
NISTIR 6346matical and
A 11 10 5 asstao .

. ; |

, ... K jtational

Sciences

Division

iPB/fSKL

S.

\

Information Technology Laboratory

Triangulation-Based Ll-fitting of Terrain

Surfaces

J. Bernal and C. Witzgall

June 1999

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards and Technology

Gaithersburg, MD 20899

UC

100

.U56

110.6346

1999

Triangulation-based l^-fitting

of Terrain Surfaces

Javier Bernal

Christoph Witzgall

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Mathematical and Computational

Sciences Division

Gaithersburg, MD 20899, U.S.A
1

1
Partially supported by

DARPA/TEC MIPR 97-5039

June 1999

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Gary R. Bachula, Acting Under Secretary

for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Director

Triangulation-based Li-fitting of Terrain

Surfaces

Javier Bernal and Christoph Witzgall

National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, U. S. A.

1 Partially supported by DARPA/TEC MIPR 97-5039

Abstract. Given a planar triangulation, the goal is to select elevations at its vertices so that result-

ing piecewise-linear triangulated surface approximates specified elevations using the Li-norm as the

primary measure-of-fit. Several suboptimal algorithms relating to that problem have been devised

and implemented, and are described here, as part of TIN prototype software for terrain modeling

in the context of distributed simulation as well as elevation data editing. L \ -approximation acts

as a median filter and thus provides advantages for “bare earth” representation. For added flexi-

bility, a “sign-oriented scaling” scheme has been developed, which generalizes standard norm-based

measures-of-fit. L \ -approximation is either tackled directly or by iterating suitably weighted L2
-

approximations. Numerical experiments are reported.

Key words, bare earth, distributed simulation, Li-approximat,ion, ./^-approximation, linear pro-

gramming, median filter, terrain surface modeling, TIN, triangulation

1. Introduction

“Triangulated irregular networks (TINs)” are playing an increasingly prominent role in mod-

eling terrain surfaces for purposes such as animation, distributed simulation, and geodetic

volumetries (e.g. [3]). Typically, there is a rectangular map area together with a set R of

location points p — (xp ,yp)
on that map each with elevation zp . Terrain is to be modeled as

a surface based on those elevation data.

A triangulated, irregular network is a planar triangulation which arises as the footprint of a

triangulated surface z = z(xpy), that is, a piecewise linear surface consisting of flat triangles

joined continuously together in space. That surface is referred to as TIN-surface. Under

triangulation
,
we understand any covering of the map by triangles such that the triangle

interiors do not overlap and any two triangle edges which meet in more than one point are

identical.

Typically, the vertices of the triangulation have previously been selected as critical points

based on “greedy” criteria. We denote the set of those vertices by S. The TIN surface

z = z(x,y) is uniquely determined by the elevations zs at the critical points s =
(
x s ,ys) E S

and the footprint triangulation, the TIN'. Indeed, the elevations at the three corners of any

triangle in the TIN uniquely determine a plane through the corresponding elevation points

and, therefore, a triangle in space.

The object then is to approximate given elevation data by a TIN surface - as accurately as

possible with the number of triangles in the TIN not exceeding a prescribed upper limit, the

“budget”. Such restrictions are necessary, for instance, to meet the high speed requirements

of real-time visualization.

1

Generally, there are two aspects of this optimization. The first is the selection of the TIN

itself, that is. of the critical points and their triangulation. The second is to assign elevations at

those critical points so as to optimize some measure-of-fit to the given elevations while keeping

the triangulation fixed. This work is concerned with that second aspect of optimization.

There are different measures-of-fit in general use to assess the accuracy of such an ap-

proximation. Most are based on the notion of a residual at each given elevation location

V = (iP , yP) e R ,

Tp — Zp Zp z{Xp , IJp)

,

where zp denotes the elevation z(xp ,yp)
which the TIN surface assumes at location {xp,yp).

Two commonly considered measures-of-fit are the maximum deviation

MAX = maxpe fl|rp |

and the root mean square

RMS
peR

where \R\ is the number of elevation locations. Both quantities relate to norms of vectors.

MAX is an instance of the

Loo ~ norm
,

also called Chebychev norm. RMS is a scaled version of the

L2 — norm

or least-squares norm.

There is, however, a problem with L2
- and, in particular, with Loo-norms, in that outliers

among the elevation data caused by terrain artifacts such as rocks, single trees and bushes,

as well as processing artifacts, distort the shape of the TIN surface - make it conform less to

bare earth during the process of selecting elevations at critical points. In some approaches,

the selection of a norm may also affect the construction of the TIN itself.

Those drawbacks of the commonly considered norms have led the authors to consider the

Li — norm

as a measure-of-fit for terrain surface approximation because it is more robust with respect

to artifacts, and may even be used for their detection (see [4]). The Li-norm is defined as

2

the sum of the absolute values of the residuals. One might actually prefer the mean absolute

deviations

MAD
1

W\
E K
p£R

Note that the elevation 2: = z(x,y) of the TIN surface at any map location {x,y) is a

linear function of the critical elevations zs ,
s G S. Consequently, the residuals rp , p £ R

are also linear functions of the critical elevations. For this reason, the Li-approximation

problem is a linear programming problem, and the /^-approximation problem is a linear least

squares problem. The connection between Li-approximation and linear programming is well

established (e.g.
[
1

]
)

.

More precisely, 2 = z[x
, y) is a linear combination of three elevations

zs\i zs 21 zs3 i

which belong to vertices si, S2 ,
S3 of a TIN triangle containing location

(
x,y). The coefficients

of that linear combination,

z
i
x,y) — X\ZSl + ^2As2 + A32S3 ,

are the barycentric coordinates of location (x, y) with respect to s* = (xSi ,ySi), i — 1, 2, 3 and

are defined by

x = X 1x Sl + X2x S2 + X3x S3

V — Aiysx + X2yS2 + ^3yS3

1 = Ai + X 2 + A3.

The barycentric coordinates assume values between 0 and 1 since the location (x, y) lies in

the triangle in question. The barycentric coordinates play a major role in approximation by

triangulated surfaces.

While linear programming problems are well understood and excellent solution methods

exist even for large numbers of variables, the Li-approximation problem considered here typ-

ically exceeds the size that can be handled by those methods. Suboptimal solution methods

were, therefore, developed. Straight /^-approximation, however, can be solved fully optimally

on an iterative basis described below.

