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Lexicographical manipulations for correctly

computing regular tetrahedralizations with

incremental topological flipping

Javier Bernal

National Institue of Standards and Technology, Gaithersburg, MD 20899, U. S. A.

Abstract. Edelsbrunner and Shah have proven that incremental topological flipping works for

constructing a regular triangulation for a finite set of weighted points in d—dimensional space. This

paper describes the lexicographical manipulations employed in a recently completed implementation

of their method for correctly computing 3^dimensional regular triangulations. At the start of the

execution of this implementation a regular triangulation for the vertices of an artificial cube that

contains the points is constructed. Throughout the execution the vertices of this cube are treated

in the proper lexicographical manner so that the final triangulation is correct.

Key words. Delaunay triangulation, incremental topological flipping, power diagram, regular

triangulation, Voronoi diagram.

1. Introduction

Given integer k, 0 < k < d, and a set R of k + 1 affinely independent points in d—dimensional
space {Rd

), we say that the convex hull of R, denoted by AR ,
is the k— simplex for R. Let

S' be a finite set of points in Rd
. By a triangulation T for S we mean a finite collection of

k—simplices for subsets of S, k = 0, . .
.

,

d, that satisfies the following three conditions.

1. If is in T then Av is in T for all U, U C R.

2. If AR ,
Au are in T then AR n Av = Amu .
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3. The union of the simplices in T equals the convex hull of S.

Given a triangulation T for S
:
we say that T is a Delaunay triangulation for S if S is the

set of 0—simplices in T, and for each d—simplex in T there does not exist a point of S in

the interior of the circumsphere of the simplex [2].

A larger class of triangulations that includes the Delaunay triangulations can be defined.

Again, let S be a finite set of points in 77
d

,
and for each point p in S let wp be a real-valued

weight assigned to p. Given p in S and a point x in 7Zd
,
the power distance of x from p,

denoted by 7Tp (x ), is defined by

7Tp (x) = \xp\
2 ~ Wp ,

where \xp\ is the Euclidean distance between x and p. Given a set R of d + 1 affinely

independent points in 5, a point, denoted by z(A/?), exists in lZ
d with the same power

distance, denoted by w(AR ), from all d+ 1 points in R. z(Ar) is called the orthogonal

center of AR . Accordingly, the points in S are said to be in general position (in 1Z
d

)
if every

set of d + 1 points in S is affinely independent, and for every d + 2 points in S there is no

point in 7Z
d with the same power distance from all d + 2 points. Given a triangulation T

for 5, the points in S not necessarily in general position, we then say that T is a regular

triangulation for S if for each d—simplex t in T and each point p in 5, 7ip (z(t)) > w(t). We
observe that T is unique if the points in S are in general position.

Given points p, q in S', we denote by Hpq the half-space of points x in 7Zd
for which

7rp (x)
< 7T

q
(x), and for each p in S, the power cell for p, denoted by P(p), is defined by

P{p) ~ ^qeS\{p}Hp,q-

The collection of power cells P(p), p in S, is called the power diagram of S [1], and if

the points in S are in general position in lZ
d then it is the dual of the (unique) regular

triangulation for S. Indeed the orthogonal center of a d—simplex in a regular triangulation

for S is a vertex of the power diagram of S. We observe that if the weights of the points in

S are all equal then the power diagram of S is identical to the Voronoi diagram of S [7], and

the regular and Delaunay triangulations for S coincide. In addition, we notice that a point

p in S whose power cell is empty cannot be a vertex of any regular triangulation for S. In

this case p is said to be redundant. However, if p is a vertex of the convex hull of S then

its power cell is nonempty so that it must be a vertex of any regular triangulation for S.

This makes sense since the union of the simplices in any triangulation for S must equal the

convex hull of S.

Let T be a triangulation for a set S of n points in 7Zd
,
not necessarily in general position.

