
The NIST DMIS Interpreter
Version 2

Thomas R. Kramer
Frederick M. Proctor
William G. Rippey

Harry Scott

Intelligent Systems Division
National Institute of Standards and Technology

Technology Administration
U.S. Department of Commerce
Gaithersburg, Maryland 20899

NISTIR 6252
October 29, 1998

NIST DMIS Interpreter Version 2

e of

sity
ment
Disclaimer
No approval or endorsement of any commercial product by the National Institut
Standards and Technology is intended or implied.

Acknowledgements
Partial funding for the work described in this paper was provided to Catholic Univer
by the National Institute of Standards and Technology under cooperative agree
Number 70NANB7H0016.
ii

NIST DMIS Interpreter Version 2

CONTENTS

1

..1

.1

.1
.1
1
2

.2

.2
3
..3
..3
..3
..4
..4

..4

..5

5
6

7
.8

..8

..9
0

1

2

2
12
2
12
12
2
13

.13
1.0 Introduction...

1.1 Background..

1.1.1 Architecture Project ..
1.1.2 Enhanced Machine Controller Project ..
1.1.3 Next Generation Inspection System Project ...
1.1.4 DMIS Interpreter First Version..
1.1.5 DMIS Interpreter Version 2 ...

1.2 Overview of the DMIS Language...

1.2.1 Introduction...
1.2.2 Statements, Lines, Major Words, Minor Words....................................
1.2.3 Programs ..
1.2.4 Program Subunits...
1.2.5 Geometric Features ..
1.2.6 Tolerances..
1.2.7 Comments ..

2.0 Overview of the Interpreter ... 4

2.1 Interpreter kernel..

2.2 Interpreter interfaces ..

2.2.1 Telling the Interpreter What to Do...
2.2.2 Getting Data from the Interpreter ..
2.2.3 Telling the CMM What to Do..6
2.2.4 Getting Data from the External World...
2.2.5 Extracting Feature Parameters from Arrays of Points

2.3 Integrated or Stand-Alone Operation...

2.3.1 Stand-alone ..
2.3.2 Integrated with EMC Control System..1

2.4 Major DMIS Interpreter Design Decisions..1

2.5 Division of Responsibilities...1

2.5.1 Control ...1
2.5.2 Languages ..
2.5.3 DMIS output ..1
2.5.4 Coordinate systems ..
2.5.5 Features, Tolerances, and Variables ..
2.5.6 Units...1
2.5.7 Sensors ...

2.6 Variables and Expressions ..
iii

NIST DMIS Interpreter Version 2

14

16

.16

6

6

16

6

.17

7
18
8
8

18

20

 21

2

2
2
3

5

5
5
6

26

7

8

0

2.7 How the Interpreter Runs...

2.8 Interpreter Model ...

2.9 Speed...

2.10 Limitations of the Interpreter ...1

3.0 Input ... 1

3.1 Overview..

3.1.1 Case, White Space, Line Continuations, Comments.1

3.2 Input Statements..

3.2.1 Format of a DMIS Statement...1
3.2.2 Numbers...
3.2.3 Variables ..1
3.2.4 Line Number ..1

3.3 Words Recognized...

4.0 Conclusion..

References ..

Appendix A Software Details ... 22

A.1 Overall Approach.. 2

A.1.1 Major Change from First Version..22
A.1.2 DMIS Object Classes and Access Functions.......................................2
A.1.3 YACC and lex..2
A.1.4 Read First, Then Execute...2

A.2 Software Modules ... 2

A.2.1 Stand-Alone and Integrated ...2
A.2.2 Stand-Alone Only ..2
A.2.3 Integrated Only ..2

A.3 Source Code Documentation ..

Appendix B Interpreter Interface Functions ... 27

B.1 Functions That Extract Data From the Interpreter.. 2

B.2 Functions for the Interpreter to Call to Get World Model Data 27

B.3 Functions to Tell the Interpreter What to Do.. 2

B.4 Functions to Tell the Rest of the System What to Do..................................... 3
iv

NIST DMIS Interpreter Version 2

30
1
3

43

8

 48

 49

54

 54

4
4

5

5
6

B.4.1 Discussion and Issues ..
B.4.2 Types..3
B.4.3 Functions..3

B.5 Functions to Get Feature Parameters from Arrays of Points.

Appendix C Building a Stand-Alone Executable 46

Appendix D Transcript of a Session .. 47

Appendix E Error Handling and Error Messages................................... 48

E.1 Error Handling .. 4

E.2 Sources of Error Messages..

E.3 Error Messages..

Appendix F YACC and Lex Specifications .. 54

F.1 Introduction...

F.2 Lex Scanner ..

F.2.1 Changes from the First Version ...5
F.2.2 Summary of Lex Rules ..5

F.3 YACC ... 5

F.3.1 Changes from First Version...5
F.3.2 Formal Specification..5
v

NIST DMIS Interpreter Version 2
vi

vii

NIST DMIS Interpreter Version 2

FIGURES

Figure 1. Interpreter Interfaces ...5
Figure 2. Stand-Alone Interpreter ...10
Figure 3. Interpreter Integrated in Controller ...11
Figure 4. Sample DMIS_variables File ...13
Figure 5. DMIS Class Hierarchy ...24

viii

NIST DMIS Interpreter Version 2

TABLES

Table 1. CMM Canonical Commands... 7
Table 2. Interpreter Internal Model .. 15
Table 3. DMIS Words Implemented in the Interpreter 19
Table 4. Interpreter State Transitions... 29
Table 5. Makefile for Interpreter... 46

 NIST DMIS Interpreter Version 2

are
n 1.2),
sts the
rances.

asuring
er”).

oject
ve of
ntrol
stems

ller
ting
EMC
NIST,

ection
ed for
anced
x parts.
dvanced

e the
vel

rams.

ecific
could
trol
and a
wn in
build

or a
er2]
1 Introduction

The National Institute of Standards and Technology (NIST) DMIS interpreter is a softw
system that reads control code programs in the DMIS language (described below in Sectio
produces calls to a set of canonical commands for coordinate measuring machines, dige
results of taking measurements, and produces a file describing measured features and tole
The canonical command calls made by the interpreter can be used to drive a coordinate me
machine. This report describes Version 2 of the DMIS interpreter (in this report “the interpret

1.1 Background

1.1.1 Architecture Project

The NIST Manufacturing Engineering Laboratory (MEL) has conducted an architecture pr
for several years. Three MEL divisions have participated in the project. The primary objecti
the project is to develop a reference model control architecture to support intelligent co
systems for manufacturing. The architecture being developed is called the Intelligent Sy
Architecture for Manufacturing (ISAM) [Albus].

1.1.2 Enhanced Machine Controller Project

The MEL Intelligent Systems Division (ISD) is carrying out an Enhanced Machine Contro
(EMC) project. The primary objective of the EMC project is to build a testbed for evalua
application programming interface standards for open-architecture machine controllers. The
project has built several controllers. These are most often run in a research environment at
but commercial installations of EMC controllers have also been done [Proctor].

1.1.3 Next Generation Inspection System Project

To advance the state of the art in inspection, ISD established the Next Generation Insp
System (NGIS) project. NGIS goals are (1) to maintain a next-generation inspection testb
experimenting with open architecture controllers, interface standards, and multiple adv
sensors, and (2) to achieve fast, accurate, and flexible coordinate measurement of comple
A testbed has been assembled that consists of a coordinate measuring machine and a
sensors, with a NIST Real Time Control System (RCS) architecture controller.

1.1.4 DMIS Interpreter First Version

As part of the architecture project, it was decided to put two levels of EMC controllers abov
NGIS controller. The capability to interpret control programs was put in the control le
immediately above the NGIS controller. DMIS was selected as the language for control prog

There are several DMIS interpreters available commercially, but they connect directly to sp
commercial machine tool controllers. The architecture project required an interpreter that
be driven by function calls from the controller in which it was resident, could drive lower con
levels by an open programmatic interface, and could communicate with the environment
feature-fitting mathematics module via open interfaces. The required interfaces are sho
Figure 1 on page 5. Such an interpreter is not commercially available, so it was decided to
the software at NIST.

A DMIS interpreter was built by the authors in 1996 and used in the control system f
coordinate measuring machine (CMM). A report on that first version of the interpreter [Kram
1

 NIST DMIS Interpreter Version 2

he
der to

able
s the

abled
ented
bles.

build
port
n 2.6,

MIS

is a
ment,
many

most
SI
rm

and

nd also

a part
Then,
newly

lculated,
was published in April, 1997. All information from that report relevant to Version 2 of t
interpreter is included in this report, so it is not necessary (or useful) to read that report in or
understand Version 2.

1.1.5 DMIS Interpreter Version 2

In mid-1997, research work at NIST developed the requirement that the DMIS interpreter be
to handle a series of small, related inspection programs. The DMIS language provide
capability to pass information from one program to a program run later. The capability is en
by the existence of common variables in DMIS, but common variables had not been implem
in the first version of the interpreter. It was decided, therefore, to implement common varia
Study of how to do this indicated that a major revision would be required. It was decided to
Version 2 of the interpreter, and Version 2 was built during the middle of 1997. This re
documents Version 2. Changes from the first version to Version 2 are discussed in Sectio
Appendix A.1.1, Appendix F.2.1, and Appendix F.3.1 of this report.

1.2 Overview of the DMIS Language

This section gives an overview of the DMIS language. Further details of the meaning of D
code are given in Section 3 of this report.

1.2.1 Introduction

DMIS (pronouncedDEE-missand standing for Dimensional Measuring Interface Standard)
standard programming language for numerically controlled dimensional measuring equip
primarily coordinate measuring machines (CMMs). Coordinate measuring machines from
manufacturers can be operated using programs written in DMIS.

DMIS was developed by the Consortium for Advanced Manufacturing - International. The
recent version of DMIS is Revision 3.0, which was completed in 1995 [CAM-I] and is AN
American National Standard “ANSI/CAM-I 101-1995.” Both versions of the interpreter confo
to Revision 3.0.

The DMIS specification [CAM-I] is large — 389 pages. It describes both an input language
an output language. The DMIS input language supports the following functions:

defining and measuring features (planes, circles, cylinders, lines, etc.)
defining and measuring tolerances
defining coordinate systems (and activating and deactivating them)
defining sensor characteristics and changing sensors
setting machine parameters (feed rates, probe tip radius, etc.)
machine motion - probing and free-space motion

The output language supports reporting the results of measuring features and tolerances a
serves as a log of input statements.

The general outline of a typical DMIS program is to define and measure some features on
that serve to establish the coordinate system in which further measurements will be taken.
more features and tolerances on and among features are defined and measured in the
established coordinate system. The measurements are analyzed, actual tolerances are ca
and the results are saved in a file.
2

 NIST DMIS Interpreter Version 2

SCII
ed by

ne, so

inor

minor
pecify

cation
is the
ypical

SMN
s of

usable
entire

rms a
ents
rogram

ment at
nificant
mmand

n of a
side a

t.

S are

s the
1.2.2 Statements, Lines, Major Words, Minor Words

DMIS is based on statements. A statement normally fits on a single line (a series of A
characters terminated by a carriage return and line feed). However, lines may be continu
putting the line continuation symbol (the $ character) as the last printable character on a li
that a single statement may span several lines.

A typical statement consists of a major word, followed by a slash, followed by a mixture of m
words, labels, and numbers, for exampleMEAS/PLANE, F(POCKET_BTM), 3. Semantically,
each statement represents a single command that is embodied in the major word. The
words, the numbers, and the way in which the minor words and numbers are grouped s
parameters to the command and shades of meaning of the command.

The statement formats recognized by the interpreter are presented in a formal specifi
language in Appendix F. This includes about a quarter of the entire DMIS language, but it
most heavily used quarter and covers perhaps 90 percent of what might be seen in t
inspection programs.

1.2.3 Programs

Statements may be collected in a file to make a program. A program consists of a DMI
statement at the beginning1, an ENDFIL statement at the end, and any number of other type
statements in between. The specification is not clear whether statements are intended to be
outside of a program (as manual data input, for example). The interpreter requires an
program.

1.2.4 Program Subunits

DMIS includes program subunits. A program subunit is a sequence of statements that fo
functional group. [CAM-I] defines ten types of program subunits. The interpreter implem
only two of these types: measurement sequence and motion sequence. Each type of p
subunit requires a particular type of first statement and a particular type of last statement.

A measurement sequence has a MEAS statement at the beginning and an ENDMES state
the end. The function of a measurement sequence is to measure one feature. The sig
statements inside a measurement sequence are PTMEAS statements, each of which is a co
to measure a point.

A motion sequence has a GOTARG at the beginning and an ENDGO at the end. The functio
motion sequence is to move around in free space. Only GOTO statements may occur in
motion sequence.

In the interpreter, we use the word “block” to mean either a statement or a program subuni

1.2.5 Geometric Features

In DMIS, inspecting a part is done in terms of features and tolerances. Features in DMI
mostly simple geometric elements. A complete list of DMIS feature types is: arc,circle, cone,
cparln,cylinder, ellipse, gcurve, gsurf,line, object, parpln pattern,plane,point, rectangle, and
sphere. The underlined five are implemented in the interpreter. DMIS features (such a

1. By “DMISMN statement” we mean a statement using the major word DMISMN. In general, “XYZ
statement” means a statement whose major word is XYZ.
3

 NIST DMIS Interpreter Version 2

rely

be
d to be
nt. For
ugh

ty to
action

en the
r more
e may
e is one-

ther
g to a

rence
.1 mm
meet

and
en of
elism,

s the
ents.

the
rfaces
user,
cylindrical side of a hole) may be visible on a part being inspected or they may be pu
conceptual (such as the line that is the axis of a cylindrical hole).

A DMIS program usually does not try to provide a complete description of the part to
inspected. Only those features that are to be measured or used indirectly for definitions nee
defined. There is no requirement on how much of the geometry of a feature must be prese
example, a line joining the centers of two circles is common in a DMIS program, even tho
there is no trace of it on the actual part.

DMIS does not provide a general geometric modeling capability. DMIS provides no capabili
describe topology and no capability to perform modeling operations such as boolean subtr
of a feature from a part.

Each feature is considered to have both a nominal description, which is the one used wh
feature is first defined, and an actual description, which is derived later on the basis of one o
measurements. The DMIS specification does not state whether a single nominal featur
correspond to more than one actual feature, but seems to assume that the correspondenc
to-one.

Each nominal feature has a label that serves to identify it within a DMIS program. No o
feature may share that label in the same program. The actual feature(s) correspondin
nominal feature is (are) identified by the same label as the nominal feature.

1.2.6 Tolerances

DMIS tolerances also have labels that are unique among tolerances within a program.

Tolerances in DMIS do not belong to individual features. Tolerances are defined without refe
to specific features and may be applied repeatedly. For example, a diameter tolerance of 0
might be defined and labelled DTOL1. Then a dozen circles might be tested to see if they
DTOL1.

DMIS supports tolerances according to the ASME Y14.5-1994 Standard for Dimensioning
Tolerancing. Twenty-two types of tolerance are included. The interpreter implements sev
these to one degree or another: coordinate position, cylindricity, diameter, flatness, parall
perpendicularity, and relative position.

1.2.7 Comments

A DMIS program may include comments. A comment is a line that has two dollar signs a
first two characters. Such lines are to be ignored by the system executing DMIS statem
Comments may contain information useful to humans writing or using the program.

2 Overview of the Interpreter

2.1 Interpreter kernel

The inside of the interpreter is called the kernel in this report. Most of the software for
interpreter is part of the kernel. The kernel is accessible in a program only through the inte
(which are not part of the kernel). The kernel will print error messages directly visible to the
however.
4

 NIST DMIS Interpreter Version 2

ction
how
ction.

, the
is a

y the
ng a
2.2 Interpreter interfaces

The interpreter has five interfaces, as shown in Figure 1. Each interface is a collection of fun
calls; there is an application programming interface (API) for each such collection. Arrows s
the direction of function calls. Return values (shown in parentheses) move in the reverse dire
cmm_do_something calls do not return anything, so nothing goes in the reverse direction.

The five APIs have been defined in the C++ programming language. For convenience
function prototypes for all five APIs are given in a single header file. For each API there
separate file that gives the definitions of the functions in the API. In this section we give onl
names and arguments of the functions. More details are given in Appendix B, includi
description of what each function does.

2.2.1 Telling the Interpreter What to Do

The functions in this interface (called interpreter_do_something in Figure 1) are:

interp_init()
interp_open_program (char * dmis_file_name)
interp_execute_next()
interp_close_program()
interp_exit()

DMIS
INTERPRETER

INTERPRETER
WORLD MODEL

cmm_do_something
interpreter_do_something

extract_feature

world_give_data

interpreter_give_data

(status)

(status and results)
(C++ simple type)

(C++ simple type)

DMIS
input file

DMIS
output file

Figure 1. Interpreter Interfaces
5

 NIST DMIS Interpreter Version 2

says
nical
isted in

 action.

rpreter
the

ure or
sory”
ory”
and,
all to

mind.
any
must
nical
est of

an be
bed.
en this
used in

of text
2.2.2 Getting Data from the Interpreter

The functions in this interface (called interpreter_give_data in Figure 1) are:

interp_line()
interp_sensor_tip_diameter(char * sensor_name)

2.2.3 Telling the CMM What to Do

This interface is called cmm_do_something in Figure 1.

One of the main purposes of the interpreter is to tell the controller what the DMIS program
the equipment should do. To do the telling, a language is needed. A set of “CMM cano
commands” was developed to serve as that language. The CMM canonical commands are l
Table 1.

The CMM canonical commands are atomic commands. Each command produces a single

The correspondence between executing a DMIS statement in the interpreter and the inte
calling a CMM canonical function is usually one-to-one. Occasionally it is one-to-two. On
other hand, executing many DMIS statements (any statement that is a definition of a feat
tolerance, for example) requires no work on the part of a CMM. In such cases, the “advi
CMM canonical function is called just to show that the interpreter did something. The “advis
command contains a message but produces no CMM action. Without the “advisory” comm
there would be many cases where the execution of a DMIS statement would result in no c
any CMM canonical command.

The canonical commands used in the interpreter were devised with three main objectives in
First, all the functionality of the existing NGIS had to be covered by the commands; for
function the NGIS can perform, there has to be a way to tell it to do that function. Second, it
be possible to interpret DMIS statements into canonical commands. Third, the cano
commands had to conform to the division of responsibility between the interpreter and the r
the system, as described in Section 2.5.

Two sets of definitions for the CMM canonical functions have been written, and either set c
linked into the interpreter. The first set is used in the EMC controller for the NGIS test
Executing a function from this set causes a command message to be generated. Wh
command message is executed, the machine’s actuators are activated. The second set is
the stand-alone DMIS interpreter. Executing a function from the second set causes a line
containing the command to be written to standard output or to a file.
6

 NIST DMIS Interpreter Version 2

data
2.2.4 Getting Data from the External World

This interface is called world_give_data in Figure 1.

The functions in this interface are called by the interpreter. These functions primarily obtain
that is collected during probing. The functions are:

ADVISORY(char * message)
ASSIGN_SENSOR_TO_SLOT(char * sensor_name, int slot_number)
CATCH_UP()
CHANGE_SENSOR(char * sensor_name)
DEFINE_SENSOR(char * sensor_name, double x_offset, double y_offset, double z_offset,

double tip_diameter)
LOGGING_OFF()
LOGGING_ON(char * log_name)
MEASURE_POINT(double x, double y, double z, double i, double j, double k)
MESSAGE(char * text)
PROBE_RADIUS_COMPENSATION_OFF()
PROBE_RADIUS_COMPENSATION_ON()
PROGRAM_END()
PROGRAM_START(char * text)
ROTATE_TABLE(double position, CANON_DIRECTION wiseness)
SCAN_TO_POSE(double x, double y, double z, double i, double j, double k)
SET_COORDINATE_SYSTEM(double origin_x, double origin_y, double origin_z, double z_axis_x,

double z_axis_y, double z_axis_z, double x_axis_x, double x_axis_y, double x_axis_z)
SET_DISTANCE_APPROACH(double distance)
SET_DISTANCE_CLRSRF(double distance)
SET_DISTANCE_DEPTH(double distance)
SET_DISTANCE_RETRACT(double distance)
SET_DISTANCE_SEARCH(double distance)
SET_FEED_RATE(double rate)
SET_PLANE(CANON_PLANE plane)
SET_ROTARY_RATE(double rate)
SET_ROTARY_ZERO(double angle)
SET_SCAN_DIST_INTERVAL(double dist_interval, CANON_AXIS axis)
SET_SCAN_INTERVAL_TYPE(CANON_INTERVAL_TYPE interval_type)
SET_SCAN_RATE(double rate)
SET_SCAN_TIME_INTERVAL(double time_interval)
SET_SCAN_TYPE(CANON_SCAN_TYPE the_type)
SET_TRAVERSE_RATE(double rate)
STRAIGHT_TRAVERSE(double x, double y, double z)
USE_ANGLE_UNITS(CANON_UNIT_ANGLE u)
USE_LENGTH_UNITS(CANON_UNIT_LENGTH u)
USE_TEMPERATURE_UNITS(CANON_UNIT_TEMPERATURE u)

Table 1. CMM Canonical Commands
Function arguments are written in ANSI C style. All functions return nothing.
7

 NIST DMIS Interpreter Version 2

e from

ithm

. The
en by a
e text-
r. The
eals

e. The
Then,
rpreter
CANON_MEASUREMENT_STATUS MEASURE_POINT_STATUS()
double CANON_PROBE_X()
double CANON_PROBE_Y()
double CANON_PROBE_Z()
double CANON_CURRENT_X()
double CANON_CURRENT_Y()
double CANON_CURRENT_Z()
int CANON_LOG_SIZE(char * log_name)
double CANON_LOG_X(char * log_name, int n)
double CANON_LOG_Y(char * log_name, int n)
double CANON_LOG_Z(char * log_name, int n)

2.2.5 Extracting Feature Parameters from Arrays of Points

Each function in this interface takes an array of points and extracts parameters for a featur
it. The returned value is used only to indicate either OK or error.