One method of elevation optimization with respect to a specific measure-of-fit, is

vertex — based elevation optimization.

With any critical point - vertex in the TIN we associate the union of all triangles in the

triangulation which contain that vertex, calling it the star of that critical point. The star is a

3

simply-connected polygon bounded by the edges between adjacent “neighbor” vertices of the

critical point that centers the star.

We will require the triangulation to be

star — complete
,

that is, every star in the triangulation contains at least one elevation location (.xp,yp), p G R
in its interior. Without this condition, the elevation at the center of an empty star could be

chosen arbitrarily without affecting any of the norm-based measures-of-fit considered here. In

that sense, the approximation problem would be ill-defined.

A single step of a vertex-based iteration then consists of adjusting the elevation at the

center of a star so as to minimize the norm of choice of the residuals in the interior of the

star while keeping the elevations at all other vertices fixed. Each vertex elevation is adjusted

in turn in a pass through all critical points. Such a pass is then repeated iteratively until the

resulting improvements become acceptably small.

For Li- and L2-norms, the basic vertex-based optimization step can be executed readily

in closed form. In the L2 case, a convex quadratic of one variable has to be minimized. In the

Li case, minimization of a piecewise linear convex function of one variable is required. This

task is equivalent to determining a suitably weighted median of the breakpoints.

In the case of the L2-norm, furthermore, it can be shown that the vertex-based iterative

procedure converges to the true optimum (e.g. [2]). That, however, does not hold in the case

of the Li-norm. For this reason, two additional algorithms for Li-optimization have been

developed in order to improve the degree of optimality that can be achieved.

The first of those algorithms is

edge — based elevation optimization
,

where the basic step is to L\ -optimize the elevations at the two end-vertices of a triangulation

edge simultaneously while keeping the elevations at all other vertices of the triangulation fixed.

That local optimization problem turns out to be a special linear programming problem, and

a special algorithm has been designed to solve it.

The second algorithm utilizes the fact that, for p G R,

r
v (Zp ~ Zp)

—
1

- 1
' II 1 — K\

l

rpl 1

Zp Zp
\

to formulate a

residual — weighted L2 — procedure

for Li-approximation. Roughly speaking, we start the ^-approximation with equal weights,

and adjust these weights as we proceed on the basis of observed residuals. The challenge here

4

is to handle the cases of very small residuals which result in very large weights. There is also

the question how far to iterate the L2 procedure before updating the weights. Our current

approach is to adjust weights after one L2
-pass through the vertices of the triangulation.

Both algorithms are still suboptimal and, as the numerical results presented in this report

show, best results so far have been achieved by alternating both algorithms. We know that

these results are suboptimal, because it is well known that, for any fully optimal solution of

any L x approximation problem, the number of

sharp

elevation location points (fp , yp) € R
,
that is, points for which zp — zp ,

and which are thus

represented exactly by the TIN surface, essentially equals the number of degrees of freedom

provided by the optimization parameters. Here that number is the number |5'\S"| of nonfixed

critical points. For our best results, the number of sharp points does not quite reach that

goal.

The algorithms and routines described here were devised and developed in the context of

particular applications to terrain modeling. For these applications, the bulk of the elevation

data points were provided as regular grid points with square unit cells covering a rectangular

map exactly. A set S' of optional additional elevation points - “
feature points” - were also

specified with the proviso that they be included into the set of critical points S and that their

given elevations are not to be changed. If such a feature point happens to be located on the

grid, then its given elevation takes precedence over the specified grid elevation. Furthermore,

all critical points other than feature points had to be grid points. This ensured that all

corresponding stars were complete, as defined above, because their respective center vertices

are elevation points. In addition, the specified grid elevations at such critical points provided

good initial values for iterations.

For the purpose of identifying terrain artifacts, it is useful to generalize L x approximation

by scaling residuals differently depending on their sign. Our software thus includes an option

to assign scale factors u > 0 if rp > 0 and v > 0 if rp < 0. We call that option

sign — oriented scaling.

If, for instance, the object is to identify artifacts above bare earth, then one would scale

positive residuals lower than negative residuals. That would reduce the influence of artifacts

above bare earth on the construction of the TIN surface. Those artifacts will then show up

more clearly if the data are compared to the latter. Sign-oriented scaling can be specified for

any norm.

The algorithms reported here are as follows. For quantities not defined earlier, we ask the

reader to refer to the detailed descriptions provided later.

L2FIT(i?, 5, S', T, F, Z, Z, n, tol)

5

is a vertex-based iterative procedure for L2-approximation. It is known to actually converge

to the optimum. It has been in use as a post-optimization option in the prototype NIST TIN
package for several years.

L1FIT1(jR, S, S', T, F, Z
,
Z, n, tol

,
npmax

,
u, v

)

is a vertex-based iterative procedure for Lr-approximation featuring sign-oriented scaling. It

is suboptimal. It was the first L\ procedure to be considered.

L1FIT2(.R, S, S', T
,
F, E

,
Z, Z

,

n, tol
,
npmax

,
w, f

)

is an edge-based iterative procedure for Li-approximation featuring sign-oriented scaling. It

is suboptimal but achieves results that are closer to optimality than the vertex-based version.

It was the second L\ procedure to be considered.

L1FIT3(.R, S, S', T
,
F

,
Z, Z, n, tol, npmax

,
u, v, wscl)

aims to achieve an Li optimum by iterating a residual-weighted vertex-based L2 procedure.

Sign-oriented scaling is included. The procedure is still suboptimal but by itself achieves a

higher degree of optimality than the previous procedure.

Comparative numerical results are reported for Li-approximation of a representative set

of terrain elevation data without feature points and without sign-oriented scaling. As was

mentioned earlier, best results were found when procedures L1FIT2 and L1FIT3 were alter-

nated. We feel that those results are close to optimal, particularly, because the number 19558

of sharp points approaches the number 20000 of critical points.

2. Numerical results

The procedures presented here for computing approximate L\ solutions have been imple-

mented at NIST. They were applied to a terrain data set consisting of a regular grid of

229,761 (521 x 441) points with square 25 x 25m unit cells covering a rectangular 11 x 13km
map. A triangulation of 20,000 critical points - selected from among the grid points and

covering the map - was also given. None of the critical points were feature points with fixed

elevations, so S' = 0. Sign-oriented scaling was not used, so u — v = 1.

