
Benchmark Development for the
Evaluation of Visualization for

Data Mining

Sharon J. Laskowski

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

Georges G. Grinstein

Patrick Hoffman
Ronald M. Pickett

Institute for Visualization and
Perception Research

University of Massachusetts

at Lowell

Lowell, MA 01854

QC

100

.056

N0.6287

NIST
U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards and
Technology



I

I

I

1

I

I

I

I



Benchmark Development for the
Evaluation of Visualization for

Data Mining

Sharon J. Laskowski

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

Georges G. Grinstein

Patrick Hoffman
Ronald M. Pickett

Institute for Visualization and

Perception Research

University of Massachusetts

at Lowell

Lowell, MA 01854

February 1999

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Cheryl L. Shavers, Under Secretary for

Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Director



I

I

I

I

I

I

i

I

I

I

I

I

I

I

I

I

I

I

I



Benchmark Development for the Evaluation of

Visualization for Data Mining

Georges G. Grinstein‘*, Patrick Hoffman'*, Sharon J. Laskowski^, Ronald M. Pickett'

'Institute for Visualization and Perception Research

University of Massachusetts at Lowell, Lowell, MA 01854

{
grinstein, phoffman, picked} @cs.uml.edu

^The National Institute of Standards and Technology, Gaithersburg, MD 20899

sharon,laskowski@nist.gov

Abstract: New sets of powerful data visualization tools have appeared in the

marketplace and in the research community. This, combined with readily

available computer memory, speed, and graphics capabilities, makes it possible

to explore larger and larger data sets. However, it is difficult to judge the

effectiveness of the,se tools for supporting lai'ge scale information exploration

and knowledge discovery. In this paper, we describe a set of issues critical to

benchmarking and evaluation in this domain. We then propose an approach to

constructing an evaluation environment and report on initial results from a

prototype environment in which we tested five visualization approaches against

nine existing data sets.

1 Introduction

We are currently seeing a rapid growth in the development of tools and techniques for

supporting knowledge discovery in databases (KDD). New sets of powerful data

visualization tools have appeared in the marketplace and in the research community.

This, combined with readily available computer memory, speed, and graphics

capabilities, makes it possible to explore larger and larger data sets. While this trend

has served to increase the interest and effort of corporations in exploring their data for

hidden nuggets of information, these visualization tools are not well integrated with

data mining software, and it is difficult to judge the effectiveness of either the

visualizations or the data mining.

To remedy the situation, it is becoming increasingly important to develop appropriate

data sets and reproducible benchmark tests to identify the current best practices and to

steer development of future systems.

In this paper, we discuss some of the issues that need to be addressed in order to

provide benchmark testing and evaluation to the visualization and data mining

communities. We survey evaluation approaches that have been applied in other

This work was funded, in part, with research funding from the National Institute of

Standards and Technology.



information technology domains and then describe a basic framework in which to

perform evaluations. We conclude with a discussion and examples of various

visualization techniques, each exercised on several different data sets. These examples

comprise illustrate the kind of environment for testing that is critically needed to

advance the development of visualization for data mining. Such an environment, when

fully developed, should provide a broad array of tests for comparative evaluation on a

common set of criteria and provide for comparisons across systems on the same data

and tasks.

2 Background

In a Meta Group, Inc. survey, “Data Mining; Trends, Technology and Implementation

Imperatives”, it was found that the data mining market will grow 150% to $8.4 billion

by 2000. Half of 120 companies surveyed believe that data mining will be critical for

their businesses in the next two years [Wong97]. Some expect that visualization

software will proliferate even on Wall Street over the next few years [Yras96] in

response to its special needs to comprehend complex data. What is often missing in all

this talk, however, is a recognition of the difficulties to be faced. Without the

appropriate visualization techniques, these data mining approaches will remain

difficult to use and require a great deal of expertise. Corporations understand the

promise of data mining to wade through large amounts of data, but they are not

adequately aware of the human limitation in grasping what the analyses show

[Mart96], and many are finding that the tools just cannot handle the volume of data

they are gathering [Sted97].

It is clear that no one general set of visualization tools will be suitable to address all

problems. Different tools must be chosen based on the task and data. Currently, there

is little guidance for these choices. The only way to address this problem is through

the development of evaluation methodologies and benchmarks that show the strong

and weak features of specific classes of visualizations. Then we can begin to answer

the question, “How does effectively slice, dice, plot, color, and interact with data in a

visualization?”

A recent special advertisement in Computer World describing a data mining “face-off’

provides a good example of the need for such guidance. Five companies participated

in a “competition” in which they described how they would respond to two

hypothetical Requests For Proposals that could be solved by a data mining and/or data

warehouse solution. The solutions varied widely, from a total data management

strategy to the data mining alone, and ranged in cost from $150K to over $1M. This

wide discrepancy in approach and cost makes clear the importance of being able to

sharply evaluate the solutions to choose the best.

Usama Fayyad, in a recent editorial [Fayy97], makes the point that the database and

information retrieval communities have met with great success in advancing algorithm

performance by establishing benchmark data sets, and he believes that the KDD
community could benefit as well.



Evaluations that produce clear benchmarks are also needed to steer development

toward optimal solutions, models and theory. In other areas of information technology,

such as speech recognition, image recognition, and information retrieval, benchmarks

and evaluation metrics have clearly helped to move new technology into useful,

reliable, and predictable products. We believe they are critical in this research area as

well.

Before we specifically address the question of evaluation for visualization in the

context of data mining, we first look at some of the successful approaches to

evaluation in these other areas of information technology.

2.1 Benchmarking and Evaluation for Information Technology

The Information Technology Laboratory at the National Institute of Standards and

Technology [NIST97] has been supporting and contributing to the development of

tools to measure the effectiveness of information technology applications. The goal is

to provide researchers, developers and users objective criteria for understanding how
products and techniques perform and for assessing their quality. These tools include

test and evaluation methods, metrics, and reference data sets. For example, NIST
provides large unstructured text collections and uniform scoring procedures for the

Text Retrieval Conference [TREC97]. This annual event, now in its sixth year, has

proven to be an invaluable resource to the information retrieval research and

development community. Its activities have enabled great strides in improving the

search engines and in speeding the transfer of this technology. Large test corpora,

queries, and associated pooled evaluations are made available to participants who are

required to submit the output of their search engines for evaluation before the actual

workshop. [Voor97] contains an overview and proceedings from the 1997 conference.

TREC has encouraged research in text retrieval, increased communication among
industry, academia, and government, sped the transfer of technology from research

labs into commercial products by demonstrating improvements in retrieval

methodologies, and increased the availability of appropriate evaluation techniques.

A similar effort by NIST has been the development of test corpora and evaluation

methods for spoken language recognition. NIST has been involved in the creation and

distribution of speech corpora—nearly 30 of them—and associated benchmark

evaluations. These evaluations have proved to be critical in the recent

commercialization of speech recognition. Details are contained in [NIST98a].