The interpreter uses source code for these fitting functions provided by the NIST Algor
Testing System (ATS) [Rosenfeld1, Rosenfeld2].

int extract_circle(double points [][3], int how_many, double tolerance,
double * center_x, double * center_y, double * center_z,
double * normal_i, double * normal_j, double * normal_k, double * diameter)

int extract_cylinder(double points [][3], int how_many, double tolerance,
double * center_x, double * center_y, double * center_z,
double * direction_i, double * direction_j, double * direction_k, double * diameter)

int extract_line(double points [][3], int how_many, double tolerance,
double * point_x, double * point_y, double * point_z,
double * direction_x, double * direction_y, double * direction_z)

int extract_plane(double points [][3], int how_many, double tolerance,
double * point_x, double * point_y, double * point_z,
double * normal_i, double * normal_j, double * normal_k)

int extract_point(double points [][3], int how_many, double tolerance,
double * point_x, double * point_y, double * point_z)

2.3 Integrated or Stand-Alone Operation

The interpreter runs integrated with the EMC control system or as a stand-alone system
program interfaces to the interpreter kernel are the same in the two cases. The interfaces se
user in the two cases are completely different. The stand-alone system provides a simpl
based command interface for the user; this interface is focused entirely on the interprete
EMC control system has a variety of textual and graphic interfaces, only a little of which d
with the interpreter.

In either case, the interpreter first reads the entire DMIS file and stores it as a data structur
file reading includes a complete syntax check, as described in more detail in Appendix E.
the interpreter executes statements one at a time. If there is an error at any point, the inte
8

 NIST DMIS Interpreter Version 2

during
ible to
rogram
urther

the

ithout
r can
ether a
stand-
er the
t runs

tand-
This

cation
odel

et data
se of
actual

xt (in
fault,
Each
r from

shell
ds (a
-

nd

e

rpreter
de is

a file
sends a message identifying the nature of the error and stops running. If the error occurs
execution, execution stops at the statement where the error occurred, and it is not poss
restart the program from that point. To use a program that causes an interpreter error, the p
must be edited to remove the error, and the program must be restarted at the beginning. F
details of error handling are given in Appendix E.1.

In both modes of use, if a DMIS output file is to be written (if there is a FILNAM statement in
input program) the interpreter always writes a DMIS output file named “output.dms”.

2.3.1 Stand-alone

The stand-alone mode is valuable because it allows a user to pre-test a DMIS program w
having to run it on the machine controller. Any computer for which the stand-alone interprete
be compiled can be used to pre-test DMIS programs. Pre-tests are conclusive tests of wh
program is interpretable or not because the interpreter runs exactly the same way in the
alone mode as it does integrated with the control system. Pre-tests do not show wheth
program does what is intended, of course, and real-world data may defeat a program tha
happily in stand-alone mode using dummy data.

The architecture of the stand-alone interpreter is shown in Figure 2. A key feature of the s
alone architecture is the dummy model of the external (outside the interpreter) world.
dummy model is essential because most DMIS programs require that data (primarily the lo
of measured points) be fed back into the program interpreter. To fill this need, the dummy m
is changed by the cmm_do_something commands, and the world_give_data commands g
out of the dummy model. All dummy data is as close to nominal as possible. In the ca
measuring points, for example, the dummy world modeler pretends that the location of the
measured point is the same as the location of the nominal point.

In the stand-alone interpreter, the cmm_do_something functions each print a line of te
addition to manipulating the dummy world model). The text goes to the user’s terminal by de
but may be redirected to a file. The main part of the line of text just echoes the function call.
line also includes the sequence number of the function call (1, 2, 3, etc.) and the line numbe
the preprocessed DMIS file that gave rise to the function call.

The stand-alone interpreter has two modes of use: with or without a command interface.

With the command interface, the user has a finer level of control. It is started by giving the
commanddmis. This brings up a command interface that understands a handful of comman
list of which is printed if the commandhelp is entered). To interpret a DMIS program line-by
line, the user first gives an interp_init() command, then an
interp_open_program(input_file_name) command (which causes the entire file to be read a
an internal representation built), then a series ofinterp_execute_next() commands (each of
which executes one statement from the program), then aninterp_close_program() command.
Either an interp_exit() or a quit command will quit the command interface. Also from th
command interface, the user may give arun_program(input_file_name) command, which
opens, executes, and closes the program.

In the second mode of use, the user gives a single command, in response to which the inte
reads and interprets an entire DMIS file without bringing up any command interface. This mo
used by giving the shell commanddmis input_file_name. In this mode, printed output from
cmm_do_something function calls goes to the terminal by default but may be redirected to
9

 NIST DMIS Interpreter Version 2

igure

e and

MM
, and the
in the normal Unix manner, viz.dmis input_file_name > output_file_name. Even with output
redirected this way, the DMIS output file output.dms is still written.

2.3.2 Integrated with EMC Control System

The architecture of the part of the EMC control system that uses the interpreter is shown in F
3. The grey box is the EMC controller. The interpreter software is built into the controller.

In this integrated configuration, the control system tells the interpreter when to read the fil
when to execute the next statement from the program.

The interpreter does not control machine actions directly. Rather, the interpreter calls C
canonical commands that generate messages that are passed back to the control system
control system decides what to do with the messages.

DMIS
INTERPRETER

INTERPRETER
WORLD MODEL cmm_do

interpreter_do

extract_feature

world

interpreter

(status)

(status)

 (C++

(C++

DMIS
input file

DMIS
output file

command
interface

driver

terminal or file

dummy world
model access

functions

NIST ATS
points-to-features

functions

dummy
world model

nothing
implemented

_something

_give_data

simple type)

_something

_give_data

 simple type)

Figure 2. Stand-Alone Interpreter
10

 NIST DMIS Interpreter Version 2

re that
this

lues.
eter
using

ol the
ed in
ctions
ds of

e they
rpreter
ithout

p the
2.4 Major DMIS Interpreter Design Decisions

The following major design decisions were made regarding the interpreter.

The interpreter software runs in the same process as the executing system. This is to insu
the interpreter can be used conveniently and quickly. With the interpreter tightly integrated
way, communications with the interpreter consist simply of function calls and returned va
Without this tight integration, a more complex method of communicating with the interpr
would have been required. It would be feasible to implement the interfaces to the interpreter
messages sent and received through a communications system.

The executing system controls the interpreter and the CMM; the interpreter does not contr
CMM directly. This does not show up in the interfaces to the interpreter. Rather, it is embodi
the definition of the cmm_do_something functions used in the integrated system. These fun
just add things to do to the controller’s queue. Thus, deciding when to do what is in the han
the controller’s job assigner, where it belongs.

Actions from cmm_do_something functions may be queued, but the interpreter may assum
are executed in order. The interpreter may direct that the queue be emptied before the inte
is called again. This is so that the interpreter can maintain an accurate model of the world w
having to make frequent calls to the world_give_data interface functions.

The executing system handles DMIS input and output via the interpreter. This is to kee

DMIS
INTERPRETER

INTERPRETER
WORLD MODEL

cmm_do

interpreter_do

extract_feature

world

interpreter

(status)

(status)
 (C++

(C++

DMIS
input file

DMIS
output file

EXECUTOR
WORLD

MODELING

NIST ATS
points-to-features

functions

JOB
ASSIGNER

_something

_give_data

simple type)
_something

_give_data

 simple type)

Commands to
Subordinates

CONTROLLER

Figure 3. Interpreter Integrated in Controller
11

 NIST DMIS Interpreter Version 2

of the

nd to
ration
ircle-

ts that

y an

ilities

only

nonical
n carry

uting

cuting
system
. Each

achine

if and
rpreter

les.

et, m,
nd can
type;
burden of dealing with features and tolerances centralized in the interpreter and off the rest
executing system.

Enough of the DMIS language is implemented to meet the needs of the NGIS project a
handle DMIS programs for two specific parts (the test part for the material removal demonst
of the Department of Energy TEAM program, and the National Aerospace Standard 979 c
diamond-square test part).

The interpreter should be easy to upgrade. In particular, it should be easy to add statemen
deal with flow of control.

The interpreter must handle DMIS programs but not single DMIS statements entered b
operator. The capability to handle single statements could be added, if needed.

2.5 Division of Responsibilities

The DMIS interpreter is part of the executing system. This section discusses how responsib
are divided between the DMIS interpreter and the rest of the executing system.

2.5.1 Control

The rest of the executing system performs control. The interpreter controls nothing; it
advises the rest of the system what the DMIS program says to do.

2.5.2 Languages

The interpreter understands DMIS statements and can interpret them to produce cmm_ca
commands. The rest of the executing system does not understand DMIS statements but ca
out cmm_canonical commands.

2.5.3 DMIS output

The interpreter produces DMIS output as required by DMIS programs. The rest of the exec
system does not deal with DMIS output in any way.

2.5.4 Coordinate systems

The interpreter remembers all coordinate systems in a DMIS program. The rest of the exe
system deals with one active coordinate system, which may be changed. One coordinate
both the interpreter and the rest of the system understand is the machine coordinate system
change of coordinate system is expressed to the rest of the system in terms of the m
coordinate system.

2.5.5 Features, Tolerances, and Variables

The interpreter remembers all nominal DMIS features (and corresponding actual features
when actual features are created). The interpreter handles all DMIS tolerances. The inte
handles all DMIS variables.

The rest of the executing system does not understand DMIS features, tolerances, or variab

2.5.6 Units

The interpreter and the rest of the executing system both understand length (cm, inch, fe
mm), angle (decimal degrees, radians), and temperature (centigrade, Fahrenheit) units a
change them. It might be simpler to let the executing system deal with only one unit of each
12

 NIST DMIS Interpreter Version 2

e rest
ensors
_data
name.

DMIS
is was

sec.
er only

em is
”. If a
end of
a type

the
file.

en at
f the
iables

AIN
not
ctual

DMIS
ce of a

ot be
the

able
cing a
this would certainly be feasible.

2.5.7 Sensors

The interpreter remembers all sensor definitions in a DMIS program, but data required by th
of the executing system might not be in DMIS program. The rest of the system remembers s
by name and can remember the diameter of a sensor tip. By using an interpreter_give
command, the rest of the system can ask the interpreter for the tip diameter of a sensor by
The rest of the executing system can change sensors.

2.6 Variables and Expressions

As mentioned earlier, the major changes between the first version and Version 2 of the
interpreter were driven by the need to implement variables. This section discusses how th
done. Additional information about variables is given in Section 3.2.3.

In DMIS, all variables must be declared. This is done with the DECL statement [CAM-I,
2.2.5, p. 5; sec. 3.1.2.2, p. 12; sec. 10.3.2, p. 272; sec. 10.3.3, pp. 273-274]. The interpret
implements COMMON variables of type BOOL (boolean), INTGR (integer), or DOUBLE.

COMMON variables and their values persist between DMIS program runs, even if the syst
powered down. Persistence of variables is achieved using a file named “DMIS_variables
program uses variables, this file is read just after the program is read and is written at the
program execution. The file lists the names of common variables, one per line, with the dat
and value of each. It is an error if a variable declared in a program is not listed in
DMIS_variables file. The initial value of each program variable is set to the value given in the
If the value of any variable is reset during a program, that value is given when the file is writt
the end of the program. It is an error (and the interpreter will print an error message) i
DMIS_variables file does not exist and a program uses variables. A short sample DMIS_var
file is shown in Figure 4.

A value may be assigned to a variable either by an ASSIGN statement or by an OBT
statement [CAM-I, sec. 10.5, pp. 284-287]. The manual provides for a third method
implemented in the interpreter. In the interpreter, only the parameters of nominal and a
circles, planes, and points may be used with OBTAIN.

A variable that has been given a value may be used in place of any parameter in any
statement, so long as the variable is of the correct type. It is an error to use a variable in pla
parameter if the value of the variable has not been set.

The implementation of variables is made more difficult by the fact that variables should n
given values (except for those in the DMIS_variables file) or evaluated (even if included in
DMIS_variables file) when the program is read. It is necessary to wait until an explicit vari
setting statement is executed to assign a value, and to wait until a DMIS statement referen

VAR3 double 88.77
AN_INT integer 707
INT2 integer 1234
BOO boolean true

Figure 4. Sample DMIS_variables File
13

 NIST DMIS Interpreter Version 2

ay be
DMIS

n the
iable
ade.

name
gnized
e set of

sed only

ters of
may be
One set
ins the
d set is

an

The
their

o the

ogram
MIS

lines

reter,
y of

uld be
the line

. The
decide
k.

am, if
eter to
variable is executed to evaluate the variable. Since feature and tolerance parameters m
variables, features and tolerances cannot be defined at read time; each is defined when a
statement is executed. Any variable in a feature or tolerance definition is evaluated whe
statement giving the definition is executed, and that value is used in the definition. If a var
changes value during a program, that does not affect any definition that has already been m

The interpreter implements one tiny bit of expressions: parentheses. A number or a variable
may be enclosed in parentheses (or multiple nested sets of parentheses), and it will be reco
as an expression. The interpreter requires that the variable name be enclosed in at least on
parentheses when a variable is used as a parameter value. In other words, variables are u
in expressions.

Because (1) the value of variables may change during a program, (2) values of parame
features may be expressions containing variables, and (3) values of parameters of features
referenced, it is necessary to have two sets of values for the parameters of each feature.
(always called “exes” in the source code) contains the expressions and the other set conta
numerical values of the expressions at the time the feature definition is executed. The secon
the one that is used when the value of a feature parameter is referenced.

2.7 How the Interpreter Runs

To interpret a program, the interpreter is given an interp_init command, followed by
interp_open_program command, followed by many interp_execute_next commands.

The interpreter maintains a model (shown in Table 2) of the machine while it interprets.
interpreter uses the model in determining what cmm_canonical functions to call and what
arguments should be. The model is initialized when the interpreter is started by a call t
interp_init command.

When the interp_open_program command is given, the interpreter reads an entire DMIS pr
into active memory before any of the DMIS statements in it are interpreted. Then D
statements are interpreted one at a time.

In carrying out an interp_open_program command, the interpreter does the following:
1. The entire original DMIS program is read. It is stripped of comments and continued

are joined. The DMIS program file “dmis_temp” is written.
2. The file “dmis_temp” is read, creating a large in-core structure, usable by the interp

that represents the entire DMIS program. This structure is made up mainl
substructures representing DMIS statements.

3. If the program contains variables, the file “DMIS_variables” is read.

Calling interp_execute_next causes the interpreter to interpret the statement that sho
executed next. The statement that should be executed next is not necessarily the one on
after the last line that was executed.

The structure of a DMIS program is, in general, a nested hierarchy of blocks of statements
interpreter maintains a stack which mirrors the program structure. The stack is used to help
which statement should be executed next and to remember important data about each bloc

After a program has reached the last command to be executed (or in the middle of a progr
that is desired), an interp_close_program command should be given. This returns the interpr
the state it was in before the program was opened.
14

 NIST DMIS Interpreter Version 2
Item Meaning
double angle_factor factor to multiply for radians
angle_unit_type angle_units current angle units
datum_definition * current_system current coordinate system
double current_position[3] current position x,y,z
double current_table current rotary table position
double defalt_feed default linear feed rate
double defalt_rotate default rotary table rate
double defalt_scan default scan feed rate
double defalt_traverse default linear traverse rate
datum_definition * default_system default machine coord system
char error_message[TEXT_SIZE] latest error message
int first_line flag that first line found
double high_feed high linear feed rate
double high_rotate high rotary table rate
double high_scan high scan feed rate
doublehigh_traverse ligh linear traverse rate
list_of_list_dmis_item item_stack control structure
double length_factor to convert to millimeters
line * exec_line currently executing line
double low_feed low linear feed rate
double low_rotate low rotary table rate
double low_scan low scan feed rate
double low_traverse low linear traverse rate
double max_feed maximum linear feed rate
double max_rotate maximum rotary table rate
double max_scan maximum scan feed rate
double max_traverse maximum linear traverse rate
on_off_type mode_auto whether in AUTO mode
on_off_type mode_man whether in MAN mode
on_off_type mode_prog whether in PROG mode
on_off_type output_dmis whether to output DMIS
FILE * output_file output FILE pointer
char output_file_name[TEXT_SIZE] DMIS output file name
double points[1000][3] array to hold point data
int point_number number of points in array
on_off_type point_stuff_flag whether to put point in array
double position_tolerance positioning tolerance
double probe_x last probed location x
double probe_y last probed location y
double probe_z last probed location z
char program_file_name[TEXT_SIZE] program file name
list_dmis_item * program program structure
on_off_type scan whether to scan
on_off_type update_flag whether to update positions

Table 2. Interpreter Internal Model
15

 NIST DMIS Interpreter Version 2

done

its”.
eable
) is
s used

20-line
ok less

take
s hard
es any

tting

ut this
uding
ELSE,
ented.

ets of
ew

ested.

would
rol by

2.

wer
se is

are
hem.
To stop the interpreter entirely, an interp_exit command should be given. This should not be
when a program is open.

2.8 Interpreter Model

The interpreter maintains three global variables: “_interp”, “_interp_codes”, and “_interp_lim
_interp is an instance of the “interp” class, whose attributes are shown in Table 2. All chang
data required by the interpreter (including the current DMIS program, for example
incorporated in the _interp model. _interp_codes and _interp_limits are arrays of constant
in the interpreter.

2.9 Speed

The stand-alone interpreter, running on a SUN SPARCstation 20, read and executed a 7
program in about 7 seconds. Just reading the same program file (not executing anything) to
than one second. Carrying out that program on a CMM using the integrated controller would
several minutes. Shorter programs take so little time for the stand-alone interpreter that it i
to measure. We have not identified any situation in which the speed of the interpreter caus
problem in the rest of the system.

The only interpreter operation that we believe could take a significant amount of time is fi
features to sets of measured points.

2.10 Limitations of the Interpreter

The interpreter implements the parts of DMIS that are expected to be most heavily used, b
includes only about a quarter of the language. Several fairly common feature types, incl
sphere and cone, are not implemented. No statements for transfer of control, such as IF-
DO, or CASE are implemented. Expressions using operators and functions are not implem

In the first version of the interpreter, the functions that extract feature parameters from s
points, which we obtained from another NIST division, did not appear to be reliable. N
versions of these functions were received, incorporated in Version 2 of the interpreter, and t
We believe they are reliable, so in Version 2, operation of those functions isNOTa limitation of
the interpreter.

As mentioned earlier, the interpreter requires an entire program as input. The interpreter
need to be modified to handle single DMIS statements, a desirable capability for direct cont
an operator.

3 Input

3.1 Overview

In general, allowable inputs are as described in [CAM-I] and discussed earlier in Section 1.

3.1.1 Case, White Space, Line Continuations, Comments.

The DMIS language is case insensitive [CAM-I, page 12]. Any letter may be in upper or lo
case without changing the meaning of a statement, except that, within text strings, ca
preserved. The interpreter implements these rules.

Blank lines are allowed in DMIS and in the input by the interpreter [CAM-I, page 11]. They
ignored. White space (spaces or tabs) is allowed between DMIS words, but not within t
16

 NIST DMIS Interpreter Version 2

everal
The
reter

(base

he
rsing

here
ot be
list of

have

term

fiers
few
White space is preserved within text strings, however.

A single line may have a maximum length of 80 characters, but statements may consist of s
lines by putting a ‘$’ sign as the last printing character on each line to be continued.
maximum length of a statement allowed in [CAM-I, page 11] is 256 characters, but the interp
will handle much longer statements. Line length up to 420 characters has been tested.

Lines are terminated with a carriage return (ASCII 13 (base ten)) and line feed (ASCII 10
ten)).

A line starting with ‘$$’ is a comment and is ignored by the interpreter [CAM-I, page 11]. T
double dollar sign is not allowed elsewhere. In the interpreter, it will cause an error during pa
if used anywhere except at the beginning of the line.