Given a d—simplex t in T we denote by N(t) the set of points in S\t that are vertices of
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d—simplices in T sharing a (d— 1)—simplex with t. We then say that t is locally regular if for

each point p in N(t), np (z(t)) > w(t). By extending results for Delaunay triangulations [5, 6],

Edelsbrunner and Shah [3] have proven that if the vertex set of T contains all non-redundant

points in S and every d—simplex in T is locally regular then T is a regular triangulation

for S. They then use this result to generalize to regular triangulations in lZ
d a result for

computing incrementally Delaunay triangulations in H2
[4]. Their algorithm is based on

an operation referred to as a flip that replaces a triangulation for d + 2 points with the

(unique) alternative triangulation for the d+ 2 points [6]. Given a proper subset S' of S
and a regular triangulation T' for 5", they show how a point p in S \ S' can be added to T'

through a sequence of flips so that the resulting triangulation for S' U {p} is regular. They

also generalize a two-dimensional technique for efficiently identifying the initial location of

the point to be added [4], Finally, they prove that under the assumption of a random

insertion sequence the total expected running time of their algorithm is 0(n log n + r?T
d//2

^).

The algorithm by Edelsbrunner and Shah constructs a regular triangulation for a set S
by adding one point at a time into a regular triangulation for the set of previously added

points. This implies that before any points in S are added a regular triangulation must be

first constructed with vertices at infinity and underlying space equal to 7Z
d

. The vertices of

this initial triangulation are said to be artificial Throughout the execution of the algorithm

artificial points must be treated in the proper lexicographical manner so that the final tri-

angulation does contain a triangulation for S, and this triangulation for S is indeed regular.

This is not exactly a trivial undertaking.

In this paper we describe the lexicographical manipulations that are employed in a re-

cently completed implementation of the algorithm by Edelsbrunner and Shah for correctly

computing a regular triangulation for an arbitrary set S in 7£
3

. At the start of the execu-

tion of the implementation an artificial 3— dimensional cube that contains S in its interior

is constructed, and a regular triangulation for the set of vertices of the cube (weights set to

the same number) is computed. The execution then proceeds with the incremental inser-

tion of points in S as suggested by Edelsbrunner and Shah. However, at all times, because

of the lexicographical manipulations employed in the presence of artificial points, the arti-

ficial points (the eight vertices of the cube) are assumed to be as close to infinity as the

manipulations require.

The lexicographical manipulations are divided in two groups. The first group, discussed

in Section 3, consists of manipulations for determining the location of a point with respect

to a facet of a tetrahedron. The second group, discussed in Section 4, consists of manipu-

lations for determining whether a triangulation for five points is regular or else should be

transformed through a flip into the (unique) regular alternative triangulation for the five

points. Terminology used throughout the paper is presented in Section 2.
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2. Terminology

In this section we introduce terminology that is employed in the sections that follow.

Let S be a finite set of points in 7

V

3
,
and assign a real valued weight wp to each point p in S.

Real numbers xmin
,
xmax

,
ynnin

,
ymax

,
zmin

,
zmax are defined by

xmin

xmax

ymin

ymax

zmin

zmax

min{:r :3y, z, (x,y,z) G S}.

max{r : 3 y, z, (x,y,z) G S}.

min{?/ : 3 x, z, (x,y,z) G S}.

max{?/ : 3 x, z
,
(x,y,z) G S}.

min{z :3 x, y, (x,y,z) G 5}.

max{z : 3 x, y, (x,y,z) G S}.

A real number wmin is defined by

wmin — minjiCp : p G S'}.

Real numbers rrcfr, yctr,zctr are defined by

xctr = (xmax + xmin) / 2.

i/ctr = (ymax + ymin) / 2.

zctr - (zmax + zmin) / 2.

A point p in 7Z
3

is defined by

p = (xctr, ?/ctr, zctr).

Vectors e*, i = 1, . .
.

,

8, are defined by

ei = (-1,-1, 1).

e2 = (-l, 1, 1).
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e3 = ( 1, 1, 1).

e4 = ( 1,-1, 1).

e5 = (— 1, — 1,
— 1).

ce = (-l, 1,-1).

e7 = ( 1, 1,-1).

e8 = ( 1, -1, -1).

For each real number p, p > 0, the vertices i = 1, . .
.

,

8, of a cube Rv are defined by

Pin =P + MG, i = 1,...,8.