These efforts and others, in such areas as fingerprint recognition and optical character

recognition [NIST98b], have been very successful. Hence, it is reasonable to assume

that such an approach can also be applied to improving the quality of the next

generation of tools that integrate data visualization into the KDD process.



2.1.1 State of the Art in Benchmarking and Test Data Sets for KDD

There has already been a substantial amount of effort in the area of benchmarking and

test data sets for KDD. See, for example, the data sets identified in the Knowledge

Discovery Nuggets web site [Kdnu98] such as those in the Machine Learning

Database Repository and the Neural Networks Benchmarking web sites, which

provide good starting points for reproducible experiments, especially for neural net

algorithms. However, these sets suffer a variety of limitations. Many are very small or

for very specific learning algorithms. Some of these collections are synthetic, that is,

they were designed a priori to stress prediction algorithms in predetermined ways.

Many of the large sets are from the statistical community rather than the visualization

community and typically do not include benchmarks.

The Information Exploration Shootout [1ESH97] developed at the University of

Massachusetts at Lowell and the MITRE Corporation has begun to address the need

for more serious comparative evaluations of the various data exploration techniques.

The first two data sets, network intrusion and online daily news archives of Web
pages, were chosen because of their timely subject matter and for their size (200 Mb,

1.2Gb respectively), as well as for their potential to have synthetic (planted) intrusions

and to deal with “free-form” patterns of information (typical news and large amounts

of other unstructured data). However, there has been no agreed upon set of metrics or

evaluation criteria on which to judge and compare approaches to exploring these data

sets visually.

Finally, in 1997, the Knowledge Discovery in Databases Conference organized its first

Knowledge Discovery and Data Mining tools competition, the KDD Cup. This

competition was aimed at demonstrating and comparing the effectiveness of tools in

the area of supervised learning. The winners were determined on the basis of a

weighted combination of classification accuracy (predictive power or “lift”), software

novelty, efficiency, and the data mining methodology used. Note, that to properly

evaluate the competition, entered data sets had to be analyzed ahead of time. For large

data sets this is very time consuming. The emphasis here was more on data mining

algorithms than on visualization. It is easier to measure accuracy of the classifications

than to measure and compare one visualization with another. Visualization has a

number of dimensions to be measured and is highly dependent on the user, the task,

and the structure of the data. It is difficult to pull these out to identify an optimal

method.

2.2 Issues in Benchmarking and Evaluation

In this section we discuss three major issues that contribute to the difficulty of creating

benchmarks and evaluation methodologies for visualization techniques aimed at

supporting data mining of large data sets.



2.2.1 Dependence of Performance on User Knowledge and Expertise

To illustrate the importance of factoring in user knowledge and expertise into a

benchmarking effort, we relate some of our experiences with the Information

Exploration Shootout’s [Grins97] first exercise, which involved the detection of

intrusions into a computer network. The two major challenges for the participants

were the complexity of the problem domain and the size of the database. Details of

the internet protocol and internet operations are arcane, and to adequately address, let

alone solve the problem, an expert in the field is necessary. The central need for a

domain expert is typically a common feature of real-world knowledge discovery

problems. The skills that we found to be required in our approach were: 1) domain

knowledge of computer network security; 2) experience with visualization software;

and 3) statistical expertise.

The first task of the shootout was a large preprocessing activity. We grouped the

individual packet records into natural clusters of communications sessions. The

resulting reduction in size was substantial. For example, the baseline data set contains

over 350,000 records. The corresponding session-level data set contains

approximately 16,000 records. We then analyzed the processed data sets

predominantly with visualization techniques. For many we used parallel coordinate

plots and conditioning. Even in this step, the visualization is driven by domain

knowledge. With this approach, several anomalies were identified, and these turned

out to be network intrusions when interpreted by a system administrator aware of

various network attacks.

This experience showed that there are a number of aspects of the process that have to

be evaluated, much depends on domain expertise, and on the amount of data involved.

Even with this large but not huge set, the visualization required a scaling down of the

problem. Any benchmark testing methodology must consider these complex

requirements. Testing must also include a good understanding of the perceptual issues

involved, as discussed in this next section.

2.2.2 Perceptual Issues in the Evaluation of Visualization Systems

The challenge in conducting an evaluation of any system is to ensure that the

evaluation is both valid and discriminating, and, where one system is to be compared

to another, that the comparison is fair. By fair, we mean that testing must occur under

controlled conditions: the challenges put to the systems must be equivalent and each

system (or system variant, if incremental tuning or adjustment is being investigated)

must be operated under similar conditions. In the case of comparing system speed of

performance, obviously the systems must run on platforms with equivalent speed so

that ensuring fairness with respect to purely computational operation of a visualization

system is a non issue. Also, it is assumed that a system performs deterministically,

that is, in exactly the same way computationally every time it operates on the same

data. However, that is definitely not the case with respect to those aspects of the

operation of a visualization system that involve human sensory, perceptual and

cognitive processes. These can vary widely in their operation from one test of the



system to another, and the fairness of comparisons can be undermined, unless care is

taken to ensure comparable operation from test to test. We propose there are three

basic ways in which comparability must be protected.

There is first the need to ensure comparability of performance at the sensory level.

Several factors have to be considered, including display calibration, control of lighting

and other viewing conditions, and adequate testing and selection of observers,

particularly with respect to such critical aspects as color vision and stereoscopic vision

where that might apply. Comparability at the level of perceptual processing must also

be ensured, and that will depend in large part on whether the required perceptual

processing of the visualization is pre-attentive or not. By pre-attentive, we mean that

the process runs off automatically, that it requires no conscious analysis, only that the

observer attends to the display. The possibility of encoding data into forms that elicit

such automatic processing has been demonstrated in several exploratory visualization

systems, see [Pick95]. To the extent that a visualization system depends on purely pre-

attentive perceptual processing, the problem of ensuring comparability from test to test

devolves to ensuring only that the various determinants of comparable sensory

processing mentioned above are adequately controlled. But it is not likely that we will

ever be able to depend entirely on pre-attentive perceptual processing in visualization

systems.

We should aim to exploit pre-attentive perceptual processing as much as possible, but

visualization will probably always have to depend on perceptions that require a large

component of consciously controlled, deliberate analysis. This implies that, to a large

degree, the effectiveness of the perceptual processes will depend on what is termed

perceptual learning. The effectiveness is related to the degree to which the observer

can learn how to look at, how to see, and how to assemble the various components and

features of structures potentially visible in the display before they are adequately

perceived. Perceptual learning has received extensive attention in the psychology

literature; see [Gibs69], for example. Perhaps the best examples of dependence on

perceptual learning for effective performance come from fields of medical image

analysis, where, for example the pathologist in training only slowly learns with

coaching to differentiate, say, the malignant from the benign specimen under the

microscope, yet when experienced sees the difference instantly. Many visualization

systems will depend on the observer’s having learned how to perceive what is there.

