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Abstract

As automation of manufacturing processes becomes more widespread, manu
turing systems are becoming more and more software dependent. At the sam
time, the software used is becoming more and more modularized allowing for
creation of customized systems consisting in large part of pre-existing compo
nents. This combination of factors leads to considerable flexibility for manufac
ing systems, but not without a cost.  The reliability of those systems is uncert
due to the lack of experience in how to test such systems. To address this nee
National Institute of Standards and Technology’s Manufacturing Systems Inte
tion Division has undertaken a study of how to test “interaction-driven manufac
ing systems.”  This paper contains an analysis of both the problem space and
solution space for testing these systems and is the first outcome of that study

Introduction

Manufacturing systems are inherently distributed and heterogeneous. Produc
designed and manufactured by a range of people with different skills using a 
ety of systems specialized for different functions. Not long ago, the product d
opment process (spanning the product life-cycle from design to distribution) w
characterized by islands of automation as automation was applied to the vari
computation-intensive tasks in a product’s development. More recently, signific
effort has gone into bridging the islands of automation and streamlining the d
opment process. In many industries this streamlining has become highly tune
as to minimize the actual time from raw material to point-of-sale. Other industr
are still working to reach this minimum.

In such an environment, system reliability is of utmost importance. One weak
can interrupt the entire chain of events and delay the delivery of the product. 
ufacturers have traditionally planned down time for preventive maintenance o
machines and had back up machines for those in need of repair, but in this n
environment, the physical machines are a lesser risk than the software that g
the processes. Techniques for maintaining and repairing software are themse
not as reliable as for their hardware counterparts. Furthermore, software is no
Testing Interaction-Driven Manufacturing Software 1
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interchangeable as hardware in that it may maintain knowledge about the state
system which is in constant change, as well as historical knowledge about th
tem.

Maintenance and repair are one aspect of a bigger problem which involves th
usability and reliability of an individual software component in a larger system
How does one diagnose failure of a software component? How is a compone
impacted by the system of which it is a part and how does it impact the syste
How much tolerance is there for component performance? What is the impac
system failure? Can another component be swapped in when one fails? Can
interaction between the components result in an unreliable system state? The
questions are all essential to implementing a reliable product development pro
To answer these questions, one needs methods and a framework in which to
software components and the systems in which they operate.

The TIMS Project

To this end, NIST has initiated an effort to develop competence in the testing
software systems. The Manufacturing Systems Integration Division (MSID) w
focus more specifically on the testing ofinteraction-driven manufacturing systems
(TIMS). Interaction-driven manufacturing systems are those composed of mult
software components in which the interactions between those components a
automated. Automation is typically achieved through the definition of program
interfaces, both standard and proprietary, which allow the components to dire

interact without the need for human intervention at every step along the way.1

Today’s manufacturing software, and software systems in general, are built d
ently than they were a decade ago. While NIST has established competence

traditional sequence of unit, integration, and system testing,2 what we once called
“systems” are now single components in larger, integrated, distributed system

1. Such interfaces are often referred to as API’s, or Application Program Interfaces, where the “applica
is anything that happens to make use of the software component. API’s include the specification of fun
calls or commands as well as context-specific rules for the use of those commands. Together, these
the specifications governing the interactions of the system.

2. NBS Special Publication 500-98, Planning for Software Validation, Verification, and Testing, November
1982.
Testing Interaction-Driven Manufacturing Software December 1998
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The best of practice techniques3,4 have become dated, and the best minds in the
business are scrambling to come to grips with the reality of systems that, using
ditional terminology, would have to be called “large and complex distributed s

tems of systems.”5 We, too, must make this step and revise our techniques.

Unlike manufacturing systems of the past, which were only designed to optim
throughput, today’s systems are being designed for flexibility while not compr
mising throughput. Instead of building systems from scratch, manufacturers a
seeking to be able to integrate off-the-shelf software components into a cohe
system with minimum expense on custom programming. To do this, they nee
be able to upgrade or replace individual components without breaking the sys
In reaction to this need, manufacturers are now paying more attention toopen sys-

temsand standards.6,7

Open systems are based on the premise that if interfaces are clearly and pub
defined (i.e., standard) then systems can be modified incrementally to include
newer, better functionality as it emerges in the form of improved system comp
nents. A host of software standards, both formal andde facto, have evolved to sup-
port these types of architectures.

Manufacturing Interface Specifications8

At the initiation of the TIMS project, two specifications had been identified as s
able case studies for understanding the needs of testing interaction-driven m
facturing systems:

3. Boris Beizer,Software Testing Techniques (second edition). Van Nostrand Reinhold, 1990.

4. Boris Beizer,Software System Testing and Quality Assurance. Van Nostrand Reinhold, 1984.

5. Genevieve Houston-Ludlam, in “Call for Papers, Testing Computer Software Conference ‘99,”
<URL:news:comp.software.testing>, September 1, 1998.

6. Richard Kuhn, William Majurski, Wayne McCoy, Fritz Schulz, “Open Systems Software Standards in
Concurrent Engineering,”Advances in Control and Dynamic Systems, vol. 62, Academic Press, Inc., 1994

7. Jeanine Katzel, “Moving Down the Path to Open Systems,”Plant Engineering Online, May, 1998,
<URL:http://www.manufacturing.net/magazine/planteng/archive/1997/ple0901.97/098513.htm>.

8. Names of companies and products are used in order to adequately specify the information containe
herein. In no case does such identification imply recommendation or endorsement by the National Ins
of Standards and Technology.
Testing Interaction-Driven Manufacturing Software 3
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• STEP’s9 Data Access Interface (SDAI)10 and

• the emerging Process Specification Language (PSL).11

Subsequently a number of other manufacturing specifications have been iden
as potential candidates for study:

• Manufacturing Message Specification (MMS),12,13

• the CIM (Computer-Integrated Manufacturing) Framework,14

• the Advanced Process Control (APC) Framework,15

• Object Management Group’s16 Product Data Management (OMG’s PDM)

Enablers,17

• STEP’s Application Protocols (AP) using SDAI,

• CAM-I’s Application Interface Specification (AIS),18 and

• OLE (Object Linking and Embedding) for Design and Modeling.19

9. The Standard for The Exchange of Product Model Data (STEP) is a project of the International Org
tion for Standardization (ISO) Technical Committee on Industrial Automation Systems and Integratio
(TC184) Subcommittee on Industrial Data (SC4).

10.ISO 10303 Industrial automation systems and integration—Product data representation and exchan
Part 22: Implementation methods: Standard data access interface, International Organization for Standard
ization, Draft International Standard, 1998.

11.Process Specification Language home page. <URL:http://www.mel.nist.gov/psl/>.

12.MMS Information Server. <URL:http://litwww.epfl.ch/MMS/mms_main.htm>.

13.ISO/IEC 9506-1 Industrial automation systems - Manufacturing Message Specification, Part 1: Serv
definitionandISO/IEC 9506-2 Industrial automation systems - Manufacturing Message Specification,
2: Protocol specification, International Standard, International Organization for Standardization, 1990

14.SEMATECH’s CIM Framework Home Page, <URL:http://www.sematech.org/public/division/fi/cim/cim
home.htm>.

15.Advanced Process Control (APC) Framework Initiative 1.0 Specifications, 1997. <URL:http://www.se
ech.org/public/docubase/abstract/3300aeng.htm>.

16.Object Management Group Home Page. <URL:http://www.omg.org/>.

17.Revised Submission (including errata changes) — PDM Enablers — Joint Proposal to the OMG in
Response to OMG Manufacturing Domain Task Force RFP 1. <URL:http://www.omg.org/arch2/mfg/98-
02-02.pdf>, 1998.
Testing Interaction-Driven Manufacturing Software December 1998
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These specifications are intended to serve as standard definitions governing 
software supporting a manufacturing process. The specifications fall into three
egories:

• infrastructures used to connect the system,

• applications used in the system, and

• the operation of the system itself.

Manufacturing systems rely on software specifications of many sorts. Many o
these specifications are generic in that they support many types of systems an
not restricted to manufacturing. A 1995 report from MSID surveys standards 

vant to manufacturing systems integration.20 The report identifies three broad
classes of standards: computing technology, industrial practices, and manufa
ing equipment. The category of industrial practices contains the specification
which are unique to interaction-driven manufacturing systems and which will 
the focus for the TIMS project. While there are many infrastructural software s
dards (the computing technology category) relevant to manufacturing, the ma
facturing specific specifications in this category are MMS, potentially PSL, an
SDAI.

A specialized subsystem, such as a database, geometry engine, or machine 
provides a particular function needed by one or more applications in the syste
The subsystems typically provide an application program with interfaces to en
their integration into the larger system. While many, if not most, manufacturin
systems provide application program interfaces, only a few of these are forma
recognized as standards through an open consensus-based process. The sta
interfaces include CAM-I’s AIS, OMG’s PDM Enablers, and OLE for Design an
Modeling. Other public specifications in this category are expected to emerge
the near future. OMG is working on interfaces in the areas of Manufacturing E

18.Application Interface Specification (AIS), Version 2.1: Volume I, ‘Functional Specification’andVolume II,
‘C Language Binding’, Report R-94-PM-01, Consortium for Advanced Manufacturing International
(CAM-I), Inc., Bedford, TX, USA (April 1994).

19.“What is OLE for Design and Modeling?” Design and Modeling Applications Council (DMAC),
<URL:http://www.dmac.org/whatis/whatis.htm>. 1998.

20.Ed Barkmeyer,et al., SIMA Background Study, NISTIR 5662, September 1995.
Testing Interaction-Driven Manufacturing Software 5
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cution Systems, Enterprise Resource Planning, and Machine Control. ISO has
recently approved SDAI as a Draft International Standard, which is expected 
result in implementations of Application Protocols for STEP using an interacti
driven interface.

Finally, specifications of the systems themselves guide how components, wh
they be infrastructural or specialized, are supposed to interact to support a fin
system. System specifications provide a framework for the appropriate sequen
of events in the system. Specifications of manufacturing systems include SEM
ECH’s CIM Framework and the APC Framework.

Scope of Testing for TIMS

Software testing has different meanings depending on its purpose. Its broades
pose is to find problems in order to improve the robustness and reliability of a s
ware product. It can be used for the sole purpose of improving products or it ca

used as a means of evaluating products by distinguishing their differences.21 We
distinguish three purposes of testing and the roles of the participants:

• Testing for product release: this type of testing is focused on finding proble
for the purpose of debugging a product which is to be distributed to outside
users. Both white box and black box testing can and should be used for this
pose.

