Lexicographical manipulations for correctly computing regular tetrahedralizations with incremental topological flipping

J. Bernal

June 1999

U.S. DEPARTMENT OF COMMERCE
Technology Administration
National Institute of Standards and Technology
Gaithersburg, MD 20899
Lexicographical manipulations for correctly computing regular tetrahedralizations with incremental topological flipping

J. Bernal

June 1999
Lexicographical manipulations for correctly computing regular tetrahedralizations with incremental topological flipping

Javier Bernal
National Institute of Standards and Technology, Gaithersburg, MD 20899, U. S. A.

Abstract. Edelsbrunner and Shah have proven that incremental topological flipping works for constructing a regular triangulation for a finite set of weighted points in $d$–dimensional space. This paper describes the lexicographical manipulations employed in a recently completed implementation of their method for correctly computing 3-dimensional regular triangulations. At the start of the execution of this implementation a regular triangulation for the vertices of an artificial cube that contains the points is constructed. Throughout the execution the vertices of this cube are treated in the proper lexicographical manner so that the final triangulation is correct.

Key words. Delaunay triangulation, incremental topological flipping, power diagram, regular triangulation, Voronoi diagram.

1. Introduction

Given integer $k$, $0 \leq k \leq d$, and a set $R$ of $k + 1$ affinely independent points in $d$–dimensional space ($\mathcal{R}^d$), we say that the convex hull of $R$, denoted by $\Delta_R$, is the $k$–simplex for $R$. Let $S$ be a finite set of points in $\mathcal{R}^d$. By a triangulation $T$ for $S$ we mean a finite collection of $k$–simplices for subsets of $S$, $k = 0, \ldots, d$, that satisfies the following three conditions.

1. If $\Delta_R$ is in $T$ then $\Delta_U$ is in $T$ for all $U$, $U \subseteq R$.
2. If $\Delta_R$, $\Delta_U$ are in $T$ then $\Delta_R \cap \Delta_U = \Delta_{R \cap U}$.
3. The union of the simplices in $T$ equals the convex hull of $S$.

Given a triangulation $T$ for $S$, we say that $T$ is a Delaunay triangulation for $S$ if $S$ is the set of 0–simplices in $T$, and for each $d$–simplex in $T$ there does not exist a point of $S$ in the interior of the circumsphere of the simplex [2].

A larger class of triangulations that includes the Delaunay triangulations can be defined. Again, let $S$ be a finite set of points in $\mathcal{R}^d$, and for each point $p$ in $S$ let $w_p$ be a real-valued weight assigned to $p$. Given $p$ in $S$ and a point $x$ in $\mathcal{R}^d$, the power distance of $x$ from $p$, denoted by $\pi_p(x)$, is defined by

$$\pi_p(x) \equiv |xp|^2 - w_p,$$

where $|xp|$ is the Euclidean distance between $x$ and $p$. Given a set $R$ of $d + 1$ affinely independent points in $S$, a point, denoted by $z(\Delta_R)$, exists in $\mathcal{R}^d$ with the same power distance, denoted by $w(\Delta_R)$, from all $d + 1$ points in $R$. $z(\Delta_R)$ is called the orthogonal center of $\Delta_R$. Accordingly, the points in $S$ are said to be in general position (in $\mathcal{R}^d$) if every set of $d + 1$ points in $S$ is affinely independent, and for every $d + 2$ points in $S$ there is no point in $\mathcal{R}^d$ with the same power distance from all $d + 2$ points. Given a triangulation $T$ for $S$, the points in $S$ not necessarily in general position, we then say that $T$ is a regular triangulation for $S$ if for each $d$–simplex $t$ in $T$ and each point $p$ in $S$, $\pi_p(z(t)) \geq w(t)$. We observe that $T$ is unique if the points in $S$ are in general position.

Given points $p$, $q$ in $S$, we denote by $H_{p,q}$ the half-space of points $x$ in $\mathcal{R}^d$ for which $\pi_p(x) \leq \pi_q(x)$, and for each $p$ in $S$, the power cell for $p$, denoted by $P(p)$, is defined by

$$P(p) \equiv \cap_{q \in S \setminus \{p\}} H_{p,q}.$$

The collection of power cells $P(p)$, $p$ in $S$, is called the power diagram of $S$ [1], and if the points in $S$ are in general position in $\mathcal{R}^d$ then it is the dual of the (unique) regular triangulation for $S$. Indeed the orthogonal center of a $d$–simplex in a regular triangulation for $S$ is a vertex of the power diagram of $S$. We observe that if the weights of the points in $S$ are all equal then the power diagram of $S$ is identical to the Voronoi diagram of $S$ [7], and the regular and Delaunay triangulations for $S$ coincide. In addition, we notice that a point $p$ in $S$ whose power cell is empty cannot be a vertex of any regular triangulation for $S$. In this case $p$ is said to be redundant. However, if $p$ is a vertex of the convex hull of $S$ then its power cell is nonempty so that it must be a vertex of any regular triangulation for $S$. This makes sense since the union of the simplices in any triangulation for $S$ must equal the convex hull of $S$.