This means that when competing systems are tested and compared, the evaluators

must ensure that the observers in each test have had adequate perceptual training and

experience.

A third area important to consider in protecting comparability among visualization

systems has to do with the methodology provided for the observers to conduct their

analyses and report their findings. Alternative methods for laboratory testing of

sensory and perceptual performance have received extensive development in

experimental psychology, see, e.g.. Chapter 2 in [Schi96]. The strengths and

weaknesses of these alternatives have also received extensive study, as have the

implications for their use in evaluating systems in real world settings. A good case in

point has been the extensive debate and development of techniques appropriate for



testing medical imaging and diagnostic systems, see e.g. [Swet82]. The particular

methodology will affect not only the richness and precision of the analyses conducted

and the reports produced, but can shape the basic nature of the game that the observer

plays. It is vastly important in comparing one system to another not just that that the

same methodology be applied, but that it be one that ensures, within its own operation,

comparable figures of merit from test to test.

The best way to ensure that testing is comparable among the different systems to be

evaluated is to have the evaluations done together in the same laboratory and, with

appropriate protections for independence of the tests, on the same observers. This

would suggest that ultimately one would like to develop a central testing laboratory.

But, it would be possible, and perhaps more practical, to develop standard procedures

that provide for testing in different settings. Either approach would require a

potentially large investment. But the pay back could be very high. The potential value

of visualization techniques will continue to grow as the capability for gathering and

exploring large amounts of data continues to expand, and the development of

approaches that can make those techniques as effective as possible will be well worth

the investment.

2.2.3 Issues in Acceptance by the KDD Community

Grinstein et. al. [Grins98] suggest other thorny issues that must be addressed. One is

that any benchmarking effort has to be able to produce credible subjective measures of

effectiveness and be able to reconcile them with an adequately broad spectrum of

objective measures. Another is that the effectiveness, and in turn the broad acceptance

and use of the benchmarking enterprise will depend on how well it can support

modeling and steer development of improved techniques. The whole enterprise

depends on consensus in the visualization and KDD communities to cooperate and

participate in the process, and that in turn depends on building up its credibility to

produce sensible measures and ultimately more and more effective systems.

3 Proposed Characteristics of an Evaluation Environment

An evaluation methodology for data visualization techniques within the KDD process

is different than pure (non-applied) visualization. The visualization community

recognizes that good visualizations are those that are designed for the task and domain.

Similarly, any specific visualization or visualization technique must be judged in the

context of the step in the KDD process and the domain where it is being applied.

However, even in the visualization community there is no on-going, comprehensive

evaluation effort, so we cannot look to that community for any systematic collection of

tasks, data sets, or benchmarks on which to base KDD visualization evaluation.

In order to develop an evaluation methodology, we must, then, develop a taxonomy of

tasks and data sets that support evaluation of a specific visualization system or

approach in the context of tasks and data sets that have some relevance to the steps in

the KDD process and application. We envision an evaluation environment that



contains numerous data sets and application-based tasks which feed into a repository

of evaluation outcomes and guidelines. This environment would support an ongoing

effort to systematically develop benchmark data sets and outcomes against which

evaluation methods and sets can be validated and visualization techniques tested.

Figure 1 outlines the structure of such an environment.

This approach does require the development of tasks which have outcomes that can be

evaluated. While the KDD process has been described in terms of tasks such as data

warehousing, target data selection, cleaning, preprocessing, transformation and

reduction, data mining, model selection, interpretation, etc., the granularity of these

processes is to large to be useful in defining such tasks. In the sections that follow,

we attempt to define a set of testing criteria, and then we describe a preliminary set of

lower level tasks that we think have been useful in prototyping an evaluation

environment.

Comparative
Evaluation Database

and Guidelines

Figure 1 Evaluation Environment for Visualization

3.1 Basic Testing Criteria and Measures

In this section we discuss some basic features of measurement in the context of

visualization which could possibly lead to an evaluation methodology that allows for

controlled, repeatable test and evaluation.



3.2 Basic Testing Criteria

Visualization techniques can be judged on a number of criteria across the data with

respect to the types and amounts of data that can be handled and with respect to the

type and quantity of human interactions it can support. Across the data, these include;

scalability, dimensionality, structure, and noise. Across the human interactions, these

include various aspects of the techniques’ capabilities to support interaction with the

system and with the data at various stages in the visualization process. These include

degree of interactivity, flexibility, ease of expression, and query functionality. Each

of these require some sort of metric assignment so that these features can be compared

across visualizations. Furthermore, a systematic, controlled approach is required to

take into consideration, not just the algorithms but also the interactive qualities of a

particular visualization and the perceptual capabilities of the users.

To summarize, any benchmark testing for visualization in the data mining process

needs to address criteria such as:

• Scalability; time to process, time to visualize large amounts of data

• Ease of expressing and integrating domain knowledge

• Dealing with uncertain or incorrect, “dirty” data

• Ease of classification and categorization

• High dimensionality

• Flexibility of visualization

• Query and database functionality, and

• Summarization of results.

Visualization techniques need to be characterized according to a set of features derived

from these criteria. Only then can they be evaluated against data sets and associated

tasks that explicitly exercise them against these criteria. This approach to “benchmark”

testing ensures that the results of evaluations can be compared across different

visualization techniques or systems. We are assuming, however, that there has been

some control for different user populations and usability of the tools themselves. This

can be addressed in several ways. Users must either be trained on the systems, or the

demographics of the users, for example, whether novices or experts in the domain,

must be controlled for and specified. It should be noted that while we have used some

of these criteria informally in the prototype environment, integrating them in a

systematic way for use in evaluation is an open problem. We also have not specified

the human interaction and perception characteristics needed for collection for the

repository and guidelines.

3.3 Measures

There are a number of different types of measures to consider in an evaluation.

Technology-based measures look at the degree to which a system can handle data sets

of varying sizes. This could be tested with a series of data sets of increasing size.

Task-based measures depend on the task for the domain and KDD process. For



example, one could measure the output of the task of finding the outliers in a set.

These measures must be designed for each task category. User-based measures

include items such as time to set up, and run a data set and degree of user satisfaction.

In Section 4, a basic set of measures, such as ability to identify outliers and clusters

has been applied in the comparative evaluations done for the prototype. Once again,

these have not been formalized in any systematic manner, but are simply used as a

proof of concept for the approach to evaluation suggested here. They are based on the

known features of the benchmark data sets.

3.4 Common Test Data Sets and Tasks

A key component of this evaluation approach is the construction of test data sets. The

data sets alone are not sufficient: they must be accompanied by tasks so that the

evaluation measures can be applied. This invites a tradeoff in using synthetic vs. real

data. Synthetic data is harder to construct, but the “correct” answers are known. Real

data is easier to collect, but it is harder to evaluate performance, because it is nearly

impossible to “know” the correct output to a task in any reasonably sized data set.

One idea that has been applied in the TREC conference to address this problem is that

of “pooling” results to estimate the correct answers. The “findings” over the course of

multiple evaluations could be collected and pooled to create a set of “best” answers.

