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Unique Capabilities Provide Critical Data

The NIST Center for Neutron Research (NCNR) offers a bridge between

the world of atoms, molecules and sub-microscopic structures and the

macroscopic world of buildings, automobiles, efficient energy utilization,

and the environment. Over 1500 researchers from 34 countries made use

of the NCNR's world-class capabilities in the area of neutron-based

research in 1998.
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Steve Kline (NCNR) helping Anne-Valerie Rnzette, MIT, to set

up the pressure cell for a SANS experiment.

Joe Dura inspecting

molecular beam epitaxy

chamber.

Kazu Yamada (Kyoto University), Bob Birgeneau (MIT). Suichi

Wakimoto (Tohoku University), Gen Shirane (BNL), and Seung Hun
Lee (NCNR) at the SPINS spectrometer.

Steve Kline and Paul Butler (NCNR) working with Lee

Magid, University of Tennessee to set up a SANS experiment.
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Nobel Laureate Clifford Shull, inspecting

NIST interferometer.

Guide hall at the NCNR, as of late 1997.

Heather Chen (NIST) aligning focusing

capillary array.
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Foreword

This has been a productive and exciting year

for the NIST Center for Neutron Research (NCNR),

with many achievements in operation, instrumentation,

and science. The reactor operated well through Sep-

tember, when an unscheduled shutdown was required

to investigate a small leak in the vicinity ofthe thermal

column. As a result of an excellent effort by the Reac-

tor Operations and Engineering staff, this shutdown

lasted no more than one complete cycle ( 14 % of avail-

ability). The reactor is now once again operating on

our normal seven week schedule. We apologize to all

those who were inconvenienced, and will work to make

up as much of the time as possible. The next long

scheduled shutdown, for replacement of shim control

arms, is scheduled to begin in February, 2000 and will

last 3-6 months.

During this year, commissioning of the high

intensity back scattering spectrometer was begun, with

very favorable results (see section later in this report),

and the instrument should be available for user sched-

uling at the next program proposal period. Great

progress was also made on the Spin Echo and Disc

Chopper Spectrometers, with commissioning expected

in the coming year. The reliability of operating instru-

ments continues to be better than 95 %, with the aver-

age over all instruments being 98 %. The final engi-

neering design of the second generation liquid hydro-

gen cold source is nearing completion, and fabrication

and testing will begin in 1999. This source is calcu-

lated to provide approximately a factor of two gain

over the present source.

This year we have changed the format of

our report, and are featuring science highlights, cho-

sen from the experiments done during the year.

Thus, I will refrain from discussing science accom-

plishments here, except to say that productivity and

quality remain exceptionally high. One ofthe great

parts of my job is to be able to walk around the

facility talking to experimenters, and I continue to

be impressed by the breadth of the research and

the enthusiasm of the researchers.

Finally, we continue to make good progress

on preparing a request for a license renewal for the

reactor for 20 years beyond 2004. Many different

activities are underway towards this end, and we

are fully confident that we will be successful. Neu-

tron science as a whole is in a very exciting period,

with the funding of the Spallation Neutron Source

at Oak Ridge National Laboratory, and plans for

new sources in several parts of the world. The

NIST Center for Neutron Research is and will re-

main at the center of a renewed U.S. neutron re-

search effort, working to provide the neutron mea-

surement capabilities that are becoming ever more

important.
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Introduction to the NIST Center for Neutron Research (NCNR)

The modem technological society is dependent

upon increasingly more sophisticated use of materials,

many of whose properties are dictated by their sub-

microscopic structural and dynamical properties. Our

knowledge of these properties is provided by a wide

range of scientific techniques, ofwhich the many types

of scattering (X-rays, light, electrons, neutrons, . .

.

)

are

arguably the most important. Of these scattering

probes, neutrons are perhaps least known, but they

provide important advantages for many types of mea-

surements.

Neutrons, as prepared for use at modern

sources, are moving at speeds comparable to those of

atoms moving at room temperature, thus providing the

ability to probe dynamical behavior. At the same time,

neutrons are well matched to measurements at length

scales ranging from the distances between atoms to the

size of biological or polymer macromolecules. Neu-

trons are sensitive to the magnetic properties of atoms

and molecules, allowing study of the underlying mag-

netic properties of materials. They also scatter quite

differently from normal hydrogen atoms than they do

from heavy hydrogen (deuterium), allowing selective

study of individual regions of molecular systems. Fi-

nally, neutrons mteract only weakly with materials, pro-

viding the opportunity to study samples in different en-

vironments more easily (high pressures, in shear, in

reaction vessels, etc.), and making them a non-destruc-

tive probe. These favorable properties are offset by

the relative weakness of the best neutron sources, when

compared to X-ray or electron sources, and by the rela-

tively large facilities required to produce neutrons. As

a result, neutron sources are operated as national user

facilities, to which researchers come from all over the

U S. (and abroad), to perform small scale science us-

ing the special measurement capabilities provided.

In addition to scattering measurements, neu-

trons can be used to probe the atomic composition of

materials, by means of capture and resultant radioac-

tive decay. The characteristics of the decay act as

‘'fingerprints" for particular atomic nuclei, allowing stud-

ies ofenvironmental samples for pollutants (e.g. heavy

metals), characterization of Standard Reference Mate-

rials, and many other essential measurements. While

the scattering and capture users of neutrons are little

concerned with the innate nature of neutrons, there are

important areas in physics that can be well studied by

observing the behavior of the neutron. Examples in-

clude the lifetime of the free neutron, an important ele-

ment in the theory of astrophysics; the beta decay pro-

cess of the neutron, the details of which are stringent

tests ofnuclear theory; and the effects of various exter-

nal influences such as gravity or magnetic fields on neu-

trons.

The NCNR utilizes neutrons produced by the

20 MW NIST Research Reactor to provide facilities

for all of the above types of measurements to a na-

tional user community. There are approximately 35

positions in the reactor and its associated beams which

can provide neutrons for experiments. At the present

time, there are 26 stations in active use, of which 6

provide high neutron flux positions in the reactor for

irradiations, and 20 are beam facilities. A schematic

layout of the beam facilities and brief descriptions of

available instrumentation are given below. More com-

plete descriptions can be found at http : //rrdiazz .m st
.

go

v

.

These facilities are operated both to serve NIST
mission needs and as a national user facility, with many

different modes of access. Some of the instrumenta-

tion was built several years ago, and is not suited to

general user access; however, user time is available for

collaborative research. In some cases, NIST built new

instrumentation, and reserves 1/3 of available time for

mission needs, with the balance available to general

users. In other cases, instrumentation was built and is

operated by Participating Research Teams (PRT); in

such cases, the PRT members have access to 75 % of

available time, with the balance available to general us-

ers. In a special case, NIST and the National Science

Foundation established the Center for High Resolution

Neutron Scattering at the NCNR. with a 30-m Small

Angle Scattering (SANS) instrument, a cold neutron

triple axis spectrometer, annd a perfect crystal SANS
under construction. For these facilities, most time is

available for general users. While most access is for

work which is freely available to the general public,

proprietary research can be performed under full cost

recovery. Each year, 1400 research participants (per-

sons who participated in experiments at the facility, but

did not necessarily come here) from all areas of the

country, from industry, academe, and government use

the facility to perform measurements not otherwise pos-

sible. The research covers a broad spectrum of disci-

plines, including chemistry, physics, biology, materials

science, and engineering.
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Horizontal Sample Reflectometer

Horizontal surface of sample allows reflectivity mea-

surements of free surfaces, liquid vapor interfaces, as

well as polymer coatings.

Neutron Interferometry & Optics Station

Includes perfect silicon interferometer; vibration isola-

tion system provides exceptional phase stability and

fringe visibility.

Prompt Gamma Activation Analysis

Cold neutron fluxes allow detection limit for H of 1-10

microgram. Focused beams available for profiling.

NG-7 30m SANS
Small Angle Neutron Scattering instrument for micro-

structure measurement sponsored by NIST, the Exxon

Research and Engineering Co., the University ofMin-

nesota, and Texaco R&D.

Neutron Physics Station

A cold neutron beam 150 x 60 mm 2
, available for fun-

damental neutron physics experiments.

Fermi Chopper TOF Spectrometer

A hybrid time-of-fhght spectrometer for inelastic scat-

tering, with wavelengths between 0.23 and 0.61 nm.

The wavelength is chosen by focusing pyrolytic graph-

ite crystal, while the beam is pulsed by a simple Fermi

chopper.

Spin Echo Spectrometer

A neutron spin echo spectrometer offering neV energy

resolution, based upon Julich design, sponsored by

NIST, Julich and Exxon.

SPINS Spectrometer

Spin Polanzed Inelastic Scattering, a cold neutron triple

axis spectrometer with spin polarization capabilities for

high resolution studies, and position sensitive detector

capability, sponsored by the National Science Founda-

tion and NIST; part ofCenter for High Resolution Neu-

tron Scattering (CHRNS).

Disc Chopper TOF Spectrometer

Versatile time-of-fhght spectrometer, with beam puls-

ing and monochromatization effected by 7 disk chop-

pers. Used for studies of dynamics in condensed mat-

ter, including macromolecular syatems.

NG-3 30m SANS

Instrument for microstructure measurement sponsored

by the National Science Foundation and NIST; part of

CHRNS.

Back Scattering Spectrometer

High intensity, very high resolution back scattering spec-

trometer, with many innovative features, and energy

resolution of approximately 1 peV.

8M SANS
Instrument for polymer characterization, sponsored by

Polymers Division.

Vertical Sample Reflectometer

Instrument for measuring subsurface structure with po-

larization analysis capability. Capable of measuring

reflectivities down to 10'8
.

BT-8 Residual Stress Diffractometer

Diffractometer optimized for depth profiling of residual

stress in large components.

BT-9 Triple Axis Spectrometer

Triple axis crystal spectrometer for measurements of

excitations and structure.

BT-1 Powder Diffractometer

Powder diffractometer with 32 detectors; incident

wavelengths of0.208,0.154, and 0. 159 nm, with highest

resolution of §d/d = 8 x 10V

BT-2 Triple Axis Spectrometer

Triple axis crystal spectrometer with polarized beam

capability for measurement ofmagnetic dynamics and

structure.

BT-4 Filter Spectrometer

A triple axis crystal spectrometer with a Be or Be/

Graphite filter analyzer option for chemical spectros-

copy.

Cold Neutron Depth Profiling

A station for quantitative profiling of subsurface impu-

rities and coatings, based on neutron capture and emis-

sion of a charged particle.

Thermal Column

A very well-thermahzed beam of neutrons used for

radiography, tomography, dosimetry, and other experi-

ments.

7



Solids that Shrink when Heated

G. Ernst 1

,
C. Broholm23

,
A. P. Ramirez 1

,
and G. Kowach 1

1Bell Laboratories, Lucent Technologies, 600 Mountain Ave, Murray Hill, NJ 07974

department ofPhysics and Astronomy, Johns Hopkins University, Baltimore, MD 21218
3NIST Centerfor Neutron Research, Gaithersburg, MD 20899

Thermal expansion is the reason that cracks

between railroad tracks are largest in the winter and

that the Sears tower grows by 15 cm in the summer.

The reason that solids generally expand when heated is

that atoms move apart to make room for each other

when the amplitude of their thermal motion increases.

There are however exceptions to this rule; i.e. solids

that contract when heated. Such materials can be of

great technological significance because they allow en-

gineers to create composites that retain their dimen-

sions irrespective of temperature. One example of a

solid that contracts as temperature mcreases is ZrW,O
g

Discovered by Martinek and Hummel in 1 968 [ 1 ]
this

cubic material shrinks by 9 ppm/K from cryogenic tem-

peratures until its decomposition temperature of 1050°C

(see Fig. 1). Because the material is a transparent di-

electric Lucent Technologies is using ZrW,O
g
to com-

pensate for thermal expansion of standard dielectrics

in fiber optic gratings that must maintain their optical

dimensions over a large range of temperatures. Before

ZrW o0 g
arrives at a telephone exchange near you we

wanted to understand its unusual behavior through a

series ofneutron scattering experiments [2].

Figure 1 shows the reduction of the lattice

Griineisen theory ofthermal expansion relates the ther-

mal expansion coefficient a = d In a / dT ,
to the spe-

cific heat as follows:

T(K)

Figure 1 . Temperature dependence of the cubic

lattice parameter, a, and Griineisen parameter y(T)

for ZrW2Og. Solid lines are based on a model

described in the text.

parameter of ZrW nO g
with increasing temperature as

measured with cold neutron diffraction on SPINS. The

a =—Yyc
3

(i)

The summation is over normal modes,

B - -dP Id \nV is the bulk modulus (.6 = 4.8 x 10 10

Nnr2 for ZrW.O
s ),

c
i

is the specific heat of a single

mode, and yt

= -01n&r /3lnV) is the Griineisen

parameter which modulates the contribution of each

mode to thermal expansion. The overall Griineisen pa-

rameter is defined as y(T) = 3Ba/C where

C - ^T.c
;

is the total specific heat. Clearly y(7) is

temperature independent if all modes of vibration con-

tribute equally to thermal expansion (or contraction).

Fig. 1 shows y( T) for ZrW,O
s ,
which we determined

by dividing the thermal contraction data in Fig. 1 with

specific heat data[3], y( 7) is of course negative at all

T and its absolute value increases down to the lowest

temperature probed. This indicates that low energy

modes drive thermal contraction in ZrW,O
g

To quantify this statement we measured the

phonon density of states (DOS) using inelastic neutron

scattering and the result is shown in Fig. 2. The high

energy modes correspond to librations of oxygen at-

oms. The top of the band at 140 meV lies higher than

in A1^0
?
by approximately 30 meV and this reflects the

strong covalent bonding of oxygen inW0
4
tetrahedra

and ZrO
r
octahedra (See inset to Fig. 2).

The low energy part of the spectrum is shown

in Fig. 3. A large density of states remains down to 2.5

meV with a pronounced peak at 4 meV, which reveals

low energy optical modes. Subsequent single crystal

inelastic experiments have also identified several nearly

dispersion-less modes around this energy.

To determine whether this DOS Peak could

be important for thermal contraction we make the as-

sumption that y(hco
)
= y0 < 0 for E

0 < Tut) < E
]

and zero elsewhere as shown in the inset to Fig. 3.

With Z0
=-14(2), E

0 = 1.5(4) meV, and



ha) (meV)

Figure 2. Density of states for ZrW208 at T=300

K measured using inelastic neutron scattering. For

0 < \hco\ < 40meV we used the TOF

spectrometer with E,=5 meV. For hco > 40meV
we used BT4 with a polycrystalline Be filter

analyser. Inset shows the structure with W04

tetrahedra in red and Zr06 octahedra in blue.

E
]

= 9.5(2) meV and using the measured DOS, we

obtain excellent fits to the data in Fig. 1 (solid lines).

While the model is certainly not unique it establishes a

range of energies for vibrations contributing to thermal

contraction in ZrW^O
s

.

hw (meVI

An mterestmg aspect ofthese low energy modes

is their temperature dependence shown in Fig. 3. There

is a decrease in the frequency ofthe 4 meV optic mode

as the temperature decreases and the unit cell volume

increases. Naively this would appear to be in contra-

diction with a negative Griineisen parameter because

(
dco/dT

) p
= -3Cdyot must be negative. But for an

anharmomc vibration the mode frequency also depends

on the amplitude and we propose that this non-linear

effect which is not taken into account in the Griineisen

theory is responsible for the softening of the 4 meV
optical mode.

What remains is to identify the microscopic

nature of these modes. Single crystal phonon data will

be required to accomplish this in earnest. Nonetheless

inspection of the structure shown in Fig. 2 does pro-

vide important clues. ZrW o0
s
consists of corner-shar-

ing WO
,

tetrahedra and Zr0
6
octahedra. The unusual

low energy optic modes are likely to correspond to

twisting of these units with respect to one another and

this twisting leads to contraction just as a vibrating gui-

tar string tugs on its supports. What makes ZrW,O
s

special is the unusually low energy' ofthese twist modes

which allows them to become highly excited and pull

the structure together at temperatures far below those

required to excite bond-stretchmg modes.