Let $T$ be a triangulation for a set $S$ of $n$ points in $\mathcal{R}^d$, not necessarily in general position. Given a $d$–simplex $t$ in $T$ we denote by $N(t)$ the set of points in $S \setminus t$ that are vertices of
$d$–simplices in $T$ sharing a $(d - 1)$–simplex with $t$. We then say that $t$ is *locally regular* if for each point $p$ in $N(t)$, $\pi_p(z(t)) \geq w(t)$. By extending results for Delaunay triangulations [5, 6], Edelsbrunner and Shah [3] have proven that if the vertex set of $T$ contains all non-redundant points in $S$ and every $d$–simplex in $T$ is locally regular then $T$ is a regular triangulation for $S$. They then use this result to generalize to regular triangulations in $\mathcal{R}^d$ a result for computing incrementally Delaunay triangulations in $\mathcal{R}^2$ [4]. Their algorithm is based on an operation referred to as a *flip* that replaces a triangulation for $d + 2$ points with the (unique) alternative triangulation for the $d + 2$ points [6]. Given a proper subset $S'$ of $S$ and a regular triangulation $T'$ for $S'$, they show how a point $p$ in $S \setminus S'$ can be added to $T'$ through a sequence of flips so that the resulting triangulation for $S' \cup \{p\}$ is regular. They also generalize a two-dimensional technique for efficiently identifying the initial location of the point to be added [4]. Finally, they prove that under the assumption of a random insertion sequence the total expected running time of their algorithm is $O(n \log n + n^{[d/2]})$.

The algorithm by Edelsbrunner and Shah constructs a regular triangulation for a set $S$ by adding one point at a time into a regular triangulation for the set of previously added points. This implies that before any points in $S$ are added a regular triangulation must be first constructed with vertices at infinity and underlying space equal to $\mathcal{R}^d$. The vertices of this initial triangulation are said to be *artificial*. Throughout the execution of the algorithm artificial points must be treated in the proper lexicographical manner so that the final triangulation does contain a triangulation for $S$, and this triangulation for $S$ is indeed regular. This is not exactly a trivial undertaking.

In this paper we describe the lexicographical manipulations that are employed in a recently completed implementation of the algorithm by Edelsbrunner and Shah for correctly computing a regular triangulation for an arbitrary set $S$ in $\mathcal{R}^3$. At the start of the execution of the implementation an artificial $3$–dimensional cube that contains $S$ in its interior is constructed, and a regular triangulation for the set of vertices of the cube (weights set to the same number) is computed. The execution then proceeds with the incremental insertion of points in $S$ as suggested by Edelsbrunner and Shah. However, at all times, because of the lexicographical manipulations employed in the presence of artificial points, the artificial points (the eight vertices of the cube) are assumed to be as close to infinity as the manipulations require.

The lexicographical manipulations are divided in two groups. The first group, discussed in Section 3, consists of manipulations for determining the location of a point with respect to a facet of a tetrahedron. The second group, discussed in Section 4, consists of manipulations for determining whether a triangulation for five points is regular or else should be transformed through a flip into the (unique) regular alternative triangulation for the five points. Terminology used throughout the paper is presented in Section 2.
2. Terminology

In this section we introduce terminology that is employed in the sections that follow.

Let $S$ be a finite set of points in $\mathcal{R}^3$, and assign a real valued weight $w_p$ to each point $p$ in $S$. Real numbers $xmin, xmax, ymin, ymax, zmin, zmax$ are defined by

$xmin \equiv \min\{x : \exists y, z, (x, y, z) \in S\}.$

$xmax \equiv \max\{x : \exists y, z, (x, y, z) \in S\}.$

$ymin \equiv \min\{y : \exists x, z, (x, y, z) \in S\}.$

$ymax \equiv \max\{y : \exists x, z, (x, y, z) \in S\}.$

$zmin \equiv \min\{z : \exists x, y, (x, y, z) \in S\}.$

$zmax \equiv \max\{z : \exists x, y, (x, y, z) \in S\}.$

A real number $wmin$ is defined by

$wmin \equiv \min\{w_p : p \in S\}.$

Real numbers $xctr, yctr, zctr$ are defined by

$xctr \equiv (xmax + xmin)/2.$

$yctr \equiv (ymax + ymin)/2.$

$zctr \equiv (zmax + zmin)/2.$

A point $\bar{p}$ in $\mathcal{R}^3$ is defined by

$\bar{p} \equiv (xctr, yctr, zctr).$

Vectors $e_i$, $i = 1, \ldots, 8$, are defined by

$e_1 \equiv (-1, -1, 1).$

$e_2 \equiv (-1, 1, 1).$
For each real number $\mu$, $\mu > 0$, the vertices $p_{i\mu}$, $i = 1, \ldots, 8$, of a cube $R_\mu$ are defined by

$$p_{i\mu} = \bar{p} + \mu e_i, \quad i = 1, \ldots, 8.$$ 

For arbitrarily large $\mu$, $\mu > 0$, $R_\mu$ contains $S$ in its interior. Given a real number $\mu$, $\mu > 0$, the points $p_{i\mu}$, $i = 1, \ldots, 8$, are the artificial points, and $\mu$ is assumed to be as large as the lexicographical manipulations require. In order to be consistent, given a real number $\mu$, $\mu > 0$, a real number $w$, $w < w_{\text{min}}$, is selected and assigned as a weight to each of the points $p_{i\mu}$, $i = 1, \ldots, 8$. Since the points $p_{i\mu}$, $i = 1, \ldots, 8$, are the vertices of a cube, it follows easily that any triangulation for these points is regular. In addition, one such triangulation is not hard to compute.

