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Abstract

Two critical performance characterizations of biometric algorithms, including face

recognition, are identification and verification. In face recognition, FERET is the

de facto standard evaluation methodology. Identification performance of face recog-

nition algorithms on the FERET tests has been previously reported. In this paper

we report on verification performance obtained from the Sep96 FERET test. Re-

sults are presented for images taken on the same day, for images taken on different

days, for images taken at least one year apart, and for images taken under different

lighting conditions.

Key words: Face Recognition, FERET, Algorithm Evaluation, Verification

1 Introduction

Identification and verification of a person’s identity are two potential areas

for applications of face recognition systems. In identification applications, a

system identifies an unknown face in an image; i.e., searching an electronic

^ This work was performed as part of the Face Recognition Technology (FERET)
program, which is sponsored by the U.S. Department of Defense Coimterdrug Tech-

nology Development Program. Portions of this work were support by the National

Institute of Justice. Portions of this were done while Jonathon Phillips was at the

U.S. Army Research Laboratory (ARL). Please direct correspondence to Jonathon

Phillips.
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mugbook for the identity of suspect. In verification applications, a system

confirms the claimed identity of a face presented to it. Proposed applications

for verification systems include, controlling access to buildings and computer

terminals, confirming identities at automatic teller machines (ATMs), and

verifying identities of passport holders at immigration ports of entry. These

applications have a potential to influence and impact our everyday life.

For systems to be successfully fielded, it is critical that their performance is

known. To date the performance of most algorithms has only been reported

on identification tasks, which implies that characterization on identification

tasks holds for verification. For face recognition systems to successfully meet

the demands of verification applications, it is necessary to develop testing and

scoring procedures that specifically address these applications.

A scoring procedure is one of two parts of an evaluation protocol. In the first

part, an algorithm is executed on a test set of images and the output from

executing the algorithm is written to a file(s). This produces the raw results.

In the second part, a scoring procedure processes raw results and produces

performance statistics. K the evaluation protocol and its associated scoring

procedure are properly designed, the performance statistics can be computed

for both identification and verification scenarios.

The Sep96 FERET evaluation method is such a protocol [9,10]; it used images

from the FERET database of facial images [11]. The Sep96 FERET test is

the latest in a series of FERET tests to measure the progress, assess the

state-of-the-art, identify strengths and weakness of individual algorithms, and

point out future directions of research in face recognition. Prior analysis of the

FERET results has concentrated on identification scenarios. In this paper we

present (1) a verification analysis method for the Sep96 FERET test, and (2)

results for verification.

2 The Sep96 FERET test

The Sep96 FERET testing protocol was designed so that algorithm perfor-

mance can be computed for identification and verification evaluation protocols

for a variety of different galleries and probe sets [9,10]. (The gallery is the set

of known individuals. An image of an unknown face presented to an algorithm

is called a probe, and the collection of probes is called the probe set.)

In the Sep96 protocol, an algorithm is given two sets of images: the target set

and the query set. We introduce this terminology to distinguish these sets from

the gallery and probe sets that are used in computing performance statistics.

The target set is given to the algorithm as the set of known facial images.

2
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The images in the query set are the unknown facial images to be identified.

For each image qi in the query set Q, an algorithm reports the similarity Si{k)

between qi and each image tk in the target set T. The key property of this

protocol, which allows for greater flexibility in scoring, is that for any two

images Si and tf., we know Si{k).

From the output files, algorithm performance can be computed for virtual

galleries and probe sets. A gallery G is a virtual gallery if G is a proper subset

of the target set; i.e., G CT. Similarly, P is a virtual probe set if P C Q. For

a given gallery G and probe set P, the performance scores are computed by

examination of the similarity measures Si{k) such that qi E P and E G.

The virtual gallery and probe set technique allows us to characterize algorithm

performance for identification and verification. Also, performance can be bro-

ken out by different categories of images, e.g., probes taken on the same or

different days than the corresponding gallery image. We can create a gallery

of 100 people and estimate an algorithm’s performance at recognizing people

in this gallery. Using this as a starting point, we can create virtual galleries of

200, 300, . .
. ,
1000 people and determine how performance changes as the size

of the gallery increases. Another avenue of investigation is to create n different

galleries of size 100, and calculate the variation in algorithm performance for

these galleries.

In the September 1996 FERET test, the target set contained 3323 images and

the query set 3816 images. All the images in the target set were frontal images.