Table 2.1, Table 2.2, and Table 2.3 show some numerical results obtained when the vertex-

based procedure, the edge-based procedure, and the L2 with weights procedure, respectively,

were used on the test problem. Table 2.4 shows some numerical results obtained when the

edge-based procedure was used on the test problem after 300 passes through the vertices by

the L2 with weights procedure. In all cases, where it applies, variable tol was set to 6.058e-04,

and variable wscl to 1.05. Given an integer i, 1 < i < n, where it applies, E(i) was set to the

6

pass CP Usee objective residual tolerance MAX residual # sharp points

1 121.9 2508140.342 158.750 14976

2 121.6 2466989.055 158.750 15015

5 121.2 2461191.750 155.750 17990

10 121.2 2460970.594 155.750 18604

20 121.1 2460872.057 155.750 18638

30 121.2 2460863.037 155.750 18639

50 121.2 2460857.512 155.750 18637

75 121.9 2460852.957 155.750 18639

100 121.8 2460850.886 155.750 18640

125 121.8 2460848.991 155.750 18644

150 121.8 2460847.192 155.750 18649

Table 2.1: Results for vertex-based procedure L1FIT1

point in S which was the first point in the data structure of the implementation that was an

endpoint of an edge in T for which F(i) was the other endpoint.

In all tables, the first column gives the sequence number of the particular pass. The second

column displays its CPU running time in seconds. The third column contains the value of

the objective function at the completion of the pass. Where applicable (Table 2.3), the fourth

column contains the value of the residual tolerance used during the pass. The fifth column

contains the maximum of the absolute values of the residuals at the completion of the pass.

The last column contains the number of sharp grid points at the completion of the pass, i.e.

the number of residuals whose absolute values were less than 0.01 at the completion of the

pass.

We note that the numerical results in Table 2.1, Table 2.2, and Table 2.3 seem to indicate

that the edge-based procedure works better than the vertex-based procedure, and that the Z/2

with weights procedure works better than the edge-based procedure. However, the results in

Table 2.4 seem to indicate that using the edge-based procedure after the execution of the L2

with weights procedure is a better approach.

7

pass CPUsee objective residual tolerance MAX residual # sharp points

1 558.4 2476235.062 158.750 15552

2 566.4 2460725.514 155.750 16867

5 555.0 2457409.175 155.750 18986

10 554.6 2457036.057 155.750 19573

20 558.8 2457001.234 155.750 19683

30 554.9 2456996.365 155.750 19649

50 561.0 2456984.264 155.750 19595

75 554.5 2456977.839 155.750 19552

100 551.4 2456973.258 155.750 19536

125 558.9 2456969.810 155.750 19505

150 552.5 2456966.380 155.750 19494

Table 2.2: Results for edge-based procedure L1FIT2

pass CPUsee objective residual tolerance MAX residual # sharp points

1 121.5 2588582.203 146.825 121.619 268

5 121.5 2557018.183 120.793 126.196 280

10 122.3 2556963.799 94.645 129.640 278

20 122.1 2554668.834 58.104 135.601 282

30 122.1 2542027.536 35.671 137.130 279

50 122.0 2499697.025 13.444 142.532 262

75 122.0 2469877.300 3.970 150.890 321

100 121.9 2460298.750 1.172 154.523 446

125 121.9 2457317.776 0.346 155.564 900

150 121.9 2456400.229 1.022e-01 155.702 2117

175 121.9 2456122.316 3.019e-02 155.737 6701

200 121.9 2456038.092 8.915e-03 155.745 18046

225 121.9 2456015.632 2.633e-03 155.749 18589

250 121.9 2456013.435 7.774e-04 155.749 18631

275 123.1 2456013.310 6.058e-04 155.749 18603

300 122.2 2456013.128 6.058e-04 155.749 18584

Table 2.3: Results for L2-based procedure L1FIT3

8

pass CPUsec objective residual tolerance MAX residual # sharp points

1 545.8 2455998.827 155.748 19161

2 553.8 2455994.372 155.748 19318

5 537.3 2455988.608 155.750 19545

10 539.4 2455987.781 155.750 19580

20 539.8 2455987.481 155.750 19576

30 539.9 2455987.377 155.750 19578

50 547.7 2455987.331 155.750 19570

70 540.8 2455987.276 155.750 19569

150 539.7 2455987.265 155.750 19558

Table 2.4: Results for edge-based L1FIT2 after L1FIT3

3. The 2-dimensional L\ fitting problem

Let R be a regular grid with rectangular cell units covering a rectangular map in the plane.

Let S be a finite set of critical points in the map that contains the four corners of the map,

and let T be a triangulation for S. Let S' be the set of feature points, that is, of critical

points with prescribed fixed elevations. For each grid point p in R assume that an elevation

zp is associated with p. Given p in R
,

let f be a triangle in T that contains p, and define

Si(p), i = 1,2,3, as the points in S that are the vertices of t. Given p in R
,
define Ai(p),

i = 1,2,3, as the barycentric coordinates of p relative to T so that p equals \{p) si{p)

and 0 < X
l (p) < 1 for each i, i = 1, 2, 3. For each point s in S' assume that an elevation zs is

associated with s. We search then for a set of elevations {zs : s £ S \ S'} so that the following

function is minimized:
3

/G I

Zp ~ ^2 ^i^P) ZSi(p) I-

p£/? i— 1

More generally, given u
,
v > 0, and if for each p in R we let zp equal Y2=i ^i(p)zs l (pp we

search then for a set of elevations {zs : s G S \ 5'} so that the following function is minimized:

(3.i) « E E
PG.R+ peR~

where R+ = {p G R : zp — zp > 0} and R~ = {p E R : zp — zp < 0}.

9

4. The 2-dimensional L2 fitting problem

Of related interest is the quadratic version of the problem. Here we search for a set of elevations

{:s : s € 5 \ 5'} so that the following function is minimized:

3

(4.1) ^2 (
ZP — ^2 ^i(p) zsi{p))

p£R i= 1

Since this function is quadratic it has a unique minimum point which is the point at which

its gradient equals zero
[
2].

Given a point s in S we define the star of s as the union of the triangles in T that have s

as a vertex, and denote by Rs the set of grid points that it contains.

