
OOMMF User’s Guide, Version 1.0

M. J. Donahue
D. G. Porter

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

100 Bureau Drive

Gaithersburg, MD 20899

GC

100

.U56

NO. 6376

isusr

NISTIR 6376

OOMMF User’s Guide, Version 1.0

M. J. Donahue
D. G. Porter

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

100 Bureau Drive

Gaithersburg, MD 20899

September 1999

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Gary R. Bachula, Acting Under Secretary

for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Director

OOMMF
User’s Guide

September 14, 1999

This manual documents release 1.0.

Abstract

This manual describes OOMMF (Object Oriented Micromagnetic Framework), a

public domain micromagnetics program developed at the National Institute of Stan-

dards and Technology. The program is designed to be portable, flexible, and extensible,

with a user-friendly graphical interface. The code is written in C++ and Tcl/Tk. Tar-

get systems include a wide range of Unix platforms, Windows NT, and Windows 95/98.

Contents

Disclaimer ii

1 Overview of OOMMF 1

2 Installation 3

2.1 Requirements 3

2.2 Basic Installation 4

2.2.1 Download 4

2.2.2 Check Your Platform Configuration 5

2.2.3 Compiling and Linking 8

2.2.4 Installing 9

2.2.5 Using OOMMF Software 9

2.2.6 Reporting Problems 9

2.3 Advanced Installation 9

2.3.1 Reducing Disk Space Usage 10

2.3.2 Other pimake targets 10

2.3.3 Local Customizations 11

2.3.4 Managing OOMMF Platform Names 11

2.3.5 Microsoft Windows Options 13

3 Quick Start: Example OOMMF Session 16

4 OOMMF Architecture Overview 20

5 Command Line Launching 22

6 OOMMF Launcher/Control Interface: mmLaunch 24

7 Micromagnetic Problem Editor: mmProbEd 26

8 Micromagnetic Problem File Source: FileSource 28

9 The 2D Micromagnetic Solver: mmSolve2D 30

10 Data Table Display: mmDataTable 37

11 Data Graph Display: mmGraph 39

l

Disclaimer

This software was developed at the National Institute of Standards and Technology by

employees of the Federal Government in the course of their official duties. Pursuant to Title

17, United States Code, Section 105, this software is not subject to copyright protection and

is in the public domain.

OOMMF is an experimental system. NIST assumes no responsibility whatsoever for

its use by other parties, and makes no guarantees, expressed or implied, about its quality,

reliability, or any other characteristic. We would appreciate acknowledgement if the software

is used.

Commercial equipment and software referred to on these pages is identified for informa-

tional purposes only, and does not imply recommendation of or endorsement by the National

Institute of Standards and Technology, nor does it imply that the products so identified are

necessarily the best available for the purpose.

n

12 Vector Field Display: mmDisp 43

13 Data Archive: mmArchive 52

14 Documentation Viewer: mmHelp 54

15 OOMMF Batch System 56

15.1 Batch solver 56

15.2 Batch scheduler • 59

15.2.1 Batch master and slave specifics 60

15.2.2 Batch task scripts 60

15.2.3 Sample task scripts 62

16

File Formats
16.1 Problem specification format (MIF)

16.2 Data table format (ODT)

16.3 Vector field format (OVF)

16.3.1 The OVF 1.0 format

16.3.2 The OVF 0.0 format

66

66

73

74

75

80

17

Credits 83

iii

1 Overview of OOMMF
The goal of the OOMMF 1 (Object Oriented Micromagnetic Framework) project in the Infor-

mation Technology Laboratory (ITL) at the National Institute of Standards and Technology

(NIST) is to develop a portable, extensible public domain micromagnetic program and asso-

ciated tools. This code will form a completely functional micromagnetics package, but will

also have a well documented, flexible programmer’s interface so that people developing new

code can swap their own code in and out as desired. The main contributors to OOMMF are

Mike Donahue and Don Porter.

In order to allow a programmer not familiar with the code as a whole to add modifications

and new functionality, we feel that an object oriented approach is critical, and have settled

on C++ as a good compromise with respect to availability, functionality, and portability.

In order to allow the code to run on a wide variety of systems, we are writing the interface

and glue code in Tcl/Tk2
. This enables our code to operate across a wide range of Unix

platforms, Windows NT, and Windows 95/98.

The code may actually be modified at 3 distinct levels. At the top level, individual

programs interact via well-defined protocols across network sockets. One may connect these

modules together in various ways from the user interface, and new modules speaking the

same protocol can be transparently added. The second level of modification is at the Tcl/Tk

script level. Some modules allow Tcl/Tk scripts to be imported and executed at run time,

and the top level scripts are relatively easy to modify or replace. At the lowest level, the

C++ source is provided and can be modified, although at present there is no documentation

detailing this process.

The first portion of OOMMF released was a magnetization file display program called

mmDisp. A working release
3 of the complete OOMMF project is now available. This

includes a problem editor, a 2D micromagnetic solver, and several display widgets, including

an updated version of mmDisp. The solver can be controlled by an interactive interface

(Sec. 9), or through a sophisticated batch control system (Sec. 15).

The solver is based on a micromagnetic code that Mike Donahue and Bob McMichael

had previously developed. It utilizes a heavily damped Landau-Lifshitz ODE solver to relax

3D spins on a 2D mesh of square cells, using FFT’s to compute the self-magnetostatic

(demag) field. Anisotropy, applied field, and initial magnetization can be varied pointwise,

and arbitrarily shaped elements can be modeled. We are currently working on a full 3D
version of this code suitable for modeling layered materials.

1
http:/ /math.nist.gov/oommf/

2http://www.scriptics.com/
3http://math.nist.gov/oommf/software.html

1

If you want to receive email notification of updates to this project, register your email

address with the ‘VMag Announcement” mailing list:

http://www.ctcms.nist.gov/~rdm/email-list.html.

2

2 Installation

2.1 Requirements

OOMMF software is written in C++ and Tel. It uses the Tcl-based Tk Windowing Toolkit

to create graphical user interfaces that are portable to many varieties of Unix as well as

Microsoft Windows 95/98/NT.

Tel and Tk must be installed before installing OOMMF. Tel and Tk are available for

free download from Scriptics Corporation4
. We recommend the latest stable versions of Tel

and Tk concurrent with this release of OOMMF. OOMMF requires at least Tel version 7.5

and Tk version 4.1 on Unix platforms, and requires at least Tel version 7.6 and Tk version

4.2 on Microsoft Windows platforms. OOMMF software does not support any alpha or beta

versions of Tcl/Tk, and each release of OOMMF may not work with later releases of Tcl/Tk.

Check the release dates of both OOMMF and Tcl/Tk to ensure compatibility.

A Tcl/Tk installation includes two shell programs. The names of these programs may
vary depending on the Tcl/Tk version and the type of platform. The first shell program

contains an interpreter for the base Tel language. In the OOMMF documentation we refer

to this program as tclsh. The second shell program contains an interpreter for the base

Tel language extended by the Tel commands supplied by the Tk toolkit. In the OOMMF
documentation we refer to this program as wish. Consult your Tcl/Tk documentation to

determine the actual names of these programs on your platform (for example, tclsh80.exe

or wish4.2).

OOMMF applications communicate via TCP/IP network sockets. This means that

OOMMF requires support for networking, even on a stand-alone machine. At a minimum,

OOMMF must be able to access the loopback interface so that the host can talk to itself

using TCP/IP.

The OOMMF source distribution unpacks into a directory tree containing about 400 files

and directories, occupying between 5 and 6 MB of storage. Compiling and linking for each

platform consumes approximately an additional 5 MB of storage. The OOMMF distribution

containing Windows executables unpacks into a directory tree occupying about 8 MB of

storage. Note: On a non-compressed FAT16 file system on a large disk, OOMMF may
take up much more disk space. This is because on such systems, the minimum size of any

file is large, as much as 32 KB. Since this is much larger than many files in the OOMMF
distribution require, a great deal of disk space is wasted.

To build OOMMF software from source code, you will need a C++ compiler capable of

handling C++ templates, as well as other software development utilities for your platform.

4http://www.scriptics.com/

3

We do development and test builds on the following platforms, although porting to others

should not be difficult:

Platform Compilers

AIX
Alpha/Digital UNIX
Alpha/Linux

Alpha/Windows NT
HP-UX
Intel/Linux

Intel/Windows NT, 95, 98

MIPS/IRIX 6 (SGI)

SPARC/Solaris

SPARC/SunOS 4

Gnu gcc

Gnu gcc

Gnu gcc/egcs

Microsoft Visual C++
HP C -

!—h (cfront)

Gnu gcc/egcs

Microsoft Visual C++, Cygwin gcc

MIPSpro C++
Sun Workshop C++, Gnu gcc

Sun Workshop C++, Gnu gcc

2.2 Basic Installation

Follow the instructions in the following sections, in order, to prepare OOMMF software for

use on your computer.

2.2.1 Download

The latest release of the OOMMF software may be retrieved from the OOMMF down-

load page5
. Each release is available in two formats. The first format is a gzipped tar file

containing an archive of all the OOMMF source code. The second format is a .zip com-

pressed archive containing source code and pre-compiled executables for Microsoft Windows
95/98/NT running on an x86-based microprocessor system and compatible with Tcl/Tk ver-

sion 8.0. Other release formats, e.g., pre-compiled executables for Microsoft Windows NT
running on a Digital Alpha Systems RISC-based microprocessor system, and/or compatible

with Tcl/Tk version 8.1 or Tcl/Tk version 7.6/4.2 may be made available on request.

For the first format, unpack the distribution archive using gunzip and tar:

gunzip -c oommf 10b2_ 19990727. tax. gz I tar xvf -

For the other format(s), you will need a utility program to unpack the .zip archive. This

program must preserve the directory structure of the files in the archive, and it must be able

to generate files with names not limited to the traditional MSDOS 8.3 format. Some very

5
http: //math.nist.gov/oommf/software.html

4

old versions of the pkzip utility do not have these properties. One utility program which is

known to work is UnZip6
. Using your utility, unpack the .zip archive, e.g.

unzip oommfl0b2_19990727.zip

For either distribution format, the unpacking sequence creates a subdirectory oommf

which contains all the files and directories of the OOMMF distribution. If a subdirectory

named oommf already existed (say, from an earlier OOMMF release), then files in the new

distribution overwrite those of the same name already on the disk. Some care may be needed

in that circumstance to be sure that the resulting mix of files from an old and a new OOMMF
distribution combine to create a working set of files.

2.2.2 Check Your Platform Configuration

After downloading and unpacking the OOMMF software distribution, all the OOMMF soft-

ware is contained in a subdirectory named oommf. Start a command line interface (a shell

on Unix, or the MS-DOS Prompt on Microsoft Windows), and change the working direc-

tory to the directory oommf. Find the Tel shell program installed as part of your Tcl/Tk

installation. In this manual we call the Tel shell program tclsh, but the actual name of the

executable depends on the release of Tcl/Tk and your platform type. Consult your Tcl/Tk

documentation.

In the root directory of the OOMMF distribution is a file named platform. tel. It

will print a summary of your platform configuration when it is evaluated by tclsh. This

summary describes your platform type, your C+-1- compiler, and your Tcl/Tk installation.

As an example, here is the typical output from platform. t cl on a Linux/Alpha system:

$ tclsh platform. tel

<24537> platform info:

OOMMF release 1.0b2

Platform Name:

C++ compiler:

Tel configuration file:

tclsh:

Tel release:

Tk configuration file:

wish:

Tk release:

1inalp

/usr/bin/gcc

/usr/local/lib/tclConf ig. sh

/usr/local/bin/tclsh8 .

0

8.0.5 (config) 8.0.5 (running)

/usr/local/lib/tkConfig . sh

/usr/local/bin/wish8 .

0

8.0.5 (config) 8.0.5 (running)

6http://www.cdrom.com/pub/infozip/UnZip.html

5

If platform. tel doesn’t print a summary like that, it should instead print an error

message describing why it can’t. For example, if your Tel installation is older than release

7.5, the error message will report that fact. Follow whatever instructions are provided to get

platform. tel to print a summary of platform configuration information.

The first line of the example summary reports that OOMMF recognizes the platform

by the name linalp. OOMMF software recognizes many of the most popular computing

platforms, and assigns each a platform name. The platform name is used by OOMMF in

index and configuration files and to name directories so that a single OOMMF installation

can support multiple platform types. If platform. tel reports the platform name to be

“unknown”, then you will need to add some configuration files to help OOMMF assign a

name to your platform type, and associate with that name some of the key features of your

computer. See the section on “Managing OOMMF platform names” (Sec. 2.3.4) for further

instructions.

The second line reports what C++ compiler will be used to build OOMMF from its

C++ source code. If you downloaded an OOMMF release with pre-compiled binaries for

your platform, you may ignore this line. Otherwise, if this line reports “none selected”, or if

it reports a compiler other than the one you wish to use, then you will need to tell OOMMF
what compiler to use. The compiler selection for the example above is recorded in the file

config/cache/linalp.tcl. To change the compiler selection, that file must be edited.

Editing instructions are contained within the file. Of course, on other platforms the name

linalp in linalp. tel should be replaced with the platform name OOMMF reports for your

platform. For example, on a Windows machine using an x86 processor, the corresponding

configuration file is wintel.tcl.

The next three lines describe the Tel configuration OOMMF finds on your platform. The

first line reports the name of the configuration file installed as part of Tel, if any. Conven-

tional Tel installations on Unix systems and within the Cygwin environment on Windows
have such a file, usually named tclConfig.sh. The Tel configuration file records details

about how Tel was built and where it was installed. On Windows platforms, this informa-

tion is recorded in the Windows registry, so it is normal to have platform. tel report “none

found”. If platform. t cl reports “none found”, but you know that an appropriate Tel con-

figuration file is present on your system, you can tell OOMMF where to find the file by setting

the environment variable OOMMF_TCL_CONFIG to its absolute location. (For information

about setting environment variables, see your operating system documentation.) In unusual

circumstances, OOMMF may find a Tel configuration file which doesn’t correctly describe

your Tel installation. In that case, use the environment variable OOMMF_TCL_CONFIG
to instruct OOMMF to use a different file that you specify, and edit that file to include a

correct description of your Tel installation.

The second line describing your Tel installation reports the absolute pathname of the

6

tclsh program. If this differs from the tclsh you used to evaluate platform.tcl, there

may be something wrong with your Tel configuration file. Note that the same tclsh pro-

gram might be known by several absolute pathnames if there are symbolic links in your Tel

installation. If platform.tcl reports that it cannot find a tclsh program, yet you know

where an appropriate one is installed on your system, you can tell OOMMF where to find

the tclsh program by setting the environment variable OOMMF.TCLSH to its absolute

location.

The third line describing your Tel installation reports its release number according to

two sources. First is the release number recorded in the Tel configuration file. Second is the

release number of the tclsh program used to evaluate platform.tcl. If these numbers do

not match, it may indicate something is wrong with your Tel configuration file. If you have

multiple releases of Tel installed under a common root directory on your computer, there

can be only one Tel configuration file. It is important that you use the Tel release that

corresponds to the Tel configuration file.

The next three lines describe the Tk configuration OOMMF finds on your platform. They

are analogous to the three lines describing the Tel configuration. The environment variables

OOMMF_TK_CONFIG and OOMMF.WISH may be used to tell OOMMF where to find the

Tk configuration file and the wish program, respectively.

If platform. tel indicates problems with your Tcl/Tk installation, it may be easiest

to re-install Tcl/Tk taking care to perform a conventional installation. OOMMF deals

best with conventional Tcl/Tk installations. If you do not have the power to re-install an

existing broken Tcl/Tk installation (perhaps you are not the sysadmin of your machine),

you might still install your own copy of Tcl/Tk in your own user space. In that case, if your

private Tcl/Tk installation makes use of shared libraries, take care that you do whatever is

necessary on your platform to be sure that your private tclsh and wish find and use your

private shared libraries instead of those from the system Tcl/Tk installation. This might

involve setting an environment variable (such as LDJLIBRARY_PATH). If you use a private

Tcl/Tk installation, you also want to be sure that there are no environment variables like

TCLJLIBRARY or TK_LIBRARY that still refer to the system Tcl/Tk installation.

Other Configuration Issues If you plan to compile and link OOMMF software from

source code, be sure the C++ compiler reported by platform.tcl is properly configured.

In particular, the Microsoft Visual C++ command line compiler, cl.exe, may require the

running of vcvars32 . bat to set up the path and some environment variables. This file is

distributed as part of Visual C++. See your compiler documentation for details.

A few other configurations should be checked on Windows platforms. First, OOMMF
software needs networking support that recognizes the host name localhost. It may be

7

necessary to edit a file which records that localhost is a synonym for the loopback interface

(127.0.0.1). If a file named hosts exists in your system area (for example, C:\Windows\hosts),

be sure it includes an entry mapping 127.0.0.1 to localhost. If no hosts file exists, but a

hosts. sam file exists, make a copy of hosts. sam with the name hosts, and edit the copy

to have the localhost entry.