Finally, given a set $R$ of 4 affinely independent weighted points in $\mathbb{R}^3$, denote by $z(\Delta_R)$ the orthogonal center of $\Delta_R$ and by $w(\Delta_R)$ the power distance of $z(\Delta_R)$ from any of the points in $R$.

### 3. Lexicographical manipulations for point location determination

For arbitrarily large $\mu$, $\mu > 0$, let $S'$ be a proper subset of $S$, and let $T'_\mu$ be a regular triangulation for $S'_\mu \equiv S' \cup \{p_{i\mu}, \quad i = 1, \ldots, 8\}$ that contains a regular triangulation $T'$ for $S'$. Let $p$ be a point in $S \setminus S'$, and let $t$ be a tetrahedron in $T'_\mu$. Denote the vertices of $t$ by $q_1, q_2, q_3, q_4$. Given that $p$ is not a vertex of $t$, let $T_1$ and $T_2$ be the two possible triangulations for $\{q_1, q_2, q_3, q_4, p\}$ [6] and assume $t$ is in $T_1$. In this section we describe lexicographical manipulations that may be used in the presence of artificial points for identifying $T_1$ and $T_2$. For the sake of completeness we also present direct computations that may be used when no artificial points are involved.
For each \( j, j = 1, \ldots, 4 \), denote by \( f_j \) the facet of \( t \) that does not contain \( q_j \), and by \( H_j \) the plane in \( \mathcal{R}^3 \) that contains \( f_j \). For each \( j, j = 1, \ldots, 4 \), denote by \( H_j^+ \) the open half-space in \( \mathcal{R}^3 \) determined by \( H_j \) that contains \( q_j \), and by \( H_j^- \) the open half-space in \( \mathcal{R}^3 \) determined by \( H_j \) that does not contain \( q_j \). For each \( j, j = 1, \ldots, 4 \), determining which of \( H_j, H_j^+, H_j^- \) contains \( p \) can be accomplished through either lexicographical manipulations or direct computations as described below. Indeed it is by ascertaining which of \( H_j, H_j^+, H_j^- \) contains \( p \) for each \( j, j = 1, \ldots, 4 \), that one can identify the triangulations \( T_1 \) and \( T_2 \). Accordingly, the following nine configurations of \( T_1 \) and \( T_2 \) are possible, each configuration depending on which of \( H_j, H_j^+, H_j^- \) contains \( p \) for each \( j, j = 1, \ldots, 4 \).

Configuration 1 (possible ‘1 to 4’ flip): \( p \) is in \( \cap_{j=1}^4 H_j^+ \). Denote by \( t_1, t_2, t_3, \) and \( t_4 \) the tetrahedra whose vertex sets are \( \{q_1, q_2, q_3, p\} \), \( \{q_1, q_2, q_4, p\} \), \( \{q_1, q_3, q_4, p\} \), and \( \{q_2, q_3, q_4, p\} \), respectively. It then follows that \( T_1 \) consists exactly of \( t \) and \( T_2 \) of \( t_1, t_2, t_3, \) and \( t_4 \).

Configuration 2 (possible ‘1 to 3’ flip): For distinct integers \( j_1, j_2, j_3, j_4, 1 \leq j_1, j_2, j_3, j_4 \leq 4 \), \( p \) is in \( H_{j_1} \cap H_{j_2} \cap H_{j_3} \cap H_{j_4} \). Denote by \( t_1, t_2, \) and \( t_3 \) the tetrahedra whose vertex sets are \( \{q_{j_1}, q_{j_2}, q_{j_3}, p\} \), \( \{q_{j_1}, q_{j_2}, q_{j_4}, p\} \), \( \{q_{j_1}, q_{j_3}, q_{j_4}, p\} \), and \( \{q_{j_2}, q_{j_3}, q_{j_4}, p\} \), respectively. It then follows that \( T_1 \) consists exactly of \( t \) and \( T_2 \) of \( t_1, t_2, \) and \( t_3 \).

Configuration 3 (possible ‘1 to 2’ flip): For distinct integers \( j_1, j_2, j_3, j_4, 1 \leq j_1, j_2, j_3, j_4 \leq 4 \), \( p \) is in \( H_{j_1} \cap H_{j_2} \cap H_{j_3} \cap H_{j_4} \). Denote by \( t_1 \) and \( t_2 \) the tetrahedra whose vertex sets are \( \{q_{j_1}, q_{j_2}, q_{j_3}, p\} \) and \( \{q_{j_1}, q_{j_2}, q_{j_4}, p\} \), respectively. It then follows that \( T_1 \) consists exactly of \( t \) and \( T_2 \) of \( t_1 \) and \( t_2 \).