For a fixed point s in S’, we assume without any loss of generality that for each point p in

Rs, si(p) equals s. Under this assumption the partial derivative of Function 4.1 with respect

to zs is

2
(
ZP ~ A 1 (p)zs

- A2 {p) zs 2 (p)
- A3 {p)zS3(p)){-^l{p))-

pERs

Setting this partial derivative to zero we are then able to solve for 2S and obtain

z8 = {'52{zp~ A2 {p)zS2
(P)

~ h{p) zs3 (P))^i{p))/ J2 (
X i(P))

2
-

p£Rs pERs

The following iterative procedure, which is based on the above formula, can be used for

computing the minimum point of Function 4.1. That it terminates in a finite number of steps

follows again from the fact that Function 4.1 is quadratic [2], Here we assume that there are

n points in 5, n a positive integer, and that the n points are ordered in some fashion. A
one-to-one function F from {l,...,n} onto S is defined by setting F(i) to the i

th point in

S for each i, i = 1 , . .
.

,

n. A real-valued elevation function Z with domain S is defined by

setting Z(s) to 2S for each s in S', and to zs otherwise. At the end of the execution of the

procedure Z will contain the minimum point. Another real-valued elevation function Z with

domain R is defined by setting Z(p) to zp for each p in R. The procedure, called L2FIT,

requires an input variable called tol which must be set to a positive number and is used as

a tolerance or adjustment constant during the execution of the procedure. Two procedures,

called STARGRIDPOINTS and BARYCENTRIC are used as primitives in L2FIT. Given

integer i, 1 < i < n, with F(i) G S \ 5', for some positive integer m, STARGRIDPOINTS
locates points G(j), j = 1 , . .

.

,

m, that are the points in Rp(i). Given an integer j, 1 < j < m,

BARYCENTRIC locates a triangle in T with F(i) as a vertex that contains G(j), identifies

the other two vertices Q 2 , Q 3 of the triangle, and computes the barycentric coordinates Rfi,

W2 ,
IU3 of G(j) relative to the triangle so that G(j) equals W\ F(i) + W2 Q2 + W3 Q3 .

The outline of the procedure follows.

10

procedure L2FIT(R, S, S '
,
T, F, Z, Z, n, tol

)

begin

flag := 0;

while (flag = 0) do

begin

flag := 1;

for z := 1 until n do

begin

if (F(z) E S \ S') then

begin

(G, m):=STARGRIDPOINTS(F(«), R, T);

numerator := 0.0; denominator := 0.0;

for j := 1 until m do

begin

(Q2 , Qs, WY, VF2 ,
VF3):=BARYCENTRIC(T, G(j), F(t));

numerator := numerator

+

(Z(G(j)) - W2 Z(Q2)
- W3 Z(Qs)) Wu

denominator := denominator + (VFi)
2

end

zneie := numerator/denominator]

if
(I
Z(F(i)) — znew |> tol

)
then

begin

flag := 0;

Z(F(i)) := zneu>

endendendendend

5. Vertex-based iterative procedure for L\ approximation

An approach similar to the one in the previous section can be used for obtaining approximate

solutions to L\ fitting problems. Given s in S \ Sf for each point s in S \ {s} we assume that

an elevation is associated with s. We search then for an elevation so that the function

3

yi i% ~ \ (p) zsi(p

)

i

pGR i=

1

is minimized.

11

More generally, given u
,
v > 0, we search for an elevation so that the function

3 3

U Z (
ZP
~ Z Xl{P) ZSi(p)) -V (M

~ E Xi(P) ZSr(p))
p<Etf+ J=1 pGR- i= 1

is minimized, where

i?
+ = {p € R : ip - Ei=i Xi{p)zsi(P)

> 0} and R~ = {p G R : zp - £-= i
Ai(p)25 i (p)

< 0}.

Assume without any loss of generality that for each point 79 in Rs , Si(p) equals s, and for

some positive integer m, let pj, j = 1, . .
.

,

m be the points in Rs . The above problem is then

equivalent to searching for an elevation zs so that the function

m
(5.1) Y. Wj\Zpj - A 1 (Pj) zs

- A2 {Pj) z82 {pj)
- X3 (Pj)zS3 (Pj)\

j-

1

is minimized, where Wj equals u if z
Pj — Xi(pj)zs — A2 (Pj)zS2 (Pj)

— A 3 (Pj)zS3 (Pl)
> 0, and v oth-

erwise, for each j, j = 1, . .

.

,m. This function is convex, continuous, piece-wise linear, and

has at least one minimum point.

We show how a minimum point of Function 5.1 can be found. For each j , j = 1, . .

.

,m,

assume without any loss of generality that Xi(pj) is not equal to zero, and define c
3
as follows:

Cj = (zPj - X2 {Pj)zS2{pj) - A 3 (py)))

/

A 1 (Py)

-

Assume without any loss of generality that m > 1, and that for each j, j = 1, . .
.

,

m — 1,

Cj < Cj+i

.

For each j, j = 1, . .
.

,

m —
1, let Ij be the interval [cj,Cj+i\. Define /0 as the

interval (—00
, Ci], and Im as the interval [cm ,oo). In the interval /0 the slope of Function 5.1

is —u EjfcLi Xi(pk), and in Im it is v E£Li A i (Pfe) - For each j, j = 1 , . .
. ,
m — 1

,
in the interval

Ij the slope is v Ei=i A i(Pfc)
— u Y1T=j+i Xi{pk)- Clearly, the slope must change signs at an

endpoint of one the intervals, and this is then a minimum point of Function 5.1.

The following iterative procedure for attempting to minimize approximately Function 3.1,

is based on the ideas presented above for minimizing Function 5.1. The procedure, called

L1FIT1, requires an input variable called npmax which must be set to a positive integer

and is used as the maximum number of passes allowed through the vertices, thus guaran-

teeing that the execution of the procedure terminates. Besides STARGRIDPOINTS and

BARYCENTRIC, a procedure called INCREASORT is used as a primitive in L 1FIT 1 . Given

an integer mw
,
mw > 1, a one-to-one function M from {1, . .

.

,mw} onto a subset / of the

positive integers, and a function C from I into the set of real numbers, INCREASORT rear-

ranges M so that for each j, j — 1 , . .
.

,

mw — 1
,
C(M(j)) < C(M (

j

+ 1)). The outline of the

procedure follows.