References

[1] C. Martinek and F. A. Hummel. J. Am. Ceram. Soc.51,

227 (1968)

[2] G. Ernst. C. Broholm. G. R. Kowach. and A. P. Ramirez,

Nature 396, 147 (1998)

[3] A. P. Ramirez and G. Kowach. Phvs. Rev. Lett. 80. 4903
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Figure 3. Low energy part of the phonon

spectrum for ZrW208 and its temperature

dependence. Inset shows our model for the

energy dependence of the Griineisen parameter.
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Spin Correlations and Impurities in a One-Dimensional Quantum Spin Liquid
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,
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,
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,
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3

,
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Though all solids contain electrons with spin-

induced magnetic moments few materials will actually

cling to your refrigerator door. The quantum theory of

atoms explains that matter is generally non-magnetic

because electron spins form non-magnetic (singlet-)

states in the filled electronic shells of individual atoms.

Here we discuss a new class of materials wherein sin-

glet formation takes place between rather than within

atoms to yield a macroscopic spin-less “molecule". We
explore the magnetism of Y,BaNiO., in which mag-

netic Ni2+ atoms interact antiferromagnetically (AFM)

through intervening O 2 atoms to form spin chains.

Inelastic magnetic neutron scattering is a pow-

erful probe of spin chains. The open circles in Fig. 1

show the low temperature equal time spin correlation

function versus wave-vector transfer along the chain.

In contrast to Neel AFM's that develop Bragg peaks

when long range order develops at a second order phase

q (ir)

Figure 1. Neutron scattering from Y2BaNiOs at

T=10 K. Open symbols show energy-integrated

data probing equal-time correlations. Solid symbols

show a constant- hco scan at the gap energy.

transition, Y^BaNiO. has no magnetic phase transition

and our snap-shot of the spin configuration reveals

short-range AFM order with a dynamic correlation

length £,=4.3(6). Still this is not a thermally disordered

paramagnet. The solid symbols in Fig. 1 show that at

fixed energy transfer there are sharp peaks m the wave-

vector dependence ofthe dynamic correlation function

that allows us to put a lower limit of 50 lattice spacings

on the coherence length for magnetic excitations.

Fig. 2 (a) shows another important feature of

0.0 0.5 1.0 1,5 0 0 0,1 0.2 0.3

0 1 ! I I
1 _j_

0.5 1.0 1.5 0.5 1.0 1.5

q O
Figure 2. Contour map of low energy magnetic

neutron scattering at T=10 K from (a) pure Y2BaNi05

and (b) Yi^Caao^BaNiCb. The MARI spectrometer

at the ISIS facility in the UK was used for (a) while

BT2 and SPINS at the NIST were used for (b).

theAFM spin-1 chain: There is a gap in the excitation

spectrum separating the ground state from excited

states. The energy gap is the cost of creating a mag-

netic wave packet on the spin chain.
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There are interesting effects of substituting

Ca2+
for Y3+

. The extra hole occupies the 7r-orbital on

the super-exchange mediating oxygen site and leads

to a ferromagnetic (FM) impurity bond in the other-

wise AFM spin chain. Fig. 2 (b) shows that such dop-

ing yields new sub-gap excitations. The extra magnetic

scattering takes the form of a double ridge versus en-

ergy, which indicates that we are dealing with slow

fluctuations of a rigid composite object. The wave-

vector dependence provides valuable but ambiguous

information about the real space structure of this ob-

ject. A natural first interpretation would be that the

holes have ordered to yield a new incommensurate pe-

riodicity. To explore this possibility Fig. 3 shows a com-

parison of high statistics -integrated data for samples

with Ca concentrations differing by almost 50 %. The

absence of a significant shift in the peak positions rules

out hole ordering.

We propose instead that the double peak in

Fig. 3 is the magnetic form factor of a hole in a quan-

tum spin liquid. Consider first the dilute and static hole

x
a,

a

S
o

M
4-)

G
<u

C

Figure 3. Q-dependence of energy integrated

intensity from Y2 - xCaxBaNi05 with x=0.095(5) and

x=0.14(l). The dashed line is a single impurity

model. The solid line is a random impurity model.

The corresponding form-factor for the disturbance to

the left ofthe impurity is the complex conjugate, M*(q).

The form factor for the combined object becomes

F(q)=M(q)eiq/2M*(q)e'iq/:
. When the chain end spin de-

grees of freedom are antiferromagnetically combined,

corresponding to the negative sign in this equation, |F

(q)|
2 becomes the conventional structure factor for the

quantum spin liquid in Fig. 1. However when the

chain ends are stitched together ferromagnetically as

we should expect for FM impurity bonds we have

F (q)=2Re{M(q)e iq/2
} . This function vanishes for

q=(2n+l)7r because M(q) is real for q=mr and the

result is a notch at q=n7i as shown by the dashed lines

in Fig. 3. To account for the finite intensity' between

the peaks we need to consider the finite density of

impurity bonds. Neighbonng holes arranged at random

break inversion symmetry about individual holes and

this brings back intensity at q=rc . The solid lines in Fig.

3 correspond to an analytical expression for the scat-

tering from a distribution of uncorrelated asymmetric

impurities with exponentially decaying spin densities.

The fact that the impurity scattering is distributed over

a range of energies in Fig. 2 (b) indicates that the holes

are moving or more likely that neighbonng bound states

interact.

The significance of all this is that xve have di-

rectly measured the spin wave function associated with

a bond reversing hole impurity in a quantum spin liq-

uid. Because our raw data are so similar to the scatter-

ing data from doped copper oxide superconductors our

results suggest that hole fonn-factor effects may also

be important for interpreting those data.

References

[1] Guangyong Xu et al, Phys. Rev. B54, R6827 (1996)

[2] J. F. DiTusa et al, Phys. Rev. Lett. 73. 1857 (1994)

limit of a single FM impurity bond on the spin chain.

The energy
- ofthe macroscopic spin smglet has increased

and a degenerate magnetizable state is now the ground

state. If we assume that the spin disturbance associ-

ated with the impurity bond decays away from the

impurity then we can show that the corresponding fonn-

factor has the general features observed in the scatter-

ing data. Denote by M(q) the form factor for the spin

density which develops to the right ofan impurity bond.
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Deposition of Toxic Trace Elements and Heavy Metals to Lake Michigan by

Size and by Source

J. M. Ondov and P. F. Caffrey

Department of Chemistry, University ofMaryland, College Park, MD 20742

Atmospheric deposition by wet and dry processes is

known to be an important source of several

anthropogenic, particulate-bound metals in critically

important waters such as the north Atlantic Ocean, the

coastal mid-Atlantic waters, and the Great Lakes. Lake

Michigan is especially subject to deposition of

anthropogenic air pollutants as it lies in close proximity

to the heavily polluted urban and industrial areas

stretching from Chicago to Gary, Indiana, i.e., an area

containing 20% ofthe US steel production.

The University of Maryland (at College Park,

UMCP) aerosol chemistry group has used the NBSR
reactor for instrumental neutron activation analysis to

characterize atmospheric aerosol particles and gases for

more than 20 years. Detailed and accurate

multielement analyses are routinely achieved,

nondestructive^, for up to 40 elements in samples

collected for periods of several hours to a few days on

various types of filters and in cascade impactors which

size fractionate the aerosol into as many as 10 size

domains. As many as 30 elements can be determined in

as little as 100 fig of a size-segregated particulate

fraction, allowing the application of receptor modeling

techniques to determine the sources of size segregated

aerosol particles. This is extremely important in

assessing dry deposition of aerosol particles and their

constituents because deposition velocity is highly

sensitive to particle diameter (see Figure 1 ). Some of

the elements measured, e.g., As, Cd, and Fig, are highly

toxic and are, therefore, of epidemiological interest,

especially in the Chesapeake Bay, Lake Michigan, and

Coastal Marine environments. Equally important is

that information on elemental constituents remains a

powerful, fundamental tool with which atmospheric

sources, transport, and processes may be elucidated.

As a part of EPA's Great Water’s project,

Atmospheric Exchange Over Lakes and Oceans

(AEOLOS), size segregated aerosol particulate samples

were collected, simultaneously, with 10-stage cascade

impactors sited in south Chicago, aboard ship at sites 20

km east ofChicago, and on the Eastern shore, about 90

km down wind (Figure 2). Sampling campaigns were

conducted in spring, summer, and winter periods to

observe seasonal differences in the concentrations and

size distributions of inorganic elemental constituents.

Several hundred size-segregated fractions were

collected and analyzed by X-ray fluorescence (XRF)

Figure 1. Deposition velocity vs. aerodynamic particle di-

ameter.

and Instrumental Neutron Activation Analysis (INAA).

A great deal

of useful m-

formation
about the

sources of

aerosol par-

ticles can be

obtained from

size spectra of

constituent

“marker’ ele-

ments. In Fig-

ure 3, V, a

marker of par-

ticles emitted

from fuel oil

combustion, is

bimodal. Va-

nadium onFigure2. Location of sampling sites
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Figure 3. Concentration vs aerodynamic particle size distributions for several important "marker’ elements deter-

mined from samples collected on Lake Michigan.

large (coarse) particles (i.e., those >1 fim) is associated

with urban and rural dust particles. Vanadium on

submic-rometer (i.e., “fine' ) particles was emitted

from oil-fired power plants. Likewise, selenium is a

marker of coal combustion particles; Zn. incineration;

and As, steel mill emissions. Iron- and Mn-containmg

particles were also emitted from steel mills, but have

substantial large particle components from this source.

Manganese clearly has both a fine and coarse particle

component.

Often, the size distributions of particles emitted

from different sources overlap, and must be resolved

by, for example, a chemical mass balance (CMB)
method. The CMB involves solving a system of

equations, constructed to explain the concentration of

an elemental aerosol constituent at a sampling

(receptor) site as a linear sum of the concentrations of

elements from N number of sources for which the

composition ofparticulate emissions is well character-

ized. Results for As and Zn are show in Figure 4. This

is the first successful resolution ofthe contributions of

toxic constituents of aerosol particles by size and

source. These data, and much more like it, have been

used to provide the policy makers with far more

accurate estimates of the deposition fluxes of toxic

substances to Lake Michigan. Similar analyses are

being performed by our group for the Chesapeake Bay.
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Figure 4. Distributions of As (upper) and Zn (lower)
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source.
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In the ongoing search for sensors for magnetic

recording applications, recent research has focussed

on materials that exhibit spin-dependent tunneling.

These systems are comprised of metallic, ferromag-

netic particles or of layers that are well separated from

each other by an insulating material. Magnetoresis-

tance (MR) from spin-dependent tunneling was first

reported for granular metal/insulator films in 1972 and

for Co/Ge/Fe trilayer junctions in 1975. The effect

anses because the tunnel conductance is minimum when

the particle or layer moments are aligned antiparallel.

From a magnetic recording perspective, the ob-

jective is to maximize the change in the resistance while

minimizing the active field range. Multilayer tunnel junc-

tions exhibit pronounced field sensitivity, but the insu-

lating bamer layers are susceptible to pinholes that con-

nect the ferromagnetic layers. In contrast, granular

films with small ferromagnetic particles are easy to fab-

ricate by co-deposition of a metal with an immiscible

insulator. However, the saturation fields for the MR
are large and the approach to saturation is gradual be-

cause the particles are magnetically isolated.

Desirable characteristics ofboth magnetic tun-

nel junctions and the granular films are combined in

discontinuous metal/insulator multilayers, which rep-

resent a new class of spin tunneling devices. These

hybrid systems are prepared by alternately sputtering

two immiscible materials, such as Co and Si0
2 ,
onto a

substrate. Since the metal does not wet the insulator,

the ferromagnet breaks up into nanoparticles during

growth. Transmission electron microscope images and

x-ray diffraction data ofCo/SiO, multilayers reveal that

the Co forms either individual particles with diameters

of 2.5 nm or chains composed of touching particles.

In contrast to granular films, the MR of these hybrid

structures is maximum at a smaller magnetic field, which

is useful for applications. However, the dependence

of the MR on small magnetic fields is not consistent

with a simple picture of the magnetic moments of indi-

vidual particles changing independently. Instead it is

believed that the smaller particles are magnetically

coupled to form larger magnetic domains. Neutron

scattering experiments characterize the magnetic struc-

ture (i.e., the magnetic correlation length) associated

with the MR maximum. This correlation length is re-

quired to model the MR mechanism.

Initial neutron reflectivity studies ofa [SiCh(3.0

nm)|Co(2.0 nm)k
4

. multilayer with the sharpest MR
showed that the Co spins are randomly oriented along

the growth direction at fields near the coercive field,

H
c ,
where the magnetic hysteresis loop crosses the field

axis (i.e., zero net moment). However, the average

size of the magnetic domains across the sample plane

is substantially larger (1-5 pm) than the average size

of the Co particles. A multilayer with a smaller nomi-

nal Co thickness, [SiO,(3.0 nm)|Co(1.6 nm)]
60 5 ,

showed no in-plane magnetic ordering within the sen-

sitivity ofthe reflectivity experiments. Small angle neu-

tron scattering (SANS) measurements of this multi-

layer and a 0.5 pm thick Co(0.4)/SiO o(0.6) granular

Figure 1. Circular average of SANS data for [SiO,(3.0 nm)ICo(1.6 nm)]
605

multilayer (a) and Co(0.4)/SiO,(0.6) granular film (b) at 15 K. The ZFC

data for the film is a sector average at 45°. Data fits are shown as lines.
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film were thus undertaken to probe smaller lengthscales.

These experiments indicate that the correlation lengths

at Hc
are larger for the discontinuous multilayer than

for the granular film. In addition, data obtained for

both samples after cooling in zero field (ZFC) indicate

that the Co particles have an intrinsic magnetic interac-

tion.

With the exception of the ZFC data for the

granular film (Fig. 2), all of the data were circularly

symmetric and could be averaged about the center of

the detector. Figure 1 (a) shows the average magnetic

intensity at 1 5 K plotted as a function ofthe wavevector

Q for the discontinuous multilayer at H
c
= 0.058 T

(purple circles) after saturation in a 0.5 T field. The

Lorentzian fit to these data gives a magnetic correla-

tion length of 10 ± 2 nm, which is of the order of the

size of the Co nanoparticle chains.

For comparison, the coercive field data (purple circles)

for the granular film are shown in Fig. 1 (b). These

data fit to a linear combination of two squared

Lorentzians, which is a functional form often found

for scattering from disordered magnets. The dominant

term gives a short correlation length of approximately

1.7 ± 0.5 nm. which is smaller than the 4 mn spherical

particle size in the granular film. For both the granular

film and the discontinuous multilayer, the static and/or

dynamic magnetic domains at the coercive field appear

to be limited to the individual Co particles. The dra-

matic contrast in the MR curves for the discontinuous

multilayer and the granular film could be a consequence

of the difference in the electron-scattering surface area

(i.e., the granular film has smaller particles and do-

mains and thus has more scattering surfaces).

The demagnetization process for both the film

and the multilayer, however, is very sensitive to field

preparation conditions. Figure 1 (a) also shows the

average magnetic intensity of the discontinuous multi-

layer at 15 K after cooling in zero field from room

temperature (green squares). These data yield a corre-

lation length of 30 ± 1.5 mn. The act of cooling the

multilayer apparently induces interparticle interactions

that stabilize domains larger than a single Co
nanoparticle.

Figure 2 shows the scattering pattern for the

granular film after cooling to 15 K in zero field from

room temperature. The intensity is asymmetric with

maximum intensity along the vertical axis. These data

suggest that the Co moments are preferentially aligned

along the horizontal axis. However, this spin anisot-

ropy axis is not evident from magnetization and resis-

tivity data.

The sector average in Fig. 1 (b) further reveals that the

ZFC data have a sharp peak at Q = 0.0605 nm 1

. The

data fits suggest that the ZFC structure for the granular

Figure 2. SANS image from a Co(0.4)/Si0,(0.6) granular film

after cooling from room temperature to 15 K in zero field.

film is composed ofmagnetic domains separated by an

average distance of 104 ± 1 nm in the film plane. De-

spite their small size, the Co particles interact with each

other upon cooling in zero field to form a well-ordered

magnetic state.

