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Dynamic contact angle of a liquid

spreading on a heated plate

Dean Ripple

Thermophysics Division,

National Institute ofStandards and Technology,

Gaithersburg, MD 20899

Abstract

An equation determining the steady-state profile of a liquid meniscus advancing or receding across

a heated plate is derived. The effects of liquid evaporation, intermolecular interaction with the plate,

and thermocapillarity are included. Numerical and analytical estimates of the dynamic contact angle

are calculated for water and the refrigerant 1,1, 1,2 tetrafluoroethane. The dynamic contact angle

depends primarily on three dimensionless parameters: one proportional to the velocity of the interface,

one proportional to the rate of evaporation from the surface, and one proportional to the thermal

coefficient of the liquid-vapor surface tension.
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Nomenclature

(Dimensions in SI units)

English Symbols

A = Hamaker constant in Eq. 1 [J]

av a
2
= amplitudes of the solutions to Eq. 25

bv b
2
= algebraic combinations of k

x
and k

2
[1/m]

C = constant defined in Eq. 9 [kg/(m
2
-s-K)]

C
4,
C

2 ,
Cj, C

0
= constants defined in Eq. 25

c
p
= specific heat at constant pressure [J/(kg-K)]

D = constant defined in Eq. 9 [K/Pa]

/ = dimensionless perturbation in a linear expansion of h(x)

g={T-T^j /© = dimensionless temperature of the liquid-vapor interface

h = dimensionless thickness of the liquid film

h
0
=X/(CL) = natural thermal length used to scale equations [m]

h = dimensionless film thickness in the limit x-* -°°
oo

/ = mass flux of liquid, integrated over film thickness [kg/(m-s)]

J
e
= evaporative mass flux [kg/(m

2
-s)j

kp k
2
= solutions of Eq. 26 [1/m]

L = heat ofvaporization of the liquid [J/kg]

M = molecular weight [kg/mol]

m = expression defined in Eq. 12

n = number density [1/m3
]

p = pressure [Pa]

<7a = heat flux by advection through the film [W/m2
]

qc
= heat flux by conduction through the film [W/m2

]

R = gas constant [J/(mol-K)]

r - radius of curvature [m]

T - temperature [K]

u = velocity field ofthe liquid [m/s]

v = translational velocity of the interface [m/s]

vo = y/(3r|) = characteristic velocity used to scale equations [m/s]

x = dimensionless coordinate along the direction of the interface motion

y = dimensionless coordinate normal to the x and z axes

z = dimensionless coordinate normal to the surface

Greek Symbols

a = evaporation coefficient
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P = apparent contact angle of liquid against the solid plate

y = liquid-vapor surface tension [N/m]

6
di=^/(y^), 6

d2
=CZX4/|v

0
/7
0

3

j

= dimensionless intermolecular force parameters

6
y
= v/Vq = dimensionless velocity

S0=C 0/v
o
= dimensionless evaporation rate

§
t

= -yS/^dy/dT) = dimensionless thermocapillary parameter

r) = dynamic viscosity of the liquid [Pa-s]

= superheat of the plate surface [K]

0 = local angle of interface

A = thermal conductivity of the liquid [W/(m-K)]

p = chemical potential [J]

II = disjoining pressure [Pa]

p = density [kg/m
3

]

Subscripts

b coordinate where a boundary condition applies

c cut-off length or conduction

co liquid-vapor coexistence

1 liquid-vapor interface

1 liquid

s plate surface

t coordinate translation

v vapor or velocity

Superscripts

. lengths with physical dimensions.

I. Introduction

A variety of liquids, including alcohols and fluorinated refrigerants, completely wet unheated metal

surfaces. Boiling ofthese liquids on a metal surface reveals a strikingly different behavior: the vapor-

liquid interface of a growing bubble has an apparent non-zero contact angle with the substrate over

a wide range of heat fluxes and operating conditions. Many of the theories for boiling processes

depend on the vapor-liquid contact angle, [1], [2], [3], [4] but typically this angle must be determined

empirically or assumed to be equal to the equilibrium contact angle. The operation of heat pipes also

depends on the dynamic contact angle. [5]

The equations for the interaction of a liquid meniscus with a moving surface date back to the work

ofLandau and Levich.[6] Hervet and de Gennes have extended these ideas to include the effects of

intermolecular forces. [7], [8] In this paper, thermal transport, evaporation, and thermocapillary

effects are incorporated into the basic equation for the interfacial profile. Throughout the paper
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gravity is neglected and the liquid is assumed to completely wet the solid surface when the surface

is not heated. The resulting equation is similar to one derived and discussed by Wayner.[9],[10]

Analytic approximations and extensive numerical calculations lead to estimates of the dynamic contact

angle and to an understanding of which physical parameters most strongly determine the contact

angle.