• Testing for product evaluation: this type of testing is done by an organization
the process of designing and implementing a system with specific function

and performance requirements.22 In this case the testing of the software is pe
formed under the auspice of the organization that will be using the software
is not responsible for the development of the software.

21.Rick Hower published a rather exhaustive listing of the various types of testing at <URL:http://
www.charm.net/~dmg/qatest/qatfaq1.html#FAQ1_10>.

22.Kurt C. Wallnau, David Carney, Bill Pollak, “How COTS Software Affects the Design of COTS-Intens
Systems,”SEInteractive, June 1998. <URL:http://interactive.sei.cmu.edu/Features/1998/June/
COTS_Software/Cots_Software.htm>
Testing Interaction-Driven Manufacturing Software December 1998
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• Testing for product certification: this type of testing supports the marketing
products. It is based on the premise that standards can be used to define s
ware such that multiple vendors can provide software that can be used inte
changeably by end-user systems. Testing against such standards, whethe
interface specifications, performance parameters, security protocols, or oth
provides a measure of the software’s quality against an independent benchm
The verification that the software does support the standards gives the use
confidence in the software.

As an independent organization, NIST is in a unique position to provide meth
and tools which support all categories of testing and to address the latter cate
of testing specifically. The TIMS project will investigate what types of method
and tools will be needed to support testing of interaction-driven manufacturing
systems and whether there is a role for NIST in certifying these types of syste
The anticipated results of the project are methods and tools which will benefi
those involved with software to support interaction-driven manufacturing syste

The TIMS project examines testing from the perspective of systems integration
this context the goal of testing is focused on

• whether components reliably support the interface specifications,

• whether the specifications are complete and consistent, and

• whether the system can be constructed using multiple instantiations of the s
ifications — in other words, using different vendors’ products.

Much of the testing process can by executed by simulation of the system or p
of the system in concert with actual components.

The remainder of this paper discusses some of the issues surrounding the que
raised. It provides background material for the initiation of the project. We beg
with a description of characteristics of software supporting manufacturing whic
followed by an analysis of how to test interaction driven manufacturing system
We discuss three categories of testing — component, system, and interopera
ity—that are understood within the new context of “large and complex distribu
systems of systems.” Each of these categories is described with respect to the
ufacturing standards that fall within the category, the state of the practice in tes
these types of interfaces (often by analogy to similar interfaces in the broade
Testing Interaction-Driven Manufacturing Software 7
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ware world), and finally a summary of the state of the art in testing technology a
applies to the category, to the extent that we know it.

Manufacturing Software Environment

“The first line of defense against these bugs is the design. The first bastion of
defense is that therebea design for the overall software architecture. Failure to
create an explicit software architecture is an unfortunate but common disease

—Boris Beizer

The first step in testing an interaction-driven manufacturing system is to ident
the components of the system. These should be clear from the system archite
The components in a typical manufacturing system will include several comm
cial off-the-shelf (COTS) products which may support open or proprietary inte
faces. Components may be both infrastructural or specialized and range from
machine control devices through scheduling, inventory, and planning systems
Other components in the system will be custom built applications that interfac
with and bridge the gaps between these vendor-supplied products. Finally, th
human or end-user can be considered a component in the system as well sin
much of the system control is under user guidance. Simple component diagra
are often used to illustrate the system architecture. More formal Architecture

Description Languages (ADL)23,24,25are emerging. More detailed and formalize
system models can also be constructed using various aspects of the Unified M

ing Language (UML).26

The components in an architecture are connected by interfaces of various so
The TIMS project is concerned with the interfaces that can be automated in o

23.The Rapide™ Language, Stanford University, <URL:http://pavg.stanford.edu/rapide/>.

24.TheAcmeArchitecture Description Language, Carnegie Mellon University, <URL:http://www.cs.cmu.e
~acme/>.

25.SADL: A Structural Architecture Description Language, SRI Computer Science Laboratory, <URL:h
www.csl.sri.com/dsa/sadl-main.html>.

26.Unified Modeling Language, version 1.1. <URL:http://www.rational.com/uml/documentation.html>. Sep
tember 1, 1997.
Testing Interaction-Driven Manufacturing Software December 1998
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way or another. However, it is worth noting that a system architecture may con
other more static interfaces such as the exchange of data based on file forma
This is a very common type of interface in today’s manufacturing systems, an
system architecture can be divided into subsystems where these static interfa
serve as borders. Components whose interfaces are all implemented with sta

data exchange can be tested as stand-alone systems.27

Interaction-driven Systems

To facilitate the discussion of appropriate test methods for manufacturing syste
we present an analysis of the style of interactions seen in such systems, to b
lowed by some background on the modeling of system behavior.

Just as data flow diagrams can be used to identify data sources and sinks, a 
kind of diagram can be used to identify sources and sinks forinteractivity. Interac-
tivity is the activity of interacting, or the business of interaction.Interaction is
more than justreaction; hence, interactivity is more than just the sending of me
sages. It represents a possible source of non-determinism in the system, whic
critical factor in the system’s testability.

Flows of interactivityare used to show the sources of non-determinism and the
ways that this non-determinism ripples through the system. By drawing an ar
representinginteractivity flowin one of the following diagrams, we are saying tha
the component at the start of the arrow is perturbing the component at the en
the arrow in a partially or completely non-deterministic way. The specific “way
could be a data flow, a control flow, a message, an event, or something else -
does not matter. Theseinteractivity flow diagrams therefore differ from data flow

27.ISO 10303 Industrial automation systems and integration—Product data representation and exchan
Part 31:Conformance testing methodology and framework: General concepts, International Standard,
International Organization for Standardization, 1994.
Testing Interaction-Driven Manufacturing Software 9
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diagrams and similar diagrams because they contain information about the so
of non-determinism and the parts of the system that are affected by it.

FIGURE 1. Simple interactivity diagram

In a classic client-server architecture such as the World Wide Web (modeled
above), all components are eithersourcesor sinksof interactivity. Because they do
not have complex dependencies on other components, sources and sinks ca
tested as stand-alone systems by replacing the components on the other side
interactions with a simple test harness.

The non-determinism in this system is that the arrival times of requests from
browsers and the contents of those requests are random as far as the web se
concerned. Because web servers are designed to be stateless, this would see
an insignificant observation. However, if we instead have a manufacturing sys
where orders for products and machine control commands are being entered
through web interfaces, the interactivity coming from the web browsers may ea
be sufficient to trigger timing-related failures in the system.

Browser
(source)

Browser
(source)

Browser
(source)

Web server
(sink)
Testing Interaction-Driven Manufacturing Software December 1998
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FIGURE 2. Hierarchical interactivity diagram

Components that act as both client and server create more difficulty for testing
system as a whole. However, some multi-tier systems are designed so that the
be decomposed and tested as independent subsystems. The open loop cont
archy shown above is an example of such a system. The interactivity is acycl
flowing downwards from the Guardian (a user interface component like a web
browser), so the behavior of each subsystem is determined by the layer above
test methods can therefore remain typical of those used by the software indu
for large software projects.

FIGURE 3. Cyclic interactivity diagram

Guardian

ControllerController Controller

Machine MachineMachine

Guardian
(source)

Database
(sink)

Shop
control

Workcell
control
Testing Interaction-Driven Manufacturing Software 11
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In this example, the shop and workcell controllers each have their own thread
control and may initiate interactions at any time. When interactivity becomes
cyclic as it has here, a new category of problems such as deadlocks, race co
tions, and inconsistent world views is introduced. These problems have been
explored extensively in network testing; special considerations for the contex
interaction-driven systems will be described later in this document.

Systems having cyclic interactivity are inherently more difficult to test than tho
with acyclic interactivity because merely controlling the top-level sources of in
activity is no longer sufficient to remove non-determinism from the system —
there may still be uncontrolled interactions at lower levels.

FIGURE 4. Chaotic interactivity diagram

Finally, there exist non-traditional architectures that use large numbers of com
ing agents interacting chaotically to produce an emergent behavior. These are
difficult to test because they are highly non-deterministic and the permissible s
spaces of the systems are not well defined.

Agent

Agent

Agent Agent

Agent

Agent

Shop
control
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Modeling System Behavior

Formal techniques for modeling the behavior of manufacturing systems have b
in use for many years. These techniques are equally applicable for hardware
software systems when the behavior of the software is fairly simple. However
software components are integrated into ever larger, interaction-driven system
modeling becomes increasingly problematic. This section summarizes a gene
approach for formal modeling of behaviors and common approaches for testi
such systems and explains the roadblocks to using it on complex interaction-dr
systems.

Representation of Manufacturing Systems

• State Space Representation for Continuous Time Systems

Typically, we describe continuous time systems at any time t with a state funct
x(t). x can be a single variable or a vector of variables. To model the system’s
lution, we define a state transition function, f (•). This function uses both the c
rent state at time t,x(t), and the current control law,u(t), to predict the state at time
t+δ. That is

x(t+δ) = f (x(t), u(t)) t ∈[t 0, T]. (1)

The simplest and most widely used form for this function is linear. That is,

x(t+δ) = Ax(t) + Bu(t)) t ∈[t 0, T].

The actual output from the system is calledy(t), which is generated from an outpu
function,g(t). This output function uses bothx(t) andu(t),

y(t) = g (x(t), u(t)) t ∈[t 0, T]. (2)

Optimal control theory addresses the formulation of the “optimal” control polic
for given problem and performance criteria. For example, a robot end effecto
located at a given position and orientation at time t0. The problem is to have the
Testing Interaction-Driven Manufacturing Software 13
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end effector at another location and orientation by time T. The performance crit
may be to minimize total energy consumption, minimize total time, etc. The o
mal control policy would define the trajectory that is to be followed by the end
effector. Subsequently, specifications are determined for managing the motio
the various linkages in order to realize the desired trajectory.

