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Abstract

The Ivantsov solution for an isothermal paraboloid of revolution growing into a

pure, supercooled melt provides a relation between the bulk supercoohng and a di-

mensionless product (the Peclet number P) of the growth velocity and tip radius of

a dendrite. Horvay and Cahn generalized this axisymmetric analytical solution to a

paraboloid with elliptical cross-section. They found that as the deviation of the den-

drite cross-section from a circle increases, the two-fold symmetry of the interface shape

causes a systematic deviation from the supercooling/Peclet number relation of the

Ivantsov solution. To model dendritic growth in cubic materials, we find approximate

solutions for paraboloids having perturbations with four-fold axial asymmetry. These

solutions are valid through second order in the perturbation ampUtude, and provide

self-consistent corrections through this order to the supercooling/Peclet nmnber rela-

tion of the Ivantsov solution. Glicksman and colleagues have measured the shape and

the supercooling/Peclet number relation for growth of succinonitrile dendrites in mi-

crogravity. For a Peclet number of P « 0.004 and the experimentally observed shape,

we calculate a correction corresponding to a 9% increase in the supercooling, in general

agreement with the experimental results.

PACS: 81.10.Aj, 64.70.Dv, 66.10.Cb, 81.10.Mx

Keywords: dendritic growth, supercooled liquids, non-axisymmetric dendrites, Ivantsov re-

lation
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1 Introduction

For a number of years there have been extensive measurements directed toward an under-

standing of dendritic growth from pure supercooled melts [1-5]. Of primary interest has been

a comparison with theory of the dependence of the growth speed, V, and the tip radius, p,

on the supercooling, AT. One ingredient of the theoretical basis for this comparison is the

Ivantsov solution [6] ,
which is an exact solution for the steady-state growth of an isothermal

semi-infinite paraboloid of revolution. This solution results in a relationship of the form

S = Pe’‘Ei{P), (1)

where S = Cy^T/Lv is the Stefan number (dimensionless supercooling), P = Vp/2k is

the Peclet number, and Ei{P) is the exponential integral (see Eq. (14)); here, cy is the

heat capacity per unit volume, Ly is the latent heat per unit volume, and k is the thermal

diffusivity. For this solution the solid is isothermal and is assumed to have the same density

as the liquid. The supercooling is AT = Tm — Too, where Tm is the melting point and Too is

the temperature of the supercooled liquid far from the paraboloid. The second theoretical

ingredient has been a value of the selection parameter a* = 2dQK,/Vp^, where do = jTMCy/Ly

is a capillary length based on the surface tension 7. Values of a* have been calculated from

considerations of marginal stability [1,7] and from the theory of microscopic solvability [8-14].

Recently, Glicksman et al. [2] have performed very careful measurements of the dendritic

growth of pure succinonitrile (SCN) in microgravity in order to reduce fluid convection and

thus to conduct a stringent test of the above relationships. For measurements down to

supercoolings of 0.05 K (S = 0.002), reasonable agreement is obtained with a* « 0.02.

Independent of selection, there appears to be a systematic discrepancy from the Ivantsov

relation given by Eq. (1). For supercoolings between 0.5 K and 1 K, the measured supercool-

ing for a given Peclet number is about 10% higher than would be predicted by Eq. (1); see

Fig. 6 of Ref. [2]. Some possible reasons for this discrepancy are the effect of finite container

size, thermal fields due to other dendrites, and deviations of shape from a paraboloid of

revolution. Previous theoretical studies of the effects of the dendrite geometry on the sur-

rounding thermal field include boundary integral computations by Schaefer [15]; this work

has recently been extended by LaCombe [16]. These studies indicate how the temperature
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field near the dendrite tip is infiuenced by latent heat emission from the dendrite surface at

various distances from the tip.

In the present paper, we investigate the effect of a specific deviation of shape from a

paraboloid of revolution, namely a paraboloid with a perturbation having n-fold symme-

try about the growth axis. The possible importance of such a perturbation is suggested by

the measurements of Glicksman et al. [3] of anisotropic tip shapes that can be fit by functions

of the form

P
(
2

)

where r, z, and 4> ^.re cylindrical coordinates with growth along the positive 2: axis. The

function Q{(f)) has four-fold symmetry, and to a crude approximation is given by ~

Qo cos 44>, where Qq is a constant.

A more general exact solution for steady-state solidification into a supercooled melt is that of

Horvay and Cahn for an elliptical paraboloid [17]. For this solution the relationship between

S and P depends on an additional parameter h that characterizes the eccentricity of the

elliptical cross-section. Such a body has two-fold axial anisotropy. This result suggests that a

paraboloid having a perturbation with n-fold axial symmetry would also have a relationship

between S and P that depends upon the amplitude of the perturbation. We proceed to

obtain such a solution for n = 3 and n = 4 by means of an expansion to second order in the

perturbation amplitude, necessary because the first order correction vanishes by symmetry.