3.2 Input Statements

The formal specification of an allowable program is defined in Appendix F. The description
is intended to be consistent with the appendix. In order that the definition in the appendix n
unwieldy, some constraints imposed by the interpreter are omitted from that appendix. The
error messages in Appendix E indicates all of the additional constraints.

3.2.1 Format of a DMIS Statement

A hierarchy of DMIS statement types is shown in Figure 5. Different statement types
different formats.

One large branch of the hierarchy is definitions. Definitions are any of the following. The
from Figure 5 is shown in parentheses.

coordinate system (datum_definition)
feature (feat)
label assignment (datdef)
rotary table (rotdef)
sensor (snsdef)
tool holder (thldef)
tolerance (tol)

Except for label assignment, a definition statement uses the formthing defined = definition. For
example, a cylinder named CYL_A may be defined as follows.

F(CYL_A)=FEAT/CYLNDR,INNER,CART,0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 5.0

A DMIS statement may be a single DMIS major word on a line, such as:

ENDMES

More commonly, a statement is a DMIS major word followed by a slash and modifiers. Modi
may be DMIS minor words, text strings, numbers, or labels of defined things. Here are a
examples of statements.

FILNAM/’teampart inspection results from demo1.dms’
FEDRAT/SCNVEL, MPM, 0.6
MEAS/POINT, F(START_PT), 1
PTMEAS/CART, 5.0, 0.0, -60.0, 0.0, 1.0, 0.0
17

 NIST DMIS Interpreter Version 2

mal
bers

but
ed,
e is

re
cter is

oint
l or

e first
6 (on
lue in

track
cond 2,
iffer,
” file,

ord
89].

ssible
ded.
er.

reter:
3.2.2 Numbers

The manual [CAM-I, sec. 2.1.3, p. 5] is unclear in defining a valid number. In the for
specification used by the interpreter, given in Appendix F, the following rules regarding num
may be found. In these rules a digit is a single character between 0 and 9.

A “LABEL_OR_INTEGER” is a sequence of one or more digits.

A “REAL” is a sequence of characters that does not qualify as a LABEL_OR_INTEGER
consists of (i) an optional plus or minus sign, followed by (ii) zero to many digits, follow
possibly, by (iii) one decimal point, followed by (iv) zero to many digits — provided that ther
at least one digit somewhere in the number.

A “real” is a “REAL” 1 or a “LABEL_OR__INTEGER”. Character strings that form numbers a
interpreted in the usual way. For example, a non-zero number with no sign as the first chara
assumed to be positive.

With these definitions, the following observations are implicit.

Initial (before the decimal point and the first non-zero digit) and trailing (after the decimal p
and the last non-zero digit) zeros are allowed but not required. A number written with initia
trailing zeros will have the same value when it is read as if the extra zeros were not there.

Numbers may have any number of digits, subject to the limitation on line length.

Exponential notation is not allowed.

3.2.3 Variables

The manual [CAM-I] states that a variable name may be one or more characters long, and th
character must be a letter. The manual puts two different upper limits on name length of
page 5) and 16 (on page 272). The interpreter uses the 6 limit. A variable may be given a va
several ways, as discussed in Section 2.6.

3.2.4 Line Number

The DMIS language does not provide for line or statement numbers. The interpreter keeps
of statement numbers by counting them. The first statement is assigned number 1, the se
and so on. In the original incoming DMIS file, statement numbers and line numbers may d
because of blank lines, continued lines, and comments. In the preprocessed “dmis_temp
which has those things removed, statement numbers are the same as line numbers.

3.3 Words Recognized

The interpreter recognizes statements beginning with the 49 major word / minor w
combinations shown in Table 3. These are all listed in the Index of Statements in [CAM-I, p. 3
The meanings of the statements are as given in [CAM-I]. In most cases, not all of the po
variants of a statement are implemented. Any capability not explicitly included is exclu
Trying to use any excluded capability in a DMIS program will cause an error in the interpret

Three new major words have been added, as compared with the first version of the interp
ASSIGN, DECL, and OBTAIN, all of which deal with variables.

1. The formal specification is case sensitive, so “real” differs from “REAL”.
18

 NIST DMIS Interpreter Version 2
Code Meaning
ASSIGN assign a value to a variable
CONST Format 1 construct a feature
DATDEF assign a datum label
DATSET define a coordinate system
DECL declare a variable
DISPLY specify output devices and formats
DMISMN begin a DMIS program
ENDFIL end a DMIS program
ENDGO end a GOTARG block
ENDMES end a MEAS block
FEAT/CIRCLE define a circle
FEAT/CYLNDR define a cylinder
FEAT/LINE define a straight line
FEAT/PLANE define a plane
FEAT/POINT define a point
FEDRAT set a feedrate
FILNAM assign an output file name
GOTARG begin a block of free space moves
GOTO make a free space move
MEAS begin a block which measures a feature
MODE select program modes
OBTAIN set a variable value to a parameter value of a definition
OUTPUT output data on features or tolerances
PRCOMP turn probe tip diameter compensation on or off
PTMEAS measure a point
RECALL reactivate a coordinate system, sensor, or feature
ROTAB rotate a rotary table
ROTATE rotate a coordinate system
ROTDEF define a rotary table
ROTSET reset the angle of a rotary table
SAVE save coordinate systems, features, etc. for later recall
SCNMOD turn scanning mode on or off
SCNSET specify how scanning will be done
SNSDEF Format1 define a sensor
SNSET specify probing parameters
SNSLCT change sensors
TEXT send text to the operator or output file
THLDEF define a tool holder
TOL/CORTOL define a coordinate tolerance
TOL/CYLCTY define a cylindricity tolerance
TOL/DIAM define a diameter tolerance
TOL/FLAT define a flatness tolerance
TOL/PARLEL define a parallelism tolerance
TOL/PERP define a perpendicularity tolerance
TOL/POS define a position tolerance
TRANS translate a coordinate system
UNITS specify units
VFORM specify output in vendor format
WKPLAN select a working plane

Table 3. DMIS Words Implemented in the Interpreter
19

 NIST DMIS Interpreter Version 2

bles
ly met.
ster
d in

inate
jects:
ature-

same
pread
reter

ail at
4 Conclusion

The main goals in creating Version 2 of the NIST DMIS interpreter were to implement varia
and to make the interpreter independent of commercial software. These goals have been ful
Version 2 is more powerful, much smaller (about 0.9 Mbytes vs 2.5 Mbytes), and slightly fa
than was the first version. In addition, an improved set of feature-fitting functions is include
Version 2.

The interpreter is expected to be used at NIST as part of a system for controlling a coord
measuring machine and/or a machining center (for probing) in one or more of four ISD pro
Architecture, Enhanced Machine Controller, Next Generation Inspection System, and Fe
Based Inspection and Control System.

Version 3 of the DMIS interpreter was built in September, 1998. Version 3 implements the
elements of the DMIS 3.0 standard as Version 2, but it is able to handle DMIS programs s
over several files, as well as single-file DMIS programs. The interface for telling the interp
what to do has been modified in Version 3 to enable the new capability.

It is expected that the Version 2 software will be available, free of charge, on request.

For further information, contact the lead author of this document, Dr. Thomas Kramer, by em
kramer@cme.nist.gov (or thomas.kramer@nist.gov) or by telephone (301) 975-3518.
20

 NIST DMIS Interpreter Version 2

d

ct
age

ct
the

y;

ry;
d

n
on

on
y;

m
y;
References

[Albus] Albus, J.S.; Meystel, A. M.;A Reference Architecture for Design an
Implementation of Intelligent Control in Large Complex Systems; International
Journal of Intelligent Control and Systems; Vol. 1, No. 1; 1996; 15-30

[CAM-I] Consortium for Advanced Manufacturing - International;Dimensional
Measuring Interface Standard; Revision 3.0, ANSI/CAM-I 101-1995; CAM-I,
Arlington, Texas; 1995

[ISO1] ISO 10303-11:1994;Industrial automation systems and integration - Produ
data representation and exchange - Part 11: The EXPRESS Langu
Reference Manual; ISO; Geneva, Switzerland; 1994

[ISO2] ISO 10303-21:1994;Industrial automation systems and integration - Produ
data representation and exchange - Part 21: Clear Text Encoding of
Exchange Structure; ISO; Geneva, Switzerland; 1994

[Kramer] Kramer, Thomas R.; Proctor, Frederick M.;The NIST RS274/VGER
Interpreter; NISTIR 5754; National Institute of Standards and Technolog
Gaithersburg, MD; 1995

[Kramer2] Kramer, Thomas R.; Proctor, Frederick M.; Rippey, William G.; Scott, Har
The NIST DMIS Interpreter; NISTIR 6012; National Institute of Standards an
Technology; Gaithersburg, MD; 1997

[Levine] Levine, John; Mason, Tony; Brown, Doug;lex & yacc; 2nd Edition; O’Reilly
& Associates; Sebastopol, CA; 1992

[Loffredo1] Loffredo, David; et al;STEP Utilities Reference Manual; STEPTools Inc.;
Troy, NY; 1994

[Loffredo2] Loffredo, David; et al;ROSE Library Reference Manual; STEPTools Inc.;
Troy, NY; 1993

[Proctor] Proctor, Frederick M.; et al;Simulation and Implementation of an Ope
Architecture Controller; Proceedings of the SPIE International Symposium
Intelligent Systems and Advanced Manufacturing; Philadelphia, PA; 1995

[Rosenfeld1] Rosenfeld, David A.;User’s Guide for the Algorithm Testing System Versi
2.0; NISTIR 5674; National Institute of Standards and Technolog
Gaithersburg, MD; 1995

[Rosenfeld2] Rosenfeld, David A.;Reference Manual for the Algorithm Testing Syste
Version 2.0; NISTIR 5722; National Institute of Standards and Technolog
Gaithersburg, MD; 1995
21

 NIST DMIS Interpreter Version 2

rs and

ine]

ersion
s
1],
tware
sing
ccess

rated
nly to
rds of

leaf
The
resent
lse) in

The
r.

ros for

r that
Yet
ying
for

rsing.
e for
The

rga-
an
Appendix A Software Details

This appendix describes the software for the interpreter. The appendix is intended for use
programmers who want to modify the software or simply to understand it.

A.1 Overall Approach

The interpreter is written in C++. In Version 2, two additional languages are used: lex [Lev
and YACC (described lower on this page) [Levine].

A.1.1 Major Change from First Version

A major change was made in the overall software approach between the first version and V
2 of the interpreter. The first version included the use of STEP1 methods and tools; Version 2 doe
not. Specifically, in the first version, an EXPRESS information model of DMIS was built [ISO
a second intermediate file was used (in STEP Part 21 format [ISO2]), and commercial sof
tools and libraries from STEPTools [Loffredo1], [Loffredo2] were used. The advantage of u
STEP methods and tools was that the YACC actions were relatively simple to construct and a
functions for dealing with the internal representation of the DMIS program were gene
automatically. The disadvantages were that (1) the interpreter could be made available o
sites where STEPTools was available and (2) to change the software to handle additional wo
DMIS, it was necessary to change the EXPRESS schema and reprocess it.

A.1.2 DMIS Object Classes and Access Functions

A tree of C++ classes is defined in the file interp.hh. The root of the tree is dmis_item. The
nodes of the tree are DMIS major words or major word - minor word combinations.
dmis_item tree is shown in Figure 5. A separate small tree of C++ classes is used to rep
variables. Several class definitions not part of either tree are also given (along with much e
the interp.hh file.

A set of C++ macros is used to simplify the definition of classes in the dmis_item tree.
macros define the same access functions as were used in the first version of the interprete

Lists are used extensively in the interpreter for data storage and access. A set of C++ mac
defining list classes is included in interp.hh.

A.1.3 YACC and lex

DMIS is a large language with hundreds of allowed formats for statements. It was clea
building a parser from scratch directly in C++ would be very time-consuming. YACC (
Another Compiler Compiler) grammar is a widely available, widely used language for specif
valid input for parsers. The DMIS manual is written in a style quite similar to that used
specifying a grammar in YACC. YACC, therefore, was chosen as the language for input pa
Processing input specified in a YACC grammar requires a lexical scanner. The languag
describing lexical input normally used with YACC is lex, so that was an obvious choice.

1. STEP (Standard for the Exchange of Product Model Data), is a set of standards of the International O
nization for Standardisation (ISO). All STEP standards are parts of ISO standard 10303. EXPRESS (not
acronym) is the official STEP information modeling language.
22

 NIST DMIS Interpreter Version 2

C
emove
preter

tically
and

ndling
” (a
d yacc

uch
e; in
more

cuting
ontrol
events
. This
t to
ing to

y into
YACC grammar used in the interpreter is shown (without actions) in Appendix F.

DMIS input may include comments and line continuations. It is difficult to write a YAC
grammar that deals with these items wherever they might appear, but it is rather easy to r
them as a pre-process. A brief lex specification was written for this purpose. Thus, the inter
uses lex twice.

A file of C code for a lexical scanner and a file of C code for a parser are generated automa
by utilities that read the specifications and write the code. The usual utilities for handling lex
YACC files have the same names as the languages. However, there are other utilities for ha
such files available from the Free Software Foundation, namely “flex” (fast lex) and “bison
mammal similar in appearance to a yak). These are somewhat superior to the original lex an
processors available to us and were used in building the interpreter.

As compared with the first version of the interpreter, the work done in the YACC parser is m
greater in Version 2. In the first version, the return type of every YACC rule was a doubl
Version 2, different rules have different return types. The actions taken by the rules are much
complex in Version 2.

A.1.4 Read First, Then Execute

For several reasons, it was decided to read and store the entire DMIS program before exe
any of it. First, it saves time during execution, which may be important because of motion c
requirements. Second, since a complete syntax check is performed during reading, it pr
getting part way through the execution of a program and then discovering it has an error
often requires fixing the error and rerunning the entire program. Third, it is convenien
program. Input may be handled in one module and interpretation in another, rather than hav
interleave them.

As a side effect of separating reading and execution, the functions in the kernel fall naturall
two parts: parsing functions and execution functions.
23

 NIST DMIS Interpreter Version 2
dmis_item

block line

datdef

datum_definition

definition

feat

rotdef

line_other setting

thldef

snsdeftol

gotarg_block

endfil

dmismn

disply

decl

const_r

recall

endgo

endmes

output

meas

filnam

gotarg

snslct

rotab

meas_block_item

save

text

units

vform

meas_block

mode

fedrat

assign

rotset

obtain

prcomp

scnmod

scnset

snset

wkplan

datset trans rotate

feat_circle

feat_cylndr

feat_line

feat_plane

feat_point goto_r

ptmeas

rotab_absl

rotab_incr recall_datum

recall_feature

recall_rotary

recall_sensor

save_datum

save_feature

save_rotary

save_sensor

probetol_cortol

tol_diam

tol_flat

tol_parlel

tol_perp

tol_pos

tol_clycty

datset_dat

datset_mcs

probe_cart

probe_pol

tol_pos0

tol_pos1

tol_pos2

tol_pos3

goto_abs

goto_incr

probe_vec

rotate_axes_abs

rotate_axes_rel

scnset_timescnset_distscnset_defaltscnset_chordscnset_angle

Figure 5. DMIS Class Hierarchy
DMIS major words are shown in boldface
24

 NIST DMIS Interpreter Version 2

, are
thods.

as

TS

and
ines,

ame,
A.2 Software Modules

Two methods of using the interpreter, stand-alone and integrated with the rest of EMC
provided, as described in Section 2. The use of program files differs between the two me
Some code is common to both, and some code differs.

A.2.1 Stand-Alone and Integrated

The program files used for both the stand-alone and integrated interpreter are:

C++ Header Files

1. cmm_canon.hh — 1,447 lines (mostly text)
This is for the interpreter’s five interfaces.

2. fit.hh — 364 lines
This is for the NIST Algorithm Testing Service (ATS) feature fitting functions and w
written by ATS personnel.

3. interp.hh — 2,323 lines
This is for the interpreter kernel. It gives:
a. various #includes and #defines of symbols
b. several macros for defining classes hierarchically
c. several enumerations
d. the DMIS class hierarchy shown in Figure 5
e. several macros for defining list classes
f. the structure of the internal interpreter world model.

4. tk_common.hh — 35 lines
This is a small collection of constants and macros to simplify programming.

C++ Function Definitions

1. cmm_canon_data_out.cc — 36 lines
This is for the interpreter_give_data interface to the interpreter.

2. cmm_canon_extract1.cc — 5,399 lines
This is the extract_feature functions. All but 511 lines of this was written by A
personnel.

3. cmm_canon_interp.cc — 198 lines
This is for the interpreter_do_something interface to the interpreter.

4. interp.cc — 19,100 lines
This is the interpreter kernel. About a third of this was generated automatically by flex
bison from lex and YACC source, and half hand-written. The lex source totals 423 l
while the YACC source is 960 lines.

Other

DMIS_variables - 24 lines
This is a file that records DMIS common variables. On each line of the file are the n
type, and value of one common variable.

A.2.2 Stand-Alone Only

The program files used in the stand-alone interpreter only are:

C++ Header Files
25

 NIST DMIS Interpreter Version 2

reter.

s file
eing

the

hese
world

s file

the

:

which
y be

e) of
tatus,

aced
ents.

here a
is

hese
1. rest_world.hh — 48 lines
This defines the structure of the dummy world model used by the stand-alone interp

C++ Function Definitions

1. cmm_canon_do_it.cc — 417 lines
This is for the interpreter’s cmm_do_something interface. The functions defined in thi
print themselves. Some of them also alter the dummy world model to simulate b
executed.

2. cmm_canon_data_in.cc — 152 lines
This is for the interpreter’s world_give_data interface. The functions extract data from
dummy world model.

3. driver.cc — 281 lines
This provides an interface to the user.

A.2.3 Integrated Only

The interpreter program files used only in the integrated interpreter follow. In addition to t
specific files, other files that are not considered to be part of the interpreter provide the
model actually used by the rest of the controller in which the interpreter lies.

C++ Function Definitions

1. cmm_canon_do_it.cc
This is for the interpreter’s cmm_do_something interface. The functions defined in thi
mostly generate command messages.

2. cmm_canon_data_in.cc
This is for the interpreter’s world_give_data interface. The functions extract data from
actual world model.

A.3 Source Code Documentation

The source code is heavily documented. In general, for each function, four fields are given

1. Returned Value - a description of possible returned values and the circumstances in
particular values may be returned. In most kernel functions, either OK or ERROR ma
returned.

2. Side Effects - a description of the important side effects (things other than the returned valu
executing a function. Since the returned value of most functions is used to indicate error s
the side effects of most functions are important.

3. Called By - a list of functions that call the function being documented.

4. Argument Values - a one-line description of the meaning of each argument to a function, pl
immediately after the declaration of the argument. This field is omitted if there are no argum

In addition to these four fields, most functions have a paragraph to a page of discussion. W
function implements an algorithm for geometric or numerical calculation, the algorithm
described. Many citations to specific pages of the CAM-I manual are included in t
discussions.
26

 NIST DMIS Interpreter Version 2

em in
sented
e:

e are

h has
o.

g the

given

ing the

ently
ber of
a line

reter

needs

world

tatus
Appendix B Interpreter Interface Functions

As described in Section 2, the interface between a DMIS interpreter and a software syst
which the interpreter is working comprises five sets of commands. The commands are repre
here as C (or C++, which is identical for these usages) function definitions. The five sets ar

1. Functions that extract data from the interpreter.

2. Functions for the interpreter to call that extract data from the rest of the system.

3. Functions for the rest of the system to call to tell the interpreter to do something. Thes
normally called by a controller for which the interpreter works.

4. Functions for the interpreter to call that tell the rest of the system to do something whic
been specified by a DMIS program or that the interpreter needs the rest of the system to d

5. Functions for deriving “actual” feature parameters from point sets. For example, findin
center, plane, and radius of a circle, given three points in 3D space.

For some of these sets of functions, data type definitions are required. The definitions are
here as typedef’s at the beginning of each section.

B.1 Functions That Extract Data From the Interpreter

Functions that extract data from the interpreter are intended to be called by the system us
interpreter.

All the function names in this set start with “INTERP”

int INTERP_LINE()

This returns the line number of the line from the file dmis_temp (see Section 2.7) that is curr
being executed by the interpreter. If no line is currently being executed, this returns the num
the line last executed. In the _interp model, the line number is updated when execution of
starts.

double INTERP_SENSOR_TIP_DIAMETER(char * sensor_name)

This returns the diameter of the tip of the named sensor in current length units. If the interp
has no record of a sensor of the given name, -1.0 is returned.

This would be used if the executing system does not know the diameter of the sensor tip and
it to do probe tip radius compensation.

B.2 Functions for the Interpreter to Call to Get World Model Data

This set of functions is intended to be used by the interpreter. The value of data about the
outside the interpreter is expected to be returned in most cases.

typedef int CANON_MEASUREMENT_STATUS
#define CANON_OK 1
#define CANON_BAD 2

CANON_MEASUREMENT_STATUS is used as a return value of the measure_point_s
27

 NIST DMIS Interpreter Version 2

OK
ly, a
s not

stem)
the
’s best
hen

ent
ly.

oes

the
ber

l than
) and
function.