12

procedure LlFITl(i?, S
,
S', T, F, Z

,
Z, n, fo/, npmax, u

,
n)

begin

flag 0; npass := 0; w := u + v,

while {flag = 0 and npass < npmax
)
do

begin

flag 1; npass npass + 1;

for i 1 until n do

begin

if {F{i) e S \ S') then

begin

(G, ra):=STARGRIDPOINTS(F(z), R, T);

mw := 0; slope := 0.0;

for j := 1 until m do

begin

(Qa, Q3 , Wi,W2 ,
IE3):=BARYCENTRIC(T, G(j), F(z));

if (MR > 0.0) then

begin

mw := mw + 1;

C(mW
) := (Z(G(i)) - W2 Z(Q2)

- 1P3 • ^(Os))/^
D(mw

)
:= MA;

M {m,w) mw
;

slope := slope — u W\
endend

if (raw > 1) then INCREASORT(M, C, raw);

J := 0;

while
(
slope < 0.0) do

begin

j := j + 1;

slope := s/ope + w • D(M(j))

end

znew := C(M(j));

if(|Z(F(t)) — 2:new |> tol
)
then

begin

flag := 0;

Z(F(i)) znew

endendendendend

13

6. Edge-based iterative procedure for L\ approximation

Given s, s' in S \ S', s and s' the endpoints of an edge of a triangle in T, and assuming that

an elevation z$ is associated with each point s in S \ {.s, s'}, we now search for elevations

and zs
> so that the function

3 3

u {Zp ~ yi \ {p) zsi(v))
— v {zp — ^j{p) zsj(p))

peR+ i= 1 peR- i=

1

is minimized. Here R+
,
R~, u, v are as in the previous section.

Assume without any loss of generality that for each point p in Rs , Si(p) equals s, that for

each point p in Rs >, S2 {p) equals s', and that the sets Rs \RS
> and Rs ' \RS are nonempty.

For positive integers mi, m2 ,
m3 ,

let pji, j = be the points in Rs nRs ', let pj2 ,

j = 1 , . .
.

,

m2 be the points in Rs \ Rs', and let p3 3, j — 1, . .
.

,

m3 be the points in Rs > \ Rs .

The above problem is then equivalent to searching for elevations zs and zs > so that the following

function is minimized:

mi

(6-1) J2 w ij\ 2Pn
~ x i(Pn) zs

~ X2(P]i)zs ' ~ h(Pji)zs3 (p3l)\ +
3= 1

m2

'52 w2j\zPj2 - Ai {Pj2)zs - X2 (Pj 2)zS2 (pl2)

- A3 (pj2)^S3 (pi2)|
+

3=1

m3

w3j I

z
Pj3

— Ai (Pj 3)2Si (pj3)

— A2 (pj3)2s / — A3 (pj3)2;S3 (pj3)
|.

Here wkj equals u if zPjk - x i{Pjk)zSl (Pjk)
- A2 (Pjk)zS2

(Pjk)

- xs{Pjk)zS3 {Pjk)
> 0, and v other-

wise, for each k, j, k = 1, 2, 3, j — 1, . .
.

,

m*,. In what follows we think of Function 6.1 as a two-

variable real-valued function whose first variable is zs > and whose second variable is zs . We de-

note it by / so that if and zs > are set to values, f(zs >
,
zs)

then denotes the corresponding value

of the function. Finally, we denote by H(s ', s) the set of triplets of the form (zs >, zs , f(zs >, zs)).

H(s', s) is a convex, continuous, piece-wise linear surface in 3-dimensional space, and zs ,
zs

>

exist at which / achieves its minimum value, and (zs>, zs , f{zs
i, zs)) is a vertex of H(s r

,
s).

For each j, j = 1, . .
.

,

mi, assume without any loss of generality that Ai(pji) is not equal

to zero, and define Cj, bj
,
d
3
as follows:

c
j — [zp .

1
— A3 (pji)zS3 (Pjl

))/Ai(pji),

bj = -A2 (pji)/A 1 (pjl),

dj = X\{pji).

14

For each j, j = 1 , . .
.

,

m2 ,
assume without any loss of generality that A i(pj 2)

is not equal

to zero, and define cJ+Tni ,
h,+mi ,

dj+mi as follows:

Cj+mi = (
z
Pj2

~ ^(Pj2) zs 2 {pj2)
~

^3{‘Pj2) zS3(pj2)) / (Pj?)’

bj+rrii
~ O-Oj

dj+rrii = ^l\Pj2)

•

For each j, j = 1, . .
.

,

m3 ,
assume without any loss of generality that A2 (pj3)

is not equal

to zero, and define c'
,
d' as follows:

C
j
= (%j 3

— ^1 (Pj3) zsi(pj 3)

— A3 (pj3)
Zg

3 (pj3)) /A2 (Pj3) ,

d'j = A2 (pj3).

Setting mru to m^ + m2 ,
and mv to m3 ,

for each j, j = denote by lj the

straight line in the 2V — plane defined by the linear equation zs — bjzs i + Cj, and for each j,

j = 1 , . .
.

,

mu, denote by /' the straight line in the same plane defined by the linear equation

z'
s
= dj

.

Clearly, from the polyhedral nature of H(s',s) it follows that the perpendicular

projections onto the zs
< — zs plane of the 1-dimensional faces of H(s s) are contained in these

lines, and those of the vertices are points where these lines intersect. Thus, the problem of

minimizing Function 6.1 reduces to that of finding among the points at which at least two of

the lines lj
, j — 1 , . .

. ,
mw

, , j = 1 , . .
.

,

mu, intersect, one at which the function achieves its

smallest value.

Given an integer mopt, 1 < mopt < mw
,
we show how a minimum point of /, i. e.

Function 6.1, restricted to line lmopt can be found in a manner similar to the one used in the

previous section for minimizing Function 5.1. Without any loss of generality we assume that

at any point in the zs < — zs plane at most two of the lines l
J7 j = 1 , . .

. ,
mw, l'rj

, j = 1 , . .
.

,

mu,

intersect. Thus, if two of these lines intersect, and Function 6.1 restricted to the two lines

achieves its smallest value at the point at which the two lines intersect, then from the convexity

and the polyhedral nature of H(s',s
)

it follows that among the points at which any two of

the lines intersect, at this point the function achieves its smallest value. Therefore, as pointed

above, this then implies that at this point the function also achieves its minimum value without

any restrictions on zs and zs >

.

For each j, j = 1, . .

.

,mw
, j ^ mopt

,
assume without any loss of generality that l

0
is not

parallel to lmopti and define a
3
as follows:

Uj — (Cj (-mopt) / (bmopt bj
)

.

Clearly, aj is the value of zs
t at which lj intersects lm0pt Assume without any loss of

generality that mw > 2, that mopt equals mw, and that for each j , j = l,...,mw — 2,

15

dj < aJ+ 1 - For the sake of simplicity and only for the current discussion, assume that mv
equals zero, and for each j, j = 1, . .