Dendrites with n-fold symmetry about a preferred growth direction generally occur because

of the presence of anisotropy in surface tension or interface attachment kinetics. For a cubic

material, dendritic growth in the [100] direction leads to shapes with four-fold symmetry, and

growth in the [111] direction leads to shapes with three-fold symmetry. The vast majority of

quantitative data exist for dendrites with four-fold symmetry [1], although there have been

observations of three-fold shapes in solution growth [18] and in solid-state order-disorder

transitions [19]. In addition to the possible application of our results to observations of

growth with three-fold symmetry, the analysis for the case n = 3 is also included to facilitate

our understanding of the solution technique, with is based on extending the known results

for the two-fold Horvay-Cahn solution to the more difficult case of four-fold symmetry.

The main results of the paper may be summarized as follows. In cylindrical coordinates, we
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show that the four-fold dendrite tip has the form

- cos 4</> a(P)Q +^(P) -f O(e^), (3 )

where e represents the amplitude of the four-fold perturbation to the axisymmetric paraboloid.

The corresponding correction to the relation (1) is found to have the form

5 = Pe^E^iP) + -S^^\P) + O(e^). (4)

The specific dependence of the coefficients a and /?, and the correction S^'^\ on Peclet

number are worked out in detail. The measurements of Glicksman et al. for succinonitrile

at F 0.004 correspond to a value e = —0.008, and the term /2 represents a 9 %

increase in S.

2 Governing Equations

We use parabolic coordinates to describe the dendritic growth. The coordinate system is

fixed in the dendrite tip’s frame of reference, so that with regard to the laboratory frame

in which the crystal is at rest, the moving coordinate system has constant velocity V. The

relations between the parabolic coordinates (^, rj, (p) and the Cartesian coordinates {x, y, z)

are [20]

X = ^T] cos

y = ^7]sm(f),

z = l{e-v%

(
5 )

(
6 )

(
7

)

For a steady-state isothermal dendrite growing in the 2;-direction, we express the surface of

the dendrite in the form ^ = /(t^, </>). The range of variables is taken to be /(??, 0) < ^ < oo,

0 < 77 < oo, and 0 < 0 < 27r in the liquid, and 0 < ^ < /(??, <?!>), 0 < r? < 00
,
and 0 < ^ < 27r

in the solid, which is isothermal.

The equation for the steady-state temperature T in the liquid.

0 = -f V (8 )
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becomes, in the parabolic coordinate system,

^ fd'^T d^T\ (idT ldT\ KH^d‘^T dT\
0 - +

'=

j

+

where H = The heat flux boundary condition ~Lvn = kdTjdn becomes

r,r/r ,
,(^ , H^UdT\

-LV{f + ,/„)= 1
, (

10
)

where k = cy/^ is the thermal conductivity. The solid-liquid interface is assumed to be

isothermal at the melting temperature, Tm‘, i-e., we neglect the effects of capillarity. The

liquid far from the interface is supercooled to a temperature To© < Tm, so that T{^,r], (p) —)

Too as ^ > oo.

2.1 Dimensionless Formulation

We take 2k/V to be the length scale, and measure temperature relative to the melting point

in units of (Tm — Too). The dimensionless governing equations then become (retaining the

same notation henceforth)

0 =
d'^T a^T 1^

dif ^ 77 ar? ^^7^2 Qfjp. ^ dr)
(
11

)

At the interface we have T = 0 and

dT H^UdT]
[J + Vh)

2 \ a^ dr) r)‘^P del) J

’

In the far-field we have T(^, 77, </>) ^ — 1 as ^ 00.

(
12

)

3 Ivantsov Solution

The Ivantsov solution, which we denote by a superscript ‘(0)’, has isotherms corresponding

to ^ = constant, and a solid-liquid interface = ^o- The surface of the dendrite for this

solution is given by the equation z = — P where P = y^. The dimensionless
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tip radius computed from the above expression is = Fp/2/c = P. The Ivantsov solution is

where

r(o)M = [gi(?^)-£i(P)]

Ei(P)

roo £—t

Ei{u) = —dt,
Ju t

(13)

(14)

is the exponential integral [21]. The boundary condition (12) results in Eq. (1), which we

now write = P Ei{P).

4 Horvay-Cahn Two-Fold Solution

Horvay and Cahn [17] generalized the Ivantsov solution to obtain a model of an isothermal

dendrite that has an elliptical cross-section. The isotherms correspond to constant values of

a;, where

X
+ y = w — 2z, (15)

uj — h u -\-h

and the interface corresponds to a; = P. Here h determines the aspect ratio of the elliptical

cross-section of the dendrite. For 6 = 0 the cross-section is circular; we will assume |6| < P.