For arbitrarily large p, p > 0, RM contains S in its interior. Given a real number p, p > 0,

the points pifl ,
i — 1,...,8, are the artificial points, and p is assumed to be as large as

the lexicographical manipulations require. In order to be consistent, given a real number p ,

p > 0, a real number w, w < wnnin
,
is selected and assigned as a weight to each of the points

Pini i — 1, • •
• ,

8. Since the points plfJL ,
i — 1, . .

.

,

8, are the vertices of a cube, it follows easily

that any triangulation for these points is regular. In addition, one such triangulation is not

hard to compute.

Finally, given a set R of 4 affinely independent weighted points in 7*F, denote by z(

A

r) the

orthogonal center of AR and by w{

A

R )
the power distance of z(AR )

from any of the points

in R.

3. Lexicographical manipulations for point location determination

For arbitrarily large p 7 p > 0, let S' be a proper subset of S, and let Xj' be a regular

triangulation for S'
ft
= S' U i — 1, . .

.

,

8} that contains a regular triangulation T' for S'.

Let p be a point in S \ S', and let t be a tetrahedron in T’

.

Denote the vertices of t by cp,

?2 , ?3 , Qa Given that p is not a vertex of t
,
let 7\ and T2 be the two possible triangulations

for {^i, <72 , Q3 -, QaPP] [6] and assume t is in T
x

. In this section we describe lexicographical

manipulations that may be used in the presence of artificial points for identifying Tx and To.

For the sake of completeness we also present direct computations that may be used when no

artificial points are involved.
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For each j, j = 1, . .
.

,

4, denote by j) the facet of 7 that does not contain qJ: and by H
3

the plane in 7A that contains fj. For each j, j = 1, . .
.

,

4, denote by Hf the open half-space

in 7

v

3 determined by Hj that contains gJ5 and by Hj the open half-space in 7£
3 determined

by Hj that does not contain q3 . For each A j — 1,...,4, determining which of Hj, Hj~

,

Hj contains p can be accomplished through either lexicographical manipulations or direct

computations as described below. Indeed it is by ascertaining which of FFp H+, H~ contains

p for each j, j = 1, . .
.

,

4, that one can identify the triangulations 7\ and T2 . Accordingly,

the following nine configurations of A and T2 are possible, each configuration depending on

which of Hj
, Hf, Hj contains p for each j, j = 1, . .

.

,

4.

Configuration 1 (possible ‘1 to 4’ flip): p is in Pi
j=1

Hj~. Denote by 7 4 ,
72 , 7.3, and 74 the

tetrahedra whose vertex sets are {gi, q2 , g3 ,p}, {91,92, 94, rf, {9i, 93, 94,p}, and {g2 , g3 , g4 ,p},

respectively. It then follows that A consists exactly of 7, and A of 7i, 72 ,
73 ,

and 74 .

Configuration 2 (possible ‘1 to 3’ flip): For distinct integers A; A, A, A, 1 A A, A, A, A A 4,

p is in Hjj Pi P FF+ Pi FF+. Denote by 7 4 ,
72 ,

and 73 the tetrahedra whose vertex sets are

and respectively. It then follows that A
consists exactly of 7, and T2 of 7 4 ,

72 ,
and 73 .

Configuration 3 (possible ‘1 to 2’ flip): For distinct integers A, A, A, A, 1 A A, A, A,A A 4,

p is in F/p Pi FFp PI FF+ n FFp. Denote by 7 4 and 72 the tetrahedra whose vertex sets are

{gp, qn , qJ3 ,p} and {gp, gp, gp,p}, respectively. It then follows that A consists exactly of 7,

and T2 of 7 4 and 72 .

Configuration 4 (possible ‘2 to 3’ flip): For distinct integers A, A, A, A, 1 A A, A, A,A A 4,

p is in FFp P Pi FFp. Denote by 7 4 ,
72 ,

73 ,
and 7' the tetrahedra whose vertex sets

are {gp, gp, gp,p}, {gp, gp, gp,p}, {9p, 9j3 , 9j4 ,.p}, and {qJ2 ,qJ3 ,qJ4 ,p}, respectively. It then

follows that A consists of 7 and 7', and T2 of 7 4 ,
72 ,

and 73 .