The equations assume that the contact angles are small and that the thermal transport is dominated

by steady state conduction and evaporation. These approximations will introduce errors that are

significant for some cases of practical interest. For example, comparison ofthe solutions to rapidly-

growing vapor bubbles in boiling has limited accuracy because of the short time scale of bubble

formation (10 ms) and the large contact angles (20-40° ). The approximations do make the equa-

tions more numerically tractable and do not introduce unphysical behavior.

Previous studies on the rapid growth ofvapor bubbles during boiling have described the macroscopic

development ofthe bubble size and shape. [4], [1 1] In this paper, the focus will be on the local shape

of the liquid-vapor interface very close to the surface. The equations are intended to be valid only

for distances within a few micrometers of the surface of the plate.

Within these limitations, the following results have been found. The contact angle for any fluid can

be calculated approximately knowing only the values of three scaled parameters, which depend on

the interfacial velocity, the temperature difference between the saturated vapor and the plate, the

evaporation rate from the liquid surface, and equilibrium liquid properties. The dynamic contact angle

varies only a few percent with an order of magnitude change in the strength of the intermolecular

interaction between the plate and the liquid.

The remainder of the report is organized as follows. In Section II, the equations for the interface

profile are derived. Section HI describes approximate analytical solutions ofthese equations. Section

IV presents calculations for two specific liquids, water and the refrigerant 1,1, 1,2 tetrafluoroethane

(R134a), and compares these results with experimental values from the literature. The dependence

of dynamic contact angle on various experimental parameters and material properties is also

discussed. Section V gives the conclusions.

II. Equations for the liquid-vapor interface.

The geometry of the liquid-vapor interface and its contact with the surface ofthe plate is shown in

Fig. 1 . At scales ofa micrometer or more, the liquid has the appearance of a wedge bounded by solid

and vapor. The line where the solid, vapor, and liquid meet is termed the contact line. The slope of

the liquid-vapor interface at this line defines the contact angle, (3. On microscopic length scales, this

picture is no longer valid. The liquid wedge tapers continuously into a thin adsorbed film of liquid

coating the solid surface. Consequently, neither the contact line nor the contact angle are strictly

defined. In this report, "contact line" will qualitatively refer to the region where the liquid-vapor
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interface has high curvature. Values for the contact angle will correspond to the slope at a specified

point on the interface profile.

The z axis is normal to the surface, and the x and y axes are in the plane ofthe surface. (Variables

with physical dimensions of length are denoted by a bar.) The interface shape is assumed to be in

steady state motion, travelling along the plate at a velocity v along the +x direction. The velocity

depends in general on the hydrodynamics and thermodynamics of the liquid-vaporjnterface at large

length scales, so v is an input_parameter and not a quantity that is solved for. Let h be the thickness

ofthe film, and assume that h is independent ofthe y coordinate. The solid plate is assumed to have

a fixed temperature, T
s,
greater than the temperature ofthe vapor, Tv . Gravity will be neglected, and

the pressures of the vapor and liquid phases are assumed to be equal far from the contact line of

liquid, vapor, and solid phases. Measurements on water suggest that gravity has only a weak effect

on the dynamic contact angle. [12]

In the limit *--«>, the film thickness approaches the constant value /?„, determined by the

competition between evaporation, which favors a dry surface, and the intermolecular forces, which

favor a wet surface. The pressure on the liquid-vapor interface resulting from the intermolecular

interactions with the plate is termed the disjoining pressure. For a solid-liquid film-vapor geometry,

the disjoining pressure II can be approximated in many cases as[13]

( 1 )

A positive value ofthe Hamaker constant A corresponds to a pressure favoring a thicker liquid layer.

