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Abstract Given a triangulation of a planar region, the reduced Hsieh-Clough-Tocher (rHCT)

triangular element enables the construction of a smooth piecewise-cubic surface. In prepa-

ration for the use of energy minimization to select interpolants from that family of surfaces,

a formula for the bending energy of the generic rHCT element is determined, treating the

element as a thin and almost flat plate. The aim is to find an approach to interpolation which

displays low sensitivity to the choice of triangulation. The problem arose in terrain modeling.

Keywords: Delaunay triangulation, finite elements, Hsieh-Clough-Tocher element, interpo-

lation, spline, surface, terrain modeling, triangulation

1. Introduction

Lawson [9], [10] pioneered the use of (^-compatible finite elements for the task of interpolating

a continuously differentiable (“C 1
”) function z — f{x,y) from a finite set of spatial points

(xi,Vi,Zi), i = 1

so that Zi = z(xi,yi). An important application is to terrain modeling from large sets of

elevation data, where the function values Zi are elevations at specified data locations (x l ,y l ).

For his work, Lawson chose an element generally ascribed to Clough and Tocher [4], but

frequently referred to in the literature (e.g. Ciarlet [2]) as the reduced Hsieh-Clough-Tocher

(rHCT) element For a description of that and related elements, we recommend the text

by Bernadou and Boisserie [1]. Farin [7] formulated Clough-Tocher interpolation in terms of

Bernstein-Bezier polynomials and also provided a modification of the rHTC element which

trades C2-continuity at the barycenter - where subtriangles with different cubics join (see

Sections 2 and 4 below) - for improved approximation to C2-continuity at the edges of the

triangular element. For general information, the reader may want to consult Ciarlet [3] and

Zienkiewicz [18], to name just two representatives of a large body of literature on the Finite

Element Method.

The rHCT element is a triangular surface patch, that is, it is defined over a footprint

triangle in the x, y-plane. Its use 'in the context of interpolation thus presupposes a
“
trian

-

gulation” of the data locations (x^,?/*), i = l,...,n, that is, a set of triangles whose interiors

do not meet, whose vertices are the data locations, and whose union covers the convex hull

of the latter. Two different triangles of the triangulation thus have either a single edge or a

single vertex in common, or do not meet at all. In the context of terrain modeling, a set of

elevation data locations triangulated in this fashion is now frequently called a
“
triangulated

irregular network (TIN)”. Any set of planar data locations (.Xi,yi

)

can be triangulated in

many different ways and this affects the surface to be constructed. A frequently used generic

method is the Delaunay triangulation [5].
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The rHCT elements - by their construction - join smoothly at triangle boundaries, thus

ensuring a continously differentiable fit. The specification of an rHCT element over a particular

triangle requires that the function value Zi and the gradient (zjX , Ziy )
be given at each triangle

vertex, that is, at each data location
(x^yi ). The resulting function is to agree with those

prescribed values and slopes.

Unless such gradient information is also provided, it must be estimated from given function

values Zi in order to complete the specification of rHCT elements for each triangle of the TIN.

Thus one distinction between alternate methods for surface interpolation based on the rHCT
element is what method for estimating gradients at data locations is chosen.

Lawson’s approach [10] is to select at least six neighbors of a data point, assign them

weights which decrease with distance from the data point, and then consider 6-parameter

quadratic bivariate functions which pass through the data point. From among those functions

select the one which minimizes the weighted least squares error. The tangent to that quadratic

function at the data point provides the gradient estimate. Franke [8] and Stead [15] compare

various procedures for triangulation based interpolation, in particular, aspects of gradient

estimation.

In the context of terrain modeling, with elevation data given along digitized contour lines,

Mandel, Bernal, and Witzgall [11] arrived at gradient estimates by minimizing the elastic

energy of a mechanical surrogate structure for the surface consisting of thin beams along the

edges of the triangular patches and joined tangentially to thin plates, one at each vertex.

The orientation of the plates can be adjusted to minimize the elastic energy of the beams,

thus defining gradients at triangulation vertices, that is, at data locations. That procedure

was chosen because of the distribution of data points along lines, which rendered local fitting

procedures less attractive. It also eliminated the somewhat arbitrary choice of neighboring

data points and their weights.

The two rHCT methods mentioned above are less sensitive to changes in the underlying

triangulation than the still most frequently employed linear TIN methods. In those linear

methods, each footprint triangle in the TIN gives rise to a planar triangular facet spanned

by the elevations at the triangle vertices. The resulting piecewise linear surface is, indeed,

extremely sensitive to the choice of triangulation.

With the goal of further reducing the sensitivity of the interpolating surface to the choice

of triangulation, we propose to examine an alternate method for estimating the gradients at

data locations. The idea is to replace the surrogate mechanical structure consisting of thin

beams used in [11] by a surrogate mechanical structure consisting of the actual rHCT elements,

joined together smoothly, and to minimize the total elastic energy of the resulting interpolating

surface considered as consisting of almost flat thin plates. More precisely, we determine that

2



interpolating surface z — z(x,y) which consists of rHCT elements and minimizes

(i.i)
d2 z

dx2
+ 2

a2
.

dx dy
+

d2
.

dy'4
dx dy

with respect to the choice of gradients at triangulation vertices.

A critical first step in this direction is to develop closed formulas for that energy operator

as applied to the generic rHCT element, and that is the purpose of this report. Those formulas

are unwieldy, and the availability of symbolic computation packages was instrumental in their

derivation. This work relied on Mathematica (see for instance [16]).

Powell-Sabin splines [14] also provide a unique piecewise polynomial Ci-function which

meets prescribed values and gradients at the vertices of a triangulation. The concept of thin

plate energy minimization has also been considered for various other approaches to bivariate

interpolation (e.g. Powell [13]). Mansfield [12] minimizes the full strain energy functional.

