized model as well. One finds that the leading

order temperature is continuous at the interface and satisfies a non-linear version of the usual

(modified) Gibbs-Thomson equation. The conventional leading-order balance of heat flux at

the interface is also obtained, but with a discontinuity in the first-order temperature field

across the interface. It is this observation that suggests the use of the generalized phase-field

model in the thin interface limit in this paper to eliminate the temperature discontinuity

that arises for unequal thermal conductivities.

The thin interface limit of the conventional phase-field model also leads to a jump in

temperature at the interface given by Eq. (45) or (46) with u = 0. Considering as an

example the case r(0 )
= (j), the dimensional form of the leading order temperature jump can
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be written as

(65)Tl — Ts — [Ly/cp\
7

which shows that the temperature jump vanishes if the thermal properties of liquid and

solid are equal. The jump in temperature is a non-equilibrium effect that resembles in some

ways the “solute trapping” effect that is observed for rapid solidification of a binary alloy

[33]. Solute trapping involves non-equilibrium partitioning in the solute at the solid-liquid

interface due to a jump in chemical potential across the interface. The jump in potential

becomes significant at velocities V ~ Vp, where the characteristic velocity Vp is given by

the ratio of an interfacial solute diffusivity D/ to the interface width L In a similar way,

the temperature jump in (65) is proportional to V/Vp, where Vp = kl/£ is a characteristic

thermal velocity. In phase-field models of solute trapping, Vp is found to be sensitive to

the assumed form of the variation of the solute diffusivity through the interface [28], just

as the numerical factors in Eqs. (45) and (46) depend on the assumed form for r (</>). The

sensitivity of the limiting interfacial boundary conditions to the details of the model within

the interface in the thin interface limit can be attributed to the relatively large interfacial

thickness allowed by this limit, as compared to the classical sharp interface limit. For

solute trapping the appropriate limit also involves an asymptotic regime where the interface

thickness is relatively large, in fact comparable to the solute boundary layer thickness. For

solute trapping in metallic alloys a typical value of Vp is on the order of 1 m/s; since the

thermal diffusivities are usually orders of magnitude larger than typical solute diffusivities,

the temperature jump is a much smaller effect. Using values for lead as an example with

ks/k'L ~ 2, a nominal interface thickness of 10
-7 cm leads to a temperature jump of about

1CT2 K at a velocity of 1 m/s.

The thin interface limit also results in an anomalous term in the modified Gibbs-Thomson

equation, which for the case r{(j>) =
(f)
can be written in the dimensional form

(Tl + Ts ) — T,M {Lv/cpVcH - VP - -l
' 9TL dTs
Kl “x f ks

dn dn

1

kp

1

ks
(
66

)
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where the last term in this expression depends on the conductivity-weighted temperature

gradient at the interface. This term is a very small correction for metallic systems under

most conditions; for example, using values for lead with a mean temperature gradient of 100

K/cm and £ — 10~' cm gives a correction of roughly 10“ 5 K.

4.4 Scalings of Surface Energy and Kinetics

We now return to the question of the assumed scaling of capillary and kinetics effects in the

classical and thin interface asymptotics for the standard equations. We couch the discussion

in terms of the dimensionless parameters e = t/R, A = £/(6£c ), and r, where we recall that

£ is the interface width, R is a macroscopic length scale, ic = Tmj/[L'v/cp\ is the capillary

length, and r is a dimensionless form of the mobility coefficient M [cf. Eq. (21)] that is

assumed to be of order unity in both analyses. The two asymptotic limits correspond to

e —> 0 with either A = O(e) (the classical analysis) or A = 0(1) (the thin interface analysis).

The gradient energy coefficient K, double well height IT, and mobility coefficient M can be

written in the form

K = 6
L2R2

cpTM A’
W = 6 —

)cpTM )

1

A’
M = ( K,TMcp \ A^

\tL2
vR2

J
?' (67)

In the classical analysis the surface energy and kinetic coefficients have the form

/ L2R \ e
1

(tLvR\ e

\cpTm J A’ p, V 6cPR J A
(
68

)

In the thin interface analysis, 7 also has this form, but 1 /

n

has an additional term as given

by Eq. (56). In the classical analysis with A = 0(e), 7 and l//x scale as 0(1) quantities with

respect to e, the gradient energy coefficient is O(e), the double well height is 0(l/e), and

the mobility is 0(l/e). In the thin interface limit with A = 0(1), 7 tends to zero as O(e),

the gradient energy coefficient tends to zero as 0(e2
), and the double well height scales as

an 0(1) quantity. The interpretation of the kinetic coefficient in this limit is more involved,

since one can arrange that 1/p, = 0 by an appropriate choice of M as given by Eq. (57).
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With this choice, M scales as 0(l/e2
)
which is consistent with the scaling given by Eq. (67)

with A = 0(1). This shows that, in the thin interface limit, the effects of capillarity and

kinetics are assumed to be small corrections in the analysis, as noted in the introduction.

In the context of numerical calculations using a phase-field formulation, the two asymp-

totic analyses suggest different interpretations of a given computation, and different strategies

for the appropriate selection of parameters for a sequence of calculations that are intended

to reproduce a sharp-interface model. With the classical analysis, to converge to a sharp

interface result one should in principle perform a sequence of calculations with t tending to

zero for fixed values of 7 and l//r, so that e and A both tend to zero. By contrast, for the

thin interface analysis, the surface energy and kinetic effects vanish as l tends to zero, and

in principle a single calculation with a fixed (small) value of e is performed, with appropriate

values prescribed for K
,
fE, and M in order to give the desired values of 7 and 1/p, consistent

with the chosen value of e. Performing a convergence study with e tending to zero in the thin

interface limit requires constant reduction of A to preserve given values of surface energy and

kinetics, causing the procedure to revert to the classical analysis in the limit of small e. On

the other hand, lower bounds on the feasible size of e are set by computational constraints

in practise, so convergence studies of this nature have limited applicability.

5 Conclusions

The thin interface asymptotics of Karma and Rappel applied to the standard phase-field

equations for a pure material with unequal thermal conductivities generate anomalous terms

involving a temperature jump across the interface and a contribution from the mean temper-

ature gradient in the modified Gibbs-Thomson equation [1,2]. The temperature discontinuity

can be interpreted as a thermal trapping effect analogous to the solute trapping that occurs

during the rapid solidification of a binary alloy. For metallic systems under typical growth

conditions both anomalous terms are very small, and can be eliminated by employing a

generalized phase-field model that is based on entropy and internal energy gradient energy
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functionals that include double wells in both the internal energy and entropy densities. The

flexibility of the thin interface analysis in eliminating kinetic effects carries over to the case of

unequal thermal conductivities as well, as also noted by Almgren in his isothermal analysis

of this limit. In our approach kinetic effects may be eliminated for conductivity ratios of up

to about 10:1. The use of thin interface asymptotics to eliminate kinetic effects in binary

alloy systems where diffusivities may differ by several orders of magnitude is an area of active

research, where the use of generalized energy-entropy models may play a useful role.
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