If the surface is hotter than the vapor, the film thickness is stationary provided that the disjoining

pressure equals the free energy per unit volume to create liquid out ofthe adjacent vapor. [14] This

free energy can be calculated by making a first order Taylor expansion of the chemical potential of

the liquid and vapor phases about the saturation or coexistence temperature, at which the chemical

potentials for the two phases are equal. Throughout this paper, Tv will be assumed equal to the

coexistence temperature. The resulting equation for hM is:

ft-n) (2)

The number densities of the liquid and vapor phases are denoted by n
x
and and p, and are the

chemical potentials. Solving this equation gives

^In^dpIdTlJr.-T^
(3 )

For T-T
w
~ 10 K, is typically ofthe order ofone monolayer or a few tenths of a nanometer thick.
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The simplest hydrodynamic theories ofthe liquid flow patterns near the contact line of a liquid, solid,

and vapor phase assume that the solid has no adsorbed liquid film coating it and that the velocity of

the liquid is zero at the liquid-solid interface. Huh and Scriven[15] demonstrated that these

assumptions lead to a frictional dissipation that diverges logarithmically as h(x )-0 unless the no-slip

boundary condition is violated. In the present work, the thin film of thickness hm provides a cut-off

for the divergence of the dissipation, and the no-slip condition gives physically reasonable results.

In the limit x-°°
,
the interface shape is determined by the global hydrodynamics of the vapor and

liquid phases. [4], [1 1] The calculations in this paper will assume that the interface has negligible

curvature far from the contact line. In certain cases, such as a rapidly-growing vapor bubble, there

will be a transition region of high curvature connecting a near-spherical interface in the bulk of the

liquid to a film or "microlayer" of liquid coating the surface. The microlayer is akin to a hydrody-

namic boundary layer and is typically orders of magnitude thicker than the thin adsorbed film of

thickness /?
ro

. Applied to physical cases for which microlayers exist, the calculations of this paper de-

scribe the liquid-vapor interface only for values of h between hx and the start ofthe transition region.

For values of h greater than hx but much less than any characteristic macroscopic length, the shape

of the interface can be described by a set oftwo coupled equations, one for the mass flow and one

for the thermal flow. Provided that the mass flow is sufficiently slow and that the liquid film is suffi-

ciently thin, thermal transport from the surface ofthe plate to the liquid-vapor interface will take place

by conduction through the liquid. Ifthermal transport from the interface into the vapor is dominated

by evaporation, the thermal flux qc from the interface is proportional to a flux Je
of evaporating

molecules. Let I denote the integral over the film thickness of the mass velocity of liquid along the

x-direction,

h

1= fdzp^xiz) , (4)

0

where u is the velocity field ofthe liquid and ft the liquid density. With Je measured in units of mass

evaporated per unit area per unit time, the equation of continuity for the mass flow in steady state is

dJ_

dx
(5)

In the remainder of this section, expressions for I and Je are derived, and the validity of assuming that

conduction dominates the heat transfer is examined.

In the limit dhldx « 1 ,
the thermal conduction is in the z direction and depends only on the local film

thickness h(x ) and the temperature at the interface, 7j (x ) . The heat flux through the film in steady

state is given by
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(6)

_ (T,-fy

where X is the thermal conductivity of the liquid.

The evaporative flux from the liquid-vapor interface, Je ,
can be calculated from kinetic theory. [16]

The flux ofmolecules away from the interface will be equivalent, by detailed balance, to the flux from

a volume ofvapor at temperature T
{
and pressurepx

in equilibrium with the liquid near the interface.

The difference in molecular flux between this hot vapor region and the bulk vapor gives the molecular

evaporation flux:

. a-ipJTP-pJTp)
6

cos 0 (2-KRIM)m
(7)

In Eq. 7, 0 is the local angle between the z axis and the normal to the h(x ) surface, R is the gas

constant, andM is the molecular weight. The evaporation coefficient, a< 1, equals the probability

ofa molecule from the liquid or vapor phase transferring to the other phase after its path intersects

the liquid-vapor interface. Empirically, the value of this coefficient is typically in the range 0.1-1 for

organic liquids, [16], [17], [18] but the experimental determinations of a are in general unreliable

because a depends strongly on the cleanliness of the liquid surface.