Eq. (15) is actually a symmetrized version of the corresponding expression given by Horvay

and Cahn, with dimensionless radii of curvature (P — h) in the x-z plane and (P + h) in the

y-z plane. Thus, the average dimensionless radius of curvature is P. The thermal field is

given by

where

and

lG(a;)-G(P)]
(16)

roo

(17)

S = VP^-b^e^G{P). (18)

: recovers the Ivantsov relation (1).
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4.1 The Horvay-Cahn Solution in Psirabolic Coordinates

To gain insight into solutions with four-fold symmetry, we re-express the two-fold Horvay-

Cahn solution in the parabolic coordinate system (^, 77 , 0), to obtain

2„2 cos^ 6 sin^ 6
+ = u^-{e-

u — b uj + b

which defines implicitly the function uj = r), (jj). The temperature field has the form

[G{uj{t,r^A)) - G{P)]

(19)

(fj)
=

G{P)
(
20

)

The interface shape can be obtained from the relation a;(^, rj, (jj)
= P, which implicitly defines

the function ^ = f{rj,(l)); i.e.,

2^2 cos^
<f)

sin^0^
+ = P-{f-v^)-P-b P+b

4.2 Perturbation Expansion of the Horvay-Cahn Solution

(
21

)

From Eq. (21) we see that the ellipticity of the shape depends on the ratio {P — b)/{P + b).

In order to study a shape of fixed ellipticity, we make this ratio independent of P by writing

b = Pe, where |e| < 1. We proceed to expand the Horvay-Cahn solution in powers of e for

|e| 1 . More specifically, we expand in e while keeping the Peclet number fixed, which

keeps the interface tip at 2: = P/2 and also fixes the average radius of curvature. Thus

/

V

9

/(^,</>, e) =
^0 + €

e

+ 2
(f>)

5<o)

J
5<‘)

J ^
5(2)

\

/

+ O(e^) (22)

where the leading order terms correspond to the Ivantsov solution. The first order solution

is

-p
Ei{p) ie+v^) \e
_pl/2 cos 20

2(P + r72)

^ cos 20 (23)

= 0

7

(24)

(25)



which illustrates explicitly the twofold symmetry.

The second order solution is

(/>)

5(2)

e cos 40 / r)^

(^2+7^2)

P--P

-p2 d

4Pi(P)^

P2 a
, _

j -
2 [£;^(p)]2

3pl/2 ^4 cos^(20)

p2 q2

8Pi(P)^

(i-p)Pi(a

_pl/2
7^2

(P + r/
2
)

Pe^Pi(P)

+
4(P + 772)2

p2

T-i + f(i-P).

(26 )

(27)

(28)

where H'^d/dz = (^5/^ — rjd/dr]). We have written Eq. (26) in terms of Pi(^^), which is the

zeroth order solution to Eq. (11), and its first and second partial derivatives with respect to

2
,
which expressions also satisfy Eq. (11). Thus the first term also satisfies Eq. (11), as is

discussed further in the Appendix.

Note that the first non-vanishing correction to the supercooling due to the twofold interface

perturbation is quadratic in the amplitude of the perturbation. The fact that 5*^^^ = 0 can

be understood by realizing that the relationship between S and P must not depend on the

sign of the interface perturbation because changing the sign would simply interchange x and

y. For large Peclet numbers, has the expansion

= ^ + f + (29)

In Fig. 1 we plot the quantity as a function of Peclet number over the range

10“® < P < 10. The correction is negative, and becomes smaller in magnitude as the

Peclet number increases. In Fig. 2 we plot the ratio as a function of e for a Peclet

number ofP = 0.01. The solid curve corresponds to the exact value of S as given by Eq. (18),

and the dashed line corresponds to the second order approximation. The approximate and

exact results are in good agreement for e < 1 /2.

5 Expansion Procedure for the n-Fold Solution

Guided by our expansion of the Horvay-Cahn solution, we use an expansion procedure to

obtain solutions having 77,-fold symmetry. We consider an expansion having the form of
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I

Figure 1: Plot of as a function of the Peclet number P for n = 2.

The quantity gives the correction in supercooling due to a small departure

from axial symmetry as described by Eq. (4).

o

Figure 2; Plot of 5/5^°^ as a function of e for a Peclet number of P = 0.01.

The solid curve corresponds to the exact value of 5, and the dashed line

corresponds to the second order approximation with S « + e^S^‘^'^/2.
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Eq. (22). Since the heat equation is linear, each term in the expansion of the temperature

satisfies Eq. (11).