CANON_MEASUREMENT_STATUS MEASURE_POINT_STATUS()

MEASURE_POINT_STATUS returns the status of the last MEASURE_POINT action.
means the last measurement worked successfully. BAD means it did not. Typical
measurement will be bad if the probe did not trip, or it tripped before it should have, or it wa
on, or it appeared to work but returned an out of range value, etc.

double CANON_PROBE_X()
double CANON_PROBE_Y()
double CANON_PROBE_Z()

CANON_PROBE_X returns the last recorded probe x-value (in the current coordinate sy
resulting from a MEASURE_POINT function call. If probe compensation is on, this is
system’s best estimate of the x-coordinate of the probed point. Otherwise, this is the system
estimate of the x-coordinate of the location of the controlled point (normally the probe tip) w
the point was contacted. CANON_PROBE_Y() and CANON_PROBE_Z() behave similarly.

double CANON_CURRENT_X()
double CANON_CURRENT_Y()
double CANON_CURRENT_Z()

CANON_CURRENT_X returns the current x-value of the controlled point (in the curr
coordinate system). CANON_CURRENT_Y() and CANON_CURRENT_Z() behave similar

int CANON_LOG_SIZE(char * log_name)

CANON_LOG_SIZE returns the number of points in the named log, if it exists. If the log d
not exist, -1 should be returned.

double CANON_LOG_X(char * log_name, int n)
double CANON_LOG_Y(char * log_name, int n)
double CANON_LOG_Z(char * log_name, int n)

CANON_LOG_X returns the x-value of the nth point from the log of the given log_name. For
first point, n is 1. If this function is called and the log does not exist or n is larger than the num
of points in the log, zero should be returned (changing this to return something more usefu
zero would be a good idea, since zero could be a reasonable x-value). CANON_LOG_Y(
CANON_LOG_Z() behave similarly.

B.3 Functions to Tell the Interpreter What to Do

Conceptually, the interpreter has four states:

1. Down
2. Ready
28

 NIST DMIS Interpreter Version 2

wn in
in the
ce is

call
ed to

ecution
lls the

is
not

r -1
to
3. Working (on a program)
4. Finished (working on a program)

These states are implicit and not explicit in the software.

Legal calls to functions in the interp-do-something interface, when in specific states, are sho
Table 4. The state in effect after each call (if the call does not return ERROR) is also shown
table. Any call that has no place in the table to a function in the interp-do-something interfa
an error. The interpreter is in the Down state initially.

int interp_close_program()

This closes the current program. The return value is 0 (OK) or -1 (ERROR). It is an error to
this function if no program is open. It is OK to close a program even if it has not been execut
the end.

int interp_execute_next()

This causes the interpreter to decide which statement to execute next and to execute it. Ex
of a statement always results in one or more calls to functions in the set of functions that te
rest of the system what to do. The return value is 0 (OK), -1 (ERROR), or 1 (EXIT). EXIT
returned only when ENDFIL is interpreted. It is an error to call this function if a program is
open, or an earlier call to this function returned EXIT and the same program is still open.

int interp_exit()

This causes the interpreter to exit. This “undoes” interp_init. The return value is 0 (OK) o
(ERROR). It is an error to call this function if a program is open. It is OK to follow a call
interp_exit with a call to interp_init.

Table 4. Interpreter State Transitions

In state System May Call Next state

Down interp_init Ready

Ready interp_exit Down

Ready interp_open_program Working

Working interp_execute_next Working (if call returns OK)

Working interp_execute_next Finished (if call returns EXIT)

Working interp_close_program Ready

Finished interp_close_program Ready
29

 NIST DMIS Interpreter Version 2

eturned
r -1

he file
If the

call

, each
MIS

eter
onical
nput
preter
nches.
sed in
re two
n call:
e
ially
r it.

preter
and
rs to
can

are
he
data,
the
bolic
troller

, and
int interp_init()

This causes the interpreter to get ready to run. Once this function has been called and has r
OK, the interpreter stays initialized until a call to interp_exit. The return value is 0 (OK) o
(ERROR). It is an error to call this function if the interpreter has already been initialized.

int interp_open_program(char * dmis_file_name)

This causes the interpreter to open the named DMIS file, so that it is ready to be executed. T
stays open until a call to interp_close_program. The return value is 0 (OK) or -1 (ERROR).
file cannot be opened (if it does not exist, for example), ERROR is returned. It is an error to
this function if a file is already open or if the interpreter has not been initialized.

B.4 Functions to Tell the Rest of the System What to Do.

B.4.1 Discussion and Issues

Functions that tell the rest of the system what to do are intended to be atomic. In other words
function does one thing only. DMIS statements are not all atomic. Thus, executing one D
statement will often result in more than one of these functions being called.

A recurring issue for canonical functions is: For a given functionality, should the interpr
handle it internally or should the interpreter assume the system which executes can
functions will handle it? A typical example is length units (suppose the alternatives in the i
are inches and millimeters). If the executing system always expects millimeters, the inter
should turn on an internal converter when it reads a DMIS statement that says to use i
Thereafter, all lengths should be converted to millimeters by the interpreter before being u
canonical commands. If the executing system can handle different units itself, then there a
choices: either the interpreter can do the conversion or the interpreter can make the functio
USE_LENGTH_UNITS(CANON_UNIT_INCH); that function is not even defined in th
previous case. One criterion for deciding where to put functionality is that most commerc
available CMM controllers should have the functionality if a canonical command can call fo

A compromise position could be taken where the functionality is shared between the inter
and the CMM. For example, we might allow only two canonical length units (inches
millimeters), convert feet to inches in the interpreter, and convert centimeters and mete
millimeters in the interpreter. Currently, there is no sharing; the interpreter assumes the CMM
handle all five length units.

A closely related problem is what to do when DMIS allows symbolic values for items that
normally numeric. For example, DMIS allows HIGH, LOW, and DEFALT for feed rates. T
interpreter will convert such symbolic values to numeric values by referring to configuration
which is read in at initialization time. If the CMM may or must be given a symbolic value,
controller which gives commands to the CMM can convert a numeric value back to a sym
value when the canonical command is converted to the CMM’s native language. That con
can get the right symbolic value by referring to the same configuration file.

A DMIS program may define many instances of DMIS types such as features, sensors
tolerances. A major issue is what view should the executing system have of these things.
30

 NIST DMIS Interpreter Version 2

that the

ned in

of
play,
ay be
MIS
the

tput.
uture

the

to

e.g.
ut this
976.

is
SENSORS - Since the executing system must manipulate the sensors, we assume here
system can identify sensors by name and can remember any number of sensor names.

FEATURES - We assume the executing system knows nothing about the feature types defi
DMIS.

TOLERANCES - like features

DATUMS - like features

Output - The view of the DMIS 3.0 specification [CAM-I, p.332] is that several methods
information output may be attached to a system running a DMIS program (video dis
magnetic storage (disk file), paper printer, or communications port), and the output format m
either DMIS format or a vendor format. It is assumed in these canonical functions that the D
interpreter will handle all output in DMIS format (since the interpreter is supposed to be
DMIS expert). Thus, there should never be any canonical functions for producing DMIS ou
This version of the canonical functions does not deal with vendor format output, either. F
versions of these canonical commands should deal with vendor format output.

This set includes some functions (currently only CATCH_UP) that incorporate a view of how
rest of the system works.

B.4.2 Types

typedef int CANON_PLANE
#define CANON_PLANE_XY 1
#define CANON_PLANE_YZ 2
#define CANON_PLANE_XZ 3

[CAM-I, p. 122] allows these planes. CANON_PLANE is used in the SET_PLANE function
identify the plane to use.

typedef int CANON_UNIT_ANGLE
#define CANON_UNIT_ANGDEC 1
#define CANON_UNIT_ANGDMS 2
#define CANON_UNIT_ANGRAD 3

[CAM-I, p. 180] allows these angle units. ANGDEC is angle in degrees with a decimal,
34.0779. ANGDMS is angle in degrees, minutes, and seconds (all integer), e.g. 4:03:47, b
form is currently not supported by the interpreter. ANGRAD is angle in radians, e.g. 4.1
CANON_UNIT_ANGLE is used in the USE_ANGLE_UNITS function.

typedef int CANON_UNIT_LENGTH
#define CANON_UNIT_CM 1
#define CANON_UNIT_FEET 2
#define CANON_UNIT_INCH 3
#define CANON_UNIT_M 4
#define CANON_UNIT_MM 5

[CAM-I, p. 180] allows these length units. CM is centimeters, FEET is feet, INCH is inches, M
31

 NIST DMIS Interpreter Version 2

S

these
e

he

eans
ns the
ving
scan

can
E

the
meters, MM is millimeters. CANON_UNIT_LENGTH is used in the USE_LENGTH_UNIT
function.

typedef int CANON_UNIT_TEMPERATURE
#define CANON_UNIT_TEMPC 1
#define CANON_UNIT_TEMPF 2

TEMPC is degrees centigrade. TEMPF is degrees Fahrenheit. [CAM-I, p. 180] allows
temperature units. CANON_UNIT_TEMPERATURE is used in th
USE_TEMPERATURE_UNITS function.

typedef int CANON_DIRECTION
#define CANON_CLOCKWISE 1
#define CANON_COUNTERCLOCKWISE 2

CANON_DIRECTION is for the direction of rotation of a rotary table. It is used in t
ROTATE_TABLE function.

typedef int CANON_SCAN_TYPE
#define CANON_DRAG 1
#define CANON_NONCON 2
#define CANON_PECK 3

CANON_DRAG means a contact probe is dragged along the surface. CANON_NONCON m
the probe is moved near the surface but not touching it (non-contact). CANON_PECK mea
probe is primarily moved near the surface but not touching it and from time to time stops mo
along the surface and moves to touch the surface and retract. [CAM-I, p. 245] allows these
types. CANON_SCAN_TYPE is used in the SET_SCAN_TYPE function.

typedef int CANON_INTERVAL_TYPE
#define CANON_DIST 1
#define CANON_TIME 2

DIST is distance in current units. TIME is time in seconds. [CAM-I, p. 245] allows these s
interval types. CANON_INTERVAL_TYPE is used in the SET_SCAN_INTERVAL_TYP
function.

typedef int CANON_AXIS
#define CANON_AXIS_X 1
#define CANON_AXIS_Y 2
#define CANON_AXIS_Z 3
#define CANON_AXIS_NONE 4

These are the axis types needed for referring to axes. CANON_AXIS is used in
SET_SCAN_DIST_INTERVAL function.
32

 NIST DMIS Interpreter Version 2

DMIS
only
of what

t. The
ember
M-I,

rried
ts are

cases
ow that
tion.

t call
been

ight

fter a
ation,
stem
gain.

the
fore

turn
thing

king

the one
ed be
B.4.3 Functions

void ADVISORY(char * message)

This indicates the interpreter has changed something internally in the course of executing a
statement. The CMM controller should do nothing when this function is called. It is provided
to show that a statement has been executed and to allow a human-interpretable description
the interpreter did.

void ASSIGN_SENSOR_TO_SLOT
(char * sensor_name, int slot_number)

This tells the executing system that the named sensor is in the numbered changer slo
executing system is not required to do anything in response to this command (not even rem
the correspondence, although it may do that). This command is for executing THLDEF [CA
p. 166]. See discussion of CHANGE_SENSOR below.

void CATCH_UP()

The interpreter expects that the actions specified by all function calls in this section will be ca
out as described in the order in which the calls are made (or possibly in parallel if the effec
the same). The interpreter does not usually know when the actions are carried out. In many
the interpreter needs data collected as a result of the actions, so the interpreter needs to kn
the actions have been carried out. The CATCH_UP function is provided to deal with this situa
After the CATCH_UP function is called by the interpreter, the rest of the system should no
the interpreter again until all previous actions specified in canonical function calls have
executed.

Currently, the interpreter is not trying to check that a CATCH_UP has been carried out. It m
be useful to have the rest of the system notify the interpreter that it is caught up.

If the operation of the rest of the system is such that actions are carried out immediately a
function call is made (before doing anything else), which is one standard mode of oper
executing CATCH_UP is a null operation; the system is always caught up. If the rest of the sy
is queuing actions, however, the queue should be emptied before the interpreter is called a

On the next call by the executing system to interp_execute_next, following a call by
interpreter to CATCH_UP, the interpreter will call one or more functions asking for data be
making any calls to the functions in this section.

The functionality of CATCH_UP could be obtained, alternatively, by having the interpreter re
a value that means catch up from a call to one of the functions in the interp_do_some
interface. This is the way it was implemented in EMC machining center controllers. Ma
CATCH_UP a function is just a higher-profile method.

void CHANGE_SENSOR(char * sensor_name)

It is assumed that only one sensor is used by a CMM at a time. This changes the sensor to
named in function call. If the named sensor is already being used, that is OK and nothing ne
33

 NIST DMIS Interpreter Version 2

. Since
d that
ation.

on the

, and
nsors
port
SLCT
s, in
ensors
a lot

sirable

ts to
l slot

ld be
ve slot
or both

en the
gram,
tion of
field

ter at
ask

spect
ich is

en the
hould
ld be

ons
done.

The sensor_name argument must be the name of a sensor previously defined with SNSDEF
the interpreter maintains information about sensors defined with SNSDEF, it is anticipate
the rest of the system may make canonical function calls to the interpreter to get this inform

Changing the sensor should also automatically change system variables that depend up
definition of the sensor, such as the current location.

Alternatively, tool holder slot number might be used as an argument to CHANGE_SENSOR
each sensor would be identified with a slot number. If the CMM did not have slots, the se
could still be numbered. DMIS includes the THLDEF (tool holder definition) statement to sup
the use of numbered slots. It would be feasible to require that THLDEF be used before a SN
statement referring to that sensor. However, existing DMIS programs (teampart.dmi
particular) do not always use THLDEF. Some systems are smart enough to keep track of s
(or other objects) without having to put them in the same place all the time. This can save
time in tool changes. Forcing such systems to use slot numbers would work against this de
feature.

Another alternative would be to have both slot number and name as argumen
CHANGE_SENSOR. If the slot number were non-negative, it would be intended to be a rea
number. It it were negative, that would indicate that it is not a valid slot number and shou
ignored. The name would be either an empty string or the correct name when a non-negati
number was used, and would be the correct name if a negative slot number was used. One
of the slot number and name would have to be correct.

An additional consideration is that the assignment of sensors to slots may change even wh
inspection program does not change. If sensors are identified by name only in a pro
changing slots is not a problem. The executing system may have its own data about the loca
sensors, which is not included in the program. This is common practice in the closely related
of machining. If the interpreter needs this information, it can be downloaded to the interpre
initialization time (what the NIST RS274 interpreters do [Kramer]), or the interpreter might
for it when it is needed (not implemented).

void DEFINE_SENSOR(char * sensor_name, double x_offset,
double y_offset, double z_offset, double tip_diameter)

The x, y, and z_offsets of this function locate the center of the tip of the named probe with re
to the coordinate system of the probe. It also provides the diameter of the probe tip, wh
assumed to be spherical.

The coordinate system of the probe is expected to be known.

It is suggested, but not required, that the coordinate system of the probe be such that, wh
probe is attached to a CMM in a normal manner, the origin of the probe coordinate system s
be at the mount location of the CMM, and the axes of the probe coordinate system shou
parallel to the corresponding axes of the CMM. This location will simplify the transformati
needed for deriving CMM axis positions from desired probe positions.
34

 NIST DMIS Interpreter Version 2

ON,
name

ey are
_ON

is

rrently

what
this is

rious

n is

t the

tion,
, for
o the
ctor
and

M-

n of

or by

the
void LOGGING_OFF()

This turns logging point data OFF.

void LOGGING_ON(char * log_name)

This turns logging point data ON. If SCAN_TO_POSE is called when logging point data is
the data points taken during the scan are saved under the name log_name (normally a file
but not required to be a file). If there are already some points saved under that name, th
preserved, and the new points are added after the old ones. It is an error to call LOGGING
twice without an intervening LOGGING_OFF.

void MEASURE_POINT
(double x, double y, double z, double i, double j, double k)

This is called for executing the DMIS PTMEAS statement [CAM-I, p. 208] when SCNMOD
OFF.

All the parameters to this command and the points and vectors defined below refer to the cu
active coordinate system.

The following should happen when this function is called. These actions are supposed to be
is intended by the DMIS spec. Because the spec is vague, however, it is hard to be sure
what the spec intends. It may be that the spec is vague intentionally, to allow for va
implementations.

SETUP

Let C be the location of the controlled point (center of probe tip) before this instructio
executed.

Let P = (x,y,z) be the nominal location of the point to be probed. P must lie on a surface, bu
system is not required to check this.

Let V = (i,j,k) represent a vector. If the surface has a normal at P, V should point in that direc
but no verification of this is required. If the surface normal is not defined (the tip of a cone
example) V should point away from surface at P (preferably into a region where a normal t
surface in the vicinity of P cannot be drawn, but this is not required). If V is not a unit ve
(within the system’s tolerance for unit vectors), probe status is set to CANON_BAD,
execution is finished (doesn’t even start, actually).

Let A be a point lying in the direction of V, one approach distance (as given with SNSET [CA
I, p. 150] or by default) from P.

Let T be the location of the controlled point when the probe trips, if it trips during executio
this command.

Let S be a point lying in the direction opposite V one search distance (as given with SNSET
default) from P.

ACTION

1. Move the controlled point in a straight line from C to A at the given feed rate (whatever
35

 NIST DMIS Interpreter Version 2

probe
y be
e after
ed rate
avoid
ere

e or

ration

um

n the
trips

ise,

ed the
s the

uld be

OINT

ing of

s up to
tor.
system can do to control acceleration and deceleration is assumed to be adequate). If the
trips during this move, probe status is set to CANON_BAD, and execution is finished. It ma
desirable to allow traverse rate here because it is common for lots of points to be probed on
the other, and using traverse rate could save a lot of time. On the other hand, using the fe
may help prevent broken probes, since it may be possible to stop quickly enough to
breaking a tripped probe if it is moving at feed rate where it would not be possible if it w
moving at traverse rate.

2. Move the controlled point in a straight line from A towards S at feed rate.

Stopping at the intersection of lines CA and AS (point A) is optional.

If the probe trips during this move before it is within the system’s tolerance for feed rat
direction, probe status is set to CANON_BAD, and execution is finished.

If the probe does not trip by the time it reaches S, it is stopped at maximum normal decele
and moved back to S, probe status is set to CANON_BAD, and execution is finished.

3. Otherwise, if the probe trips during the move from A towards S, it is stopped at maxim
normal deceleration and moved at feed rate to T (might change to traverse rate).

4. Without stopping, the probe is moved at feed rate (might change to traverse rate) i
direction of V one retract distance (as given with SNSET or by default) from T. If the probe
during this move, probe status is set to CANON_BAD, and execution is finished. Otherw
probe status is set to OK.

After this command has been executed OK, the executing system must have record
following - which must be available for reading out at least until the next command that move
probe is executed.

1. the coordinates of the final position of the probe.

2. The coordinates of a point. The manual [CAM-I, p. 177] implies strongly that:

a. If probe compensation is on (as determined by the PRCOMP DMIS statement), this sho
the system’s best estimate of the actual coordinates of P.

b. If probe compensation is off, this should be the coordinates of T.

The approach, retract, and search distances could be parameters to the MEASURE_P
command, rather than being assumed available within the system.

If the probe is not a touch trigger probe, a lot of the above does not make sense. The mean
this command for other than a touch trigger probe should be rethought.

void MESSAGE(char * text)

This indicates that a message is to be displayed for the operator. The nature of the display i
the receiving system, but will normally be on a computer monitor that is visible to the opera

void PROBE_RADIUS_COMPENSATION_OFF()

void PROBE_RADIUS_COMPENSATION_ON()
36

 NIST DMIS Interpreter Version 2

-I, p.
own
linder,
on of

ssume

of the
rs to

ontact

, the
RT.
tion,

rst

two
to do
out

ion

ition,
osition
sition
or

.

tional

tions
The model of a probe tip (assumed both in the canonical commands and in DMIS [CAM
126]) is that the tip of a touch trigger probe is a sphere, cylinder, or disk with its center at a kn
distance and direction from a point at the base of the probe. The diameter of the sphere, cy
or disk is given with the SNSDEF statement. In the case of a cylinder or disk, the orientati
the axis is also known.

These commands turn probe radius compensation off and on for a touch trigger probe. We a
that the controlled point is the center of the probe tip.

When probe radius compensation is off and a probing is made, the location of the center
probe tip at the time the probe is tripped should be reported. The manual [CAM-I, p. 177] refe
this as “raw data.” Raw data is not defined in the glossary of the manual.

When probe radius compensation is on, the system’s best estimate of the location of the c
point that caused the trip should be reported.

void PROGRAM_END()

A call to PROGRAM_END signals the end of a program. After this function has been called
only function from the cmm_do_something interface that is valid to call is PROGRAM_STA
The executing system is not required to do anything to carry out the PROGRAM_END func
but may perform termination actions if needed.

void PROGRAM_START(char * text)

PROGRAM_START carries out the DMISMN statement [CAM-I, p. 170], which must be the fi
statement of a DMIS program.