There are three phenomena that effect the evaporation flux: the temperature difference between the

interface and vapor, the disjoining pressure, and the Laplace pressure due to the curvature Hr of the

interface. An equation similar to the Kelvin Equation, [19] but with the Laplace pressure replaced by

the sum ofthe Laplace and disjoining pressures, describes the vapor pressure of a curved liquid-vapor

interface subject to a disjoining pressure. For \p{
- pv \

« pv and 1 7]
- Tv \

« 7^ a Unear expansion in

temperature and pressure gives the result

Pi _ Pv 1

y 1/2 1/2 y 1/2
1

i
1
v

dp

~dT IT
CO \ J

(
TrTv\

n

nA
n-X

r (8)

Assuming dhldx «1 ,
r can be replaced by -ifi

2
hldx

2

)

1

,
and the expression for Je

can be simplified

by using the approximation cos 0 ~ 1 . The resulting equation is

J *C (T.-T\-DU(h)-Dy^
ax

c
ajMdT)U-^27-v)1

(2itRT
v
/My0/2

D =
n.

(9)

The interfacial temperature T
x
is determined by the requirement that the heat carried by Je equal the
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thermal flux qc
. Let the superheat 0 and the function g(h) be defined as

T
s
-T^e, T.-T

v = g{h )0 . (10)

The heat carried away by the evaporating molecules is J
e
[L+c

p v
\T

x

-T
v
Jj

,
where L is the latent heat

and c
p v

is the heat capacity ofthe vapor. Neglecting the heat capacity term, which is small for typical

values of 7j - the equation for 7j is

J L = fi-4—
h

( 11 )

Solving for g,

II+Y
( 12)

For film thicknesses much greater than the natural length scale h
Q ,

the temperature drop across the

liquid is a large fraction of the superheat. Consequently, T
x
- Tv « 0, and the rate of evaporation is

small.

An expression for I can be derived by modeling the hydrodynamics of the liquid film. The flow of

liquid through the film is driven by gradients in the pressure of the liquid phase, px,
and by gradients

in the surface tension, y. The vapor phase has a fixed pressure so px
at the interface is determined

by the pressure difference across the liquid-vapor interface:

^L =^+7-n “Pv-Y0-n .
(is)

For small dhldx
, px

can be approximated as a function of x only, with px

{x)=p
{

|

. The velocity field

ofthe flow is found using the lubrication approximation: The flow of liquid induced by gradients in

the pressure is approximated by the Poiseulle flow expected for a slab of liquid ofthe same thickness

as the local thickness h(x )

.

Thermocapillary or Marangoni effects result from transverse forces on the liquid-vapor interface

caused by temperature-induced variations of the liquid-vapor surface tension. Almost all single

component liquids of low molecular weight have surface tensions that decrease with temperature.

Consequently, the surface tension is lowest near the contact line, where the temperature approaches

T
s. The liquid is pulled by the surface tension from the region near the contact line toward the region

of higher surface tension, or from left to right in Fig. 1. Intuitively, this flow will result in a higher

contact angle. The numerical calculations in Section IV confirm this conclusion. Birikh[20] derived

the appropriate boundary condition for a liquid with this additional shear on the interface:
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( 14)

1 dy dT
{ _ @ dy dg

r\dT dx x\dT dx

In Eq. 14, w is the velocity of the liquid, and r\ is the viscosity of the liquid. With this boundary

condition and the boundary condition of no velocity slip at the surface of the plate, the velocity field

is given by:

z
2 dP\ -

u = +z

Qjs
* _h dP\

2r\ dx dz
(15)

The flux of liquid in the x direction is proportional to the integral of u
x
(z )

:

L =
.h

3 dp^h 2®dy dg_^
t

pj
3r) dx 2r\ dT dx

(16)

Inserting the expression for I into the continuity equation, Eq. 5, gives a single differential equation

for the interface profile. It will be convenient to scale all lengths by h
Q ,

to scale velocities by

v
0
-y/3r|

,
and to introduce the dimensionless parameters 6

v ,
60 ,

6
t

,
6
dl ,

and 6^

:

hh
(

,
= h, xh

()
= x ,

* C0 -
6o

E
> 6

t

Piv0

_ 0 dy ~ _ A
=

dT’
dl

=^
CDA

'd2
“ -

3
'