We use a specific form for the function proportional to cos ncf), which for n = 2

agrees with our expansion of the Horvay-Cahn solution, so that e relates in the same way to

the amplitude of an interface perturbation. We require that the position of the dendrite tip

and the angular average of the radius of curvature of the tip remain fixed at their unperturbed

values:

(30)

— / p((^, e) d(l) = P,
ZTT Jo

(31)

where

e) =
[1 - e)fr,r,{rj,(j), e)]

7]=0

(32)

is the radius of curvature of the tip in a section ^ = constant. This allows us to focus on the

dependence of 5 on e for a fixed value of P. We have

/9(0. 6) = P + + j {p^/V® (0, 4^) + 2P^ [/M(0,
,^)]'} + 0(£^), (33)

which when substituted into Eq. (31) gives to second order

5.1 First-Order Solution

To first order in e, the condition of an isothermal interface and the flux boundary condition

Eq. (12) lead to the following conditions at the unperturbed interface ^

7^(1) +
dT^o)

/(') = 0; (35)

;(!) +
drj

5m gj’(l) Q2j’m
+
5 ( 1 ) dT^O)

~~W
(36)

By using the results derived in the appendix, the first order solution is

?’™(f.’;,'A)
-P

Fi(P) (e + ry2)

n

cos n(j), (37)
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(
38 )

This solution satisfies the boundary conditions (35) and (36) and the auxiliary conditions

(30) and (31) provided that = 0. Thus, as for the two-fold solution, there is no first

order correction to the Stefan number S, which is consistent with the fact that a change in

the sign of e is equivalent a rotation about the growth axis through an angle Tc/n.

5.2 Second-Order Solution

At second order the isothermal condition and the flux boundary condition are

(9^2
(39)

and

/® +
drj

5(2) qj'{Q) 5(0)

~2
QTi2)

^

f(iU2 r(2) 2i/2 5/(1) dT^l)

+ 5^3 Q^2
J 2

r?2[/(0)]2 50 50

The solution for n = 2, 3, and 4 will be found in the form

(40)

J'(2)
_

Uo
dz

e cos2n0 /

ie+v^) Uj

2

+ E
j=-(n-2)

(41)

where negative indices refer to “antiderivatives,” defined so that for A: > 0,

r)
^

(42)

is equivalent to

Eiie) =
d^w

dz^
(43)

with It; —) 0 as 2 —)• oo. Specific forms for the derivatives and antiderivatives that apply for

n < 4 are given in the Appendix. The specific form of the coefficients bj are found to depend

on n, and in the following subsections we consider separately the two-fold, three-fold, and

four-fold solutions at second order in the perturbation amplitude. In each case, however, the

non-axisymmetric part of the solution, proportional to Uq? is found to be given by the above
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expression with the common value oq = —P^/[4£'i(P)].

Given the form (41) for we note that the form of then follows directly from the

isothermal boundary condition (39), which yields

= - Ti2) ^ 2
dT^^)

/(!) +
^2j’(0)

oe

dT(^)
(44)

Thus, can also be expressed directly in terms of the set of coefficients oq and bj.

5.3 Two-Fold Solution

Our analysis of the Horvay-Cahn solution, summarized in Eqs. (26)-(28), shows that the

second order temperature of the two-fold solution can be expressed in the form (41)

with no = -PV[4Fi(P)], bo = -e-^(l - P) /i2[E,{P)f) ,
b, = PV[2Fi(F)], and 62 -

P^/[8£'i(P)], with a correction given by Eq. (28).

We next shift our viewpoint, and consider how the constants ao, bo, bi, 62, and can be

determined directly from the governing equations without making use of the closed form of

the Horvay-Cahn solution. This will provide guidance in determining the general solution

for dendrites having n-fold symmetry with n > 2.

Three linear equations are obtained by requiring that the flux boundary condition (40) is

satisfied identically. Inserting the expressions (41) and (44) into the flux boundary condition

results in an expression of the form

0 =
(lOPr/^ -1- 6t}^)Ei{P) cosAcf)

P3/2(P + 7/2)3
do +

p2

4Pi(P)

4pl/2(p_^2)^^(p)

(P 7/2)3

62--
p2

8Pi(P)

^pl/2
6„£i(P){(l + P)e-P£i(P)-l}-

5(2)

Pe^Ei(P) 2
(45)

The angular dependence in the flux boundary condition is thus eliminated by the choice no =

—P^/[4Pi(P)]. Similarly, the dependence on 7/ is eliminated by choosing 62 ™ P^/[8Pi(P)].

Therefore, the last term provides a linear relation between and bo- We note that the

term in that is proportional to 61 simply represents an infinitesimal translation of the

Ivantsov solution along the growth axis, so that the term dEi(^^)/dz is a solution to the full

set of linearized governing equations. The flux boundary condition is satisfied separately by

this term, and bi does not appear in the resulting expression for the flux.
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Two more equations are required for the determination of the expansion coefficients. An

examination of the relation (44) between and for 77 == 0 shows that the condition

(30) that fixes the tip position is equivalent to requiring that vanish at the tip. This

provides a fourth linear equation

-p -P

6„£i(P)-26,2^ + 462^(P+1) = 0. (46)

As noted above, the coefficient bi is associated with a translation of the dendrite along the

growth axis, so that fixing the tip position is equivalent to determining the value of 6 i given

values for the remaining coefficients.