Configuration 4 (possible ‘2 to 3’ flip): For distinct integers \( j_1, j_2, j_3, j_4, 1 \leq j_1, j_2, j_3, j_4 \leq 4 \), \( p \) is in \( H_{j_1}^+ \cap H_{j_2}^+ \cap H_{j_3}^+ \cap H_{j_4}^+ \). Denote by \( t_1, t_2, t_3, \) and \( t' \) the tetrahedra whose vertex sets are \( \{q_{j_1}, q_{j_2}, q_{j_3}, p\} \) \( \{q_{j_1}, q_{j_2}, q_{j_4}, p\} \), \( \{q_{j_1}, q_{j_3}, q_{j_4}, p\} \), and \( \{q_{j_2}, q_{j_3}, q_{j_4}, p\} \), respectively. It then follows that \( T_1 \) consists of \( t \) and \( t' \) and \( T_2 \) of \( t_1, t_2, \) and \( t_3 \).

Configuration 5 (possible ‘3 to 2’ flip): For distinct integers \( j_1, j_2, j_3, j_4, 1 \leq j_1, j_2, j_3, j_4 \leq 4 \), \( p \) is in \( H_{j_1}^- \cap H_{j_2}^- \cap H_{j_3}^+ \cap H_{j_4}^+ \). Denote by \( t_1, t_2, t', \) and \( t'' \) the tetrahedra whose vertex sets are \( \{q_{j_1}, q_{j_2}, q_{j_3}, p\} \), \( \{q_{j_1}, q_{j_2}, q_{j_4}, p\} \), \( \{q_{j_2}, q_{j_3}, q_{j_4}, p\} \), and \( \{q_{j_1}, q_{j_3}, q_{j_4}, p\} \), respectively. It then follows that \( T_1 \) consists of \( t \), \( t' \), and \( t'' \) and \( T_2 \) of \( t_1 \) and \( t_2 \).

Configuration 6 (possible ‘2 to 2’ flip): For distinct integers \( j_1, j_2, j_3, j_4, 1 \leq j_1, j_2, j_3, j_4 \leq 4 \), \( p \) is in \( H_{j_1}^+ \cap H_{j_2}^- \cap H_{j_3}^- \cap H_{j_4}^+ \). Denote by \( t_1, t_2, t' \) and \( t'' \) the tetrahedra whose vertex sets are \( \{q_{j_1}, q_{j_2}, q_{j_3}, p\} \), \( \{q_{j_1}, q_{j_2}, q_{j_4}, p\} \), \( \{q_{j_2}, q_{j_3}, q_{j_4}, p\} \), and \( \{q_{j_1}, q_{j_3}, q_{j_4}, p\} \), respectively. It then follows that \( T_1 \) consists of \( t \), \( t' \), and \( t'' \) and \( T_2 \) exactly of \( t_1 \).
Configuration 8 (possible ‘3 to 1’ flip): For distinct integers $j_1, j_2, j_3, j_4, 1 \leq j_1, j_2, j_3, j_4 \leq 4$, $p$ is in $H_{j_1}^+ \cap H_{j_2}^- \cap H_{j_3} \cap H_{j_4}^+$. Denote by $t_1$, $t'$, and $t''$ the tetrahedra whose vertex sets are \{${q_{j_1}, q_{j_2}, q_{j_3}, p}$\}, \{${q_{j_2}, q_{j_3}, q_{j_4}, p}$\}, and \{${q_{j_1}, q_{j_3}, q_{j_4}, p}$\}, respectively. It then follows that $T_1$ consists of $t$, $t'$, and $t''$, and $T_2$ exactly of $t_1$.

Configuration 9 (possible ‘2 to 1’ flip): For distinct integers $j_1, j_2, j_3, j_4, 1 \leq j_1, j_2, j_3, j_4 \leq 4$, $p$ is in $H_{j_1}^- \cap H_{j_2} \cap H_{j_3} \cap H_{j_4}^-$. Denote by $t_1$ and $t'$ the tetrahedra whose vertex sets are \{${q_{j_1}, q_{j_2}, q_{j_3}, p}$\}, and \{${q_{j_2}, q_{j_3}, q_{j_4}, p}$\}, respectively. It then follows that $T_1$ consists of $t$ and $t'$, and $T_2$ exactly of $t_1$.

Finally, in what follows, for the purpose of identifying $T_1$ and $T_2$ we present lexicographical manipulations and direct computations that may be used for determining which of $H_j$, $H_j^+$, $H_j^-$ contains $p$ for a given $j$, $1 \leq j \leq 4$. We do this by cases, each case depending on the number of artificial vertices of $f_j$. Here and in the next section we assume without any loss of generality that $S'$ is not empty. It then follows that if the vertices of a facet of a triangle in $T'_u$ are all artificial then the facet must be contained in its entirety in the boundary of $R_u$.

We proceed without any loss of generality for the case $j$ equal to 4. We define a vector $v$ by $v \equiv (q_1 - q_3) \times (q_2 - q_3)$, i.e. the cross product of vectors $(q_1 - q_3)$ and $(q_2 - q_3)$, and assume that $q_1$, $q_2$, $q_3$ are ordered in such a way that $v \cdot (q_4 - q_3)$, i.e. the inner product of $v$ and $(q_4 - q_3)$, is positive. Clearly, which of $H_4$, $H_4^+$, $H_4^-$ contains $p$ depends on the sign of $v \cdot (p - q_3)$. The solution by cases to the point location determination problem, i.e. the problem of determining the sign of $v \cdot (p - q_3)$, follows.