The observed difference between the magnetic

domain formation in discontinuous spin-tunnelmg

multilayers and granular films is essential to the under-

standing of their contrasting MR properties. Future

studies will focus on the temperature and field evolu-

tion of the domains to optimize their performance as

magnetic sensors.
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Ceramic thennal barrier coatings (TBCs) are used in

gas turbine engines and other combustion components

to allow operation at increased temperatures, which

increases efficiency, reduces cooling requirements, and

extends component life. They are currently used in

aircraft engines and are expected to be adopted for

energy-generating gas turbines and diesel engines in

the near future. It has been estimated that for the US
power generation sector alone, a one percent increase

in efficiency would lead to a savings of $140M per

year.

The most common industrial TBC is yttna stabi-

lized zircoma (YSZ), which consists of zirconia, Zr0
2

with about 8 wt % yttria, Y,0
?
(equivalent to 8.7 mol

% YOj
5
). Many factors contribute to the stability of

YSZ coatings, including particle size and homogeniety

of feedstock powders, coating deposition techniques,

and metallic bond coat characteristics. We have been

investigating the inherent stability ofthe crystallographic

phases present in plasma-sprayed YSZ using neutron

Rietveld refinement for quantitative phase analysis.

YSZ consists of three crystallographic phases:

monochmc, tetragonal, and cubic. According to the

phase diagram, the tetragonal phase is predominant at

about 8 wt % yttria. However, plasma spraying is a

rapid solidification process that results in metastable

phase mixtures of the monoclinic phase (0-6 wt %
yttria), tetragonal phase (4-13 wt % yttria), and cubic

phase ( 1 1-20 wt % yttria). It is thought that the coex-

istence ofthe tetragonal and cubic phases toughens the

TBC through inhibition of crack propagation: however

a presence of 5% or greater of the monoclmic phase

results in coating instability 7 because the monoclinic phase

transfonns to the tetragonal phase upon heating. Since

this transformation is accompanied by a large volume

change, thermal cycling generates stresses in the coat-

ings leading to premature failure.

In order to simulate high-temperature operat-

ing conditions, we annealed plasma-sprayedYSZ coat-

ings for periods of one to 100 hours at temperatures of

1000, 1200, and 1400 °C. These coatings were pre-

pared from two feedstock powders with differing char-

acteristics; feedstock 1 was prepared by a

spheroidization process and feedstock 2 by fusing and

crushing. High-resolution neutron powder diffraction

patterns were obtained on theNCNR 32-detector pow-

der diffractometer at BT- 1 and the data were analyzed

using the Rietveld refinement technique. Results of

the phase analysis ofthe feedstock powders, as-sprayed

coatings, and annealed coatings are given in Fig. 1

.

Feedstock 1 Monoclinic -^-Tetragonal -*-Cubic

anneal

time (hr): 1 10 1 00 1 10 100 1 10 24 48 1 00

Feedstock 2

anneal

Monoclinic -®- Tetragonal -A-Cubic

time (hr): 1 10 100 1 10 100 1 10 24 48 100

Figure 1. Change in phase composition of YSZ coatings

upon annealing. P = starting feedstock powder; A-S is tire

as-sprayed coating.

The two feedstock powders, 1 and 2
,
have quite

different initial phase compositions: 1 has about 25 %
ofthe monoclinic phase, whereas 2 has virtually none.

The plasma-sprayed coatings are initially different as

well, with coating 1 having 25 % cubic phase content
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and coatmg 2 being almost totally tetragonal. The phase

content of both coatings changes gradually with an-

nealing for longer times or at higher temperature (see

Fig. 1), showing a general increase in the cubic phase

content and decrease in the tetragonal phase content.

However, with longer annealing times at 1400 °C a

significant increase in the monoclmic phase content is

seen; both 1 and 2 have nearly identical phase compo-

sitions after annealing for 24, 48. and 100 hours and

sufficient monoclinic phase is present to cause coating

failure.

While the general phase behavior upon annealing

has been known for some time from x-ray studies, the

use of the neutron Rietveld technique permits us to

extract more information based upon the unit cell pa-

rameters ofthe tetragonal and cubic phases. It is known

that the lattice parameter a ofthe cubic phase increases

linearly with yttria content, and that the c/a ratio for

the tetragonal phase decreases with increasing yttria

content. Earlier studies, however, either underestimated

the cubic phase content or assumed equal yttria con-

tent for the tetragonal and cubic phases. We were able

to use the unit cell parameters obtained from the neu-

tron data to extract the distribution of yttria in these

phases assuming that the total yttria content is con-

stant. Results are given in Table 1. Note that the

nominal composition for both samples is 8.7 mol %
YO, . but that sample 2 appears to be low in total \ttria

content.

The data given in Table 1 give an indication as to

why the phase changes on annealing occur. It can be

seen that even at the lower annealing temperatures the

yttria is leaving the tetragonal phase and entering the

cubic phase, resulting in higher yttria content of the

cubic phase (coatmg 2) and increased cubic phase frac-

tion (coatings 1 and 2). As the samples are annealed

for longer periods at higher temperatures, the tttria

content of the tetragonal phase drops below 3-4 mol %
YO,

5 ,
and destructive transformation to the monoclmic

phase occurs.

These results mdicate that there is an inherent limit

to the temperature and time ofYSZ component opera-

tion. While technological improvements to YSZ coat-

ings are possible, new materials will be needed to achieve

significantly higher operatmg temperatures.

Table 1 . Yttria content oftetragonal (T) and cubic (C)

phases given in mol % YO,
5 ;

estimated accuracy is ±

0.2 mol % for the tetragonal phase in the annealed

coatings and ±1 mol % for all other values. Yttria

content of the monoclmic phase is assumed to be 3

mol % for the calculation of total yttria content.

Sample

Feedstock 1 Feedstock 2

T C total T C total

Powder 7 14 8 6 7 6

As sprayed 8 15 9 8 - 8

1000 C/ 1h 6.6 14 9 7.4 - 7

1 0h 6.4 15 8 7.1 3 7

lOOh 6.2 15 8 6.9 4 7

1200 C/ 1

h

6.2 15 9 7.1 5 7

1 0h 5.8 16 9 6.8 7 7

lOOh 5.0 17 9 5.3 11 7

1400 C/ 1

h

5.2 14 9 5.7 8 7

1 0h 4.2 14 9 4.0 9 7

24h 3.8 12 8 3.5 8 6

48h 4.3 14 9 4.6 11 7

lOOh 6.7 14 9 7.0 10 7
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Modem engineering analysis techniques, used

to ensure that parts in e.g. bridges, airplanes, or auto-

mobiles will survive the stresses of use, rely on un-

derstanding the proportionality bewteen stress and

strain. For many applications the description of the

proportionality' between stress and strain in terms of

isotropic, i.e. independent of direction, elastic con-

stants is still sufficient, the knowledge of these con-

stants for anisotropic cases becomes increasingly im-

portant for manufacturing processes, for

micromechanical modeling of materials behavior, as

well as for custom tailoring new composite materials.

For materials which are crystalline on some length

scale, anisotropy begins at the grain size level (single

crystal elastic constants) and extends as far as anisot-

ropy can be introduced into the material.

This macroscopic anisotropy is induced by

two basic effects - a preferred orientation of the crys-

tal lattice of the constituent grams and/or a preferred

gram shape distribution. A preferred gram shape dis-

tribution means that grams or inclusions have a non-

spherical shape on average and they are aligned to

some common axis as well. This effect is not neces-

sarily connected to the first one.

The anisotropy of elastic properties on a mac-

roscopic scale («1 mm) can be readily measured by

straining the specimen or by ultrasonic resonance.

However, these methods fail in cases in which the

microscopic scale is of interest. Examples are precipi-

tations or inhomogeneities ofother phases whose elastic

constants are unknown but determine nonetheless the

strength of the composite or alloy as a whole. The

goal can therefore be formulated as the determination

ofthe anisotropic or smgle crystal elastic constants on

the microscopic scale. This can be achieved by dif-

fraction which provides information about the strain

and the elastic response of the crystal lattice for a

particular direction [hkl]

.

These so called diffraction elastic constants

(DEC) describe the elastic response of a particular

family of lattice planes in a certain group of grains

with the appropriate orientation to an applied load.

Although the DEC are a feature of the polycrystal

they can be readily compared to the directional de-

pendence of the elastic constants in a single crystal

(Fig. 1).

{001 }

Figure 1: Dependence of Young's modulus E (top) and

Poisson's ratio n (bottom )on the direction hkl in the cu-

bic crystal lattice for Ni. The left hand side represents

the case of the single crystal, whereas the right hand side

shows E(likl) and n(hkl) as they would be obtained from a

set of crystallites which have been selected out of an ag-

gregate of randomly oriented grains. The selected crys-

tallites have in common that for a certain hkl their lattice

vectors are parallel.

The smoothing effect for the 'aggregate' con-

stant is a result of the fact that each of the grains in

the polycrystal is surrounded by other, not necessar-

ily randomly oriented grains. The elastic response of

the selected grains is therefore somewhat obstructed

in comparison to the single crystal.
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Thus, probing the DEC can provide a wealth of infor-

mation about the average local conditions on the grain

size level.

Since its commissioning the residual stress

diffractometer at the thermal beamline BT8 has been

used for a variety of engineering-apphcations-related

measurements as well as for basic studies ofthe elas-

Figure 2 : Schematic of the stress rig.

tic behavior of materials. In the course of these ex-

periments a method has been developed which allows

the determination of single crystal elastic constants

from measurements on polycrystals. This is done ex-

perimentally by loading a specimen in a stress rig and

measuring the lattice response normal and parallel to

the load direction (Fig. 2 and Fig. 3).

1- stepping motor, resolution 1:360

2- gear, reduction 1:2500

3- tensile bar

4- 10 kN load cell

5- beam in transmission (Young's modulus)

6- beam in reflection (Poisson's ratio)

7- stainless steel frame

8- compression sample in compression adapter

applied stress o [MPa]

Fig 3 Lattice strain response in a transmission-compression

setup for a y-Al O plasma sprayed thermal barrier coating

Load experiments Have been carried out normal and parallel to

the coating surface. The difference in the slopes is due to the

anisotropy of the sample

y’ precipitates exist, strictly speaking, only within the

equilibrium of the two phase compound, which there-

fore also requires the determination of their elastic

constants from the composite. Thus, in these cases the

method may provide the only available tool for deter-

mining their smgle crystal elastic constants.

References

[1] Bollenrath. F.,Hauk. V. & Muller. E. H. (1967), Z.

MetalIk .58, 1, 76-82

[2] T. Gnaupel-Herold, PC. Brand, H.J. Prask, J. Appl.

Cryst (1998). in press

[3] T. Gnaupel-Herold, PC. Brand. H.J. Prask, Ann. X-ray

Anal. (1998), in press

These experimental results can be compared

to models which calculate the DEC from the smgle

crystal constants
[ 1 ] . These models can be reversed in

a way which considers the single crystal elastic con-

stants as unknown parameters [2,3], This way the prob-

lem can be expressed as a least square loop in which

the smgle crystal elastic constants are refmable param-

eters.

Possible applications of the method are mate-

rials which cannot or can only under great difficulties

be synthesized as sufficiently large single crystals. Ex-

amples are y’ precipitations in y/y' hardened superal-

loys or metastable phases as plasma sprayed y-Al 0 .

2 3
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The chemical composition of materials criti-

cally determines their uses in commerce. Chemical

analysis is a large endeavor in industry, and depends

on the availability of materials with well-known com-

position to develop and validate analytical procedures

and laboratories. NIST Standard Reference Materials

(SRMs) are the most important such materials in the

marketplace. Nuclear analytical methods have been a

crucial contnbutor to the certification ofSRMs for thirty

years, because of their high sensitivity and specificity,

and their freedom from chemical interferences. In ad-

dition to the continuing production and characteriza-

tion oftraditional Standard Reference Materials, three

new approaches are underway to satisfy critical mea-

surement needs, using the Analytical Chemistry facili-

ties at the NCNR.
Air particulate matter Investigations into the

amounts and composition of particulate material in air

are currently earned out in virtually every country. The

investigations in the United States are pointing at par-

ticularly high risk factors associated with the fine frac-

tion (PM,
5 ,
which is smaller than 2.5 pm aerodynamic

diameter) of aerosols. The primary techniques for trace

element analysis are based on nuclear physics prin-

ciples (PIXE, XRF, NAA, etc ), due to their suitability

for multicomponent determinations on the small sample

sizes that are represented. However, few appropriate

quality assurance materials are available to support this

work. To assist in effective measurement and control

of PM,, aerosols in an economically sustainable way,

NIST is developing this new class of SRMs.

We have collected air particulate matter corre-

sponding to the PM,
5
fraction m Baltimore, Maryland

at an established EPA monitoring site. The aerosol is

removed by ultrasonication from the Teflon membrane

filters and suspended in water. Individual filters are

prepared by filtering aliquots ofthe suspension through

47 mm diameter polycarbonate filter membranes with

0.4 pm pore size to form the SRM units. Elemental

concentrations in this SRM will be certified using a

variety of nuclear- and non-nuclear- based analytical

techniques.

Hydrogen in titanium alloy Hydrogen causes

embrittlement of many metals, and the industry-stan-

dard analytical methods need same-matrix standards

to calibrate their instruments. To meet this need we are

currently preparing a new SRM by direct reaction of a

titanium alloy with measured amounts ofhydrogen and

using cold-neutron Prompt Gamma Activation Analy-

sis to verify the doping level.

A procedure has been demonstrated for pro-

ducing certified reference materials of titanium alloy

(6% A1 + 4% V) with a known concentration ofhydro-

gen. In the reversible reaction Ti + H, = TiH, the

equilibrium pressure is less than 10‘13 atmospheres at

room temperature, and 150 atmospheres at 900 °C.

Reaction is rapid at 300 °C. This gettermg reaction

with hot titanium is in common use in geochemistry

for separating hydrogen from oxygen and nitrogen

(which react irreversibly) and from noble gases. Mas-

sive hydrides are prepared industrially by the same di-

rect reaction process for hydrogen-based energy stor-

age and nuclear applications.

Batches ofa few grams oftitanium alloy speci-

mens have been doped with hydrogen using a simple

closed gas handling system. Means are provided for

pumping away air and hydrogen from samples at high

temperature and for admitting a known pressure of

hydrogen in a calibrated volume at room temperature,

then raising the temperature ofthe system to carry out

the reaction. The accuracy of the doping is limited by

that of the pressure measurement, better than 0.5%.

The amount ofH in the metal samples was measured

in 100-mg specimens by cold-neutron prompt-gamma

activation analysis. The quantity measured by this tech-

nique and by gravimetry agreed with the volume ofgas

added. Eighty-gram cylinders of Ti alloy have been

loaded by the same procedure, and the uniformity of

dopmg verified elsewhere by quantitative neutron to-

mography.

These measurements indicate that Standard

Reference Materials ofhydrogen in titanium alloy can

be made and certified by quantitative preparation and

analysis as two independent methods, as is done with

chemical solution standards at NIST. An apparatus has

been constructed to dope 1 -kg quantities of metal for

Standard Reference Materials.

Titanium nitridefilms. Reference materials are

a critical part of semiconductor metrology since they

establish a means of comparison of data taken by dif-

ferent methods or between model and experiment.

SEMATECH has requested a titanium nitride Standard
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Reference Material as one of their highest needs. A
prototype SRM has been made by ion beam sputtering

onto 75-mm diameter silicon wafers that were then cut

into 10-mm squares. The thickness of the TiN was

about 100 nm. Four squares plus a blank were ana-

lyzed by neutron depth profiling to determine the total

nitrogen concentration. The concentration was deter-

mined relative to a boron concentration standard. The

relative count rates of the nitrogen and boron samples

were adjusted by the ratio of the nitrogen to boron

cross sections (1.819/3840). Statistical uncertainties

are about 1 % (1 a) and the overall normalization un-

certainty is 2% (1 a) due to the uncertainty of the

nitrogen and boron cross sections. An approximate 3

% fall-off of the nitrogen concentration from center to

edge ofthe original wafer was observed. A measure of

Nitrogen profiles of TiN samples
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Figure 2. Proposed SRM material with expected

stoichiometry. Measurements taken at different angles

indicate same nitrogen distribution with differing

resolution functions.