The query set consisted of all the images in the target set plus rotated images

and digitally modified images. For each query image qi, an algorithm outputs

the similarity measure Si{k) for all images tk in the target set. For a given

query image qi, the target images tk are sorted by the similarity scores Si{-).

Except for a set of rotated and digitally modified images, the target and query

sets are the same. Thus, the test output contains every target image matched

with itself. This allowed a detailed analysis of performance on multiple galleries

and probe sets. (We do not present results in this paper for the rotated or

digitally modified images.)

There are two versions of the September 1996 test. The target and query sets

are the same for each version. The first version requires that the algorithms be

fully automatic. (In the fully automatic version the test algorithms are given a

list of the images in the target and query sets. Locating the faces in the images

must be done automatically.) In the second version, the eye coordinates are

given. Thus, algorithms do not have to locate the face in the image.

We report the results for 12 algorithms. The test was administered in Septem-

ber 1996 and March 1997 (see Table 1 for details of when the test was ad-

minister to which groups and which version of the test was taken). Two of
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Table 1

List of groups that took the Sept96 test broken out by versions taken and dates

administered. (The 2 by MIT indicates that two algorithms were tested.)

Version of test Group

Test Date

September March

1996 1997 Baseline

Fully Automatic MIT Media Lab [4,6] •

U. of So. California (USC) [15] •

Eye Coordinates Given Baseline PCA [7,13] •

Baseline Correlation •

Excalibur Corp. •

MIT Media Lab 2

Michigan State U. [12] •

Rutgers U. [14] •

U Maryland [2] • •

USC •

these algorithms were developed at the MIT Media Laboratory. The first was

the same MIT algorithm that was tested in March 1995 [5,8]. This algorithm

was retested so that improvement since March 1995 could be measured. The

second MIT algorithm was based on more recent work [4]. Algorithms were

also tested from Excalibur Corp. (Carlsbad, CA), Michigan State University

(MSU) [12], Rutgers University [14], University of Southern California (USC),

and two from University of Maryland (UMD) [2,16]. The first algorithm from

UMD was tested in September 1996 and a second version of the algorithm

was tested in March 1997. The final two algorithms were our implementation

of normalized correlation and a principal components analysis (PCA) based

algorithm [7,13]. These algorithms provide a performance baseline. In our

implementation of the PCA-based algorithm, all images were (1) translated,

rotated, and scaled so that the center of the eyes were placed on specific pixels,

(2) faces were masked to remove background and hair, and (3) the non-masked

facial pixels were processed by a histogram equalization algorithm. The train-

ing set consisted of 500 faces. Faces were represented by their projection onto

the first 200 eigenvectors and were identified by a nearest neighbor classifier

using the Li metric. For normalized correlation, the images were (1) trans-

lated, rotated, and scaled so that the center of the eyes were placed on specific

pixels and (2) faces were masked to remove background and hair.

We only report results for the semi-automatic case (eye coordinates given),

because the Media Lab and U. of Southern California were the only groups to

4





fa ft) duplicate I fc duplicate II

Fig. 1. Examples of different categories of probes (image). The duplicate I image

was tahen within one year of the fa image and the duplicate II and fa images were

taken at least one year apart.

take the fully automatic test.

The images were taken from the FERET database of facial images [11]. The

facial images were collected in 15 sessions between August 1993 and July

1996. Sessions lasted one or two days. To maintain a degree of consistency

throughout the database, the same physical setup was used in each photog-

raphy session. However, because the equipment had to reassembled for each

session, there was variation from session to session.

Images of an individual were acquired in sets of 5 to II images, collected under

relatively unconstrained conditions. Two frontal views were taken (fa and fb);

a different facial expression was requested for the second frontal image. For

200 sets of images, a third frontal image was taken with a different camera

and different lighting (this is referred to as the fc image). Figure 1 shows an

example of the different categories of images.

By July 1996, 1564 sets of images were in the database, for 14,126 total im-

ages. The database contains 1199 individuals and 365 duplicate sets of images.

For some people, over two years elapsed between their first and most recent

sittings, with some subjects being photographed multiple times. The devel-

opment portion of the database consisted of 503 sets of images, which were

released to researchers. The remaining images were sequestered by the Gov-

ernment.

3 Verification Model

In our verification model, a person in image p claims to be the person in

image g. The system either accepts or rejects the claim. (If p and g are images

of the same person then we write p ^ g, otherwise, p g.) Performance

of the system is characterized by two performance statistics. The first is the

probability of accepting a correct identity; formally, the probability of the

5





algorithm reporting p ^ g when p ~ ^ is correct. This is referred to as the

verification probability, denoted by Py (also referred to as the hit rate in

the signal detection literature). The second is the probability of incorrectly

verifying a claim formally, the probability of the algorithm reporting p ~ p

when p g. This is called the false-alarm rate and is denoted by Pp.