A fifth equation results from the curvature condition (34), which for n = 2 yields

'p2

-2

pEApy
(47)

We therefore obtain five independent linear equations for the determination of the expansion

coefficients oq, bo, bi, and 62 ,
and the correction It can then be checked directly that

the solution to these linear equations reproduces the results of the second order expansion

of the exact Horvay-Cahn solution given above.

5.4 Three-Fold Solution

We look for a three-fold (n = 3) second order solution having the form

e cos 2n(t)

+ boEi{^'^) -I- bi—Ei{^^) + b2 -^Ei{^'^) -1- 6_iu(^, 77), (48)

where we have added to the form of the two-fold solution an additional solution u{^, 77 )
given

by the “anti-derivative”

^u((,v) = Ei{e), (49)

(see Appendix), which provides a solution with more rapid growth in 77 to balance the 77
-

dependence generated by the non-axisymmetric part of the solution.
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The condition (30) that the tip is fixed leads to

6„£;i(P) - + 4i>2^(P + 1) +^ - e-'’ = 0 . (50)

The condition (31) that the curvature is fixed yields

^ - ^(P + 2) +^ [l - (P + l)Pi(P)e'’] = 0.
p2 p3

Inserting the expressions (44) and (48) into the fiux boundary condition (40) gives

(51)

0 =
(14P?7® + 10r)^)Ei{P) cos6(l>

p5/2(p + ^2)3
Qq +

p2

m{P)
4P^P{P - r}^)Ei{P)

(P + 7?2)3
62 +

p2

miP)\

P^PEi{P)7]‘^^
6_i {e^Pi(P)(p2 + 4P + 2) - (P + 3)} +

+ pl/2
5(2)

5„P,(P){(l + P)e-P,(P)-l}-^^,^^^^^
, 2

{Pe^Pi(P)(P + 2
)
- (P + 1

)}

PPl(P)J

1
+

(52)

We note that the expression 6_iw(^, 77 )
in Eq. (48) is needed to balance the inhomogeneous

term 4/[PPi(P)] in the third term (proportional to rf) in the above expression. The first

three terms in this expression can be eliminated by choosing ao —P^/[4Pi(P)], 62 —

-PV[8Pi(P)], and

5-1 =
-4

PPi(P) [(P2 + 4P + 2) e^Pi(P) - (P + 3)]

(53)

The remaining term in Eq. (52) then provides a linear equation relating S'^ and bo, which,

in conjunction with (50) and (51), can be solved to provide the supercooling correction

5 (
2

) ^ _ |(p
5 ^ gp4 24p3 + 24p2 + 12P)e^^[Ei{P)f

- (2P^ + 14P^ + 36P2 + 16P)e^Pi(P) + (P^ + fiP^ + 13P - 4)} / (54)

{2 [(p2 + 4P + 2)e^Pi(P) - (P + 3)] }
.

In Fig. 3 we plot the quantity as a function of Peclet number over the range

14



w

Figure 3: Plot of as a function of the Peclet number P for n = 3.

10 ^ < P < 10. The correction is positive for n = 3.

We note that the asymptotic expansion of for large P is given by

5(2) ^ 1?.
^ p4

414 ^ / 1

p5 (pe (55)

Inserting the above values of the coefficients Uq and bj into expression (44) for the shape

correction yields

fi2) ^ -^^C3(P) 5 77^C0S^(3</>)

J P + 7^2 4P1/2(P + 7/2)2
(56)

where

CsiP) =
e^Pi(P)(6 + 18P + 9P2 + p3) - (11 + 8P + P2)

4v^[e^Pi(P)(2 + 4P + P2) - (3 + P)]
(57)

5.5 Four-Fold Solution

We look for a four-fold second order solution having the form

e cos 2nd

(^2 + ry2)

15



(58)+ boEi{^‘^) + bi—Ei{^‘^) + b2-^Ei{^^) 4- 6_iw(^, 77 ) + b^2v{^, 77 ),

where we have added to the form of the three-fold solution an additional solution given by

the “anti-derivative”

52

dz^
(59)

(see Appendix), which provides an additional solution that is needed to balance terms gen-

erated by the non-axisymmetric part of the solution.

The condition that the tip is fixed leads to

—p —p
e e

p ' p2

The condition that the curvature is fixed yields

(>o£i(P)-26i V+4^'2^(i='+l)+^ [PEi{P) - 6“'’] +^ [P^EiiP) + (1 - P)e-^] = 0.