Depth, pm

Figure 1. Three titanium samples from a prev ious

study indicating nitrogen non-uniformity and less

than a one-to-one stoichiometry.

the titanium concentration on each square was made

by the technique of activation analysis. This allows a

determination of the stoichiometry of the TiN.
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Dimensions of Polyelectrolyte Chains with Multivalent Counterions
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Polyelectrolytes, macromolecules carrying a

large number of charges, are the predominant water-

soluble synthetic and natural polymers. They have wide

industrial application and cntical biological function. For

industry, polyelectrolytes are used as stabilizers,

flocculants, or surface-active agents for water treat-

ment, paper, paints, personal care products, and phar-

maceuticals. In biological systems, the binding ofpro-

teins and nucleic acids, the functioning of enzymes,

and the construction of cellular components are con-

trolled by the tensions imposed by electrostatic interac-

tions. It is also clear that the interaction of poly-

electrolytes with multivalent counterions is a critical

factor in many industrial applications and biological

functions. Although recent years have witnessed an

impressive confluence ofexperiments, simulations, and

theory, long-range electrostatic interactions still dis-

rupt most traditional methods and characterization

techniques. In the work described here, the method

of zero-average-contrast small angle neutron scatter-

ing (SANS) is used to overcome this barrier and probe

directly the most fundamental polymer property, the

chain dimension, as a function of concentration and

counterion valence.

For low ionic strength polyelectrolyte solu-

tions SANS shoyvs a maximum at finite wavevector

and a steep upturn at low angles; results that are

dramatically different from those of neutral polymer

solutionsfl]. There is no complete theory, only quali-

tative descriptions for these phenomena that appear

for nearly all charged macromolecules. The situation

is even more complicated for typical biological sys-

tems or for commercial polyelectrolyte applications be-

cause of the presence of divalent or trivalent

counterions. The specificity of interactions yvith multi-

valent ions is critical to applications such as yvater treat-

ment and to biological processes such as protein fold-

ing and DNA packing. Although the multivalent

counterions have dramatic effects on the structure and

dynamics of polyelectrolyte solutions, experimental

work yvith scattering is both limited and difficult to in-

terpret. A major impediment for simulations and theo-

retical interpretation is the lack ofan adequate descrip-

tion for the single chain structure and dimension. The

overwhelming effect of strong intramolecular and in-

termolecular electrostatic interactions ofthe unscreened

charges dominates the scattering, even in dilute solu-

tion.

The method of zero-average-contrast (ZAC)

in small angle neutron scattering provides a means to

overcome this obstacle and measure single chain di-

mensions m dilute and semidilute solutions[2] The ZAC
method requires matched pairs of deuterated and hy-

drogenated polymers and a specific H-D solvent com-

position, but the charge concentration and counterions

can be changed over a broad range.

Figure 1. Full contrast SANS for NaPSS (filled) and

0.02 0.04 0.06 0.08 0.1 0.12

q / A 1

MgPSS (unfilled) in D O. Monomer concentrations: (•)

0.20 mol/L, () 0.14 rriol/L, and () 0.07 mol/L. Inset is

log-log plot of peak position versus monomer concentra-

tion.

Poly(styrene sulfonate) (PSS) with matched

degree ofpolymerization and degree of sulfonation were

obtained as deuterated PSS and hydrogenated PSS.

The sodium salt ofPSS was purified by ion-exchange,

dialysis, neutralization titration withNaOH or Mg(OH)

,

and lyophilization. Figure 1 shoyvs typical polyelectro'-

lyte scattering (performed on the NG1 8 m SANS in-

strument) yvithout added salt. Although qualitatively the

two sets are similar, including strong upturns at loyv q,
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the concentration dependence of the broad maxima is

shown in the inset with qmax oc c
0 46

for NaPSS and

c
029

for MgPSS, where c is the
p
salt concentartion.

Peaks for the divalent counterion polymer are also

shifted to lower q.

All ofthese features disappear under the zero-

average-contrast conditions. ZAC is achieved with an

equimolar mixture of deuterated and hydrogenated

polymer in a mixture of H,0 and D,0. The fraction

of D,0 in the solution is set at the value necessary to

satisfy the “optical theta condition,” where the scat-

tering length densities of the hydrogenated and deu-

terated monomers are equal and opposite. Figure 2

displays the scattering profiles from the ZAC solu-

tions for NaPSS and MgPSS. Each decreases mono-

tomcally with angle, as expected for the intraparticle

scattering function, and each is fit adequately with a

Debye function.

q / A

Figure 2. ZAC scattering from Na and Mg polyelectrolyte

solutions under conditions of zero average contrast show-

ing single chain scattering. Fits to Debye function.

Figure 3 shows the values of polymer chain

radius of gyration as a function of concentration for

NaPSS and MgPSS along with calculated estimates

for the size of a single chain with degree of polym-

erization of 300 under random coil and rod-like con-

figurations. For both systems, the chain dimension de-

creases with increasing concentration with the MgPSS
chains nearly a factor oftwo smaller for each concentra-

tion. While the monovalent counterion chains are highly

extended, they are not at the rod-like limit. At the same

time, both systems are more expanded than the calcu-

lated ideal Gaussian chain value. This result implies

that while the divalent counterions induce a coil con-

traction they do not produce a coil collapse or a coil-

globule transition.

Figure 3. Polyelectrolyte chain dimensions as a function

of concentration with comparison to model chain calcula-

tions.

This study demonstrates the power ofthe zero-

average-contrast method to extract single chain infor-

mation even in the presence of strong mtermolecular

interactions. The method, here used for dilute low lomc

strength solutions, has also been applied to measure

singe chain dimensions in solutions at high concentra-

tion and with arbitrary amounts ofadded salts as needed

to explore the range of real conditions important for

polyelectrolytes.
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All cells are enclosed by a biological membrane,

consisting ofassemblies oflipid and protein molecules, that

defines its boundaries and regulates its interactions with the

environment. The lipid molecules fonn a continuous double

layer, or bilayer, which acts as a bamer to water-soluble

molecules and provides the framework for the incorporation

ofthe protein molecules . Specialized proteins embedded in

lipid bilayers participate in fusion events between cells

(i.e., triggered by viruses), regulate ion transport through

pores and channels (i.e., neural activities), engage in

enzymatic activity at membrane surfaces, and play a

role in biological signaling (i.e., receptor proteins acti-

vated by hormones). Cell membranes are sufficiently

complicated that they cannot be duplicated in the labo-

ratory for study. Thus, model biological membranes,

which are simpler than cell membranes but mimic their

structure and function, are used to study these compli-

cated systems. Such model membranes are known as

biomimetic materials, which emulate biological func-

tion such as molecular recognition, dynamic confor-

mational change and spontaneous self-assembly ofcom-

plex arrays of molecules.

A biomimetic material which is analogous to

the lipid membranes of cells and can support active

membrane proteins has been made in NIST’s Biotech-

nology Division [1], This hybrid bilayer membrane

(HBM), which is illustrated in Fig. 1, consists of two

self-assembling monolayers, one which is non-biologi-

cal (alkanethiol) and a second which can be found in

biological cell membranes (phospholipid). This sys-

tem is formed spontaneously on a planar gold surface.

Since the alkanethiol monolayer is strongly bonded to

the gold surface, this HBM is more rugged than a con-

ventional supported phospholipid bilayer, which binds

only weakly to a silicon or glass surface. In addition to

their obvious importance as a tool for understanding and

charactenzmg membrane protem structure and function,

the biomimetic characteristics ofthe HBMs make them

commercially significant for a number of applications

including biosensors, tissue engineering, and bioelectron-

ics and biocatalvsis. The lipid and protem composition

oftheHBM can be readily engineered to produce struc-

tures with novel physical and chemical properties that

do not occur m nature.

Phospholipid

Alkanethiol

Gold Substrate

Figure l.The alkanethiol/phospholipid hybrid bilayer mem-
brane (HBM).

The development of measurement tools for

probing the structure and function of these engineered

membranes and the cell membrane components incor-

porated into them is essential for the optimization of

their biomimetic character. To this end, the neutron

reflectivity technique is being used to assist m the struc-

tural characterization of HBMs which are in contact

with water. Such in situ measurements are only pos-

sible because neutrons interact weakly with materials,

in contrast to electromagnetic probes such as light, x-

rays and electrons. Thus, the planar substrate can be

used as the incident medium, allowing the phospho-

lipid side of the HBM to be in full contact with water,

as it is in its native state. The neutron reflectivity mea-

surements are being made on the NG1 reflectometer at

the NCNR, shown in Fig. 2. Advancements in instru-

mentation, sample environment and measurement pro-

tocols now make it possible to obtain Angstrom-level

information about the composition ofHBMs along the

axis perpendicular to the plane of the membrane.

The results from recent neutron reflectivity mea-

surements ofHBMs in water are shown m Fig. 3. The

HBMs were formed on single crystal silicon substrates,

which had been coated with ~50A of gold on a ~ 15A
chromium adhesion layer, and were measured in con-

tact with water. The neutron scattering length density

(SLD) profile shown in Fig. 3 was obtained by fitting

the reflectivity data using the model-independent fitting

program, PBS (2). Since the neutron scattering length

density of each element in the bilayer depends upon its

chemical composition, the SLD profile is essentially a
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Figure 2. Members of the experimental group at the

NG1 reflectometer at the NCNR. Clockwise from

bottom: S. Krueger, A. L. Plant, C. W. Meuse, N. F.

Berk and C. F. Majkrzak.

map of the bilayer structure in the plane perpendicular

to that of the membrane, generally defined as the Z

direction. The silicon substrate is at Z=0 by definition.

The locations of the gold layer, the alkanethiol mono-

layer and the phospholipid monolayer relative to the sub-

strate can be easily distinguished in the SLD profile.

Neutron reflectivity measurements have also

been made, for the first time, on HBMs in the presence

ofthe membrane protein, melittin, a relatively small pep-

tide toxin that is found in bee venom. Although melittin

is an important model compound for pore-forming pep-

tides such as antibiotics, its exact location in the mem-

brane is not known. The structure of HBMs in the

absence and presence of melittin now can be directly

compared and questions about how deeply melittin pen-

etrates into the bilayer, and whether melittin forms pores

that allow water into the bilayer, can be addressed.

Most recently, neutron reflectivity has been

used to study the structure of a novel HBM matrix

consisting of an ethyleneoxide-containing alkanethiol

monolayer and a phospholipid monolayer. The

ethyleneoxide moiety tethered to the gold surface was

intended to act as a loosely-packed “spacer”, allowing

water to penetrate into the region near the gold sur-

face, thus providing a suitable environment for the in-

corporation oftransmembrane proteins. However, the

neutron reflectivity measurements provided direct evi-

dence that the ethyleneoxide region contains no water.

Furthermore, the reflectivity measurements confirmed

that melittin does not alter the membrane structure in a

way that would allow water mto this region. These

important results have led to the development of new

FLBMs which more closely mimic biological membranes

and are capable of supporting transmembrane proteins.

z (A)

Figure 3. A representative neutron scattering length den-

sity profile for a hybrid bilayer membrane. The loca-

tion of the silicon substrate is defined as Z=0. The

corresponding neutron reflectivity data are shown in

the inset.
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Carbon is the most studied element in the en-

tire periodic table. For decades it was believed that

pure carbon existed in two forms, diamond and graph-

ite. Thus it was quite surprising when a third form of

Figure 1. Schematic diagram of the interstitial spaces in a

C
60

lattice. The gray balls indicate the positions of the C
60

molecules while the red ball resides in the larger octahe-

dral site and the blue ball sits on one of the tetrahedral

sites. The hydrogen molecules must go into one of these

spaces between the “buckyballs”.

pure carbon, called fullerenes, was discovered in the

mid 1980
?

s. The most well-known of this new-class

molecular materials is the one consisting of 60 carbon

atoms which takes the shape of an atomic-scale soccer

ball. These beautifully symmetric molecules are com-

monly called ‘TtuckyballsT

In the solid state C
60
molecules form a struc-

ture with large interstitial spaces between the molecules.

(Figure 1) These spaces are easily large enough to

accommodate a wide variety of atomic and molecular

Figure 2. A Fourier difference map of the 100 crystallo-

graphic plane which shows the locations of the C
60

mol-

ecules using dashed white lines and the location of the

deuterium molecules by the red and yellow contours at

the octahedral position.

species, which can significantly influence the proper-

ties of the resulting compound. Most notable are the

alkali doped C
60
compounds, which display supercon-

ductivity at reasonably high temperatures. However it

has also been shown that various gases including hy-

drogen, nitrogen, carbon monoxide, and oxygen can

be absorbed into the spaces between C
60
molecules.

This suggests that solid C
60
might be useful as a me-

dium for the safe storage of hydrogen or as a molecu-

lar sieve to separate these gases. In spite of this, rela-

tively little effort has been made to understand the in-

teractions which govern these potentially useful prop-

erties namely, the interaction of the trapped species

with the C
60

host. Hydrogen in C
60

is also of funda-

mental interest because it is a nearly perfect example

of a simple quantum object (hydrogen) trapped in a

classical matrix (C
60

). Neutron spectroscopy is a di-

rect way of probing the bonding in materials and it is a

particularly powerful tool with which to study the dy-

namics of hydrogen because of the large incoherent
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scattering cross-section ofhydrogen. Inelastic scatter-

ing spectra obtained using the Fermi Chopper Spec-

trometer (Figure 3) show well-defined peaks, which

Energy Gain (meV)

Figure 3. Neutron spectra showing the rotational transi-

tions for hydrogen and deuterium absorbed in solid C
60

.

Note that the transition is a doublet in both cases with a

splitting of 0.7 meV. The center of the doublet is slightly

shifted from the value expected for the free molecules,

which is indicated by the green arrow.

can be attributed to the quantized rotational levels of

the hydrogen and deuterium molecules.

These peaks are only slightly shifted from the posi-

tions expected for the free rotations ofthese molecules.

The simplicity of this behavior allows us to probe the

effects of relatively weak interactions with the host

lattice, which lead to the small departure from the free

rotor case.

To explore this more quantitatively we have

performed model calculations using a simple Bom-
Meyer type of potential. The rotational potentials felt

by hydrogen and deuterium molecules within this model

are shown in Fig. 4. The panel on the left shows the

calculated potential for the case of complete orienta-

tional disorder of the CL molecules while that on the
oU

right shows the potential for ordered C
60

. The differ-

ence in energy between the red and blue regions is

only ~1 meV, in agreement with the experimental ob-

servation that the rotations are nearly free. The dia-

grams below the calculated potentials show the change

in the quantum energy levels as the strength of the

orientational potential is varied. For the disordered

case, no change is seen over this limited range of po-

tential, whereas for the ordered C
60

case, the level at

-14.7 meV splits into 2 states, as is observed experi-

mentally. Thus the degree of splitting is extremely sen-

sitive to the symmetry and the strength of the interac-

tions.

V
4
(meV) V,(meV)

Figure 4. The top diagrams show contour plots of the

orientational potential felt by a hydrogen molecule when

C
60

molecules are orientationally disordered (left) and

orientationally ordered (right). The total variation in

the potential (from red to blue) is about 1 meV indi-

cating that the rotation is only weakly hindered. The

bottom diagrams show the quantum rotational levels

as a function of the orientational potential when C
60

molecules are orientationally disordered (left) and ori-

entationally ordered (right).