Pivo\

(17)

(18)

The parameters 6
v ,

6@ ,
and 6

t
are dimensionless measures of interface velocity, evaporation rate,

and thermocapillary effects. The magnitude of the disjoining pressure relative to surface tension and

evaporation pressures is characterized by 6
dl

and S
d2 ,

respectively. With these definitions, the main

equation for the interfacial profile in dimensionless units becomes:

d_

dx
h 3 d

3h
+6

3h‘

dx 3 x

2(h+\)

1 -m dh dm

1 +h dx dx
h

dl dh

2nh dx

2 dh 2 1-w
=

(19)

m = d2

6n

:

60/?
3

\ d 2h

dx 2 (20)

Solving this equation and examining solutions with d 2
hlchd - 0 as x - °° gives the dynamic contact

angle. Wayner[9] has derived an equation similar to Eq. 19 and has discussed the behavior of
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solutions to the equation in various limiting cases. In the limit that the superheat is zero, Eq. 19 is

identical to the equation solved by Hervet and de Gennes. [7]

Given the velocity field of the liquid and the temperature distribution as a function ofx and z, the

amount of heat advected by the flowing liquid can be estimated. The net amount of heat per unit time

carried by the liquid into a slab of height h(x), unit width, and thickness Ax is

h

qaAx^J'dzp l

o

dTAc u —Ax
p X

dx
(21 )

Provided that qa « qc for the numerical solutions, the approximation that thermal transport is

dominated by conduction will be valid. The magnitude of qa
relative to q0

is discussed in Section IV

for the solutions to Eq. 19.

IQ. Approximate solutions.

The full equation for the interface profile is too complex to solve analytically. With certain

approximations, though, it is possible to find an analytical solution.

Experimental determinations of contact angle are typically visual methods with spatial resolution no

better than a micrometer. At this length, disjoining pressures are insignificant. Temporarily, the

disjoining pressure will be dropped from Eq. 19 and the resulting equation will be solved in the large

h limit.

A useful result corresponds to the limit v - 0. As a vapor bubble grows from a boiling site, the base

of the bubble often grows quickly in its initial stages, but grows slowly or not at all just before the

detachment of the bubble from the substrate. The limit v - 0 then is physically reasonable.

The evaporation rate can be approximated by first noting that for the range of 6e corresponding to

the calculations shown in Figs. 2-6, m « 1 . A more drastic assumption is that the dynamic contact

angle is determined primarily in the region close to the contact line where h « 1 . Evaluating the

evaporation rate in the limits m « 1 and h « 1 gives J
e
~@X/\Lh

Q
).

With the final assumption that thermocapillary effects are negligible, Eq. 19 can be solved analytically

to get:

W) *
(

46
©)

1/4* In
'x'

1/4

x»x .

(22)

The solution has a form similar to the solution for an advancing meniscus on an unheated plate. [7], [8]

In particular Hervet and de Gennes demonstrated that for flow over an unheated plate, the cut-off

xc is proportional to a microscopic length characteristic of the range of the intermolecular forces. I

expect a similar result for x
c in Eq. 22. The interface slope from this solution is
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(23)
dh

dx

/ \

4S0ln—
x„

1/4

1 +
41n(x/x

c)^

The corresponding dynamic contact angle is

P = tan

where a value for xb must be specified. For large xb , P depends extremely weakly on xb ,
so estimates

of P are possible without knowledge ofthe exact experimental xb values. Because at large values of

h, Je ~ 1//7, the approximate form for / overestimates T
{
and the evaporation rate. Therefore, the

dynamic contact angle as predicted in Eqs. 23 and 24 is expected to be larger than the value predicted

by a full numerical solution ofEq. 19.

(
,
dh

\

dx
\

x
'j

(24)

The dynamic contact angle is not strictly defined in the case when v * 0. Substitution of a solution

of the form h — Ax +/into Eq. 19 gives/ « Ax only for v = 0 and 6
t
= 0. The slope then has an

asymptotic limit ofA for x - °°. In all other cases, the slope has logarithmic corrections at large

values of x.