Configuration 5 (possible ‘3 to 2’ flip): For distinct integers A, A, A, A, 1 A A, A, A,A A 4,

p is in FFp Pi H~ P FFp P FFp. Denote by 7 4 ,
72 ,

7', and 7" the tetrahedra whose vertex sets are

{9j2»9j3 »9i4 >P}> {9p,

9

j3 > 9j4 ,p}, respectively. It then follows

that Ti consists of 7, 7', and 7", and A of 7 4 and 72 .

Configuration 6 (possible ‘2 to 2’ flip): For distinct integers A, A, A, A, 1 A A, A, A, A A 4,

p is in FF“ P FFp P FFp P FFp. Denote by 7 4 ,
72 ,

and 7' the tetrahedra whose vertex sets are

tei,9j2 >9.73»p}» tei»9?2»9j4>p}» and {gp, qj3 , gp,p}, respectively. It then follows that A
consists of 7 and 7', and T2 of 7 4 and 72 .

Configuration 7 (possible ‘4 to V flip): For distinct integers A, A, A, A, 1 A A, A, A,A A 4,

p is in FF“ P H~ P FF“ P FFp. Denote by 7 4 ,
7', 7", and t'" the tetrahedra whose vertex sets

are {qn , qj2 , gp , p}, {gp , gp , qj4 , p}, {gp , gp , gp , p}, and {gp , qj2 , qj4 , p}, respectively. It then

follows that A consists of 7, 7', 7", and 7'", and T2 exactly of 7 2 .
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Configuration 8 (possible ‘3 to 1’ flip): For distinct integers j\, j2 , J3 , j4 ,
1 < j\, tete J4 < 4,

p is in H~ nH- n Hh D HA. Denote by H, F, and t" the tetrahedra whose vertex sets are

tei> 9j2 > 9j3 >P}> te^sWp,^}, and te-i,9j3»9i4>p}> respectively. It then follows that Tx

consists of t, t', and t"

,

and T2 exactly of t\.

Configuration 9 (possible ‘2 to V flip): For distinct integers ji, j2 , j3 , j4 ,
1 < ji, /2 , J3, 94 < 4,

p is in D H32 n tea fl H+. Denote by t\ and t' the tetrahedra whose vertex sets are

{/pi, qj2 , ^3 ,p}, and |9j2 ,

9

J3 ,

9

J4 ,p}, respectively. It then follows that 7\ consists of t and t',

and T2 exactly of t\.

Finally, in what follows, for the purpose of identifying T\ and T2 we present lexicographical

manipulations and direct computations that may be used for determining which of Hj
,
Hj~,

H~ contains p for a given j, 1 < j < 4 . We do this by cases, each case depending on the

number of artificial vertices of fr Here and in the next section we assume without any loss

of generality that S' is not empty. It then follows that if the vertices of a facet of a triangle

in T' are all artificial then the facet must be contained in its entirety in the boundary of R^.

We proceed without any loss of generality for the case j equal to 4 . We define a vector v

by v = (qi — q3 )
x (q2 — q3 ), i. e. the cross product of vectors (<p — q3 )

and (q2 — q3 ), and

assume that q\, q2 , 93 are ordered in such a way that v (q^ — q3 ), i. e. the inner product of

v and (g4 — q3 ), is positive. Clearly, which of #4, , HR contains p depends on the sign

of v • (p — q3 ). The solution by cases to the point location determination problem
,

i. e. the

problem of determining the sign of v (p — q3 ), follows.

Case 1: None of q\, q2 , q3 is artificial. Since none of the vertices of /4 is artificial the sign of

v • (p — q3) can then be determined through direct computations of v, p — q3 ,
and v (p — q3 ).

Case 2: Exactly one of q2 , g3 is artificial. Without any loss of generality we asssume the

one point is qi so that q2 and q3 are in S. Let k be an integer, 1 < k < 8, so that qi equals

PfcM . Accordingly, by definition the vector v must then equal (p 4- /J,ek — <73) x (q2 — q3 )
which

in turn reduces to

{(P
-

93) x (q2 - q3 )) + p(ek x (q2 - q3 )).