Alternatively, the group that constructs a data set could be assigned to find the answers

before the release of the data, but this is quite resource intense for any one group.

4 Implementing a Prototype Evaluation Environment

Any evaluation methodology needs to provide cheap, reproducible metrics-based

evaluation methods and tools plus common data sets and tasks. It is difficult to

measure across low-level support technology (e.g., database capabilities), visualization

capability, user interaction, and data mining component interaction simultaneously.

One solution is to develop some basic test data sets and start with some single

component tasks. This can form the basis on which to develop a set of validated

measures. Having such data sets and measures should support repeatable experiments.

Such collective measures, developed for each system, would allow for comparative

evaluation.

Ultimately, such an environment would build up a comprehensive record, composed

of results collected over time on different sets and systems, that would eventually yield

some guidelines for choosing visualization techniques.

In an effort to formalize a benchmark environment for visualization and data mining,

a prototype effort has begun at the University of Massachusetts at Lowell. Several

machine learning data sets (primarily from UC Irvine Machine Learning Repository

[UCI97]) are used as input to a range of multi-dimensional visualizations. The data



sets are ordered by increasing size and complexity. The five visualizations, described

in detail in the next section, were chosen for their apparent usefulness in exploring

large data sets, are:

• Parallel Coordinates

• Scatter Plot Matrix

• Survey Plot

• Circle Segments

• Radviz

By using specific data set examples with known features, various limitations of the

visualizations can be demonstrated. These data sets can also be used to test various

data mining algorithms, such as classification or clustering. Most data mining software

packages include some of these data sets as examples or demos to illustrate the

features of the package. More and much larger data sets will have to be included in a

full evaluation environment. The data sets, the visualizations and the Java application

used in the analysis can be accessed from [Hoff98].

4.1 Overview of the Visualizations to be Compared

We begin with short descriptions of the five chosen visualization techniques. The

examples shown are meant to be representative of the output of these techniques but.

for the purposes of this paper, are not meant to be analyzed in detail. In particular,

color obviously cannot be used to discriminate among the sample data if you are

reading a black and white copy of this paper.

4.1.1 Parallel Coordinates

First described by A1 Inselberg [Inse85], Parallel Coordinates are a simple, but

powerful way to represent multidimensional data. Each dimension or attribute is

represented by a vertical line. The maximum and minimum value of that dimension is

usually scaled to the upper and lower points on these vertical lines. An N-dimensional

point is represented by N - 1 line segments connected to each vertical line at the

appropriate dimensional value.

In Figure 2, automobile data are displayed using Parallel Coordinates, with the

American cars represented with red lines, the Japanese cars with green lines and the

European cars with blue lines. (Again, note color not observable in a black and white

copy of the paper. Red shows up darker; hence the higher weights among the

American cars, showing darker lines towards the bottom of the Weight coordinate.)



Figure 2 Parallel Coordinates - Car Data Set

4.1.2 Scatter Plot Matrices

Grids of two-dimensional scatter plots are the standard way of extending the scatter

plot to higher dimensions. For example, if one has 10 dimensional data, a 10 X 10

array of scatter plots is used to look at each dimension versus every other dimension.

This is useful for looking at all possible two-way interactions or correlations between

dimensions.

Figure 3 shows a scatter plot matrix of the Iris Flower Data Set.
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Figure 3 Scatter Plot Matrix - Iris Data Set

4.1.3 Survey Plots

A simple technique of extending a point in a line graph (like a bar graph) down to an

axis has been used in many systems such as the Table Lens at Xerox PARC [Rao94].

A simple variation of this extends a line around a center point, where the length of the

line corresponds to the dimensional value. This has been called a Survey Plot in the

program Inspect [Lohn94]. It is a visualization of N-dimensional data that allows one

to quickly see correlations between any two variables especially when the data are

sorted on a particular dimension. When color is used for different classifications, a

sort can sometimes make it easy to see which dimensions are best at classifying the

data.

The survey plot in Figure 4 shows American (red-darkest), Japanese (green-lightest)

and European (blue) cars. The data are sorted by cylinders and miles per gallon.



4.1.4 Circle Segments

The idea of Circle Segments originated from Ankerst and Keim[Anke96]. It is similar

to the Survey Plot. However, the data start from the center of a circle and radiate to the

perimeter. A gray scale is used to show the value of a particular dimension, while the

class value is colored in pie segments sandwiched around the dimensional values.

(This idea of gray scale between class colors is different from the original circle

segments.) In Figure 5, a Circle Segments visualization of the Congress Voting Data

Set is shown.

4.1.5 Radviz

Spring constants can be used to represent relational values between points [01se93].

[Hoff97] developed a radial visualization (Radviz), similar in spirit to parallel

coordinates (lossless visualization), in which n-dimensional data points are laid out as

points equally spaced around the perimeter of a circle. The ends of each of n springs

are attached to these n perimeter points. The other ends of the springs are attached to a

data point. The spring constant K, equals the values of the i-th coordinate of the fixed

point. Each data point is then displayed where the sum of the spring forces equals 0.

All the data point values are usually normalized to have values between 0 and 1.
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Figure 5 Circle Segments -Congress Voting Data Set

For example if all n coordinates have the same value, the data point will lie exactly in

the center of the circle. If the point is a unit vector, then that point will lie exactly at

the fixed point on the edge of the circle (where the spring for that dimension is fixed).

Many points can map to the same position. This represents a non-linear transformation

of the data, which preserves certain symmetries and which produces an intuitive

display. Some features of this visualization are:

• Points with approximately equal coordinate values will lie close to the center

• Points with similar values whose dimensions are opposite each other on the circle

will lie near the center

• Points which have one or two coordinate values greater than the others lie closer

to those dimensions

• An n-dimensional line will map to a line

• A sphere will map to an ellipse

• An n-dimensional plane maps to a bounded polygon

In Figure 6, an example of the Radviz visualization is shown using the Wine Data Set.

Three types of wine can be seen.
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Figure 6 Radviz - Wine Data Set

4.2 Overview of the Data Sets Used in the Comparisons

The ten data sets (Simple Seven, Balloons, Contact Lenses, Shuttle 0-rings, Monks
problem. Iris Flower, Congress Voting, Liver Disorders, Cars, Wines, ) were analyzed

with the data mining tool Clementine[Clem98], as well as the five visualizations. The

Clementine results and the data sets can be accessed from the web site [Hoff98a]. Two
rule-based classifiers (based on Quinlan’s C4.5 algorithm), a neural net, and statistical

tools were used on the data sets for comparisons with the visualizations.

4.2.1 Description of the Data Sets

All of the data sets except the Simple Seven set, are from the UC Irvine Machine

Learning Repository [UCI97]. The first seven-point data set was created to illustrate

the features of Radviz compared with the other visualizations, however, it is a useful

data set to show the basic features of a visualization. Two of the data sets, the

automobile, and the Iris flower data set, were used because of their familiarity. Nearly

every data mining package comes with at least one of these two data sets. The other

seven data sets were chosen by increasing complexity from the UC Irvine collection.