(60)

^-^(P+2)+ 2
^ [l - (P + l)B,(P)e^] +

°-f
[(P + 1) - (P + 2)PE,(P)e’’] = 0 . (61 )

b-i r

Inserting the expressions (44) and (58) into the flux boundary condition (40) gives

0 =
(I8P77® -I- 1477^®)£'i(P) cos 8^

P7/2(P-|-7^2)3
Uo +

p2

4Pi(P)

AP^I‘^{P - ri^)Ei{P)

{P + 772)3

p2

Pl/2Pi(P)77^

16

m{p)

72
b.2 {e^Pi(P)(p3 + 9P2 + 18P + 6) - (P2 + 8P + 11)} - p2p-^p^

P^I‘^Ei{P)rf
6_2 {e^Pi(P)(p^ + -f 6p) - (p^ + 5p + 2)} (62)

+ 26_i {e^Pi(P)(p2 + 4p + 2) - (p + 3)}
-
-pE^

5(2)
-^pl/2

+

6„£.(P){(l + P)a^£,(P)-l}-^^^^^^^j
2

[Pe^E,(P)(P + 2) - (P + 1)}

Pi(P)6-2

8
{p2e^Pi(P)(P-f 3) - (P2 + 2P- 1)}
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I

By zeroing the first four terms in this expression we find Gq = -P^/[AEi (P)], 62 = P^/[8Pi (P)],

6_i = 4[(P^ - 36P2 - 48P)e^Pi(P) - (P^ - P^ - 34P - 18)]/

{p2Pi(P) [(ps + 13P^ + 56P^ + 96P2 + 60P + 12)e'^^[Ei{P)f (63)

-2(P^ + 12P3 + 45P2 + 60P + 20)e^Pi(P) + (P^ + IIP^ + 35P + 33)]

}

and

72
^

^ P2Pi(P)[(P3 + 9P2 + 18P + 6)e^Pi(P)-(P2 + 8P +!!)]

The remaining term in Eq. (62) then provides a linear equation relating 5^ and ba, which,

in conjunction with (60) and (61), can be solved to provide the supercooling correction

5 (2 ) z:. |(p9 + I 7p8 + Ii4p7 + 390p6 ^ g72P^ + 576P^ + 144P^ - 144p2)e^^[Pi(P)]^

- (3P® + 48P^ + 297P^ + 908P^ + 1254P^ + 864P^ + 372p2)e^^[Pi(P)]^

+ (3P^ + 45P® + 255P^ + 685P^ + 686P^ + 470P^ + 444P + 36)e^Pi(P)

- (P® + 14P^ + 72P^ + 166P^ + 93P^ + 136P + 126)} /

{
2P [(P^ + 13P^ + 56P^ + 96P2 + 60P + l2)e^^[Ei{P)]‘^

-2(P^ + 12P^ + 45P2 + 60P + 20)e^Pi(P)

+(P^ + llp2 + 35P + 33)]} (65)

This expression should not be used to evaluate for large P in finite precision arithmetic,

since considerable cancellation between large terms occurs that lead to a small result. Reli-

able results can be found by using extended precision in a symbolic arithmetic package. We

note that the formal expansion of this expression for large Peclet number has the form

(66)

However, this expression requires very large Peclet numbers, on the order of P ~ 1000, to

be useful.

In Fig. 4 we show the variation of the quantity P^ over six orders of magnitude in

17



83

Figure 4: Plot of as a function of the Peclet number P for n = 4.

P. Over the range 10 ^ < P < 0.1 the results can be fit by a cubic polynomial in logigP,

which has the form

5(0)
=— {0.18490 + 9.3386 x 10"^ [logjo P]

+ 1.7588 X 10"^ [logio P]^ + 1.1651 x 10"^ [logio P]^} , (67)

which has a relative accuracy of within 2.5% over this range. In Fig. 5 we show the relative

correction as a function of Peclet number. The relative correction is monotonically

decreasing as a function of P.

Evaluating the expression (44) for with the above coefficients yields

(2) ^ -[r)^d4{P) - rj^CjjP)] 7rf cos^(4<^)

' e4(P)(P + r/
2
)

4P3/2(P + 772)2
^

where

C4 (P) = P(144 + 432P + 648P2 + 408P2 + 126P^ + 18P^ + P^)[e^Ei{P)f

18



Figure 5: A log-log plot of the relative correction as a function of the

Peclet number P for n = 4.

- 2P(138 408P + 312P2 llOP^ 17P^ + P^)e^Pi(P) (69)

-h (-36 -H 238P + 230P2 + 95P^ + 16P^ -h P^),

d^{P) = (48 -h 288P -h 552P2 4- 416P^ 138P" + 20P® + P^)[e^Ei{P)f

- 2(86 -h 314P -f 312P2 + 120P^ -h 19P^ -h P^)e^Pi(P) (70)

-f (150 4- 224P 4- 103P2 18P^ P^),

and

64 (P) = 4P^/2 ^e^Ei{P){2 + 4P + P^) - (3 + P)]

[e^Pi(P)(6 18P -f 9P2 4- P^) - (11 4- 8P -F P^)] . (71)

6 Shapes in Cylindrical Coordinates

To facilitate comparison with experiment, we express our dendrite shapes for n = 2, 3, and 4

in cylindrical coordinates as z = g{r,4') = P/2 — r^/{2P)+€g^^\r,<p) + €^g^^\r,4>)/2 + 0{€^).