Define numbers do, d 1} as follows:

d0 - ((p - q3 )
x (92 - 93)) • (p

~
93).

d i = (e* x (</2 - g3 )) • (p — 93 )•
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The sign of v (p — q3 )
can then be determined as follows:

If d\ is non-zero then the sign is that of d\.

Else, if d\ is zero then it is that of d0 .

Case 3: Exactly two of q1 , q2 , q3 are artificial. Without any loss of generality we asssume

the two points are q\ and g2 so that q3 is in S. Let k and l be integers, 1 < k, l < 8, so

that qi equals pkfl and q2 equals pi Accordingly, by definition the vector v must then equal

(p + pek — q3 )
x (p + pei — q3 )

which in turn reduces to

p({p ~ q?) x (e/ - ek )) + p
2
(ek x e

t ).

Define numbers di, d2 ,
as follows:

di = {{p-q3)x{ei-ek))-(p-q3 ).

d2 = {ek x ei) (p — q3 ).

The sign of v (p — q3 )
can then be determined as follows:

If d2 is non-zero then the sign is that of d2 .

Else, if d2 is zero then it is that of d\.

Case 4: gl5 q2 , q3 are all artificial. Since the vertices of /4 are all artificial it then follows

that /4 must be contained in its entirety in the boundary of R Since RM contains S in its

interior and v (q^ — q3 )
is positive it must then be that v (p — q3 )

is also positive.

4. Lexicographical manipulations for flipping determination

Again, for arbitrarily large /i, p > 0, let S' be a proper subset of 5, and let be a regular

triangulation for S 1 = S' U i — 1, . .
.

,

8} that contains a regular triangulation T' for S'.

Let p be a point in S \ S', and let t be a tetrahedron in T' Denote the vertices of t by qi,

q2 , q3 , g
,

4 . Given that p is not a vertex of t, let T\ and T2 be the two possible triangulations

for {qi, q2 , q3 , q±,p} [6] and assume t is in T4 . In this section we describe lexicographical

manipulations that may be used in the presence of artificial points for determining which

of Ti and T2 is regular. For the sake of completeness we also present direct computations

that may be used when no artificial points are involved. We do this by cases, each case

depending on the number of artificial vertices of t. First, however, we state and prove three

propositions that will be useful during the presentation of these cases.
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Proposition 1: Let t be a tetrahedron with vertices in S U {pl/x ,
i — p arbitrarily

large. Denote the vertices of t by gl5 q2 , </3 ,
and q4: and assume is artificial while q2 , 93 ,

g4 are not. In addition, assume ((q2 — q4 )
x (g3 — g4 )) • (q4 — q4 ) < 0. Let k be an integer,

1 < /c < 8, so that q\ equals p Let / be the facet of t whose vertices are q2 , g3 ,
and g4 ,

and let iL be the plane in 7Z
3 that contains /. Denote by z the orthogonal center of f in the

plane H
,
and by w the power distance of 5 from any of the vertices of /.

Given a point p in S', define a number d by

d = ((92 - &) x (q3 - q4 )) • (p - g4 ).

If d does not equal zero then the sign of 7Tp(z(t)) — w(t) is that of d.

Else, if d equals zero then 7Tp(z(i)) — w(t) equals 7Tp(z) — w.

Proof: Define a vector v by v = (^2 — ^4 )
x (q3 — q4 ).

Clearly v is perpendicular to H and z(t) equals z + fd^v for some real number (3^. We then

show that given an arbitrary real number /3 then for arbitrarily large p it must be that

$ > (dp. To this end, denote by z([qi,q4 ]) the orthogonal center of the edge [qi,q4 \
in the

affine hull of q 4 and q4 . Since q4 is in H and by assumption v • (q 4 — q4 ) < 0 it follows that

for each /3, (3 < /3M ,
it must be that z + (3v is in the interior of Hfn (the half-space of points

x in 7Z3
for which < 7Vq

4
(x)). For arbitrarily large p the Euclidean distance between

q4 and z([qi,q4 ]) is itself arbitrarily large. In particular, it is larger than the Euclidean

distance between q4 and z + (3v. Thus, z + (3v can not be in Hqu^4
and therefore it must be

that (3 > (3^.