Case 1: None of $q_1, q_2, q_3$ is artificial. Since none of the vertices of $f_4$ is artificial the sign of $v \cdot (p - q_3)$ can then be determined through direct computations of $v$, $p - q_3$, and $v \cdot (p - q_3)$.

Case 2: Exactly one of $q_1, q_2, q_3$ is artificial. Without any loss of generality we assume the one point is $q_1$ so that $q_2$ and $q_3$ are in $S$. Let $k$ be an integer, $1 \leq k \leq 8$, so that $q_1$ equals $p_k$. Accordingly, by definition the vector $v$ must then equal $(p_k + \mu \nu_k - q_3) \times (q_2 - q_3)$ which in turn reduces to

$$((p - q_3) \times (q_2 - q_3)) + \mu(\nu_k \times (q_2 - q_3)).$$

Define numbers $d_0$, $d_1$, as follows:

$$d_0 \equiv ((p - q_3) \times (q_2 - q_3)) \cdot (p - q_3),$$

$$d_1 \equiv (\nu_k \times (q_2 - q_3)) \cdot (p - q_3).$$
The sign of \( v \cdot (p - q_3) \) can then be determined as follows:

If \( d_1 \) is non-zero then the sign is that of \( d_1 \).

Else, if \( d_1 \) is zero then it is that of \( d_0 \).

**Case 3:** Exactly two of \( q_1, q_2, q_3 \) are artificial. Without any loss of generality we assume the two points are \( q_1 \) and \( q_2 \) so that \( q_3 \) is in \( S \). Let \( k \) and \( l \) be integers, \( 1 \leq k, \ l \leq 8 \), so that \( q_1 \) equals \( p_{k_0} \) and \( q_2 \) equals \( p_{l_0} \). Accordingly, by definition the vector \( v \) must then equal \( (\bar{p} + \mu e_k - q_3) \times (\bar{p} + \mu e_l - q_3) \) which in turn reduces to

\[
\mu((\bar{p} - q_3) \times (e_l - e_k)) + \mu^2(e_k \times e_l).
\]

Define numbers \( d_1, d_2 \), as follows:

\[
d_1 \equiv ((\bar{p} - q_3) \times (e_l - e_k)) \cdot (p - q_3).
\]

\[
d_2 \equiv (e_k \times e_l) \cdot (p - q_3).
\]

The sign of \( v \cdot (p - q_3) \) can then be determined as follows:

If \( d_2 \) is non-zero then the sign is that of \( d_2 \).

Else, if \( d_2 \) is zero then it is that of \( d_1 \).

**Case 4:** \( q_1, q_2, q_3 \) are all artificial. Since the vertices of \( f_4 \) are all artificial it then follows that \( f_4 \) must be contained in its entirety in the boundary of \( R_\mu \). Since \( R_\mu \) contains \( S \) in its interior and \( v \cdot (q_4 - q_3) \) is positive it must then be that \( v \cdot (p - q_3) \) is also positive.

4. Lexicographical manipulations for flipping determination

Again, for arbitrarily large \( \mu, \mu > 0 \), let \( S' \) be a proper subset of \( S \), and let \( T'_\mu \) be a regular triangulation for \( S'_\mu = S' \cup \{p_i, i = 1, \ldots, 8\} \) that contains a regular triangulation \( T' \) for \( S' \). Let \( p \) be a point in \( S \setminus S' \), and let \( t \) be a tetrahedron in \( T'_\mu \). Denote the vertices of \( t \) by \( q_1, q_2, q_3, q_4 \). Given that \( p \) is not a vertex of \( t \), let \( T_1 \) and \( T_2 \) be the two possible triangulations for \( \{q_1, q_2, q_3, q_4, p\} \) [6] and assume \( t \) is in \( T_1 \). In this section we describe lexicographical manipulations that may be used in the presence of artificial points for determining which of \( T_1 \) and \( T_2 \) is regular. For the sake of completeness we also present direct computations that may be used when no artificial points are involved. We do this by cases, each case depending on the number of artificial vertices of \( t \). First, however, we state and prove three propositions that will be useful during the presentation of these cases.
**Proposition 1**: Let $t$ be a tetrahedron with vertices in $S \cup \{p_i, i = 1, \ldots, 8\}$, $\mu$ arbitrarily large. Denote the vertices of $t$ by $\hat{q}_1, \hat{q}_2, \hat{q}_3,$ and $\hat{q}_4$, and assume $\hat{q}_1$ is artificial while $\hat{q}_2, \hat{q}_3,$ and $\hat{q}_4$ are not. In addition, assume $\langle (\hat{q}_2 - \hat{q}_4) \times (\hat{q}_3 - \hat{q}_4) \rangle \cdot (\hat{q}_1 - \hat{q}_4) < 0$. Let $k$ be an integer, $1 \leq k \leq 8$, so that $\hat{q}_1$ equals $p_{k\mu}$. Let $\bar{f}$ be the facet of $\hat{t}$ whose vertices are $\hat{q}_2, \hat{q}_3,$ and $\hat{q}_4$, and let $\bar{H}$ be the plane in $\mathbb{R}^3$ that contains $\bar{f}$. Denote by $\bar{z}$ the orthogonal center of $\bar{f}$ in the plane $\bar{H}$, and by $\bar{w}$ the power distance of $\bar{z}$ from any of the vertices of $\bar{f}$.