Second, in recent releases of Tcl/Tk (version 8.0.3 and later) the directory which holds

the tclsh and wish programs also holds several *.dll files that OOMMF software needs

to find to run properly. Normally when the OOMMF bootstrap application (Sec. 5) or

mmLaunch (Sec. 6) is used to launch OOMMF programs, they take care of making sure

the necessary *.dll files can be found. As an additional measure, you might want to add

the directory which holds the tclsh and wish programs to the list of directories stored in

the PATH environment variable. All the directories in the PATH are searched for * . dll files

needed when starting an executable.

2.2.3 Compiling and Linking

If you downloaded a distribution with pre-compiled executables, you may skip this section.

The compiling and linking of the C++ portions of OOMMF software are guided by

the application pimake (“Platform Independent Make”) which is distributed as part of the

OOMMF release (in the directory app/pimake/). pimake is similar in operation to the Unix

utility program make, but it is written entirely in Tel so that it will run anywhere Tel is

installed. Just as make is controlled by rules in files named Makefile or makefile, pimake

is controlled by rules in files named makerules .tel. pimake takes an optional argument on

its command line which names the target to build.

If a previous OOMMF distribution has been compiled and linked from the same root

directory, build the target distclean with pimake to clear away any executables and object

files left behind from the compilation of the previous distribution:

tclsh app/pimake/pimake .tel distclean

In particular, this is required when installing a new version of OOMMF on top of an existing

OOMMF distribution.

To build all the OOMMF software, run pimake in the root directory of the OOMMF
distribution.

tclsh app/pimake/pimake. t cl

Note that on some platforms, you cannot successfully compile OOMMF software if there are

OOMMF programs running. Check that all OOMMF programs have terminated (including

those in the background) before trying to compile and link OOMMF.

8

When pimake calls on a compiler or other software development utility, the command line

is printed, so that you may monitor the build process. Assuming a proper configuration for

your platform, pimake should be able to compile and link all the OOMMF software without

error. If pimake reports errors, please send both the complete output from pimake and the

output from platform. tel to the OOMMF developers.

2.2.4 Installing

The current OOMMF release does not support an installation procedure. For now, simply

run the executables from the directories in which they were unpacked/built.

2.2.5 Using OOMMF Software

To start using OOMMF software, run the OOMMF bootstrap application (Sec. 5). This

may be launched from the command line interface:

tclsh app/oommf/oommf .tel

If you prefer, you may launch the OOMMF bootstrap application app/oommf/oommf .tel

using whatever graphical “point and click” interface your operating system provides. By

default, the OOMMF bootstrap application will start up a copy of the OOMMF application

mmLaunch (Sec. 6) in a new window.

2.2.6 Reporting Problems

The OOMMF developers rely on reports from OOMMF users to alert them to problems with

the software and its documentation, and to guide the selection and implementation of new

features. To contact the OOMMF developers, send e-mail to <michael . donahueOnist
.
gov>.

The more complete your report, the fewer followup messages will be required to determine

the cause of your problem. Usually when a problem arises there is an error message produced

by the OOMMF software. A stack trace may be offered that reveals more detail about

the error. When reporting an error, it will help the developers diagnose the problem if

users cut and paste into their problem report the error message and stack trace exactly as

reported by OOMMF software. In addition, please include a copy of the output generated

by platform. tel so that the OOMMF developers will know the details of your platform

configuration.

2.3 Advanced Installation

The following sections provide instructions for some additional installation options.

9

2.3.1 Reducing Disk Space Usage

To delete the intermediate files created when building the OOMMF software from source

code, use pimake to build the target obj clean in the root directory of the OOMMF distri-

bution.

tclsh app/pimake/pimake . tel obj clean

Running the strip utility on the OOMMF executable files should also reduce their size

somewhat.

2.3.2 Other pimake targets

The pimake application guides the building of OOMMF software according to the rules

recorded in makerules . tel files. There are several targets which may be used as arguments

to pimake to achieve different tasks. When no target is supplied to pimake on the command
line, the first target in the local makerules .tel file is built, which is usually the target all.

Each target builds in the current directory and all subdirectories. The conventional targets

are:

• all Creates all files created by the configure target (see below). Compiles and links

all the OOMMF executables and libraries. Constructs all index files.

• configure Creates subdirectories with the same name as the platform type. Constructs

a port .h file which includes C++ header information specific to the platform.

• objclean Removes the intermediate object files created by the compile and link steps.

Leaves working executables in place. Leaves OOMMF in the state of its distribution

with pre-compiled executables.

• clean Removes the files removed by the objclean target. Also removes the executables

and libraries created by the all target. Leaves the files generated by the configure

target.

• distclean Removes the files removed by the clean target. Also removes all files and

directories generated by configure target. Leaves only the files which are part of the

source code distribution.

10

2.3.3 Local Customizations

OOMMF software supports local customization of some of its features. All OOMMF pro-

grams load the file conf ig/options .tel, which contains customization commands as well

as editing instructions. As it is distributed, conf ig/options .tel directs those programs

that load it to also load the file config/local/options .tel, if it exists. Because future

OOMMF releases may overwrite the file conf ig/options .tel, permanent customizations

should be made by copying conf ig/options .tel to conf ig/local/options .tel and edit-

ing the copy. It is recommended that you leave in the file conf ig/local/options .tel only

the customization commands necessary to change those options you wish to modify. Remove

all other options so that overwrites by subsequent OOMMF releases are allowed to change

the default behavior.

Notable available customizations include the choice of which network port the host service

directory application (Sec. 4) uses, and the choice of what program is used for the display of

help documentation. By default, OOMMF software uses the application mmHelp (Sec. 14),

which is included in the OOMMF release, but the help documentation files are standard

HTML, so any web browser (for example, Netscape Navigator or Microsoft Internet Explorer)

may be used instead. Complete instructions are in the file conf ig/options .tel.

2.3.4 Managing OOMMF Platform Names

OOMMF software classifies computing platforms into different types using the scripts in the

directory config/names relative to the root directory of the OOMMF distribution. Each

type of computing platform is assigned a unique name. These names are used as directory

names and in index and configuration files so that a single OOMMF installation may contain

platform-dependent sections for many different types of computing platforms.

To learn what name OOMMF software uses to refer to your computing platform, run the

Tel script platform. tel in the OOMMF root directory.

Changing the name OOMMF assigns to your platform First, use pimake to build

the target distclean to clear away any compiled executables built using the old platform

name.

tclsh app/pimake/pimake . tel distclean

Then, to change the name OOMMF software uses to describe your platform from foo to

bar, simply rename the file

config/names/foo .tel to config/names/bar .tel

11

and

config/cache/foo .tel to config/cache/bar .tel.

After renaming your platform type, you should recompile your executables using the new

platform name.

Adding a new platform type If the script platform. tel reports the platform name
unknown, then none of the scripts in config/names/ recognizes your platform type. As an

example, to add the platform name foo to OOMMF’s vocabulary of platform names, create

the file config/names/foo .tel. The simplest way to proceed is to copy an existing file in

the directory conf ig/names and edit it to recognize your platform.

The files in conf ig/names include Tel code like this:

Oc_Config New _ \

[string tolower [file rootname [file tail [info script]]]] {

In this block place the body of a Tel proc which returns 1

if the machine on which the proc is executed is of the

platform type identified by this file, and which returns 0

otherwise.

#

The usual Tel language mechanism for discovering details

about the machine on which the proc is running is to

consult the global Tel variable ’^^platform* . See the

existing files for examples, or contact the OOMMF

developers for further assistance.

>

After creating the new platform name file config/names/foo.tcl, you also need to

create a new platform cache file config/cache/foo .tel. A reasonable starting point is to

copy the file conf ig/cache/unknown.tcl for editing. Contact the OOMMF developers for

assistance.

Please consider contributing your new platform recognition and configuration files to the

OOMMF developers for inclusion in future releases of OOMMF software.

Resolving platform name conflicts If the script platform. tel reports “Multiple plat-

form names are compatible with your computer”
,
then there are multiple files in the directory

conf ig/names/ that return 1 when run on your computer. For each compatible platform

12

name reported, edit the corresponding file in conf ig/names/ so that only one of them re-

turns 1. Experimenting using tclsh to probe the Tel variable tcl.platform should assist

you in this task. If that fails, you can explicitly assign a platform type corresponding to your

computing platform by matching its hostname. For example, if your machine’s host name is

foo.bar.net:

Oc.Config New _ \

[string tolower [file rootname [file tail [info script]]]] {

if {[string match foo.bcar.net [info hostname]]} {

return 1

}

Continue with other tests...

}

Contact the OOMMF developers if you need further assistance.

2.3.5 Microsoft Windows Options

This section lists installation options for Microsoft Windows.

Adding an OOMMF shortcut to your desktop Right mouse click on the desktop

to bring up the configuration dialog, and select New
I
Shortcut. Enter the command line

necessary to bring up OOMMF, e.g.,

tclsh80 c:\oommf\app\oommf\oommf.tcl

Click Next> and enter OOMMF for the shortcut name. Select Finish.

At this point the shortcut will appear on your desktop with either the tclsh or wish icons.

Right mouse click on the icon and select Properties. Select the ShortCut tab, and bring up

Change Icon. . . Under File Name: enter the OOMMF icon file, e.g.,

C : \oommf\app\oommf\oommf . ico

Click OK. Back on the Shortcut tab, change the Run: selection to Minimized. Click OK
to exit the Properties dialog box. Double clicking on the OOMMF icon should now bring

up the OOMMF application mmLaunch.

13

Using the Cygwin toolkit The Cygwin Project 7
is a free port of the GNU development

environment to Windows NT, 95, and 98, which includes the GNU C++ compiler gcc and

a port of Tcl/Tk. OOMMF has been tested against the Beta 20.1 release of Cygwin, and

sample conf ig/names/cygtel . tel and conf ig/cache/cygtel .tel files are included in the

OOMMF distribution. Use the cygtclsh80.exe program as your tclsh program when

configuring, building, and launching OOMMF software.

Note that OOMMF software determines whether it is running with the Cygwin versions of

Tcl/Tk by examining the environment variable TERM. If TERM is set to the value cygwin,

the Cygwin environment is assumed. If you are using the Cygwin environment, and you set

the TERM environment variable to something else, OOMMF software will be confused.

Setting the TCL_LIBRARY environment variable If you encounter difficulties dur-

ing OOMMF start up, you may need to set the environment variable TCL_LIBRARY.

On Windows NT Bring up the Control Panel (e.g., by selecting Settings I Control

Panel off the Start menu), and select System. Go to the Environment tab, and enter

TCLJLIBRARY as the Variable, and the name of the directory containing init .tel for the

Value, e.g.,

7oSystemDrive
4

/o\Program Files\Tcl\lib\tcl8.

0

Click Set and OK to finish.

On Windows 95/98 Edit the file autoexec.bat. Add a line such as the following:

set TCL_LIBRARY=C:\Program Files\Tcl\lib\tcl8.0

Checking .tel file association on Windows NT As part of the Tcl/Tk installation,

files with the .tel extension are normally associated with the wish application. This allows

Tel scripts to be launched from Windows Explorer by double-clicking on their icon, or from

the NT command line without specifying the tclsh or wish shells. If this is not working,

you may check your installation from the NT command line as follows. First, run the

command assoc .tel. This should return the file type associated with the .tel extension,

e.g., TclScript. Next, use the ftype command to check the command line associated with

that file type, e.g.,

C:\> ftype TclScript

"C:\Program Files\Tcl\bin\wish80.exe" "7.1" 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9

7
http: //sourcewaxe.cygnus.com/cygwin/

14

3 Quick Start: Example OOMMF Session

STEP 1: Start up the mmLaunch window.

• At the command prompt, when you are in the OOMMF root directory, type

tclsh app/oommf/oommf .tel

(The name of the Tel shell, rendered here as tclsh, may vary between systems. This

matter is discussed in Sec. 2.1.) Alternatively, you may launch app/oommf/oommf .tcl

using whatever “point and click” interface is provided by your operating system.

• This will bring up a small window labeled mmLaunch. It will come up in background

mode, so you may get another prompt in your original window, even before the mm-
Launch window appears.

STEP 2: Gain access to other useful windows.

• On mmLaunch window, check the localhost box, causing a menu of user account boxes

to appear. Then check the box corresponding to the account you want to compute on.

This gives a menu of options:

- mmProbEd: to grab/modify a problem

- mmSolve2D: to control the solver

- mmDisp: to display vector fields

- mmGraph: to form x-y plots

- mmDataTable: to display current values of variables

- mmArchive: to auto-save vector field data (primitive)

• Click on mmDisp, mmGraph, and/or mmDataTable, depending on what form of

output you want.

STEP 3: Load a problem.

• On mmLaunch window, click on the mmProbEd button.

• On mmProbEd window, make menu selection File I Open. . . A Load MIF File dialog

window will appear.

• On this window:

- Double click in the Path subwindow to change directories. Several sample problems

can be found in the directory oommf/app/mmpe/examples.

16

- To load a problem, double click on a *.mif file (e.g., probl.mif) from the list above

the Filter: subwindow.

— Modify the problem as desired by clicking on buttons from the main mmProbEd
window (e.g., Material Parameters), and fill out the pop-up forms. A completely

new problem may be defined this way.

STEP 4: Initialize the solver.

• On mmLaunch window, click on the mmSolve2D button to launch an instance of the

program mmSolve2D.

• Wait for the new solver instance to appear in the Threads column in the mmLaunch
window.

• Check the box next to the mmSolve2D entry in the Threads column. A window

containing an mmSolve2D interface will appear.

• On mmSolve2D window:

- Check Problem Description under Inputs.

- Check mmProbEd under Source Threads.

- Click LoadProblem.

- Wait for more buttons to appear.

- Check Scheduled Outputs.

- For each desired output (TotalField, Magnetization, and/or DataTable), specify

the frequency of update:

* Check desired output. This will exhibit the possible output destinations in

Destination Threads.

* Check the box next to the desired Destination Thread. This will exhibit Sched-

ule options.

* Choose a schedule:

• Iteration: fill in number and check the box.

• Equilibrium: fill in number and check the box.

• Interactive: whenever you click corresponding Interactive output button.

STEP 5: Start the calculation.

• On the mmSolve2D window, start the calculation with Run or Relax.

17

• If you requested mmDataTable output, check the boxes for the desired quantities on the

mmDataTable window under the Data menu, so that they appear and are updated

as requested in your schedule.

• Similarly, check the box for the desired X-Axis and Y-Axis variables on the mmGraph
window(s) under the X-Axis and Y-Axis menus.

STEP 6: Saving results.

• Vector field data (magnetization and effective field) may be interactively written to disk

using mmDisp, or may be automatically saved via scheduled output to mmArchive.
For example, to save each equilibrium magnetization state, start up an instance of

mmArchive and select the Equilibrium check box for mmArchive on the Magne-
tization schedule in the solver. This may be done before starting the calculation.

• DataTable data may be saved using mmGraph. Schedule output from the solver to

mmGraph as desired, and use either the interactive or automated save functionality of

mmGraph (Sec. 11). You can setup the solver data scheduling before the calculation is

started, but must wait for the first data point to configure mmGraph before saving any

data. As a workaround, you may configure mmGraph by sending it the initial solver

state interactively, and then use the Options I clear Data menu item in mmGraph to

remove the initializing data point. Alternatively, you may send scheduled output from

the solver to mmArchive, which will automatically save all the data it receives.

STEP 7: Perform midcourse controls as desired.

• On the mmSolve2D window, buttons can stop and restart the calculation:

- Reset: Return to beginning of problem.

- LoadProblem: Restart with a new problem.

- Run: Apply a sequence of fields until all complete.

- Relax: Apply a single field and run the ODE to equilibrium.

- Pause: Click anytime to stop the solver. Restart with Run or Relax.

- Field-: Apply the previous field again.

- Field+: Apply the next field in the list.

• Output options can be changed and new output windows opened.

STEP 8: Exit OOMMF.

• On the mmSolve2D window, terminate the simulation with Exit.

18

• Terminate each mmArchive instance by hitting the Exit button in its user interface

window.

• Use the File I Exit menu on each remaining window to exit.

19

4 OOMMF Architecture Overview

Before describing each of the applications which comprise the OOMMF software, it is helpful

to understand how these applications work together. OOMMF is not structured as a single

program. Instead it is a collection of programs, each specializing in some task needed as

part of a micromagnetic simulation system. An advantage of this modular architecture is

that each program may be improved or even replaced without a need to redesign the entire

system. Because the state of the art in micromagnetic simulation is continuing to evolve,

this flexibility is essential for the longevity of a micromagnetic simulation system.

The OOMMF programs work together by providing services to one another. The pro-

grams communicate over Internet (TCP/IP) connections, even when the programs are run-

ning on a common host. An advantage of this design is that distributed operation ofOOMMF
programs over a networked collection of hosts is supported in the basic design, and will be

available in a future release.