A short description follows with some detail provided later when comparing the

visualizations:



• Simple Seven - seven data points used to show point overlap and

normalization

• Balloons - data for demonstrating a rule for inflating balloons

• Contact Lenses - data illustrating a complicated rule for prescribing what

types of contact lenses to wear

• Shuttle 0-rings - the data concerning the Shuttle Challenger failure

• Monks Problems - several data sets implementing rules to test machine

learning algorithms. The dataset was designed specifically to be difficult

for the algorithms

• Iris Plant Flowers - from Fischer 1936, physical measurements from

three types of flowers.

• Congressional Voting Records - Democrat and Republican votes on 16

issues from 1984

• Liver Disorders - a data set that can possibly predict liver disease from

blood tests and consumption of alcohol.

• Car (Automobile) - data concerning cars manufactured in America,

Japan and Europe from 1970 to 1982

• Wine Recognition - data of 13 chemical attributes measuring 3 types of

wines

4.2.2 Complexity of Data Sets

The complexity of a data set depends on many factors which include the number of

records, the number of dimensions (or attributes), the cardinality of each dimension,

the independence of each dimension, and the underlying function or model which

produces the data.

One measure of complexity, the Algorithmic Measure [Chai66], [Kolm65], [Solo64],

says the complexity is reduced to the size of whatever algorithm can be used to create

the data set. In data mining, this becomes the "model" used to describe the data set,

and, finding this model (such as a rule, or a neural net) is often the main problem.

One idea of complexity would then be “how difficult is it to find a rule explaining the

data set?” Another definition could be simply the “information contenf’ or entropy of

the data set. If certain fields or dimensions can be used to predict other fields, what is

the highest classification achieved from a machine classification algorithm? How
long and how much memory does it take for certain data mining algorithms to operate

on the data set? Answering the last question may be the most practical measure of the

complexity of a data set used in data mining. Building a statistical model of the data

set has the problem of “the curse of dimensionality” where the joint probability

calculation is related to the product of the cardinality for each dimension. Many data

mining packages automatically bin continuous fields to reduce the cardinality of each

dimension. As one possible measure of complexity, we have included the log of

product of the cardinality (PoC) in the data set description.



Although the data sets are listed in order of increasing complexity, there does not seem

to be much correlation with how well a visualization performs. Larger data sets would

probably start showing a correlation, but this needs to be investigated.

4.3 Comparisons of Different Visualizations for each Data Set

In this section, we compare the visualizations across the ten data sets that were

described in the previous section.

4.3.1 Simple Seven Data Set

This is a very simple data set that can be used to illustrate several features of

multidimensional visualizations. It was created to show specific differences in various

visualizations. It contains 7 instances, 7 classes and 4 numeric attributes. There are

four dimensions (Diml, Dim2, Dim3, Dim4) and Class. Dimension Cardinality is

4,6,5, 4, 7 respectively (number of cases). The PoC is 3360; log of PoC is 8.12.

The 7 points are listed in Table 1.

Diml Dim2 Dim3 Dim4 Class

10 10 10 10 pi

5 5 5 5 p2
1 1 1 1 p3
1 0 0 0 p4
0 20 0 0 p5

1 1 0 0 p6
1 2 3 0 p7

Table 1 Simple Seven Data Set

The features this data set can illustrate are:

• Global/local Normalization (see later description)

• Point Overlap

• Jittering Features

• Categorical to Numerical Mapping (7 class attributes)

Figure 7 shows the Radviz visualization on the Simple Seven Data Set. Points PI, P2

and P3 lie exactly in the same spot (center) on the display. Jittering the position helps

this point overlap problem. Or by using different colors and shapes we can just notice

the point overlap problem. In a standard scatter plot display jittering is a standard

visualization technique to help show that many points might have the same exact

value, or map to the same display point. In the Radviz display, notice that points 4 and

5 lie on the circle, since only one dimension has a non-zero value (the springs pull the

data point to the edge). In the current spring paradigm, there is no distinction between

the value of 1 and 20 (if no other dimensional values exist). Points 6 and 7 (light blue

and dark blue) lie in spots where the combined spring forces are zero.



Figure 7 Simple Seven - Radviz - Global Normalization

In Figure 8, the Simple Seven Data Set is shown using local normalization instead of

global normalization. Local normalization means that each dimension is scaled from

its maximum and minimum to between 1 and 0. Global normalization scales all values

from an overall max and min to values between 1 and 0. Clearly this changes the

location of the points in this visualization.

The Global/Local normalization problem is clearly seen in all the visualizations,

Radviz, Parallel Coordinates, Survey Plot and Circle Segments. (See Figure 7 through

Figure 14.)

In Circle Segments only the tones of the gray scale change with local/global

normalization.



Figure 8 Simple Seven - Radviz - Local Normalization
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Figure 9 Simple Seven - Parallel Coordinates - Global Normalization



Figure 10 Simple Seven - Parallel Coordinates - Local Normalization
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Figure 11 Simple Seven - Survey Plot - Global Normalization
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Figure 12 Simple Seven - Survey Plot - Local Normalization

Figure 13 Simple Seven - Circle Segments - Global Normalization



Figure 14 Simple Seven - Circle Segments - Local Normalization

When the class dimension is used in the visualization, it can sometimes have a

powerful affect. In the next group of Figures (15 to 18), the categorical variable

(“pi”. .
.”p7”) is converted to a number and used as part of the visualization. In Radviz,

it has the effect of pulling the later points to the "type dimensional radius". Obviously,

in many data analysis activities such as clustering by class, removing the "class

dimension” in Radviz would be desirable. However, in Parallel Coordinates and

Survey Plot, it actually seems to enhance the visual data analysis process.

Thus, in visual data mining, it is desirable to have the ability to remove one or more

dimensions from the visualization. Visualizations should have various jittering and

normalization options, and visualizing a particular dimension or class attribute by

means of color, or as a one of the normal dimensions, is also a desirable visualization

feature.

This data set is not applicable to any data mining algorithm, since there is no

underlying model of the data. In the rest of the data sets, the visualization techniques

will be compared with some data mining algorithms (such as C4.5 and a Neural Net

from Clementine).



Figure 15 Simple Seven - Radviz -using Type as a Dimension

Figure 16 Simple Seven - Parallel Coordinates - Using Type as a Dimension



Figure 17 Simple Seven - Circle Segments - using Type as a Dimension

4.3.2 Balloons, Inflated or Not Inflated

The balloon database is a good example of purely categorical data. Each attribute can

take on only 1 of 2 values: stretched or dipped; adult or child; yellow or purple; large

or small. The class or the value to be predicted is whether the balloon can be inflated

or not. There are actually 4 data sets corresponding to 4 rules on how a balloon is

inflated. The data set used in the examples, uses the nile; if an “adult” AND
“stretched”, the balloon is inflated. There are 20 instances (4 repeated), 2 classes, 4

binary-categorical attributes. The data set is #9 from the UCI collection. The



dimensions are color, size, act, age, and inflated. The cardinality is 2,2,2,2,20,

respectively, with the PoC equal to 640, and the log of PoC equal to 6.46.