The equation for the interfacial profile is a fourth-order, non-linear differential equation, so four

boundary conditions are necessary to completely determine a solution. The desired solution satisfies

the boundary conditions d 2
h!dyd - 0 as x - °° and h- hx as x -

In the limit x - the main equation can be approximated by making a linear expansion of h(x)

about h„. Let h = hco +J{x), and substitute this form into Eq. 19 to get:

C -^+C +c /= 0

*dx 4 2
dx 2

1

dx
oJ ’

c -1
35

'

6^
4

2(1 *hj6a6
, C, = - dl 'd2

36
,
6«

©''dl 2nh* 8
dl/C(l+AJ 47t6^4(l +hj (25)

C = C =
36 ,

hi hlil+hj

This linear homogeneous equation has solutions of the form f-^2 </exp(Fx), where k satisfies the

equation '

C
4
k 4+C

2
k 2+C

l
k+C

Q
= 0

. (26)
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In general, k will be complex, and there will be two roots with Re(&) > 0, and two roots with Re(k)

< 0. The boundary condition /?-/?«, as x - requires setting to zero the coefficients for the terms

with Re(£) < 0. This leaves two coefficients to vary to satisfy the remaining boundary condition.

If the roots k are real,/can be written as

f=a
l
exp(k

l
x)+a

2
exp(k

:
x)

. (27)

If the roots k are imaginary, / can be written as

f=a
]

exp{b
l
x)co${b

2
x+a

2) , (28)

where b
x
and b2 are algebraic combinations ofk

x
and k2 . In both cases, a translation in x, x - x+x

t ,

preserves the form ofthe solution but changes the magnitude ofa
x
and a2 . Because the shape of the

interfacial profile will be independent of the location of the x origin, or equivalently the choice ofx
t,

one of the two coefficients can be chosen arbitrarily.

In the following section, the x -» analytic solution, Eq. 27 or 28, is used for all x < 0, and at x =

0 the analytic values ofh
,
dhldx

,
d 2

hlcbd, and d 3
h/dx

i
are used as initial conditions for the numeric

solution of Eq. 19 out to x = xb,
xb » 1. The one independent coefficient ofthe analytic solution is

adjusted so that the interfacial profile determined numerically from x = 0 to x = xb satisfies the

boundary condition d2
hldx

2

\ x
^
= 0 .

TV. Results

Figures 2 and 3 present results for the dynamic contact angle of two liquids used in boiling

applications: water and the refrigerant 1,1, 1,2 tetrafluoroethane (R134a). Water completely wets

only very clean metal surfaces, so the calculated results given here for the dynamic contact angle are

possibly lower limits. Water was chosen in spite of this complication because its fluid properties

differ substantially from those of the fluorocarbon refrigerant and because it is extensively used in

practical applications. The saturated vapor pressure for both calculations was fixed at 100 kPa.

The 6 parameters were evaluated using literature values for the equilibrium properties of water[21]

and using the computer package REFPROP[22] for the properties ofR134a. The Hamaker constant,

A, depends in general on the dielectric response of both the plate and the liquid over a broad

frequency range. From Hough and White, a typical magnitude ofA for a solid-liquid-vapor geometry

is 10‘20 J, and this value was used for both water and R134a. Table I lists the values ofthe parameters

used for each liquid.

For all of the calculations reported, the perturbation J(x=0) has a magnitude less than hJ9. The

numeric calculations were done with a Bulirsch-Stoer differential equation routine, [23] with 64 bit

precision and an accuracy of 10'11
in h and all derivatives. Increasing the accuracy to 10" 13

or varying

the size of/fr) had less than 0.2% effect on the dynamic contact angle. Except where noted, xb = 80.
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The magnitude of the intermolecular forces enters the interfacial profile equation through the

parameters 6 dl and &d2 . To test for the dependence of contact angle on the magnitude ofA, the

contact angles were recalculated for water and R134a using identical 6dl and 8d2 values for both

liquids. As seen in Table I and Eq. 17, this is equivalent to varying the Hamaker constant by

approximately an order ofmagnitude for each liquid. The resulting contact angles are shown by the

dashed lines in Figs. 2 and 3. For these liquids, a change in A by an order of magnitude gives only

a 5-7% change in contact angle at xb = 80. Separate calculations in which the value ofA is increased

to 10' 19
J support these results. Over the range of parameters shown in Figs. 2 and 3, the higher

value ofA gave a -9% to +2% change in contact angle for R134a and a - 16% to - 1% change for

water.