When two OOMMF applications are in the relationship that one is requesting a service

from the other, it is convenient to introduce some clarifying terminology. Let us refer to

the application that is providing a service as the “server application” and the application

requesting the service as the “client application.” Note that a single application can be both

a server application in one service relationship and a client application in another service

relationship.

Each server application provides its services on a particular Internet port, and needs to

inform potential client applications how to obtain its service. Each client application needs

to be able to look up possible providers of the service it needs. The intermediary which

brings server applications and client applications together is another application called the

“account service directory.” There may be at most one account service directory application

running under the user ID of each user account on a host. Each account service directory

keeps track of all the services provided by OOMMF server applications running under its

user account on its host and the corresponding Internet ports at which those services may be

obtained. OOMMF server applications register their services with the corresponding account

service directory application. OOMMF client applications look up service providers running

under a particular user ID in the corresponding account server directory application.

The account service directory applications simplify the problem of matching servers and

clients, but they do not completely solve it. OOMMF applications still need a mechanism

to find out how to obtain the service of the account service directory applications! Another

application, called the “host service directory” serves this function. Only one copy of the

host service directory application runs on each host. Its sole purpose is to tell OOMMF
applications where to obtain the services of account service directories on that host. Because

only one copy of this application runs per host, it can provide its service on a well-known

20

port which is configured into the OOMMF software. By default, this is port 15136. OOMMF
software can be customized (Sec. 2.3.3) to use a different port number.

The account service directory applications perform another task as well. They launch

other programs under the user ID for which they manage service registration. The user

controls the launching of programs through the interface provided by the application mm-
Launch (See Sec. 6), but it is the account service directory application that actually spawns

a subprocess for the new application. Because of this architecture, most OOMMF applica-

tions are launched as child processes of an account service directory application. These child

processes inherit their environment from their parent account service directory application,

including their working directory, and other key environment variables, such as DISPLAY.

Each account service directory application sets its working directory to the root directory

of the OOMMF distribution. Future releases of OOMMF software will likely be based on a

revised architecture which alleviates these restrictions.

These service directory applications are vitally important to the operation of the total

OOMMF micromagnetic simulation system. However, it would be easy to overlook them.

They act entirely “behind the scenes” without a user interface window. Furthermore, they

are never launched by the user. When any server application needs to register its service, if

it finds that these service directory applications are not running, it launches new copies of

them. In this way the user can be sure that if any OOMMF server applications are running,

then so are the service directory applications needed to direct clients to its service. After all

server applications terminate, and there are no longer any services registered with a service

directory application, it will terminate after a timeout expires.

In the sections which follow, the OOMMF applications are described in terms of the

services they provide and the services they require.

21

5 Command Line Launching

Some of the OOMMF applications are platform-independent Tel scripts. Some of them

are Tel scripts that require special platform-dependent interpreters. Others are platform-

dependent, compiled C++ applications. It is likely that some of them will change status in

later releases ofOOMMF. Each of these types of application requires a different command line

for launching. Rather than require all OOMMF users to manage this complexity, we provide

a pair of programs that provide simplified interfaces for launching OOMMF applications.

The first of these is used to launch OOMMF applications from the command line. Because

its function is only to start another program, we refer to this program as the “bootstrap

application.” The bootstrap application is the Tel script app/oommf/oommf .tel. In its

simplest usage, it takes a single argument on the command line, the name of the application

to launch. For example, to launch mmGraph (Sec. 11), the command line is:

tclsh app/oommf /oominf .t cl mmGraph

The search for an application matching the name is case-insensitive. (Here, as elsewhere in

this document, the current working directory is assumed to be the OOMMF root directory.

For other cases, adjust the pathname as appropriate.) As discussed in Sec. 2.1, the name of

the Tel shell, rendered here as tclsh, may vary between systems.

If no command line arguments are passed to the bootstrap application, by default it will

launch the application mmLaunch (Sec. 6).

Some of the OOMMF applications take optional arguments when launched from the

command line. Any command line arguments to the bootstrap application placed after the

application name will be passed as command line arguments to the named application. For

example, most applications support a -console option, which will bring up an additional

window providing a command line interface into the application’s Tel interpreter. (The

console is mainly used for debugging.)

The bootstrap application also supports some more complicated, more rarely used pro-

cessing of its command line arguments. By default, the bootstrap application launches the

named application in the background and exits. If the first argument to the bootstrap pro-

gram is the option -nofork, however, the bootstrap program will block until the application

it launches (now named in the second command line argument) exits.

If the argument following the application name looks like a version number (containing

only digits and dots), then the bootstrap application will interpret it as the minimum version

of the named application to launch. If no application satisfying the version requirement can

be found, the bootstrap application will report an error.

The bootstrap application should be infrequently used by most users. The application

mmLaunch (Sec. 6) provides a more convenient graphical interface for launching applica-

22

tions. The main uses for the bootstrap application are launching mmLaunch, launching

programs which make up the OOMMF Batch System (Sec. 15) and other programs which

are inherently command line driven, and in circumstances where the user wishes to precisely

control the command line arguments passed to an OOMMF application or the environment

in which an OOMMF application runs.

Platform Issues

The Tel script app/oommf/oommf .tel begins with the lines:

#!/bin/sh

\

exec tclsh "$0"

On most Unix platforms, if app/oommf/oommf .tel is marked executable, the interpreter

tclsh (on the execution path) will be invoked to interpret the script. If the Tel shell

program cannot be invoked by the name tclsh on your computer, edit the first lines of

app/oommf/oommf .tel to use the proper name. Better still, use symbolic links or some

other means to make the Tel shell program available by the name tclsh. The latter solution

will not be undone by file overwrites from OOMMF upgrades.

If in addition, the directory app/oommf is in the execution path, the command line can

be as simple as:

oommf .tel <appName>

On Windows platforms, because app/oommf/oommf .t cl has the file extension .tel, it

is normally associated by Windows with the wish interpreter. The oommf .tel script has

been specially written so that either tclsh or wish is a suitable interpreter. This means

that simply double-clicking on an icon associated with the file app/oommf/oommf .tel (say,

in Windows Explorer) will launch the bootstrap application with no arguments. This will

result in the default behavior of launching the application mmLaunch, which is suitable

for launching other OOMMF applications. (If this doesn’t work, refer back to the Windows
Options section in the installation instructions, Sec. 2.3.5.)

23

6 OOMMF Launcher/Control Interface: mmLaunch

Overview

The application mmLaunch launches, monitors, and controls other OOMMF applications.

It is the OOMMF application that is most closely connected to the account service directory

and host service directory applications that run behind the scenes. It also provides user

interfaces to any applications, notably mmSolve2D (Sec. 9), that do not have their own
user interface window.

Launching

mmLaunch should be launched using the bootstrap application (Sec. 5). The command
line is

tclsh app/oommf/oommf . tel mmLaunch [-console]

Controls

Upon startup, mmLaunch displays a panel of checkbuttons, one for each host service

directory to which it is connected. In the current release of OOMMF there is only one

checkbutton

—

localhost. Future releases of mmLaunch will be able to connect to remote

24

hosts as well. If there is no host service directory running on the localhost when mm-
Launch is launched, mmLaunch will start one. In that circumstance, there may be some

delay before the localhost check button appears.

Toggling the localhost checkbutton toggles the display of an interface to the host service

directory. The host service directory interface consists of a row of checkbuttons, one for each

account service directory registered with the host service directory. Each checkbutton is

labeled with the user ID of the corresponding account service directory. For most users, there

will be only one checkbutton, labeled with the user’s own account ID, except on Windows,

where the dummy account ID oommf is displayed instead. If there is no account service

directory running for the account under which mmLaunch was launched, mmLaunch will

start one. In that circumstance, there may be some delay before the account checkbutton

appears.

Toggling an account checkbutton toggles the display of an interface to the corresponding

account service directory. The account service directory interface consists of two columns.

The Programs column contains buttons labeled with the names of OOMMF applications

that may be launched under the account managed by this account service directory. Clicking

on one of these buttons launches the corresponding application. Only one click is needed,

though there will be some delay before the launched application displays a window to the

user. Multiple clicks will launch multiple copies of the application. Note: The launching is

actually handled by the account service directory application (Sec. 4), which sets the initial

working directory to the OOMMF root directory.

The Threads column is a list of all the OOMMF applications currently running under

the account that are registered with the account service directory. The list includes both

the application name and an ID number by which multiple copies of the same application

may be distinguished. This ID number is also displayed in the title bar of the corresponding

application’s user interface window. When an application exits, its entry is automatically

removed from the Threads list.

Any of the running applications that do not provide their own interface window will be

displayed in the Threads list with a checkbutton. The checkbutton toggles the display of

an interface which mmLaunch provides on behalf of that application. The only OOMMF
applications currently using this service are mmSolve2D (Sec. 9), mmArchive (Sec. 13),

and batchsolve (Sec. 15.1). These interfaces are described in the documentation for the

corresponding applications.

The menu selection File I Exit terminates the mmLaunch application. The menu Help

provides the usual help facilities.

25

7 Micromagnetic Problem Editor: mmProbEd

Overview

The application mmProbEd provides a user interface for creating and editing micromag-

netic problem descriptions in the Micromagnetic Input Format (MIF) (Sec. 16.1). mm-
ProbEd also acts as a server, supplying problem descriptions to running micromagnetic

solvers.

Launching

mmProbEd may be started either by selecting the mmProbEd button on mmLaunch, or

from the command line via

tclsh app/oommf/oommf .tel mmProbEd [-console]

Inputs

The menu selection File I Open... displays a dialog box for selecting a file from which to load

a MIF problem description. Several example files are included in the OOMMF release in

the directory app/mmpe/examples. At startup, mmProbEd loads the problem contained in

app/mmpe/init .mif as an initial problem. Note: When loading a file, mmProbEd discards

26

comments and records it does not understand. Use the FileSource application (Sec.8) to

serve unmodified problem descriptions.

Outputs

The menu selection File I Save as... displays a dialog box for selecting/entering a file in which

the problem description currently held by mmProbEd is to be saved. Because the internal

data format use by mmProbEd is an unordered array that does not include comments (or

unrecognized records), the simple operation of reading in a MIF file and then writing it back

out may alter the file.

Each instance of mmProbEd contains exactly one problem description at a time. Each

also services requests from client applications (typically solvers) for the problem description

it contains.

Controls

The main panel in the mmProbEd window contains buttons corresponding to the sections

in a MIF problem description. Selecting a button brings up another window through which

the contents of that section of a problem description may be edited. The MIF sections and

the elements they contain are described in detail in the MIF (Sec. 16.1) documentation.

Only one editing window is displayed at a time. The windows may be navigated in order

using their Next or Previous buttons.

The menu selection File I Exit terminates the mmProbEd application. The menu Help

provides the usual help facilities.

27

8 Micromagnetic Problem File Source: FileSource

Overview

The application FileSource provides the same service as mmProbEd (Sec. 7), supplying

a MIF description of a micromagnetic problem to a solver. As the MIF specification evolves,

mmProbEd may lag behind. There may be new fields in the MIF specification that mm-
ProbEd is not capable of editing, or which mmProbEd may not pass on to solvers after

loading them in from a file. To make use of such fields, a MIF file may need to be edited “by

hand” using a general purpose text editor. FileSource may then be used to supply the MIF
problem description contained in a file to a solver without danger of corrupting its contents.

Launching

FileSource must be launched from the command line. You may specify on the command
line the MIF problem description file it should serve to client applications. The command
line is

tclsh app/oommf/oommf .tel FileSource [<filename>] [-console]

Although FileSource does not appear on the list of Programs that mmLaunch offers

to launch, running copies do appear on the list of Threads since they do provide a service

registered with the account service directory.

Inputs

FileSource takes its MIF problem description from the file named on the command line,

or from a file selected through the File
I Open dialog box. No checking of the file contents

against the MIF specification is performed. The file contents are passed uncritically to any

client application requesting a problem description. Those client applications should raise

errors when presented with invalid problem descriptions.

28

Outputs

Each instance of FileSource provides the contents of exactly one file at a time. The file

name is displayed in the FileSource window to help the user associate each instance of

FileSource with the data file it provides. Each instance of FileSource accepts and services

requests from client applications (typically solvers) for the contents of the file it exports.

The contents of the file are read at the time of the client request, so if the contents of

a file change between the time of the FileSource file selection and the arrival of a request

from a client, the new contents will be served to the client application.

Controls

The menu selection File I Exit terminates the FileSource application. The Help menu pro-

vides the usual help facilities.

29

9 The 2D Micromagnetic Solver: mmSolve2D

Overview

The application mmSolve2D is a micromagnetic computation engine capable of solving

problems defined on two-dimensional square grids of three-dimensional spins. Within the

OOMMF architecture (see Sec. 4), mmSolve2D is both a server and a client application.

mmSolve2D is a client of problem description server applications, data table display and
storage applications, and vector field display and storage applications. mmSolve2D is the
server of a solver control service for which the only client is mmLaimch (Sec. 6). It is

through this service that mmLaunch provides a user interface window (shown above) on
behalf of mmSolve2D.

Launching

mmSolve2D may be started either by selecting the mmSolve2D button on mmLaunch, or

from the command line via

tclsh app/oommf/oommf .tel mmSolve2D [-console] [-tk|-notk]

The command line options -tk and -notk determine whether or not mmSolve2D has its

own window. By default it does not (-notk). With no window, an instance of mmSolve2D
may keep running while a window system goes down and comes back up again (on some
platforms). This is useful since a single instance of mmSolve2D may need to run for hours
or days at a time to solve one problem. When mmSolve2D does have a window (-tk),

30

it does not place anything in its window, nor does it even display its window. The only

effects of the presence of the window are that any error messages will be displayed in pop-

up windows, that the -console option becomes available for displaying a console window in

which interactive Tel commands may be typed, and that (on some platforms) the termination

of the windowing system will terminate the program. Running mmSolve2D with the -tk

option is generally useful only for debugging.

Since mmSolve2D does not present any user interface window of its own, it depends on

mmLaunch to provide an interface on its behalf. The entry for an instance of mmSolve2D
in the Threads column of any running copy of mmLaunch has a checkbutton next to it.

This button toggles the presence of a user interface window through which the user may
control that instance of mmSolve2D. The user interface window is divided into panels,

providing user interfaces to the Inputs, Outputs, and Controls of mmSolve2D.

Inputs

The top panel of the user interface window may be opened and closed by toggling the

Inputs checkbutton. When open, the Inputs panel reveals two subpanels. The left subpanel

contains a list of the inputs required by mmSolve2D. There is only one item in the list:

Problem Description. When ProblemDescription is selected, the right subpanel (labeled

Source Threads) displays a list of applications that can supply a problem description. The

user selects from among the listed applications the one from which mmSolve2D should

request a problem description.

Outputs

When mmSolve2D has outputs available to be controlled, a Scheduled Outputs check-

button appears in the user interface window. Toggling the Scheduled Outputs checkbutton

causes a bottom panel to open and close in the user interface window. When open, the

Scheduled Outputs panel contains three subpanels. The Outputs subpanel is filled with a

list of the types of output mmSolve2D can generate while solving the loaded problem. The

three elements in this list are TotalField, for the output of a vector field representing the

total effective field, Magnetization, for the output of a vector field representing the current

magnetization state of the grid of spins, and DataTable, for the output of a table of data

values describing other quantities of interest calculated by mmSolve2D.
Upon selecting one of the output types from the Outputs subpanel, a list of applications

appears in the Destination Threads subpanel which provide a display and/or storage service

for the type of output selected. The user may select from this list those applications to which

the selected type of output should be sent.

31

For each application selected, a final interface is displayed in the Schedule subpanel.

Through this interface the user may set the schedule according to which the selected type

of data is sent to the selected application for display or storage. The schedule is described

relative to events in mmSolve2D. An Iteration event occurs at every step in the solution of

the ODE. An Equilibrium event occurs whenever the solver determines that an equilibrium

magnetization state has been reached. An Interactive event occurs for a particular output

type whenever the corresponding “Interactive Outputs” button is clicked in the panel of

control buttons. The Interactive schedule gives the user the ability to interactively force

data to be delivered to selected display and storage applications. For the Iteration and

Equilibrium events, the granularity of the output delivery schedule is under user control. For

example, the user may elect to send vector field data describing the current magnetization

state to an mmDisp instance for display every 25 iterations of the ODE, rather than every

iteration.

The quantities included in DataTable output produced by mmSolve2D include:

• Iteration: The iteration count of the ODE solver.

• Field Updates: The number of times the ODE solver has calculated the effective

field.

• Sim Time (ns): The elapsed simulated time.

• Time Step (ns): The interval of simulated time spanned by the last step taken in

the ODE solver.

• Step Size: The magnitude of the last step taken by the ODE solver as a normalized

value. (This is currently the time step in seconds, multiplied by the gyromagnetic ratio

times the damping coefficient times Ms .)