If d, i. e. v • (p — q4), is not zero then for a unique real number (3 it must be that 71^(2 4- ftv)

equals 71-$
4
(z + fiv). If d is positive it then follows that for each /?, (3 < [3, it must be that

z + /3v is in the interior of H
q4 p. Since /3^ < /3 for p arbitrarily large, it then follows that

z(t), i. e. z + P^v, is in the interior of H
q4 ,

p. Therefore 7Tp(z(i)) > 7r
q4

(z(i)) — w(t) and

7Tp(z(t)) — w(t
)

is positive. If d is negative it then follows that for each P, P < P, it must be

that z + pv is in the interior of Hp
q4

. Since P^ < p for p arbitrarily large, it then follows

that 2 (f), i. e. 2 + P^v, is in the interior of Hp^4
. Therefore 7Tp(z(t)) < 1v

q4
(z(t)) = w(t) and

7Tp

(

2: ( ^ ) )
— w(t) is negative.

If d is zero then p is in H. We then have

7Tp{z{t)) ~ W(t
)

(|2(t)p|
2 - Wp) - {\z(t)q4

\

2 - W
q4 )

i\
z (t)z\

2 + |2p|
2 - Wp) -

(
\z{t)z\

2 +
|

zq4 1

2 - w
q4 )

(
\zp\

2 - Wp) -
(
\zq4 \

2 - w
q4 )
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= 7Tp(z) - 7Tg
4
(z)

= 7Tp{z) - W.

This completes the proof of the proposition.

Proposition 2: Let t be a tetrahedron with vertices in S U {plfl ,
i = 1, . -

. , 8}, p arbitrarily

large. Denote the vertices of t by g 4 , g2 , g3 ,
and g4 ,

and assume g4 , g2 are artificial while g3 ,

g4 are not. In addition, assume ((g2 — gi) x (g3 — g4 )) • (g4 — g4 )
< 0. Let k, l be integers,

1 < A:, / < 8, so that g 4 equals pkfl and g2 equals pi^. Let H be the plane in 7

Z

3
that isthe

chordale of g3 and g4 ,
i. e. the plane of points x in 7*

l

3
for which 7iq

3
(x) — TCq

4
{x). Let H be

the plane in 7Z3 that is the chordale of pkfl and ptll
for all positive values of p (pkfl equals

p + pek and pi^ ecjuals p + /re/), and let H be the plane in 7

T

3 that contains g3 and g4 ,
and

is perpendicular to H Pi H. Denote by z the point that is the intersection of 7L, H
,
and 7L,

and by w the power distance of z from either g3 or g4

Given a point p in 5, define a number d by

d = ((e
t
- ek )

x (g3 - g4 )) • (p
-

g4 ).

If d, does not equal zero then the sign of 7ip(z(t)) — w{t) is that of d.

Else, if d equals zero then 7Tp(z(t)) — w(t
)
equals 7Tp(z) — ui.

Proof: Define a vector v by v = (e/ — ek )
x (g3 — g4 ).

The rest of the proof follows as in the proof of Proposition 1 above.

Proposition 3: Let f be a tetrahedron with vertices in S U {p^, 7 = 1,..., 8}, p arbitrarily

large. Denote the vertices of t by g1; g2 , g3 ,
and g4 ,

and assume g4 , g2 , g3 are artificial while

g4 is not. In addition, assume ((g2 — g 4 )
x (g3 — g4 )) • (g t — g4 )

< 0. Let k
, /, m be integers,

1 < k, /, m < 8, so that g 4 equals pkfl , g2 equals pifJl ,
and g3 equals pmp . Let 7L and H be

the planes in VJ’ that are the chordales, respectively, of pkll and and pk^ and pm/x ,
for

all positive values of p. Let 7L be the plane in 7Zi that contains g4 and is perpendicular

to H fl H

.

Denote by z the point that is the intersection of H, H
:
and H

,
and by w the

power distance of z from g4 .