As seen in Figs. 2 and 3, the curves with v > 0 intersect the 6e axis. Ifthe velocity ofthe interface

exceeds the intercept value corresponding to the given value of Se ,
the deposition of a liquid layer

will exceed the rate at which the layer can evaporate. In the particular case of a vapor bubble

growing in a boiling liquid, the vapor bubble will lie above a thin film of liquid ifthe bubble growth

rate is sufficiently high. The formation of these microlayers has previously been described in terms

ofthe hydrodynamics of the complete vapor bubble, but without consideration ofthe interaction of

evaporation and liquid flow within the microlayer. [1 1] Figures 2 and 3 show a characteristic velocity

above which the microlayer will grow. Below this velocity no microlayer will form, and the surface

will dry out to the thickness hm .

Figure 4 shows the long distance behavior of both the interface slope and the ratio of advection heat

flux to conduction heat flux, calculated for R134a at a superheat of 1 K. The d 2
hlcbA boundary

condition was imposed at xb = 160, or in physical units, x
b
=6.5 pm . At large x, the slope varies only

weakly with x. Consistent with the analytic results in Section III, the slope varies least at large x for

the curve with v = 0. The plot of the heat flux ratio confirms that at sufficiently small x values and

sufficiently small interface velocities, conduction of heat through the liquid dominates any heat flow

caused by the transverse velocity of the liquid. Advection is significant only for large values of x, at

which the value of dhlcbc varies only slowly with jc.

The weak dependence of the contact angle on the parameters 6 dl and Sd2 suggests that the contact

angle can be approximately calculated for any liquid with only a knowledge of S„ 6e,
anddv. Figures

5 and 6 present a series ofcurves that give the contact angle as a function of these three parameters.

The Sdl and Sd2 values for these figures are the same geometric averages used for the dashed lines

in Figs. 2 and 3. For any liquid with Sdl and 6d2 values within 2-3 orders of magnitude of the values

listed in Table I, interpolation of the curves in Figs. 5 and 6 will give an estimate of the dynamic

contact angle. The analytical approximation of Eq. 23 is also shown in Figs. 5 and 6 as the dashed

line. The contact angle depends logarithmically on the undetermined cutoff length xc . For an

evaporating liquid, there are three natural length scales characteristic of the intermolecular forces: hm
and two values ofk~

l

that satisfy Eq. 26. The dashed curve in Figs. 5 and 6 arbitrarily uses the largest

value ofk' 1

for xc . The analytical approximation agrees with the S
t
/Se = 0 curve to within 30%, and

as expected gives values ofdhldx that are too large.
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The accuracy ofthe calculations is difficult to estimate. The equations are correct only to first order

in the slope dh/dx, so certainly there are errors in the dynamic contact angle of order (dh/dx)
2

. For

example, the cos 0 term in Eq. 7 has been set to unity, and this will give an error of a factor of 1.4

at dh/dx = 1

.

Uncertainties in the materials parameters will also lead to uncertainties in the contact angles. The

most serious uncertainty is in the evaporation coefficient, which is difficult to measure with even a

factor of 10 certainty for such simple liquids as water. Referring to Fig. 5, a factor of 10 decrease

in the evaporation coefficient can decrease the contact angle by as much as a factor of 2-3.

Experimental measurements ofdynamic contact angle in boiling liquids are difficult to compare with

the theoretical results both because there is a great deal of scatter in the experimental results and

because the experimental values correspond to a regime where the assumption dh/dx « 1 is not clearly

valid. A further difficulty is that the experiments cannot distinguish between a liquid-vapor interface

that merges into a microlayer several micrometers thick and an interface that merges into a nominally

"dry" solid surface, where the adsorbed liquid has a thickness ofonly h„ . The theoretical calculations

hold only if the contact angle is observed in the region where h{x) thins down to h„.