A call to this function signals the beginning of a program. It is an error to call this function
times without an intervening call to PROGRAM_END. The executing system does not have
anything to carry out this function, but it is likely that some sort of initialization will be carried
in most executing systems.

The text supplied with DMISMN is arbitrary. It is passed on by the PROGRAM_START funct
in case the executing system wants to do something with it.

void ROTATE_TABLE
(double position, CANON_DIRECTION wiseness)

ROTATE_TABLE assumes that there is one rotary table, and it may be turned to a given pos
which is assumed to be in current angle units (degrees or radians) from a home position. P
values range 0 <= angle < 360 for degrees and 0 <= angle < 2Pi for radians. Values of po
outside this range are illegal. The wiseness must be CANON_CLOCKWISE
CANON_COUNTERCLOCKWISE.

Wiseness is as viewed from the side of the table on which the workpiece is usually fixtured

The motion should be a smooth acceleration from the start position to the programmed rota
velocity and a smooth deceleration to a stop at the end position.

The DMIS language allows for any number of rotary tables, but these cmm_canonical func
37

 NIST DMIS Interpreter Version 2

the
on, as

is

g, for
ght be

rrently

what
e spec

this

tion

nd of
tus is

ments
tance

t line.
type

ns the
ip is
the part.

s off)
set to
allow for only one.

A command to rotate to the current nominal position should result in one full revolution of
table in the stated direction. The executing system must keep track of current nominal positi
given by ROTATE_TABLE commands.

void SCAN_TO_POSE
(double x, double y, double z, double i, double j, double k)

This is called for executing the DMIS PTMEAS statement [CAM-I, p. 208], when SCNMOD
ON.

This command is intended to be implementable for touch trigger probes doing peck probin
position probes which can be dragged along a surface, or for non-contact probes which mi
moved along near a surface (either servoed to stay near the surface or not).

All the parameters to this command and the points and vectors defined below refer to the cu
active coordinate system.

The following should happen when this function is called. These actions are supposed to be
is intended by the DMIS spec, but the spec is vague, so it is hard to be sure this is what th
intends.

SETUP

Let C = (Cx, Cy, Cz) be the location of the controlled point (center of probe tip) before
instruction is executed.

Let P = (Px, Py, Pz) be the nominal location of the goal point (given by x, y, and z in the func
prototype above).

Vector (i, j, k) represents a unit vector pointing in the intended direction of the probe at the e
the move. If that is not a unit vector (within the system’s tolerance for unit vectors), probe sta
set to CANON_BAD, and execution is finished (does not even start, actually).

ACTION

Move the controlled point from C towards P at the current scan feed rate, taking measure
periodically. Measurements are taken either at fixed time intervals or fixed intervals of dis
along the line, according to whether TIME or DIST was used in the last call to SCNSET.

The motion from C to P should be “straight” in some sense, but is not necessarily a straigh
Exactly what this means is not defined, but the following paragraph gives an example of one
of motion that is intended to be permitted.

Example: A non-contact probe is moved so that the probe tip stays in a plane which contai
line from C to P and is parallel to the Z-axis. During this move, the Z location of the probe t
controlled so that the it stays near the surface of the part being measured but does not hit

If some problem is detected during this move, (e.g., motion control fails or the probe break
probe status is set to CANON_BAD, and execution is finished. Otherwise, probe status is
CANON_OK.
38

 NIST DMIS Interpreter Version 2

n and
ndent

ed the
t until

t have
other
ading
t also
n the
need

cation

its Z
ting
unit
aller

ctors):

:

The motion stops when the probe has “reached the goal pose.” In other words, positio
orientation (or selected components of them) are within some implementation-depe
tolerance zone of the goal pose (or selected components of it).

AFTEREFFECTS

After this command has been executed OK, the executing system must have record
coordinates of the final position of the probe, which must be available for reading out at leas
the next command that moves the probe is executed.

If data logging is ON, after this command has been executed OK, the executing system mus
recorded the coordinates of a number of points in a file of the given name (or using any
method of storing the data so it can be retrieved by name). The file must be available for re
out at any time until a PROGRAM_END command is received. The executing system mus
remember how many points there are in the file. The points in the file should be points o
feature being measured. If data logging is OFF, no point data (other than the final position)
be saved.

void SET_COORDINATE_SYSTEM(
double origin_x, double origin_y, double origin_z,
double z_axis_i, double z_axis_j, double z_axis_k,
double x_axis_i, double x_axis_j, double x_axis_k)

The arguments to this function are in terms of a machine’s default coordinate system (the lo
of which relative to the machine hardware is known).

The arguments describe a coordinate system with its origin at (origin_x, origin_y, origin_z),
axis pointing in the direction of the vector (z_axis_i, z_axis_j, z_axis_k), and its X axis poin
in the direction of the vector (x_axis_i, x_axis_j, x_axis_k). Those two vectors must be
vectors within a tolerance of not more than 0.00001; an implementation may require a sm
tolerance.

It will be useful to have more compact notation, as follows (where the last two items are ve

x_axis_i = Xx
x_axis_j = Xy
x_axis_k = Xz
z_axis_i = Zx
z_axis_j = Zy
z_axis_k = Zz
origin_x = Tx
origin_y = Ty
origin_z = Tz
(Xx, Xy, Xz) = Vx
(Zx, Zy, Zz) = Vz

Define Vy as (Vzx Vx), meaning Vy is the cross product of Vz and Vx.

Define the components of Vy by Vy = (Yx, Yy, Yz). Then, by the definition of cross product
39

 NIST DMIS Interpreter Version 2

Z-axis
n in

y as

ions
ate

am or

e as the

d the
d

ly used

robing
Yx = (Zy x Xz) - (Zzx Xy)
Yy = (Zz x Xx) - (Zx x Xz)
Yz = (Zx x Xy) - (Zy x Xx)

The reason this works is that the Y-axis of a coordinate system is the cross product of the
with the X-axis. If the system is moved, that relationship continues to hold. Vy is the directio
which the transformed Y-axis points.

Now it is easy to build a 4x4 homogeneous coordinate transform matrix. The matrix is:

To convert a point (x, y, z, 1) to its location in the transformed coordinate system, multipl
follows:

After a call to SET_COORDINATE_SYSTEM, all arguments to cmm_do_something funct
(other than SET_COORDINATE_SYSTEM) which are interpreted in terms of a coordin
system, refer to the coordinate system described in the function call, until the end of a progr
another call to SET_COORDINATE_SYSTEM.

The selected plane becomes the plane in the new coordinate system with the same nam
selected plane in the previously active coordinate system.

void SET_DISTANCE_APPROACH(double distance)

This sets the approach distance used in the MEASURE_POINT function. This function an
following four SET_DISTANCE_XXX functions implement the DMIS SNSET comman
[CAM-I, p. 150].

void SET_DISTANCE_CLRSRF(double distance)

This sets the clearance from surface distance used in probing. This distance is not current
by the probing functions.

void SET_DISTANCE_DEPTH(double distance)

This sets the depth distance used in probing. This distance is not currently used by the p
functions.

Xx Yx Zx Tx

Xy Yy Zy Ty

Xz Yz Zz Tz

0 0 0 1

Xx Yx Zx Tx

Xy Yy Zy Ty

Xz Yz Zz Tz

0 0 0 1

x

y

z

1

40

 NIST DMIS Interpreter Version 2

TE,
ecific

ve a
ng

to the
uring
be it

he XY-
, p.
.

otary

efault
given
units

-I, p.

than
rence
void SET_DISTANCE_RETRACT(double distance)

This sets the retract distance used in the MEASURE_POINT function.

void SET_DISTANCE_SEARCH(double distance)

This sets the search distance used in the MEASURE_POINT function.

void SET_FEED_RATE(double rate)

All four canonical functions for setting feed rates (the others are SET_ROTARY_RA
SET_SCAN_RATE, SET_TRAVERSE_RATE) take a numerical argument and assume a sp
unit. All four are used in implementing the DMIS FEDRAT command [CAM-I, p. 173].

The rate is expressed in millimeters per minute. One alternative would be to ha
“SET_VELOCITY_UNITS” command (the DMIS FEDRAT statement provides for setti
units).

The feed rate is the constant rate of motion along whatever path is being followed relative
object being probed. The CMM is expected to do its best to maintain this rate during meas
operations. The rate applies to the controlled point, which is usually the probe tip (may
should be the center of a sphere which is assumed to be at the end of the probe).

void SET_PLANE(CANON_PLANE plane)

Use the plane designated by “plane” as the selected plane. The selected plane must be t
plane, the XZ-plane, or the YZ-plane. This relates to the DMIS WKPLAN statement [CAM-I
122]. The plane refers to one of the three principal planes of the current coordinate system

void SET_ROTARY_RATE(double rate)

The rate is expressed in RPM of a rotary table relative to the housing or mounting of the r
table. Also see notes for SET_FEED_RATE.

void SET_ROTARY_ZERO(double angle)

The angle of the rotary table is measured from some reference direction, (which has a d
position) at which the angle is zero. This command moves the reference direction to the
angle, which is in terms of the default reference direction and is measured in current angle
(degrees in decimal form or radians). This implements the DMIS ROTSET command [CAM
187].

After a call to this function, all arguments to cmm_do_something functions (other
SET_ROTARY_ZERO) which are rotary table angles are measured from the new refe
direction, until the end of a program or another call to SET_ROTARY_ZERO.

Any value of “angle” is OK, provided it is a double.
41

 NIST DMIS Interpreter Version 2

IS

er call

part
inate

call to
r all
gree of

all to

, or

along

ntact

, and

long a
rface
void SET_SCAN_DIST_INTERVAL
(double dist_interval, CANON_AXIS axis)

This functions and the other SET_SCAN_XXX functions, which follow, implement the DM
SCNSET command [CAM-I, p. 245].

The dist_interval is expressed in current distance units.

The interval and axis are set as given and stay set until the end of the program or until anoth
to SET_SCAN_DIST_INTERVAL.

If axis is CANON_AXIS_NONE, the distance interval is measured “along the surface of the
from one point to the next.” Otherwise the interval is measured “along the specified coord
axis.”

void SET_SCAN_INTERVAL_TYPE(CANON_INTERVAL_TYPE interval_type)

The interval_type is set as given and stays set until the end of the program or until another
SET_SCAN_INTERVAL_TYPE. The interval_type and its corresponding interval are used fo
scanning moves. Data is taken during a scanning move at the end of each interval. The de
exactness of the interval is implementation-dependent.

void SET_SCAN_RATE(double rate)

The rate is expressed in millimeters per minute.

Also see notes for SET_FEED_RATE.

void SET_SCAN_TIME_INTERVAL(double time_interval)

The time_interval is expressed in seconds.

The interval is set as given and stays set until the end of the program or until another c
SET_SCAN_TIME_INTERVAL.

void SET_SCAN_TYPE(CANON_SCAN_TYPE the_type)

The scan type is set to the given type, which may be CANON_DRAG, CANON_NONCON
CANON_PECK.

When the type is set to CANON_DRAG, scan moves are executed by dragging the sensor
the surface, in contact with the surface.

When the type is set to CANON_NONCON, scan moves are executed by any non-co
method. Examples of such methods are:

1. moving a capacitance probe along near the surface, but not in contact with the surface.

2. guiding a beam of electromagnetic radiation (light, radio waves, etc.) along the surface
measuring by detecting reflected radiation.

When the type is set to CANON_PECK, scan moves are executed by moving the sensor a
line from the initial pose to the goal pose and intermittently moving the probe to touch the su
42

 NIST DMIS Interpreter Version 2

ith a

uring

y x,
MIS

(see
ent

(see

the
of

s. The
in which
active

line,

calling
ork
ough
(with a touch trigger probe, for example) or to approach the surface but not touch it (w
capacitance probe, for example).

void SET_TRAVERSE_RATE(double rate)

The rate is expressed in millimeters per minute.

Also see notes for SET_FEED_RATE.

The traverse rate is the constant rate at which the CMM tries to move the controlled point d
goto moves.

void STRAIGHT_TRAVERSE (double x, double y, double z)

Move at traverse rate in a straight line from the current point to the final XYZ position given b
y, and z. Do not change the orientation of the probe during the move. This implements the D
GOTO command [CAM-I, p. 203]

void USE_ANGLE_UNITS(CANON_UNIT_ANGLE u)

Use the specified units for angle. The units must be one of the CANON_UNIT_ANGLE
above). This function and the other two USE_XXX_UNITS functions, which follow, implem
the DMIS UNITS command [CAM-I, p. 180].

void USE_LENGTH_UNITS(CANON_UNIT_LENGTH u)

Use the specified units for length. The units must be one of the CANON_UNIT_LENGTH
above).

void USE_TEMPERATURE_UNITS(CANON_UNIT_TEMPERATURE u)

Use the specified units for temperature. The units must be one of
CANON_UNIT_TEMPERATURE (see above). The interpreter currently makes no use
temperature, so there is not much point in setting units.

B.5 Functions to Get Feature Parameters from Arrays of Points.

These functions are for the interpreter to call to get feature parameters from arrays of point
points for a feature are assumed to be expressed in the same coordinate system as the one
the nominal feature was defined. This is not necessarily the same as the currently
coordinate system.

There is one function for each implemented feature type defined in DMIS (circle, cylinder,
plane, point).

Each function has an integer return value, which is to be used to pass status back to the
function (either OK or ERROR). OK should be returned if the function was able to do its w
without error. ERROR should be returned if the function detects problems, such as not en
43

 NIST DMIS Interpreter Version 2

. All of

s and
ominal
g the
se it.
these

y the
r the

ful to
um of
ire the
s to

the
minal

This
hich

ould
of the
good

and
se in

been

, but
e. The
ture.
ure an
n in
points being provided to fully determine the feature.

Each function has two sets of parameters: input parameters and input/output parameters
these appear as arguments to the function.

Each function has three input parameters:

a. a pointer to an array of triples of (C++) doubles. Each triple represents a point (x, y, z).

b. an integer giving the number of points in the array to use.

c. a double giving the input_tolerance.

Each function has several input/output parameters, all of which are pointers to double
represent the parameters of a feature of the given type. Each of these must be set to its n
value before the function is called. Each feature extraction function has the choice of usin
nominal data or not using it. Likewise, each function may use the input_tolerance or not u
Where several parameters are the components of a “normal” vector or a “direction” vector,
vectors must be unit vectors (within an implementation-dependent tolerance).

If the function returns OK, the values of these output doubles should have been set b
function. If the function returns error, the values of these doubles are meaningless afte
function returns.

These functions are not required to make an effort to satisfy any constraints. It might be use
add parameters to identify constraints. The most obvious constraint is to require that the s
the squares of the errors be minimized. Another reasonable constraint would be to requ
function to try to minimize the maximum error. A third possibility is to use the nominal value
constrain the assignment of output parameters. For example, if all points lie within
input_tolerance of the nominal feature, the function might be constrained to return the no
feature.

It might be useful to allow several alternative functions where only one is prototyped here.
could be done by adding a parameter which is the name (or other identifier) of a function w
can do the required work.

It would also be feasible to have a single function to do the work of all the functions here. It w
have additional input arguments to indicate the feature type and other things. The meaning
output arguments would vary according to the input feature type. This does not seem like a
thing to do.

There are other interesting issues.

1. The DMIS ALGDEF statement allows the naming of algorithms in an array of algorithms,
the GEOALG statement allows assigning an algorithm (identified by type names) for u
generating parameters for features of a given type from point sets. These have not
implemented but might be.

2. DMIS allows for the simultaneous determination of all parameters of an “actual” feature
does not allow for the parameters to be given actual values one at a time. This is very strang
DMIS OBTAIN statement allows a variable to be given the value of a parameter of a fea
What is needed is the reverse operation (SETPAR?) of giving a single parameter of a feat
actual value. If SETPAR were available, measurement algorithms could be readily writte
44

 NIST DMIS Interpreter Version 2

ircle,

axis

d the

ne and
DMIS. As DMIS is, it is hard to write measurement algorithms in DMIS.

int extract_circle(double points [][3], int how_many,
double tolerance, double * center_x, double * center_y,
double * center_z, double * normal_i, double * normal_j,
double * normal_k, double * diameter)

extract_circle finds a circle fit to the points. It produces the coordinates of the center of the c
the direction of the normal to the plane of the circle, and the diameter of the circle.

int extract_cylinder(double points [][3], int how_many,
double tolerance, double * point_x, double * point_y,
double * point_z, double * direction_x, double * direction_y,
double * direction_z, double * diameter)

extract_cylinder finds a cylinder fit to the points. It produces the coordinates of a point on the
of the cylinder, the direction of the axis, and the diameter of the cylinder.

int extract_line(double points [][3], int how_many,
double tolerance, double * point_x, double * point_y,
double * point_z, double * direction_x,
double * direction_y, double * direction_z)

extract_line finds a line fit to the points. It produces the coordinates of a point on the line an
direction of the line.

int extract_plane(double points [][3], int how_many,
double tolerance, double * point_x, double * point_y,
double * point_z, double * normal_i, double * normal_j,
double * normal_k)

extract_plane finds a plane fit to the points. It produces the coordinates of a point on the pla
a normal to the plane.

int extract_point(double points [][3], int how_many,
double tolerance, double * point_x, double * point_y,
double * point_z)

extract_point finds a single point fit to the data points.
45

 NIST DMIS Interpreter Version 2

t from
on any
puters
d the

ith the

r

the

been
Appendix C Building a Stand-Alone Executable

On a SUN SPARCstation 20, an executable file for the stand-alone interpreter may be buil
source code in under two minutes, as described below. The same procedure should work
computer running a Unix operating system that has the standard C++ libraries. On com
running other operating systems, including PCs, compilation should also be easy, provide
standard C++ libraries are available.

To make an executable, nine source code files must be placed in the same directory along w
Makefile shown in Table 5 below. The source code files are:

cmm_canon.cc - function definitions for four of five interfaces to interpreter
cmm_canon.hh - header file for all interfaces to interpreter
cmm_canon_extract1.cc - function definitions for extract_feature interface to interprete
driver.cc - user interface
fit.hh - header file for feature extraction functions
interp.cc - function definitions for interpreter kernel
interp.hh - header file for interpreter kernel
rest_world.hh - header file for dummy world model
tk_common.hh - header file with constants and aliases for clearer programming

An executable file named “dmis” is built in the same directory by giving the command:
make dmis

To use the Makefile, the definitions of COMPILE and LINK, must be changed to be correct in
environment where the compilation is being done.

In the Makefile, we are using the Centerline C++ compiler. The Gnu C++ compiler has also
used.

COMPILE = CC -c -v -g -O
LINK = CC -v
DMIS_O = driver.o interp.o cmm_canon.o cmm_canon_extract.o
cmm_canon.o: cmm_canon.cc cmm_canon.hh interp.hh

$(COMPILE) cmm_canon.cc
cmm_canon_extract.o: cmm_canon_extract1.cc fit.hh interp.hh cmm_canon.hh

$(COMPILE) +a1 -o cmm_canon_extract.o cmm_canon_extract1.cc
dmis: $(DMIS_O)

$(LINK) -o dmis $(DMIS_O) -lm
driver.o: driver.cc rest_world.hh cmm_canon.hh tk_common.hh

$(COMPILE) driver.cc
interp.o: interp.cc interp.hh cmm_canon.hh tk_common.hh

$(COMPILE) interp.cc

Table 5. Makefile for Interpreter
46

 NIST DMIS Interpreter Version 2

he user
Appendix D Transcript of a Session

This is a transcript of a session using the stand-alone interpreter. Characters entered by t
are shown inboldface . All user input is followed by a carriage return not shown here.

1} dmis
enter a command or “help”
CMD => help
COMMANDS
--
help
quit
interp_init()
interp_open_program(“program file name”)
interp_execute_next()
interp_close_program()
interp_exit()
run_program(“program file name”)
CMD => interp_open_program(“programs/short4.dms”)
interpreter not initialized, cannot open program
CMD => interp_init()
initializing dmis interpreter
CMD => interp_open_program(“programs/short4.dms”)
CMD => interp_execute_next()
 1 N1 PROGRAM_START(“hi mom”)
CMD => interp_execute_next()
 2 N2 USE_LENGTH_UNITS(CANON_UNIT_INCH)
 3 N2 USE_ANGLE_UNITS(CANON_UNIT_ANGDEC)
CMD => interp_execute_next()
 4 N3 ADVISORY(“Interpreted MODE”)
CMD => interp_execute_next()
 5 N4 PROGRAM_END()
CMD => interp_execute_next()
last statement has been executed - close program
CMD => interp_close_program()
closing current program
CMD => run_program("programs/short4.dms")
 1 N1 PROGRAM_START("hi mom")
 2 N2 USE_LENGTH_UNITS(CANON_UNIT_INCH)
 3 N2 USE_ANGLE_UNITS(CANON_UNIT_ANGDEC)
 4 N3 ADVISORY("Interpreted MODE")
 5 N4 PROGRAM_END()
CMD => interp_exit()
exiting dmis interpreter
47

 NIST DMIS Interpreter Version 2

input,
re all
eds, or

of it.

se, a
g, but

alling
Error

and

ll to
R is
the

gram,

cuted.
Then

int the

ection
or the
ror
cause
was
in

r bad

a few
are not
Appendix E Error Handling and Error Messages

E.1 Error Handling

The interpreter detects and flags most kinds of illegal input. For example, unreadable
missing words, extra words, out-of-bounds numbers, and illegal combinations of words a
detected. The interpreter does not check for axis overtravel or excessively high feeds or spe
situations where a legal command does something unfortunate, such as crashing a probe.