• Bx, By, Bz (mT): The x, y, and z components of the nominal applied field (see

Sec. 16.1, Experimental parameters paragraph).

• B (mT): The magnitude of the nominal applied field (always non-negative).

• Im x h | : The maximum of the point-wise quantity ||M x Heff ||/Mf over all the spins.

This “torque” value is used to test convergence to an equilibrium state.

• Mx/Ms, My/Ms, Mz/Ms: The x
, y, and z components of the average magnetiza-

tion of the magnetically active elements of the simulated part.

• Total Energy (J/m3
): The total average energy density for the magnetically active

elements of the simulated part.

32

• Exchange Energy (J/m3
): The component of the average energy density for the

magnetically active elements of the simulated part due to exchange interactions.

• Anisotropy Energy (J/m3
): The component of the average energy density for the

magnetically active elements of the simulated part due to crystalline anisotropy.

• Demag Energy (J/m3
): The component of the average energy density for the mag-

netically active elements of the simulated part due to self-demagnetizing fields.

• Zeeman Energy (J/m3
): The component of average energy density for the mag-

netically active elements of the simulated part due to interaction with the applied

field.

• Max Angle: The maximum angle (in degrees) between the magnetization orientation

of any pair of neighboring spins in the grid. (The neighborhood of a spin is the same

as that defined by the exchange energy calculation.)

Controls

The middle section of the user interface window contains a series of buttons providing user

control over the solver. After a problem description server application has been selected, the

LoadProblem button triggers a fetch of a problem description from the selected server. The

LoadProblem button may be selected at any time to (re-)load a problem description from

the currently selected server. After loading a new problem the solver goes automatically

into a paused state. (If no problem description server is selected when the LoadProblem

button is invoked, nothing will happen.) The Reset button operates similarly, except that

the current problem specifications are used.

Once a problem is loaded, the solver can be put into any of three states: run, relax

and pause. Selecting Relax puts the solver into the “relax” state, where it runs until an

equilibrium is reached, after which the solver pauses. The Run selection differs in that when

equilibrium is reached, the solver automatically steps the nominal applied field to the next

value, and continues. In “run” mode the solver will continue to process until there are no

more applied field states in the problem description. (Field state schedules are discussed

below.) At any time the Pause button may be selected to pause the solver. The solver will

stay in this state until the user reselects either Run or Relax. The current state of the solver

is indicated in the Status line in the center panel of the user interface window.

The problem description (in MIF format) specifies a fixed applied field schedule (see

Sec. 16.1, Experimental parameters paragraph). This schedule defines an ordered list of

applied fields, which the solver in “run” mode steps through in sequence. The Field- and

33

Field+ buttons allow the user to interactively adjust the applied field sequence. Each click

on the Field-}- button advances forward one step through the specified schedule, while Field-

reverses that process. In general, the step direction is not related to the magnitude of the

applied field. Also note that hitting these buttons does not generate an “equilibrium” event.

In particular, if you are manually accelerating the progress of the solver through a hysteresis

loop, and want to send non-equilibrium data to a display or archive widget before advancing

the field, then you must use the appropriate “Interactive Output” button.

The second row of buttons in the interaction control panel, TotalField, Magnetization

and DataTable, allow the user to view the current state of the solver at any time. These

buttons cause the solver to send out data of the corresponding type to all applications for

which the “Interactive” schedule button for that data type has been selected, as discussed

in the Outputs section above.

At the far right of the solver controls is the Exit button, which terminates mmSolve2D.
Simply closing the user interface window does not terminate mmSolve2D, but only closes

the user interface window. To kill the solver the Exit button must be pressed.

Details

Given a problem description, mmSolve2D integrates the Landau-Lifshitz equation [5, 7]

dM „ „ „ 7cn , ,, x— = -7M x Heff
- —M X (M X Heff), (1)

where

M is the pointwise magnetization (A/m),

Heff is the pointwise effective field (A/m),

7 is the gyromagnetic ratio (m/(A-s)),

a is the damping coefficient (dimensionless).

The effective field is defined as

u _ _ -1 dE_
eff

<9M*

The average energy density E is a function ofM specified by Brown’s equations [3], includ-

ing crystalline anisotropy, exchange, self-magnetostatic (demagnetization) and applied field

(Zeeman) terms.

The micromagnetic problem is impressed upon a regular 2D grid of squares, with 3D
magnetization spins positioned at the centers of the cells. Note that the constraint that the

grid be composed of square elements takes priority over the requested size of the grid. The

34

actual size of the grid used in the computation will be the nearest integral multiple of the

grid’s cell size to the requested size. It is important when comparing the results from grids

with different cell sizes to account for the possible change in size of the overall grid. At

present, Neumann boundary conditions are assumed.

The crystalline anisotropy and applied field energy terms are calculated assuming con-

stant magnetization in each cell. The exchange energy is calculated using the eight-neighbor

bilinear interpolation described in [4]. The more common four-neighbor scheme is available

as a compile-time option. See the file app/mmsolve/magelt . cc for details.

The self-magnetostatic field is calculated using fast Fourier transform (FFT) techniques.

Inside each cell, the magnetization is assumed constant along the 2-axis. In the xy-plane, two

models are supported: constant magnetization and constant charge. The model is selected as

part of the problem description in MIF format; for details see Sec. 16.1: Demag specification.

The Landau-Lifshitz ODE (1) is integrated using a second order predictor-corrector tech-

nique of the Adams type. The right side of (1) at the current and previous step is extrapo-

lated forward in a linear fashion, and is integrated across the new time interval to obtain a

quadratic prediction for M at the next time step. (At each stage the spins are renormalized

to Ms before evaluating the energy and effective fields.) The right side of (1) is evaluated

at the predicted M, which is then combined with the value at the current step to produce a

linear interpolation of dM/dt across the new interval. This is then integrated to obtain the

final estimate ofM at the new step. The local (one step) error of this procedure should be

0(At3
).

The step is accepted if the total energy of the system decreases, and the maximum error

between the predicted and final M is smaller than a nominal value. If the step is rejected,

then the step size is reduced and the integration procedure is repeated. If the step is accepted,

then the error between the predicted and final M is used to adjust the size of the next step.

No fixed ratio between the previous and current time step is assumed.

A first order Euler step is used to prime the predictor-corrector solver. A fourth order

Runge-Kutta solver is included in the code, and is used as a backup in case the predictor-

corrector fails to find a valid step. The Runge-Kutta solver is not selectable as the primary

solver at runtime, but may be so selected at compile time by defining the RUNGE_KUTTA_ODE

macro. See the file app/mmsolve/grid.cc for all details of the integration procedure.

The integration is stopped and equilibrium is assumed when the maximum value of

||M x Hes\\/Mg drops below the value specified for “Converge |mxh| Value” in the problem

description.

35

Known Bugs

When multiple copies of mmLaunch are used, each can have its own interface to a running

copy of mmSolve2D. When the interface presented by one copy of mmLaunch is used to

set the output schedule in mmSolve2D, those settings are not reflected in the interfaces

presented by other copies of mmLaunch. For example, although the first interface sets a

schedule that DataTable data is to be sent to an instance of mmGraph every third Iteration,

there is no indication of that schedule presented to the user in the second interface window.

It is unusual to have more than one copy of mmLaunch running simultaneously. However,

this bug also appears when one copy of mmLaunch is used to load a problem and start a

solver, and later a second copy of mmLaunch is used to monitor the status of that running

solver.

A bug in the network traffic handling code of Tel on Windows 95 and Windows 98 systems

can sometimes interfere with communications between the control interface of mmSolve2D
and the actual computation engine. If mmSolve2D is sending out data to two or more data

display services every iteration, the network traffic used to send out that data can “crowd

out” the receipt of control messages from the control interface. You may observe this as

a long delay between the time you click the Pause button and the time the solver stops

iterating. This bug first appeared in Tel release 8.0.3, and remained through Tel release

8.1.1. It is expected that this bug will be fixed in Tel release 8.2, anticipated in August

1999. Until then, a workaround is to install Tcl/Tk 8.0p2 on your Windows 95 or Windows
98 system. Other platforms do not have this problem.

36

10 Data Table Display: mmDataTable

*'
^

;

1
•
jt |

Hie Data Options Help

iteration : 873

Field Updates : 1891

Sim Time (ns) : 9.5Z874

Step Size : 0.965

jmxtij : 0.005406

By (mT) : -4

Total Energy (J/m~3) : 9352.84

Exchange Energy (J/rrT3) : 328.02

Anisotropy Energy (J/mA3) : 119.53

Demag Energy (J/m^3) : 3051 23

Zeeman Energy (J/m^3) : 58544)6

Max Angle (deg) : 44.4

Overview

The application mmDataTable provides a data display service to its client applications.

It accepts data from clients and displays it in a window. Its typical use is to display the

evolving values of quantities computed by a micromagnetic solver program.

Launching

mmDataTable may be started either by selecting the mmDataTable button on mm-
Launch, or from the command line via

tclsh app/oommf/oommf .tel mmDataTable [-console]

37

Inputs

The client application(s) that send data to mmDataTable for display control the flow of

data. The user, interacting with the mmDataTable window, controls how the data is

displayed. Upon launch, mmDataTable displays only a menubar. Upon user request, a

display window below the menubar displays data values.

Each message from a client contains a list of (name, value, units) triples containing data

for display. For example, one element in the list might be {Magnetization 800000 A/m}.

mmDataTable stores the latest value it receives for each name. Earlier values are discarded

when new data arrives from a client.

Outputs

mmDataTable does not support any data output or storage facilities. To save tabular

data, use the mmGraph (Sec. 11) or mmArchive (Sec. 13) applications.

Controls

The Data menu holds a list of all the data names for which mmDataTable has received

data. Initially, mmDataTable has received no data from any clients, so this menu is empty.

As data arrives from clients, the menu fills with the list of data names. Each data name
on the list lies next to a checkbutton. When the checkbutton is toggled from off to on, the

corresponding data name and its value and units are displayed at the bottom of the display

window. When the checkbutton is toggled from on to off, the corresponding data name is

removed from the display window. In this way, the user selects from all the data received

what is to be displayed. Selecting the dashed rule at the top of the Data menu detaches it

so the user may easily click multiple checkbuttons.

In addition to selecting what data names are displayed, the user may also control the

format in which the data values are displayed. A mouse click on a displayed data value

brings up a dialog box in which the user may specify the formatting the value undergoes

(by the Tel command format) prior to display. The Options menu includes a Format menu
item which lets the user set the default formatting for data values.

The menu selection File I Exit terminates the mmDataTable application. The menu
Help provides the usual help facilities.

38

11 Data Graph Display: mmGraph
—(mm6raph<293S4>

j
jjT

file X-Axis Y-Axis Options Help

-100 Bx (mT) 100

Overview

The application mmGraph provides a data display service similar to that ofmmDataTable
(Sec. 10). The usual data source is a running solver, but rather than the textual output

provided by mmDataTable, mmGraph produces 2D line plots. mmGraph also stores

the data it receives, so it can produce multiple views of the data and can save the data to

disk. Postscript output is also supported.

Launching

mmGraph may be started either by selecting the mmGraph button on mmLaunch or

from the command line via

tclsh app/oommf/oommf .tel mmGraph [-console] [-nonet]

The -nonet option disables the socket server portion of mmGraph, in which case data may
only be input from a file.

39

Inputs

Input to mmGraph may come from either a file in the ODT format (Sec. 16.2), or from

a client application (typically a running solver). (The latter is disabled by the -nonet

command line option.) The File
I
Open. . . dialog box is used to select an input file. Receipt

of data from client applications is the same as for mmDataTable (Sec. 10). In either case,

input data are appended to any previously held data.

Outputs

Unlike mmDataTable, mmGraph internally stores the data sent to it. This data may
be written to disk via the File

I Save As... dialog box. If the file specified already exists,

then mmGraph output is appended to that file. The output is in the tabular ODT format

described in Sec. 16.2. By default, all data currently held by mmGraph is written, but

the Save: Selected Data option presented in the File I Save As... dialog box causes the

output to be restricted to those curves currently selected for display. In either case, the

graph display limits do not affect the output.

The save operation writes records that are held by mmGraph at the time the File I Save

As... dialog box OK button is invoked. Additionally, the Auto Save option in this dialog

box may be used to automatically append to the specified file each new data record as it is

received by mmGraph. The appended fields will be those chosen at the time of the save

operation, i.e., subsequent changing of the curves selected for display does not affect the

automatic save operation. The automatic save operation continues until either a new output

file is specified, the Options I Stop autosave control is invoked, or mmGraph is terminated.

The File I Print... dialog is used to produce a Postscript file of the current graph. On
Unix systems, the output may be sent directly to a printer by filling the Print to: entry

with the appropriate pipe command, e.g., Ilpr. (The exact form is system dependent.)

Controls

Graphs are constructed by selecting any one item off the X-Axis menu, and any number of

items off the Y-Axis menu. Either of these menus may be detached by selecting the dashed

rule at the top of the list. Sample results are shown in the figure at the start of this section.

When mmGraph is first launched, the axis menus are both empty. They are dynamically

built based on the data received by mmGraph. By default, the graph limits and labels are

automatically set based on the data. The x-axis label is set using the selected item data

label and measurement unit (if any). The y-axis label is the measurement unit of the first

40

y-axis item selected. To change the default y-axis label, deselect all y-axis items and select

a different first item.

The Options I Configure... dialog box allows the user to override the default settings. To

set the axis labels, deselect the Auto Label option in this dialog box, and fill in the X Label

and Y Label fields as desired. The axis limits can be set in a similar fashion. In addition, if

an axis limit is left empty, a default value (based on all selected data) will be used.

As mentioned earlier, mmGraph stores all data it receives. Over the course of a long

run, the amount of data stored can grow to many megabytes. This storage can be limited

by specifying a positive value for the Point buffer size entry in the Options I Configure...

dialog box. The oldest records are removed as necessary to keep the total number of records

stored under the specified limit. A zero value for Point buffer size is interpreted as no

limit. (The storage size of an individual record depends upon several factors, including the

number of items in the record and the version of Tel being used.) Data erasures may not be

immediately reflected in the graph display.

At any time, the point buffer storage may be completely emptied with the Options I clear

Data command. The Options I Stop autosave selection will turn off the auto save feature,

if currently active. Also on this menu is Options I Rescale, which autoscales the graph axis

limits from the selected data. This command ignores but does not reset the “Auto Scale”

settings in the Options I Configure... dialog box.

The last command on the options menu is Options I Key, which toggles the key (legend)

display on and off. The key may also be repositioned by dragging with the left mouse button.

Two other controls are also available only through the mouse. If the mouse pointer is

positioned over a drawn item in the graph, holding down any mouse button will bring up

the coordinates of that point. The coordinates displayed are the coordinates of a point on

a drawn line, which are not necessarily the coordinates of a plotted data point. (The data

points are plotted at the endpoints of each line segment.) The coordinate display is cleared

when the mouse button is released.

One vertical and one horizontal rule (line) are also available. Initially, these rules are

tucked and hidden against the left and bottom graph axes, respectively. Either may be

repositioned by dragging with the left mouse button.

The menu selection File I Exit terminates the mmGraph application. The menu Help

provides the usual help facilities.

Details

The X-Axis and Y-Axis menus are configured based on incoming data. As a result, both

menus are initially empty. If a graph widget is scheduled to receive data only upon equi-

librium events in the solver, it may be a long time after starting a problem in the solver

41

before the graph widget can be configured. Because mmGraph keeps all data up to the

limit imposed by the Point buffer size
,
data loss is usually not a problem. Of more impor-

tance is the fact that automatic data saving can not be set up until the first data point is

received. As a workaround, the solver initial state may be sent interactively as a dummy
point to initialize the graph widget axes menus. (You may turn off the Interactive schedule

connection after sending this data point.) Select the desired quantities off the axes menus,

and use the Options
I
clear Data command to remove the dummy point from mmGraph’s

memory. The File I Save As... dialog box may then be used—with the Auto Save option

enabled—to write out an empty table with proper column header information. Subsequent

data will be written to this file as it arrives.

42

12 Vector Field Display: mmDisp

Overview

The application mmDisp displays two-dimensional spatial distributions of three-dimensional

vectors (i.e., vector fields). It can load vector fields from files in a variety of formats, or it

can accept vector field data from a client application, typically a running solver. mmDisp
offers a rich interface for controlling the display of vector field data, and can also save the

data to a file and produce Postscript print output.

Launching

mmDisp may be started either by selecting the mmDisp button on mmLaunch, or from

the command line via

tclsh app/oommf/oommf . tel mmDisp [-server] [-version] \

[-console] [—] [<filename>]

The command line option -server makes mmDisp a server supplying vector field display

services to other applications. Without that option mmDisp only displays vector field data

loaded from files. The -server option is automatically included when mmDisp is launched

by mmLaunch.

43

If the option -version is present on the command line, version information is printed,

and mmDisp exits immediately.