Given a point p in 5, define a number d by

d = ((ei - ek )
x (em - ek )) {p

-
g4 ).

If d does not equal zero then the sign of 7Tp(z(t)) — w(t) is that of d.

Else, if d equals zero then irp(z(t)) — w(t) equals 7Tp(z) — w.
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Proof: Define a vector v by v = (ei
— e^) x (em — e*,).

The rest of the proof follows as in the proof of Proposition 1 above.

We now present the solution by cases to the flipping determination problem
,

i. e. the

problem of determining which of 7\ and X2 is regular.

Case 1 : None of g l5 q2 , q3 , q4 is artificial. Compute z(t) and w(t). If irp (z(t)) > w(t) then

Ti is regular. Else, X2 is regular.

Case 2 : Exactly one of qi q2 , q3 , q4 is artificial. Without any loss of generality assume qi is

artificial, and let k be an integer, 1 < k < 8
,
so that q\ equals pfc/x

.

Assume ((q2 - q4 )
x (q3 - q4 )) • ( q x - q4 )

< 0.

Compute d = ((q2 — q4 )
x (g3 — q4 )) (p — q4 ), and apply Proposition 1 as follows:

If d > 0 then 7Tp (z(t)) > w(t
)
so that Ti is regular.

Else, if d 0 then 7rp (z(t.)) <c rc(t) so that T2 is regular.

Finally, if d is zero then let / be the facet of t whose vertices are q2l q3 ,
and g4 ,

and let H
be the plane in 7Z'

] that contains /. Compute z, the orthogonal center of / in the plane H
,

and w, the power distance of z from any of the vertices of /.

If 7Tp (z) > ui then 7rp (z(t)) > w(t) so that T4 is regular.

Else, if 7tp (z) < w then irp (z(t)) < w(t) so that T2 is regular.

Case 3: Exactly two of q\ q2l g3 , q4 are artificial. Without any loss of generality assume

qi and q2 are artificial, and let k
,

/ be integers, 1 < k, l < 8
,
so that q\ equals and q2

equals pip .

Assume {{q2 - qt )
x (q3 - q4 )) • (q 4 - q4 )

< 0 .

Compute d = ((e/ — e*) x (q3 — q4 )) (

p

— g4 ), and apply Proposition 2 as follows:

If d > 0 then 7ip (z(t)) > w(t) so that T\ is regular.

Else, if d <C 0 then 7rp (z(t)) <z. w(t) so that T2 is regular.

Finally, if d is zero then let H be the plane in 7v
3 that is the chordale of q3 and g4 ,

let

be the plane in 7vC that is the chordale of p^p and pip for all positive values of p, and let

be the plane in A!
3 that contains q3 and g4 ,

and is perpendicular to H n H. Compute z, the

point that is the intersection of H, H
,
and H , and w, the power distance of z from either q3

or q4

If 7tp (z) > w then 7rp (z(t)) > w(t) so that T\ is regular.

Else, if 7tp (z) < w then 7Tp (z(t)) < w(t) so that T2 is regular.

11
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Case 4: Exactly three of qi, 92, 93, 94 are artificial. Without any loss of generality assume

9i, 92 and 93 are artificial, and let k
, /, m be integers, 1 < /c, /, m < 8, so that 91 equals pkp ,

92 equals pLfl ,
and 93 equals pm/i .

Assume ((92 - 91) x (93 - 91)) • (9! - 94) < 0 .

Compute d = ((e; — ek )
x (em — e*,)) • (p — 94), and apply Proposition 3 as follows:

If d > 0 then 7rp (z(t)) > w(t) so that is regular.

Else, if d 0 then 7Tp(2;(t)) <C so that T2 is regular.

Finally, if d is zero then let H and H be the planes in 7£
3 that are the chordales, respectively,

of and pip, and and for all positive values of p. Let H be the plane in 7Z3 that

contains 94 and is perpendicular to H D H. Compute z, the point that is the intersection of

H
,
H

,
and H, and w, the power distance of z from 94.

If 7rp (z) > w then 7rp (z(t)) > w(t) so that T\ is regular.

Else, if 7tp (z) < w then np (z(t)) < w(t) so that T2 is regular.
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