As previously described two types of control policies exist: open loop and clo
loop. If the policy is open loop, the trajectory is initiated at time t0, terminated at
time T, and does not change in between:

u(t+δ) = u(t) t ∈[t 0, T]. (3)

If the policy is closed loop, then feedback information, as denoted byy(t), is pro-
vided at a series of points, t=ti, i=1,...k, between t0 and T. This feedback can be
used to evaluate, and possibly change, the trajectory at any of these times.

u(t+δ) = u (y(t), u(t)) t ∈[t 0, T]. (4)

At this point, we have said nothing about the parameters of the functions descr
above. They may or may not have the time variable “t” as a parameter. If they
not, the system is said to be time invariant. Most real-world systems, howeve
time variant. If a system is time variant, both the state transition and output fu

tions will be dependent on time:28

x(t+δ) = f (x(t), u(t), t) andy(t) = g (x(t), u(t), t).  t∈[t 0, T].(5)

• State Space Representation for Discrete Time Systems

Many manufacturing systems have state variables that are not continuous. Th
the state variables change only at discrete points in time. Two important exam
are queuing systems and inventory systems. The state variables for these sy

28.J. Reid,Linear System Fundamentals: Continuous and Discrete, Classic and Modern, McGraw-Hill Book
Company, New York, New York, 1983.
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change only when there is a new arrival or a new departure. The discrete analo
equations (1) - (4) are given below.

x(tk) = f (x(tk-1), u(tk-1)) k=0,1,...,n  (6)

y(tk) = g (x(tk-1), u(tk-1)) k=0,1,...,n  (7)

u(tk) = u (y(tk-1), u(tk-1)) k=0,1,...,n  (8)

Equation (8) represents the control policy, which can be either open or closed l
Open loop is a special case, sincey(tk-1)=0, andu(tk)= u(tk-1) for all k.

Models for Evaluating Manufacturing Systems

• Simulation Models for Manufacturing Systems

Simulation software has been used to model different processes and system
within the manufacturing enterprise for many years. The most important conc
in manufacturing simulation isstate variable. State variables describe what is ha
pening in the process or system at any point in time. Continuous simulation mo
are used for state variables that change continuously over time. The models 
mainly mathematical, differential, or difference equations that represent the e
tion of some physical phenomena, which changes continuously over time. Th
are used primarily during product design and process selection. Examples in
fluid and structural dynamics, stress analysis, heat transfer, and machine too
gram verification.

Event and process modeling methodologies can be used only for state variab
that change at discrete points in time. Examples of such variables include the
ber of jobs waiting in the queue in front of a machine, the status of each mac
on the shop floor, and the location of each job in the factory. The simulation m
els that are built using these methodologies are mainly flow models which track
flow of entities through the factory. In the case of discrete-event simulation, th
tracking is done using times at which the various events occur. In process sim
Testing Interaction-Driven Manufacturing Software 15
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tions, the tracking is done based on the resources utilized at the various steps

process.29

• Finite State Machine Models for Manufacturing Systems

Another common way of modeling discrete time systems, and discrete approx
tions to continuous time systems, is with a state machine. A state machine ca

defined using a 6-tuple,30

{I, O, S, Y, F, s0}

where I is the set of Input conditions, O is the set of Output events, S is the s
all possible States, Y is a mapping from S× I → O, F is a mapping from S× I → S,
and s0, s0 ∈ S, is the initial state. The set of possible states, S, can be finite or
countably infinite. If the system is under a closed loop policy, then I typically c
tains feedback information, F contains rules for the determining the next state
represents the new control policy, and O the actions required to implement th
policy.

State machines are often visualized as a state table or state transition graph.
example is provided in Figures 5 and 6. Given the current state, and the curre
inputs, the next state and the output events can be determined completely from

table or graph. Figure 7 shows how simply this can be implemented.31

Despite their simplistic nature, state machines can become unmanageable w
applied to real world systems. The cardinality of S× I can grow very quickly, and
the mappings Y and F can be quite complex. Frequently, the principles of hie
chy and abstraction are used to overcome these problems. We can aggregate

29.Ibid.

30.B. Selic, G. Gullekson, and P. Ward,Real-time Object Oriented Modeling, John Wiley & Sons, Inc., New
York, New York, 1994.

31.The figures are reproduced from J. Albus, C. McLean, A. Barbera, and M. Fitzgerald, “An Architectur
Real-time, Sensory-interactive Control of Robots in a Manufacturing Facility,” inProceedings of the Con-
ference on Information Control Problems in Manufacturing Technology, National Bureau of Standards,
Gaithersburg, MD, pp. 81-89, 1982.
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into a single composite state using an abstraction process. This process hide
details of the original states and makes it possible to decompose the original 
machine into a hierarchy of simpler machines. This means that a state machi
description of a real-world system can be developed in stages. The state mac
description can be initiated as a single, abstract machine; decomposed into a
archy of abstract machines; then gradually refined into the required detail at e
level.

FIGURE 5. Example state transition graph
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FIGURE 6. Corresponding state-transition table
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FIGURE 7. Computing structure to execute state-transition tables

Manufacturing Software Testing

• Software Programs as State Machines

State machines can be used to model the behavior of software programs in a
ber of ways. In its simplest form, a state represents the valid values for a sing
program variable. While this may be a valid, formal description of the program
is of little practical use. This is true because even for elementary programs w
few variables, there can be an exponential explosion in the size of the state s
Therefore, it is necessary to have another, more abstract, definition of state in
which a change in the value of any variable does not automatically imply a cha
Testing Interaction-Driven Manufacturing Software 19
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in state. Such a definition must capture the qualitative behavior of the program

without direct reference to the quantitative values of specific variables.32

Hierarchical state machines can also be used to model certain aspects of sof
programs. The resulting nesting of lower-level state machines within more abs
states is similar to the nesting in block-structured procedural programming la
guages. Moreover, the scoping rules are the same:

1. each nesting has a distinct lexical scope with its own variable
declarations,

2. higher levels cannot access lower level scopes, and

3. lower levels can access all of their containing scopes.

There is one important difference between nested states and nested blocks: 
states are static, but nested blocks are dynamically created and destroyed as
program executes.

This notion of a software program as a state machine has been used, with so

success, as the basis for unit testing.33 A fixed set of inputs is generated, either
manually or automatically, for which the desired state transitions and output va
are known. Determining an appropriate set of inputs, based on some specific
of program behavior, is itself a complex problem. Nevertheless, given such a 
program errors are said to occur whenever the actual state transitions or outpu
ues differ from the desired ones. Whenever errors occur, the source is found 
corrected (another difficult problem), and further testing is done. This scenari
continues until no further errors are detected, or until some predetermined, st
ping condition is met.

32.Selic, 1994.

33.David Banks, William Dashiell, Leonard Gallagher, Charles Hagwood, Raghu Kacker, Lynne Rose
Software Testing by Statistical Methods - Preliminary Success Estimates for Approaches Based on
mial Models, Coverage Designs, Mutation Testing and Usage Models. NISTIR 6129, <URL:http://sdct-
sunsrv1.ncsl.nist.gov/~ftp/stsm/mar98ir.pdf>, March 12, 1998.
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• Systems of Systems

Problems arise when one attempts to use this approach to test certain kinds 
facturing software applications — namely, those that rely directly on other,
“source” applications for their inputs and those with inputs that are based on ev
that happen in the real world. These are interaction-driven applications. Cons
quently, either we need the source application/real-world system to carry out 
testing, or we need substitutes that behave exactly like them. In the latter cas
substitutes themselves must be tested to ensure correct behavior. In the form
case, two scenarios arise.

If a source application provides the inputs, that application can be modeled a
finite state machine with its own set of transition points. If the inputs come from
real-world system, that system can be continuous time or discrete time. If the
tem is continuous, its evolution is governed by equations (1-4); if it is discrete
then equations (6-8) apply. This causes a problem known as racing. That is, 
system being tested must race to complete its execution before the next event
impact of racing on testing is not known.

In many cases, outputs from the test system can be inputs to the source applic
or cause additional changes in the real world. This frequently occurs when the
system and its source have a hierarchical relationship. When this happens, a
put from the supervisor becomes input to the subordinate and feedback from
subordinate becomes input to the supervisor. In manufacturing, a single appl
tion can have many subordinates and one or more supervisors. This provides
added complication to testing.

In addition to these interaction-driven systems, there is an increasing emphas
the use of software agents in manufacturing. These agents are neither typica
cedural programs nor typical object-oriented programs. They are intended to 
emergent behavior, which means that their response to various inputs can ch
as the agent becomes more “intelligent.” From a state-machine modeling per
tive, this means that the state space changes over time, the state transition fun
changes over time, and the outputs change over time. Furthermore, the relati
ships among these agents can change over time. This, again, has an impact o

ing.34
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Summary

If composable/component-based software delivers on its promises, it ought to
more amenable to modeling with hierarchical state machines than the averag
interaction-driven software system. We should investigate whether we can in 
way alter our software architectures to make them tractable with the existing 
eling techniques, and hence more testable. However, at this point in time, com
able software is yet to be demonstrated on a large scale system, and even if a
comes to fruition, the modeling of racing and nondeterminism remains a prob

Testing of Interaction-driven Manufacturing
Software

As described in the introduction, three categories for the testing of interaction
driven manufacturing systems have been identified:

• component

• system

• interoperability

Based on a system architecture separable components can be identified for c
nent testing, which addresses the question of whether a single component of
larger, distributed manufacturing system supports the interface and behavior
described in its specification. When a component is based on a proprietary in
face, testing will focus on performance and stress testing of the component to
determine if it meets the needs of the system in those respects. Functional te
while important for system integration, is typically left to the component vendor
the case of proprietary specifications; with public specifications a conformanc
testing program may be established to provide functional testing services and
fication that a vendor’s products comply with the open specifications. Alterna-
tively, or in conjunction with conformance testing, interoperability testing may

34.Selic, 1994.
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also be used to certify that a vendor’s product conforms well enough to be plu
compatible with other products.

A component based on an open specification is much more desirable for integ
manufacturing systems for several reasons:

• The same performance and stress tests can be performed against multiple
dor products.

• Third party organizations can be used to perform functional tests, thereby 
viding an objective measure of a systems conformance.

• The system architecture can be designed without predetermining a particu

vendor’s solution.35

System testing concentrates on the interactions between the components of 
system. System testing answers the question: does the integrated system beh
designed? System testing may include a combination of simulation in which t
system design is analyzed, integration testing which is used to bring the syste
line, and system monitoring which detects errors in the behavior of the system

Finally, to support open systems interoperability testing is performed on comp
nents supporting an open interface. Interoperability testing answers the ques
could a component be replaced by another component without compromising
system? Where component testing is a systematic approach to fully exercise
component interface, interoperability testing is testing by trial. Theoretically a
exhaustive functional test of a component would answer the same question a
interoperability testing. In practice, however, exhaustive testing is tedious, diffi
cult, expensive, and frequently intractable given the wide range of inputs that
tems will allow. Interoperability testing is most often performed by users in the

market place as they try multiple vendors products in working systems,36 but it can

be performed in a more controlled setting, as it often is through vendor consort37

35.Wallnauet al., June 1998.