Given a point $\hat{p}$ in $S$, define a number $d$ by

$$d \equiv ((\hat{q}_2 - \hat{q}_1) \times (\hat{q}_3 - \hat{q}_4)) \cdot (\hat{p} - \hat{q}_4).$$

If $d$ does not equal zero then the sign of $\pi_{\hat{p}}(z(\hat{t})) - w(\hat{t})$ is that of $d$.

Else, if $d$ equals zero then $\pi_{\hat{p}}(z(\hat{t})) - w(\hat{t})$ equals $\pi_{\hat{p}}(\bar{z}) - \bar{w}$.

**Proof**: Define a vector $v$ by $v \equiv ((\hat{q}_2 - \hat{q}_1) \times (\hat{q}_3 - \hat{q}_4))$. Clearly $v$ is perpendicular to $\bar{H}$ and $z(\hat{t})$ equals $\bar{z} + \beta_{\mu}v$ for some real number $\beta_{\mu}$. We then show that given an arbitrary real number $\beta$ then for arbitrarily large $\mu$ it must be that $\bar{z} > \beta_{\mu}$. To this end, denote by $z([\hat{q}_1, \hat{q}_4])$ the orthogonal center of the edge $[\hat{q}_1, \hat{q}_4]$ in the affine hull of $\hat{q}_1$ and $\hat{q}_4$. Since $\hat{q}_4$ is in $\bar{H}$ and by assumption $v \cdot (\hat{q}_1 - \hat{q}_4) < 0$ it follows that for each $\beta, \beta < \beta_{\mu}$, it must be that $\bar{z} + \beta v$ is in the interior of $H_{\hat{q}_1, \hat{q}_4}$ (the half-space of points $x$ in $\mathbb{R}^3$ for which $\pi_{\hat{q}_1}(x) \leq \pi_{\hat{q}_4}(x)$). For arbitrarily large $\mu$ the Euclidean distance between $\hat{q}_4$ and $z([\hat{q}_1, \hat{q}_4])$ is itself arbitrarily large. In particular, it is larger than the Euclidean distance between $\hat{q}_4$ and $\bar{z} + \beta v$. Thus, $\bar{z} + \beta v$ cannot be in $H_{\hat{q}_1, \hat{q}_4}$ and therefore it must be that $\beta > \beta_{\mu}$.

If $d$, i. e. $v \cdot (\hat{p} - \hat{q}_4)$, is not zero then for a unique real number $\beta$ it must be that $\pi_{\hat{p}}(\bar{z} + \beta v)$ equals $\pi_{\hat{q}_4}(\bar{z} + \beta v)$. If $d$ is positive it then follows that for each $\beta, \beta < \beta$, it must be that $\bar{z} + \beta v$ is in the interior of $H_{\hat{q}_4, \hat{p}}$. Since $\beta_{\mu} < \beta$ for $\mu$ arbitrarily large, it then follows that $z(\hat{t})$, i. e. $\bar{z} + \beta_{\mu} v$, is in the interior of $H_{\hat{q}_4, \hat{p}}$. Therefore $\pi_{\hat{p}}(z(\hat{t})) > \pi_{\hat{q}_4}(z(\hat{t})) = w(\hat{t})$ and $\pi_{\hat{p}}(z(\hat{t})) - w(\hat{t})$ is positive. If $d$ is negative it then follows that for each $\beta, \beta < \beta$, it must be that $\bar{z} + \beta v$ is in the interior of $H_{\hat{p}, \hat{q}_4}$. Since $\beta_{\mu} < \beta$ for $\mu$ arbitrarily large, it then follows that $z(\hat{t})$, i. e. $\bar{z} + \beta_{\mu} v$, is in the interior of $H_{\hat{p}, \hat{q}_4}$. Therefore $\pi_{\hat{p}}(z(\hat{t})) < \pi_{\hat{q}_4}(z(\hat{t})) = w(\hat{t})$ and $\pi_{\hat{p}}(z(\hat{t})) - w(\hat{t})$ is negative.

If $d$ is zero then $\hat{p}$ is in $\bar{H}$. We then have

$$\pi_{\hat{p}}(z(\hat{t})) - w(\hat{t}) = \pi_{\hat{p}}(z(\hat{t})) - \pi_{\hat{q}_4}(z(\hat{t}))$$
$$= (|z(\hat{t})\hat{p}|^2 - w_p) - (|z(\hat{t})\hat{q}_4|^2 - w_{\hat{q}_4})$$
$$= (|z(\hat{t})\bar{z}|^2 + |\bar{z}\hat{p}|^2 - w_p) - (|z(\hat{t})\bar{z}|^2 + |\bar{z}\hat{q}_4|^2 - w_{\hat{q}_4})$$
$$= (|\bar{z}\hat{p}|^2 - w_p) - (|\bar{z}\hat{q}_4|^2 - w_{\hat{q}_4})$$
This completes the proof of the proposition.