The reader may want to consult Dierckx [6].

We also revisit the definition of the rHCT element and verify its main properties. This

exposition as well as the derivation of the energy formulas is conducted in terms of barycentric

coordinates. In this fashion, the inherent symmetries of the element are preserved.

In particular, the roles of the vertices of the element and their associated quantities are

interchangeable. More precisely, many formulas involving indexed quantities follow from each

other by

(1.2) cyclic substitution : 1 — 2 —^ 3 —> 1,

where each index value is replaced by its cyclic successor.

We will not always write all three instances of formulas that arise from each other by cyclic

substitution of indices. Instead, we will write one instance of the formula, and indicate that

the remaining instances can be generated by cyclic substitution.

2. Definition of the rHCT Element

In this section we define various quantities which are used to calculate the generic element.

Suppose we are given three triangle vertices,

(£i,2/i), (£2,2/2), (£3,2/3),

with associated function values, i.e., elevations,

*i, z2 ,
z3 ,

and partial derivatives with respect to x and y, i.e. coordinate slopes,

Zlx, ^lyi ^2xi %2i/, xi Z3y.
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We wish to define the elevation z — z(x, y )
at any location (x, y) in the footprint triangle of

the rHCT element, so that

dz dz
Zj Z,{Xi, yi), Zix (^Xx 5 yi) i

Ziy (*^z : Vi) >
^ 1,2,3.

For that purpose, it is convenient to express functions over triangles using
u
barycentric

coordinates”

.

For any point (x, y) in the plane, its barycentric coordinates

Ai, A2 ,
A3

are defined by the relations

Ai + A 2 4- A3 = 1

(
2 . 1

)
X\X\ + A2X2 + A 3X3 = x

A 12/1 + A22/2 + A 3y3 = y .

Following Zienkiewicz [17], we use the abbreviations

Xij := Xi - xj: yio := yx - yjx % := z{
- Zj

,
ij = 1, 2,3, i / j.

The following determinants will play a role:

(
2 . 2

) 'xy

zy

1 1 1

aQIII := det Xi x2 23

V\ 2/2 2/3

1 1 1

QIII := det Z\ 22 23

V\ 2/2 2/3

= -Dxz := det
1 1 1

2l 22 23

Xi x2 £3

— 242/23 + ^22/31 + x3Vl2,

Z\y23 + ^2 2/31 + 232/12:

Z\X^3 + 22^31 + 23X 12 .

The determinant Dxy is double the area of the footprint triangle. It is assumed that the area

of that triangle does not vanish. The footprint triangle is required, moreover, to have positive

orientation, that is,

Dxy > 0.
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Solving the linear system of equations (2.1) yields

(2.3) Xi = {y23X + x32y + x2ys-y2X3)/DXy
X2 — {y3ix + x\sy + x^yi — yzX\)IDxy

A3 — (ynx + x2iy + x\y2 ~ yix2)/Dxy .

Note that the above formulas arise from each other by cyclic substitution (1.2). Indeed,

barycentric coordinates treat all vertices of a triangle symmetrically. Their signs indicate

whether a location lies inside or outside the footprint triangle: a negative barycentric coor-

dinate means the location is outside the triangle; if all three coordinates are positive, the

location lies in the interior of the triangle.

Edges of the footprint triangle are characterized by the vanishing of one of the barycentric

coordinates. At vertex i, A* = 1 and X
0 = 0 for j / i. The barycenter or centroid

(
xo, 2/o

)

f x \ + x2 + ^3 Vi + 2/2 + yz

V 3
5

3

of the triangle is characterized by A x = A 2 = A 3 = 1/3.

The barycenter plays a key role in the definition of the rHCT element. It is used to define

a “ barycentric partition” of the triangle into four subsets, the barycenter itself and three

subtriangles (see Figure 1):

Bo '= { (Ai ,
A2, A3) : Ai = A2 = A3 = 1 /3 }

B\ := {(Ai,A2 ,A3 )
: 0 < Ax < A2 , Ai < A3 }

B2 := { (Ai, A 2 ,
A 3 )

: 0 < A2 < A 3 ,
A2 < Ai

}

B3 { (Ai, A2, A3) : 0 < A3 < A l5 A3 < A2} .

Note that in each of the subtriangles Bi,i = 1, 2, 3, the corresponding barycentric coordinate

is dominated by the remaining ones; e.g.,

(2.4) Ax < min{A 2 ,
A 3 } in B\.

The rHCT function is defined in terms of three correction functions [10]

Pi, P2 , P3,

which are piecewise cubic polynomials in the barycentric coordinates, each defined in a piece-

wise manner with respect to the subtriangles of the barycentric partition.
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' _1_

81

(2.5) Pi •=

for (Ai, A2, A3) € Bq

A1A2A3 + -A* — — Aj for (Ai, A2, A3) € B\
0 2

—Al + 1a?a2^3

— -A? + -AoA
6

3^2

for (Ai, A2, A3) € B2

for (Ai, A2, A3) € B$.

Expressions for the remaining correction functions p2 and p3 follow directly from the above

expression by cyclic substitution (1.2).

The edge of the footprint triangle spanned by vertices 1 and 2 is characterized by A 3 — 0,

and essentially lies in subtriangle B3 . Since the Z?3-expression for each correction function

contains A3 as a common factor, those functions vanish along that edge. In general,

(
2 .6

) Pi = P2 = p3 = 0 on the triangle boundary.

Each function p*, z = 1,2,3, is continuous across the subtriangle boundaries. This is readily

verified for the correction function p x as follows. At the boundary between subtriangles J52 and

B$, we have A 2 = A3. If we substitute the single quantity A for these values, the expressions

for pi in B2 and B$ become identical. At the boundary between subtriangles Bi and B2 ,
we

have similarly Ai = A 2 := A. Substituting A into the expressions keyed to B\ and B2 yields

-\2 - 1\3

2 6

in both cases. The argument is analogous for the remaining two correction functions. It

will be seen in the next section that the correction functions are also smooth at subtriangle

boundaries, and thus belong to the class C 1
.