36.A case in point is programming language compilers: when software is ported between compilers, bug
in the program source code and the compiler may be found. Compiler bugs are reported to the vend
thus interoperability testing is taking place.

37.STEPnet, <URL:http://www.stepnet.org/>.
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Interoperability testing uses natural selection to limit the number of tests to th
that are relevant to the products that need to be interchanged. Often a combin
of functional component tests and interoperability testing yields the most cost

effective results.38

The remainder of this section discusses each of these categories of testing in
detail in terms of the open manufacturing interfaces that fall into the categories
existing test efforts that are underway, test techniques suitable for addressing
category, and directions for future work.

Component Testing

As was discussed earlier, a system architecture is described in terms of the sp
ized subsystems it contains and the connections between those subsystems.
closer examination one finds a number of different methods for designing and

implementing the connections.39 For the purpose of this discussion, the specific
tions supporting the connections in a system are referred to as infrastructural
ponents; the specialized subsystems are referred to as specialized componen
connections can be described both in terms of communication channels and 
action flow. The channels are based on specifications, whether standard or p
etary, formal or informal. The transaction flow is the series of events that hap
during the operation of the system. While it may be repeated, the flow is uniqu
the operation of a given system at a given time.

A specialized component supports a specific functional requirement of the ov
system. In a manufacturing system, specialized components will include softw
such as databases, product data managers, schedulers, machine controllers,
tion systems, and inventory systems to name a few. Testing of static interface
such as file exchanges, can be considered a sub-category of specialized comp
testing. The interfaces to specialized components are usually defined either w
the context of a particular infrastructure or as a combination of an abstract int

38.James Kindrick, John Sauter, Robert Matthews, “Improving Conformance and Interoperability Testin
StandardView, May 1996.

39. David Garlan and Mary Shaw,An Introduction to Software Architecture, CMU Software Engineering
Institute Technical Report CMU/SEI-94-TR-21, ESC-TR-94-21, January 1994.
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face and a binding of that interface to a particular infrastructural approach or
implementation mechanism.

Infrastructural specifications provide a framework in which specialized compon
interfaces can be defined and operate. Infrastructural components support fle
ity with respect to integrating new specialized components into a working syst

Traditional software architectures use a tight integration of subsystems based
shared libraries which are linked into run-time execution modules. In these sy
tems the common infrastructure is the programming language. Dynamic linkin
(linking at run-time) is one step towards creating more flexibility in componen
based systems. Even so, connections between components traditionally have
reduced to file exchanges rather than direct interactions. Advances in system
neering and software standards to support distributed processing are leading
more flexible integration of systems which are capable of direct interactions. 

ware standards which support distribution (including NFS/RPC,40,41,42 CORBA/

IDL,43and Java’s Remote Method Invocation and JavaBeans44) provide even more
flexibility.

Infrastructural specifications address the coupling between specialized comp
nents and provide a protocol (in the general sense) for the connections. Aspec
the connections can be tested for consistency and completeness in much the
way that a compiler tests a program for consistent use of a programming langu
Infrastructural standards include programming languages, scripting languages
tribution protocols such as NFS/RPC and CORBA/IDL, messaging languages
as MMS, UNIX-style pipes, and sockets.

40.Network File System/Remote Procedure Call.

41.B. Callaghan, B. Pawlowski, P. Staubach,NFS Version 3 Protocol Specification, Request for Comments
1813, Sun Microsystems, Inc., June 1995, <URL:http://www.cis.ohio-state.edu/htbin/rfc/rfc1813.html

42.The NFS Distributed File Service, NFS White Paper - March 1995, <URL:http://www.sun.com/software/
white-papers/wp-nfs/>.

43.OMG,The Common Object Request Broker: Architecture and Specification. (CORBA) Includes a defini-
tion for the Interface Description Language (IDL). <URL:http://www.omg.org/corba/c2indx.htm>.

44.Java Technology Home Page, <URL:http://java.sun.com/>.
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Manufacturing Interfaces

This section describes manufacturing specific specifications for both the infra
structural and specialized components of a system and the implications both 
these have with respect to testing of interaction-driven manufacturing system

• STEP

ISO 10303,45 a.k.a. STEP, is a family of specifications for product data exchan
covering the complete product life-cycle. STEP defines models of information
be shared between systems and implementation methods for sharing the dat
information models (STEP’s Integrated Resources and Application Protocols)
describe the content of the data; the implementation methods describe the co
ing mechanisms to be used in sharing data. Together they define a variety of
faces for components in a software system.

From a testing perspective, STEP is interesting because of the wealth of com
nent interfaces defined by combining the standard’s specifications and becau
the rigor with which these standards are specified. Testing of the implementa
methods can be defined either independent from or in conjunction with the con
specifications. Two types of implementation methods are defined or emerging

within the STEP: an exchange file format46 (Part 21) and an application program
interface (SDAI). Each is discussed independently.

• STEP/Part 21

An interface based on a STEP AP and the STEP exchange file format is an e
ple of a specialized component interface. In this case the interactivity quotien
the components involved in the data exchange is very low and methods for te

such interfaces are well established.47 This style of interface is mentioned here a
one end of the spectrum of interactions a component may have with a system

45.Industrial automation systems and integration—Product data representation and exchange—Part 1:
view and fundamental principles, International Standard, ISO, 1994.

46.Industrial automation systems and integration—Product data representation and exchange—Part 21
Implementation methods: Clear text encoding of the exchange structure, International Standard, ISO, 1994

47.The STEP Conformance Testing Project Home Page. <URL:http://www.erim.org/cec/steptest/>.
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• STEP/SDAI

An interface based on SDAI supports a greater amount of interactivity. Using
SDAI, the specialized components can be probed for data values interactively
data values can be altered in the underlying database system. SDAI is define
functional specification and a set of language bindings which include the prog
ming languages C and C++ and the interface definition language IDL. The SD
specification defines six implementation classes based on five characteristics
lowest implementation class provides minimal support for data exchange and
essentially an API to an exchange file. The higher classes provide progressiv
more sophisticated features culminating in rich support for expression evalua
which enables complete constraint checking and calculation of derived attribu
from the information models. The definition of implementation classes allows
tems supporting the standard to evolve better and better support.

While supporting system evolution, SDAI’s implementation classes also provi
guidance for software componentization. As applications adapt to newer SDA
implementations, more and more of the functionality that they may require will
resident in the SDAI implementation. With this in mind, applications based on
SDAI should be designed such that they will not be adversely impacted by the
lution.

Test methods for SDAI implementations will need to address the multiple imp
mentation classes of SDAI’s functional specification as well as multiple implem
tation classes defined for each of the language bindings. Test methods for AP
using SDAI will need to further address the functional requirements of a particu
AP as well as the implementation classes defined that AP. Test methods for S
implementations will need a strong framework in which to accommodate all of
variability imposed by the different specifications and the implementation clas
involved.

• OMG/PDM Enablers

The OMG’s PDM Enablers specification48 defines twelve IDL modules to support
eight conceptually separate PDM functions, or “enablers” of product data man
ment. A conforming implementation need not support all of the modules or al
the enablers; dependencies between the modules are spelled out in a depen
Testing Interaction-Driven Manufacturing Software 27
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graph,49 and the modules required by each enabler are spelled out in another

table.50 There is also a mapping from eleven sub-processes of the product dev

ment process to the enablers that they, in turn, require.51

The interfaces defined in the PDM Enablers specification provide a combinatio
data model and data access mechanisms. However, the behaviors exhibited 
constraints enforced by conforming PDM implementations are not formally
defined. Although there are UML diagrams and much explanatory text, only t

IDL interfaces are considered normative.52 Since the PDM Enablers specification
is heavy on data modeling and light on interactivity, conflicting interpretations
may not be as big a problem as they could be.

• CAM-I AIS

The CAM-I AIS interface specifies an API to a solid modeling system. The syst
can then be used as an engine to other software that needs solid modeling ca
ties. The interface is specified as both a file format and as a package of C lib
routines. While no testing activities specific to this interface have been identifi
methods for testing both file formats and software libraries are established.

• OLE for Design and Modeling

Object Linking and Embedding (OLE), a proprietary Microsoft infrastructure, h

been used to define an interface for Design and Modeling.53 OLE for Design and
Modeling is an industry-led effort and it is an open interface. The interface all
3-D graphical objects from one application to be included in (or embedded in
another application. If the original application is changed, the referencing app

48.Revised Submission (including errata changes) — PDM Enablers — Joint Proposal to the OMG in
Response to OMG Manufacturing Domain Task Force RFP 1. <URL:http://www.omg.org/arch2/mfg/
02-02.pdf>, 1998.

49.Ibid., section 1.16.2.5 (“Module Interdepencies”).

50.Ibid., section 1.9 (“PDM Enablers”).

51.Ibid., section 1.12 (“Mapping the Product Development Process to the PDM Enablers”).

52.Ibid., section 1.16.2.1 (“IDL Specifications”).

53.OLE for Design and Modeling. <URL:http://www.intergraph.com/iss/technologies/jupiter/ole.htm>, 1
Testing Interaction-Driven Manufacturing Software December 1998



Component Testing

pro-
rver,

s not

s a
n. It
ca-
trol-

asso-
gous
lop-
f

tion will reflect those changes. Using this interface, interactivity is a one-way 
cess. The client is able to read information from and create references to the se
and even override some of the server’s data on the client side, but the client i
able to affect any changes in the server.

• PSL

Not yet a mature standard, the Process Specification Language (PSL) define
mechanism for applications of process information to exchange that informatio
includes an ontology to support the exchange. It is envisioned that this specifi
tion will evolve to support interactivity between systems representing and con
ling manufacturing processes. A goal for the TIMS project is to establish
guidelines for testability which will be used in the development of PSL.

• Summary

Table 1 summarizes the component interfaces for manufacturing systems and
ciates them with the infrastructure on which they are based and with an analo
form of software. Testing techniques have been developed or are under deve
ment in association with the various kinds of software infrastructures. Some o
these are discussed further below.