The features this data set can illustrate are:

• Properties of an All-categorical Data Set

• Categorical (binary) to Numerical Mapping

• Visual “Rule Discovery”

This data set also illustrates how a categorical dimension should/could be expanded or

flattened to a new dimension for each value that the categorical dimension can take.

Each dimension can be two values, but when this is visualized, it is not clear what

“number” represents yellow/purple or stretch/dip etc. The original Balloon data set is

shown in Table 2.

Color Size Act Age Inflated

YELLOW SMALL STRETCH ADULT T
YELLOW SMALL STRETCH ADULT T
YELLOW SMALL STRETCH CHILD F

YELLOW SMALL DIP ADULT F

YELLOW SMALL DIP CHILD F
YELLOW LARGE STRETCH ADULT T
YELLOW LARGE STRETCH ADULT T
YELLOW LARGE STRETCH CHILD F

YELLOW LARGE DIP ADULT F

YELLOW LARGE DIP CHILD F

PURPLE SMALL STRETCH ADULT T
PURPLE SMALL STRETCH ADULT T
PURPLE SMALL STRETCH CHILD F

PURPLE SMALL DIP ADULT F

PURPLE SMALL DIP CHILD F
PURPLE LARGE STRETCH ADULT T
PURPLE LARGE STRETCH ADULT T
PURPLE LARGE STRETCH CHILD F

PURPLE LARGE DIP ADULT F

PURPLE LARGE DIP CHILD F

Table 2 Balloon Data Set



The data set can expanded (or flattened) as show in Table 3.

yellow purple small large stretch dip adult child T F

1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 0 1 0 1

1 0 1 0 0 1 1 0 0 1

1 0 1 0 0 1 0 1 0 1

1 0 0 1 1 0 1 0 1 0

1 0 0 1 1 0 1 0 1 0

1 0 0 1 1 0 0 1 0 1

1 0 0 1 0 1 1 0 0 1

1 0 0 1 0 1 0 1 0 1

0 1 1 0 1 0 1 0 1 0

0 1 1 0 1 0 1 0 1 0

0 1 1 0 1 0 0 1 0 1

0 1 1 0 0 1 1 0 0 1

0 1 1 0 0 1 0 1 0 1

0 1 0 1 1 0 1 0 1 0

0 1 0 1 1 0 1 0 1 0

0 1 0 1 1 0 0 1 0 1

0 1 0 1 0 1 1 0 0 1

0 1 0 1 0 1 0 1 0 1

Table 3 Expanded (Flattened) Balloon Data Set

The number of dimensions has doubled, however, some visualizations (Radviz) can

better illustrate the categorical nature of the data set. Clusters and rules can sometimes

be easier to find with this “dimensional expansion”. In Figure 19, a cluster or possible

rule seems evident in the Radviz display. In the Survey Plot (Figure 20) with

flattening, the rule for inflation can be seen. Hence, “Categorical Expansion” or

flattening should be a standard feature of visual data mining. As will be shown in

other data set examples, some visualizations (e.g. Radviz) can demonstrate that

patterns exist, but other visualizations (e.g. Survey Plot) or data mining algorithms are

needed to find the exact rule or pattern. In the data mining program, Clementine, a

simple rule and neural net was easily found to classify the data; however, the C4.5 rule

found was not quite as simple as it could be.



Figure 19 Balloons - Radviz - Inflated points in Red (dark)

purple child dip yellow tUelch anell adult

Figure 20 Balloons (Flattened) - Shows Adult & Stretch = Inflated (red-dark)

4.3.3 Contact Lenses

This data set has some complicated rules on prescribing whether a person should wear

hard, soft or no contact lenses. The description of the database does not list the rules.

There are 24 instances, 3 classes, and 4 discrete attributes. The data set is #52 from

the UCI collection. The dimensions are age, prescription, astigmatic, tear production

rate, and class (hard, soft, no). The cardinality is 3, 2, 2, 2, 3, 24 (cases) respectively

with the PoC equal to 1728 and the log of PoC equal to 7.45.



The mapping of categorical data for each dimension is as follows:

3 Classes

1 : the patient should be fitted with hard contact lenses,

2 : the patient should be fitted with soft contact lenses,

3 : the patient should not be fitted with contact lenses.

1. age of the patient:

2. spectacle prescription:

3. astigmatic:

4. tear production rate:

(1) young, (2) pre-presbyopic, (3) presbyopic

(1) myope, (2) hypermetrope

(1) no, (2) yes

(1 ) reduced, (2) normal

The features this data set can illustrate are:

• Properties of a Categorical Data Set

• Categorical (binary & tertiary) to Numerical Mapping

• Partial Visual “Rule Discovery” from a complicated rule

Using the Survey Plot visualization (with appropriate sorting) it is fairly easy to find a

few rules:

1 . If the tear production rate is reduced, do not prescribe contact lenses

2. If the patient is astigmatic, then prescribe hard or no contact lenses.

With the Radviz Visualization, and using random dimensional layout, one can find

some non-linear clustering of the three classes (hard, soft, no). (See Figure 21.)

Figure 21 Contact Lenses - Radviz - (The pattern suggests some rules are present)



However, the documentation says there are 9 rules covering the data set. Clementine’s

neural net and C4.5 only achieved accuracy of 73 and 81% with simple default

settings.

The original data set maps the categorical dimensions to numeric values (probably for

some “numerical” data mining algorithms). When the “categorical” dimensions are

expanded (flattened), the visualizations become more meaningful.

In this data set, the Radviz visualization hinted at the classification rule, and the

Survey Plot visualization came closer to finding the rule. However, machine learning

(C4.5) did best at finding this complicated rule.

4.3.4 Shuttle O-rings

This is the infamous data set concerning the Shuttle disaster. Does the data set allow

one to predict the failure of the 0-ring? It contains 23 instances, and 5 numerical

attributes (only 4 with different values). The data set is #81 from the UCI collection.

The dimensions are: number of O-rings, number of O-rings w/ thermal distress, launch

temperature, leak check pressure, and flight number. The cardinality is 1,3, 1, 6, 3, 23

(cases) respectively with the PoC equal to 3312 and the log of PoC equal to 8.11. The

features this data set can illustrate are:

• Simple Regression Prediction on 1 Variable

• Outlier versus Part of the Model

• Trying to Make Predictions from Too Little Data

In various visualizations (Parallel Coordinates, Survey Plot, Radviz - see Figure 22 to

Figure 26), it is easy to see a correlation with lower temperature and an increase in

number of O-rings under thermal distress.