The basic approach to error handling is:

1. Check carefully for errors.
2. If an error occurs, identify it specifically so that the user can be informed.
3. If an error occurs, return through the function call hierarchy rather than jumping out

Errors are handled somewhat differently during DMIS file reading and execution. In either ca
function detecting an error or receiving an ERROR returned value does no further processin
returns ERROR (or ERRD or ERRN). The returned value of ERROR is passed up the c
chain, reaching the top of the chain at interp_open_program or interp_execute_next.
handling during file reading differs from error handling during execution only in the timing
method of printing error messages.

Interp_open_program is the interface function that triggers DMIS file reading. During a ca
that function, if an error is detected, one message is printed immediately. Then ERRO
returned up the chain of function calls until the build_program function is reached. It prints
line of code being read when the error occurred; then it returns ERROR to interp_open_pro
which returns ERROR to the caller.

Interp_execute_next is the interface function that causes the next DMIS statement to be exe
During a call to interp_execute_next, if an error is detected, the message is recorded.
ERROR is passed up the function call chain until interp_execute_next is reached. At that po
error message is printed and ERROR is returned to the caller.

Most error messages that can be sent during a call to interp_open_program are listed in s
E.3 below. In addition to those listed, messages may be generated by the Lex scanner
YACC parser. A few types of DMIS program syntax error will result in Lex scanner er
messages, which are short and do not explain much. Most DMIS program syntax errors will
an error in the YACC parser. When this occurs, the parser will print a line describing what it
looking for when the error occurred. For example, if “ANGDEC” is misspelled as “ANGDEW”
a UNITS statement, the following line is printed.

parse error, expecting `ANGDEC’ or `ANGDMS’ or `ANGRAD’

E.2 Sources of Error Messages

Most error messages sent by interpreter come from kernel functions when bad input o
sensory data is detected. These are listed in section E.3.

In addition:

1. The interpreter driver, which is used in the stand-alone interpreter only, also has
input error messages. They appear if the user gives an inappropriate command and
48

 NIST DMIS Interpreter Version 2

ys the

hich

ssages
sages

tected
ade by

e the

ically.
ons
me

ol
tol
go
ircle
lndr
line
lane
oint
dat
at

dat
tset
,

t
tem
ode
x
snset
_aux,

dgo
mes
les
bles
meas
meas
meas
covered here.
2. The extraction routine for each feature type has one error message, which simply sa

routine failed.
3. The interp_do_something functions include one error message, “probing failed,” w

will be printed if probing fails.

E.3 Error Messages

Error messages generated by the kernel during execution are listed below. Most of the me
represent additional checks on the input which the parser will not detect. Some of the mes
should never be triggered by any input because the errors for which they check will be de
sooner by the parser. Most of the checks that result in never triggered error messages are m
the “else” at the end of an “if, else if, ..., else if, else” construct in the C++ source code, wher
“if” and “else if’s” are intended to be exhaustive of all possibilities.

This is a list of all 162 error messages in the interpreter kernel. The list is arranged alphabet
Messages are inboldface type. Following each message is the name of the function or functi
in which it is found, printed initalics. Italic text inside an error message indicates that so
variable value will appear in that place when the message is printed.

1. axis type is not valid with a cartesian point. output_actual_tol_cort
2. axis type is not valid with a polar point . output_actual_tol_cor
3. ENDGO position differs from GOTARG position. convert_end
4. actual circle does not exist . output_actual_c
5. actual cylndr does not exist . output_actual_cy
6. actual line does not exist. find_rotation_angle, output_actual_
7. actual plane does not exist . output_actual_p
8. actual point does not exist . output_actual_p
9. actual x-origin plane does not exist. .build_transform_
10. actual y-origin plane does not exist. .build_transform_d
11. actual z-origin plane does not exist .build_transform_
12. anglenumber more than a full circle .convert_ro
13. angle between nominal and actual lines >number degrees. extract_line_cart_bnd
. extract_line_cart_unbnd
14. angle between nominal and actual normal >number degrees. extract_plane_car
15. array is full, cannot continue. record_i
16. attempt to turn off MAN mode . convert_m
17. axis to align more thannumber degrees out of plane. find_rotation_au
18. bad SNSET command . convert_
19. bad axis type complete_transform, convert_scnset, find_rotation
. output_rotate, rotate_matrix
20. bad block head for endgo. convert_en
21. bad block head for endmes. convert_end
22. bad data type for a variable. . . make_variable, read_dmis_variables, write_dmis_variab
23. bad data type namename . read_dmis_varia
24. bad direction_x . convert_pt
25. bad direction_y . convert_pt
26. bad direction_z . convert_pt
49

 NIST DMIS Interpreter Version 2

eader
rat
rat

drat
rat

probe
call

rotab
le

able
able
_text
bles
dat
line
es
ux

oint
tset
s
s
s
lize
tem
feat
circle
lue,
diam
onst
es
ylndr
tol,
_diam
tain

t_dat
_mcs
nd
sign
eat
es
feat
ircle
lndr,

s_rel
plane
27. bad expression type. .code_h
28. bad feed_units_type with mesvel. convert_fed
29. bad feed_units_type with posvel . convert_fed
30. bad feed_units_type with rotvel. convert_fe
31. bad feed_units_type with scnvel . convert_fed
32. bad probe type. .convert_
33. bad recall command . convert_recall, output_re
34. bad rotab subtype. convert_
35. bad stored valuestring for boolean variable. make_variab
36. bad stringstring for double . make_vari
37. bad stringstring for integer . make_vari
38. bad text destination. convert
39. bad variable file linetext . read_dmis_varia
40. both directions missing in datset_dat . make_datset_
41. can only intersect cartesian plane . intersect_plane_
42. can only intersect three cartesian planes . intersect_three_plan
43. cannot align the axis of rotation . find_rotation_a
44. cannot handle ANGDMS find_feature_parameter_value, find_feature_p
45. cannot handle angle_unit_typetype . convert_rotab, convert_ro
46. cannot mix X or Y reference with Z distance. build_transform_tran
47. cannot mix X or Z reference with Y distance. build_transform_tran
48. cannot mix Y or Z reference with X distance. build_transform_tran
49. cannot normalize zero vector. norma
50. cannot record null dmis_item . record_i
51. cannot record null feature . record_
52. circle has no name. make_feat_
53. circle twin does not exist.find_feature_direction, find_feature_parameter_va
. find_feature_point, output_actual_tol_cortol, output_actual_tol_
54. const has wrong type of feature. .make_c
55. current coordinate system transform missing . convert_endm
56. cylndr has no name. .make_feat_c
57. cylndr twin does not exist. find_feature_direction, output_actual_tol_cor
. output_actual_tol_cylcty, output_actual_tol
58. data type is not double . convert_assign, convert_ob
59. datset_dat has no name . make_datse
60. datset_mcs has no name. make_datset
61. direction vector length not 1 extract_cylndr_cart, extract_line_cart_unb
62. expression type is not double. convert_as
63. feature array is full, cannot continue . record_f
64. feature coordinate system transform missing . convert_endm
65. feature doubly defined . record_
66. feature not a circle. convert_const_circle, convert_meas_c
67. feature not a cylndr. .convert_const_cylndr, convert_meas_cy
. output_actual_tol_cylcty
68. feature not a line convert_const_line, convert_meas_line, make_rotate_axe
69. feature not a plane . convert_const_plane, convert_meas_
50

 NIST DMIS Interpreter Version 2

point
lnam

ine
ine
item
line
_line
ine
mes

es
t_line
ortol

line
rtol
et
rat
art
ble
e_text
ables
nst
dat

ue
plane
lue,
cortol
nes
point
int,

cart
_pol

am
es
s

ble
tab

_abs
_rel
otdef
_dat
at

nset
smn
thldef
ame
70. feature not a point. convert_meas_
71. file name is null . make_fi
72. first item in block’s item list is not a line. .find_next_l
73. first line of program is not dmismn. find_first_l
74. item doubly defined. record_
75. item is neither a line nor a block .find_next_
76. item stack is empty .find_next
77. item stack not properly initialized. find_first_l
78. last branch point is not a meas_block. make_end
79. last meas_block does not match endmes. make_endm
80. line has no name . make_fea
81. line is bound. output_actual_tol_c
82. line parallel to plane, or nearly so. intersect_plane_
83. line twin does not exist find_feature_direction, output_actual_tol_co
84. negative anglenumber for rotary table convert_rotab, convert_rots
85. negative velocity given in fedrat . convert_fed
86. normal vector length not 1. .extract_circle_cart, extract_plane_c
87. null or empty string variable name. make_varia
88. null text string . mak
89. null variable name. .make_decl, read_dmis_vari
90. number of features and actualities differ . convert_co
91. opposed directions used in datset . make_datset_
92. parameter numbernumber out of bounds find_feature_parameter_val
93. plane has no name. make_feat_
94. plane twin does not exist.find_feature_direction, find_feature_parameter_va
. find_feature_point, output_actual_tol_
95. planes parallel or nearly so . intersect_two_pla
96. point has no name. .make_feat_
97. point twin does not exist.find_feature_parameter_value, find_feature_po
. output_actual_tol_cortol
98. probe_cart name is null . make_probe_
99. probe_pol name is null .make_probe
100. program missing from interp model. close_progr
101. program variablename has no saved value . read_dmis_variabl
102. program variablename type isn’t stored type read_dmis_variable
103. reference toname not found find_feature_all, find_reference, find_varia
104. rotary table angle too large . convert_ro
105. rotate_axes_abs has no name. make_rotate_axes
106. rotate_axes_rel has no name . make_rotate_axes
107. rotdef has no name . make_r
108. same axis used twice in datset . make_datset
109. same datum used for two directions in datset . make_datset_d
110. scnset type is not DIST or TIME. convert_sc
111. string not allocated for dmismn. .make_dmi
112. thldef name is null. make_
113. tol name is null . insert_tol_n
51

 NIST DMIS Interpreter Version 2

cle
ndr
line
ane
trans
ecall
units
tdef

les,

is,

nits
t_line
onst
rtol
atset
tion
ture,
_diam
drat
goto
nits
her
mes
omp
orig
rtol

tting
nits
nce
item
plan
btain
lue,

ader
ble

btain
iable
le
rat
rat
es
es

t

114. too few points (number) for circle. convert_const_circle, convert_meas_cir
115. too few points (number)for cylndr convert_const_cylndr, convert_meas_cyl
116. too few points (number) for line convert_const_line, convert_meas_
117. too few points (number) for plane convert_const_plane, convert_meas_pl
118. trans has no name. .make_
119. transform missing. convert_r
120. two UNITS lines used . make_
121. two rotary tables defined . make_ro
122. unable to open filename for reading , preprocess_dmis, read_dmis_variab
. read_in_dmis
123. unable to open filename for writing convert_filnam, preprocess_dm
. .write_dmis_variables
124. unknown angle_unit_type . convert_u
125. unknown command. .execute_nex
126. unknown const type . convert_c
127. unknown coordinate type. output_actual_tol_co
128. unknown datset subtype. convert_d
129. unknown definition command. .convert_defini
130. unknown feature type. convert_feat, output_actual_fea
. output_actual_tol_cortol, output_actual_tol
131. unknown feed_set_type . convert_fe
132. unknown goto type .convert_
133. unknown length_unit_type. convert_u
134. unknown line_other command . convert_line_ot
135. unknown meas subtype. convert_end
136. unknown on_off type . convert_prc
137. unknown origin type in datset. save_datset_
138. unknown point type . output_actual_tol_co
139. unknown setting command . convert_se
140. unknown temperature_unit_type . convert_u
141. unknown tolerance type. output_actual_tolera
142. unknown vform type. save_disply_
143. unknown wkplan_type . convert_wk
144. unset value obtained. convert_o
145. unusable feature typefind_feature_direction, find_feature_parameter_va
. find_feature_point
146. using unset variable double .code_he
147. variable doubly defined . record_varia
148. variable is not type double. make_assign, make_o
149. variable not of typetype . make_ex_double_var
150. variables array is full, cannot continue. record_variab
151. velocity needed but missing in fedrat . convert_fed
152. velocity provided in fedrat - should not be. convert_fed
153. wrong number (number) of points measured . convert_endm
154. wrong number of point measurements. make_endm
155. wrong number of points (number) for point - must be 1 convert_meas_poin
52

 NIST DMIS Interpreter Version 2

orig
acc
orig
acc
orig
acc
oto
156. x origin used twice in DATSET . save_datset_
157. x origin used twice in TRANS .dmis_y
158. y origin used twice in DATSET . save_datset_
159. y origin used twice in TRANS .dmis_y
160. z origin used twice in DATSET . save_datset_
161. z origin used twice in TRANS .dmis_y
162. zero length direction vector used. .convert_g
53

 NIST DMIS Interpreter Version 2

n.The
s the
inued.

b or
racters
IS spec.
In the

lash

hich
y also
ice

an
digit
L, a

be a
le.

ingle
Appendix F YACC and Lex Specifications

F.1 Introduction

The YACC and Lex specifications used by the DMIS interpreter are discussed in this sectio
YACC specification does not deal with comments or line continuations. The interpreter run
DMIS programs through a pre-processor to remove comments and join lines which are cont
The parser built from this YACC specification takes the pre-processed file as input.

F.2 Lex Scanner

The lex scanner that works with the YACC specification is straightforward. White space (ta
space) is allowed between all groups of characters that are tokens. Letters in groups of cha
that make tokens are treated the same in upper case or lower case, as stipulated by the DM
All the tokens are spelled as shown in the section below that lists tokens, except as follows.
items below, an alphanumeric character is a letter, digit, or underscore.

F.2.1 Changes from the First Version

1. The definition of a label was revised since integers may be used as labels.

2. ASSIGN, BOOL, COMMON, DECL, DOUBLE, INTGR, and OBTAIN were added.

3. The ability to deal with parentheses around expressions was added.

F.2.2 Summary of Lex Rules

1. All tokens that are DMIS major words and take a following slash are spelled with the s
included.

2. COMMA_V is a comma followed by a V.

3. D2 is spelled “2D”.

4. D3 is spelled “3D”.

5. LABEL_OR_INTEGER is one or more digits.

6. LABEL_OR_VARIABLE is a letter followed by zero to five alphanumeric characters.

7. LABEL_SURE is an alphanumeric character followed by one to nine characters, each of w
is an alphanumeric character or a minus sign (dash). As defined, some LABEL_SUREs ma
be a LABEL_OR_INTEGER. LABEL_SURE will not be recognized when there is a cho
because it is defined later in the lex file.

8. REAL is an optional plus or minus sign followed by zero to many digits, followed by
optional decimal point, followed by zero to many digits (provided that there is at least one
somewhere in the number). As defined, some sequences of digits qualify as a REA
LABEL_SURE, and a LABEL_OR_INTEGER. When a sequence of digits is read that could
REAL or something else, REAL will not be recognized because it is defined last in the lex fi

10. TEXT_STRING is a single quote, followed by any number of characters that are not s
quotes, followed by a single quote.

11. X_DIR is spelled “-XDIR”.
54

 NIST DMIS Interpreter Version 2

MIS
y violate
lt in

first

ich is
uest.

f the
s in

ust
third

rned

real-

the

have
12. Y_DIR is spelled “-YDIR”.

13. Z_DIR is spelled “-ZDIR”.

F.3 YACC

These YACC grammar rules do not include all constraints included in DMIS. Some D
statements that are readable under these grammar rules will not be executable because the
constraints. Almost all constraint violations will be detected by the interpreter and will resu
error messages. The error messages are included in Appendix E.

The topmost grammatical unit is “program,” so the entire DMIS program is read at once. The
grammar rule is for “program”. The rest of the rules are arranged alphabetically.

The action portions of the YACC rules have been deleted since they are C++ code wh
difficult to understand. The full YACC specification with actions included is available on req

F.3.1 Changes from First Version

The differences between this YACC specification and the one used for the first version o
interpreter and shown in [Kramer2] were driven primarily by the need to implement variable
Version 2. In addition, some tidying up was done.

1. The definition of a program has been revised to by (1) requiring that if FILNAM is used, it m
be the second statement and (2) if DECL is used for declaring variables, it must be the
statement if FILNAM is used or the second statement, if not.

2. The return value of an action may be of various data types. In the first version, all retu
values were doubles.

3. Almost everywhere “real” was used in the first version, Version 2 uses ex_real (meaning a
valued expression).

4. The DMIS main words ASSIGN, DECL, and OBTAIN were added to the specification.

5. The DMIS secondary words BOOL, COMMON, DOUBLE, and INTGR were added to
specification.

6. All C++ code not part of an action has been removed and placed in interp.cc.

7. Almost all actions have been changed to use function calls where the first version may
used several lines of low-level C++ code.
55

 NIST DMIS Interpreter Version 2
F.3.2 Formal Specification

%union {
 int bval; /* compiler complains if BOOL is used in place of int */
 double dval;
 int ival;
 ex_double * exdptr;
}

%type <bval> d_type
 s_type

%type <dval> real

%type <exdptr> ex_real

%type <ival> angle_unit axis_id axis_type
 bound_type
 data_type dimension_type disply_type
 f_type feature_type
 in_out_type
 length_unit
 on_off_type origin output_destination
 plane point_type probe_type
 rotary_axis
 scnset_type snset_type
 temperature_unit tol_code
 update_type
 velocity_type velocity_unit
 wise_type_absl wise_type_incr

/* the following types are needed to make bison happy, but are not used */

%type <ival> datset_items
 f_item f_list

%start program

%token <ival> A ABSL ACT ALL AMT ANGDEC ANGDMS ANGLE ANGRAD
%token <ival> APPRCH ARC ASSIGN AUTO AVG
%token <ival> BF BND BOOL
%token <ival> CART CCW CHORD CIRCLE CLRSRF CM
%token <ival> COMM COMMA_V COMMON CONST CORTOL CW CYLCTY CYLNDR
%token <ival> D DA DAT DATDEF DATSET DECL DEFALT DEPTH DEV
%token <ival> DIAM DISPLY DIST DMIS DMISMN DOUBLE DRAG D2 D3
%token <ival> ENDFIL ENDGO ENDMES
%token <ival> F FA FEAT FEDRAT FEET FILNAM FIXED FLAT FORCE
56

 NIST DMIS Interpreter Version 2
%token <ival> GOTARG GOTO
%token <ival> HIGH HIST
%token <ival> INCH INCR INDEX INNER INTGR IPM
%token <ival> LABEL_OR_INTEGER LABEL_OR_VARIABLE LABEL_SURE LINE LMC