TABLE 1. Infrastructures supporting Manufacturing Interfaces

Component Interface Software Infrastructure(s) Type of Software

AP xxxa + STEP Part 21

a. The notation xxx is used to indicate any AP.

none static file checker

AP xxx + SDAI C++ binding SDAI and C++ class library/ database

AP xxx + SDAI C binding SDAI and C software library/ database

AP xxx + SDAI IDL binding SDAI and CORBA distributed invocation method/ database

AP xxx + SDAI Java binding SDAI and Java web/ Java/ database

PDM Enabler CORBA distributed invocation method/ database

CAM-I AIS C software library

OLE for Design Microsoft COM/OLE distributed invocation

PSL tbd tbd
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Testing based on SDAI uses a multi-tiered infrastructure: one tier being the la
guage binding and the other tier being SDAI. In Table 1 the columnType of Soft-
warerefers to general categories of software for which testing activities and to
exist. When testing of the identified component interface is pursued, a more i
depth investigation of these types of testing and associated tools will be condu

Existing Testing Efforts

The only identified effort that directly addresses testing of specialized compo

interfaces for manufacturing is that for STEP’s AP 20354 exchange file. Other
activities are relevant in their analogy to manufacturing interfaces. Efforts for 
ing generic components based on the infrastructural components used in ma

turing include the 100% Pure Java testing program55 and NIST’s VRML (Virtual
Reality Modeling Language) testing program. NIST’s SQL (Structured Query
Language) testing program addressed some of the challenges faced in testing
ufacturing specifications.

• STEP/Part 21/AP 203

This testing effort generates test cases from the specification for AP 203.56 The
methodology used is rigorously defined within the context of STEP and is bei
used for other APs within STEP. One unique characteristic of the STEP meth
ogy is that the standard includes the specification of abstract test suites for e
AP. The standard abstract test suite for AP 203 formed the conceptual basis fo
executable AP 203 tests. While this method is extensively developed for testing
functional requirements of an application, there has not been work in the area
testing an interactive interface such as would be available with SDAI. Parts of
methodology may be adaptable to testing implementations of STEP AP 203 u
SDAI, as well as other APs with an SDAI interface.

54.ISO 10303 Industrial Automation Systems and Integration — Product Data Representation and Exc
— Part 203: Configuration Controlled Design, International Standard, ISO TC184/SC4, 1994.

55.100% Pure Java Program Home Page, <URL:http://www.javasoft.com/100percent/cert.html>.

56.ISO 10303 Industrial automation systems and integration—Product data representation and exchan
Part 303/TR: Abstract test suite: Configuration controlled 3D Designs of Mechanical Parts and Asse
blies, working draft, 1998.
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Additionally, while providing a different level of abstraction, where there is ove
lap, the OMG PDM Enabler specification is consistent with AP 203’s definition
for configuration control and thus provides an interactive interface to AP 203
which is not based on SDAI. The AP 203 test cases for file exchange are in p
applicable to testing the PDM Enabler interface as well.

• 100% Pure Java

The 100% Pure Java testing program certifies that Java classes support their p

interfaces.57 In this program the interfaces are not necessarily openly defined.
developer submits the classes to be tested along with the test suites and the
expected results of the tests. The testing program then verifies that the progr
runs with the Java Virtual Machines from multiple vendors and that it produces
expected results in each case. The testing program provides an independent
ation of a program’s portability and an evaluation of run-time correctness, as
defined by the implementor, for Java applications.

Some aspects of this approach are of interest in the discussion of testing of m
facturing interfaces. The approach is generic to Java Class Libraries and thus
should be applicable to any manufacturing interface defined in Java. The dev
ment of test suites by the vendors may be a practical approach to test suite de
ment providing that someone is able to verify the reliability of the test suite. A
NIST competence project in the Information Technology Laboratory, Software
Testing by Statistical Methods, is studying methods for assigning a level of ce

tainty to test suites.58 If successful, these methods could be applied to evaluati
vendor developed test suites.

57.In this contextpublic interfaceis the technical term defined for the Java programming language to indic
the availability of the interface for use by someone other than the class developer. This is somewha
ent than the less technical use of the term to mean that the interfaces that are published in an open for
use by anyone.

58.Bankset al., NISTIR 6129, 1998.
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• VRML 59

In this testing activity, NIST devised a way to evaluate the state of a VRML
browser at run-time using features of the VRML language. Those states are t
compared to the correct state as defined by a reference implementation to de
mine the system’s correctness. The approach is to probe and monitor a syste
ative to a reference implementation.

• SQL

The NIST SQL Test Suite60 addressed several of the challenges faced for testin
manufacturing component interfaces, including multiple implementation optio
in a specification, bindings to multiple programming languages, and access b
more than one process concurrently.

Both the SDAI and PDM Enablers specify interfaces that may be configured i
more than one way. In the SQL Test Suite, conformance tests were catalogue
according to the “profiles” that they tested. Some tests were designed to test 
files singly while others tested them in useful combinations. A script to run the
correct sequence of tests was then generated by a program according to whic
files the vendor claimed to support. This same technique also helped to addres
complexity of bindings to multiple programming languages.

SDAI and the PDM Enabler are both interfaces to systems which will be used
more than one process. The SQL experience with issues of concurrent use is
applicable here.

Test Techniques

Component testing is the most studied of the types of testing identified. While
there is some argument over whether interoperability or conformance testing 
better way to approach component testing, there is no doubt that the compone
a complex distributed system of systems need to be tested in order to have a

59.NIST VRML Project Home Page <URL:http://www.itl.nist.gov/div897/ctg/vrml/vrml.htm>.

60.NIST SQL Test Suite. <URL:http://www.itl.nist.gov/div897/ctg/sql_form.htm>, 1995.
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chance at success in complete system testing. Here we present an overview 
some of the most pertinent aspects of component testing.

• Domain testing

A premise for theories of component testing is that exhaustive testing is only p
ble in a very limited number of cases. In most cases, testing is approached u
strategy designed to produce optimal results; in other words, to find the most b
and the most serious bugs with the least number of tests. Much of the study of
ware testing revolves around what is the best strategy. Theories address both
box (e.g. debugging) and black box testing. The scope of the TIMS project is
ited to black box testing.

Test coverage and software usage patterns are critical factors in testing strate
Test coverage is an indication of how much of the software was actually teste
Test coverage can be measured in two ways — in terms of how much of a sp
cation was exercised as a percentage of the complete specification, or in term
how completely the tests covered the domain of input values defined for the s
fication. Tests which cover the complete range of input values can be particul
difficult to define and execute. For example, consider a program which simulat
continuous function.

Since exhaustive testing is typically not practical, two non-exclusive approach
are often used to limit the scope of the tests. One strategy is to analyze usag
terns of the component and use that analysis to prioritize the tests. Note that th
very similar to interoperability testing which achieves essentially the same thin
a less formal way. Another strategy referred to as domain testing is to identify a
of input values and test the component with those values rather than attemptin

complete range of values. Beizer61 provides an in depth discussion of domain tes
ing which describes systematic approaches to identifying an optimal set of in
values.

61.Boris Beizer,Software Testing Techniques, Chapter 6,Van Nostrand Reinhold, NY, NY, 1990.
Testing Interaction-Driven Manufacturing Software 33



Testing of Interaction-driven Manufacturing Software

34

o-
ring
ion

kly
al
the
ame
ay be

cial-
infra-

 of a

ing
man-

ed in

usly
ess
ten-
g of

een

f-

mal

strib-
• The role of infrastructures

Testing of infrastructural components differs from testing of specialized comp
nents in that, for the most part, infrastructural components are not manufactu
specific and can be exercised by generic types of test suites. The one except
identified as a manufacturing specific infrastructure is MMS.

Generally speaking, infrastructures are most vigorously, thoroughly, and quic
tested for conformance to a specification through use rather than by any form
testing activity. When there is a formal testing activity it generally comes after
fact and is designed to differentiate multiple vendor products supporting the s
specification and highlight those areas of inconsistent support so that they m
addressed.

On the other hand, infrastructural components are integral to the testing of spe
ized component interfaces since the specialized components are based on the
structures. Many testing tools, and hence techniques, revolve around the use
particular infrastructure. Additionally, as is illustrated in Table 1, layered infra-
structures are emerging (e.g., SDAI/a programming language, IDL/a programm
language, SDAI/IDL). Test methods based on infrastructures are essential to 
aging the layers.

• Formal methods

The application of mathematical methods to software development has result
a discipline known asformal methods. The original emphasis for formal methods
was on software design and development. Formal methods are used to rigoro
describe software specifications before any code is implemented. Some succ
has been shown in applying formal methods in this manner. More recently, at
tion has been given to applying formal methods to the specification and testin

standards62,63,64and several standards for formal description techniques have b

defined within ISO.65,66,67,68 The application of formal methods to standards di

62.Richard Botting, Anthony Godwin, “Analysis of the STEP Standard Data Access Interface using For
Methods,”Computer Standards and Interfaces, vol. 17, 1995.

63.Richard Sinnott, Kenneth Turner, “Applying Formal Methods to Standard Development: The Open Di
uted Processing Experience,”Computer Standards and Interfaces, vol. 17, 1995.
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fers from the traditional use in software development since the internals of the
ware implementations are not defined. The result of applying formal methods
software standards is improvement in the standard itself, since it is more rigoro
defined, and improvement in the ability to generate test software from the spe
cation.

Future Directions

SDAI and PDM Enablers are both good examples of specifications for interac
driven manufacturing components which are intended to operate in a distribu
environment.

The SDAI specification provides the infrastructure for a series of interfaces to
interaction-driven manufacturing systems. The SDAI approach is based on a r
ous methodology which has not yet been fully exercised. To date, test techniq
for these types of interfaces have only been applied on individual components
we have found no activities to systematically reuse the methods on a variety 
interfaces as would be possible by combining SDAI with STEP APs in a num
of different application areas.

The PDM Enablers use an infrastructure, namely CORBA, for which testing ac
ities to date have beenad hoc. Currently, several efforts are underway to formaliz
testing methods using this infrastructure.

64.Kathy Liburdy, Martha M. Gray, and Lynne S. Rosenthal, “Formal Specification Languages in Confo
ance Testing.” Presented at the Eleventh International Software Quality Week 1998, May 26-29, 199

65.ISO/IEC 8807, Information Processing Systems — Open Systems Interconnection — LOTOS —A Formal
Description Technique based on the Temporal Ordering of Observational Behavior, International Organi-
zation for Standardization, Geneva, 1989.

66.ISO/IEC 8807, Information Processing Systems — Open Systems Interconnection — ESTELLA —AF
Description Technique based on an Extended State Transition Model, International Organization for Stan-
dardization, Geneva, 1989.

67.IUT-T,Specification and Description Language, CCITT Z.100, International Consultative Committee on
Telegraphy and Telephony, Geneva, 1992.