If a filename is supplied on the command line, mmDisp takes it to be the name of a file

containing vector field data for display. That file will be opened on startup.

Inputs

Input to mmDisp may come from either a file or from a client application (typically a

running solver), in any of the vector field formats described in Sec. 16.3. Other file formats

can also be supported if a translation filter program is available.

Client applications that send data to mmDisp control the flow of data. The user,

interacting with the mmDisp window, determines how the vector field data are displayed.

File input is initiated through the File I Open. . . dialog box. Several example files are

included in the OOMMF release in the directory app/mmdisp/examples. When the Browse

button is enabled, the “Open File” dialog box will remain open after loading a file, so that

multiple files may be displayed in sequence. The Auto configuration box determines whether

the vector subsampling or the zoom factor of the display should be determined automatically

(based on the data in the file and the current display window size), or whether their values

should be held constant while loading the file.

mmDisp permits local customization allowing for automatic translation from other file

formats into one of the vector field formats (Sec. 16.3) that mmDisp recognizes. When
loading a file, mmDisp compares the file name to a list of glob-style patterns. These

patterns typically match on the filename extension. An example pattern is *.gz. The
assumption is that the pattern identifies files containing data in a particular format. For

each pattern in the list, there is a corresponding translation program. mmDisp calls on

that program as a filter which takes data in one format from standard input and writes to

standard output the same data in one of the formats supported by mmDisp. In its default

configuration, mmDisp recognizes the pattern *.gz and invokes the translation program

gzip -dc to perform the “translation.” In this way, support for reading gzip compressed

files is “built in” to mmDisp on any platform where the gzip program is installed.

New patterns and translation programs may be added to mmDisp by the usual method

of local customization (Sec. 2.3.3). The command to add to the customization file is of the

form

0c_0ption Add mmDisp Input filters {-C*.gz {gzip -dc»>

The final argument in this command is a list of pairs. The first element in each pair is the

filename pattern. The second element in each pair is the command line for launching the

corresponding translation program. If a program foo were known to translate a file format

44

identified by the extension .foo into the OVF file format, that program could be made
known to mmDisp by changing the above customization command to:

0c_0ption Add mmDisp Input filters {{*.gz {gzip -dc» {*.foo foo}}

Outputs

The vector field displayed by mmDisp may be saved to disk via the File I Save As. . . dialog

box. The output is in the OVF format (Sec. 16.3.1). The OVF file options may be set by

selecting the appropriate radio buttons in the OVF File Options panel. The Title and Desc

fields may be edited before saving. Enabling the Browse button allows for saving multiple

files without closing the “Save File” dialog box.

The File
I
Print. . . dialog is used to produce a Postscript file of the current display. On

Unix systems, the output may be sent directly to a printer by filling the Print to: entry

with the appropriate pipe command, e.g., Ilpr. (The exact form is system dependent.)

Controls

The View menu provides high-level control over how the vector field is placed in the display

window. The menu selection View
I Wrap Display resizes the display window so that it just

contains the entire vector field surrounded by a margin. View I Fill Display resizes the vector

field until it fills the current size of the display window. If the aspect ratio of the display

window does not match the aspect ratio of the vector field, a larger than requested margin

appears along one edge to make up the difference. View I Rotate ccw and View I Rotate

cw rotate the display one quarter turn counter-clockwise and clockwise respectively. The

display window also rotates, so that the portion of the vector field seen and any margins

are preserved (unless the display of the control bar forces the display window to be wider).

View | reDraw allows the user to invoke a redrawing of the display window.

The vector field may be rescaled (“zoomed”
)
and moved so that only a portion of it is

visible in the display window. When a portion of the vector field lies outside the display

window, scrollbars appear that may be used to translate the vector field so that different

portions are visible in the display window. On systems that have a middle mouse button,

clicking the middle button on a point in the display window translates the vector field so

that the selected point is centered within the display window.

The mouse may also be used within the display window to rescale the display. A click

and drag with the left mouse button displays a red rectangle that changes size as the mouse

is dragged. When the left mouse button is released, the vector field is rescaled so that the

portion of the display window within the red rectangle expands until it reaches the edges

45

of the display window. Both dimensions are scaled by the same amount so there is no

distortion of the vector field. Small red arrows on the sides of the red rectangle indicate

which dimension will expand to meet the display window boundaries upon release of the left

mouse button. After the rescaling, the red rectangle remains in the display window briefly,

surrounding the same region of the vector field, but at the new scale.

A click and drag with the right mouse button displays a blue rectangle that changes size

as the mouse is dragged. When the right mouse button is released, the vector field is rescaled

so that all of the vector field currently visible in the display window fits in the size of the

blue rectangle. Both dimensions are scaled by the same amount so there is no distortion of

the vector field. Small blue arrows on the sides of the blue rectangle indicate the dimension

in which the vector field will shrink to exactly transform the display window size to the blue

rectangle size. After the rescaling, the blue rectangle remains in the display window briefly,

surrounding the same region of the vector field, now centered in the display window, and at

the new scale.

mmDisp remembers the previous display scale. To revert to the previous scale, the user

may hit the ESC key. This is a limited “Undo” feature.

The menu selection Options I Configure. . . brings up a dialog box through which the

user may control many features of the vector field display. Vectors in the vector field may be

displayed as arrows, pixels, or both. The Arrow and Pixel buttons in the Plot type column

on the left of the dialog box enable each type of display.

Columns 2-4 in the Configure dialog box control the use of color. Both arrows and

pixels may be independently colored to indicate some quantity. The Color Quantity column

controls which scalar quantity the color of the arrow or pixel represents. The x, y, or

z components of the vector may be selected. On regularly gridded data the vector field

divergence is also available for display.

The assignment of a color to a quantity value is determined by the Colortnap selected.

Colormaps are labeled by a sequence of colors that are mapped across the range of the

selected quantity. For example, if the “Red-Black-Blue” colormap is applied to the Color

Quantity “z”
,
then vectors pointing into the xy-plane (z < 0) are colored red, those lying in

the plane (z = 0) are colored black, and those pointing out of the plane (z > 0) are colored

blue. Values between the extremes are colored with intermediate colors, selected using a

discretization determined by the # of Colors value. This value limits the use of potentially

limited color resources, and can be used to achieve some special coloring effects.

When there are many vectors in a vector field, a display of all of them can be more

confusing than helpful. The Subsample Rate column allows the user to request that only

a sampling of vectors from the vector field be displayed. The Subsample Rate value is

roughly the number of vectors along one spatial dimension of the vector field which map to

a single displayed vector (arrow or pixel). Each vector displayed is an actual vector in the

46

vector field—the selection of vectors for display is a sampling process, not an averaging or

interpolation process. The subsample rates for arrows and pixels may be set independently.

A subsample rate of 0 is interpreted specially to display all data. (This is typically much
quicker than subsampling at a small rate, e.g., 0.1.)

An arrow or pixel that represents a vector is by default displayed at a size that covers

the portion of the vector field that that displayed vector is intended to represent, given

the current subsample rate. Following this default, arrows do not significantly overlap each

other, yet all portions of the vector field that are magnetically active have a representation

in the display. The Magnification column allows the user to modify the size of the displayed

arrows or pixels (independently). A Magnification of 1 is the default size. By changing

to a larger or smaller Magnification value, the user may request arrows or pixels larger or

smaller than the default size.

Lower in the Option I Configure. . . dialog box, the user may also select whether or not

a bounding polygon is displayed, what margin (in pixels) should be maintained around the

vector field, and what background color the display window should use.

None of the changes made by the user in the Options I Configure. . . dialog box affect

the display window until either the Apply or OK button is selected. If the OK button is

selected, the dialog box is also dismissed. The Cancel button dismisses the dialog without

changing the display window.

The other item under the Options menu is a checkbutton that toggles the display of a

control bar. The control bar offers alternative interfaces to some of the operations available

from the Options I Configure. . . dialog box and the View menu. On the left end of the

control bar is a display of the coordinate axes. These axes rotate along with the vector field

in the display window to identify the coordinate system of the display, and are color coded

to agree with the pixel (if active) or arrow coloring. A click of the left mouse button on the

coordinate axes causes a counter-clockwise rotation. A click of the right mouse button on

the coordinate axes causes a clockwise rotation.

To the right of the coordinate axes are two rows of controls. The top row allows the user

to control the subsample rate and magnification of the arrow display. The subsample rate

may be modified either by direct entry of a new rate, or by manipulation of the slider.

The lower row offers an alternative means to control the rescaling of the vector field in

the display. The Zoom value roughly corresponds to the number of pixels per vector in the

vector field. This value may be entered directly, or modified by manipulation of the slider.

This alternative interface provides a more precise control over the rescaling of the vector

field display than mouse operations provide.

Several keyboard shortcuts are available as alternatives to menu- or mouse-based opera-

tions. The effect of a key combination depends on which subwindow of mmDisp is active.

The TAB key may be used to change the active subwindow. The SHIFT-TAB key combination

47

also changes the active subwindow, in reverse order.

When the active subwindow is the display window, the following key combinations are

active:

• CTRL-o - same as menu selection File I Open. .

.

• CTRL-s - same as menu selection File I Save as. .

.

• CTRL-p - same as menu selection File I Print. .

.

• CTRL-w - same as menu selection View I Wrap Display

• CTRL-f - same as menu selection View I Fill Display

• HOME - First fill, then wrap the display.

• CTRL-r - same as menu selection View I Rotate ccw

• SHIFT-CTRL-r - same as menu selection View I Rotate cw

• INSERT - increase arrow subsample by 1

• DEL - decrease arrow subsample by 1

• SHIFT-INSERT - increase arrow subsample by factor of 2

• SHIFT-DEL - decrease arrow subsample by factor of 2

• PAGEUP - increase the zoom value by a factor of 1.149

• PAGEDOWN - decrease the zoom value by a factor of 1.149

• SHIFT-PAGEUP - increase the zoom value by factor of 2

• SHIFT-PAGEDOWN - decrease the zoom value by factor of 2

• ESC - revert to previous zoom value

When the active subwindow is the control bar’s coordinate axes display, the following

key combinations are active:

• LEFT - same as menu selection View I Rotate ccw

• RIGHT - same as menu selection View I Rotate cw

48

When the active subwindow is any of the control bar’s value entry windows - arrow

subsample, magnification, or zoom, the following key combinations are active:

• ESC - undo uncommitted value (displayed in red)

• RETURN - commit entered value

When the active subwindow is either of the control bar’s sliders—arrow subsample or

zoom—the following key combinations are active:

• LEFT - slide left (decrease value)

• RIGHT - slide right (increase value)

• ESC - undo uncommitted value (displayed in red)

• RETURN - commit current value

Of course the usual keyboard access to the menu items is also available.

The menu selection File I Clear clears the display window. The menu selection File I Exit

terminates the mmDisp application. The menu Help provides the usual help facilities.

Details

The selection of vectors for display according to the Subsample Rate differs depending on

whether or not the data lies on a regular grid. If so, the Subsample Rate takes integer

values and determines the ratio of data points to displayed points. For example, a value of

5 means that every fifth vector on the grid is displayed. This means that the number of

vectors displayed is 25 times fewer than the number of vectors on the grid.

For an irregular grid of vectors, an average cell size is computed, and the Subsample

Rate takes values in units of 0.1 times the average cell size. A square grid of that size is

overlaid on the irregular grid. For each cell in the square grid, the data vector from the

irregular grid closest to the center of the square grid cell is selected for display. The vector

is displayed at its true location in the irregular grid, not at the center of the square grid cell.

As the subsample rate changes, the set of displayed vectors also changes, which can in some

circumstances substantially change the appearance of the displayed vector field.

49

Using mmDisp as a WWW browser helper application

You may configure your web browser to automatically launch mmDisp when downloading

an OVF file. The exact means to do this depends on your browser, but a couple of examples

are presented below.

In Netscape Navigator 4.X, bring up the Edit
I Preferences. . . dialog box, and select

the Category Navigator I Applications subwindow. Create a New Type, with the following

fields:

Description of type: OOMMF Vector Field

MIME Type: application/x-oommf-vf

Suffixes: ovf omf ohf obf svf

Application: wish oomm/roo^/app/oommf/oommf.tcl -nofork mmDisp “
arg

”

On Windows platforms, the Suffixes field is labeled File Extension, and only one file

extension may be entered. Files downloaded from a web server are handled according to

their MIME Type, rather than their file extension, so that restriction isn’t important when

web browsing. If you wish to have files on the local disk with all the above file extensions

recognized as OOMMF Vector Field files, you must repeat the New Type entry for each

file extension. In the Application field, the values of wish, oommfroot, and arg vary with

your platform configuration. The value of wish is the full path to the wish application on

your platform (see Section 5). On Unix systems, wish may be omitted, assuming that the

oommf .tel script is executable. If wish is not omitted on Unix systems, Netscape will issue

a security warning each time it opens an OOMMF Vector Field file. The value of oommfroot

should be the full path to the root directory of your OOMMF installation. The value of arg

should be “%1” on Windows and “%s” on Unix. The MIME type “application/x-oommf-vf’

must be configured on any HTTP server which provides OOMMF Vector Field files as well.

For Microsoft Internet Explorer 3.X, bring up the View I Options. . . dialog box, and

select the Program tab. Hit the File Types. . . button, followed by the New Type. .

.

button. Fill the resulting dialog box with

Description of type: OOMMF Vector Field

Associated extension: ovf

Content type (MIME): application/x-oommf-vf

You may also disable the Confirm open after download checkbutton if you want. Then hit

the New. . . button below the Actions: window, and in the pop-up fill in

50

Action: open

Application used to perform action:

wish oommfroot/app/oommf/oommf.tcl -nofork mmDisp “%1”

Hit OK, Close, Close and OK. Replace wish and oommfroot with the appropriate paths on

your system (cf. Section 5). This will set up an association on files with the .ovf extension.

Internet Explorer 3.X apparently ignores the HTML Content Type field, so you must repeat

this process for each file extension (.ovf, .omf, .ohf, .obf and .svf) that you want to recognize.

This means, however, that Internet Explorer will make the appropriate association even if

the HTML server does not properly set the HTML Content Type field.

Microsoft Internet Explorer 4.X is integrated with the Windows operating system. Inter-

net Explorer 4.X doesn’t offer any means to set up associations between particular file types

and the applications which should be used to open them. Instead, this association is config-

ured within the Windows operating system. To set up associations for the OOMMF Vector

Field file type on Windows 95 or Windows NT 4.0, select Settings I Control Panel from

the Start menu. The Control Panel window appears. Select View I Options. . . to display

a dialog box. A Windows 98 shortcut to the same dialog box is to select Settings I
Folder

Options. . . from the Start menu. Select the File Types tab and proceed as described above

for Internet Explorer 3.X. Depending on the exact release/service patch of your Windows
operating system, the exact instructions may vary.

With the 1.0 releases of OOMMF, you may use the alternate application line

oommfroot/app/mmdisp/p/af/ormname/mmdisp.exe “an/’

where oommfroot and arg are as in the discussion above and platformname is the name
which OOMMF assigns to your platform type, as reported by the script platform. tel.

Also, the file extension . exe is for Windows platforms only. This alternative specification of

the application for opening OOMMF Vector Field files should launch a little bit faster than

the more generic command line given earlier.

Once you have your browser configured, you can test it on the muMag 1st Standard

Problem report page,

http://www.ctcms.nist.gov/%7Erdm/stdl/vectorcompare.html.

Known Bugs

Internally, mmDisp stores vector field data with 4 byte precision. While this should be

accurate enough for display purposes, it also means that any file written out by mmDisp
will only have 4 byte precision, even if an 8 byte output format is selected.

51

13 Data Archive: mmArchive

Overview

The application mmArchive provides automated vector field and data table storage ser-

vices. Although mmDisp (Sec. 12) and mmGraph (Sec. 11) are able to save such data

under the direction of the user, there are situations where it is more convenient to write data

to disk without interactive control.

mmArchive does not present a user interface window of its own, but like mmSolve2D
(Sec. 9) relies on mmLaunch (Sec. 6) to provide an interface on its behalf. Because

mmArchive does not require a window, it is possible on Unix systems to bring down

the X (window) server and still keep mmArchive running in the background.

Launching

mmArchive may be started either by selecting the mmArchive button on mmLaunch, or

from the command line via

tclsh app/oommf/oommf . tel mmArchive [-tk|-notk] [-console]

When the mmArchive button of mmLaunch is invoked, mmArchive is launched with

the -notk option. This allows mmArchive to continue running if the X window server is

killed. The -tk option is useful only for enabling the -console option for debugging.

As noted above, mmArchive depends upon mmLaunch to provide an interface. The

entry for an instance of mmArchive in the Threads column of any running copy of mm-
Launch has a checkbutton next to it. This button toggles the presence of a user interface

window through which the user may control that instance of mmArchive.

Inputs

mmArchive accepts vector field and data table style input from client applications (typically

running solvers) on its network (socket) interface.