Neutron scattering combined with self-con-

sistent phonon calculations demonstrates that the

symmetry of the interstitial site is bar-3. Further-

more, the magnitude of the splitting (0.7 meVO is

comparable to the size ofthe rotational barrier ansmg

from the mtermolecular interactions between the

hydrogen and the molecules. Additional studies

are underway which will probe how these interac-

tions are changed by the application of pressure

and the co-intercalation of charged species into the

CL host.
oU
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The magnetic properties ofthe lanthanum man-

ganese oxide class ofmaterials have attracted tremen-

dous interest recently because ofthe dramatic increase

in conductivity these systems exhibit when the mag-

netic moments order ferromagnetically, either by low-

ering the temperature or by applying a magnetic field.

This huge increase in the carrier mobility, which has

been given the name “colossal magnetoresistance”

(CMR), is both of scientific and technological interest.

In particular, it is anticipated that these materials may

provide the next generation of read/write heads for the

magnetic data storage industry, while the “half-metal-

lic'
1

behavior provides fully spm polarized electrons for

use in magneto-electronics applications, and for sen-

sors in a variety of applications such as in the automo-

tive industry.

CMR can be strongly enhanced in systems with

reduced dimensionality and so there has been consid-

erable mterest m the two-layer Ruddlesden-Popper com-

pounds, La
2 _.,x

Sr
1+2

Mm,0
7

. The reduced dimensional-

ity leads to significant extension of the temperature

range over which magnetic correlations are important,

and thereby allows a detailed examination of the link

between local spin correlations and the resulting

magnetotransport. We have therefore investigated the

magnetic correlations in Laj
2
Srj

s
Mn

2
0

7
using neutron

scattering. Over a large temperature range above T =

112 K, we found evidence for two-dimensional mag-

netic correlations which peak in intensity at the transi-

tion. Although the in-plane correlations are predomi-

nantly ferromagnetic, a canting of spins in neighboring

planes within the bilayers, at an angle that is dependent

both on temperature and magnetic field, was observed

[1,2].

One of the central questions in the field of

mangamtes concerns the lattice involvement in the

mechanism ofCMR. While the relation between ferro-

magnetism and conductivity was explained in terms of

double exchange, it is now clear that a full understand-

ing of these materials must include the lattice degrees

1,000
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C
<u

£ 400

200

0

0 50 100 150 200 250 300

Temperature [K]

(2.3, 0, 1)

Q - (2.3, 0, 1)

Diffuse scattering

FIG. 1 (a) /-scans through the charge ordering peaks at (2.3,

0, 1) at T=120 K: energy-integrated (red), elastic (orange),

non-spin-flip scattering measured with polarized neutrons

(green diamonds), spin-flip scattering (green triangles).

The orange and green data points have been scaled by ap-

propriate factors. The /-scan at T=20 K (open purple circles)

shows that the charge peaks have vanished, (b) Tempera-

ture-dependence of the intensity of the superlattice peak

(2.3, 0, 1) (red), and of the diffuse scattering after correc-

tion for the phonon scattering (blue), showing that the

charge order and lattice polarons collapse at the Curie tem-

perature.
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of freedom. In particular, the formation of lattice po-

larons above the Curie temperature has been inferred

from a variety of measurements, but direct evidence

has been lacking.

Neutron measurements carried out at NIST,

and X-ray measurements at the Advanced Photon

Source, have revealed charge localization in the para-

magnetic-insulating phase of the layered

La
j

.Sr,
g
Mn,0

7
CMR material, with the associated dif-

fuse polaron scattering that originates from the lattice

distortions around the localized charges. Figure 1(a)

shows two ofthe observed incommensurate superlattice

peaks associated with the charge ordering, character-

ized by the wave vector (0.3, 0, 1). Polarized neutron

scattering has shown that the incommensurate

superlattice peaks are pure structural reflections, origi-

nating most likely from Mn?"-Mn 4 ~ charge correlations.

These correlations are quasi-static on a time scale ps

set by the energy resolution of the instrument. The

superlattice peaks are broader than the q resolution in both

h and / directions, showing that both the in-plane and out-

of-plane charge correlations remain short range at all tem-

peratures. The charge order melts as the insulator-to-metal

transition is traversed and long-range ferromagnetic order

is established [3], as shown in Fig. 1 (b). By similarity with

the 3D perovskite manganites and with the cuprates, this

scattering may originate from a charge-ordered stripe phase

above T
c ,

which is destroyed when the double exchange

mechanism drives the system metallic. The lattice strain

induced by the localized charges gives rise to a four-fold,

lobe-shaped pattern of diffuse scattering around the Bragg

peaks. The upper panel in Fig. 2 shows a contour plot of

the diffuse X-ray scattering in the
[
h

, 0, /] plane around the

(2, 0, 0) reflection. Only the / > 0 half is shown, but the

pattern is symmetric with respect to / = 0. as proved by the

neutron /-scans in the lower panel of Fig. 2. The sharp rod

of scattering along the [0. 0, /] direction is resolution lim-

ited in the [/?, k, 0] plane and is associated with stacking

faults. Part of the lobe-shaped diffuse scattering is due to

conventional acoustic phonons, while the temperature de-

pendence of the additional, polaron scattering (blue open

circles in Fig. 1(b)), arises from static or quasi-static

atomic displacements as revealed by elastic neutron scat-

tering (see Fig. 2 (bottom)). The lattice strain caused by

the polarons relaxes when the short-range charge order

melts at the Curie temperature, providing compelling evi-

dence of the role of polarons in the origin of CMR. Fur-

ther work is now in progress to determine if the charge

melting can be controlled by the application of magnetic

or electric fields, which would open up completely new

2.0

1.5

1.0

0.5

0.0

- 2.20 - 2.10 - 2.00 - 1.90 - 1.80

(h.0,0)

(2 . 1 , 0 , 1 )

FIG. 2 (Top) Contour plot showing the lobe-shaped pat-

tern of diffuse scattering around (2, 0, 0). (Bottom)

Neutron energy-integrated /-scans across the diffuse

scattering in the upper panel, for T=120, 100, and 20

K. The scan at T=120 K (red circles) is an elastic scan,

and has been scaled by an appropriate factor.

avenues for applications.
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A neutron interferometer (NI) is analogous to

a classical Mach-Zehnder type optical interferometer

and it is the only device that allows direct measure-

ment ofthe phase of a neutron wave. The first neutron

interferometer was operated over two decades ago in

Vienna, Austria. In the USA, a very successful group

has been operating at the University of Missouri-Co-

lumbia for the last two decades. Gravitationally induced

quantum interference of neutron waves, An spinor ro-

tation of neutrons in a magnetic field, and observation

of the Aharonov-Casher effect (neutron analog of the

Aharonov-Bohm effect for electrons) are among the

seminal experiments that were carried out during this

period. By measuring the phase shift of the neutrons

that pass through a sample it is possible to accurately

determine the neutron refractive index, n, ofthe mate-

rial. The NI method of determination of n is, for the

most part, independent of the microscopic details of

the sample and perhaps the most accurate method that

is available today. The refractive index, n, of many
solids (e.g. uranium, chromium, vanadium) and gases

(hydrogen, helium etc.) that are important to condensed

matter and solid state physics have been measured and

are being measured today.

The NIST Neutron Interferometry and Optics

Facility (NIOF) is one ofthe premier facilities for neu-

tron optics research. Located in the NCNR guide hall,

it uses single crystal neutron interferometers (perhaps

the best in the world today) with exceptional phase

stability and fringe visibility that are crucial for the suc-

cess of experiments in both fundamental and applied

research. This exceptional performance is in part at-

tributed to the state-of-the-art thermal, acoustical and

vibration isolation system that has been successfully

designed and built during the past few years.

During the past year the NIST NIOF has provided

umque research opportunities for both applied and fun-

damental research and a diverse selection of experi-

ments have been successfully carried out. Two Ph.D.

dissertation research were carried during this period

and six articles have been written for publications. Re-

search collaborations have been established with the

University of Missouri-Columbia, the Hahn-Meitner-

Institute and the University of Innsbruck and EXXON.

Experimental setup

Neutrons

Screen rZZZZZZIZZZZIZZZJ

Profile of Hydrogen distribution

in a working fuel cell

24

21
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9

Figure 1. Neutron image of the water gradient inside a fuel cell.
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Special effort has been made to apply neutron-

imaging techniques for industrial research. The NIOF

is equipped with a high resolution CCD type 2-D posi-

tion sensitive neutron detector to perform high-resolu-

tion neutron radiography of samples using a mono- or

a poly-energetic energetic neutron beam. Early perfor-

mance tests of a neutron tomography station have been

successfully carried out. In addition to radiography,

many other types of diffraction imaging experiments

may be performed at the NIOF. Researchers from

EXXON have exploited the convenience of this facil-

ity for both hydrogen fuel cell research and for study-

ing hvdrocarbons. For the first time the water gradient

inside a working fuel cell has been successfully imaged

(fig. 1). Results from these experiments have allowed

verification of theoretical predictions of water trans-

port mechanism in a working fuel cell [1], Research-

ers from the University of Innsbruck. Austria, have

also used this facility to study the diffraction of neu-

trons (^=0.235 nm) from macroscopic objects ~0.1

mm in size. Finally, a senn-finalist in the 57th

Westinghouse Science Talent Search has demonstrated

the Neutron Phase Contrast Imaging technique.

Direct measurement of
Polymer film mass density

Figure 2. Schematic of the polymer thin film

measurement setup.

The first successful neutron interferometric mea-

surements of scattering length density in polymer thin

films (l<|im) have been carried out in collaboration

with the NIST Polymers Division (fig. 2). This tech-

nique is independent of calibration standards and com-

plex mathematical modeling of the physical process of

interaction. This measurement has opened the possi-

bility of using NI as an important tool for establishing

well defined densities of thin films that is critical in

many analysis techniques in surface physics research

[
2 ].

An important experiment has been carried out to

verify the recent predictions of quantum entanglement

of the nuclear states in a mixture of fluids. The exist-

ence of such entanglement would suggests that that the

refractive index, V, of a mixture cannot be calculated

only from the knowledge of fractional abundance and

n of the constituent elements. If this weretrue, the im-

plications would be profound for many neutron scat-

tering techniques. A NIOF experiment measured scat-

tering length density, Nb, for various mixtures ofEfO
and D,0. It had been proposed that for these mixtures

a 5-10% deviation from the traditional theory might

occur because of quantum entanglement of FI and D
at room temperature. However, the experimental data

agreed with the traditional theory' within the statistical

fluctuation of the data, which was of order 0.4% and

within this limit no deviation from standard theory has

been observed [3],

The capability of the facility has been augmented

by the addition of a transmission neutron polarizer and

RF gradient flipper. Neutron polarization in excess of

98% has been obtained with thermal neutrons. This

new capability was exploited in an experiment which

observ ed the 4n spin rotation symmetry of the neutron

wave function. This experiment was unique in that the

neutron guide field was gently rotated by 180° allow-

ing the neutron spin direction to adiabatically follow

the field. This experiment provides the first direct ob-

servation of 471 spin rotation symmetry of neutrons

under space rotation.

New experiments such as the measurement of the

internal charge structure of a neutron, measurement of

mass densities of thin films as a function of thickness

and scattering length of samples (such as D„ gas) that

important for many body calculations are being planned.

Future plans also include constructing large separated-

section interferometers. Such interferometers are cru-

cial for phase transition studies in samples and funda-

mental physics experiments with at least an order of

magnitude more sensitivity than what is possible to-

day.
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Small-angle neutron scattering, with contrast

variation, has provided key insights into the regulation

of protein activities. Life functions at the molecular

level via a large number of highly regulated molecular

networks through which messages are communicated

so that cells can maintain vital ongoing functions and

also can respond as needed to external stimuli. Pro-

teins are the work-horses of life carrying out all the

functions required for survival, growth and reproduc-

tion. They are responsible for motility, transport, sig-

nal transduction, catalysis, protein synthesis and deg-

radation, energy capture, transport and conversion,

damage recognition and repair, replication and tran-

scription, etc. These activities all must be strictly co-

ordinated. and there are a variety of mechanisms for

regulating protein function that are key to healthy func-

tion. One ofthe most common regulatory mechanisms

of protein activity is the addition, or removal, ofphos-

phate groups from hydroxyl groups on proteins. Pro-

tein phosphorylation reactions are catalyzed by a fam-

ily ofenzymes called the protein kinases ofwhich sev-

eral hundred have been identified to date. Protein ki-

nase activities themselves are frequently regulated by

‘'second messengers'’ that are released into the cellular

cytoplasm in response to a "‘first messenger" signal,

such as a hormone binding to a cell surface receptor.

Two commonly used second messengers are divalent

calcium ions and cyclic nucleotides. These messen-

gers modulate kinase activities generally by binding to

intermediary regulatory proteins that then either bind

to or modulate their interaction with the kinase such

that the kinase activity is switched on or off.

Small-angle scattering from proteins in solu-

tion gives information on their overall shapes and is

particularly sensitive to domain movements as well as

protein-protein associations. In the case of neutron

scattering, the differences in the scattering properties

of hydrogen and deuterium allow one to use specific

deuterium labeling with contrast variation to extract

structural data on individual components within com-

plexes. We have used neutron scattering with contrast

variation to characterize the conformational transitions

and associations in the activation mechanism of two

model kinases; the Ca27calmoduhn-dependent kinase

myosin light chain kinase (MLCK), and the cyclic

nucleotide (cAMP)-dependent protein kinase.

In our neutron scattering studies of the Ca2+
/

calmodulin/MLCK activation mechamsm we have de-

termined the conformational transitions undergone by

both the kinase and calmodulin upon complex forma-

tion [2], and the effects of substrate binding on the

complex [3], These experiments were performed us-

ing samples prepared with the MLCK enzyme

complexed with deuterated calmodulin. Data were

measured for the complex in solvents having a range

of D.,0 levels. The basic scattering functions for

calmodulin and MLCK within the complex, as well as

the cross term, were extracted from these neutron data.

Uniform two-ellipsoid models were used to aid in the

interpretation of the scattering data. Figure 1 shows

the conformations of calmodulin and MLCK in the

complex with and without substrate as determined by

the neutron scattering experiment. By fitting the high

resolution crystal or NMR structures available on the

components ofthese complexes into our ellipsoid models

we have been able to gain new insights into the mo-

lecular basis for the kinase regulation. Figure 2 sum-

marizes the information derived from the solution scat-

tering studies concerning the activation mechanism.

Our more recent solution scattering studies of

the cAMP-dependent protein kinase [4] have revealed

the quaternary structure of this kinase which has two

identical catalytic and two identical regulatory subunits

that bind the cAMP second messenger. This binding

results in the dissociation and activation ofthe catalytic

subunits. Again by fitting the high resolution structures

mto the molecular envelops defined by the neutron data,

we have been able to compare and contrast the differ-

ent regulatory mechanisms for the highly conserved

catalytic core of the two kinases we have studied thus

far.

Our neutron contrast variation studies provide

critical information about the dynamic conformational

transitions underlying the regulatory mechanisms we

are studying. The ability to study the global shapes of

the component structures within complexes in which
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Figure 1. Ellipsoid models derived from the neutron scat-

tering data for 4Ca2+*calmodulin*MLCK complexes with

(right) and without (left) substrates. Superimposed within

the ellipsoids are the known structures for the upper (or-

ange ribbon) and lower (yellow ribbon) lobes of the MLCK
catalytic core. Within the smaller ellipsoid Calmodulin is

represented as a red ribbon, with the MLCK calmodulin-

binding domain (MLCK-I) in yellow. Upon substrate bind-

ing there is movement of the calmodulin closer to the cata-

lytic cleft. At the same time the catalytic cleft of MLCK
closes, presumably about its substrate.

there is inherent flexibility provides a critical frame-

work into which higher resolution structural data on

the individual components can be fit. These types of

problems cannot be studied by high resolution crystal-

lography when flexibility inhibits crystallization. Nei-

ther can they be studied by NMR when the structures

are larger than ~ 40 kDa. Thus neutron small-angle

scattering and contrast variation fills an important niche

that helps to assemble the molecular jigsaw puzzles

that we need to solve in order to understand the way in

which molecular networks operate. This understand-

ing is key to medical and biotechnology applications

that utilize biomolecules and their unique properties.
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Emulsion polymerization is the most widely

used process to prepare polymer colloids (latexes) of

sizes 100 to 10,000 nm, finding use in applications

such as paints and adhesives. Microemulsion systems

contain larger amounts of surfactant relative to the

monomer and produce much smaller polymer particles

of 20 to 50 nm diameter. The surfactant molecules

themselves can be functionalized and polymerized pro-

ducing even smaller structures of 3 to 5 nm, still retain-

ing a well-defined shape. The reduced size and in-

creased surface area of these structures allows for a

variety ofnew applications beyond conventional emul-

sion latexes, such as adsorbents and receptor binders

for biomedical compounds [ 1 ]

.

