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Abstract

A Bose-Einstein condensate (BEC) is a state of matter that exists at

extremely low temperatures. BECs are currently under investigation by

the research community through both numerical simulation and labora-

tory experiments. The central goal of this visualization project is to create

a graphical representation of data from a BEC simulation. In particular,

the visualization of vortices within the BEC is of primary interest to the

researchers.

1 Introduction

A Bose-Einstein condensate (BEC) is a state of matter that exists at extremely

low temperatures. Researchers at the National Institute of Standards and Tech-

nology are studying BECs conhned in magnetic traps through numerical sim-

ulation as well as laboratory experiments. Numerical simulation of BECs is

addressed by solving for the appropriate wave equation. The wave function of a

BEC corresponds to the ground state of a macroscopic quantum object. In other

words, a collection of atoms in a BEC behaves as a single quantum entity. One
aspect of BECs that is under study is the evolution of the BEC wave function

when the trapped BEC is subjected to rotation. Upon rotation, vortices may
form within the BEC. These vortices are of interest because of their theoretical

implications on the nature of BECs [1].

2 Background

The researchers are studying the behavior of a BEC that obeys the partial

differential equation

fdrp(r,r) = [T + Wap + Fh - RTdP(r,r)
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where r denotes position in R^, r denotes time, and i = \/— 1. A full explana-

tion of the terms T, Ftrap, and VlL- is beyond the scope of this paper [2, 3].

However, a brief description is that they reflect two aspects of the BEC simu-

lation: (1) the physics of a trap that contains the BEC, and (2) the rotation of

the BEC around the z-axis. The rotation of the BEC around the 2-axis induces

the formation of vortices within the trap.

The solution of the above equation is a complex-valued function. For the

purposes of visualization, we can treat the solution ip as the mapping

ip{r,T) : X R —> C.

It is customary for the researchers to express the complex values of ip in the

polar form 2 = {y/p,0) where p = |'0(r, r)p. That is, ipir.r) = The
researchers refer to p = p{r,T) as “density,” and 0 = 0{t,t) as “phase.”

Let
(f)
be the function

(p:C ^ D X P

where D = [0,oo), P = [0,27r], and 0(y/pe*^) = {p,0). Then

(p oip : R^ X H ^ D X P

maps position and time into density and phase.

The data set produced by the simulation is the result of computing po ip on

a three-dimensional grid at a collection of times. That is, for each position in

R^ and for each time r, there are two associated scalar quantities: density and

phase. In addition, a vector field can be generated by computing the gradient

of the phase.

3 Researcher Requirements

The central goal of this visualization project is to create a graphical represen-

tation of the function pop that displays the qualities and characteristics of the

associated BEC. In particular, vortices in the BEC are the principal features of

interest. Several other visualization requirements include:

• Color choices that reflect the standard practice of the researchers. In

particular, the phase values in the interval [0, 27r] must be mapped to a

corresponding color circle.

• Easily identified vortices. Vortices occur where the density approaches

zero in a localized region.

• Suppression of noisy data in outlying, low-density areas. Noise is an arti-

fact of the simulation program that generates the data.

• Display of the vector field derived from the gradient of the phase.

• Images of two- and three-dimensional data.
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4 Approach

The general approach centers on the following points:

• An HSV color model is a natural choice given the requirement for the

representation of the phase data.

• Two side-by-side images are needed: one for density and one for phase.

• The images are generated by specifying vector-valued functions to map
the density-phase space to a hue-saturation-value-opacity space.

In particular, to generate a density image, a vector-valued function f is

defined as

f(p,0) : D X P ^ H X S xV xO

where H, S, V, and O denote hue, saturation, value, and opacity spaces, respec-

tively. We take H — S = V = O = [0,1]. In addition, we follow the convention

that hue values of 0, 1/3, 2/3, and 1 correspond to red, green, blue, and red,

respectively. Further, a value of 1 corresponds to maximum saturation, maxi-

mum value, and maximum opacity. The component functions of f are denoted

by A, A, fv, and A.
Similarly, a function g is defined to generate a phase image. Its domain and

range are the same as for f and its component functions are analogous.

5 Implementation

The implementation task is an iterative process of selecting definitions for the

component functions (A? 9h, etc.) and analyzing the generated images. The

application platform selected is IBM Visualization Data Explorer.

Work begins with the two-dimensional data. The simulation program gener-

ates two-dimensional data by integrating the three-dimensional data along the

2-axis. To visualize this two-dimensional data, the component functions are

defined as

fh(p,0) = |(1 - p/Pi)

fs{p,0) = 1

fv{p,0) = 1

fo(p,0) = 1

gh{p,0) = 6»/27r

9s{p,0) = 1

9v(p,0) = 1

9o(p,0) = 1

where pi is the maximum density of an entire data set. The corresponding

image is shown in Figure 1. There are a number of shortcomings with this

image. First, the vortices in the density image (the twelve small, blue dots),

do not show up well and are too small. Second, vortices do not show up in the

phase image at all. This is a direct consequence of the above definition of g as

a function of 9 only; i.e., p does not appear in the definition of any component

function of g. Third, the red areas on the outer portion of the phase image are

essentially simulation noise and should be suppressed. (The simulation program

sets the phase to 0 when the density is very low.)
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Figure 1: Density (left) and phase (right).

Figure 2: Density (left) and phase (right). Chromatic value is a linear function

of density.

All three of the above shortcomings are addressed by redefining and

as

fvip.O) = gv{p,0) = p!pi

.

The result is that high-density areas are bright, while low-density areas, such

as vortices, fade to black. The corresponding image is shown in Figure 2.

Although the above redefinition improves the situation, the result is still

not satisfactory. The vortices need to be enlarged to enhance their prominence

within the image. To accomplish this objective, and g^ are further redefined

as

fAp,0)^gAp,0) = {p/Pir

where p > 1. Due to the nature of the function p > 1, on the interval [0, 1],

low-density areas are “over-suppressed,” while high-density areas retain most of

their brightness. The corresponding image, with p = 2, is shown in Figure 3.

4



....

-..W;,

bh .^4 m/^t# '
. „

^

-t^'
‘*‘' '^'''

'jSii^KmaiiilinHHr^' rji//.



I

f

[ Figure 3: Density (left) and phase (right). Chromatic value is a nonlinear

function of density.

1

Figure 4: Density (left) and phase (right). Arrow glyphs represent the gradient.

Arrow glyphs are added to the final phase image to represent the vector field

derived from the gradient of the phase data. The glyphs are colored as gray

values from white to black to avoid overlap with the colors used for the phase

data. The brightness of each glyph follows directly from g^. The adorned image

is shown in Figure 4.

6 Future Work

Work on visualizing a three-dimensional volume of density and phase data is in

progress. Initially, the strategy was to define the opacity functions, fo and go,

in a manner similar to the value functions, /„ and gy. The intent was that low-

density areas would be dark and transparent, while high-density areas would be

bright and opaque. This approach proved to be unsatisfactory. The essential
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problem is that the features of interest, namely the vortices, share the same
low-density characteristic as the uninteresting block of material surrounding the

central core. What is needed is a way to discriminate between these interesting

and uninteresting regions. The new approach, currently under implementation,

is to redefine the functions f and g such that their domain is D x P instead

of just D X P. In other words, f and g take position into account, thus providing

a mechanism to focus on regions where the vortex structures are present.

7 Disclaimer

Certain commercial equipment and software may be identified in order to ade-

quately specify or describe the subject matter of this work. In no case does such

identification imply recommendation or endorsement by the National Institute

of Standards and Technology, nor does it imply that the equipment or software

is necessarily the best available for the purpose.
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