Verifying the identity of a single person is equivalent to a detection problem

where the gallery G = {p}. The detection problem consists of finding the

probes in p E P such that p ^ g-

For a given gallery image gi and probe pk, the decision of whether an identity

was confirmed or denied was generated from Si{k). The decisions were made
by a Neyman-Pearson observer. A Neyman-Pearson observer confirms a claim

if Si{k) < c and rejects it if Si{k) > c. By the Neyman-Pearson theorem [.3],

this decision rule maximized the verification rate for a given false alarm rate

q;. Changing c generated a new Py and Pp- By varying c from it’s minimum
to maximum value, we obtained all combinations of Py and Pp. A plot of all

combinations of Py and Pp is a receiver operating characteristic (ROC) (also

known as the relative operating characteristic) [1,3]. The input to the scoring

algorithm was Sj(fc); thresholding similarity scores, and computing Py, Pp,

and the ROCs was performed by the scoring algorithm.

The above method computed a ROC for an individual. However, we need per-

formance over a population of people. To calculate a ROC over a population,

we performed a round robin evaluation procedure for a gallery G. The gallery

contained one image per person.

The first step generated a set of partitions of the probe set. For a given gi E G,

the probe set P is divided into two disjoint sets Di and F). The set Di consisted

of all probes p such that p ^ gi and Fi consisted of all probes such that p gi-

The second step computed the verification and false alarm rates for each

gallery image gi for a given cut-off value c, denoted by Py^ and respec-

tively. The verification rate was computed by

0 if |A| = 0

l;,(.)<c given
otherwise,

where |si(A:) < c given p E A| was the number of probes in Di such that

Si{k) < c. The false alarm rate is computed by

0 if|Fi| = 0

!..(^<c fflven p.eF.i
otherwise.

6





The third step computed the overall verification and false alarm rates, which

was a weighted average of Py^ and The overall verification and false-alarm

rates are denoted by Py and Pp, and was computed by

1G|

pc

-WiV.
lAI

EilA
pc,z
\^V

1
|G|

J2\si{k) <c given ph E Di\ P^'
i=l

and

^ \G\hik^i\Fi\

1

^ ^ c gi'^en PkE Fi\- pp\

The verification ROC was computed by varying c from —oo to +oo.

In reporting verification scores, we state the size of the gallery G which was

the number of images in the gallery set G and the number of images in the

probe set P. All galleries contained one image per person, and probe sets

could contain more than one image per person. Probe sets did not necessarily

contain an image of everyone in the associated gallery. For each probe p, there

existed a gallery image g such that p ^ g.

For a given algorithm, the choice of a suitable hit and false alarm rate pair

depends on a particular application. However, for performance evaluation and

comparison among algorithms, the equal error rate is often quoted. The equal

error rate occurs at the threshold c where the incorrect rejection and false

alarm rates are equal; that is 1 — Py = Pp (incorrect rejection rate is one

minus the verification rate.)

4 Verification Results

To provide a detailed analysis of algorithm performance, we report verification

scores for four categories of probes. The first probe category was the FB
probes. For each set of images, there were two frontal images. One of the

images was randomly placed in the gallery, and the other images was placed

in the FB probe set. (This category is denoted by FB to differentiate it from

the fb images in the FERET database.) The second probe category was all

duplicates of the gallery images. We refer to this category as the duplicate

I probes. The third category was the fc (images taken the same day, but

with a different camera and lighting), and the fourth consisted of duplicates

where there is at least one year between the acquisition of the probe image

and corresponding gallery image. We refer to this category as the duplicate

II probes. For this category, the gallery images were acquired before January

7





Table 2

Figiires reporting results broken out by probe category.

Probe

Figure no. category

Gallery

size

Probe set

size

2 FB 1196 1195

3 Duplicate I 1196 722

4 fc 1196 194

5 Duplicate II 864 234

1995 and the probe images were acquired after January 1996. The gallery

for the FB, duplicate I, and fc probes was the same and consisted of 1196

frontal images with one image person in the gallery (thus the gallery contained

1196 individuals). Also, none of the faces in the gallery images wore glasses.

The gallery for the duplicate II probes was a subset of 864 images from the

gallery for the other categories. The identification results presented in Phillips

et al. [9,10] use the same gallery and probe sets for FB, fc, duplicate I, and

duplicate II probe sets.