.
,mw —

2, let Ij be the interval [a,j,aj+ 1]
in the zs

'

axis of the zs
‘ — zs plane. Define /0 as the interval (— 00

,
0^, and Imw-\ as the interval

[«„IU,_i,oo) in the same axis. Define a one-variable real-valued function f by setting f'{zs>)

to f {zs > ,
bmoptzs t + cmopt) for each value of zs >. f is convex, continuous, piece-wise linear,

and has at least one minimum point. For each j, set Uj to u if bmopt — bj is positive, and

to —v otherwise, and set Vj to v if bmopt — bj is positive, and to —u otherwise. With this

terminology, in the interval I0 the slope of f is — uj{bm0pt — bj)dj, and in Imw-i
it is T!k=\

l
vj(bmopt ~ bj)dj. For each j , j = 1, . .

.

,mw - 2, in the interval Ij the slope is

aliMw-w-as;! Uj {bmopt ~ bj)dj. Clearly, the slope of /' must change signs at

an endpoint of one of the intervals, and this is then a minimum point of Thus, given zs >

at which /' achieves its minimum value it follows that Function 6.1 restricted to lm0pt has a

minimum point at {zs>, bmoptzs ’ + cmopt).

A minimum point of Function 6.1 without any restrictions on zs and zs < can then be found

through a two-step iterative procedure as follows:

Step 1. Mark each one of the lines Ij
, j = 1 Ij, j = 1 ,...,mv as not optimized.

Select arbitrarily one of these lines and call it the current line.

Step 2. Find a minimum point of Function 6.1 restricted to the current line, and call this

point the current minimum point. Mark the current line as optimized
,
identify the one

line among the lines Ij, j = 1, ,
mw

, , j — 1, ... ,
mv, that intersects the current

line at the current minimum point, and call this line the next line. If the next line

has been marked as optimized then the current minimum point is a minimum point of

Function 6.1 without restrictions and the procedure terminates. Else call the next line

the current line and go back to the beginning of Step 2.

The following iterative procedure for attempting to minimize approximately Function 3.1,

is based on the ideas presented above for minimizing Function 6.1. Here we assume that

for each i, i — 1, . .
.

,

n, an edge of a triangle in T is selected so that F{i) is an endpoint of

this edge. A function E from {1, . .
.

,

n} into S is defined by setting for each i
,

i — 1, . .
.

,

n,

E{i) to the point in S which is the other endpoint of the edge selected with F{i

)

as an

endpoint. Besides INCREASORT, the procedure, called L1FIT2, requires primitives STAR-
GRIDPOINTS1, STARGRIDPOINTS2, STARGRIDPOINTS3 as well as BARYCENTRIC1,
BARYCENTRIC2, and BARYCENTRIC3. Given integer i, 1 < i < n, with F{i) eS\S', for

some positive integer mi, STARGRIDPOINTS1 locates points G\{j), j = 1, . .
.

,

m 1? that are

the points in Rf^) fl Re{i)- Given that Rf(i) \ Re{i) is not empty, for some positive integer m2 ,

STARGRIDPOINTS2 locates points G2 {j), j — 1, • • • ,
nr,2 ,

that are the points in Re(i) \ Re{i)-

It sets m2 to zero if i?F(i) \ Re(i) is empty. Given that Re(i) \ Rf{i) is not empty, for some posi-

tive integer m3 ,
STARGRIDPOINTS3 locates points G3 (j), j = 1 , . .

.

,

m3 ,
that are the points

16

in Re(i) \ -Rf(i)- It sets m3 to zero if Re(i) \ Rf{i) is empty. Given an integer j, 1 < j < m i,

BARYCENTRIC1 locates a triangle in T with F(i) and E(i) as vertices that contains G\(j),

identifies the third vertex Q3 of the triangle, and computes the barycentric coordinates Wi,

W2 ,
W3 of G\{j) relative to the triangle so that G i (j

)

equals W\ F(i) + W2 • E(i) + W3 • Q3 .

Assuming m2 is positive, given an integer j, 1 < j < ra2 ,
BARYCENTRIC2 locates a triangle

in T with F(i) as a vertex that contains G2 (j), identifies the other two vertices Q2 , Q3 of

the triangle, and computes the barycentric coordinates Wi, W2 ,
W3 of G2 (j) relative to the

triangle so that G2 (j)
equals W\ • F(i) + W2 Q2 4- W3 Q3 . Finally, assuming m3 is positive,

given an integer j, 1 < j < m3 ,
BARYCENTRIC3 locates a triangle in T with E(i) as a vertex

that contains G3 (j) ,
identifies the other two vertices Qi, Q3 of the triangle, and computes

the barycentric coordinates W3 ,
W2 ,

W3 of G3 (j) relative to the triangle so that G3 (j)
equals

H i
' Q\ + E(i) + Wj • Q3 .

The outline of the procedure follows. In lines 6-41 of the procedure, the nonvertical

straight lines (lj, j = l,...,raie, above), and the vertical straight lines (/', j — 1

above) associated with the current edge are identified. In lines 42-60 of the procedure the

first straight line to be called the current line (for the current edge) is identified, and it is the

one nonvertical line at which Function 6.1 (for the current edge) attains its minimum for zs <

arbitrarily close to — oo. In line 66 the zs
> values where the vertical lines intersect the zs/-axis

are sorted in increasing order. The zs > values where the current line intersects nonvertical lines

are computed in lines 72-82 of the procedure if the current line is nonvertical, and in lines

111-114 if it is vertical. These values are sorted in increasing order in line 84 if the current line

is nonvertical, and in line 115 if it is vertical. In lines 87-99 if the current line is nonvertical,

and in lines 117-120 if it is vertical, a straight line to be called the next line is identified which

is either a nonvertical or a vertical line whose intersection with the current line is a minimum
point of Function 6.1 restricted to the current line (to be called the current minimum point).

The current line is marked as optimized in line 106 of the procedure if it is nonvertical and

in line 109 if it is vertical. Given that the next line has already been marked as optimized,

in lines 122-128 of the procedure if the current line is vertical, and in lines 129-134 if it is

nonvertical, another nonvertical line, if any, to be called the current line is identified which is

not marked as optimized and that contains the current minimum point. If no such a line exists

then the current minimum point is a minimum point for Function 6.1 without restrictions and

if necessary the values of and zs > (for the current edge) are corrected in lines 135-140 of the

procedure.

procedure L1FIT2(R, A, S '
,
T, T, E

,
Z, Z, n, tol

,
npmax

,
u

,
v

)

begin

1. flag 1 := 0; npass 0; w := u + v;

2. while (flag 1 = 0 and npass < npmax
)
do

begin

17

3.