The following quantities can be calculated easily from the initial triangle data.

(2.7) Mji ZixXji T Ziyl/ji, i, j — 1, 2, 3, i ^ j )

Mji + Mij
C

i:j

=Qij
2

7
~

2

Li = \Jx)k + y% >
2 # j , j # k + i,

3m-Ll) „ 3(L\-L\)

— zjz

Ki
=

L\
Ko =

L\
K, = 3(1? - L\)

L\

The six quantities Mji represent the directional derivatives at vertex i with respect to

the direction vector (x^-, yZJ ), which represents an entire directed edge of the triangle. Note



that for a linear function z — z(x,y), Mji — —Mio = Zij ,
and for a quadratic function,

Mji — Mij = 2 Zji. As a consequence, the quantities Q i3 and Ci3 both vanish for linear

functions, and the quantities Ci3
for quadratic functions. Also note

Qji — Qij-> and Cji

We also define three functions

Vi, v2 ,
v3

in terms of the previously (2.5) introduced correction functions p1? p2 > P3 :

(2.8) V\ := A2 A 3 (A2 — A3 ) + K\P\ — p2 + p3

Expressions for V 2 ,
V3 follow by cyclic substitution (1.2). The functions Vi are continuous

and, by (2.6),

(2.9) V\ — V2 = V3 = 0 at each triangle vertex.

With the preceding definitions, we are now ready to present a formula for the rHCT
function, expressing the elevation z = z(x, y )

at any location (x, y )
in the footprint triangle:

z — Z\\\ 22 A2 + z3A3 +

(2.10) Q23 A 2 A3 + Q3lA 3 Ai + Ql2AiA2 +

C23V1 + C31 V2 + C12V3 .

This indeed defines a function z = z(x,y ), since the quantities A * are functions of x and y

by (2.3). To see that z = z(x,y) assumes the prescribed elevations Z{ at the vertices of the

footprint triangle, recall (2.9) and -that, at vertices, one A; equals 1 while the others are zero.

Recall also that for a quadratic function the coefficients CZJ
vanish, so that the first two lines

of the above expression for z — z(x,y) describe an interpolation that is quadratic. Similarly,

if both sets of coefficients Cij vanish, then the first three terms of (2.10) describe a

linear interpolation. This observation is significant because the energy integral (1.1) vanishes

for linear functions, and will thus be a homogeneous quadratic form in the six coefficients

Qij > Cij.

3. First Derivatives of the rHCT element

In this section, the partial derivatives of 2 = z(:r, y) will be determined, enabling us to establish

continuous differentiablility. The derivatives of the rHCT function z — z(x, y) are in the final
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instance based on the derivatives of the barycentric coordinates A*.

(3.1)

d\i

dx

dX2

dx

8X3

dx

2/23 dXi ^23

D̂xy dy D 5

2/31 dX2 X31

Bxy dy D ’

yx

2/21 d\ 3 X21

D ’^xy dy Dyx

:y
and D yx -Dxy as defined

permits us to write the above formulas symmetrically in x and y.

For the correction functions pi defined in (2.5), the Chain Rule yields

and

(3.2)

(3.3)

dpi

dx

Similarly,

dpi

dy

dpi

dx

18

dpi dXi dpi dX 2 dpi dA3

dXi dx
+

dX2 dx
+

dX3 dx

y23

Dxy

^2^3 + ~X\ — Ai
)

2/23 + A1A3 2/31 + A1A22/12

+ ^2 A3 )
2/31 + ~ X2 yi 2

7^3 7/31 + -A3 + A3 A2
^

2/12

1 1

^23j
18

Dyx

^A 2 A 3 4- ~-X\ — Ai^ x2s 4- A1A3 X31 4- AiA 2Xi 2

(^— 7^2 + A2A 3
^

X31 4- ~X\xi 2

-A3 x31 + -Ag + A3 A 2
j
x12

in B0

in Bi

in B2

in B3

in B0

in Bi

in B2

in £3

The above two formulas are symmetric in x and y. The corresponding formulas for the

derivatives of the other correction functions p2 and p3 follow by cyclic substitution
(
1 . 2 ).
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It is also readily seen that the gradient of pi vanishes along the R2-edge - characterized

by A2 = 0 - and the B3-edge - characterized by A3 = 0 - of the footprint triangle (compare

2 . 6 ):

(3.4) ^ = d
-p- = 0 for A; = 0, i = 1,2,3.

dx dy

We are now able to ascertain that the correction functions pi are indeed continuously

differentiable, that is, that they join smoothly at subtriangle boundaries. We consider only

pi. The other cases follow by cyclic substitution (1.2). The boundary between subtriangles

B2 and Bs is characterized by A2 = A3 . The expressions specified in both (3.2) and (3.3) for

those subtriangles are identical in this case. At the boundary between Bi and B2 we have

Ai = A2 := A and A 3 = 1 — 2A. Applying these substitutions for subtriangle B i yields

(A(l — 2A) + b-A2 — A)y23 4- A(1 — 2A )?/31 + X
2
y\ 2

or, taking into account that y23 = —yi2 — y31 ,

(
—
2^

2 + ^)2/3i + 2
^
2
yi2

The same expression clearly results in subtriangle B2 . The argument for the derivative with

respect to y is analogous, and so is the consideration of the boundary between B\ and £3 .

Since the correction functions pi are continuously differentable, the same holds for the

functions V* in formula (2.10) for the function 2 = z(x,y). As a consequence, the rHCT
element belongs to the class C l

.