The verification results are reported on ROCs. The results are broken out by

probe category and are presented in figures 2 to 5. Table 2 shows categories

corresponding to the figures presenting these results, and size of the gallery

and probe sets. For each probe category, there are two ROCs. First ROC
reports results for the two baseline algorithms and the algorithms tested in

September 1996. The second ROC reports for the two baseline algorithms,

the algorithms tested in March 1997, and the UMD algorithm algorithm test

in September 1996. Table 3 reports the equal error rates. We also report the

average and best equal error rate for each probe category.

Performance of algorithms from a particular group will improve, and also,

the performance level of face recognition algorithms in general improves over

time. Thus, one should not comparing test results from different test dates.

This illustrated by the improvement in performance of the UMD algorithm

between September 1996 and March 1997. In consideration of this fact, we

present results for September 1996 and March 1997 on different ROCs.

In figure 6, we compare the difficulty of different probe sets. Whereas, figure 3

reports verification performance for each algorithm, figure 6 shows a single

curve that is an average of verification performance of all the algorithms. The
average ROC is computed by averaging the Py values for each Pp. Figure 6

reports performance for four categories of probes, FB, duplicate I, fc, and

duplicate II.

Average performance provides an overall measure of the state-of-the-art. For

8
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(a)

(b)

Fig. 2. Performance for FB probes, (a) Algorithms tested in September 1996. (b)

Algorithms tested in March 1997. g





(a)

(b)

Fig. 3. Performance for duplicate I probes, (a) Algorithms tested in September 1996.

(b) Algorithms tested in March 1997.





Probability

of

verification

Probability

of

verification

(a)

(b)

Fig. 4. Performance for fc probes, (a) Algorithms tested in September 1996. (b)

Algorithms tested in March 1997. 1

1





(a)

(b)

Fig. 5. Performance for duplicate II probes, (a) Algorithms tested in September

1996. (b) Algorithms tested in March 1^^.





Table 3

Equal error rates by probe category.

Equal error rate by probe category(%)

Algorithm FB Duplicate I fc Duplicate II

Baseline PCA 7 19 15 22

Baseline correlation 4 21 23 27

Excalibur 5 16 14 24

MIT Mar95 5 20 25 26

MIT Sep96 4 20 26 26

MSU 3 23 11 31

Rutgers 6 18 17 21

UMD Sep96 7 22 16 23

UMD Mar97 1 12 8 14

use 2 14 6 17

Average 4 19 16 23

Minimum 1 12 6 14

applications, one is interested in the currently achievable upper performance

bounds. In figure 7, we present the current upper bound on performance for

each probe category in figure 6. For the upper bounds, we plotted the algorithm

with minimum equal error rate in table 3.

5 Conclusion

We have devised a verification scoring procedure for the Sep96 FERET test,

and reported results for this procedure. This allows for an independent assess-

ment of face recognition algorithms in a key potential application.

This FERET test shows improvement in performance for both face recogni-

tion as a field and for individual algorithms. The improvement in the field is

exhibited by the overall increase in performance of the algorithms tested be-

tween September 1996 and March 1997. Individual increase is demonstrated

by the performance improvement of the U. of Maryland algorithm. This in-

crease shows that algorithm performance should only be directly compared if

they are tested at the same time.

Phillips et al. [9,10] presented identification results for the same algorithms

on the same galleries and probes sets. The Sep96 MIT algorithm was the top

13
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Fig. 6. Average performance of the algorithms on each probe category.

performer for the algorithms tested in September 1996. Among the algorithms

tested in September 1996, no algorithm was among the top performers for all

probe categories. This shows that relative performance on one task may not

be predictive of relative performance on another task.

We broke out performance for four categories of probes. Each category rep-

resents a different degree of difficulty. To estimate the degree of difficulty for

each category, we compared the average and current upper bounds of per-

formance for each category. For average performance, our results rank FB
probes as easiest, duplicate II probes as most difficult, and fc and duplicate I

probes as tied in the middle. For current upper bounds, duplicate I probes are

more difficult than fc probes. Our results show that we can expect that the

best performance will be significantly better than the average performance.

Upper bound performance for all probe categories is superior to all average

performance categories except for FB probes.

The results in this paper show that algorithm development is a dynamic pro-

cess and evaluations such as FERET make an important contribution to face

recognition and computer vision. These evaluations let researchers know the

strengths of their algorithms and where improvements could be made. By
knowing their weaknesses, researchers know where to concentrate their efforts

to improve performance.

14
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