68.C. Ruggles (Ed.),Formal Methods in Standards: A Report from the BCS Working Group, Springer-Verlag,
British Computer Society, 1990.
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Integration and System Testing

While many standards concentrate on individual software interfaces within a 
ufacturing system, the concern of end users of manufacturing software is whe
the final integrated system performs as required. From both practical and form
perspectives, verifying correct behavior of the entire system is quite different fr
verifying the behavior of individual components. As Brooks observed, the sys
test is “unexpectedly hard,” and is often made harder by a lack of conceptual in

rity between independently specified and/or developed components.69The risk and
cost of system level problems only becomes greater as industry moves away
monolithic, proprietary solutions and instead assembles systems from open s
dard software components bought from completely different sources. The ind
ual “components” that we are integrating today would have been considered
“systems” at one time, so “integration testing” and “system testing” need to be
understood in this new, larger context.

Interaction-driven systems pose a special challenge because dynamic interac
between disparate components is much more sensitive to errors than is static
exchange. If two components disagree on a syntax issue for file exchange, w
might be lucky enough to lose only a small part of the input; but if they disagr
about an interactive interface, it is almost certain to stop the show. Integration
system testing are therefore crucial to the reliability of interaction-driven syste

A publication from Rational Software Corporation defines integration and sys
testing as follows:

Testing a specific feature together with other newly developed fea-
tures is known as integration testing. Testing the interface of two
components explores how components interact with each other.
Integration testing inspects the variables passed not only between
two components, but also the global variables. This test phase
assumes the components and the objects they manipulate have all
passed their local unit tests.

69.Frederick P. Brooks, Jr.,The Mythical Man-Month, 1995 edition. Addison-Wesley.
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System testing is designed to reveal bugs that cannot be attributed
to individual components, or to the interaction among components
and other objects. System tests studies all the implementation
aspects of the design similar to the customer’s environment. System
testing concerns issues and behaviors that can only be exposed by
testing the entire integrated system or a major part of it. System
testing includes testing for performance, stress, security, account-
ability, configuration sensitivity, usability, data integrity, start-up

and recovery.70

By specifically excluding interaction-related faults, this definition of system te
ing suggests that serious problems such as deadlocks and race conditions ar
expected to have been found during integration testing, much as functional fa
are expected to have been found during unit testing. This is consistent with a g
deal of our own precedent which steadfastly separates integration testing from

tem testing.71However, for our larger distributed systems, the only real differenc
between these tasks are the invasiveness of the testing and the types of fault
we hope to find in each stage. For the purposes of this discussion, then, we wi
struggle to keep them separated, but assume that Brooks’ advice to “Add one
ponent at a time” will nonetheless be followed in the software development pr
cess.

System-Level Manufacturing Specifications

• SEMATECH CIM Framework

The SEMATECH Computer Integrated Manufacturing (CIM) Framework Spec

cation72 is a specification for the software infrastructure within semiconductor f

70.Laura Lee Rose,Getting the Most Out of an Automated Test Tool. Rational Software Corporation,
<URL:http://www.rational.com/support/techpapers/pacorpwp/>, 1998.

71.NBS Special Publication 500-98,Planning for Software Validation, Verification, and Testing, November
1982.
Testing Interaction-Driven Manufacturing Software 37



Testing of Interaction-driven Manufacturing Software

38

to

-

ntrol

ed
-

on

apa-
oper-
ow

)

tories. It provides interface definitions in OMG’s IDL, Harel Statecharts for

component states,73 Sequence Diagrams to show how components are meant 

interact,74 and prose explanations to explain the definitions and intent. SEMAT
ECH is no longer developing the CIM Frameworkper se, but the specification is
being used as an input to the Manufacturing Execution Systems / Machine Co

(MES/MC) Work Group of the OMG’s Manufacturing Domain Task Force,75

where a widely accepted standard is expected to emerge. Concurrently, relat
work is being pursued in the Semiconductor Equipment and Materials Interna

tional (SEMI)76 CIM Framework Task Force. SEMI is a global trade organizati
that publishes standards made by and for the semiconductor industry.

In their submission to the MES/MC Work Group,77 SEMATECH commented that
the formal representations that they had used in the CIM Framework were “inc
ble of capturing the level of semantics needed to enable higher levels of inter
ability” and “weak in their representation of the behavioral semantics.” They n
believe that they may have found a better way:

These problems led SEMATECH to contribute to the development

of the BOCA [Business Object Component Architecture78] specifi-
cation in response to the OMG’s Business Object Facility RFP

[Request for Proposals79]. The BOCA meta-model and the rigorous

72.CIM Framework Home Page, <URL:http://www.sematech.org/public/division/fi/cim/cimhome.htm>.

73.David Harel, “Statecharts: a visual formalism for complex systems.”Science of Computer Programming,
pp. 231-274, July 1987.

74.UML Notation Guide, Version 1.1, “Section 7: Sequence Diagrams.” Rational Software Corporation,
<URL:http://www.rational.com/uml/html/notation/notation7.html>, September 1997.

75.Manufacturing Execution Systems / Machine Control Work Group Home Page, <URL:http://
www.omg.org/mfg/mfgmesmc.htm>.

76.SEMI OnLine, <URL:http://www.semi.org/>.

77.Response to the Manufacturing Domain Task Force RFI-3: Manufacturing Execution Systems (MES.
<URL:ftp://ftp.omg.org/pub/docs/mfg/98-05-03.pdf>, International SEMATECH and Fraunhofer IPA,
May 1998.

78.Data Access Technologies, Inc.,et al., Business Object Component Architecture (BOCA) Revised Pro-
posal: revision 1.2, July 1998. <URL:ftp://ftp.omg.org/pub/docs/bom/98-07-01.pdf>.
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use of a Component Definition Language (CDL)80 offer a way to
capture a richer, more complete and more consistent specification
of the CIM Framework semantics.

• APC Framework

The Advanced Process Control (APC) Framework81 was once an independent sys
tem-level specification; it is now considered to be a subsystem of the CIM Fra
work, specifically the Advanced Process Control Group of components. An
implementation of this subsystem is now being commercialized.

The CIM Framework itself may be viewed as the manufacturing execution su
system of the manufacturing enterprise, which would include other subsystem
such as enterprise resource planning. This is noteworthy because system tes
issues arise at every level, and rigorous testing becomes less and less feasib
the scope of the system is enlarged.

• MSI Control Entity Interface Specification

The Manufacturing Systems Integration (MSI) project at NIST82 produced a spec-

ification for control entities in a distributed, hierarchical manufacturing system83

Despite its “interface” designation, the specification in fact provides interface d
nitions, message definitions, state diagrams, and prose descriptions to specif
behavior of components implementing planning and job control interfaces tha
compose hierarchically to form an interaction-driven system.

79.Common Facilities RFP-4: Common Business Objects and Business Object Facility. <URL:http://
www.omg.org/arch2/cf/96-01-04.pdf>, 1996.

80.Data Accesset al., section 2.3:Component Definition Language Specification.

81.Advanced Process Control Framework Initiative (APCFI) 1.0 Specifications, 1997. <URL:http://
www.sematech.org/public/docubase/abstract/3300aeng.htm>.

82.M. K. Senehi, S. Wallace, and M. E. Luce, “An Architecture for Manufacturing Systems Integration.”Pro-
ceedings of the ASME Manufacturing International Conference, Dallas, TX, 1992.

83.Sarah Wallace, M. K. Senehi, Ed Barkmeyer, Steven Ray, and Evan K. Wallace,Manufacturing Systems
Integration Control Entity Interface Specification. NISTIR 5272, September 1993.
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A primary objective of the architecture was to incorporate provisions for dyna
recovery from anomalous situations at every level, so cyclic interactivity perva
the system. The protocols and interfaces for distributed planning and control
would provide fertile ground for system level testing. While this specificationper
se is clearly not the focus of industrial attention, it serves as an example of a 
defined hierarchical architecture for manufacturing, and its concepts and less
learned have contributed to several OMG specifications.

Existing Testing Efforts

Industry-driven efforts towards developing an open methodology for interactio
driven distributed system testing are in their infancy. OMG’s Test Special Inte

Group84 has as part of its mission to “offer guidelines to applications develope
on how to perform appropriate testing of object-oriented and distributed appli
tions” and to “encourage test tool vendors to create products that support and
mate the testing process.” At this time the group has not finished producing it
initial white paper. Similarly, the Information Technology Laboratory at NIST h
identified “testing methods for object-oriented software, software components,
component interactions in an integrated software system” as one focus of the

ware Testing by Statistical Methods project,85 but has not yet produced an initial
paper on the subject.

Although testing of these systems is done every day by companies using com
sense approaches (see “General technique,” below), these efforts are seldom
cized. Conversely, a great deal of published work provides methods for the tes
of various distributed phenomena at a high level of abstraction, but it does not m
the need for complete system testing.

Consider, for example, the common problem of different components giving su
different interpretations to data that they exchange. Let us assume, as is usual
case, that the components were separately specified and do not formally sha
common ontology. Then this fault will probably not be detected in component t

84.Test Special Interest Group Home Page, <URL:http://www.omg.org/testsig/>.

85.Software Testing by Statistical Methods home page, <URL:http://www.itl.nist.gov/div897/ctg/stat/
stsm.htm>. April 1, 1998.
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ing because each component appears to satisfy its own specification. It also 
not be detected by simulation and analysis of the component interactions bec
the correct protocol is being followed. In order to detect the fault, it is necessar
verify thecontents of messages exchanged between components, not merely 
message exchange itself or the components’ behaviors by themselves. This i
ily done usingad hoc techniques, but not so easily using most formal methods
which either abstract away the message contents in order to make the intera
protocol tractable, or abstract away the interactions in order to make the inter
specification tractable. This disconnect carries through into available software

toolsets (e.g., ObjectGeode86 and the ObjectTime toolset87), which include tools
that use different languages (e.g., finite state machines versus class diagram

perform these interrelated tasks. Rapide88 tried to bridge this gap by adding com-
putationally complete functions to an Architecture Description Language; we
should investigate to see to what extent they were successful, and whether th
resulting language is usable and understandable. (Of course, this is only usef
simulation, not for testing of implementations.)

Integration / System Test Techniques

• General technique for locating faults and testing conformance

In system testing, a piece of bad data may propagate through several compo
before a problem ever appears. Locating the fault in such cases can be difficu
good strategy to narrow the possibilities is to replace one or more of the com

nents withdummy components89 to see whether the problem goes away. A dumm
component anywhere on the path of the bad data will break the chain and ca
correct operation, so the fault is eventually located by walking backwards to t
source.