Using the Chain Rule and formulas (3.1), we find

dz_

dx

Thus,

(3.5)
dz

dx

,i dz dX
- +

,2 dz dX c

dX2 dx
+

<9A 3 dx

l + Q3i^3 + QnX2 )y23 +

dV>

+ (
z3 + Q23X 2 + Q3lX\)yi 2 ] +

~jZ.— [^1^/23 + z2y3l + z3y\2 +

Xi{Qny3i + Q312/12) + X 2 (Q23yu + Q\2y2s) + A 3 (Q3 i?/23 + Q23 ?/3 i)] +

C23 + C31
dx

+ C\2
dx

10



Exchanging x and y then yields

(3.6) — = —

—

[Z\X2Z + ^2^31 + 2:3X 12 4-

dy DyX

^l(0l2^13 + 031^2l) + ^2(023^21 + Q 12*^32) + ^3(^31^31 + Q232/13)] +

G23

dV1

dy
+ C

;31

dV2
dy

+ C*i2
m
dy

Note that the constants in both expressions equal the determinants Dzy and Dzx ,
respectively,

as defined in (2.2).

The derivatives of the functions Vi, i — 1,2,3, (2.8) are next. Again, we display only the

derivatives of Vi, since the expressions for the derivatives of the remaining functions follow by

cyclic substitution (1.2). The first term of the function V\ is the polynomial A 2 A 3 (A 2 — A 3 ).

By (3.1), the partial derivative of this expression with respect to x is given by

—— [(2A2A 3 — Afjysi + (A|
— 2A2A3 )yi2 ].

-L^xy

Thus, - and symmetrically for the derivative with respect to y -,

(3.7)
dV1

dx

dV1

dy

—— [(2A 2 A3 — A3 )?/3 i + (Ag — 2A 2A 3 )t/12 ]
+ Ki~^—

xJxy U'X'

— [(2A2A 3 — A3)a; 3 i + (A2 — 2A2A3 )xi2 ]
+ Ki~^-

dp2 dp3

dx dx

dp2 dps

dy dy

It now follows from (3. 5, 3. 6) that, at vertex 1,

DXy (
2: 1 , y\)

DyX
Qy

(*^1 J 2/l)

Dzy + (Q 12 + ^12)2/31 + {Q31 ~ Gs\)yi2

Dzx + (Q12 + ^12)^13 + (Q3I ~ C3i)x2l-

In view of Q 12 + C12 = M21 — z2\, Q 3 1 — C31 = M3i + z3 1
- by the definition (2.7) of those

quantities, - a short calculation yields

DXy (
X\

, y \

)

DyX {x\
1 y\)

A^2i2/3i + Mziyu — Dxy zix,

M2IX3I + M3\X\2 — DyX Zly.

This - and cyclic substitution (1.2) - show that the rHCT function z = z(x, y) indeed assumes

the prescribed derivative values at the vertices of the footprint triangle.
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4. The Linear Derivative Condition

The salient property of the rHCT element - as opposed to the nonreduced HCT element - is

that it satisfies (see for example [10]) the following
(4.1)

Linear Derivative Condition

:

Along each edge of the footprint triangle, the

derivative taken in the direction perpendicular to the edge varies linearly be-

tween the values it assumes at the ends of the edge.

The purpose of the Linear Derivative Condition is to ensure that adjacent triangles in

a triangulation fit together smoothly. Indeed, all directional derivatives at a vertex can be

determined from the - given - gradient at that vertex. At the endpoints of the common edge,

both elevations and derivatives in the direction of the edge are therefore predetermined. Since

the rHCT function 2 = z(x,y) induces a cubic function on the edge, that function is fully

specified - say, by Hermite’s formula - and the specification is the same in both the adjacent

triangles, because that specification is solely based on quantities given at the two vertices

of the boundary edge. Continuity across the edge therefore holds, as does commonality of

the derivative in the direction of the edge. In order to ensure smoothness, that is, a common
gradient in both triangles along the edge, it therefore suffices that the derivatives perpendicular

to the edge are also fully specified by their values at the vertices of the edge.

Now if the perpendicular derivative along an edge is a linear function, that is, if the

Linear Derivative Condition is satisfied, then that derivative is fully specified by its values

at the vertices of the edge. This is all that is needed to ensure smoothness across triangle

boundaries.

A directional derivative of 2 = z(x,y) perpendicular to the edge, say, from vertex i to

vertex j is given by

(4.2)
dz dz

Vii
di

~ Xj%
because the vector (yjk,—Xjk) is perpendicular to the direction (xjk,yjk) of the edge. Any
other definition of the perpendicular derivative differs by a constant factor; so it does not

matter which definition we choose.

In order to verify that the rHCT indeed satisfies the Linear Derivative Condition that (4.2)

is a linear function, we need to consider only the three functions Vi (2.8), since they contain

all the cubic terms of the function 2 = z(x,y). In particular, we need to consider only Vi,

because the argument extends by cyclic substitution (1.2) to the two remaining functions Vt
.

We first evaluate

(4.3)
( m dvl \

xy

\
V2Z^~ X23^) 3

in subtriangle B\, for the edge connecting vertices 2 and 3. Here X\ = 0, whence A2 + A 3 = 1.

12



Since the gradients of p2 and p3 vanish along that edge (see 3.4), and since the gradient of pi

becomes

AoA
2/23 %23

2 /v3 D ’ D-Lyxy ^yx

we find for (4.3), taking into account Dyx = —Dxy ,

(4.4)

A 3 (2A 2 - A3 )(x23^3i + 2/232/31 )
— X2 (2X3 - A2 )(o:23 2:i 2 + 2/232/12 ) + A2A 3 ATi(x23 + 1&)

From definitions (2.7), Ki(x\z + 2/I3 )
= 3

( 1/2 - T
3 ). Moreover, the scalar products,

S2 '= X23X 12 + 2/232/12, S3 := £31223 + 2/312/23 ?

can be used to express squares of edge lengths Lf:

L\-L\ = 53
-52 .