Figure 22 Shuttle O-rings - Parallel Coordinates



Figure 24 Shuttle O-rings - Survey Plot

4.3.5 Monk’s Problems (monkl - training data set)

This data set was specifically created to test induction algorithms and has sometimes

been encoded as monks wearing 6 different articles of clothing with various colors.

There are 24 instances, 1 class (0,1) and 6 nominal attributes. The data set is #65 from

the UCI collection. The dimensions are class (0,1), al, a2, a3, a4, a5, and a6. The



cardinality is respectively 2, 3, 3, 2, 3, 4, 2, and 124 (cases) with the PoC equal to

107136 and the log of PoC equal to 1 1.58.

The dimension information is:

class: 0, 1

al 1,2,3

a2 1,2,3

a3 1,2

a4 1,2,3

a5 1,2, 3,4

a6 1,2

The features this data set can illustrate are:

• Visual “Rule Discovery”

• Properties of a Categorical Data Set

• Categorical to Numerical Mapping

jilass a] a2 a3 a4 aS aE.

Figure 25 Monks Training Set 1 - Survey Plot - rule on (green -light)

There are actually three data sets, which implement 3 different rules. Each data set

contains a training and test set. In Figures 25 to 27, we are looking at the C training

set. The rule for the first data set can be found in a Survey Plot visualization (Figure

25) where the attributes are sorted by A5 and then the class value. It is clear that the

rule (green values) is when A5 is at its smallest value or when the values of A1=A2.
This rule was difficult to find visually. However, in some layouts of Radviz, it was

hinted that a rule might involve A5 and A1&A2. (See Figure 26.) The rule was also

evident in some layouts of Parallel Coordinates. (See Figure 27.)



The simple default values of Clementine (C4.5 & NN algorithms) found a rule and net

that were only 92% and 97% accurate, and the C4.5 rule was more complicated than

A5=l or A1=A2. To design a visualization that would help one easily find such rules

is a challenge.

AViz

Figure 26 Monks Training Set 1 - Radviz

Figure 27 Monks Training Set 1 - Parallel Coordinates



Figure 28 Iris Flowers - Parallel Coordinates

s-wdth sing oing p-wdth lyoe

Figure 29 Iris Flowers - Survey Plot

4,3.6 Iris Plant (Fischer 1936 - Flowers) Database

The Iris Database is perhaps the most often used data set in pattern recognition,

statistics, data analysis, and machine learning. The task is to predict the class of the

flower based on the 4 physical attribute measurements. There are 150 instances, 3

classes, and 4 numeric attributes. The data set is #46 from the UCI collection. The

dimensions are: class (Setosa, Versicolour, Virginica); sepal-length; sepal-width; petal

length; and petal-width. The cardinality is 35, 23, 43, 22, 3, and 150 (cases)

respectively, the PoC is equal to 342688500, and the log of PoC equals 19.65. One
class is linearly separable from the other two, but the other two are not linearly

separable from each other.



The features this data set can illustrate are:

• Cluster Detection

• Outlier Detection

• Important Feature Detection

• Find Class Clusters

In most of the visualizations, one can see the three clusters of flower types, and in

many of them (see Figures 28 and 29), it can be seen that petal-length and petal-width

are very good discriminators of the three classes. Several points could be considered

“outliers” and show up clearly in several visualizations, as in the Scatter Plot Matrix of

Figure 3.

4.3.7 Congressional Voting Records (Republican or Democrat)

This is a data set, which many people can relate to easily. The data set is the voting

record of Democrats and Republicans on 16 issues in 1984. There are 435 instances, 1

class and 16 nominal (categorical) attributes. The data set is #106 from the UCI
collection.

The dimensions are:

1 . Class Name: (Democrat, Republican)

(values for 2 through 17 are y, n, absent)

2. handicapped-infants

3. water-project-cost-sharing

4. adoption-of-the-budget-resolution

5. physician-fee-freeze

6. El-Salvador-aid

7. religious-groups-in-schools

8. anti-satellite-test-ban

9. aid-to-Nicaraguan-contras

10. mx-missile

1 1 . immigration

1 2. synfuels-corporation-cutback

13. education-spending

1 4. superfund-right-to-sue

15. crime

16. duty-free-exports

17. export-administration-act-South-Africa

The cardinality is respectively 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 and 435

(cases) with the PoC equal to 37450647270 and the log of PoC equals 24.35.

The features this data set can illustrate are:

• Cluster Detection

• Outlier Detection



• Important Feature Detection (for class distinction)

• Find Class Clusters (specific clusters that separate classes)

• Usefulness of Circle Segments

• Difficulties of PC, SP Matrix

Most issues segregate Democrats and Republicans to a certain extent, and this was

seen in the visualizations. Radviz points out some interesting outliers based on

combinations of issues. The Survey Plot with sorting on each issue can show which

individual issues predict political parties best. The Circle Segment Visualization

showed which issues went mostly according to party lines. (See Figure 5 - mostly dark

or mostly white segments). These type of categorical (y/n/?) dimensions pose

difficulties for some types of visualizations (Parallel Coordinates, Scatter Plot Matrix).

It is possible that a different encoding method could make them more useful.

Clementine algorithms had prediction accuracies greater than 95% and could quickly

list the best discriminators. An interesting question is whether it is possible for

someone trained in the various visualizations to predict classification accuracies.

4.3.8 Liver Disorders (Bupa Medical Research)

This data set is concerned with factors which may contribute to liver disease. The first

five attributes are blood tests which are thought to be sensitive to liver disorders that

might arise from excessive alcohol consumption.

There are 345 instances (male patients), 2 classes (1,2), 6 numeric attributes. The data

set is #54 from the UCI collection. The dimensions are mcv (mean corpuscular

volume), alkphos (alkaline phosphotase), sgpt (alamine aminotransferase), sgot (

aspartate aminotransferase), gammagt (gamma-glutamyl transpeptidase), drinks, and

type (class). The cardinality is 26, 78, 67, 47, 94, 16, 2. and 345 (cases) respectively,

with the PoC equal to 6627313854720 and the log of PoC equals 29.52

The features this data set can illustrate are;

• Outlier Detection

• Difficulties of Visual Data Mining

This seems to be the most difficult data set in which to discern any patterns. The

description seems to imply that that the seventh attribute (dimension) was a selector on

the data set ( liver disease or not). The documentation implies that only “drinks > 5”

seems to correlate with anything. Visually, this seems difficult to observe. The Scatter

Plot Matrix in Figure 30 seems to show that clustering the red and green points

(different types) is difficult. Clementine’s data mining tools seem to be able to

discriminate better than 70% (see web page [Hoff98a]), however, the “drinks”

attribute does not seem to be a factor based on the neural net sensitivity analysis.
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Figure 30 Bupa Liver Disorders - Scatter Plot Matrix

4.3.9 Car Data Set (Auto-Mpg data )

This data set is included in many data mining and visualization packages. It has been

modified from the original CMLI Statlib Library. Five instances have been taken out

because of missing values. The original problem was to predict the miles per gallon

for a type of car. The different characteristics of American, European and Japanese

cars from 1970 to 1982 are demonstrated in this data set.