LOW
%token <ival> M MAN MCS MEAS MESVEL MM MMC MODE MPM
%token <ival> NOM NONCON
%token <ival> OBTAIN OFF ON OPER OUTER OUTFIL OUTPUT
%token <ival> PARLEL PCENT PECK PERP PLANE PLOT POINT POL POS
%token <ival> POSVEL PRCOMP PRINT PROBE PROG PTMEAS
%token <ival> RADIUS
%token <dval> REAL
%token <ival> RECALL RETRCT RFS ROTAB ROTATE ROTDEF
%token <ival> ROTNUL ROTORG ROTSET ROTTOT ROTVEL RPM RT
%token <ival> S SA SAVE SCNMOD SCNSET SCNVEL SEARCH SHORT
%token <ival> SNSDEF SNSET SNSLCT STAT STOR
%token <ival> T TA TEMPC TEMPF TERM TEXT TEXT_STRING
%token <ival> TH THLDEF TIME TOL TRANS
%token <ival> UNBND UNITS
%token <ival> V VFORM
%token <ival> WKPLAN
%token <ival> X_DIR XAXIS XDIR XORIG XYPLAN
%token <ival> Y_DIR YAXIS YDIR YORIG YZPLAN
%token <ival> Z_DIR ZAXIS ZDIR ZORIG ZXPLAN
%%

program : dmismn filnams decls blocks endfil;

angle_unit : ANGDEC
| ANGDMS
| ANGRAD;

assign : LABEL_OR_VARIABLE ’=’ ASSIGN ex_real ’\n’;

axis_id : XDIR
| X_DIR
| YDIR
| Y_DIR
| ZDIR
| Z_DIR;

axis_type : ANGLE
| RADIUS
| XAXIS
| YAXIS
| ZAXIS;
57

 NIST DMIS Interpreter Version 2
block : one_liner
| many_liner;

blocks : /* empty */
| blocks block;

bound_type : BND
| UNBND;

const_bf : CONST feature_type ‘,’ F label ‘,’ BF ‘,’ FA label ‘,’ f_list ‘\n’;

d_type : D
| DA;

data_type : BOOL
| DOUBLE
| INTGR;

datdef : DATDEF f_type label ‘,’ DAT label ‘\n’;

datset : D label ‘=’ DATSET MCS ‘\n’
| D label ‘=’ DATSET datset_items;

datset_do : datset_dir
| datset_do ‘,’ datset_orig;

datset_dir : XDIR
| X_DIR
| YDIR
| Y_DIR
| ZDIR
| Z_DIR;

datset_items : DAT label ‘,’ datset_do ‘\n’
| DAT label ‘,’ datset_do ‘,’ DAT label ‘,’ datset_do ‘\n’
| DAT label ‘,’ datset_do ‘,’ DAT label ‘,’ datset_origs ‘\n’
| DAT label ‘,’ datset_do ‘,’ DAT label ‘,’ datset_do ‘,’ DAT label ‘,’ datset_origs ‘\n’
| DAT label ‘,’ datset_do ‘,’ DAT label ‘,’ datset_origs ‘,’ DAT label ‘,’ datset_origs ‘\n’
| DAT label ‘,’ datset_do ‘,’ DAT label ‘,’ datset_origs ‘,’ DAT label ‘,’ datset_do ‘\n’;

datset_origs : datset_orig
| datset_origs ‘,’ datset_orig;

datset_orig : XORIG
| YORIG
| ZORIG;

decl : DECL COMMON ’,’ data_type ’,’ variable_names ’\n’;

decls : /* empty */
| decls decl;
58

 NIST DMIS Interpreter Version 2
definition : datdef
| feat
| thldef
| probe_definition
| rotdef
| tolerance_definition;

dimension_type : D2
| D3;

disply : DISPLY OFF ‘\n’
| DISPLY disply_list ‘\n’;

disply_item : disply_type ‘,’ DMIS
| disply_type COMMA_V label
| disply_type ‘,’ DMIS COMMA_V label;

disply_list : disply_item
| disply_list ‘,’ disply_item;

disply_type : COMM
| PRINT
| STOR
| TERM;

dmismn : DMISMN TEXT_STRING ‘\n’;

endfil : ENDFIL;

endgo : ENDGO;

endmes : ENDMES;

ex_real : ’(’ LABEL_OR_VARIABLE ’)’
| real
| ’(’ ex_real ’)’;

f_item : f_type label;

f_list : f_item
| f_list ‘,’ f_item;

f_type : F
| FA;

feat_circle : F label ‘=’ FEAT CIRCLE ‘,’ in_out_type ‘,’ point_type ‘,’
ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘\n’;

feat_cylndr : F label ‘=’ FEAT CYLNDR ‘,’ in_out_type ‘,’ point_type ‘,’
ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘\n’

| F label ‘=’ FEAT CYLNDR ‘,’ in_out_type ‘,’ point_type ‘,’ ex_real ‘,’
ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘\n’;
59

 NIST DMIS Interpreter Version 2
feat_line : F label ‘=’ FEAT LINE ‘,’ bound_type ‘,’ point_type ‘,’
ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘,’
ex_real ‘,’ ex_real ‘,’ ex_real ‘\n’;

feat_plane : F label ‘=’ FEAT PLANE ‘,’ point_type ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘,’
ex_real ‘,’ ex_real ‘,’ ex_real ‘\n’;

feat_point : F label ‘=’ FEAT POINT ‘,’ point_type ‘,’
ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘\n’;

feat : feat_circle
| feat_cylndr
| feat_line
| feat_plane
| feat_point;

feature_type : CIRCLE
| CYLNDR
| LINE
| PLANE
| POINT;

fedrat : FEDRAT velocity_type ‘,’ velocity_unit ‘\n’
| FEDRAT velocity_type ‘,’ velocity_unit ‘,’ ex_real ‘\n’;

filnam : FILNAM TEXT_STRING ‘\n’;

gotarg : GOTARG ex_real ‘,’ ex_real ‘,’ ex_real ‘\n’;

gotarg_block : gotarg gotos endgo;

goto : GOTO ex_real ‘,’ ex_real ‘,’ ex_real ‘\n’
| GOTO INCR ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘\n’;

gotos : goto /* specs require at least one, p. 202 */
| gotos goto;

in_out_type : INNER
| OUTER;

label : ’(’ LABEL_SURE ’)’
| ’(’ LABEL_OR_VARIABLE ’)’
| ’(’ LABEL_OR_INTEGER ’)’;

length_unit : CM
| FEET
| INCH
| M
| MM;

many_liner : meas_block
| gotarg_block;

meas : MEAS feature_type ‘,’ F label ‘,’ LABEL_OR_INTEGER ‘\n’;
60

 NIST DMIS Interpreter Version 2
meas_block : meas meas_goes endmes;

meas_goes : /* empty */
| meas_goes ptmeas
| meas_goes goto;

mode : MODE MAN ‘\n’
| MODE PROG ‘,’ MAN ‘\n’
| MODE AUTO ‘,’ MAN ‘\n’
| MODE AUTO ‘,’ PROG ‘,’ MAN ‘\n’;

obtain : LABEL_OR_VARIABLE ’=’ OBTAIN f_type label ’,’ LABEL_OR_INTEGER ’\n’;

on_off_type : ON
| OFF;

one_liner : const_bf
| definition
| disply
| goto
| output
| recall
| rotab
| rotate
| save
| setting
| snslct
| text
| trans
| units
| vform;

origin : XORIG
| YORIG
| ZORIG;

output : OUTPUT FA label ta_list ‘\n’;

output_destination : MAN
| OPER
| OUTFIL;

plane : XYPLAN
| YZPLAN
| ZXPLAN;

point_type : CART
| POL;

prcomp : PRCOMP on_off_type ‘\n’;
61

 NIST DMIS Interpreter Version 2

’;
probe_definition : S label ‘=’ SNSDEF PROBE ‘,’ probe_type ‘,’
point_type ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘,’
ex_real ‘,’ ex_real ‘,’ ex_real ‘\n’;

probe_type : FIXED
| INDEX;

ptmeas : PTMEAS point_type ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘\n’
| PTMEAS point_type ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘,’

ex_real ‘,’ ex_real ‘\n’;

real : LABEL_OR_INTEGER
| REAL;

recall : RECALL d_type label ‘\n’
| RECALL FA label ‘\n’
| RECALL s_type label ‘\n’
| RECALL RT label ‘\n’;

rotab : ROTAB RT label ‘,’ INCR ‘,’ wise_type_incr ‘,’ update_type ‘,’ ex_real ‘\n’
| ROTAB RT label ‘,’ ABSL ‘,’ wise_type_absl ‘,’ update_type ‘,’ ex_real ‘\n’;

rotary_axis : XAXIS
| YAXIS
| ZAXIS;

rotdef : RT label ‘=’ ROTDEF ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘\n

rotset : ROTSET RT label ‘,’ ex_real ‘\n’;

rotate : D label ‘=’ ROTATE rotary_axis ‘,’ ex_real ‘\n’
| D label ‘=’ ROTATE rotary_axis ‘,’ f_type label ‘,’ axis_id ‘\n’;

s_type : S
| SA;

save : SAVE d_type label ‘\n’
| SAVE FA label ‘\n’
| SAVE s_type label ‘\n’
| SAVE RT label ‘\n’;

scnmod : SCNMOD on_off_type ‘\n’;

scnset : scnset_dist
| scnset_chord
| scnset_time
| scnset_angle
| scnset_defalt;

scnset_angle : SCNSET scnset_type ‘,’ ANGLE ‘,’ ex_real ‘\n’;

scnset_chord : SCNSET scnset_type ‘,’ CHORD ‘,’ ex_real ‘\n’
| SCNSET scnset_type ‘,’ CHORD ‘,’ ex_real ‘,’ ex_real ‘\n’;

scnset_defalt : SCNSET scnset_type ‘,’ DEFALT ‘\n’;
62

 NIST DMIS Interpreter Version 2
scnset_dist : SCNSET scnset_type ‘,’ DIST ‘,’ ex_real ‘\n’
| SCNSET scnset_type ‘,’ DIST ‘,’ ex_real ‘,’ rotary_axis ‘\n’;

scnset_time : SCNSET scnset_type ‘,’ TIME ‘,’ ex_real ‘\n’;

scnset_type : PECK
| DRAG
| NONCON;

setting : assign
| datset
| fedrat
| mode
| obtain
| prcomp
| rotset
| scnmod
| scnset
| snset
| wkplan;

snset : SNSET snset_type ‘,’ ex_real ‘\n’;

snset_type : APPRCH
| CLRSRF
| DEPTH
| RETRCT
| SEARCH;

snslct : SNSLCT S label ‘\n’;

ta_item : ‘,’ TA label;

ta_list : /* empty */
| ta_list ta_item;

temperature_unit : TEMPC
| TEMPF;

text : TEXT output_destination ‘,’ TEXT_STRING ‘\n’;

thldef : TH label ‘=’ THLDEF S label ‘,’ LABEL_OR_INTEGER ‘\n’;

tolerance_definition : tol_cortol
| tol_cylcty
| tol_diam
| tol_flat
| tol_parlel
| tol_perp
| tol_pos;
63

 NIST DMIS Interpreter Version 2
tol_code : LMC
| MMC
| RFS;

tol_cortol : T label ‘=’ TOL CORTOL ‘,’ axis_type ‘,’ ex_real ‘,’ ex_real ‘\n’;

tol_cylcty : T label ‘=’ TOL CYLCTY ‘,’ ex_real ‘\n’;

tol_diam : T label ‘=’ TOL DIAM ‘,’ ex_real ‘,’ ex_real ‘\n’
| T label ‘=’ TOL DIAM ‘,’ ex_real ‘,’ ex_real ‘,’ AVG ‘\n’;

tol_flat : T label ‘=’ TOL FLAT ‘,’ ex_real ‘\n’;

tol_parlel : T label ‘=’ TOL PARLEL ‘,’ ex_real ‘,’ tol_code ‘,’ DAT label ‘,’ tol_code ‘\n’;

tol_perp : T label ‘=’ TOL PERP ‘,’ ex_real ‘,’ tol_code ‘,’ DAT label ‘,’ tol_code ‘\n’;

tol_pos : tol_pos0
| tol_pos1
| tol_pos2
| tol_pos3;

tol_pos0 : T label ‘=’ TOL POS ‘,’ dimension_type ‘,’ ex_real ‘,’ tol_code ‘\n’;

tol_pos1 : T label ‘=’ TOL POS ‘,’ dimension_type ‘,’ ex_real ‘,’ tol_code ‘,’
DAT label ‘,’ tol_code ‘\n’;

tol_pos2 : T label ‘=’ TOL POS ‘,’ dimension_type ‘,’ ex_real ‘,’ tol_code ‘,’
DAT label ‘,’ tol_code ‘,’ DAT label ‘,’ tol_code ‘\n’;

tol_pos3 : T label ‘=’ TOL POS ‘,’ dimension_type ‘,’ ex_real ‘,’ tol_code ‘,’
DAT label ‘,’ tol_code ‘,’ DAT label ‘,’ tol_code ‘,’ DAT label ‘,’ tol_code ‘\n’;

trans : D label ‘=’ TRANS trans_spec ‘\n’
| D label ‘=’ TRANS trans_spec ‘,’ trans_spec ‘\n’
| D label ‘=’ TRANS trans_spec ‘,’ trans_spec ‘,’ trans_spec ‘\n’;

trans_spec : origin ‘,’ ex_real
| origin ‘,’ f_type label;

units : UNITS length_unit ‘,’ angle_unit ‘\n’
| UNITS length_unit ‘,’ angle_unit ‘,’ temperature_unit ‘\n’;

update_type : ROTNUL
| ROTORG
| ROTTOT;

variable_name : LABEL_OR_VARIABLE;

variable_names : variable_name
| variable_names ’,’ variable_name;

velocity_type : MESVEL
| POSVEL
| ROTVEL
| SCNVEL;
64

 NIST DMIS Interpreter Version 2
velocity_unit : DEFALT
| HIGH
| IPM
| LOW
| MPM
| PCENT
| RPM;

vform : V label ‘=’ VFORM v_list ‘\n’;

v_list : v_type
| v_list ‘,’ v_type;

v_type : ACT
| ALL
| AMT
| DEV
| HIST
| NOM
| PLOT
| STAT;

wise_type_absl : CCW
| CW
| SHORT;

wise_type_incr : CCW
| CW;

wkplan : WKPLAN plane ‘\n’;

%%
65

 NIST DMIS Interpreter Version 2
66

	The NIST DMIS Interpreter Version 2
	1.0 Introduction 1
	1.1 Background 1
	1.1.1 Architecture Project 1
	1.1.2 Enhanced Machine Controller Project 1
	1.1.3 Next Generation Inspection System Project 1
	1.1.4 DMIS Interpreter First Version 1
	1.1.5 DMIS Interpreter Version 2 2

	1.2 Overview of the DMIS Language 2
	1.2.1 Introduction 2
	1.2.2 Statements, Lines, Major Words, Minor Words 3
	1.2.3 Programs 3
	1.2.4 Program Subunits 3
	1.2.5 Geometric Features 3
	1.2.6 Tolerances 4
	1.2.7 Comments 4

	2.0 Overview of the Interpreter 4
	2.1 Interpreter kernel 4
	2.2 Interpreter interfaces 5
	2.2.1 Telling the Interpreter What to Do 5
	2.2.2 Getting Data from the Interpreter 6
	2.2.3 Telling the CMM What to Do 6
	2.2.4 Getting Data from the External World 7
	2.2.5 Extracting Feature Parameters from Arrays of Points 8

	2.3 Integrated or Stand-Alone Operation 8
	2.3.1 Stand-alone 9
	2.3.2 Integrated with EMC Control System 10

	2.4 Major DMIS Interpreter Design Decisions 11
	2.5 Division of Responsibilities 12
	2.5.1 Control 12
	2.5.2 Languages 12
	2.5.3 DMIS output 12
	2.5.4 Coordinate systems 12
	2.5.5 Features, Tolerances, and Variables 12
	2.5.6 Units 12
	2.5.7 Sensors 13

	2.6 Variables and Expressions 13
	2.7 How the Interpreter Runs 14
	2.8 Interpreter Model 16
	2.9 Speed 16
	2.10 Limitations of the Interpreter 16

	3.0 Input 16
	3.1 Overview 16
	3.1.1 Case, White Space, Line Continuations, Comments. 16

	3.2 Input Statements 17
	3.2.1 Format of a DMIS Statement 17
	3.2.2 Numbers 18
	3.2.3 Variables 18
	3.2.4 Line Number 18

	3.3 Words Recognized 18

	4.0 Conclusion 20
	References 21

	Appendix A Software Details 22
	A.1 Overall Approach 22
	A.1.1 Major Change from First Version 22
	A.1.2 DMIS Object Classes and Access Functions 22
	A.1.3 YACC and lex 22
	A.1.4 Read First, Then Execute 23

	A.2 Software Modules 25
	A.2.1 Stand-Alone and Integrated 25
	A.2.2 Stand-Alone Only 25
	A.2.3 Integrated Only 26

	A.3 Source Code Documentation 26

	Appendix B Interpreter Interface Functions 27
	B.1 Functions That Extract Data From the Interpreter 27
	B.2 Functions for the Interpreter to Call to Get World Model Data 27
	B.3 Functions to Tell the Interpreter What to Do 28
	B.4 Functions to Tell the Rest of the System What to Do. 30
	B.4.1 Discussion and Issues 30
	B.4.2 Types 31
	B.4.3 Functions 33

	B.5 Functions to Get Feature Parameters from Arrays of Points. 43

	Appendix C Building a Stand-Alone Executable 46
	Appendix D Transcript of a Session 47
	Appendix E Error Handling and Error Messages 48
	E.1 Error Handling 48
	E.2 Sources of Error Messages 48
	E.3 Error Messages 49

	Appendix F YACC and Lex Specifications 54
	F.1 Introduction 54
	F.2 Lex Scanner 54
	F.2.1 Changes from the First Version 54
	F.2.2 Summary of Lex Rules 54

	F.3 YACC 55
	F.3.1 Changes from First Version 55
	F.3.2 Formal Specification 56

	Figure 1. Interpreter Interfaces 5
	Figure 2. Stand-Alone Interpreter 10
	Figure 3. Interpreter Integrated in Controller 11
	Figure 4. Sample DMIS_variables File 13
	Figure 5. DMIS Class Hierarchy 24
	Table 1. CMM Canonical Commands 7
	Table 2. Interpreter Internal Model 15
	Table 3. DMIS Words Implemented in the Interpreter 19
	Table 4. Interpreter State Transitions 29
	Table 5. Makefile for Interpreter 46

	1 Introduction
	1.1 Background
	1.1.1 Architecture Project
	1.1.2 Enhanced Machine Controller Project
	1.1.3 Next Generation Inspection System Project
	1.1.4 DMIS Interpreter First Version
	1.1.5 DMIS Interpreter Version 2

	1.2 Overview of the DMIS Language
	1.2.1 Introduction
	1.2.2 Statements, Lines, Major Words, Minor Words
	1.2.3 Programs
	1.2.4 Program Subunits
	1.2.5 Geometric Features
	1.2.6 Tolerances
	1.2.7 Comments

	2 Overview of the Interpreter
	2.1 Interpreter kernel
	2.2 Interpreter interfaces
	Figure 1. Interpreter Interfaces
	2.2.1 Telling the Interpreter What to Do
	2.2.2 Getting Data from the Interpreter
	2.2.3 Telling the CMM What to Do
	Table 1. CMM Canonical Commands

	2.2.4 Getting Data from the External World
	2.2.5 Extracting Feature Parameters from Arrays of Points

	2.3 Integrated or Stand-Alone Operation
	2.3.1 Stand-alone
	Figure 2. Stand-Alone Interpreter

	2.3.2 Integrated with EMC Control System
	Figure 3. Interpreter Integrated in Controller

	2.4 Major DMIS Interpreter Design Decisions
	2.5 Division of Responsibilities
	2.5.1 Control
	2.5.2 Languages
	2.5.3 DMIS output
	2.5.4 Coordinate systems
	2.5.5 Features, Tolerances, and Variables
	2.5.6 Units
	2.5.7 Sensors

	2.6 Variables and Expressions
	Figure 4. Sample DMIS_variables File

	2.7 How the Interpreter Runs
	Table 2. Interpreter Internal Model

	2.8 Interpreter Model
	2.9 Speed
	2.10 Limitations of the Interpreter

	3 Input
	3.1 Overview
	3.1.1 Case, White Space, Line Continuations, Comments.

	3.2 Input Statements
	3.2.1 Format of a DMIS Statement
	3.2.2 Numbers
	3.2.3 Variables
	3.2.4 Line Number

	3.3 Words Recognized
	Table 3. DMIS Words Implemented in the Interpreter

	4 Conclusion
	References
	Appendix A Software Details
	A.1 Overall Approach
	A.1.1 Major Change from First Version
	A.1.2 DMIS Object Classes and Access Functions
	A.1.3 YACC and lex
	A.1.4 Read First, Then Execute
	Figure 5. DMIS Class Hierarchy

	A.2 Software Modules
	A.2.1 Stand-Alone and Integrated
	A.2.2 Stand-Alone Only
	A.2.3 Integrated Only

	A.3 Source Code Documentation

	Appendix B Interpreter Interface Functions
	B.1 Functions That Extract Data From the Interpreter
	int INTERP_LINE()
	double INTERP_SENSOR_TIP_DIAMETER(char * sensor_name)

	B.2 Functions for the Interpreter to Call to Get World Model Data
	typedef int CANON_MEASUREMENT_STATUS
	#define CANON_OK 1
	CANON_MEASUREMENT_STATUS MEASURE_POINT_STATUS()
	double CANON_PROBE_X()
	double CANON_PROBE_Y()
	double CANON_CURRENT_X()
	double CANON_CURRENT_Y()
	double CANON_LOG_X(char * log_name, int n)
	double CANON_LOG_Y(char * log_name, int n)

	B.3 Functions to Tell the Interpreter What to Do
	Table 4. Interpreter State Transitions
	int interp_close_program()
	int interp_execute_next()
	int interp_exit()
	int interp_init()
	int interp_open_program(char * dmis_file_name)