Expression (4.4) thus reduces to

(

A

2 + A3 )(A 252 — X3S3 )
A2 *S2

— XiS.3 ^ 3 :

and is therefore linear in x and y.

Along the edge in subtriangle B2 ,
we have A2 = 0, A 3 -f Xi = 1 . Only the gradient of p2

does not vanish. Similarly to (4.3) we find

(A3 + Ai)(—X3LI) = —X3L2 ,

which again establishes linearity. In subtriangle jB3 ,
A 3 = 0, Ai + A2 = 1 . Thus

(Ax + A2)(—X2LI) = —

A

2T3
.

The rHCT is therefore seen to satisfy the Linear Derivative Condition.

5. Second Derivatives of the rHCT Element

We now aim to express the second partial derivatives

d2
z d2

z d2
z

dx2 ’ dx dy dy 2

13



as linear functions of the barycentric coordinates A l5 A2 ,
A3 . We start with the correction

functions pl: based on the following applications of the Chain Rule.

d2
pi _ fdpi

\

_d_/dpi\ dA2 _d_ fdpA dXs

dx2 d\i \ dx J dx
+

<9A2 \ dx J dx ^ dX 3 y dx J dx

d2
pi _ d fdpi\ d ( dpi \ dX2 d f&Pi\ ^A 3

dxdy dXi \ dx J dy
+

dX2 \ dx J dy
+

<9A3 \ dx J dy

d2
pi d__ l dfh \

_

5Ai _d_ fdpA dX^ _d_ (dpA <9As

dxy dXi V dy ) - dy dX 2 \ dy J dy dX3 \dy J dy

From (3.2, 3.3),

(5.1)

(5Ai - 1 )y23+

d2
pi 1

2Aiy3 i2/i 2 + 2A22/122/23 + 2A 3 ?/23 ?/31 in B

dx2 ' D2
xy

(A 3 — A2 )j/|1 + 2A2 2/3iyi 2 in B

,
(A2 — Az)y\2 + 2A3 2/3 i2/i 2 in B

(5.2)
d2

Pl

dxdy

1

DxyD

(5Ai — 1)2/23^23+
X\(ysiXi2 + x^iVn) + ^2(^12^23 + £122/23) + A 3 (y23 :r3 i + x23y3 1)

(A3 — A2 )y3i£3 i + X2 (ysiXi2 + x^iyu)

in Bi

in B2

K
(^2 ~ ^3)2/12^12 + M(yzix \2 + £312/12) in B3

(5Ai — 1)£23+

(5.3)
d2

pi

dy2

1

" D2
yx

2Ai^:3 i2:i 2 + 2A 2 :ri2 :r23 + 2X3x23x3 \

(A 3 — A2 )
jTgj + 2A2 a;3 ia; 12

in B\

in B2

k

(

A

2 — A3)xJ2 + 2A 3x3iX 12 in B3

Formulas for the second derivatives of the two remaining correction functions p2 and p3 follow

by cyclic substitution (1.2). It is readily verified that the second derivatives are continuous

at the barycenter, that is, each subcubic yields the same value for Xi = X2 = A 3 = 1/3. That

continuity, however, does not generally extend along every common edge of two subtriangles.

The same continuity pattern holds for the full element (2.10).
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We now turn to the functions V] defined in (2.8) whose first derivatives have been calculated

in Section 3 (3.7). It follows by straightforward applications of the Chain Rule that

(5.4)
d2 \\

dx2

d2Vx

dx dy

d2VY

dy 2

D2
xy

[A32/31 + (A2 — A 3 )t/12 t/31
— A 2 yi 2 ]

+ K\

d2
Pi d2

p2 d2
p3

dx2 dx 2 dx2

IdxyDyx
[d 3yi3X3i + (A 2 — d 3 )(yi2X3 l + X 122/31 )

— A2 ?/21£ 12 +

K d<2pi - d2p2 +
d2pz

1

dxdy dxdy dxdy

[A3X31 + (A2 — A 3 )xi 2X 3 i
— A2 rrf2 ]

+ HiD2
yx

d2
pi _ d2

p2 d2
p3

dy2 dy 2 dy2

The second derivatives of the two remaining functions V 2 and V3 follow from the above by

cyclic substitution (1.2). We can now express the second derivatives of the rHCT function

z = z(x, y) in terms of the second derivatives of Vi: i — 1, 2, 3.

(5.5)

d2
z

dx2

d2
z

dxdy

d2±
dy :

D2
xy

[0232/122/31 + ^31 2/232/12 + Ql22/3l2/23]

+c„S + c„S + c,/ni
dx2 dx2 dx2

DxyDyx
[023(2/12^31 + £122/31) + O31 (2/23^12 + £232/12) + 012(2/31^23 + £312/23)]

+c„|!li + c„|^ +c *v>

dxdy dxdy dxdy

D2
yx

[023^12^31 + 031^23^12 + 0l2^31 ^23]

d2
V, d2V2 d2

\\~ ~
t>3i V - + Ui2'

dy 1 dy : dy 5

6. The Barycentric Integrals

The functions which form the integrand of the energy integral (1.1) have been expressed in

terms of the barycentric coordinates, but the variables of the integration are still x and y.

15



More precisely, that integrand will be a quadratic polynomial in Ai, A 2 ,
A3 . The same holds

for additive components of the integrand, if these were to be evaluated separately.

In view of the relation Ai + A2 + A3 = 1, various normalizations of such polynomials are

possible. For instance, the polynomial can be required to be a homogeneous quadratic form,

that is, contain only terms of degree 2. Or one of the barycentric coordinates, say, A3 ,
can be

expressed in terms of the remaining ones, yielding a nonhomogeneous quadratic polynomial

in, say, X\ and A2 .