4.

6 .

i

.

8 .

9.

10 .

11 .

12 .

13.

14.

15.

16.

17.

18.

19.

20 .

21 .

22 .

23.

24.

25.

26.

27.

28.

29.

flag 1 := 1; npass := npass + 1;

for i := 1 until n do

begin

if (F(i) G S \ S') then

begin

{Gu mi):=STARGRIDP0INTS1 (F(i)
,
E(i), R, T);

(G2 ,
m2):=STARGRIDPOINTS2(F(z), E(i), R, T);

if {E{i) eS\S') then (G3 ,
m3):—STARGRIDPOINTS3(F(?), E(i), R, T)

else m3 := 0
;

mw := 0; mv := 0;

for j := 1 until m\ do

begin

(Q3 ,
Wuw2 ,

W'3):=BARYCENTRIC1 (T, G, (j). F(i), £(»));

if (RA > 0.0 and E'(z) G S \ S') then

begin

mw := mw 4- 1;

C(mw) := Z(Q3))/Wp,

B(mw) := -

W

2/Wi;

D(mw) := Wi
end

elseif (Wi > 0 . 0
)
then

begin

mw := mw + 1;

C(mw) := (Z(Gi(j)) - W2 Z(E(i)) - W3 Z(Q3))/W{ ;

B(mw) := 0.0;

D(mw) := IPi

end

elseif (W2 > 0.0 and E(i) e S \ S') then

begin

mv := mv + 1;

C'(mv) := (Z(G 1 (j)) - IV, • Z(Q3))/W2 ;

D’imv) := W2

endend

if (m2 > 0
)
then

begin

for j := 1 until m2 do

begin

(O2, Os,WUW2 ,
W3):=BARYCENTRIC2(T, G2 (i), F(i));

18

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

if (Wi > 0 . 0
)
then

begin

mw := mw + 1
;

C(mw) := (Z(G2 (j))
- W2 • Z(Q2)

- W3 Z(Q3))/Wi;

B(mw) := 0.0;

D(mw) := W\
endendend

if (m3 > 0
)
then

begin

for j := 1 until m3 do

begin

(Qi, Qa,WuW2 ,
fy3):=BARYCENTRIC3(T, G3 (j),

if (W2 > 0 .0
)
then

begin

mv := mv + 1
;

C’(mv

)

:= (Z(G3 (j)) ~ W, Z(Q ,)
- W3 Z(Q3))/W2 ;

D'(mv) := W2

endendend

slopew := 0 .0
;

for j := 1 until mw do

begin

M{j) = j\ NU) := 0
;

slopew := slopew + v • D(j)

end

if (mw > 1
)
then

begin

INCREASORT(M, B, mw);

for j := 1 until mw — 1 do

begin

33 = 3 + !;

while (jj < mw and B(M(jj)) = B(M(j))) do

begin

if (C(M(jj)) > C(M(j))) then

begin

mt := M(j);

M(j) := M(jj);

M(jj) := mt
end

19

55. jj = jj + 1

endendend

5G. j = 0;

57. while
(
slopew > 0.0) do

begin

58. j j + 1;

59. slopew slopew — w D(M(j))

end

60. mopt M(j);

61. slopev := 0.0;

62. if
(
mv > 0) then

begin

63. for j := 1 until mv do

begin

64. oII
'-s'^~s

II
'-J

65. slopev := slopev + u • D'(j
)

endend

66. if (mv > 1) then INCREASORT
67. znwa := C(mopt); znwb := Z(E(i))\

68. flagl := 0;

69. while
(flag2 = 0) do

begin

70. flag2 := 1; mb 0;

71. mbc := 1; m.vc := 1; slopew := slopev

72. for j := 1 until mw do

begin

73. b := B(mopt) — B(j);

74. if (b > 0.0) then

75. slopew := slopew + u b D(j
)

76. elseif (b < 0.0) then

77. slopew := slopew — v b • D(j).

78. if (b ^ 0.0) then

begin

79. c := C(j) - C(mopt)
;

80. mb := mb + 1;

81. M(mb) := j;

82. ^4O') := c/b

endend

83. if (m6 > 0 or mv > 0) then

20

84.

begin

if (mb > 1) then INCREASORT(M, A, mb);

85. M (mb + 1) := mw + 1; A(mw + 1) := 0.0;

86. M'(mv + 1) := mv + 1; C'(mv + 1) := 0.0;

87. while (slopew > 0.0) do

88.

begin

if ((mbc < mb and mvc < mv and A(M (mbc))

89.

or (mbc < mb and mvc > mv)) then

begin

flagS := 1;

90. jb M (mbc);

91. b := B(mopt) — B(jb);

92. if (b > 0.0) then

93. slopew slopew — w • b D(jb

)

94.

else

slopew := slopew + w • b • D(jb);

95. mbc := mbc + 1

96.

end

else

begin

flag3 := 2;

97. jv := M'(mvc);

98. slopew slopew — w D'(jv);

99. mvc := mvc + 1

100.

endend

if
(flag3 = 1) then

101.

begin

znwb := A(jb);

102. if (N(jb) ^ 0) then flag3 := 3

103.

end

else

begin

znwb := C'(jv);

104. if (N'(jv) ^ 0) then flag3 := 4

105.

end

znwa := B(mopt) znwb + C(mopt);

106. N(mopt) 1;

107. if (flag3 = 1) then mopt := jb; ,flag2 := 0

108. elseif (flag3 = 2) then

21

begin

109. N’(jv) := 1;

110. slopew 0.0;

111. for j 1 until mw do

begin

112. M(j) := j;

113. slopew := slopew + u • D(j);

114. A(j) := B(j) • znwb + C(j)

end

115. if
(
mw > 1) then INCREASORT(il7, A, mw)]

116. J := 0;

117. while
(
slopew > 0.0) do

begin

118. j — j + 1;

119. slopew := slopew — w D(M(j))

end

120. jb := MU);
121. if

(
N(jb

) = 0) then mopt := jb
;
flag2 0

else

begin

122. zmm := A(jb);