In all of these reaction systems there is a defi-

nite need to understand the details of the underlying

mechanisms in order to control the final product. A
number of models for free-radical polymerization ki-

netics have been proposed, and all depend on the loca-

tion ofmonomer relative to the growing polymer chain.

This partitioning of monomer determines the overall

rate of reaction as well as the dominant free-radical

Figure 1. Prof. Kaler (L) and graduate student Carlos Co

(R) withdraw a polymerization sample for SANS measure-

ment.

termination events. The widely different initial micro-

structure of emulsion, microemulsion, and micellar sys-

tems leads to important differences in the localization

ofmonomer and polymer. Typical experiments attempt

to correlate the overall rate of reaction with the initial

and final properties ofthe microemulsion and latex re-

spectively, with little information about the specifics of

the compartmentalized monomer and polymer. In or-

der to elucidate the mechanistic details, polymerization

reactions can be performed on-line, using Small-Angle

Neutron Scattering (SANS) to provide microstructural

information as a function ofconversion (or time). SANS
is well suited to investigate polymerization reactions,

non-invasively probing appropriate length scales in as

short as one-minute intervals.

A microemulsion polymerization ofhexyl meth-

acrylate was performed on-line using SANS while si-

multaneously measuring the conversion [2], Represen-

tative SANS spectra at increasing conversion are shown

in Figure 2. As the reaction proceeds, the diminishing

peak in the spectra shows the smooth decrease in the

size of the monomer-swollen microemulsion droplets.

Simultaneously, the increase in the low-q scattering in-

dicates a steady growth of latex particles.

Quantitative modeling shows that the average

diameter ofthe latex particles remains nearly constant,

simply increasing in number with time. These results

support a model ofpolymerization in which the propa-

gation reaction occurs in a monomer-rich shell surround-

ing a growing polymer particle that is not swollen with

monomer. It also provides insight into the behavior of

monomers with different partition coefficients.

Micelle polymerization should behave even less

like an emulsion polymerization than a microemulsion.

There is now no monomer to partition, since the sur-

factant is the monomer and is constrained to a specific

location m the aggregate. Ifthere is no transfer ofmono-

mer between aggregates during the polymerization, the

process can be thought of as a “zippering" of the indi-

vidual micelles.

Unlike most nncroemulsions, micellar aggre-
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Figure 2. SANS spectra of the polymerizing hexyl meth-

acrylate microemulsion as a function of monomer con-

version.

gates are not limited to globular structures. In particu-

lar, cylindrical surfactant structures can be polymer-

ized. The surfactant cetyltrimethylammonium 4-

vinylbenzoate forms viscoelastic solutions in water con-

taining cylindrical micelles of 4 nm diameter and thou-

sands ofnanometers long. The SANS curves in Figure

3 show the evolution of structures from the initial

charged micelles to the final polymerized cylinders. At

intermediate (20 - 70%) conversion the reacting sys-

tem passes through a highly turbid and ordered phase,

with a sharp peak indicating a well-defined spacing of

5 nm. The ordered phase abruptly disappears, result-

ing in a stable dispersion of discrete, polymerized cyl-

inders 4 nm x 80 nm [3], This novel ordering behavior

is not fully understood, but is in sharp contrast to the

smooth structural changes seen in microemulsion po-

lymerization. On-line polymerization SANS measure-

ments provide a visualization of the evolving micro-

structure that cannot be provided by other methods,

permitting validation ofpolymerization mechamsms.
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Arborescent graft polymers (AGP) are a new

class of polymer molecules with potential for use as

drug delivery systems, monomolecular micelles for cata-

lyst dispersions, waste water treatment and flow modi-

fiers. AGP's are highly branched (i.e. treelike or ar-

borescent) macromolecules synthesized by successive

generations of functionalization and grafting reactions

[
1] . These molecules fall into a class of controlled

architecture polymers that have generated considerable

research mterest in recent years and include dendrimers,

arborescent, and hyperbranched polymers [2]. The ap-

plications envisaged for these types of polymers are

based on exploiting the highly branched architecture of

the polymers and require an understanding of the size

and shape of the molecules in solutions and mixtures

with other polymers. Small-angle neutron scattering

(SANS) has been used to provide the foundation for

understanding the shape-property relationships in these

systems.

The cham architecture ofAGP’s is shown sche-

matically in figure 1 . The synthesis goal is to provide

methods for producing polymers with controllable size,

shape and functionality for use in such applications as

coatings, membranes, drug release systems and flow

modifiers. By synthesizing molecules with an outside

shell of a hydrophilic polymer and an inner core of a

hydrophobic polymer these molecules can act as water

dispersible monomolecular micelles which can absorb

organic molecules from waste water or help to dis-

perse water insoluble catalyst systems. In order to

design APG’s for specific applications it is necessary to

have detailed information on the intermolecular den-

sity profile, molecular size and shape in solutions and

in mixtures with other polymers. We have been using

small angle neutron scattering (SANS) to measure the

size and shape of APG's under a range of different

conditions.

SANS curves for a series ofpolystyrene AGP’s

as a function of generation in deuterated cyclohexane

at 30°C is shown in figure 2. The radii of gyration (R
p
)

of the polymers were measured and are plotted as a

function of generation in figure 3

.

For generations 0 and 1 the size of the mol-

ecules is essentially equivalent under all measured con-

Andy Kee (left) and Mario Gauthier (right) discussing

the synthesis of arborescent polymers.

ditions while for generations 2 and 3 the molecules

vary m size significantly (particularly for generation 3)

depending on the solvent or matrix polymer. The gen-

eration 3 molecules show the largest expansion in (deu-

terated) toluene which has the highest solvent power

of the various systems studied. The most compact

structure for the generation 3 molecule occurs in linear

(deuterated) polystyrene. For comparison the of a

Figure 1. Schematic representation of arborescent graft

polymer chain architecture.
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Figure 2. SANS data for all generations of polystyrene

sphere was calculated assuming the generation 3 mol-

ecule was collapsed to bulk density. The R
g
obtained

was 170 A which is close to the R
g
of the generation 3

polymer in linear (deuterated) polystyrene. This indi-

cates that the generation 3 molecules should be essen-

tially non-interpenetrating and the linear polystyrene

matrix chains are largely excluded from the arbores-

cent graft molecules. This data is important for esti-

Figure 3. Radius of gyration of polystyrene AGP's in

solutions and blends for all generations.

mating the solvating power of these systems for use as

monomolecular micelles and for understanding the role

of entanglements in determining their flow properties.

The SANS data for generation 3 arborescent

graft polymers in deuterated cyclohexane showed a

clear Guimer region and a second interference peak at

Figure 4. Scattering function calculated (solid line)

compared with SANS data.

higher q which can be attributed to the single particle

form factor (figure 4). A power law function was used

to estimate the mtermolecular density profile and cal-

culate the scattering for comparison with experiment

(see p(r) inset in figure 4).

Our neutron scattering work indicates that for

the largest molecules studied (generation 3) the shape

ofthe molecules is quite compact, and in mixtures with

linear polymer chains there is relatively little interpen-

etration of the arborescent molecules by the linear

chains. These results will help guide chemists in syn-

thesizing new types and variations of arborescent graft

polymers to exploit the unique possibilities of shape-

tailored molecules for a range of applications.
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Inorganic glasses are among the most widely

used classes of materials, yet they remain poorly un-

derstood at the atomic level, because the lack of long-

range atomic order makes it difficult to obtain detailed

information. Drawing unifying concepts from data on

many materials, and identifying exceptional cases that

can have potential value to technology, are the goals

of a neutron scattering program at the NCNR.
Chalcogens ( S, Se or Te) combined with Col-

umn IVB or VB elements form a large variety of cova-

lent systems which readily form glasses when quenched

from the melt
[ 1 ] . They offer a wide range of optical

and electronic applications. For example, transmission

bands in the infrared region of the spectrum permit

applications such as fibers for IR laser surgery, cutting

and welding, night-vision devices, etc. which are based

on selecting materials to optimize transmission in a par-

ticularly useful IR band. Chalcogemde glasses are also

used in extremely fast switching devices, in X-ray im-

aging, and in imagers for video cameras. In terms of

basic physics, these materials present a fertile testing

ground for studying the effect of network topology on

glass properties.

In the Se-As-Ge system, Se atoms are almost

always covalently bonded to two other atoms, while

As and Ge are respectively almost always 3- and 4-

coordinated. An isocoordmate rule is one that identifies

a property of a multicomponent covalent network glass

system that stays constant for all compositions which

have the same average coordination number, <r>. There

are several of these evident in ternary Se-based glass

alloys. Examples are the glass transition temperature,

softening temperature, elastic constants, measures of

hardness, and Se-H spectral hole-burning relaxation.

Most of these rules cover behavior that is nearly static

and on a macroscopic length scale. Our neutron scat-

tering experiments extend the range of times involved

in these rules by many orders of magnitude. We have

identified a simple feature in the dynamics of chalco-

gemde glasses, the vibrational isocoordmate rule (VIR),

which states that up to some frequency the vibra-

tional density ofstates (VDOS) is the samefor alloys

having the same <r>[2]. This observation extends

the time scale for the operation of such rules to the

picosecond regime and the length scale to a few

bondlengths.

Fig. 1 shows the Generalized Vibrational Den-

sity of States (GVDOS) measured by neutron TOF
inelastic scattering for several Se-As-Ge glasses. Some

data sets were measured at NIST-CNR using the Fermi

Chopper Spectrometer (FCS) and some at the IN4 TOF
spectrometer at ILL. There are two or three curves

for each value of<r> which correspond to the compo-

Figure 1 . The VIR is best shown by plotting GVDOS
of isocoordinated alloys on top of each other. <r> = 2.16:

7 Se
92
Ge

08
(IN4), »Se

8
,As

06
Ge

0!
(IN4), o Se

84
As

l6
(FCS);

<r> = 2.4 including the binary alloys terminating the

isocoordinate line are shown: a Se
g
Ge, (IN4), ?

Se
675

As,
50
Ge

075
(IN4), o Se

3
As, (FCS). <2> = 2.8:

a
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As

30
Ge

45
(FCS), ? Se

175
As

450
Ge

375

(FCS). Starting from the bottom, successive data curves

are shifted up by 0.025 units on the vertical scale.
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sitions indicated in the figure caption. The data at <r>

= 2.4 are particularly remarkable in that they include

As0Se3
having a nearly 2-D network and Ge0Ses

which

has a network closer to 3-D in character. The energy

bands below 20 meV are nearly identical. Near 25 meV
the VIR breaks down since the tetrahedral breathing

mode appears in the Ge glass but not in the As one, i.e.

the short range order of the network matters for this

mode. Apparently the VIR holds when network con-

nectivity and not short-range order is important.

A clear departure from the VIR for <r> = 2.6

is shown in Fig. 2. The GVDOS of the lower curve,

which clearly follows the trend of Fig. 1, is for

Se^As^Ge^. The upper curve displaying several sharp

features is for glassy As
?
Se0 . Surprisingly, these fea-

tures are not evident in Raman scans in this glass. The

origin ofthese features is not yet certain, but it is prob-

able that they arise from a nanoscopic phase separa-

tion of isolated molecules within the glass that retain

their well-defined molecular vibrational modes. Evi-

dence supporting this view is that one can make sev-

eral As
v
Se

lv
glasses for x > 0.5 which display sharp

features at the same frequencies, thus pointing to the

Figure 2. The bottom curve: ? Se
55
As

30
Ge

15
(FCS)

follows the VIR. The top curve: o As
3
Se, (FCS) is an

exception to the VIR. Both datasets are for <r> = 2.6.

Starting from the bottom, successive data curves are

shifted up by 0.030 units on the vertical scale.

same molecular species.

The conclusions of this research are twofold:

( 1) The VIR is followed closely across the entire glass-

forming region of the Se-As-Ge phase diagram, with

the exception of a small region near the composition

As
6
Se

4 (2) Highly unusual behavior is observed for

As
6
Se

4
indicating the formation of molecular clusters

or small structural units. The combination of (1) and

(2) is intriguing, and may be relevant to unusual

photocontractive effects that recently have been ob-

served in As-Se thin films . Better understanding ofthe

structural properties ofthe Se-As-Ge fomis an improved

basis for potential applications.
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Understanding the interdiffusion of polymer

chains at interfaces is critical to many applications such

as coatings, adhesion, composite lamination and frac-

ture strength development. Neutron reflectivity has

proven to be a very powerful technique for studying

polymer interdiffusion at polymer-polymer interfaces

[ 1 ] . These studies have examined the role oftempera-

ture and molecular weight on interdiffusion between

hydrogenated and deuterated polymer bilayers. More

recently, the sensitivity ofthe neutron reflectivity tech-

nique has allowed the analysis of thickness dependent

diffusion when the film thickness approaches the ra-

dius of gyration of the polymer.

The present study probes how the introduc-

tion of ultra-thin bander layers between the interdiffus-

ing polymers affects their dynamics. The study of

interdiffusion through bander membranes is of signifi-

cant importance in many areas of material science, in-

cluding metallurgy, biology and polymer science. As

an example, consider a system where the barrier is in

fact an oxidized layer brought about by degradation of

one of the materials. This is an important aspect in

materials science where the effects of oxide layers on

the interdiffusion in metallic systems have received

considerable attention [2]. For polymeric systems one

can create an ultra-thin barrier membrane composed

of a crosslinked polymer. The crosslinking makes the

barrier insoluble in the surrounding polymers while still

allowing the interdiffusion of polymers through the

membrane.

The geometry of a model system designed for

this study is shown in Fig. 1. It is a trilayer system,

containing two polystyrene (PS) layers separated by a

membrane. One of the polymer layers (either the top

or bottom layer) is hydrogenated while the other is

deuterated. Molecular weights ofboth the hydrogenated

and deuterated polymer layers were closely matched

(hPS: M = 40 kg’mol' 1

;
dPS: M = 39 kg-mol 1

).

The sample was preparecTin three stages. First,

a polymer layer was spin coated on a silicon substrate

covered with a uniform oxide layer (-1 0A). The bar-

rier membrane itself consisted of a blend of

isopentylcellulose cinnamate (IPCC) and PS (34 wt%).

It was transferred on top of the bottom polymer layer

Initial .State t = 85 min.. 130 C

Figure 1: Schematic drawing of the sample geometry

for Air//hPS/IPCC(34 wt% PS)/dPS//SiO /Si. Red (dPS)

and blue (hPS) are used to distinguish between isotopi-

cally different polymer chains. The membrane (green) is

displaced by Ax from its original position as hPS and

dPS mix during annealing.

by the Langmuir-Blodgett technique. The IPCC/PS

layers can be transferred in increments of 1 0A. Using

a blend of IPCC and PS as a membrane material al-

lows for the control of the membrane’s porosity as the

PS component is free to leave the barrier layer during

the experiment thereby creating holes and channels in

the membrane’s network which facilitate PS transport

across the membrane. In the present case the IPCC

(34 wt%PS) membrane is 60 A (6 layers) thick. After

transfer the IPCC in the film was cross-linked for 15

min. by UV irradiation under a nitrogen atmosphere.

The third and final PS layer was floated on top of the

sample. The trilayer system was dried under vacuum

at 70 °C to remove residual solvents from the polymer.

The thickness and roughness of the trilayer system

was characterized at each stage by x-ray reflectivity.