Similarly, the cartesian coordinates x, y can be expressed linearly in any two of the barycen-

tric coordinates. For instance, eliminating A 3 in relations (2.1) will yield such an expression -

and its cyclic permutations (1.2):

x

y

x

y

X

y

( Xs
) + (

Xl3 X23

V 2/3 J { y13 2/23

f X1 \ (
X2 1 X31

\ 2/l / V 2/21 2/31

(
x2 \ + (

x32 X12

v 2/2 ) v y32

Ai

A 2

A2

A3

A3

Ai

Note further, that the determinants of the above linear transformations agree with the previ-

ously encountered determinant Dxy (2.2) of the linear system (2.1):

det
X13 ^23 = det

X21 X31 = det
^32 Xl2

2/13 2/23 10 2/31 2/32 2/12

The area element dx dy is transformed under a linear transformation

into the area element det (T)dxdy. We thus have

(
6 . 1

)
dx dy = DxydXidX2 = DxydX2 dX3 — DxydX3 dXi.

In view of A 3 = 1 — Xi — A2 ,
the definition (2.4) of the subtriangle B\ can be altered. Up to

differences of measure 0, we have

B\ { ( Ax ,
A2 ,

A3 )
: 0 < Ai < 1/3, X\ < A 2 < 1 — 2

A

x }

,

suggesting

have

limits of integration over those subtriangles. Indeed, for any function /(A 1? A2 ), we

/ /(A l5 A 2)dA2 dXi = /

1_2Al

/(A 1? X2 )dX2
JB 1 JO JAi

dXi

16



Using this procedure, we find for the following six key integrals:

'B i

1 d\2 d\\ —

'B l

\\dX 2 d\\ —

\2d\2 d\\ —

'Bx

f \\d\2 d\i =
B 1

\ 1 \2dX2 d\\ —

,B 1

A 9 C/A2 dX\ —

r l-2Ai

’Xi

rl-2Xi

Ai

rl-2X 1

'A:

•1— 2Ai

1 dX2

X\dX2

A2C/A2

dXi = t
6

dX l =
54

dX 1 = —
27

[ Xfd\2
J Ai

r\—2Xi

dX l =
324

Aj

rl—2Xi

X-i

XiX 2dX 2 dX 1 =
648

X\dX2 dX-i —
13

324

These key integrals and their cyclic equivalents are all that is needed for the energy formula

to be derived in the next section.

In general and for checking purposes, it may be useful to provide a complete list of barycen-

tric integrals in subtriangles Bt
. All the remaining integrals can be derived from the above

key integrals using the relations Ai + A 2 + A3 and

(6.2) dXi + dX2 T dA3 — 0.

Since A3 = 1 — A x — A2 ,

/ A3dA2 dXi — / \dX2 dX\ — / X\dX2 dX\ — / X2dX2 dX\
J B\ J B\ J B\ J B\11 2 _ 2

6

_
54

_
27

_
27

Analogous calculations yield the remaining integrals over subtriangle B\ based on the area

element dX2 dXi. Integrals over the subtriangles B2 and B3 follow from integrals over B\ by

cyclic substitution
(
1 . 2 ).

Suppose indices z, j, k are in cyclical order. Then substituting —dX
3
— dX^ for dXi yields

dXj dXi — —dXj dXj — dXj dX^.

Since area elements change orientation when the sequence of the differentials is switched, and

since consequently also dX
3
dX

3 = 0, it follows that

dX2 dX\ — d\3 dX2 — dX\ dX$.

17



As a result, it is immaterial which of the three area elements is specified, so that only the

integrand is of interest. This permits the display of our barycentric integrals in Table (6.3).

(6.3) Barycentric integrals:

B 1 b2 S3 B

1
1 1 1 1

6 6 6 2

Al
1 2 2 1

54 27 27 6

^2
2 1 2 1

27 54 27 6

^3
2 2 1 1

27 27 54 6

1 13 13 1

324 324 324 12

13 1 13 1

324 324 324 12

A!
13 13 1 1

324 324 324 12

V v to

5
'648

5

648

17

648

1

24

A1A3 5

648

17

648

5

648

1

24

A2A3
17

648

5

648

5

648
1

24

18



Additional symmetries are apparent. In subtriangle B
x ,

the roles of variables X
3
and Xk are

interchangeable as far as integration is concerned. That is at the root of relations

f f{X l ,Xj
)dX

j
dX

i

J B x

j f (A^ Xk) dXj dXi,
J Bi

j,k ^ i.

B
f(Xu X2)dX2 dXi =

•1— Ai

f{X 1 ,X2)dX2 dAi

Those results are also displayed in Table (6.3). They should be the sum of the integrals of the

same integrand over the three subtriangles B
x

.

7. Derivation of the rHCT Energy Formula

In this section, we will carry out the integration prescribed by the formula (1.1) for the

surface energy of an almost flat thin plate for a single triangular rHTC element. That element

is determined, as set forth in the previous sections, by the vertex data supplied at the corners

of the given triangle B.

Let B = B0 U BiU

B

2 U

B

3 be the given triangle with its barycentric partition. The surface

energy E of the surface element is then given by

(7.1) E := dx dy
,

where z = z(x.y) is the rHCT function (2.10). Our goal is to express E in closed form in

terms of the elevations and gradients at the triangle vertices as well as the triangle geometry.

Energy E is the sum of the energies Ex in the three subtriangles Blx i — 1, 2, 3,

E — Ei + E2 + £3 ,

and will be determined in that fashion. Once an expression for E\ has been obtained, energy

expressions for E2 and E3 follow by cyclic substitution.