86.ObjectGEODE. <URL:http://www.verilogusa.com/solution/geode.htm>. 1998.

87.ObjectTime Developer toolset. <URL:http://www.objectime.com/>. 1998.

88.The Stanford Rapide™ Project. <URL:http://pavg.stanford.edu/rapide/rapide.html>. 1998.

89.Frederick P. Brooks, Jr.,The Mythical Man-Month, 1995 edition, p. 148. Addison-Wesley.
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Along the way, swapping dummy components for real components may detec
den deviations from the specification, where a system is working only becaus
off the components using a given interface use the same incorrect interpretat
and are hence “bug-compatible” by accident. Incorrect but functional usage o
interface can propagate through a software project like a virus because deve
will copy or re-use working code. Once this problem is detected, the code can
changed to match the documentation — or vice-versa, as is more often done
practice if there is no established standard. Clearly this could be a powerful te
nique for conformance testing as well.

• Network monitoring and capture/replay techniques

If some semblance of all of the necessary components for a networked distrib
system already exists, a capture/replay tool can be used to examine system 
ior and to emulate components. These commercially available tools begin by
recording all network traffic during an actual run of the system. This record can
examined manually to insure that the messages exchanged between compon
are what was specified. The replay tool can then replay segments of the netw
traffic to emulate a component. With the use of “parameterization,” the replay t
can change key fields of generated messages in order to act out various testin
narios.

Capture/replay tools are popular due to their simplicity, flexibility, and robustne
Because their interaction with the system is on an entirely syntactic level, they
work to some degree with any networked system, and there is little or no app
tion-specific scaffolding to build. Even opaque, COTS components with no pu
licly available specifications can be emulated without trouble. However, the pu
syntactic treatment of system interactions is also their greatest disadvantage
tester is obliged to operate at the level of raw data and machine code to cons
meaningful tests using snippets of captured traffic, which must be reverse-en
neered to map the raw data fields to their counterparts in high-level language
There is no way to “get inside” of the emulated component to add test scaffol
and assertions. There is also no easy way to emulate components for which 
sonable facsimile does not already exist, and integration with semantics-base
mal methods is unlikely to happen in the near future.
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• Scenario based testing

While rigorously specifying the behavior of a distributed system in general is v
difficult, specifying this behavior for a specific scenario is more tractable, as is
demonstrated by the Component Interaction Specification (CIS) based metho

supported by the Manufacturer’s CORBA Interface Testing Toolkit (MCITT),90

UML Sequence Diagrams,91 and Message Sequence Charts.92 CIS has the advan-
tage of being directly translatable into test scaffolding for CORBA systems, b
has disadvantages that will be discussed below.

CIS is a derivative of the integration testing method that was being used by
Advanced Micro Devices to test components of the APC Framework. This meth

in turn, made use of ideas that are also used in UML Collaboration Diagrams93

A CIS interaction scenario consists of a tree of requests having specified inpu
outputs, and/or return values. The tree is rooted at a test client that initiates th
entire chain of events. In order to capture the tree structure of the interactions
flat ASCII script, an outline numbering convention similar to that of UML Colla
oration Diagrams is used:

     1 ... first request by testing client on server A ...

     2 ... second request by testing client on server A ...

          2.1 ... request by server A on server B ...

          2.2 ... request by server A on server C ...

     3 ... third request by testing client ...

90.MCITT home page. <URL:http://www.mel.nist.gov/msidstaff/flater/mcitt/>. 1998.

91.UML Notation Guide, Version 1.1, “Section 7: Sequence Diagrams.” Rational Software Corporation,
<URL:http://www.rational.com/uml/html/notation/notation7.html>, September 1997.

92.ITU-TS Recommendation Z.120, “Message Sequence Charts (MSC).”  ITU-TS, Geneva, 1996.

93.UML Notation Guide, Version 1.1, “Section 8: Collaboration Diagrams.” Rational Software Corporation
<URL:http://www.rational.com/uml/html/notation/notation8a.html>, September 1997.
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In an actual CIS, the text comments shown above are replaced by machine-r
able syntax specifying the remote operations that are invoked and the inputs,
puts, and/or return values that are expected.

Although the full extent of possible functionality is not supported by MCITT at
this time, this approach enables code generation for dummy components and
matic generation of run-time assertions to verify that the inputs and returns fo
each interaction are as specified. The dummy components are useful in system
integration testing when some components are not available or not trusted, a
conformance testing to provide a more controlled testing environment for sub
systems. One may also use dummy components to stress test a system; for 
ple, if a shop controller is theoretically able to control up to N workcells, one m
test the system with that many emulations.

Unfortunately, although the CIS syntax is expressive enough to describe an e
tree of interactions through a distributed system, it assumes a single source o
interactivity. All interactivity is assumed to originate with the testing client. The
is thus the question of how this approach can be extended to handle more com
interactivity. While it is trivial to extend the CIS syntax tospecifycyclic or chaotic
interactivity, it is much more difficult toemulateor verify that behavior because we
now require the capability to monitor and control the sequencing of events at 
system level. For the currently supported hierarchical interactivity, the orderin
events is inherently deterministic, and it suffices to embed monitoring and con
into the components of the system. But with cyclic or chaotic interactivity, an em
lated component must somehow manage to generate requests in the order th
specified without the benefit of inherent determinism, and a total ordering of s
tem events cannot be derived without the aid of accurate synchronized clocks
separate network level monitoring tool.

In any case, the total ordering of events imposed by the CIS approach is ofte
what we want in systems having cyclic or (especially) chaotic interactivity. Ma
formal analysis techniques proposed by academia for use on distributed syst
explicitly address the issues of concurrency and non-determinism and allow t
valid and invalid sequences of events to be identified; but there remains a dis
nect between those formal analysis techniques and the available technology 
testing actual systems. Similarly, UML Sequence Diagrams and Message
Sequence Charts are more powerful in being able to model cyclic interactivity
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are extensively used for simulation, but they have not (to our knowledge) bee
adapted for concrete system implementation testing and run-time verification
message contents as CIS has been. This may be due to the problem of moni
and controlling global state, of specifying message contents with sufficient rigo
be able to interoperate with actual live components, or both.

Future Directions

A possible direction for future work would be to investigate how to bridge this g
between abstract analysis and practical testing in the case of non-determinis
interaction-driven manufacturing systems. Historically, industry has designed
manufacturing systems to be as deterministic as possible in deference to the
principle (“Keep it simple, stupid”). If non-deterministic systems do not provid
superior return on investment, then there is no motivation to pursue them. Bu
must also consider that the lack of good testing techniques is one of the risk fac
that we might reduce if non-deterministic systems can provide superior perfo
mance, such as has been observed for some agent-based approaches in lim
deployments.

On a more concrete level, we should acquire hands-on experience with the C
that SEMATECH believes will solve their problems. At present, with no such
experience, it is not obvious to us how it would help with the coherency of the
tem-level specification. We must gain competence with this emerging techniqu
learn its relevance to the problems of specifying and testing interaction-driven
tems, and experiment with automated CDL tools as they become available.

ADL tools, such as Rapide, might also prove helpful. Most ADL work is still a
demic, showing wide variation even in the definition of what an ADL is and wha
is intended to accomplish. Nevertheless, we should investigate them as resou
permit, particularly as a possible solution to the protocol versus interface dich
omy that was discussed earlier.

There is, as of yet, no formal method to determine the best combinations of c
ponents to test or to emulate in order to achieve a given conformance testing
fault detection goal at the system level. By this we mean a formal protocol for c
ducting the tests and a formal protocol for when to stop testing, such as have

discussed in reports from Information Technology Laboratory.94,95 To create an
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analogous method that would serve our purposes would be extremely complic
because it would need to combine aspects of existing protocol specification a
test methods with aspects of existing interface specification and test methods
These detailed formalisms would be needed to establish a rigorous connectio
between specified requirements for the system and the testing that is perform
Unfortunately, due to their complexity, combinatorics, and lack of cost effectiv

tools, these formalisms have not exactly “taken industry by storm.”96 A grand uni-
fication is even less likely to be well received because the need to integrate d
ate methods is likely to require more simplifying assumptions that will further
damage the applicability of the resulting unified method. Nevertheless, this
remains a possible topic for future work.

Interoperability Testing

One flight test is worth a thousand simulations. —Henry Spencer

Overview

Interoperability is a term that generally refers to the ability of existing product
work together in practice as opposed to theory. The focus of interoperability is
recognition that formal testing and analysis does not guarantee that conformi
products will actually work together. Indeed, practical operability sometimes
requires explicitly ignoring specifications when they would otherwise prevent

interoperation, for example, with other non-conforming components.97 Such reali-
ties make interoperability a very difficult field.

Testing of interoperability involves bringing together existing components and
exercising their interoperation. Ideally, as many functionally similar componen

94.James Yen, David Banks, P. Black, L. J. Gallagher, C. R. Hagwood, R. N. Kacker, and L. S. Rosent
Software Testing: Protocol Comparison. <URL:http://sdct-sunsrv1.ncsl.nist.gov/~ftp/stsm/
simulationmar98.pdf>, March 28, 1998.

95.Bankset al., NISTIR 6129, 1998.

96.Dan Craigen, Susan Gerhart, and Ted Ralston, “Formal Methods Reality Check: Industrial Usage.”IEEE
Transactions on Software Engineering, v. 21, n. 2, February 1995.

97.Networking Standards: A Guide to OSI, ISDN, LAN, and MAN Standards, William Stallings, p. 545, 1993.
Testing Interaction-Driven Manufacturing Software December 1998



Interoperability Testing

erabil-
e
r the
nter-
future
cta-

se
us,

ent

-
, or
ese
to
.
ther

us-
ines
tions

 of
est-
as possible are tested near simultaneously. Since the focus is on practical op
ity, the use of test scaffolding is discouraged. All of the components should b
someone’s actual product. The greater the number of components, the highe
expectation of the interoperability test being meaningful. On the other hand, i
operation between a large number of components guarantees nothing about 
component interoperation. It does, however, raise reasonable belief and expe
tion.

Interoperability testing is very significant for interaction-driven systems becau
the science of specification-based interaction-driven testing is so meager. Th
testing of such systems has relied heavily upon interoperability testing to augm
more formal testing such as component interface testing.

The Reasons for Interoperability Testing

Interoperability testing is not required in all situations, but any sufficiently com
plex standard or interface brings with it the opportunity for errors, ambiguities
incompleteness in the specification itself. Interoperability testing can catch th
kinds of problems. Even with a formally verified specification, the rendering in
code may introduce problems such that the implementation is no longer valid
(This can be avoided by reference implementations, but these invariably have o
problems.)