**Proposition 2:** Let \( t \) be a tetrahedron with vertices in \( S \cup \{p_{i\mu}, i = 1, \ldots, 8\}, \mu \) arbitrarily large. Denote the vertices of \( t \) by \( \hat{q}_1, \hat{q}_2, \hat{q}_3, \) and \( \hat{q}_4, \) and assume \( \hat{q}_1, \hat{q}_2 \) are artificial while \( \hat{q}_3, \hat{q}_4 \) are not. In addition, assume \(((\hat{q}_2 - \hat{q}_1) \times (\hat{q}_3 - \hat{q}_4)) \cdot (\hat{q}_1 - \hat{q}_4) < 0.\) Let \( k, l \) be integers, \( 1 \leq k, l \leq 8,\) so that \( \hat{q}_1 \) equals \( p_{k \mu} \) and \( \hat{q}_2 \) equals \( p_{l \mu}. \) Let \( \hat{H} \) be the plane in \( R^3 \) that is the chordale of \( \hat{q}_3 \) and \( \hat{q}_4, \) i.e. the plane of points \( x \) in \( R^3 \) for which \( \pi_{\hat{q}_3}(x) = \pi_{\hat{q}_4}(x). \) Let \( \hat{H} \) be the plane in \( R^3 \) that is the chordale of \( p_{k \mu} \) and \( p_{l \mu} \) for all positive values of \( \mu \) \( (p_{k \mu} \) equals \( \hat{p} + \mu e_k \) and \( p_{l \mu} \) equals \( \hat{p} + \mu e_l), \) and let \( \hat{H} \) be the plane in \( R^3 \) that contains \( \hat{q}_3 \) and \( \hat{q}_4, \) and is perpendicular to \( \hat{H} \cap \hat{H}. \) Denote by \( \hat{w} \) the point that is the intersection of \( \hat{H}, \hat{H}, \) and \( \hat{H}, \) and by \( \hat{w} \) the power distance of \( \hat{z} \) from either \( \hat{q}_3 \) or \( \hat{q}_4. \)

Given a point \( \hat{p} \) in \( S, \) define a number \( d \) by

\[
d \equiv ((e_l - e_k) \times (\hat{q}_3 - \hat{q}_4)) \cdot (\hat{p} - \hat{q}_4).
\]

If \( d \) does not equal zero then the sign of \( \pi_{\hat{p}}(z(\hat{t})) - w(\hat{t}) \) is that of \( d. \)

Else, if \( d \) equals zero then \( \pi_{\hat{p}}(z(\hat{t})) - w(\hat{t}) \) equals \( \pi_{\hat{p}}(\hat{z}) - \hat{w}. \)

**Proof:** Define a vector \( v \) by \( v \equiv (e_l - e_k) \times (\hat{q}_3 - \hat{q}_4). \)

The rest of the proof follows as in the proof of Proposition 1 above.

**Proposition 3:** Let \( t \) be a tetrahedron with vertices in \( S \cup \{p_{i\mu}, i = 1, \ldots, 8\}, \mu \) arbitrarily large. Denote the vertices of \( t \) by \( \hat{q}_1, \hat{q}_2, \hat{q}_3, \) and \( \hat{q}_4, \) and assume \( \hat{q}_1, \hat{q}_2, \hat{q}_3, \) are artificial while \( \hat{q}_4 \) is not. In addition, assume \(((\hat{q}_2 - \hat{q}_1) \times (\hat{q}_3 - \hat{q}_4)) \cdot (\hat{q}_1 - \hat{q}_4) < 0.\) Let \( k, l, m \) be integers, \( 1 \leq k, l, m \leq 8,\) so that \( \hat{q}_1 \) equals \( p_{k \mu}, \hat{q}_2 \) equals \( p_{l \mu}, \) and \( \hat{q}_3 \) equals \( p_{m \mu}. \) Let \( \hat{H} \) and \( H \) be the planes in \( R^3 \) that are the chordales, respectively, of \( p_{k \mu} \) and \( p_{l \mu}, \) and \( p_{k \mu} \) and \( p_{m \mu}, \) for all positive values of \( \mu. \) Let \( \hat{H} \) be the plane in \( R^3 \) that contains \( \hat{q}_4 \) and is perpendicular to \( \hat{H} \cap \hat{H}. \) Denote by \( \hat{z} \) the point that is the intersection of \( \hat{H}, \hat{H}, \) and \( \hat{H}, \) and by \( \hat{w} \) the power distance of \( \hat{z} \) from \( \hat{q}_1. \)

Given a point \( \hat{p} \) in \( S, \) define a number \( d \) by

\[
d \equiv ((e_l - e_k) \times (e_m - e_k)) \cdot (\hat{p} - \hat{q}_4).
\]

If \( d \) does not equal zero then the sign of \( \pi_{\hat{p}}(z(\hat{t})) - w(\hat{t}) \) is that of \( d. \)

Else, if \( d \) equals zero then \( \pi_{\hat{p}}(z(\hat{t})) - w(\hat{t}) \) equals \( \pi_{\hat{p}}(\hat{z}) - \hat{w}. \)
**Proof:** Define a vector $v$ by $v \equiv (e_l - e_k) \times (e_m - e_k)$.

The rest of the proof follows as in the proof of Proposition 1 above.

We now present the solution by cases to the **flipping determination problem**, i.e. the problem of determining which of $T_1$ and $T_2$ is regular.

**Case 1:** None of $q_1$, $q_2$, $q_3$, $q_4$ is artificial. Compute $z(t)$ and $w(t)$. If $\pi_p(z(t)) \geq w(t)$ then $T_1$ is regular. Else, $T_2$ is regular.