The second derivative expressions (5.1)—(5.5) for the pi s, V^s, and hence z, are linear in

Ai, X2 and A 3 . Also, since Xi + X2 X 3 = 1
,
we can replace A 3 everywhere with 1 — Ai — A2 ,

resulting in second derivative expressions as follows which are linear in Ai and A 2 .
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1d2 z

dx2 D2
xy

(Cqxx “1“
“I
- C2XX-A2)

d2
z

dx dy
T-,9 (O)xy T ^lxyAj + C2xyX2 )Uxy

JJ2
(
C°yy C!yy /^ 1 C2yy^2)Uxy

The coefficients c0xx ,
cixx , ... of the above linear form refer to subtriangle B i: and are, of course,

different for the other subtriangles. Bi of the barycentric partition.

The second derivative expressions also show that the coefficients c... themselves are homo-

geneous quadratic forms in the coordinate differences all of which can be expressed

linearly in x2 i, X13, yn, 2/31 since :r32 = — rr 13 — x2 i, etc. Due to the structure of the deriva-

tive expressions only nine coefficients ai3 k occur as coefficients of those quadratic forms. For

i = 1,2,3,

d2 z

dy2

where

Qxx — ai22Vi2 + 2dmynVzl + ai33Vl\

CiXy = CLi22X2 iy\ 2 + Ui23(^2l2/31 + #132/12) + a033#13j/31
2 2

ciyy — &i22#21 + 2<2j23#21#13 + az33#i 3 ,

&022 == —2Qzi + 2Ci2 — (K1 + 1)C23 -f (K2 — 7)C3 i

&023 == —Ql2 + ^23 ~ Q31 + 3(7*
12 - (2A 1 + 3)Q>3 + (K2 ~

a033 r- ~2Qi2 + 4(7*12 — (3/fi - l)(7*23 + (AT2 - 5)C31

&122 -= — {Ks + 9)Ci2 + (bKi + 3)C23 — (4A-2
-

18)(7*3i

&123 ~= — (2iT3 + 12)C12 + (7K, + 3)C*23 - (3A'2 — 15)(7*3i

C-133 =- — (3jF73 + 15)<712 + (7Kx 3) (7*23 - (2A-2 - 12)C*31

&222 == + (-^3 + 3)Ci2 — 2KyC2Z (#2 - 3)C*3i

^223 =r + 3)Ci2 + 6O23
— (AT2 - 3)C31

&233 “= +(A 3 + 3)Ci2 + 2K\C23 -(^2- 3)C31

Note that the coefficients are homogeneous linear forms in the quantities whose co-

efficients depend only on geometric information, K\ — 3(L\ — L\)/L\, ..., independent of the

choice of the coordinate system.

The coefficients a... above, as well as the subsequent results reported here, were mostly

determined with the help of Mathematica [16] and verified by comparison with hand calcula-

tions.
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So, the integrand in the energy integral (7.1) can be expressed over subtriangle B\ in

barycentric coordinates as a quadratic polynomial in the barycentric coordinates Ai,A 2 :

(ePzV ( &z \
2

fd^zV
\dx2

)
+

\dxdyj \9y
2
/

= J^-{CQXX + C 1xx Ai “1“ C2xX^2^ 4“
^Xy

2

p.^ (O)Xy 4~ C\Xy\\ 4“ C2XJ/A 2 )
4~

UXy

(
C0yy 4~ C\yy\\ 4* C2yyX2 )Uxy

+ 2g0iAi 4- 2^02^2 + Qn^i 4- 2^12A 1 A 2 4- 922 A2 )
•

^Xy

The coefficients

Qij CixxCjxx d- 2CixyCjxy 4- C-iyyCjyy > 0 < i < j < 2
,

of that quadratic function are themselves quadratic forms in the nine coefficients a... with

coefficients that are homogeneous biquadratic forms in coordinate differences. To prepare for

that evaluation, we calculate the three products in the above formula separately.

CiXXCJXX = 0'i22^j22Vi2 4- ^i22aj232yl2y3l 4" <*£22 aj33 2/12^31 +

^i23aj222y\2 y3l + ^i23aj23^yi2yll + ai23^j332yi2yh +
ai33aj22yi2yll + ai33aj232ynyl\ + 0*33 Oj'33 2/31

C-ixyCjxy ^i22^j22x\iV\2 + ai22&]23 (^ll 2/122/31 + ^21^ 13 y12 )
az22 <^y33^2 1 ^13 2/12 2/31 +

0'i23®jj22 (^21 2/122/31 + ^21^132/12) ”b

^23^23 (^212/31 4- 2^21 ^ 132/122/31 + ^ 132/12 )
4"

&i23&j33 (^21 ^ 132/31 4* ^ 132/122/31 )

ai33aj22x21x13yi2y3l 4" Gf33%23 (^21^132/31 + ^132/122/31 ) + ai33^j33x\zy\i

ciyy cjyy = ai22aj22x2l 4" ai22aj23'2x2ix l3 + ai22aj33x21X 13 4~

^£23 ^'222^21*^13 + ^£23^2343:21^13 + G
£23^j3323:2l3;j3 +

tti33aj22x21 x 13 4* &i33aj23 2^21^13 4* ^£33^33^13 •
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By substituting into the additive expression for coefficient and collecting terms,

Qij = Gi22 «j22 (^21 + Vn )

2 +

<L22%23 2(^21 + 2/12 ) (
X2\X\3 + 2/l22/3l) +

^22^33(^21^13 + 2/122/31 )

2 +

&z23aj22 2(^2! + 2/12 ) (^21^13 + 2/122/31 ) +

Since

we find

&i23aj23 2 (£21X 13 + 2/122/31 )

2 + (^21 + 2/12 ) (
X 13 + 2/fl

)

&i23aj33 2(Xj
3 + 2/31 ) (^21^13 + 2/122/31 ) +

&i33®'j22 (
x21x 13 + 2/122/31 )

2 +

tii33aj23 2(^13 + 2/31 ) (X2l£l3 + 2/122/31 ) +

flz33%33(^i3 + 2/fl)
2

"