There are 393 instances, 7 attributes, 6 numeric attributes, and 1 categorical. The data

set is #5 from the UCI collection. The dimensions are MPG, Cylinders, Horsepower,

Weight, Acceleration, Year, and Type. The cardinality is 128, 5, 93, 346, 95, 13, 3,

and 393 (cases) respectively with the PoC equal to 29986086124800 and the log of

PoC equal to 31.03.

The features this data set can illustrate are:

• Outlier Detection

• Cluster Detection

• Class Cluster Detection (type of car)

• Important Feature Detection



In many visualizations one can see the clustering of American cars with increased

horsepower, weight, cylinders and acceleration. The Japanese cars have high MPG,
low weight, smaller number of cylinders, and lower acceleration. The European cars

have more intermediate values, but seem to have the best acceleration. (See Figures 2

and 4.) This is an excellent data set to show a wide range of facts and features using

the visualizations. There are several versions of this data set. The one used in Figures

2 and 4 have only 6 dimensions and 1 class attribute. It is interesting that the data

mining algorithms cannot seem to classify car type at much better than 70% accuracy

for American, Japanese or European.

4.3.10 Wine Recognition Database

Three types of wine are characterized by 13 (continuous) chemical attributes.

There are 178 instances, 3 classes (l,2,and 3), and 13 numeric attributes. The data set

is #110 from the UCI collection. The dimensions are class, and 13 unknown

continuous variables. The cardinality is 3, 126, 133, 79, 63, 53, 97, 132, 39, 101, 132,

78, 122, 121, and 178 (cases) respectively, with the PoC equal to 1.80e+028, and the

log of PoC equal to 65.07.

The features this data set can illustrate are:

• Outlier Detection

• Cluster Detection

• Class Cluster Detection (type of wine)

• Important Feature Detection (which help predict type of wine)

Several visualizations (Scatter Plot, Parallel Coordinates and Radviz) show that many
of the 13 dimensions can approximately separate the classes of wines. Some features

can discriminate all 3, and some just 2 of the three types of wine. Circle Segments

again quickly shows which features are good discriminators (Figure 31) of the 2 and 3

types of wine. From the data set description the three wine types are 100 % separable,

but this is not easy to show using standard visualizations (Radviz, Figure 6). Possibly

a projection (Radviz or Grand tour) could show a better linear separation. The Neural

Net in Clementine had predicted accuracy of 100%. However, the C4.5 algorithm

only had 94.4%, using cross validation. This data set demonstrates that statistical and

classification algorithms are needed for a full data mining analysis.



AViz

Figure 31 Wine Data Set - Circle Segments

4.4 Summary of Results

In Tables 4 through 8, we provide a summary of the results of the visualization

comparisons. Each table represents one of the visualization techniques evaluated on 9

of the data sets (2 of which where flattened for an additional 2 sets). Each column

represents one of the 7 features or “tasks”. A “Y” in a column signifies that yes, the

visualization can be used to detect that feature satisfactorily. A blank signifies a “no”

or “Not Applicable”. The data is a rather fascinating overview of strengths and

weaknesses across an interesting set of visualization, data sets and tasks. Eor example

the Survey Plot is clearly superior to the other visualizations in finding the exact rule

or model. Circle Segments is rather specialized for finding important features. The

charts provide not only a powerful way of comparing this particular set of

visualization techniques, but also, and much more important for the point of this paper,

they illustrate a potentially very powerful general tool. That general tool could help

researchers to gain broad insights regarding strengths and weaknesses of different

types and classes of visualization techniques. It can form a basis for developing new
techniques and models, and for guiding the evolution and improvement of

visualization technology.



Table 4 Parallel Coordinates

TASK

DATA SET
See

Outliers

See

Clusters

Find Class

Clusters

See All

Important

Features

See Some
Important

Features

See

Possible

Rule/Model

See

Exact

Rule/Model

Balloons

Balloons-flattened

I-enses

Lenscs-flattened

0-rings Y Y Y Y Y Y
Monks 1 -training Y Y Y Y Y
Iris Y Y Y Y Y Y
Congress

Liver Y Y
Cars Y Y Y Y Y
Wine Y Y Y Y Y

Table 5 Radviz

TASK

DATA SET
See

Outliers

See

Clusters

Find Class

Clusters

See All

Important

Features

See Some
Important

Features

See

Possible

Rule/Model

See

Exact

Rule/Model

Balloons Y Y Y
Balloons-tlattened Y Y Y Y
Lenses Y Y Y
Lenses-flattened Y Y Y
O-rings Y Y Y Y Y Y
Monks 1 -training Y
Iris Y Y Y Y
Congress Y Y Y Y
Liver Y Y
Cars Y Y Y Y Y
Wine Y Y Y Y Y



Table 6 Survey Plot

TASK

DATA SET
See

Outliers

See

Clusters

Find Class

Clusters

See All

Important

Features

See Some
Important

Features

See

Possible

Rule/Model

See

Exact

Rule/Model

Balloons Y Y Y
Balloons-tlattened Y Y Y
I ,cnscs Y Y
I .cnses-flattened Y Y
0-rings Y Y Y Y
Monks 1 -training Y Y Y Y
Iris Y Y Y Y Y Y
Congress Y Y
Liver

Cars Y Y Y
Wine Y Y Y

Table 7 Circle Segments

TASK

DATA SET
See

Outliers

See

Clusters

Find Class

Clusters

See All

Important

Features

See Some
Important

Features

See

Possible

Rule/Model

See

Exact

Rule/Model

Balloons

Balloons-tlattened

Lenses

Lenses-flattened

O-rmgs

Monks 1 -training

Iris Y Y
Congress Y Y
Liver

Cars Y Y Y
Wine Y Y Y



Table 8 Scatter Plot Matrix

TASK

DATA SET
See

Outliers

See

Clusters

Find Class

Clusters

See All

Important

Features

See Some
Important

Features

See

Possible

Rule/Model

See

Exact

Rule/Model

Balloons

Balloons-flattened

Lenses

Lenses-flattened

0-rings Y Y Y Y Y Y
Monks 1 -training

Iris Y Y Y Y Y
Congress

Liver Y Y
Cars Y Y Y Y Y
Wine Y Y Y Y Y

5 Future Work

We believe that test and evaluation methods can contribute significantly to the

development of the next generation of information exploration and KDD tools. We
hope that the feedback from researchers and developers who study this paper will

serve to guide us in future work to expand and enrich a much needed environment that

we have only been able to illustrate here. With help from the research community and

industry we would like to develop the taxonomy of visualizations and some

benchmark data sets.

We have designed an architecture to support task/feature-based benchmarking. A
system is evaluated on a set of tasks and data sets, based on KDD/visualization

process tasks and representative data. For each system, a capability matrix can be

formed. As evaluations are performed for many systems, a technology matrix can be

created, charting algorithms vs. features.
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