A neutron reflectivity curve from the as pre-

pared sample

Air // hPS/IPCC(34 wt% PS)/dPS // SiO /Si
2

is shown in Fig. 2. The orange curve is a fitted

reflectivity profile based on the corresponding scatter-

ing length density profile (sld) shown in the inset (also

orange). The position of the three films, dPS (-500

A), IPCC(34 wt% PS) membrane (-60 A), and hPS

(-800 A) can be accurately determined by neutron
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reflectivity. After annealing the sample at 130 °C for

80 minutes, changes in the thicknesses and composi-

tions of the PS layers as well as the location of the

membrane can be obtained by fitting the reflectivity

data (brown). The inset shows the corresponding sld

profile (also brown) for the annealed sample revealing

an excess of dPS at both the air and SiO interfaces as

has been observed in blank experiments"with bilayers

ofdPS and hPS without the membrane. It takes about

1 0 times longer to achieve this final state with the mem-

brane present (80 min) than the corresponding time

without a membrane (8 min).

More important, we see a movement of the

membrane, Ax, relative to its initial position as mea-

sured from the Si interface. Neutron reflectivity mea-

surements are very sensitive to the location ofthe mem-

brane in this trilayer system and its position can be

very accurately tracked as a function of annealing time

which is shown for this sample in the upper halfof Fig.

3. At later annealing times (80 min), the membrane

has moved by ~ 1 20 A from its original position in the

Figure 2: Neutron reflectivity data for initial and final

state of the sample Air//hPS/IPCC(34wt% PS)/dPS//

Si0
2
/Si. The lines are the best fit to the data.

film relative to Si.

An interesting result is observed in a sample

where the position of the dPS and hPS layers have

been switched. The bottom panel of Fig. 3 shows the

relative movement ofthe membrane in a sample

Air // dPS/IPCC(34 wt% PS)/hPS // SiO /Si
2

as a function of annealing time. It is obvious that the

two different geometries result in a reversal ofthe travel

direction of the membrane. In both cases, the mem-
brane moves towards the dPS rich side of the mem-

brane indicating a higher mobility of dPS through the

membrane as compared to hPS.

In bilayer interdiffusion studies the influence

ofunmatched molecular weights has been investigated

where the movement of the diffusion boundary has

been tracked by observing the movement ofgold marker

particles (3). Those results show a movement of the

interdiffusion boundary towards the direction of the

lower molecular weight component. In the present

study, the molecular weights of the hPS and the dPS

were closely matched, therefore the observed move-

ment of the membrane can be connected to slightly

different interactions between the membrane’s mate-

rial (IPCC) and the two isotopically different polymers

hPS and dPS leading to a higher permeability of dPS

through the barrier.

This result opens up the possibility of a num-

ber ofnew experiments in this area. These include the
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Figure 3: Displacement of the membrane relative to Si

effects on the mobility ofpolymers through membranes

as a function of: 1 ) the molecular weight of the poly-

mer, 2) the degree of crosslinking of the barrier layer,

3) the wt% of PS in the membrane (porosity), and 4)

the thickness of the barrier. Besides providing valu-

able insight into the transport properties of ultra-thin

membranes, this project serves as a stepping stone for

designing future reflectivity experiments to probe trans-

port properties in biological membranes.
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Interactions

A User Facility: Neutrons for the U.S. Research

Community

The NCNR is a national resource, providing

state-of-the-art neutron beam instrumentation for in-

dustry, government, and university research programs.

User activity has increased rapidly as the number and

capability of the instruments has risen. As shown in

Fig. 1, user participation has tripled since the start of

operations in the NCNR guide hall in 1990.
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Fig. 1. Research participants at the NCNR.

The bar at far right m Fig. 1 represents partici-

pants from 96 universities, 37 government institutions,

57 U.S. industrial laboratories, and 168 foreign institu-

tions. Participants include those who were at theNCNR
at least once for an experiment or collaborated in other

ways, such as sample preparation or co-authoring a

publication. NIST researchers comprise a small frac-

tion of the total user population, but are naturally a

critical factor, often enabling other users to perform

the best measurements possible.

The NCNR has always striven to enable re-

searchers to obtain access through procedures that are

appropriate for their needs, without excessive delay or

bureaucracy. In practice, that has meant allowing

several different modes of access through formal pro-

posals, informal collaborations, and Participating Re-

search Teams. In some cases, industrial R&D of a

proprietary nature is carried out at the NCNR, pro-

vided that appropriate beam-time charges are paid on a

full-cost-recovery basis to the U.S. government.

Formal User Program

The Program Advisory Committee (PAC) is

the body primarily responsible for proposal review and

user policies. The PAC advises the NCNR Director on

these and other aspects of the NCNR operation. Its

current (1997-1998) membership includes Jill Trewhella

(chair, Los Alamos National Laboratory), William

Graessley (Princeton University), Sanat Kumar (Penn

State University), Gabrielle Long (NIST), Laurence

Passell (Brookhaven National Laboratory), Suml Smha

(Argonne National Laboratory), Thomas Russell (Uni-

versity ofMassachusetts), and Emile Schweikert (Texas

A&M University). The PAC membership represents

a wide range of expertise in neutron beam research,

and advises NIST on many aspects of the research

activities and instrumentation at the NCNR, especially

those concerning user interaction.

The most direct area of involvement for the

PAC lies in the formal research proposal system, which

is based on a submission deadline and subsequent re-

view at six- to eight-month intervals. After each dead-

line, proposals are peer-reviewed by mail or electronic

mail by experts in the research area specific to each

proposal. The PAC then meets to consider the pro-

posals with their reviews, together with technical and

safety reviews provided by NCNR staff, and makes

recommendations for approval or rejection and alloca-

tion of specific amounts of beam time for each pro-

posal.

The PAC met twice at NIST during FY 1998,

first on November 21, 1997, and again on July 13-14,

1998. 130 proposals were reviewed on the first occa-

sion, and 162 proposals requesting 1563 instrument-

days on the second. The review was confined to

proposals for small-angle neutron scattering (SANS),

reflectometry, cold-neutron triple-axis spectrometry, and

time-of-flight spectroscopy. Other categories of pro-

posals, such as powder diffractometry and chemical

analysis, are reviewed on a continuing basis rather than

at the regular PAC meetings. Both the number of pro-

posals and the number of requested instrument-days

show a continuing growth. For comparison, the call

for proposals in August 1995 stimulated 100 proposals

requesting 549 instrument-days.
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The two 30-m SANS diffractometers still ac-

count for the largest category of proposals (67 during

the last proposal round), but proposals for the two re-

flectometers have risen to a comparable number (58

during the last round). The demand for SANS is now

rismg relatively slowly, while that for reflectometry still

shows strong growth. The oversubscription in number

of instrument-days (i.e., days requested divided by days

available) was approximately 3 for reflectometry, and

approximately 2 for SANS and inelastic scattering. The

oversubscription for the reflectometers was high at both

PAC meetings in FY 1998, despite the provision of

more instrument-days for users at the second meeting.

There are plans to construct another reflectometer in

the near future to accommodate the increasing demand,

especially in the area of biology, where experiments

can require large blocks ofbeam time.

The demand for high-resolution inelastic neu-

tron scattering is also increasing. The number of pro-

posals for the SPINS spectrometer (cold-neutron triple-

axis with polarized beam option) was 15 in Nov. 1997,

and 24 in July 1998. In the last instance, the oversub-

scription in instrument-days was 2.9. Requests for the

Fermi-chopper time-of-flight spectrometer also showed

growth, with 9 proposals in 1996, 13 proposals in Nov.

1997, and 15 proposals in July 1998, with an oversub-

scription of 1.4 at the last PAC meeting. The three

new inelastic scattering instruments about to come into

operation will stimulate further demand, so that this

proposal category should show a substantial increase

in the near future. The next call for proposals will

offer the backscattering spectrometer, which is now
operational, to users on a limited basis. The disk-chop-

per time-of-flight spectrometer and the spin-echo spec-

trometer are nearing completion and will be offered to

users in the near future.

In addition, time on the 32-detector powder

diffraction instrument at BT-1 is also available for us-

ers through proposals. For the present, sufficient time

is available for all proposals received, and time is di-

rectly scheduled by the NCNR staff when proposals

are received. During the past year, approximately 80

proposals were granted time on this instrument, ap-

proximately half ofwhich were from outside users.

Some users devote a substantial part of their

research effort to neutron scattering measurements at

the NCNR. At the most recent PAC meeting, it was

felt that these users would make best use of their in-

strument time if they could be assured of access to

beam time distributed over an extended period ofabout

two years. The PAC therefore recommended that a

new proposal category be instituted, called program

proposals. The latter would be longer and more de-

tailed than a regular proposal, describing a course of

measurement rather than a single experiment. NCNR
management agreed to implement program proposals

on atrial basis.

Collaborations

Direct collaborations remain a common way

to access the instruments at the NCNR, accounting for

approximately 60% ofthe number of instrument-days.

The thermal-neutron triple-axis spectrometers are

mainly scheduled in this way. Most of the time re-

served for NIST researchers on other instruments is

also devoted to expenments that are collaborations with

non-NIST personnel.

Participating Research Teams

Another mode of access to NCNR instrumen-

tation takes place through Participatmg Research Teams

(PRT). In this case, groups of researchers join to-

gether to build and operate an instrument, using addi-

tional funding derived outside ofNIST (although NIST
does participate in some PRTs). Three-quarters of the

time on such instruments is reserved for the PRT, and

the balance is allocated to general user proposals. Sev-

eral instruments have been developed in this way, and

others are under consideration. One particular version

of this is the Center for High Resolution Neutron Scat-

tering (CHRNS), which is funded by the National Sci-

ence Foundation (NSF) and NIST. The instruments

include a 30 m SANS machine, a Spin Polarized In-

elastic Neutron Spectrometer (SPINS), and a perfect

crystal very low angle SANS now under development

at BT-5. In CHRNS, all of the NSF time is returned to

the general user community for allocation by the PAC.

A detailed description of the activities of CHRNS is

prepared as an annual report to the NSF. and is avail-

able on request.

Feedback from Users

Users are encouraged to offer their comments

concerning the instrumentation, operations, and poli-

cies at the NCNR. Their input is being obtained in

several ways. First, theNCNR local contact personnel

interact directly with each research group using the fa-

cility. This informal method typically identifies con-

cerns about a specific instrument. Responsibility for
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action then resides with the cognizant NCNR instru-

ment scientist. Users may also offer comments on a

form provided on the facility Web pages. The NCNR
Researcher’s Group, an independent body currently

chaired by Professor Anne Mayes of MIT, is in the

process of obtaining further information through a sur-

vey of its membership.

Other communication with users

For the past several years, the primary means

of communication with the NCNR user community

has been through electronic mail and the facility Web
pages at http://rrdjazz.nist.gov. For almost all the ma-

jor neutron scattering instruments, beam time requests

that are not formal proposals must be submitted through

a Web page form. Most formal proposals for beam

time are submitted using the same form, accounting

for approximately 80% of proposals received in re-

sponse to the last call. The current hit rate for the

NCNR web page is 1 M/year. Electronic submission

has many advantages, facilitating the compilation of a

comprehensive database on investigators, proposals,

referees, and experiments. This is extremely useful in

the increasingly complicated task ofassigning and sched-

uling beam time and equipment, and in making admin-

istrative decisions concemmgNCNR operations.

Independent Programs

The Polymers Division of the Materials Sci-

ence and Engineering Laboratory has two major pro-

gram elements at the NCNR. For the first, the objec-

tives are to help the U.S. microelectronics and sup-

porting infrastructure industries by addressing their most

pressing materials measurement and standards issues.

In today’s ICs and packages the feature size is ever

shrinking, e.g., on the chip level the feature size is ap-

proaching 250 nm while the size of a polymer mol-

ecule is typically 5-10 nm. As feature size shrinks the

structure and properties of interfaces play an increas-

ingly important role controlling the properties of the

polymer layers used in interconnects and packages. In

this program both neutron reflectivity 7 and neutron scat-

tering have played an essential role for characterizing

polymer/metal interfaces including local chain mobil-

ity, moisture absorption, glass transition temperature

and crystalline structure. For the second, the objective

is to understand the underlying principles of phase

behavior and phase separation kinetics in the bulk and

on surfaces ofpolymer blends in order to facilitate mor-

phology/structure control during processmg. SANS and

reflectivity measurements in equilibrium, in transient,

and under external field provide essential information

for general understanding as well as for specific appli-

cation of polymer blend/alloy systems. Customers in-

clude material producers and users, ranging from chemi-

cal, rubber, tire, and automotive companies, to small

molding and compounding companies. The focus of

research on polymeric materials includes commodity,

engineering and specialty plastic resins, elastomers,

coatings, adhesives, films, foams, fibers, and non-

woven’s.

The Exxon Research and Engineering Com-
pany is a member ofthe Participating Research Team

(PRT) that operates, maintains, and conducts neutron-

related research activities at the NCNR's NG7-30M
SANS and NG5 -Neutron Spin Echo Spectrometer (to

be dedicated soon) instruments. The mission is to use

those instruments, as well as other neutron scattering

techniques, to conduct scientific research that comple-

ments the research activities at Exxon's mam laborato-

ries as well as at its affiliates' laboratories throughout

the world. The aim of these research activities is to

deepen knowledge of the nature of the products and

processes ofthe business so as to better serve custom-

ers and to improve the return on shareholders' invest-

ment. In line with that, and taking full advantage of

the unique properties of neutrons, most of the experi-

ments use SANS or other neutron techniques to study

the structure and dynamics of hydrocarbon materials,

especially in the fields of polymers, complex fluids,

and petroleum mixtures . Exxon views its participation

in the NCNR and collaborations with NIST and other

PRT members as an excellent investment for the com-

pany and a good way to contribute to the scientific

health of the nation.

The Nuclear Methods Group (Analytical

Chemistry Division, Chemical Science and Technol-

ogy Laboratory) has as its principal goals the develop-

ment and application of nuclear analytical techniques

for the determination of elemental compositions with

greater accuracy, higher sensitivity and better selectiv-

ity. A high level of competence has been developed in

both instrumental and radiochemical neutron activa-

tion analysis (INAA and RNAA). In addition, the group

has pioneered the use of cold neutron beams as ana-

lytical probes with both prompt gamma activation analy-

sis (PGAA) and neutron depth profiling (NDP). PGAA
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measures the total amount ofa particular analyte present

throughout a sample by the analysis of the prompt

gamma-rays emitted during neutron capture. NDP, on

the other hand, determines concentrations of several

important elements (isotopes) as a function of depth

within the first few micrometers of a surface by energy

analysis of the prompt charged-particles emitted dur-

ing neutron bombardment. These techniques (INAA,

RNAA, PGAA, and NDP) provide a powerful combi-

nation of complementary tools to address a wide vari-

ety of analytical problems of great importance in sci-

ence and technology, and are used to help certify a

large number ofNIST Standard Reference Materials.

During the past several years, a large part ofthe Group’s

efforts has been directed towards the exploitation of

the analytical applications of the guided cold-neutron

beams available at the NIST Center for Neutron Re-

search. The Group’s involvement has been to design

and construct state-of-the-art cold neutron instruments

for both PGAA and NDP and provide facilities and

measurements for outside users, while retaining and

utilizing our existing expertise in INAA and RNAA.

The Center for Food Safety and Applied

Nutrition, U. S. Food and Drug Administration (FDA),

directs and maintains a neutron activation analysis

(NAA) facility at the NCNR. This facility provides

agency-wide analytical support for special investiga-

tions and applications research, complementing other

analytical techniques used at FDA with instrumental

(INAA), neutron-capture prompt-gamma (PGAA), and

radiochemical Neutron Activation Analysis (NAA) pro-

cedures, radioisotope X-ray fluorescence spectrometry

(RXRFS), and low-level gamma-ray detection. This

combination of analytical techniques enables diverse

multi-element and radiological information to be ob-

tained for foods and related materials. The NAA facil-

ity supports agency quality assurance programs by de-

veloping in-house reference materials, by characteriz-

ing food-related reference materials with NIST and other

agencies, and by verifying analyses for FDA’s Total

Diet Study Program annually. Other studies include

the development of RXRFS methods for screening

foodware for the presence of Pb, Cd and other poten-

tially toxic elements, use of INAA to investigate bro-

mate residues in bread products, and use of PGAA to

investigate boron nutrition and its relation to bone

strength. FDA’s NAA laboratory personnel frequently

provide intra-agency technical assistance, the most re-

cent example being participation in the production of

the document “Accidental Radioactive Contamination

of Human Food and Animal Feeds: Recommenda-

tions for State and Local Agencies " by the Center for

Devices and Radiological Health.

