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Abstract

In previous work, we found approximate solutions for paraboloids having pertur-

bations with four-fold axial symmetry in order to model dendritic growth in cubic

materials. These solutions provide self-consistent corrections through second order

in a shape parameter e to the Peclet number - supercooling relation of the Ivantsov

solution. The parameter e is proportional to the amplitude of the four-fold correc-

tion to the dendrite shape, as measured from the Ivantsov paraboloid of revolution.

We calculate e by comparing the dendrite tip shape to the portion of the equilibrium

shape near the growth direction, [001], for anisotropic surface free energy of the form

7 = 7o[l + 4t4 + riy + n^)\, where the rq are components of the unit normal of

the crystal surface. This comparison results in e = — 2e4, independent of the Peclet

number. From the experimental value of 64, we find e ~ —0.011, in good agreement

with the measured value e ^ —0.008 of LaCombe et al.

PACS: 81.10.Aj, 64.70.Dv, 66.10.Cb, 81.10.Mx

Keywords: dendritic growth, supercooled liquids, non-axisymmetric dendrites, Ivantsov re-

lation, anisotropic surface free energy
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1 Introduction

In a previous paper [1] we calculated the correction to the relationship between the Peclet

number P and the dimensionless supercooling, S
,
for a non-axisymmetric isothermal dendrite

growing from a pure supercooled melt. For four-fold axial symmetry, the dendrite shape in

cylindrical coordinates (r, 0, z) is of the form

z

P

1

2
- cos 40 a(P) + I3(P) + 0 {€

3
), (

1
)

where the shape parameter e represents the amplitude of the four-fold perturbation to the

axisymmetric paraboloid, and p is the radius of curvature of the dendrite tip. Specifically,

P = Vp/2k and S = Cy(TM — T00)/Ly, where V is the dendrite growth speed, k, is the

thermal diffusivity of the melt, cy is heat capacity per unit volume, Ly is the latent heat per

unit volume, TM is the melting point, and is the far-field temperature of the supercooled

melt. The corresponding correction to the P-S relation is found to have the form

5 = PepE1 {P ) + f5 (2) (P) + 0(e3
), (2)

Zj

The specific dependence of the coefficients a and /3, and the correction S^, on Peclet number

are worked out in detail in Ref. [1]. Here, the function E\ is the exponential integral [2],

For e — 0 this yields the well-known result of Ivantsov [3]. Other researchers have also noted

that the first-order term proportional to r
4 cos 40 is consistent with an isothermal solution

that lias been employed in microscopic solvability theory [4-7].

Based on the experimental measurements of LaCombe et al [8], for succinonitrile (SCN) at

P ~ 0.004, we estimated a value of e « —0.008, with the convention that 0 = 0 corresponds

to the [100] direction. The corresponding correction to S was about a 9% increase, in general

agreement with the experimental results [8-10].

In this paper, we estimate the shape parameter e theoretically on the basis of a simple

idea, namely, that the shape of the isothermal but anisotropic dendrite tip is approximately

the same as a portion of the equilibrium shape of an isothermal body with slightly anisotropic

surface free energy. For a cubic crystal, such as SCN, we assume a surface free energy 7(n)
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of the form

7 = 7o[1+4e4 (n
4 +n4 + n4

)], (3)

where 70 and e4 are constants, and n = (nx ,ny ,n z )
is the unit normal of the crystal surface.

This corresponds to the leading order expansion of 7 in spherical harmonics compatible with

cubic symmetry; the next non-vanishing term is of sixth degree in n. In the subsequent

analysis, we will assume |e4
|

<C 1 and neglect all higher order contributions of c4 [
11

,
12 ]. We

note that the equilibrium shape is a closed convex body in a strictly isothermal environment,

whereas our dendrite model
[
1

]
corresponds to a semi-infinite body with an isothermal surface

that is growing from a non-isothermal melt. For small supercoolings, however, we expect

the dendrite tip shape to be similar to the portion of the equilibrium shape near the growth

direction, which is [001] for SCN.

2 Analysis

It is well-known that for small anisotropy, the equilibrium shape is geometrically similar to

a polar plot of the surface free energy [12-15]. Thus the equilibrium shape can be written

in the form

R
= 1 + 4e4 cos

4 0 + sin
4 0 - cos 4T

4
+ 0(\c4

\

2
), (4)

where rs is the position vector of the equilibrium shape, rs = |rs |,
RTs a constant scale factor,

and 0 and 4> are the spherical angles of the unit normal, so that n = (sin 0 cos <F, sin 0 sin T, cos 0 ).