52

Outputs

The client applications that send data to mmArchive control the flow of data. mmArchive
copies the data it receives into files specified by the client. There is no interactive control to

select the names of these output files. A simple status line shows the most recent vector file

save, or data table file open/close event.

Controls

The Exit in the mmLaunch-supplied user interface terminates mmArchive. Simply clos-

ing the user interface window does not terminate mmArchive, but only hides the control

window. To kill mmArchive the Exit button must be pressed.

Known Bugs

mmArchive appends data table output to the file specified by the source client application

(e.g., a running solver). If, at the same time, more than one source specifies the same file, or if

the the same source sends data table output to more than one instance of mmArchive, then

concurrent writes to the same file may corrupt the data in that file. It is the responsibility

of the user to ensure this does not happen; there is at present no file locking mechanism in

OOMMF to protect against this situation.

53

14 Documentation Viewer: mmHelp

Overview

The application mmHelp manages the display and navigation of hypertext (HTML) help
files. It presents an interface similar to that of World Wide Web browsers.

Although mmHelp is patterned after World Wide Web browsers, it does not have all of
their capabilities. mmHelp displays only a simplified form of hypertext required to display

the OOMMF help pages. It is not able to display many of the advanced hypertext features

provided by modern World Wide Web browsers. In the current release, mmHelp is not able
to follow http : URLs. It only follows file : URLs.
OOMMF software can be customized (See Sec. 2.3.3) to use another program to display

the HTML help files.

Launching

mmHelp may be launched from the command line via

tclsh app/oommf/oommf .tel mmHelp [<URL>] [-console]

The command line argument <URL> is the URL of the first page (or home page) to be
displayed. If no URL is specified, mmHelp displays the Table of Contents of the OOMMF
User’s Guide by default.

54

Controls

Each page of hypertext is displayed in the main mmHelp window. Words which are under-

lined and colored blue are hyperlinks which mmHelp knows how to follow. Words which

are underlined and colored red are hyperlinks which mmHelp does not know how to follow.

Moving the mouse over a hyperlink displays the target URL of the hyperlink in the Link:

line above the display window. Clicking on a blue hyperlink will follow the hyperlink and

display a new page of hypertext.

mmHelp keeps a list of the viewed pages in order of view. Using the Back and Forward

buttons, the user may move backward and forward through this list of pages. The Home
button causes the first page to be displayed, allowing the user to start again from the

beginning. These three buttons have corresponding entries in the Navigate menu.

The menu selection File I Refresh, or the Refresh button causes mmHelp to reload and

redisplay the current page. This may be useful if the display becomes corrupted, or for

repeatedly loading a hypertext file which is being edited.

When mmHelp encounters hypertext elements it does not recognize, it will attempt to

work around the problem. However, in some cases it will not be able to make sense of the

hypertext, and will display an error message. Documentation authors should take care to

use only the hypertext elements supported by mmHelp in their documentation files. Users

should never see such an error message.

mmHelp displays error messages in one of two ways: within the display window, or in

a separate window. Errors reported in the display window replace the display of the page of

hypertext. They usually indicate that the hypertext page could not be retrieved, or that its

contents are not hypertext. File permission errors are also reported in this way.

Errors reported in a separate window are usually due to a formatting error within the

page of hypertext. Selecting the Continue button of the error window instructs mmHelp to

attempt to resume display of the hypertext page beyond the error. Selecting Abort abandons

further display.

The menu selection Options I Font scale... brings up a dialog box through which the

user may select the scale of the fonts to use in the display window, relative to their initial

size.

The menu selection File I Exit or the Exit button terminates the mmHelp application.

The menu Help provides the usual help facilities.

55

15 OOMMF Batch System

The OOMMF Batch System (OBS) provides a scriptable interface (batchsolve .tel) to

the same micromagnetic solver engine used by mmSolve2D (Sec. 9), and several Tel

scripts (batchmaster .tel, batchslave . tel, and batchtask. tel) that provide support for

complex job scheduling. All OBS script files are in the OOMMF distribution directory

app/mmsolve/scripts.

Unlike most of the OOMMF package, the OBS is meant to be driven primarily from the

command line or shell (batch) script. OBS applications are launched from the command line

using the bootstrap application (Sec. 5).

15.1 Batch solver

Overview

The batch solver script batchsolve. tel provides a simple command line interface to the

OOMMF micromagnetic solver engine.

Launching

The batch solver is launched by the command line:

tclsh app/oommf/oommf .tel batchsolve [~notk] [[-file] <filename .mif>] \

[-no_interface] [-start..paused] [~end_paused] [-end_exit]

where

-notk Do not load Tk or display a (blank) window,

[-file] <filename.mif> Immediately load and run the specified MIF file. The [-file] tag

may be omitted if the first character of filename is not a hyphen.

-noJnterface Do not register with the account service directory application. As a result,

batchsolve.tcl will not show up on the threads list in mmLaunch (Sec. 6), and no

interactive interface will be provided by mmLaunch. (However, if batchsolve.tcl

is invoked from inside another script (e.g., batchslave .tel), the calling script could

provide an interface to the batch-controlled solver.)

-start-paused Pause solver after loading problem.

56

-end-paused Pause solver and enter event loop at bottom of batchsolve.tcl rather than

just falling off the end (the effect of which will depend on whether or not Tk is loaded).

-end_exit Explicitly call exit at bottom of batchsolve. tel.

The input filename. mif file should contain a Micromagnetic Input Format (Sec. 16.1)

(MIF) problem description, such as produced by mmProbEd (Sec. 7). The batch solver

searches several directories for this file, including the current working directory, the data and

scripts subdirectories, and parallel directories relative to the directories app/mmsolve and

app/mmpe in the OOMMF distribution. Refer to the mif.path variable in batchsolve .tel

for the complete list.

If batchsolve.tcl registers itself with the account service directory application, it will

appear in the Threads list of any running copy of mmLaunch, and mmLaunch will provide

an interactive interface on behalf of batchsolve.tcl. Using this interface, batchsolve.tcl

may be controlled in a manner similar to mmSolve2D (Sec. 9). The interface allows you

to pause, un-pause, and terminate the current simulation, as well as to attach data dis-

play applications to monitor the solver’s progress. If more interactive control is needed,

mmSolve2D should be used.

Use the -start.paused switch to monitor the progress of batchsolve.tcl from the

very start of a simulation. With this switch the solver will be paused immediately after

loading the specified MIF file, so you can bring up the interactive interface and connect

display applications before the simulation begins. Start the simulation by selecting the Run
command from the interactive interface.

The -end.paused switch insures that the solver does not automatically terminate after

completing the specified simulation. This is not generally useful, but may find application

when batchsolve.tcl is called from inside a Tcl-only wrapper script.

Output

The output may be changed by a Tel wrapper script (see Sec. 15.1), but the default

output behavior of batchsolve.tcl is to write tabular text data and the magnetization

state at equilibrium for each applied field step. The tabular data are appended to the

file basename. odt, where basename is specified in the input MIF file. See the routine

GetTextData in batchsolve.tcl for details, but at present the output consists of the solver

iteration count, nominal applied field B, reduced magnetization m, and total energy. This

output is in the ODT file format.

The magnetization data are written to a series of OVF (OOMMF Vector Field) files,

basename. fieldnnnn.omf
,
where nnnn starts at 0000 and is incremented at each applied

57

field step. (The ASCII header inside each file records the nominal applied field at that step.)

These files are viewable using mmDisp (Sec. 12).

Programmer’s interface

In addition to directly launching batchsolve .tel from the command line, it may also

be sourced from inside another Tel script, e.g., batchslave .tel, that provides additional

control structures. There are several variables and routines inside batchsolve . tel that may
be accessed and redefined from such a wrapper script to provide enhanced functionality.

Global variables

mif A Tel handle to a global mms_mif object holding the problem description defined by

the input MIF file.

solver A Tel handle to the mms_solver object.

search-path Directory search path used by the FindFile proc (see below).

Refer to the source code and sample scripts for details on manipulation of these variables.

Batchsolve procs

The following Tel procedures are designed for external use and/or redefinition:

SolverTasklnit Called at the start of each task.

BatchTaskRelaxCallback Called at each equilibrium state reached in the simulation.

SolverTaskCleanup Called at the conclusion of each task.

FindFile Searches the directories specified by the global variable search_path for a specified

file. The default SolverTasklnit proc uses this routine to locate the requested input

MIF file.

The first and third of these accept an arbitrary argument list (args), which is copied over

from the args argument to batchsolve .tel procs BatchTaskRun and BatchTaskLaunch.

Typically one copies the default procs (as needed) into a task script, and makes appro-

priate modifications. You may (re-) define these procs either before or after sourcing

batchsolve .tel. See Sec. 15.2.3 for example scripts.

58

15.2 Batch scheduler

Overview

The OBS provides support for complex scheduling of multiple batch jobs via the two files

batchmaster .tel and batchslave . tel plus a user defined task script. The task script may
be modeled after the included simpletask.tcl or multitask.tcl sample scripts.

The OBS has been designed to control multiple sequential and concurrent micromag-

netic simulations, but the scheduling scripts batchmaster .t cl and batchslave.tcl are

completely general and may be used to schedule other types of jobs as well.

When batchmaster .tel is run, it sources a task script that should modify the global

object STasklnfo to inform the master what tasks to perform and optionally how to launch

slaves to perform those tasks. This is detailed in Sec. 15.2.2. After this, batchmaster .tcl

launches all the specified slaves, initializes each with a slave initialization script, and then

feeds tasks sequentially from the task list to the slaves. When a slave completes a task it

reports back to the master and is given the next unclaimed task. If there are no more tasks,

the slave is shut down. When all the tasks are complete, the master prints a summary of

the tasks and exits. Note: At present, launching and controlling jobs off the local machine

requires a working rsh command or equivalent.

Launching

The batch scheduler is launched by the command line:

tclsh app/oommf/oommf .tel batchmaster [-notk] <task_script . tcl> \

[server.host [server_port]

]

where

-notk Do not load Tk or display a (blank) window,

<task_script.tcl> is the user defined task (job) definition file,

server-host specifies the network address for the master to use (default is localhost),

server.port is the port address for the master (default is 0
,
which selects an arbitrary open

port).

The required <task_script .tcl> should be based on the example scripts in Sec. 15.2.3.

If slaves are to be run on remote machines, then server-host must be set to the local

machine’s network name, and the STasklnfo methods AppendSlave and ModifyHostList

will need to be called from inside the task script. See Sec. 15.2.2 for details.

59

15.2.1 Batch master and slave specifics

The communication protocol between batchmaster .tel and batchslave . tel is evolving

and is not described here. Check the source code for the latest details.

The command line to start the master script is shown above. The slave, which is launched

by the master using instructions specified in the task script, takes a command line of the

form

tclsh app/oommf/oommf .tel batchslave Sserver (host) Sserver (port) \

Sslaveid $passwd [aux_scri.pt [aux_args]]

The arguments Sserver (host) through Spasswd are provided by the master and should

be specified in the task script using the %connect_info percent substitution token. The
aux_scri.pt is a script for the slave to source before processing any commands from the

master. Typically this will be the micromagnetic batch mode script, batchsolve.tcl. The

aux_args are additional arguments that will be passed to aux_scri.pt.

15.2.2 Batch task scripts

The master script creates an instance of a BatchTaskObj object with the name STasklnf o.

The task script uses method calls to this object to set up tasks to be performed. The only

required call is to the AppendTask method, e.g.,

STasklnf o AppendTask A "BatchTaskRun taskA.mif"

This method expects two arguments, a label for the task (here “A”) and a script to accom-

plish the task. The script will be passed across a network socket from the master to the

slave, and then the script will be interpreted by the slave. (In particular, keep in mind that

the file system seen by the script will be that of the machine on which the slave process is

running.)

This example uses the default batchsolve.tcl procs to run the simulation defined by the

taskA.mif MIF file. If you want to make changes to the MIF problem specifications on the

fly, you will need to modify the default procs. This is done by creating a slave initialization

script, via the call

$TaskInfo SetSlavelnitScript { <insert script here> }

The slave initialization script does global initializations, and also generally redefines the

SolverTasklnit proc; optionally the BatchTaskRelaxCallback and SolverTaskCleanup

procs may be redefined as well. At the start of each task SolverTasklnit is called by

60

BatchTaskRun (in batchsolve .tel), at each equilibrium BatchTaskRelaxCallback is ex-

ecuted, and at the end of each task SolverTaskCleanup is called. The first and third are

passed the arguments that were passed to BatchTaskRun. A simple SolverTasklnit proc

could be

proc SolverTasklnit { args > {

global mif basename outtextfile

set A [lindex $args 0]

set outbasename "$basename-A$A"

$mif SetA $A

$mif SetOutBaseName $outbasename

set outtextfile [open " $outbasename .odt" "a+"]

puts Souttextfile [GetTextData header \

"Run on $basename .mif , with A=[$mif GetA]"]

>

This proc receives the exchange constant A for this task on the argument list, and makes use of

the global variables mif and basename. (Both should be initialized in the slave initialization

script outside the SolverTasklnit proc.) It then stores the requested value of A in the mif

object, sets up the base filename to use for output, and opens a text file to which tabular

data will be appended. The handle to this text file is stored in the global outtextfile,

which is closed by the default SolverTaskCleanup proc. A corresponding task script could

be

$TaskInfo AppendTask "A=13e-12 J/m" "BatchTaskRun 13e-12"

which runs a simulation with A set to 13 x 10
-12 J/m. This example is taken from the

multitask.tcl script in Sec. 15.2.3.

If you want to run more than one task at a time, then the STasklnfo method AppendSlave

will have to be invoked. This takes the form

$TaskInfo AppendSlave <spawn count> <spawn command>

where <spawn command> is the command to launch the slave process, and <spawn count>

is the number of slaves to launch with this command. (Typically <spawn count> should

not be larger than the number of processors on the target system.) The default value for

this item (which gets overwritten with the first call to STasklnfo AppendSlave) is

1 {exec 7.tclsh ’/.oommf batchslave -notk °/»connect_info batchsolve. tel}

61

This uses the OOMMF bootstrap program to launch the batchslave application, with con-

nection information provided by the master, and using the auxiliary script batchsolve.tcl.

The batchmaster script provides several percent-style substitutions useful in slave launch

scripts: %tclsh, %oommf, %connect_info, %oommf_root, and %%. The first is the Tel shell

to use, the second is the absolute path to the OOMMF bootstrap program on the master

machine, the third is connection information needed by the batchslave application, the

fourth is the path to the OOMMF root directory on the master machine, and the last is

interpreted as a single percent.

To launch slaves on a remote host, use rsh in the spawn command, e.g.,

$TaskInfo AppendSlave 1 {exec rsh foo tclsh oommf/app/oommf/oommf . tel \

batchslave -notk ®/,connect_info batchsolve.tcl}

This example assumes tclsh is in the execution path on the remote machine foo, and

OOMMF is installed off of your home directory. In addition, you will have to add the

machine foo to the host connect list with

$TaskInfo ModifyHostList +foo

and batchmaster must be run with the network interface specified as the server host (instead

of the default localhost), e.g.,

tclsh app/oommf/oommf .tcl batchmaster multitask.tcl bar

where bar is the name of the local machine.

This may seem a bit complicated, but the examples in the next section should make

things clearer.

15.2.3 Sample task scripts

The first sample task script (Fig. 1) is a simple example that runs the 3 micromagnetic

simulations described by the MIF files taskA.mif
,
taskB.mif and taskC.mif . It -is launched

with the command

tclsh app/oommf/oommf .t cl batchmaster simpletask.tcl

This example uses the default slave launch script, so a single slave is launched on the current

machine, and the 3 simulations will be run sequentially. Also, no slave init script is given,

so the default procs in batchsolve.tcl are used. Output will be magnetization states and

tabular data for each equilibrium state, stored in files on the local machine with base names

as specified in the MIF files.

The second task script (Fig. 2) is a more complicated example running concurrent

processes on two machines. This script should be run with the command

62

FILE: simpletask.tcl

#

This is a sample batch task file. Usage example:

#

tclsh app/oommf/oommf .tel batchmaster simpletask.tcl

Form task list

$TaskInfo AppendTask A "BatchTaskRun taskA.mif"

$TaskInfo AppendTask B "BatchTaskRun taskB.mif"

$TaskInfo AppendTask C "BatchTaskRun taskC.mif"

Figure 1: Sample task script simpletask.tcl.

tclsh app/oommf/oommf .tcl batchmaster multitask. tel bar

where bar is the name of the local machine.

Near the top of the multitask. tel script several Tel variables (RMT-MACHINE through

A_list) are defined; these are used farther down in the script. The remote machine is speci-

fied as foo, which is used in the $TaskInf o AppendSlave and $TaskInf o ModifyHostList

commands.

There are two AppendSlave commands, one to run two slaves on the local machine, and

one to run a single slave on the remote machine (foo). The latter changes to a specified

working directory before launching the batchslave application on the remote machine.