Another need for operability testing is that conformance testing is rarely exha
tive due to complexity and/or cost constraints. All but the simplest state mach
take an intractable amount of resources to be tested with all possible combina
of real-world data.

Interoperability testing also provides the opportunity for additional measuring
performance and reliability without the expense and overhead of full system t
ing.
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Public Relations and Other Political Implications

Interoperability testing presents interesting semi- or non-technical opportuniti

• Implementations designed for interoperability testing tend to be much more
robust with the expectation of having to work with other implementations th
have entirely different assumptions or interpretations of a specification.

• Interoperability testing gives participants a good feel for the true state of the
at a single instant in time.

• Nondisclosure agreements are easier to swallow “all around” in a neutral fo
as compared to having to sign such an agreement when purchasing or sim
taking possession of a competitor's component in one's own workplace.

Examples

Computer networking has used interoperability testing very successfully for th
years. Indeed, many of the interoperability testing practices stem from experie
with network interoperability testing. In the early days of the Arpanet (later to
become the Internet), components were built by different contractors. The im
mentors gathered together on a regular basis for interoperability testing. Part
pants quickly realized the value of interoperability as a more important goal th
adherence to the specifications — to the point that for many years after, the I
net was driven by implementations that resulted in specifications rather than 
other way around. The interoperability tests became ritualized in a regular
“Interop” conference, now officially known as Networld+Interop.

There are now interoperability forums (i.e., vendor consortia that do interoper
ity testing) in many areas. These forums provide vendors the opportunity to m
and test their components for interoperation without having to purchase (or sim
install) other vendors' products. For instance, forums exist for interoperability t
ing of video, modems, encryption algorithms, security systems, file servers, as
as a wide variety of networking and communications such as internet comme
protocols and network management protocols. Of special note to the manufa

ing domain is STEPnet,98 where CAD package vendors exchange files in STEP
Part 21 format to test the STEP-enabled interoperability between their produc
Testing Interaction-Driven Manufacturing Software December 1998
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Many organizations have taken advantage of Internet connectivity itself to allo
interoperability on a moread hocbasis. As an example, Bell Laboratories provide

HTTP (Hypertext Transfer Protocol)99 interoperability testing at <URL:http://por-
tal.research.bell-labs.com:8000>. This URL provides access to an HTTP 1.1
server that provides extensive logging to assist testing. This service many be
by anyone at any time and without any advance request.

Frameworks

Despite the use of interoperability testing as a complement to traditional form
component interface testing, interoperability testing can range from informal t
formal.

At its most informal, interoperability testing is little more than stepping throug
functional tests between interacting components. However, highly formalized
interoperability testing is possible as well. For instance, the “Interoperability
Abstract Test Suite for PNNI (Private Network-Network Interface Specification
is a rigorous specification that describes the requirements, objectives, test ca

and test set-up for carrying out such interoperability testing.100 The PNNI test
suite is a good example of a dynamic interaction-driven specification.

There is node facto standard framework for interoperability testing. Generally,
each area specifies its own. For instance, in the field closely related to PNNI,
ATM Forum has issued a series of its own specifications for interoperability te

ing.101,102

However, there are many references that provide general conformance testin
background. In particular, ISO/IEC 9646: The OSI Conformance Testing Meth

98.STEPnet home page. <URL:http://www.stepnet.org/>. 1998.

99.Hypertext Transfer Protocol. <URL:http://www.w3.org/Protocols/>. 1998.

100.Interoperability Test for PNNI v1.0. <URL:ftp://isdn.ncsl.nist.gov/pubs/ATM_Forum_Contributions/
PNNI/atm97-0089.ps.Z>, 97-0089, February 1997.

101.ATM Forum Technical Committee,Interoperability Test Suite for the ATM Layer (UNI 3.0), <URL:ftp://
ftp.atmforum.com/pub/approved-specs/af-test-0035.000.pdf>, April 1995.

102.ATM Forum Technical Committee,Interoperability Test Suites for Physical Layer: DS-3, STS-3c, 100
Mbps MMF (TAXI), <URL:ftp://ftp.atmforum.com/pub/approved-specs/af-test-0036.000.pdf>, April 19
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ology and Framework describes terminology and specifications for general co

formance assessment.103 This certainly represents a an appropriate starting poi
for interoperability testing as well.

Special Noteworthy Problems

Timing-related problems are among the most common errors exposed by inte
erability testing and deserve specific mention. Such problems include deadlo
and race conditions. These are generally understood only by computer scien
trained in operating system principles. Alas, communications protocols and in
faces are often designed by personnel who are experienced primarily in their a
cation field and to a much lesser degree in operating system principles if at a

Specific tools for modeling and simulating timing related issues (e.g., Petri ne
are available but little used. In reality, many of these errors are detected only 
ing interoperability testing.

Future Directions

By its nature, interoperability testing is not something to which NIST, with no
product to sell, stands to contribute, except possibly as an impartial third part
conduct the testing. However, we have identified the fact that implementation
designed for interoperability testing tend to be much more robust with the expe
tion of having to work with other implementations that have entirely different
assumptions or interpretations of a specification. Interoperability testing migh
therefore be used as a means for testing the robustness of manufacturing soft
whether or not interoperability as such was a design goal. In systems not desi
to be interoperable, failures are inevitable, but it is nonetheless desirable for s
failures to be detected and resolved in a safe fashion by the system.

103.ISO/IEC 9646: The OSI Conformance Testing Methodology and Framework, International Organization
for Standardization, 1992-95.
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Conclusions and Future Work

In our background study, we found that the art of component testing is better e
lished than the art of system testing, and that interoperability testing is a pragm
and well-established discipline. We will therefore take different approaches to
different classes of problems in component and system testing, and defer wo
interoperability testing until such work appears to be necessary.

For manufacturingcomponents, adapting and applying existing black box / infra-
structure testing techniques in the new context of the interaction-driven syste
should be a workable solution. We expect to show this using the SDAI and PD
Enablers specifications. A challenge with these specifications is to define met
which can be re-used as new specifications using the same infrastructures co
along. The specification of standards to support manufacturing interfaces is g
ing at an astronomical rate. Standards are being produced at high levels of ab
tion and are intended to be used in combination with other specifications. Thi
resulting in the problem of a combinatorial explosion of interfaces with no exist
methods developed to systematically handle testing of such interfaces.

The growth of modern manufacturing systems into what are effectively “syste
of systems” has out-paced the available methods for specifying and testing th
While established rigorous techniques can be used in the context of a single c
ent design and development effort (i.e. a single system), the testing of systems
are constructed by “gluing together” generic COTS software, specialized mac
control software, and legacy systems is still an evolving art. For these manufa
ing systems, we do not anticipate finding a complete solution very soon, but th
is promising new work to investigate:

•  Composable / component-based approaches may simplify the architectur
manufacturing systems to be more intuitive to specify and more tractable w
existing specification and test methods. We must see what portions of the 
Testing Interaction-Driven Manufacturing Software 51



Conclusions and Future Work

52

s-

d
 sys-

ility
ld be
ow-
ns

h the

ca-
now
does
ntion
e
ile

te in

sign-
d
uring

o-
ific,
le-
y of
gies,
apa-
ponent-based software work will extend to distributed, interaction-driven sy
tems.

•  New specification languages like CDL and various ADLs may help to avoi
certain system-level problems and assist with simulation and testing of the
tems.

• Formal methods for testing of components and protocols suggest the possib
of a system-level method to decide what combinations of components shou
tested together, how they should be exercised, and when to stop testing. H
ever, first we would need to have sufficiently formal system-level specificatio
to enable such an analysis. With luck, these may become available throug
above mentioned work with new specification languages.

In addition, we make the following general observations:

•  Testability of many systems is hindered by the low quality or lack of specifi
tions for them. This problem has existed for many years, and we already k
that preaching at industry and/or standards bodies to use formal methods 
not help. There are some techniques now that are attracting voluntary atte
from industry, possibly because they have found an acceptable compromis
between rigor and usability. We should concentrate our efforts on these wh
also gaining proficiency with general-purpose testing tools which can opera
the absence of a formal specification.

•  Just as Design-For-Manufacture considerations affect product design, De
For-Test considerations should influence system design. If a formal metho
based approach is to be employed for testing, then its usage should start d
initial requirements analysis. Furthermore, since utilities which provide aut
matic generation of tests and/or test scaffolding are often technology spec
the availability of suitable utilities should be considered before system imp
mentation language and environment are chosen. In addition, the testabilit
the system may be enhanced through the choice of infrastructure technolo
such as the Java language or CORBA, that natively provide introspection c
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bilities. Early consideration of issues such as these is paramount for endur
system testability.

•  The problems caused by integrating components whose specifications do
share a common ontology are not easily revealed or diagnosed by current 
ods. Therefore, the testability of a system can be enhanced by choosing a
mon ontology before the system is implemented. This can be as simple as
adopting a set of definitions from a pre-existing standard.

• Existing tools for monitoring the communication between components in a
tributed system either operate at a very low syntactic level, which makes tes
by inspection a thankless chore, or rely on application-specific test scaffold
We should look into the possibility of defining a standardized, general-purp
inspection interface that components can support in order to permit a test d
to monitor their interactions at a higher semantic level, but still generically.

•  The rigorous methods that we have for validating protocols are only usabl
when the state space is small. Therefore, increased testability can be coun
among the many benefits of following the KISS principle in the design of m
ufacturing systems.

Our continuing work in the area of testability will focus on findingusable tools
and techniques for constructing high-integrity specifications, defining general
pose facilities to support the monitoring of interactions at a higher semantic le
and gaining a deeper understanding of the design-for-testability issues affect
manufacturing specifications. Complementing the testability work will be an on
ing effort to develop competence in the testing itself through proof-of-concept t
ing of dynamic, interaction-driven components and systems. We will develop n
tools and techniques where necessary to take advantage of the testability en
ments that we make, or where we may have a solution to an open problem. O
wise, we will gain competence in using the existing tools and techniques on
previously untested systems.

By attacking the problem at both ends, building up our testing capability while
simultaneously working to make systems more testable, we hope to find the b
compromise for improving the reliability of systems. Neither the testing nor th
development of systems should need to go to extremes if complementary imp
ments are made to each. This more moderate approach may then meet with 
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higher level of acceptance and adoption than extremely invasive testing or
extremely formal development processes have achieved
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