	B.4 Functions to Tell the Rest of the System What to Do.
	B.4.1 Discussion and Issues
	B.4.2 Types
	typedef int CANON_PLANE
	#define CANON_PLANE_XY 1
	#define CANON_PLANE_YZ 2
	typedef int CANON_UNIT_ANGLE
	#define CANON_UNIT_ANGDEC 1
	#define CANON_UNIT_ANGDMS 2
	typedef int CANON_UNIT_LENGTH
	#define CANON_UNIT_CM 1
	#define CANON_UNIT_FEET 2
	#define CANON_UNIT_INCH 3
	#define CANON_UNIT_M 4
	typedef int CANON_UNIT_TEMPERATURE
	#define CANON_UNIT_TEMPC 1
	typedef int CANON_DIRECTION
	#define CANON_CLOCKWISE 1
	typedef int CANON_SCAN_TYPE
	#define CANON_DRAG 1
	#define CANON_NONCON 2
	typedef int CANON_INTERVAL_TYPE
	#define CANON_DIST 1
	typedef int CANON_AXIS
	#define CANON_AXIS_X 1
	#define CANON_AXIS_Y 2
	#define CANON_AXIS_Z 3

	B.4.3 Functions
	void ADVISORY(char * message)
	void ASSIGN_SENSOR_TO_SLOT (char * sensor_name, int slot_number)
	void CATCH_UP()
	void CHANGE_SENSOR(char * sensor_name)
	void DEFINE_SENSOR(char * sensor_name, double x_offset, double y_offset, double z_offset, double ...
	void LOGGING_OFF()
	void LOGGING_ON(char * log_name)
	void MEASURE_POINT (double x, double y, double z, double i, double j, double k)
	void MESSAGE(char * text)
	void PROBE_RADIUS_COMPENSATION_OFF()
	void PROGRAM_END()
	void PROGRAM_START(char * text)
	void ROTATE_TABLE (double position, CANON_DIRECTION wiseness)
	void SCAN_TO_POSE (double x, double y, double z, double i, double j, double k)
	void SET_COORDINATE_SYSTEM(double origin_x, double origin_y, double origin_z, double z_axis_i, d...
	void SET_DISTANCE_APPROACH(double distance)
	void SET_DISTANCE_CLRSRF(double distance)
	void SET_DISTANCE_DEPTH(double distance)
	void SET_DISTANCE_RETRACT(double distance)
	void SET_DISTANCE_SEARCH(double distance)
	void SET_FEED_RATE(double rate)
	void SET_PLANE(CANON_PLANE plane)
	void SET_ROTARY_RATE(double rate)
	void SET_ROTARY_ZERO(double angle)
	void SET_SCAN_DIST_INTERVAL (double dist_interval, CANON_AXIS axis)
	void SET_SCAN_INTERVAL_TYPE(CANON_INTERVAL_TYPE interval_type)
	void SET_SCAN_RATE(double rate)
	void SET_SCAN_TIME_INTERVAL(double time_interval)
	void SET_SCAN_TYPE(CANON_SCAN_TYPE the_type)
	void SET_TRAVERSE_RATE(double rate)
	void STRAIGHT_TRAVERSE (double x, double y, double z)
	void USE_ANGLE_UNITS(CANON_UNIT_ANGLE u)
	void USE_LENGTH_UNITS(CANON_UNIT_LENGTH u)
	void USE_TEMPERATURE_UNITS(CANON_UNIT_TEMPERATURE u)

	B.5 Functions to Get Feature Parameters from Arrays of Points.
	int extract_circle(double points [][3], int how_many, double tolerance, double * center_x, double...
	int extract_cylinder(double points [][3], int how_many, double tolerance, double * point_x, doubl...
	int extract_line(double points [][3], int how_many, double tolerance, double * point_x, double * ...
	int extract_plane(double points [][3], int how_many, double tolerance, double * point_x, double *...
	int extract_point(double points [][3], int how_many, double tolerance, double * point_x, double *...

	Appendix C Building a Stand-Alone Executable
	Table 5. Makefile for Interpreter

	Appendix D Transcript of a Session
	Appendix E Error Handling and Error Messages
	E.1 Error Handling
	E.2 Sources of Error Messages
	E.3 Error Messages
	1. axis type is not valid with a cartesian point output_actual_tol_cortol
	2. axis type is not valid with a polar point output_actual_tol_cortol
	3. ENDGO position differs from GOTARG position convert_endgo
	4. actual circle does not exist output_actual_circle
	5. actual cylndr does not exist output_actual_cylndr
	6. actual line does not exist find_rotation_angle, output_actual_line
	7. actual plane does not exist output_actual_plane
	8. actual point does not exist output_actual_point
	9. actual x-origin plane does not exist build_transform_dat
	10. actual y-origin plane does not exist build_transform_dat
	11. actual z-origin plane does not exist build_transform_dat
	12. angle number more than a full circle convert_rotset
	13. angle between nominal and actual lines > number degrees extract_line_cart_bnd, extract_line_c...
	14. angle between nominal and actual normal > number degrees extract_plane_cart
	15. array is full, cannot continue record_item
	16. attempt to turn off MAN mode convert_mode
	17. axis to align more than number degrees out of plane find_rotation_aux
	18. bad SNSET command convert_snset
	19. bad axis type complete_transform, convert_scnset, find_rotation_aux, output_rotate, rotate_ma...
	20. bad block head for endgo convert_endgo
	21. bad block head for endmes convert_endmes
	22. bad data type for a variable make_variable, read_dmis_variables, write_dmis_variables
	23. bad data type name name read_dmis_variables
	24. bad direction_x convert_ptmeas
	25. bad direction_y convert_ptmeas
	26. bad direction_z convert_ptmeas
	27. bad expression type code_header
	28. bad feed_units_type with mesvel convert_fedrat
	29. bad feed_units_type with posvel convert_fedrat
	30. bad feed_units_type with rotvel convert_fedrat
	31. bad feed_units_type with scnvel convert_fedrat
	32. bad probe type convert_probe
	33. bad recall command convert_recall, output_recall
	34. bad rotab subtype convert_rotab
	35. bad stored value string for boolean variable make_variable
	36. bad string string for double make_variable
	37. bad string string for integer make_variable
	38. bad text destination convert_text
	39. bad variable file line text read_dmis_variables
	40. both directions missing in datset_dat make_datset_dat
	41. can only intersect cartesian plane intersect_plane_line
	42. can only intersect three cartesian planes intersect_three_planes
	43. cannot align the axis of rotation find_rotation_aux
	44. cannot handle ANGDMS find_feature_parameter_value, find_feature_point
	45. cannot handle angle_unit_type type convert_rotab, convert_rotset
	46. cannot mix X or Y reference with Z distance build_transform_trans
	47. cannot mix X or Z reference with Y distance build_transform_trans
	48. cannot mix Y or Z reference with X distance build_transform_trans
	49. cannot normalize zero vector normalize
	50. cannot record null dmis_item record_item
	51. cannot record null feature record_feat
	52. circle has no name make_feat_circle
	53. circle twin does not exist find_feature_direction, find_feature_parameter_value, find_feature...
	54. const has wrong type of feature make_const
	55. current coordinate system transform missing convert_endmes
	56. cylndr has no name make_feat_cylndr
	57. cylndr twin does not exist find_feature_direction, output_actual_tol_cortol, output_actual_to...
	58. data type is not double convert_assign, convert_obtain
	59. datset_dat has no name make_datset_dat
	60. datset_mcs has no name make_datset_mcs
	61. direction vector length not 1 extract_cylndr_cart, extract_line_cart_unbnd
	62. expression type is not double convert_assign
	63. feature array is full, cannot continue record_feat
	64. feature coordinate system transform missing convert_endmes
	65. feature doubly defined record_feat
	66. feature not a circle convert_const_circle, convert_meas_circle
	67. feature not a cylndr convert_const_cylndr, convert_meas_cylndr, output_actual_tol_cylcty
	68. feature not a line convert_const_line, convert_meas_line, make_rotate_axes_rel
	69. feature not a plane convert_const_plane, convert_meas_plane
	70. feature not a point convert_meas_point
	71. file name is null make_filnam
	72. first item in block’s item list is not a line find_next_line
	73. first line of program is not dmismn find_first_line
	74. item doubly defined record_item
	75. item is neither a line nor a block find_next_line
	76. item stack is empty find_next_line
	77. item stack not properly initialized find_first_line
	78. last branch point is not a meas_block make_endmes
	79. last meas_block does not match endmes make_endmes
	80. line has no name make_feat_line
	81. line is bound output_actual_tol_cortol
	82. line parallel to plane, or nearly so intersect_plane_line
	83. line twin does not exist find_feature_direction, output_actual_tol_cortol
	84. negative angle number for rotary table convert_rotab, convert_rotset
	85. negative velocity given in fedrat convert_fedrat
	86. normal vector length not 1 extract_circle_cart, extract_plane_cart
	87. null or empty string variable name make_variable
	88. null text string make_text
	89. null variable name make_decl, read_dmis_variables
	90. number of features and actualities differ convert_const
	91. opposed directions used in datset make_datset_dat
	92. parameter number number out of bounds find_feature_parameter_value
	93. plane has no name make_feat_plane
	94. plane twin does not exist find_feature_direction, find_feature_parameter_value, find_feature_...
	95. planes parallel or nearly so intersect_two_planes
	96. point has no name make_feat_point
	97. point twin does not exist find_feature_parameter_value, find_feature_point, output_actual_tol...
	98. probe_cart name is null make_probe_cart
	99. probe_pol name is null make_probe_pol
	100. program missing from interp model close_program
	101. program variable name has no saved value read_dmis_variables
	102. program variable name type isn’t stored type read_dmis_variables
	103. reference to name not found find_feature_all, find_reference, find_variable
	104. rotary table angle too large convert_rotab
	105. rotate_axes_abs has no name make_rotate_axes_abs
	106. rotate_axes_rel has no name make_rotate_axes_rel
	107. rotdef has no name make_rotdef
	108. same axis used twice in datset make_datset_dat
	109. same datum used for two directions in datset make_datset_dat
	110. scnset type is not DIST or TIME convert_scnset
	111. string not allocated for dmismn make_dmismn
	112. thldef name is null make_thldef
	113. tol name is null insert_tol_name
	114. too few points (number) for circle convert_const_circle, convert_meas_circle
	115. too few points (number)for cylndr convert_const_cylndr, convert_meas_cylndr
	116. too few points (number) for line convert_const_line, convert_meas_line
	117. too few points (number) for plane convert_const_plane, convert_meas_plane
	118. trans has no name make_trans
	119. transform missing convert_recall
	120. two UNITS lines used make_units
	121. two rotary tables defined make_rotdef
	122. unable to open file name for reading , preprocess_dmis, read_dmis_variables, read_in_dmis
	123. unable to open file name for writing convert_filnam, preprocess_dmis, write_dmis_variables
	124. unknown angle_unit_type convert_units
	125. unknown command execute_next_line
	126. unknown const type convert_const
	127. unknown coordinate type output_actual_tol_cortol
	128. unknown datset subtype convert_datset
	129. unknown definition command convert_definition
	130. unknown feature type convert_feat, output_actual_feature, output_actual_tol_cortol, output_a...
	131. unknown feed_set_type convert_fedrat
	132. unknown goto type convert_goto
	133. unknown length_unit_type convert_units
	134. unknown line_other command convert_line_other
	135. unknown meas subtype convert_endmes
	136. unknown on_off type convert_prcomp
	137. unknown origin type in datset save_datset_orig
	138. unknown point type output_actual_tol_cortol
	139. unknown setting command convert_setting
	140. unknown temperature_unit_type convert_units
	141. unknown tolerance type output_actual_tolerance
	142. unknown vform type save_disply_item
	143. unknown wkplan_type convert_wkplan
	144. unset value obtained convert_obtain
	145. unusable feature type find_feature_direction, find_feature_parameter_value, find_feature_point
	146. using unset variable double code_header
	147. variable doubly defined record_variable
	148. variable is not type double make_assign, make_obtain
	149. variable not of type type make_ex_double_variable
	150. variables array is full, cannot continue record_variable
	151. velocity needed but missing in fedrat convert_fedrat
	152. velocity provided in fedrat - should not be convert_fedrat
	153. wrong number (number) of points measured convert_endmes
	154. wrong number of point measurements make_endmes
	155. wrong number of points (number) for point - must be 1 convert_meas_point
	156. x origin used twice in DATSET save_datset_orig
	157. x origin used twice in TRANS dmis_yacc
	158. y origin used twice in DATSET save_datset_orig
	159. y origin used twice in TRANS dmis_yacc
	160. z origin used twice in DATSET save_datset_orig
	161. z origin used twice in TRANS dmis_yacc
	162. zero length direction vector used convert_goto

	Appendix F YACC and Lex Specifications
	F.1 Introduction
	F.2 Lex Scanner
	F.2.1 Changes from the First Version
	F.2.2 Summary of Lex Rules

	F.3 YACC
	F.3.1 Changes from First Version
	F.3.2 Formal Specification
	%union {
	int bval; /* compiler complains if BOOL is used in place of int */
	double dval;
	int ival;
	ex_double * exdptr;
	%type <bval> d_type
	%type <ival> angle_unit axis_id axis_type
	bound_type
	data_type dimension_type disply_type
	f_type feature_type
	in_out_type
	length_unit
	on_off_type origin output_destination
	plane point_type probe_type
	rotary_axis
	scnset_type snset_type
	temperature_unit tol_code
	update_type
	velocity_type velocity_unit
	%type <ival> datset_items
	f_item f_list
	%token <ival> A ABSL ACT ALL AMT ANGDEC ANGDMS ANGLE ANGRAD
	%token <ival> APPRCH ARC ASSIGN AUTO AVG
	%token <ival> BF BND BOOL
	%token <ival> CART CCW CHORD CIRCLE CLRSRF CM
	%token <ival> COMM COMMA_V COMMON CONST CORTOL CW CYLCTY CYLNDR
	%token <ival> D DA DAT DATDEF DATSET DECL DEFALT DEPTH DEV
	%token <ival> DIAM DISPLY DIST DMIS DMISMN DOUBLE DRAG D2 D3
	%token <ival> ENDFIL ENDGO ENDMES
	%token <ival> F FA FEAT FEDRAT FEET FILNAM FIXED FLAT FORCE
	%token <ival> GOTARG GOTO
	%token <ival> HIGH HIST
	%token <ival> INCH INCR INDEX INNER INTGR IPM
	%token <ival> LABEL_OR_INTEGER LABEL_OR_VARIABLE LABEL_SURE LINE LMC LOW
	%token <ival> M MAN MCS MEAS MESVEL MM MMC MODE MPM
	%token <ival> NOM NONCON
	%token <ival> OBTAIN OFF ON OPER OUTER OUTFIL OUTPUT
	%token <ival> PARLEL PCENT PECK PERP PLANE PLOT POINT POL POS
	%token <ival> POSVEL PRCOMP PRINT PROBE PROG PTMEAS
	%token <ival> RADIUS
	%token <dval> REAL
	%token <ival> RECALL RETRCT RFS ROTAB ROTATE ROTDEF
	%token <ival> ROTNUL ROTORG ROTSET ROTTOT ROTVEL RPM RT
	%token <ival> S SA SAVE SCNMOD SCNSET SCNVEL SEARCH SHORT
	%token <ival> SNSDEF SNSET SNSLCT STAT STOR
	%token <ival> T TA TEMPC TEMPF TERM TEXT TEXT_STRING
	%token <ival> TH THLDEF TIME TOL TRANS
	%token <ival> UNBND UNITS
	%token <ival> V VFORM
	%token <ival> WKPLAN
	%token <ival> X_DIR XAXIS XDIR XORIG XYPLAN
	%token <ival> Y_DIR YAXIS YDIR YORIG YZPLAN
	%token <ival> Z_DIR ZAXIS ZDIR ZORIG ZXPLAN
	angle_unit : ANGDEC
	| ANGDMS
	axis_id : XDIR
	| X_DIR
	| YDIR
	| Y_DIR
	| ZDIR
	axis_type : ANGLE
	| RADIUS
	| XAXIS
	| YAXIS
	block : one_liner
	blocks : /* empty */
	bound_type : BND
	d_type : D
	data_type : BOOL
	| DOUBLE
	datset : D label ‘=’ DATSET MCS ‘\n’
	datset_do : datset_dir
	datset_dir : XDIR
	| X_DIR
	| YDIR
	| Y_DIR
	| ZDIR
	datset_items : DAT label ‘,’ datset_do ‘\n’
	| DAT label ‘,’ datset_do ‘,’ DAT label ‘,’ datset_do ‘\n’
	| DAT label ‘,’ datset_do ‘,’ DAT label ‘,’ datset_origs ‘\n’
	| DAT label ‘,’ datset_do ‘,’ DAT label ‘,’ datset_do ‘,’ DAT label ‘,’ datset_origs ‘\n’
	| DAT label ‘,’ datset_do ‘,’ DAT label ‘,’ datset_origs ‘,’ DAT label ‘,’ datset_origs ‘\n’
	datset_origs : datset_orig
	datset_orig : XORIG
	| YORIG
	decls : /* empty */
	definition : datdef
	| feat
	| thldef
	| probe_definition
	| rotdef
	dimension_type : D2
	disply : DISPLY OFF ‘\n’
	disply_item : disply_type ‘,’ DMIS
	| disply_type COMMA_V label
	disply_list : disply_item
	disply_type : COMM
	| PRINT
	| STOR
	ex_real : ’(’ LABEL_OR_VARIABLE ’)’
	| real
	f_list : f_item
	f_type : F
	feat_cylndr : F label ‘=’ FEAT CYLNDR ‘,’ in_out_type ‘,’ point_type ‘,’ ex_real ‘,’ ex_real ‘,’ ...
	feat : feat_circle
	| feat_cylndr
	| feat_line
	| feat_plane
	feature_type : CIRCLE
	| CYLNDR
	| LINE
	| PLANE
	fedrat : FEDRAT velocity_type ‘,’ velocity_unit ‘\n’
	goto : GOTO ex_real ‘,’ ex_real ‘,’ ex_real ‘\n’
	gotos : goto /* specs require at least one, p. 202 */
	in_out_type : INNER
	label : ’(’ LABEL_SURE ’)’
	| ’(’ LABEL_OR_VARIABLE ’)’
	length_unit : CM
	| FEET
	| INCH
	| M
	many_liner : meas_block
	meas_goes : /* empty */
	| meas_goes ptmeas
	mode : MODE MAN ‘\n’
	| MODE PROG ‘,’ MAN ‘\n’
	| MODE AUTO ‘,’ MAN ‘\n’
	on_off_type : ON
	one_liner : const_bf
	| definition
	| disply
	| goto
	| output
	| recall
	| rotab
	| rotate
	| save
	| setting
	| snslct
	| text
	| trans
	| units
	origin : XORIG
	| YORIG
	output_destination : MAN
	| OPER
	plane : XYPLAN
	| YZPLAN
	point_type : CART
	probe_type : FIXED
	ptmeas : PTMEAS point_type ‘,’ ex_real ‘,’ ex_real ‘,’ ex_real ‘\n’
	real : LABEL_OR_INTEGER
	recall : RECALL d_type label ‘\n’
	| RECALL FA label ‘\n’
	| RECALL s_type label ‘\n’
	rotab : ROTAB RT label ‘,’ INCR ‘,’ wise_type_incr ‘,’ update_type ‘,’ ex_real ‘\n’
	rotary_axis : XAXIS
	| YAXIS
	rotate : D label ‘=’ ROTATE rotary_axis ‘,’ ex_real ‘\n’
	s_type : S
	save : SAVE d_type label ‘\n’
	| SAVE FA label ‘\n’
	| SAVE s_type label ‘\n’
	scnset : scnset_dist
	| scnset_chord
	| scnset_time
	| scnset_angle
	scnset_chord : SCNSET scnset_type ‘,’ CHORD ‘,’ ex_real ‘\n’
	scnset_dist : SCNSET scnset_type ‘,’ DIST ‘,’ ex_real ‘\n’
	scnset_type : PECK
	| DRAG
	setting : assign
	| datset
	| fedrat
	| mode
	| obtain
	| prcomp
	| rotset
	| scnmod
	| scnset
	| snset
	snset_type : APPRCH
	| CLRSRF
	| DEPTH
	| RETRCT
	ta_list : /* empty */
	temperature_unit : TEMPC
	tolerance_definition : tol_cortol
	| tol_cylcty
	| tol_diam
	| tol_flat
	| tol_parlel
	| tol_perp
	tol_code : LMC
	| MMC
	tol_diam : T label ‘=’ TOL DIAM ‘,’ ex_real ‘,’ ex_real ‘\n’
	tol_pos : tol_pos0
	| tol_pos1
	| tol_pos2
	trans : D label ‘=’ TRANS trans_spec ‘\n’
	| D label ‘=’ TRANS trans_spec ‘,’ trans_spec ‘\n’
	trans_spec : origin ‘,’ ex_real
	units : UNITS length_unit ‘,’ angle_unit ‘\n’
	update_type : ROTNUL
	| ROTORG
	variable_names : variable_name
	velocity_type : MESVEL
	| POSVEL
	| ROTVEL
	velocity_unit : DEFALT
	| HIGH
	| IPM
	| LOW
	| MPM
	| PCENT
	v_list : v_type
	v_type : ACT
	| ALL
	| AMT
	| DEV
	| HIST
	| NOM
	| PLOT
	wise_type_absl : CCW
	| CW
	wise_type_incr : CCW