For water, measurements ofthe dynamic contact angle of the interface include the results: P = 52°

to 72° for a superheat of 10 K,[4] p = 35° to 47° for superheats in the range of 6.2 K - 9.4 K,[12]

and P = 30° to 47° for superheats in the range of 15 K to 26 K.[2] The present calculations give

results 50-300% below these values: p = 19° for a superheat of 6 K and P = 30° for a superheat of

24 K at zero interface velocity. Han and Griffith[4] also observe larger apparent contact angles for

an interface receding at a higher speed, contradicting the theoretical predictions of smaller contact

angles for interfaces receding at higher speeds.

The agreement for refrigerants is better. Kedzierski[24] has recently measured the dynamic contact

angles ofthe vapor bubbles formed during boiling of the refrigerants R1 1 and R123 on quartz. The

contact angles measured for many bubbles were found to be p = 3 1
° ± 6° for R1 1 and p = 36°±5°

for R123 at superheats of approximately 25 K. These numbers agree within approximately 50% with

the theoretical results for R134a, which has similar fluid properties: P = 38° for a superheat of 12 K,

and P = 45° for a superheat of 24 K.

V. Conclusions

The calculations of this paper clarify how a wetting liquid can have an apparent non-zero contact

angle on a heated plate. The interface shape is determined primarily by three parameters, 6^ 6e ,
and

6„ proportional to the interface velocity, the evaporation rate, and the thermal coefficient of the

surface tension, respectively. At low superheats, the interface velocity term controls the contact

angle. At intermediate superheats, the dynamic contact angle is a slowly varying function of

superheat. At high superheats, thermocapillary effects may cause a significant rise in the dynamic

contact angle if dy/dT is large. The dynamic contact angle depends on the strength of the

intermolecular interactions with the substrate only very weakly.
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Theoretical values for the dynamic contact angle agree with experimentally observed values for

refrigerants, but not for water. It may be necessary to include the non-wetting of water on most

practical boiling surfaces for better agreement between experiment and theory. For the high values

ofthe contact angle seen in boiling liquids, the accuracy of the theory is limited by the assumptions

that the interface slope is small and that the thermal transport is in steady state.

The analytical approximation for the contact angle given by Eq. 23 agrees with the numerical

calculations to within approximately 30% for cases where thermocapillary and interface velocity

effects are small.
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Table I. Values ofthe parameters used in Eq. 18 for Figs. 2-4. The "average" row gives approximate

geometric averages of 6dl
and &d2 for the two pure fluids.

liquid 5
t
/5e 0/6e

(K)

v/6
v

(m/s)

h
o

(nm)

water 1.58xl(T 5 8.03X10’ 11 75.3 2.29xl04 69.5 103.

R134a 3.82xl0'4 8.85xlCT 8 14.3 1.47xl03 13.0 40.5

average 8.0xl0' 5 9.0xl0‘9 - - - -
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Figure Captions

Figure 1. Schematic of a liquid wedge on a heated surface. The equation for the wedge shape is

solved analytically for negative x and numerically for positive x. In the limit x-*-°°, the liquid

thickness approaches the constant value . A positive interface velocity corresponds to a receding

contact line moving to the right. The interface shown is a plot of a numerical solution to Eq. 19 for

R134a at zero interface velocity and a superheat of 1 K. The total width ofthe x axis is 97 nm, and

the total height of the z axis is 1 5 nm.

Figure 2. Interface slope as a function of superheat for water at a saturated vapor pressure of

1 00 kPa. The filled circles indicate values for the slope at xb = 80, obtained from numerical solutions

ofEq. 19. The solid curves are guides to the eye. The dashed lines correspond to calculations that

use identical values for the parameters Sdl and Sd2 for both water and R134a.

Figure 3. Interface slope as a function of superheat for R134a at a saturated vapor pressure of

100 kPa.

Figure 4. Interface slope and the ratio of advection to conduction heat flows, as a function of x. All

of the curves are calculated for R134a at a superheat of 1 K and a vapor pressure of 100 kPa. For

this figure only, xb = 160.

Figure 5. Interface slope as a function of the scaled parameters 6/Se , 6^ and 6e . The solid curves

are smooth curves that pass through the numerically calculated values of the slope at xb = 80. The

dashed curve is the analytical approximation described by Eq. 23, with the inverse of the cut-off

length equal to the smallest root of the linearized equation, Eq. 26.

Figure 6. Magnification of Fig. 5.
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