123. 6 := 0.0; k := 1; jj := j + 1;

124. while (6 = 0.0 and k = 1 and jj < mw) do

begin

125. b := A(M(jj))
— znwa\

126. k := 7V(M(jj));

127. JJ = JJ + 1

end

128. if (5 = 0.0 and k = 0) then mopt := M (jj
—

endend

else

begin

129. 6 := 0.0; k := 1; jj := m6c;

130. while (6 = 0.0 and A; = 1 and jj < mb) do

begin

131. b := A(M(jj))
— znwb

;

132. * := N(MUj));
133. jj := jj + 1

end

;
flag2

22

134. if
(
b = 0.0 and k = 0) then mopt := M(jj — 1); flag2 := 0

endendend

135. if
(|
Z(F(i)) — znwa |> tol) then

begin

136. flagl := 0;

137. Z(F(i)) := znwa
end

138. if
(|
Z(E(i)) — znwb |> tol

)
then

begin

139. flagl := 0;

140. Z(E(i)) := zmu&
endendendendend

7. Residual-weighted L 2 iterative procedure for L\ approximation

An approach based on the L2 iterative procedure presented in Section 4 can be used for

obtaining approximate solutions to Li fitting problems. This is based on the fact that given

a real number r if r does not equal zero then |r| equals r
2
/|r|.

Given s in S\S'

,

we assume that an elevation z and a positive number wcut are associated

with s. In addition, for each point s in S \ {s} we assume that an elevation z~s is associated

with s. Given u, v > 0, and assuming again without any loss of generality that for each point

p in Rs , Si(p) equals s, and that for some positive integer m, pj, j = 1, . .
.
,m, are the points

in Rs ,
we search then for an elevation so that the function

m
(7-1) ^2(wj/wj){zp .

- X i{pj)zs - X2 (pj)zS2iPj) - X3 {Pj)zS3(Pj))

2

3=

1

is minimized. Here Wj equals u if z
Pj — X\ (pj)z — X2 {Pj)zS2 (p g

— \3 (pj)zS3 (p)
> 0, and v other-

wise; and Wj equals
|

z
Pj — A \{pj)z — \2 (pj)zS2 (pp — \3 (pj)zS3 (Pj)\

if this last number is greater

than wcut
,
and wcut otherwise. We notice that given j, 1 < j < m, if Wj is greater than wcut

and zs is set to z then the j
th term of Function 7.1 becomes

(
Wj/ujj)w2 which reduces to WjWj

,

i. e. Wj\z
P] — X\ (Pj)z — \2 (pj)zS2 (Pj)

— X3 (pj)zS3
(Pj)\.

The derivative of Function 7.1 with respect to zs is

m
2 EK'M')fe' - X l (pj)zs - X2 {Pj)zS2(pp

- A3 (pj)
zS3 (pj))

(— Ai (pj)
)

.

3=

1

Setting this derivative to zero we are then able to solve for zs and thus obtain the value for

23

at which Function 7.1 is minimized:

m m

2s = (E(^M')(^ - A2 (Pj)z82 (Pj)
- HPj)Zs 3 (p]))MPj))/Y,(Wj/{bj)MPj))

2
-

j= 1 J=1

The following iterative procedure, which is based on the above formula, can be used

for attempting to minimize approximately Function 3.1. Besides STARGRIDPOINTS and

BARYCENTRIC, the procedure, called L1FIT3, requires a primitive called MAXRESIDUAL.
It computes wcut which is the largest absolute value of a residual

,
i. e. the largest absolute

value of a number of the form Z(p) — \\\ Z(Qi) —W2 Z(Q^) —W3 • Z(Q3), where p is in /?, Qi,

Q-2 , Q3 are the vertices of a triangle in T that contains p ,
and W\ ,

W2 ,
W3 are the barycentric

coordinates of p relative to the triangle so that p equals W\ • Q\ + W2 • Q2 + FF3 • Q%. The

variable wcut
,
which we call the residual tolerance

,
is used throughout the execution of the

procedure for the purpose of avoiding or postponing division by absolute values of residuals

that are less than its current value. This value is progressively reduced by dividing wcut

before each pass through the vertices by a variable called wscl. This last variable must be set

on input to a number that is greater than 1.0 and preferably less than or equal to 2.0. The

outline of the procedure follows.

procedure LlFIT3(i?, A, 5", T, F, Z, Z, n, tol
,
npmax

,
u, v, wscl)

begin

flag := 0; npass := 0;

wcut:=MAXRESIDUAL(F, Z, Z);

while
(
flag = 0 and npass < npmax

)
do

begin

flag := 1; npass := npass + 1;

wcut := wcut/wscl;

if (wcut < tol
)
then wcut := tol

;

for z 1 until n do

begin

if (F(i) G S \ S') then

begin

(G, m):=STARGRIDPOINTS(F(z), R, T);

zold := Z(F(i));

numerator := 0.0; denominator := 0.0;

for j 1 until m do

begin

(02 , 03 ,
Wuw2 ,

W3):=BARYCENTRIC(T. G(j), F(i));

IV := Z(G(j)) - W, • zold - W2 Z(Q2)
- W3 Z(Q3);

if {W > 0.0) then W := w else IT := n;

24

W := \W\;

if (W < went) then W := went,

;

numerator := numerator+
(wywo • (Z(G(i)) - • Z(Q2)

- wy Z(Q3)) Wi;

denominator := denominator + {W/W) (W\)2

end

2:new; := numerator /denominator,

if
(|
20/d — znew \> tol

)
then

begin

flag := 0;

Z(F(i)) znew
endendendendend

Acknowledgement. Thanks to Douglas R. Caldwell, Topographic Engineering Center (TEC),

for his interest and support.

BIBLIOGRAPHY

[1] I.Barrodale and F. D. K. Roberts, An Improved Algorithm for Discrete l\ Approximation,

SIAM J. Numer. ANAL. 10 (1993), pp 839-848.

[2] D. G. Luenberger, Introduction to Linear and Nonlinear Programming, Addison-Wesley,

Reading, Mass. (1973).

[3] D. M. Mark, The History of Geographic Information Systems: Invention and Re-invention

of Triangulated Irregular Networks (TINs), Proceedings GIS/LIS’97, in press.

(http: / /www.geog.buffalo.edu/~dmark/)

[4] C. Witzgall and D. R. Caldwell, An Ex-Optimized TIN Approach to Locating Terrain Data

Artifacts. (In preparation)

25