(For this to work you must have rsh configured properly. In the future it may be possible to

launch remote commands using the OOMMF account server application, thereby lessening

the reliance on system commands like rsh.)

Below this the slave init script is defined. The Tel regsub command is used to place

the task script defined value of BASEMIF into the init script template. The init script is

run on the slave when the slave is first brought up. It first reads the base MIF file into a

newly created mms_mif instance. (The MIF file needs to be accessible by the slave process,

irrespective of which machine it is running on.) Then replacement SolverTasklnit and

SolverTaskCleanup procs are defined. The new SolverTasklnit interprets its first argu-

ment as a value for the exchange constant A. Note that this is different from the default

SolverTasklnit proc, which interprets its first argument as the name of a MIF file to load.

With this task script, a MIF file is read once when the slave is brought up, and then each task

redefines only the value of A for the simulation (and corresponding changes to the output

filenames and data table header).

Finally, the Tel loop structure

63

foreach A $A_list {

STasklnfo AppendTask "A=$A" "BatchTaskRun $A"

>

is used to build up a task list consisting of one task for each value of A in A_list (defined

at the top of the task script). For example, the first value of A is 10e-13, so the first task

will have the label A=10e-13 and the corresponding script is BatchTaskRun 10e-13. The

value 10e-13 is passed on by BatchTaskRun to the SolverTasklnit proc, which has been

redefined to process this argument as the value for A, as described above.

There are 6 tasks in all, and 3 slave processes, so the first three tasks will run concurrently

in the 3 slaves. As each slave finishes it will be given the next task, until all the tasks are

complete.

FILE: multitask. tel

#

This is a sample batch task file. Usage example:

#

tclsh app/oommf/oommf .tel batchmaster multitask.tcl hostname [port]

#

Task script configuration

set RMT.MACHINE foo

set RMT.TCLSH tclsh

set RMT_00MMF "/path/to/oommf/app/oommf/oommf . tel"

set RMT_WORK_DIR "/path/to/oommf/app/mmsolve/data"

set BASEMIF taskA

set A_list { 10e-13 10e-14 10e-15 10e-16 lOe-17 10e-18 >

Slave launch commands

STasklnfo ModifyHostList +$RMT_MACHINE

STasklnfo AppendSlave 2 "exec %tclsh yoommf batchslave -notk \

y,connect_info batchsolve .tel"

STasklnfo AppendSlave 1 "exec rsh $RMT_MACHINE \

cd $RMT_WORK_DIR \\\;\

$RM_TCLSH $RMT_00MMF batchslave -notk */
0connect_info batchsolve .tel"

Slave initialization script (with batchsolve .tel proc

redefinitions)

set init_script {

64

Initialize solver. This is run at global scope

set basename BASEMIF ;# Base mif filename (global)

mms_mif New mif

$mif Read [FindFile ${basename> .mif]

Redefine Tasklnit and TaskCleanup proc’s

proc SolverTasklnit { args } {

global mif outtextfile basename

set A [lindex Sargs 0]

set outbasename "$basename-A$A"

$mif SetA $A

$mif SetOutBaseName Soutbasename

set outtextfile [open "$outbasename.odt" "a+"]

puts $outtextfile [GetTextData header \

"Run on Sbasename .mif , with A=[$mif GetA] "]

flush $outtextfile

>

proc SolverTaskCleanup { args } {

global outtextfile

close Souttextfile

>

>

Substitute SBASEMIF in for BASEMIF in above script

regsub -all — BASEMIF $init_script SBASEMIF init_script

STasklnfo SetSlavelnitScript $init_script

Create task list

foreach A $A_list *[

STasklnfo AppendTask "A=$A" "BatchTaskRun $A"

>

Figure 2: Advanced sample task script multitask. tel.

65

16 File Formats

16.1 Problem specification format (MIF)

Micromagnetic simulations are specified to the OOMMF solver using the OOMMF Micro-

magnetic Input Format (MIF). This is also the native file type for the OOMMF problem

editor, mmProbEd (Sec. 7). All values are in SI units.

A sample MIF file is presented in Fig. 3. The first line of a MIF file must be of the

form “# MIF x.y”, where x.y represents the format revision number. OOMMF reads and

writes the MIF 1.1 format. (There was a MIF 1.0 format, but it was never part of a released

version of OOMMF.) It is recommended that MIF files be given names ending in the .mif

file extension so that MIF files may be easily identified.

After the format identifier line, any line ending in a backslash, ‘V, is joined to the

succeeding line before any other processing is performed. Lines beginning with a ‘#’ character

are comments and are ignored. Blank lines are also ignored.

All other lines must consist of a Record Identifier followed by a parameter list. The Record

Identifier is separated from the parameter list by one or more and/or ‘=’ characters.

Whitespace and case is ignored in the Record Identifier field.

The parameter list must be a proper Tel list. The parameters are parsed (broken into

separate elements) following normal Tel rules; in short, items are separated by whitespace,

except as grouped by double quotes and curly braces. The grouping characters are removed

during parsing. Any ‘#’ character that is found outside of any grouping mechanism is inter-

preted as a comment start character. The ‘#’ and all following characters on that line are

interpreted as a comment.

Order of the records in a MIF file is unimportant, except as explicitly stated below. If two

or more lines contain the same Record Identifier, then the last one takes precedence (except

for Field Range records, of which there may be several active). All records are required

unless listed as optional. Some of these record types are not yet supported by mmProbEd,
however your may edit a MIF file by hand and supply it to mmSolve2D (Sec. 9) using

FileSource (Sec. 8).

For convenience, the Record Identifier tags are organized into several groups; these groups

correspond to the buttons presented by mmProbEd. We follow this convention below.

Material parameters

• # Material Name: This is a convenience entry for mmProbEd; inside the MIF file

it is a comment line. It relates a symbolic name (e.g., Iron) to specific values to the

next 4 items. Ignored by solvers.

66

• Ms: Saturation magnetization in A/m.

• A: Exchange stiffness in J/m.

• Kl: Crystalline anisotropy constant in J/m3
. If Kl > 0, then the anisotropy axis (or

axes) is an easy axis; if Kl < 0 then the anisotropy axis is a hard axis.

• Anisotropy Type: Crystalline anisotropy type; One of < uniaxial
|

cubic >.

• Anisotropy Dirl: Directional cosines of first crystalline anisotropy axis, taken with

respect to the coordinate axes (3 numbers). Optional; Default is 1 0 0 (x-axis).

• Anisotropy Dir2: Directional cosines of second crystalline anisotropy axis, taken

with respect to the coordinate axes (3 numbers). Optional; Default is 0 1 0 (y-axis).

For uniaxial materials it suffices to specify only Anisotropy Dirl. For cubic materials

one should also specify Anisotropy Dir2; the third axis direction will be calculated

as the cross product of the first two. The anisotropy directions will be automatically

normalized if necessary, so for example 1 1 1 is valid input (it will be modified to .5774

.5774 .5774). For cubic materials, Dir2 will be adjusted to be perpendicular to Dirl

(by subtracting out the component parallel to Dirl).

• Anisotropy Initialization: Method to use to set up directions of anisotropy axes, as

a function of spatial location; This is a generalization of the Anisotropy Dirl/2 records.

The value for this record should be one of < Constant
|

UniformXY
j

UniformS2 >.

Constant uses the values specified for Anisotropy Dirl and Dir2, with no dispersion.

UniformXY ignores the values given for Anisotropy Dirl and Dir2, and randomly

varies the anisotropy directions uniformly in the xy-plane. UniformS2 is similar, but

randomly varies the anisotropy directions uniformly on the unit sphere (S'
2
). This

record is optional; the default value is Constant.

• Do Precess: If 1, then enable the precession term in the Landau-Lifshitz ODE. If 0,

then do pure damping only. (Optional; default value is 1.)

• Gyratio: The gyromagnetic ratio, in m/(A.s). This is optional, with default value

of 2.21 x 105
. See the discussion of the Landau-Lifshitz ODE under the Damp Coef

record identifier description.

• Damp Coef: The ODE solver in OOMMF integrates the Landau-Lifshitz equation,

written as

TV/r TT I®** /*, TT X— = —7M X Heff
-— M X (M X Heff) ,

67

where

7 is the gyromagnetic ratio (in m/(A.s)),

a is the damping coefficient (dimensionless).

The last is specified by the “Damp Coef” entry in the MIF file. If not specified, a

default value of 0.5 is used, which allows the solver to converge in a reasonable number

of iterations. Physical materials will typically have a damping coefficient in the range

0.004 to 0.15.

Demag specification

• Demag Type: Specify algorithm used to calculate self-magnetostatic (demagnetiza-

tion) field. Must be one of

- 3dSlab: Calculate the in-plane field components using offset blocks of constant

(volume) charge. Details are given in [2]. Field components parallel to the 2-axis

are calculated using squares of constant (surface) charge on the upper and lower

surfaces of the sample.

- 3dCharge: Calculate the in-plane field component using rectangles of constant

(surface) charge on each cell. This is equivalent to assuming constant magnetiza-

tion in each cell. The 2-components of the field are calculated in the same manner

as for the 3dSlab approach.

- FastPipe: Algorithm suitable for simulations that have infinite extent in the

2-direction. This is a 2D version of the SdSlab algorithm.

- None: No demagnetization. Fastest but least accurate method. :->

The 3dSlab and 3dCharge methods require that the Part Thickness (cf. the Part Ge-

ometry section) be set. All algorithms use Fast Fourier Transform (FFT) techniques

to accelerate the calculations.

Part geometry

• Part Width: Nominal part width (^-dimension) in meters. Will be automatically

adjusted to an integral multiple of Cell Size.

• Part Height: Nominal part height (y-dimension) in meters. Will be automatically

adjusted to an integral multiple of Cell Size.

68

• Part Thickness: Part thickness (z-dimension) in meters. Required for 3D models.

• Cell Size: In-plane (ary-plane) edge dimension of base calculation cell. This cell is

a rectangular brick, with square in-plane cross-section and thickness given by Part

Thickness.

• Part Shape: Optional. Part shape in the ary-plane; must be one of the following:

— Rectangle

The sample fills the area specified by Part Width and Part Height. (Default.)

- Ellipse

The sample (or the magnetically active portion thereof) is an ellipse inscribed

into the rectangular area specified by Part Width and Part Height.

— Oval r

Shape is a rounded rectangle, where each corner is replaced by a quarter circle

with radius r, where r is the second parameter.

- Mask filename

Shape is determined by a 2-color bitmap file, the name of which is specified as

the second parameter. The given filename must be accessible to the solver appli-

cation. At present the bitmap file must be in either the PPM (portable pixmap)

or GIF format. The bitmap will be scaled as necessary to fit the simulation. The

magnetically active cells correspond to black pixels in the bitmap.

Initial magnetization

• Init Mag: Name of routine to use to initialize the simulation magnetization directions

(as a function of position), and routine parameters, if any. Optional, with default

Random. The list of routines is long, and it is easy to add new ones. See the file

maginit.cc for details. A few of the more useful routines are:

- Random
Random directions on the unit sphere. This is somewhat like a quenched thermal

demagnetized state.

- Uniform 6 <j>

Uniform magnetization in the direction indicated by the two additional parame-

ters, 6 and 0, where the first is the angle from the z-axis (in degrees), and the

second is the angle from the rr-axis (in degrees) of the projection onto the zy-plane.

69

- Vortex

Fits an idealized vortex about the center of the sample.

- avfFile filename

The second parameter specifies an OVF/VIO (i.e., “any” vector field) file to use to

initialize the magnetization. The grid in the input file will be scaled as necessary

to fit the grid in the current simulation. The file must be accessible to the intended

solver application.

Experiment parameters

The following records specify the applied field schedule:

• Field Range: Specifies a range of applied fields that are stepped though in a linear

manner. The parameter list should be 7 numbers: the starting field Bx By Bz in Tesla,

the stopping field Bx By Bz in Tesla, and an integer number of steps (intervals) to

take between the starting and stopping fields (inclusive). Use as many Field Range

records as necessary—they will be stepped through in order of appearance. This record

is optional, with a default value of 0000001.

• Field Type: External field routine and parameters, if any. This is optional, with

default Uniform. At most one record of this type is allowed, but the Multi type may
be used to apply a collection of fields. The nominal applied field (NAF) is stepped

through the Field Ranges described above, and is made available to the external field

routines that use or ignore it as appropriate.

The following Field Type routines are available:

- Uniform
Applied field is uniform with value specified by the NAF.

- Ribbon relcharge xO yO xl yl height

Charge “Ribbon,” lying perpendicular to the xy-plane. Here relcharge is the

charge strength relative to Ms, and (x0,z0), (xl,zl) are the endpoints of the

ribbon (in meters). The ribbon extends height/2 above and below the calculation

plane. This routine ignores the NAF.

- Tie rfx rfy rfz xO yO xl yl ribwidth

The points (x0,y0) and (xl,yl) define (in meters) the endpoints of the center

spine of a rectangular ribbon of width ribwidth lying in the xy-plane. The cells

with sample point inside this rectangle see an applied field of (rfx,rfy,rfz), in units

70

relative to Ms. (If the field is large, then the magnetizations in the rectangle will

be “tied” to the direction of that field.) This routine ignores the NAF.

— OneFile filename multiplier

Read B field in from a file. Each value in the file is multiplied by the “multiplier”

value on input. This makes it simple to reverse field direction (use -1 for the

multiplier), or to convert H fields to B fields (use 1.256637e-6). The input file

may be any of the vector field file types recognized by mmDisp. The input

dimensions will be scaled as necessary to fit the simulation grid, with zeroth

order interpolation as necessary. This routine ignores the NAF.

- FileSeq filename procname multiplier

This is a generalization of the OneFile routine that reads in fields from a sequence

of files. Here “filename” is the name of a file containing Tel code to be sourced

during problem initialization, and “procname” is the name of a Tel procedure

defined in filename, which takes the nominal B field components and field step

count values as imports (4 values total), and returns the name of the vector field

file that should be used as the applied B field for that field step.

- Multi routinecount \

paramlcount namel parami param2 — \

param2count name2 paraml param2 . . . \

Allows a conglomeration of several field type routines. All entries must be on

the same logical line, i.e., end physical lines with ’V continuation characters as

necessary. Here routinecount is the number of routines, and paramlcount is the

number parameters (including namel) needed by the first routine, etc.

Note that all lengths are in meters. The coordinates in the simulation lie in the first

octant, running from (0,0,0) to (Part Width, Part Height, Part Thickness).

Output specification

• Base Output Filename: Default base name used to construct output filenames.

Miscellaneous

• Converge |mxh| Value: Nominal value to use as a stopping criterion: When ||mxh||

(= ||M x H||/M^) at all spins in the simulation is smaller than this value, it is assumed

that a relaxed (equilibrium) state has been reached for the current applied field. This

is a dimensionless value. Optional; default value is 10~4
.

71

• Randomizer seed: Value with which to seed random number generator. Optional.

Default value is 0, which uses the system clock to generate a semi-random seed.

MIF 1.1

#

All units are SI.

#

####################### MATERIAL PARAMETERS ############################

Ms: 800e3 # Saturation magnetization in A/m

A: 13e-12 # Exchange stiffness in J/m.

Kl: 0.5e3 # Anisotropy constant in J/m~3.

Anisotropy Type: uniaxial # One of <uniaxial | cubic>

.

Anisotropy Dirl: 100 # Directional cosines wrt to coordinate axes

####################### DEMAG SPECIFICATION ############################

Demag Type: 3dSlab # One of <3dSlab I 2dSlab I 3dCharge I FastPipe I None>

.

########################## PART GEOMETRY ###############################

Part Width:

Part Height:

Part Thickness

:

Cell Size:

#Part Shape:

0.25e-6 # Nominal part width in m

1.0e-6 # Nominal part height in m

le-9 # Part thickness in m.

8.1e-9 # Cell size in m.

One of <Rectangle|Ellipse|Oval|Mask>. Optional.

###################### INITIAL MAGNETIZATION ###########################

Init Mag: Uniform 90 45 # Initial magnetization routine and parameters

###################### EXPERIMENT PARAMETERS ###########################

Field Range: -.05 -.01 0. .05 .01 0. 100 # Start_field Stop_field Steps

Field Range: .05 .01 0. -.05 -.01 0. 100

Field Type: Multi 4 \

7 Ribbon 1 0 1.0e-6 0.25e-6 1.0e-6 le-9 \

7 Ribbon 100 0.25e-6 0 le-9 \

9 Tie 100 0 0 0.12e-6 0.5e-6 0.13e-6 0.5e-6 8. le-9 \

1 Uniform

The above positions ribbons of positive charge along the upper

and lower edges with strength Ms, applies a large (100 Ms) field

to the center cell, and also applies a uniform field across the

72

sample stepped from (-.05, -.01,0.) to (.05,. 01,0.) (Tesla), and

back, in approximately 0.001 T steps.