In the previous section these shapes are given in parabolic coordinates by equations of the
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form^ = f{T],(f)) = ^o + €f‘^^^{T],(j)) + e^f^^^r],(f))/2+ 0{€^). For all n, is given by Eq. (38),

whereas is given by Eqs. (27), (56), and (68) for n = 2,3, and 4, respectively. To convert

these expressions to cylindrical coordinates we use Eqs. (5)-(7) to relate the coordinates 77

and 4> on the dendrite surface ^ to the coordinates r and
(f)
on the same surface

expressed in the form z = g{r, 4), and expand the relations term by term in e through second

order.

For the Horvay-Cahn solution with n = 2 this gives the shape

2

F
1

2

1

2
- cos 26
2

For n = 3 the corresponding shape is given by

£ ^ 1 _ i (LV
P 2 2 \P) I

cos 30 (^)'
2

imvoc-).

+ 0(e^).

(72)

(73)

The results for n = 4 are

£ = 1 _ 1 (L^
P 2 2 \P) I

cos 40(1)' + X —T
2 64

(74)

The latter expression is equivalent to that given in Eq. (3) with the definitions a =

and ^ = —P^/^d4/e4.

We note that the Horvay-Cahn shape for n = 2 represents a relative correction that grows

no faster than the unperturbed shape (e = 0) as r —» 00. The shapes for n = 3 and n = 4

have corrections that grow faster than the unperturbed shape, and must be interpreted as

providing a local solution near the tip that should be “matched” to another solution that is

valid in the far field in order to obtain a uniformly valid solution (see, e.g.. Ref. [12]). We

also note that there are no O(e^) non-axisymmetric corrections to the shape in cylindrical

coordinates, in contrast to the corrections found using parabolic coordinates; cf. Eqs. (27),

(56), and (68).

Solvability theory [12] assumes a three-dimensional dendrite tip which can be expressed in

the form

z

P

1

2
+ ^yl4

„(^)
cos4n0. (75)

for growth of cubic materials about a four-fold axis. Solvability results based on this expres-
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sion provide estimates of the magnitude of the four-fold shape perturbation for SCN that are

too high by a factor of three [12-14]. Since the isothermal expansion results that we have ob-

tained include additional axisymmetric contributions that are not included in the shape that

is assumed in the solvability theory, it would be interesting to consider the effects of basing

the solvability analysis on our second-order isothermal solution with four-fold symmetry.

7 Comparison with Shape Measurements

Glicksman et al. [3] have measured the function Q[4>) that appears in Eq. (2) for a super-

cooling of 0.46 K, which corresponds to P k, 0.004. Their measurements (see Figure 10 of

[3]) lead to the approximate result

Q{(j)) ~ —0.004 cos 40, (76)

in terms of the main harmonic; the data suggest that higher harmonics are likely to be sig-

nificant as well. Here, the orientation 0 = 0 corresponds to the [100] direction. Comparison

with Eq. (3) to order e results in e —0.008. For P = 0.004, the expression (65) for

gives = 56.6 so that the correction {2 = 1.8 x 10“^ in Eq. (4) is actually about 9 %

of the unperturbed value of 5^°^ = 0.02. This result is in good accord with the measured

deviations from the Ivantsov result shown in Fig. 6 of Ref. [2].

We now use the values P = 0.004 and e = —0.008 to explore the shape predicted by Eq. (3),

which in dimensional variables becomes

2

P
+0.004 cos 4^Q 0.0004 (

-

0.00003 (77)

Given that the [r/p)^ terms make this shape more complicated than that used by Glicksman

et al. to fit their data, and also given the fact that higher harmonics [viz. cos 80] are apparent

in their data, it is not possible to make a more quantitative comparison at this stage. Note

that for r/p ~ 4, which is typical of the range of their measurements, the axially-symmetric

sixth order and fourth order terms are comparable in magnitude.

In Fig. 6 we show a three-dimensional view of the dendrite shape obtained by using the

representation in parabolic coordinates as given by Eqs. (38) and (68) with P = 0.004 and
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Figure 6: A three-dimensional view of the non-axisymmetric isothermal den-

drite.

e = —0.008. To emphasize the deviations from the axisymmetric shape with € = 0 due to

the higher order contributions, we have plotted the shape out to a value zjp — 25, which is

well beyond the formal range of validity of the expansion. (Far from the tip, the corrections

become large in magnitude, and the form of the corrections in parabolic and cylindrical

coordinates are not equivalent.)