Furthermore, to first order in the anisotropic term, 0 and 4> can be replaced by the angles

9 and 0 that specify the orientation of the vector rs . Thus a polar plot of the equilibrium

shape has the form

rs {0,(i>)

R
1 + 4ca cos

4
9 + sin

4
9

[ ^ ^
cos 40 + o{\e4 \

2
). (5)

We proceed to write this expression in terms of cylindrical coordinates to compare with
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Eq. (1). Using rs — y/r2 + z2
,
cos 6 — z/y/r2 -\- z2 and sin 6 = r/y/r2 4- z2

,
we have

y/r^+z2

R
= 1 +

4e.i

(r2 + 22
)

2
+ r

4

( ^
+ - cos 40 + 0(|c4

|

2
). (

6
)

Near the [001] direction, \r/z\ -C 1, so we can expand Eq. (6) to obtain

— = 1 + 4e4 - (1 + 12e4 )
— (1 — 36e4 ) + e4— cos 40 + 0(|e4

|

2
,
(r/i?)

6
) (7)

In order to compare Eqs. (1) and (7), we first recognize that the origin of 2 is arbitrary, so

that the constant terms may be ignored. Multiplication of Eq. (7) by R/

p

and comparison of

the term in r
2 with the corresponding term in Eq. (1) shows that R = p( 1 + 12e4 ) + 0(|e4

|

2
).

Then comparison of the terms in cos 40 yields our central result,

e — — 2e4 + 0(|e4
|

2
). (8)

We note that the the axisymmetric term proportional to r
4

in Eq. (7) has no counterpart

in Eq. (1). This arises because the equilibrium shape is a closed convex body, whereas the

dendrite is a semi-infinite body. The closure of this equilibrium shape is described properly

by Eqs. (4)—(6) ,
but is lost once one resorts to the expansion in Eq. (7).

3 Discussion

The anisotropy of the surface free energy for SCN has been measured by Glicksman and Singh

[11] and Muschol et al. [12], resulting in e4 = 0.0055 ± 0.0015, which from Eq. (8) yields

e = —0.011 ± 0.003. This compares favorably with the direct measurements of LaCombe et

al. [8] which result in e « —0.008. Note, however, that the experimental determination of e is

based on measurements of the dendrite shape for distances of up to ten tip radii from the tip,

whereas our comparison to the equilibrium shape is only valid within a fraction of a tip radius

from the tip. Another theoretical estimate of e has been made by Brener et al. [6,7] based

on microscopic solvability theory, and, in our notation, results in |e| = 1/48 « 0.02, which is

about a factor of two larger than the experimental value. Their result is independent of e4 .
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By means of numerical computations based on a phase-field model, Karma and Rappel [16]

calculated a shape anisotropy for S = 0.45 and an effective surface free energy anisotropy of

0.0066, resulting in |e| = 0.019, close to the value of Brener et al. Karma and Rappel find

that |e| increases for larger values of the effective anisotropy.

A value of e4 = 0.025 has been measured for pivalic acid [12]. This anisotropy is about

five times larger than that of SCN. No measurements of the actual shape anisotropy are yet

available, but we caution that this value of e4 might be too large for our expansion to be

valid. One could, however, extend the equilibrium shape to higher order in e4 ,
which would

also delineate the range of validity of the linear expansion.

Note that the value of e given by Eq. (8) is independent of the Peclet number P. This

is supported by preliminary measurements by LaCombe [17] over a limited range of super-

coolings. Accordingly, in Fig. 1 we plot the value of S from Eq. (2) for e = —0.008. For the

smaller values of P in the figure, our corrections to S are too large for our expansion in e to

be valid, resulting in a nearly vertical curve near P = 0.001. In the range 0.004 < P < 0.01,

our results resemble the experimental values measured by Koss et ah, which also lie slightly

below the Ivantsov curve (see Fig. 6 of Ref. [9]). For P much below 0.004, the experimental

data actually lie above the Ivantsov curve, possibly due to the effects of finite container size

and/or convection [18,19]. Thus, the effects of non-axisymmetry versus those due to finite

container sizes and/or convection tend to affect S in an opposing manner.
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Figure 1: The Peclet number P as a function of dimensionless supercooling S
for shape parameter e = —0.008 (solid curve) and e = 0 (dashed curve); the

dashed curve corresponds to the Ivantsov solution.
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