###################### OUTPUT SPECIFICATIONS ###########################

Base Output Filename: samplerun

########################## MISCELLANEOUS ###############################

Randomizer seed: 1 # Value to seed random number generator with.

Converge Torque Value: le-5 # Stopping criterion, relative to Ms.

Figure 3: Example MIF file.

16.2 Data table format (ODT)

Textual output from solver applications that is not of the vector field variety is output in the

OOMMF Data Table (ODT) format. This is an ASCII file format, with column information

in the header and one line of data per record. Any line ending in a ’V character is joined to

the succeeding line before any other processing is performed. Any leading ’#’ characters on

the second line are removed.

As with the OVF format (Sec. 16.3.1), all non-data lines begin with a ’#’ character,

comments with two ’#’ characters. (This makes it easier to import the data into external

programs, for example, plotting packages.) An example is shown in Fig. 4.

The first line of an ODT file should be the file type descriptor

ODT 1.0

It is also recommended that ODT files be given names ending in the file extension . odt so

that ODT files may be easily identified.

The remaining lines of the ODT file format should be comments, data, or any of the

following 5 recognized descriptor tag lines:

• # Table Start: Optional, used to segment a file containing multiple data table blocks.

Anything after the colon is taken as an optional label for the corresponding data table

block.

• # Title: Optional; everything after the colon is interpreted as a title for the table.

73

ODT 1.0

Table Start

Title: This is a small sample ODT file.

#

This is a sample comment . You can put anything you want

on comment lines.

Columns

:

Iteration "Applied Field" {Total Energy} Mx

Units: O "mT" "J/nTS" "A/m"

103 50 0.00636 787840

1000 32 0.00603 781120

10300 -5000 0.00640 -800e3

Table End

Figure 4: Sample ODT file.

• # Columns: Required. One parameter per column, designating the label for that

column. Spaces may be embedded in a column label by using the normal Tel grouping

mechanisms (i.e., double-quotes and braces).

• # Units: Optional. If given, it should have one parameter for each column, giving a

unit label for the corresponding column.

• # Table End: Optional, no parameters. Should be paired with a corresponding Table

Start record.

Data may appear anywhere after the Columns descriptor record and before any Table End

line, with one record per line. The data should be numeric values separated by whitespace.

16.3 Vector field format (OVF)

Vector field files specify vector quantities (e.g., magnetization or magnetic flux density) as

a function of spatial position. This type of file is produced by mmSolve2D (Sec. 9) when

“Total Field” or “Magnetization” output is selected. It is also the input data type read by

mmDisp (Sec. 12). OOMMF stores vector field files in the OOMMF Vector Field (OVF)

format. There are two versions of the OVF format supported by OOMMF. The OVF 1.0

format is the preferred format and the only one written by OOMMF software. It supports

both rectangular and irregular meshes, in binary and ASCII. The OVF 0.0 format (formerly

74

SVF) is an older, simpler format that can be useful for importing vector field data into

OOMMF from other programs. (A third format, the Vector Input/Output (VIO) format, is

used by some precursors to the OOMMF code. Although OOMMF is able to read the VIO
format, its use is deprecated. New programs should not make use of it.)

The recommended file extensions for OVF files are . omf for magnetization files, . ohf for

magnetic field (H) files, . obf for magnetic flux density (B) files, or . ovf for generic files.

16.3.1 The OVF 1.0 format

A commented sample OVF 1.0 file is provided in Fig. 5. An OVF file has an ASCII header

and trailer, and a data block that may be either ASCII or binary. All non-data lines begin

with a ‘#’ character; the double ‘##’ marks the start of a comment, which continues until

the end of the line. There is no line continuation character. Lines starting with a ‘#’ but

containing only whitespace characters are ignored.

All non-empty non-comment lines in the file header are structured as field+value pairs.

The field tag consists of all characters after the initial ‘#’ up to the first colon (V) character.

Case is ignored, and all space and tab characters are eliminated. The value consists of all

characters after the first colon, continuing up to a ‘##’ comment designator or the end of the

line.

The first line of an OVF file should be a file type identification line, having the form

OOMMF: rectangular mesh vl.O

where the value “rectangular mesh vl.O” identifies the meshtype and revision. While the

OVF 1.0 format was under development in earlier OOMMF releases, the revision strings 0 . 99

and 0 . OaO were sometimes recorded on the file type identification line. OOMMF treats all

of these as synonyms for 1.0 when reading OVF files.

The remainder of the file is conceptually broken into Segment blocks, and each Segment

block is composed of a (Segment) Header block and a Data block. Every block begins with

“# Begin: <block type>” line, and ends with a corresponding “# End: <block type>” line.

The number of Segment blocks is specified in the

Segment count: 1

line. Currently only 1 segment is allowed. This may be changed in the future to allow for

multiple vector fields per file. This is followed by

Begin: Segment

to start the first segment.

75

Segment Header block

The Segment Header block start is marked by the line “# Begin: Header” and the end by
“# End: Header” . Everything between these lines should be either comments or one of the

following file descriptor lines. They are order independent. All are required unless otherwise

stated. Numeric values are floating point values unless “integer” is explicitly stated.

• title: Long file name or title.

• desc: Description line. Use as many as desired. Description lines may be displayed

by postprocessing programs, unlike comment lines which are ignored by all automated

processing.

• meshunit: Fundamental mesh spatial unit, treated as a label. The comment marker
‘##’ is not allowed in this label. Example value: “nm”

.

• valueunit: Fundamental field value unit, treated as a label. The comment marker
‘##’ is not allowed in this label. Example: “kA/m.”

• valuemultiplier: File data values are multiplied by this to get true values in units of

“valueunit.” This simplifies the use of normalized values in the data block.

• xmin, ymin, zmin, xmax, ymax, zmax: Six separate lines, specifying the bounding

box for the mesh, in units of “meshunit.” This may be used by display programs to

limit the display area, and may be used for drawing a boundary frame if “boundary”

is not specified.

• boundary: List of (x,y,z) triples specifying the vertices of a boundary frame.

• ValueRangeMaxMag, ValueRangeMinMag: The maximum and non-zero mini-

mum field magnitudes in the data block, in the same units as used in the data block.

These are for optional use as hints by postprocessing programs; for example, mmDisp
will not display any vector with magnitude smaller than ValueRangeMinMag.

• meshtype: Grid structure; should be either “rectangular” or “irregular.” Irregular

grid files should specify “pointcount” in the header; rectangular grid files should specify

instead “xbase, ybase, zbase,” “xstepsize, ystepsize, zstepsize,” and “xnodes, ynodes,

znodes.”

• pointcount: Number of data sample points/locations, i.e., nodes (integer). For irreg-

ular grids only.

76

• xbase, ybase, zbase: Three separate lines, denoting the position of the first point in

the data section, in units of “meshunit.” For rectangular grids only.

• xstepsize, ystepsize, zstepsize: Three separate lines, specifying the distance be-

tween adjacent grid points, in units of “meshunit.” For rectangular grids only.

• xnodes, ynodes, znodes: Three separate lines, specifying the number of nodes along

each axis (integers only). For rectangular grids only.

Data block

The data block start is marked by a line of the form

Begin: data <representation>

where <representation> is one of “text”, “binary 4”, or “binary 8”. Text mode uses the

ASCII specification, with individual data items separated by an arbitrary amount of whites-

pace (spaces, tabs and newlines). Comments are not allowed inside binary mode data blocks,

but are permitted inside text data blocks.

The binary representations are IEEE floating point in network byte order (MSB). To

insure that the byte order is correct, and to provide a partial check that the file hasn’t been

sent through a non 8-bit clean channel, the first datum is a predefined value: 1234567.0

(Hex: 49 96 B4 38) for 4-byte mode, and 123456789012345.0 (Hex: 42 DC 12 21 83 77 DE
40) for 8-byte mode. The data immediately follow the check value.

The structure of the data depends on whether the “meshtype” declared in the header is

“irregular” or “rectangular” . For irregular meshes, each data element is a 6-tuple, consisting

of the x
, y and 2 components of the node position, followed by the x

, y and 2 components of

the field at that position. Ordering among the nodes is not relevant. The number of nodes

is specified in the “pointcount” line in the segment header.

For rectangular meshes, data input is field values only, in x, y ,
2 component triples.

These are ordered with the x index incremented first, then the y index, and the 2 index last.

This is nominally Fortran order, and is adopted here because commonly x will be the longest

dimension, and 2 the shortest, so this order is more memory-access efficient than the normal

C array indexing of 2
, y, x. The size of each dimension is specified in the “xnodes, ynodes,

znodes” lines in the segment header.

In any case, the first character after the last data item should be a newline, followed by

End: data <representation>

where <representation> must match the value in the “Begin: data” line. This is followed

by a

77

End: segment

line that ends the segment, and hence the file.

OOMMF: rectangular mesh vl.O

#

This is a comment.

No comments allowed in the first line.

#

Segment count: 1 ## Number of segments. Should be 1 for now.

#

Begin: Segment

Begin: Header

#

Title: Long file name or title goes here

#

Desc: ’Description’ tag, which may be used or ignored by postprocessing

Desc: programs. You can put anything you want here, and can have as many

Desc: ’Desc’ lines as you want. The ## comment marker is disabled in

Desc: description lines.

#

Fundamental mesh measurement unit. Treated as a label:

meshunit: nm

#

meshtype:

xbase : 0

.

ybase : 0

.

zbase: 0.

rectangular

(xbase, ybase, zbase) is the position, in

’meshunit’, of the first point in the data

section (below)

.

#

xstepsize: 20.

ystepsize: 10.

zstepsize: 10.

#

xnodes : 200

ynodes : 400

znodes : 1

#

xmin: 0.

Distance between adjacent grid pts.: on the x-axis,

20 nm, etc. The sign on this value determines the

grid orientation relative to (xbase, ybase, zbase)

.

Number of nodes along the x-axis, etc. (integers)

Corner points defining mesh bounding box in

78

ymin: 0. ## ’meshunit’. Floating point values.

zmin: -10.

xmax : 4000

.

ymax: 4000.

zmax : 10

.

#

Fundamental field value unit, treated as a label:

valueunit : kA/m

valuemultiplier : 0.79577472 ## Multiply file values by this to get

true value in ’ valueunits ’

.

#

ValueRangeMaxMag: 1005.3096 ## These are in file value units, and

ValueRangeMinMag: le-8 ## are used as hints (or defaults) by

postprocessing programs . The mmDisp program ignores any points

with magnitude smaller than ValueRangeMinMag, and uses

ValueRangeMaxMag to scale inputs for display.

#

End: Header

#

Anything between ’# End: Header’ and ’# Begin: data text’,

’# Begin: data binary 4’ or ’# Begin: data binary 8’ is ignored.

##

Data input is in ’x-component y-component z-component’ triples,

ordered with x incremented first, then y, and finally z.

#

Begin: data text

1000 0 0 724.1 0. 700.023

578.5 500.4 -652.36

<...data omitted for brevity...

>

252.34 -696.42 -671.81

End: data text

End: segment

Figure 5: Commented OVF sample file.

79

16.3.2 The OVF 0.0 format

The OVF 0.0 format is a simple ASCII format supporting irregularly sampled data. It is

intended as an aid for importing data from non-OOMMF programs, and is backwards com-

patible with the format used for problem submissions for the first nMag standard problem8
.

Users of previous releases of OOMMF may recognize the OVF 0.0 format by its previous

name, the Simple Vector Field (SVF) format. It came to the attention of the OOMMF
developers that the file extension .svf was already registered in several MIME systems

to indicate the Simple Vector Format9
,
a vector graphics format. To avoid conflict, we

have stopped using the name Simple Vector Field format, although OOMMF software still

recognizes and reads SVF files, and you may still find example files and other references to

the SVF format.

A sample OVF 0.0 file is shown in Fig. 6. Any line beginning with a ‘#’ character is a

comment, all others are data lines. Each data line is a whitespace separated list of 6 elements:

the x
, y and 2 components of a node position, followed by the x

, y and z components of the

field at that position. Input continues until the end of the file is reached.

It is recommended (but not required) that the first line of an OVF file be

OOMMF: irregular mesh vO.O

This will aid automatic file type detection. Also, three special (extended) comments in OVF
0.0 files are recognized by mmDisp:

File: <filename or extended filename>

Boundary-XY: <boundary vertex pairs>

Grid step: <cell dimension triple>

All these lines are optional. The “File” provides a preferred (possibly extended) filename

to use for display identification. The “Boundary-XY” line specifies the ordered vertices of a

bounding polygon in the xy-plane. If given, mmDisp will draw a frame using those points

to ostensibly indicate the edges of the simulation body. Lastly, the “Grid step” line provides

three values representing the average x, y and z dimensions of the volume corresponding to

an individual node (field sample). It is used by mmDisp to help scale the display.

Note that the data section of an OVF 0.0 file takes the simple form of columns of ASCII

formatted numbers. Columns of whitespace separated numbers expressed in ASCII are easy

to import into other programs that process numerical datasets, and are easy to generate,

so the OVF 0.0 file format is useful for exchanging vector field data between OOMMF and

8
http: / /www.ctcms.nist.gov/

~rdm/stdprob_l .html
9
http: //www.softsonrce.com/svf/

80

OOMMF irregular mesh vO.O

File: sample . ovf

Boundary-XY: 0.0 0 .0 1.0 0.0 1.0 2.0 0 .0 2.0 0

Grid step: . 25 .5 0

X y z m_x m_y m_z

0.01 0.01 0.01 -0.35537 0 . 93472 -0.00000

0.01 1.00 0.01 -0.18936 0.98191 -0.00000

0.01 1.99 0.01 -0.08112 0.99670 -0.00000

0.50 0.50 0.01 -0.03302 0.99945 -0.00001

0.99 0.05 0.01 -0.08141 0.99668 -0.00001

0.75 1.50 0.01 -0.18981 0.98182 -0.00000

0.99 1.99 0.01 -0.35652 0.93429 -0.00000

Figure 6: Example OVF 0.0 file.

non-OOMMF programs. Furthermore, the data section of an OVF 0.0 file is consistent with

the data section of an OVF 1.0 file that has been saved as an irregular mesh using text data

representation. This means that even though OOMMF software now writes only the OVF
1.0 format for vector field data, simple interchange of vector field data with other programs

is still supported.

81

References

[1] A. Aharoni, Introduction to the Theory of Ferromagnetism (Oxford, New York, 1996).

[2] D. V. Berkov, K. Ramstock and A. Hubert, “Solving Micromagnetic Problems: Towards

an Optimal Numerical Method,” Phys. Stat. Sol. (a), 137, 207-222 (1993).

[3] W. F. Brown Jr., Micromagnetics (Krieger, New York, 1978).

[4] M. J. Donahue and R. D. McMichael, “Exchange Energy Representations in Computa-

tional Micromagnetics,” Physica B, 233, 272-278 (1997).

[5] T. L. Gilbert, “A Lagrangian Formulation of the Gyromagnetic Equation of the Mag-

netization Field,” Phys. Rev., 100, 1243 (1955).

[6] P. R. Gillette and K. Oshima, “Magnetization Reversal by Rotation,” J. Appl. Phys.,

29 529-531 (1958).

[7] L. Landau and E. Lifshitz, “On the Theory of the Dispersion of Magnetic Permeability

in Ferromagnetic Bodies, Physik. Z. Sowjetunion, 8, 153-169 (1935).

[8] R. D. McMichael and M. J. Donahue, “Head to Head Domain Wall Structures in Thin

Magnetic Strips,” IEEE Trans. Mag., 33, 4167-4169 (1997).

[9] L. Neel, “Some Theoretical Aspects of Rock-Magnetism,” P. M. Suppl., 191 (1955).

[10] A. J. Newell, W. Williams and D. J. Dunlop, “A Generalization of the Demagnetizing

Tensor for Nonuniform Magnetization,” J. Geophysical Research, 98, 9551-9555 (1993).

[11] M. R. Scheinfein, J. Unguris, J. L. Blue, K. J. Coakley, D. T. Pierce and R. J. Celotta,

“Micromagnetics of Domain Walls at Surfaces,” Phys. Rev. B, 43, 3395-3422 (1991).

[12] E. C. Stoner and E. P. Wohlfarth, “A Mechanism of Magnetic Hysteresis in Heteroge-

neous Alloys,” Phil. Trans. Royal Soc. London
,
A240, 599-642 (1948).

82

17 Credits

The main contributors to this document are Michael J. Donahue (michael.donahue@nist.gov)

and Donald G. Porter (donald.porter@nist.gov), both of ITL/NIST. Section 3 is based on

notes from Dianne P. O’Leary (oleary@cs.umd.edu).

The OOMMF10 code is being developed mainly by Michael Donahue and Donald Porter.

Robert D. McMichael (rmcmichael@nist.gov) made contributions to the early development

of the 2D micromagnetic solver. Jason Eicke (jeicke@seas.gwu.edu) is responsible for the

problem editor, and has worked on the self-magnetostatic module of the micromagnetic

solver.

10http://math.nist.gov/oommf/