8 Discussion

We have obtained approximate solutions for dendrite shapes having three and four fold

sinusoidal axial anisotropies of amplitude of order e. These shapes lead to corrections of

order to the Ivantsov relationship between the Peclet number P and the Stefan number

22



S. To second order in e, these solutions satisfy the flux condition at the surface of an

assumed isothermal dendrite. Insofar as the relationship between P and S is concerned, the

assumption of isothermality should be valid at low supercoolings where the tip radius p of

the dendrite is relatively large. From Ref. [3], the measured tip radius for the supercooling

of 0.46 K that we have studied here is p = 25pm, which leads to a capillary correction of

‘^Tmi/{Lvp) = 5 mK, where we have used a value Tm'j/Lv = 6.19 x 10“® K cm [24].

The matter of the selection of p itself is critically dependent on capillarity as expressed

through the Gibbs-Thomson equation. For that matter, the value of e is also dependent on

capillarity, and is subject to a selection criterion as discussed by Brener et al. [12-14] who

obtain a prediction for e that is a factor of three larger than the measured value for SCN. From

Fig. 5 we note that the correction factor decreases as P increases. The dependence

of e on Peclet number has not been studied extensively. Preliminary measurements by

LaCombe over a small range of supercoolings suggest that there is not a strong dependence

of e on Peclet number [16]. Shape measurements on ammonium bromide dendrites have

been made by Mauer et al. [22], who find that |e| « 0.05 for a range of conditions leading

to dendrites with tip radii in the range of 1 to 4 pm. Bisang and Bilgram [5] have studied

the shape of the four-fold protruding fins in the [001] directions for xenon dendrites, finding

that a power law fit is superior to a polynomial fit over a large range of distances from

the tip. Karma and Rappel [23] compute shape corrections based on three-dimensional

numerical simulations of dendritic growth using a phase-field model. They consider growth

at a supercooling of 5 = 0.45, and compute the variation of the Peclet number and e with

the degree of surface tension anisotropy in the model. The Peclet number varies from 0.43 to

0.09 and e varies from 0.02 to 0.06 as the magnitude of the anisotropy is increased. Whereas,

for S = 0.45, the value of the Peclet number is F = 0.47, based on the Ivantsov solution

(e = 0). Our results based on an isothermal dendrite predict a much smaller correction at

these supercoolings (see Fig. 5), suggesting that the isothermal approximation is not valid

for these large supercoolings.

The solutions that we have obtained might provide a better basis than the Ivantsov solution

for considerations of a selection criteria for p, V, and the amplitudes of the non-axisymmetric

components of the shape. The procedure that we have used can also be extended to obtain

solutions for shapes having six-fold or eight-fold axial symmetry, either as independent solu-

tions in their own right or as harmonic corrections to our three-fold and four-fold solutions.
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Appendix: Exact Solutions with n-Fold Symmetry

If we look for a solution of the form

(78)T{Cn,<t>) = ,,
,

, 9{ri/i) cosn<^,
C + V

and set C = then g{Q is found to satisfy

+ Cffc
- = 0- (79)

This equation is homogeneous in C, with solutions g{Q = where we find two solutions

a = ±.n for nonzero n. For n = 0, the solution has the form

9(C) = 7l + BlogC- (80)

For n = 4, there are solutions of the form

(81)

In the original Cartesian coordinate system, it is clear that a z-derivative of a solution to

the partial differential equation is also a solution. By using the relations

(82)
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the 2-derivative of the n-fold solution,

e cos ncj) f 'r]\^

ie + 1^) u;
(
83

)

is given by

dz

— 2e cosn0

(^2
(84 )

This solution, taken with 2n-fold symmetry, is used to provide the non-axisymmetric second

order correction in the perturbation expansion of the n-fold solution; see, e.g. Eq.
(
41 ).

We note that Ex{^^) is a solution.

dz
E,{e) = -2

(^2 + rf)

is also a solution, and

dz^
^i(a=4

(^2 ^2^3
[(He + e) +e- e (86)

is also a solution.

To solve the n-fold problem with n > 2 we need additional axisymmetric solutions that have

more rapid growth in 77 as 77
—) oo. These solutions are obtained by integration of Ei{^^),

rather than by differentiation. The equation

—m({, li) = (^Wf + -q^Wn = F{(, q) (
87)

takes the form of a first order partial differential equation.

- r]Wr, = (^^ + rj) (88)

which can be solved using the method of characteristics. The solution satisfies an ordinary

differential equation along the characteristic curve ^77 = ^0^0 issues from the point

(^0,^0) along the initial surface ^ The solution that decays as ^ > 00 can be
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given in terms of the function

/c

Wo{^,T]o) = - J
x +

r&a

A3
F{\r]Q^Q/X) d\

(
89

)

by substituting r]o = r]^/^Q to give w{^,r}) = wo{^,r]^/^o). For F(^, 77) = this gives a

solution

which can be seen to satisfy Uz = F'i(^^). The function u grows quadratically in rj for fixed

We also compute a solution u(^, ry) to the problem Vz = u. This solution takes the form

v((,, "j)
= - iri*]e

+ ^[2?“ + 2ri' - S^v'^ - (
91

)

Both u(^,rf) and u(^, 77) are solutions of the partial differential equation (11).
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