**Case 2:** Exactly one of $q_1$, $q_2$, $q_3$, $q_4$ is artificial. Without any loss of generality assume $q_1$ is artificial, and let $k$ be an integer, $1 \leq k \leq 8$, so that $q_1$ equals $p_{k\mu}$.

Assume $((q_2 - q_4) \times (q_3 - q_4)) \cdot (q_1 - q_4) < 0$.

Compute $d \equiv ((q_2 - q_4) \times (q_3 - q_4)) \cdot (p - q_4)$, and apply Proposition 1 as follows:

If $d > 0$ then $\pi_p(z(t)) > w(t)$ so that $T_1$ is regular.

Else, if $d < 0$ then $\pi_p(z(t)) < w(t)$ so that $T_2$ is regular.

Finally, if $d$ is zero then let $f$ be the facet of $t$ whose vertices are $q_2$, $q_3$, and $q_4$, and let $H$ be the plane in $\mathcal{R}^3$ that contains $f$. Compute $\bar{z}$, the orthogonal center of $f$ in the plane $H$, and $\bar{w}$, the power distance of $\bar{z}$ from any of the vertices of $f$.

If $\pi_p(\bar{z}) \geq \bar{w}$ then $\pi_p(z(t)) \geq w(t)$ so that $T_1$ is regular.

Else, if $\pi_p(\bar{z}) < \bar{w}$ then $\pi_p(z(t)) < w(t)$ so that $T_2$ is regular.

**Case 3:** Exactly two of $q_1$, $q_2$, $q_3$, $q_4$ are artificial. Without any loss of generality assume $q_1$ and $q_2$ are artificial, and let $k$, $l$ be integers, $1 \leq k, l \leq 8$, so that $q_1$ equals $p_{k\mu}$ and $q_2$ equals $p_{l\mu}$.

Assume $((q_2 - q_1) \times (q_3 - q_4)) \cdot (q_1 - q_4) < 0$.

Compute $d \equiv ((e_l - e_k) \times (q_3 - q_4)) \cdot (p - q_4)$, and apply Proposition 2 as follows:

If $d > 0$ then $\pi_p(z(t)) > w(t)$ so that $T_1$ is regular.

Else, if $d < 0$ then $\pi_p(z(t)) < w(t)$ so that $T_2$ is regular.

Finally, if $d$ is zero then let $\bar{H}$ be the plane in $\mathcal{R}^3$ that is the chordale of $q_3$ and $q_4$, let $\bar{H}$ be the plane in $\mathcal{R}^3$ that is the chordale of $p_{k\mu}$ and $p_{l\mu}$ for all positive values of $\mu$, and let $\bar{H}$ be the plane in $\mathcal{R}^3$ that contains $q_3$ and $q_4$, and is perpendicular to $\bar{H} \cap \bar{H}$. Compute $\bar{z}$, the point that is the intersection of $\bar{H}$, $\bar{H}$, and $H$, and $\bar{w}$, the power distance of $\bar{z}$ from either $q_3$ or $q_4$.

If $\pi_p(\bar{z}) \geq \bar{w}$ then $\pi_p(z(t)) \geq w(t)$ so that $T_1$ is regular.

Else, if $\pi_p(\bar{z}) < \bar{w}$ then $\pi_p(z(t)) < w(t)$ so that $T_2$ is regular.
Case 4: Exactly three of $q_1$, $q_2$, $q_3$, $q_4$ are artificial. Without any loss of generality assume $q_1$, $q_2$ and $q_3$ are artificial, and let $k$, $l$, $m$ be integers, $1 \leq k, l, m \leq 8$, so that $q_1$ equals $p_{k\mu}$, $q_2$ equals $p_{l\mu}$, and $q_3$ equals $p_{m\mu}$.

Assume $((q_2 - q_1) \times (q_3 - q_1)) \cdot (q_1 - q_4) < 0$.

Compute $d \equiv ((e_l - e_k) \times (e_m - e_k)) \cdot (p - q_4)$, and apply Proposition 3 as follows:

If $d > 0$ then $\pi_p(z(t)) > w(t)$ so that $T_1$ is regular.

Else, if $d < 0$ then $\pi_p(z(t)) < w(t)$ so that $T_2$ is regular.

Finally, if $d$ is zero then let $\tilde{H}$ and $\tilde{H}$ be the planes in $\mathbb{R}^3$ that are the chordales, respectively, of $p_{k\mu}$ and $p_{l\mu}$, and $p_{k\mu}$ and $p_{m\mu}$, for all positive values of $\mu$. Let $H$ be the plane in $\mathbb{R}^3$ that contains $q_4$ and is perpendicular to $\tilde{H} \cap \tilde{H}$. Compute $\bar{z}$, the point that is the intersection of $\tilde{H}$, $\tilde{H}$, and $H$, and $\bar{w}$, the power distance of $\bar{z}$ from $q_4$.

If $\pi_p(\bar{z}) \geq \bar{w}$ then $\pi_p(z(t)) \geq w(t)$ so that $T_1$ is regular.

Else, if $\pi_p(\bar{z}) < \bar{w}$ then $\pi_p(z(t)) < w(t)$ so that $T_2$ is regular.
BIBLIOGRAPHY