The Neutron Interactions and Dosimetry

Group (Physics Laboratory) provides measurement

services, standards, and fundamental research in sup-

port ofNIST’s mission as it relates to neutron technol-

ogy and neutron physics. The national and industrial

interests served include scientific instrument calibra-

tion, electric power production, radiation protection,

defense nuclear energy systems, radiation therapy, neu-

tron radiography, and magnetic resonance imaging. The

Group's activities may be represented as three major

activities. The first is Fundamental Neutron Physics -

including operation of a neutron interferometry and

optics facility, development ofneutron spin filters based

on laser polarization of 3He, measurement of the beta

decay lifetime ofthe neutron, and investigations ofother

coupling constants and symmetries of the weak inter-

action. This project involves a large number of col-

laborators from universities and national laboratories.

The second is Standard Neutron Fields and Applica-

tions - utilizing both thermal and fast neutron fields for

materials dosimetry in nuclear reactor applications and

for personnel dosimetry in radiation protection. These

neutron fields include thennal neutron beams, “white”

and monochromatic cold neutron beams, a thermal-

neutron-induced 235U fission neutron field, and :52Cf

fission neutron fields, both moderated and unmoderated.

The third is Neutron Cross Section Standards - includ-

ing experimental advancement ofthe accuracy of neu-

tron cross section standards, as well as evaluation, com-

pilation and dissemination of these standards.

Several universities have also established long

term programs at the NCNR. The University of Mary-

land is heavily involved in the use of the NCNR, and

maintains several researchers at the facility. Johns

Hopkins University participates in research programs

in solid state physics and in instrument development at

the NCNR. The University of Pennsylvania is work-

ing to help develop biological applications of neutron

scattering. It is also, along with the University of Cali-

fornia, Santa Barbara, duPont, Hughes, and Allied Sig-

nal participating in development of a new filter ana-

lyzer neutron spectrometer. The University of Min-

nesota participates in two PRTs; the University of

Massachusetts participates in one.
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Reactor Operations and Engineering

Reactor Operations and Engineering Group after award of Department of Commerce

award for outstanding service.

Reactor on-line time for the year was 67% of

real time, which is excellent, compared to the maxi-

mum achievable of 73%. The reason for the slightly

lower on-lme time than last year’s 70% is two fold.

There was a one-week shutdown for shipment of spent

fuel and a three-week shutdown for licensing of new

personnel and requalifying of current operators. This

time was also used to perform maintenance on the guide

tubes and refurbish the cooling tower. In addition,

towards the end of the year, a very small leak, on the

order of 0.01 liter per hour was discovered in the vi-

cinity of the thermal column. As a result, it was de-

cided to shut down the reactor and search for the leak.

After an exhaustive search and testing, the source of

the leak was not found and the leak had not returned.

The situation will continue to be monitored.

Three new operators received their senior op-

erator license following comprehensive written, oral,

and operating examinations by the Nuclear Regulatory

Commission. They passed their examinations and quali-

fied with distinction achieving near perfect scores in all

categories. All 17 currently licensed personnel passed

their requalification examinations.

For the first time in ten years, three shipments

of spent fuel were made to the DOE facilities at Sa-

vannah River, South Carolina. The shipments con-

sisted of 126 elements equivalent to about 5 years of

20 MW operation. This has greatly relieved storage

space in the spent fuel pool. Two more shipments are

scheduled for the latter part of 1999.

Plans are underway for comprehensive review

of all major reactor systems for upgrade or improve-

ment. An outage of 3 - 5 months is scheduled for

early 2000 to replace the control rods and the heavy

water and to perform other maintenance items. Plans

are also being made, if time permits, to replace the

existing cooling tower with a larger wet-dry tower of

new design and to replace the existing cold source with

an advanced version that will double the flux.

An updated safety analysis report is in the fi-

nal stages of review. It will be submitted to the Nuclear

Regulatory Commission next year as the first step in

the relicensmg of the reactor.
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Instrumentation Developments

High-flux Backscattering

Spectrometer Commissioned

The first vanadium spectrum from the NCNR
high flux backscattering spectrometer (HFBS) was ob-

tained in June of 1998 after a design and construction

effort lasting more than six years. The measured en-

ergy resolution of 0.9 peV is a factor of 50 better than

that routinely obtained using any other spectrometer

currently in operation at the NCNR (Figure 1). This

exceptional energy resolution will enable the investiga-

tion of many types of dynamical processes in materi-

als, including molecular reorientations, diffusion, dy-

namics of liquids, glasses and polymers, and critical

scattering near phase transitions.
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Figure 1. Comparison of resolution of HFBS to SPINS

(Cold Neutron Triple Axis spectrometer).

A backscattering spectrometer can be viewed

most simply as a limiting case of a triple-axis spec-

trometer where the scattering angles of the neutrons

from both the monochromator and analyzer crystals

are 1 80 degreesf 1] . This geometry decouples the beam

divergence from the energy resolution allowing the in-

strument to achieve an ultimate energy resolution de-

fined by the properties of the crystals. The HFBS
uses the ( 1 1 1 ) reflection from bent silicon crystals to

both monochromate and analyze the neutron energies.

The final energy, defined by the Bragg condition from

the silicon analyzers, is 2.08meV corresponding to a

neutron wavelength of 6.27A. The incident energy is

varied by shaking the monochromator using a cam-

operated drive system thereby Doppler shifting the in-

cident neutron energy. To date, this device has been

crystal velocity (m/s)

Figure 2. Measured gain from use of

phase space transform chopper.

used to obtain energy transfers of +/- 45peV. The

ultimate overall energy transfer range measured by this

instrument will exceed 50peV.

The primary design goal of this instrument was

to maximize the count rate for a given experunent while

maintaining an energy resolution of better than IpeV

full width at halfmaximum (FWHM). This has been

achieved by matching the divergence of the front-end

of the instrument with the divergence of the secondary

spectrometer, utilizing a phase-space transform (PST)

chopper and by maximizing the area of coverage for

the analyzer and monochromator crystals. The HFBS
design incorporates a 4m long converging guide which

increases the incoming beam divergence and results in

Figure 3. Scott Slifer adjusting the analyzer assembly on

the HFBS.
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3.9 times more flux at the end of the guide. The PST

is a novel device, conceived originally by Schelten and

Alefeld[2], which acts as a premonochromator for the

instrument: reflecting the beam of neutrons towards

the monochromator while focussing their energy distri-

bution towards the narrow value required by the back-

scattering monochromator crystal. Measurements car-

ried out at the HFBS have demonstrated for the first

time that this device increases the neutron flux from

the monochromator by more than a factor of four from

that obtained with a stationary crystal (Figure 2). The

spherically focussed monochromator and analyzer crys-

tals cover very large areas (the analyzer subtends 20%
of the total solid angle) and make the instrument very

efficient in its use ofthe available neutrons (Figure 3).

These flux enhancing devices together with the flux

available from the NG-2 guide have resulted in a mea-

sured flux at the sample position of 1 .4 x 1

0

5 cm 2
-sec'

1

in good agreement with calculations. This flux makes

the HFBS competitive with any instrument of its kind

in the world.
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Monte Carlo simulation of neu-

tron beam lines

Monte Carlo simulation of cold neutron beam

tube performance is a powerful tool for predicting neu-

tron fluxes and developing optimized neutron scatter-

ing instrumentation. A Monte Carlo program has been

developed at the NCNR which makes use ofmodeled

reflectivity curves and parameterized neutron cross-

sections to simulate the neutron beam delivery sys-

tem. The neutron beam system may consist of any

combination of straight, bent, focusing and channeled

guide sections, circular and rectangular diaphragms,

neutron collimators, neutron velocity selectors and

variety of commonly-used cooled and room tempera-

ture crystal filters. The program can also allow for

non-ideal configurations such as random Gaussian

guide section misalignments. Modeled guide coatings

include natural Ni, 58Ni, multilayer and supermirror.

Using reference neutron spectrum data, gold foil acti-

vation data and measured reflectivity data obtained

from two of the NCNR cold neutron beam tubes, the

Monte Carlo program has been used to characterize

the liquid hydrogen cold neutron source brightness. In

turn, this brightness model has been incorporated into

simulations of all the neutron beam tubes (NG-O-NG-

7) installed on the NCNR cold source. Table 1 shows

that the agreement ofthe simulated and measured cap-

ture fluxes is remarkably good. The program has been

used extensively to predict and optimize the perfor-

mance of projected future reconfigurations of the

NCNR beam tubes as well as to characterize neutron

fluxes per unit wavelength at locations where flux mea-

surements are not yet available.

Guide system 4>
c

meas (cm V 1

) (f) c

s,m (cnr2
s'

1

) 4>.
nt

sim (cmV 1

) <x> (A)

NG-0 before NDP chamber 2.56xl09 2.336xl09 6.020x10s 6.976

NG-1 at reflectometer monochromator 3.1xl0 9 3.376xl09 1.023xl09 5.93

NG-2 before filter 3.5xl09 3.498xl09 1.055xl09 5.96

NG-2 at HFBS shutter 2.15x10s 2.094x10s 6.08xl0 7 6.20

NG-2 at HFBS (after converging guide) 8.29x10s 7.75x10s 2.25x10s 6.20

NG-3 before SANS filter 1.7xl09 1.725xl09 5.30x10s 5.85

NG-4 at DCS shutter 2.7xl09 2.62xl09 7.94x10s 5.93

NG-4 at DCS sample (Choppers removed) 9.92x10s 9.96x10s 3.39x10s 5.28

NG-5 at Guide Hall entrance 2.3xl0 9 2.148xl09 6.42x10s 6.02

NG-6 at Guide Hall entrance 2.3xl0 9 2.197xl09 6.66x10s 5.93

NG-6 at end of guide 1.37xl09 1.387xl09 4.37x10s 5.71

NG-7 at reflectometer monochromator 1.9xl0 9 1.948xl09 5.90x10s 5.93

NG-7 before SANS filter 1.56xl09 1.639xl09 5.12x10s 5.75

Table 1. A comparison ofmeasured and simulated capture fluxes for various locations on the NCNR cold

neutron beam tubes. The table also gives simulated integrated fluxes ((|)mt

sim
=j(d(|)/d?i)dA,) and average wave-

lengths «A,)=1.8 4>
c

sim
/(j)

int

smi
) in the guide at the refer-

ence positions.
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New capabilities for sample environ-

ment and preparation

This year theNCNR added several new sample

environment capabilities. The obtainable temperature

equivalent magnetic field energy per Bohr magneton

was increased from 0.4 Kelvin to 0.52 Kelvin by the

procurement of a 9 Tesla vertical field superconduct-

ing magnet. In order to reach sample temperatures

comparable with this field energy range, a pumped he-

lium-3 refrigerator with a base temperature of 0.29

Kelvin is incorporated into the 9 Tesla magnet system.

These low temperatures and high fields are critical for

the NCNR’s ongoing program of research on low di-

mensional magnetism. The new superconducting mag-

net system is top-loading which facilitates quick turn

around for studies involving multiple samples. The

horizontal field magnet, shown in Fig. 1. was recently

returned to service.

A new 2000 K variable temperature vacuum

furnace was acquired this year providing new capabil-

ity for neutron scattering experiments at high tempera-

Figurel. John Barker sets up the recently

repaired superconducting horizontal field

magnet on the NG-7 SANS.

Detector Electronics for the HFBS

The recently commissioned High Flux Back-

scattering Spectrometer provided a unique design chal-

lenge for the
?He neutron detector electronics. The

combination of a large evacuated flight path together

with close packing of the half inch diameter detectors

meant that the traditional preamplifier/amplifier/discnmi-

nator (PAD) modules could only be utilized outside of

the vacuum chamber. This option would have resulted

in an unacceptable noise susceptibility for the weak

detector signals being transmitted over long cables and

through vacuum feedthrough devices. The HFBS
project opted, instead, to design a small form-factor,

fully vacuum rated PAD module that could be located

within the vacuum flight chamber and then route the

robust digital discriminator outputs to the outside data

acquisition electronics.

The NCNR design is based on two commer-

cially available hybrid circuits: a preamplifier/shaping

amplifier, and an amplifier/discriminator. Both parts

dissipate power at the milliwatt level and are fully

vacuum (space) rated. The output stage uses a CMOS

dual mverting/non-mvertmg driver which also exhibits

very' low power dissipation, even when driving large

loads. The balanced output is used to provide ECL
level logic output with excellent common mode rejec-

tion for the signal transmitted out ofthe flight chamber

to the data acquisition electronics. Careful component

selection and package design resulted in a small form-

factor, flat-package design with a thickness of less than

0.45 inches consistent with the detector spacing re-

quirements. Additional features in the NCNR design

include: a robust input protection network to protect

the preamplifier, on-board regulation ofthe discrimina-

tor level reference voltage, separate high and low level

discriminator settings, and convenient on-board con-

nections for daisy chaining high voltage and test pulse

inputs to adjacent PAD modules.
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Data Acquisition Electronics for the

DCS Time-of-flight Spectrometer

The Disk Chopper Time-of-flight Spectrom-

eter (DCS) presents unique requirements for its data

acquisition system. The choppers of the DCS instru-

ment (see Figure 1) periodically illuminate the sample

with pulses of neutrons which are then scattered to-

wards the detectors. Each period the chopper system

produces a signal synchronous with the incoming neu-

tron pulse that starts a free-running clock which is used

to time the neutron flight. When a neutron event oc-

curs, the front-end data acquisition electronics create a

30-bit binary- event word which encodes which detec-

tor. and at what time, registered a scattered neutron.

The rest of the data acquisition system is responsible

for reading out the event words, decoding the data event

words, and histogramnung the data. The user work-

station processes the stored histograms from the mea-

surement.

Both the large number of detectors (nearly

1000) and the high-energy resolution characterize the

NIST DCS instrument. This requires that the time-of-

flight measurement to be resolved to better than 100

nanoseconds over a timing interval which can exceed

50 milliseconds (a timing dynamic range of over 10 6
).

To meet these requirements the detectors must be in-

terrogated at a raw rate exceeding 10 10
s'

1

. The actual

worst-case neutron event rate (all neutrons in a pulse

scattered into one time channel) is under 10 s'
1

,
while

the time-averaged data rate at which the histogram must

be updated is only on the order of 1(P s'
1

. Bridging

these drastically different data rates is the primary func-

tion of the data acquisition electronics. The general

approach adopted in the NIST design is to process

data hierarchically, in a tree-like structure, which mir-

rors the data bandwidth requirements. In this concept,

multiple front-end elements operate in parallel at high

speed, passing valid events to the next level where they

are multiplexed and then passed on to be histogrammed

into memory.

The DCS data acquisition electromcs were suc-

cessfully tested under test-bench conditions and under

‘live" conditions during a recent reactor cycle. The

NCNR design uses two types of single width, 6U-sized

VME modules to process incoming

events and multiplex the events for VME readout to

the crate controller computer where the events are

histogrammed. The input modules are capable of pro-

cessing events from 30 detectors creating the appropri-

Figure 1. Schematic diagram ofDCS Data Acquisition sys-

tem.

ate time-stamped data words and storing the events in

a 64 deep FIFO memory for readout. The DCS in-

strument requires 3 1 input modules to handle all of the

913 detectors in the current configuration. A scanner

module polls all ofthe 3 1 input modules over a private

bus to see if they have valid events ready for readout.

If data is available, the scanner module reads the valid

events from the input modules and stores the data for

readout over the VME bus to the VME crate control-

ler. The crate controller computer reads the events

from the scanner module, filters valid events, processes

the timing information, and histograms events by de-

tector and time channel into a block ofmemory acces-

sible to the user workstation computer.
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