+

Qij

£2l£l3 + 2/122/31
— L? - L| - Ll

— &i22aj22 (£3 )
+

2ai22 dj23

r 2 r 2 t 2
^1 ^2 L3 1 r 2

Q'i22&j33

2a z23aj22

2a i23 Clj23

2d l23 Clj 33

&i33aj22 I

2cii33aj23

L\-L\ - L\

Li +

+

L\-Ll-L\, t2Li +

T 2 _ r2 _ r 2 \
2

^1 -^2 ^3 \ + L9L2 r 2
2^3

'£? - ^ - £§'

7-2 _ r 2 _ r 2 ^

^1 ^2 -^3

2

fL\-Ll-L\

L\ +

+

Z| +

ai33&j33 (jA )
•

+
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Note that the coefficients q„ thus represent purely geometric information independent of the

choice of coordinate system, because the coefficients a..., too, are independent of the choice

of the coordinate system, as seen earlier. This indicates that the expression for the surface

energy is independent of the choice of the coordinate system, as we would expect. (Note also

that the g..’s will be different for each subtriangle Bx
in the partition of triangle £, since the

coefficients c ..
are.)

It remains to substitute the values of the key barycentric integrals. So, the energy integral

over subtriangle B\ is

1/1 1 4 1 5 13 \

El ~
Dlv U 9o ° +

27
901 +

27
902 +

324
9u +

32i
912 +

3 24
922

J
’

xy

where the qj s are those appropriate for B\. This, finally, results in a homogeneous quadratic

form in the derivative quantities Q lJ: CXJ

E\ = ( g\ Cl ex 023023 T #lcx 02 023031 T #1 ciC3 023012

T 9lc \ q \ 023023 + 9lciq2 023031 + #10193023012

+ #lc 2 c2 031031 + #lc2 c3 031012 + #lc2 9x 031023

T 9lc2q2 031031 T #10293 031012 T #10303 012012

+ #lc3 9i 0L2023 + #10392 012031 + ^10393^12012

+ ^19x9x023023 + #19x92023031 + #19x93023012

+ #19292 031031 + #19293031012 + #19393012012 )/D\y

with coefficients that are homogeneous rational functions - as displayed below - in the

squares L 2 of the side lengths of triangle B. The coefficients of these rational functions are

rational numbers.

#ioici = (3L^-6L^L2 + 88Lt^-12L2^ + llL^-6L5^-140Tt^2^3 + 12^L2L3

- 40L6
2L

2 + 88L1L3 + 12L\L\L\ + 58L\L\ - \2L\L% - 40L\L\ + 11L|)/(36LJ)

#ioio2 = {nL\ + ^L\Ll + ZmL\L\-^L\Ll + hL\-^L\L\-Z^L\LlL\

+ 72L\L\L\ - 28L\L\ + lOOLjLj + 38L\L\ - 24L\h\ - 12L\L\ - ZL\) / (72L\L\)

9io 103 = (11L? - 84L\L\ + 100L\L\ - 24L\L\ - 3L\ + 68LflJ - 3^L\L\h\ - 12L\L\

+ 300L\L\ + 72L\l?2L\ + 38L4
2L$ - 48L\h\ - 28L\h\ + $L\) / {72L\L\)
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9\clql

9lclq2

9lclq3

9lc2c2

9lc2c3

9lc2ql

9lc2q2

9lc2q3

9lc3c3

9lc3ql

9lc3q2

(-7L\L\ - 6L\L\ + 13L\ + 7L\L\ - 31L\L\ + 6L\L\

+ 31L\L\ - 13Z|)/(18£?)

(-2L\ + 23L\L\ - 20L\L\ — L% — 15L\L\ + 40L\L2
2Ll

- L\L\ - 20L\L\ + 5L\L\ - 8L\)/(18L\)

(2L\ + 15L\L\ + 20L\L\ + 3L% - 23L\L\ - AQL\LlLl

- 5L\L\ + 20L\L\ + L\L\ + Z,|)/(18Z,|)

(131® + 78L\L\ + 124L\L\ - 50L\L\ + 3L\ - 26L\L\ - 92L\L\L\

+ 62L\L\L\ - 4L\L\ + 14L\L\ + UL\L\L\ - 2L\L\ + l|)/(72L|)

(-6L? - 18L\L\ + 39L\L\ - 16L\L\ + L\ - 18L\L\ - 168L\L\L\ + 28L\L%L\

+ 2L\L\ + 89L\L\ + 28L\L2L\
- 6L4

2L
4

3 - 16L\L% + 2L\L\ + L?)/(36Z|l|)

(-2L\ - 11L\L\ + 8L\L\ + 5L\ + 4L\L\ - 6L\L%L\

- 22L\L\ - 2L\L\ + 17l|l4)/(18Z|)

(5L\ + 12L\L\ - 19L\L\ + 2L% - 5L\L\ + 32L2L2
2L

2

3

- 3L\L\ - L\L\ + Ll)/{\8Ll)

(3L\ + 28L\L\ + 11L\L\ - 2L\ - 7L\L\ - 28L\L\L\

+3L\L\ + 5L\L\ - Lt)l(\8Ll)

(131? - 26L\L2
2 + 14L\L\ - 2L\L% + L% + 18L\l\ - 92L\L\L\ + UL\L\L\

+ 124L\L\ + 62L\L%L\ - 50L\L\ - 4L\L% + 8L\)j{12L\)

(2L\ - 4L\L\ + 2L\L\ + 11L\L\ + 6L\LlL\ - 17L\L2
3

-8L\L\ + 22L2
L\-bLl)/{l8Ll)

(-3L\ + 7L\L\ - 5L\L\ + L%- 28L\L\ + 28L\L 2

2 L\

- UL\Ll-8L2 L\ + 2Ll)/{l8Ll)
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<?1C3,3 = (-5L\ + 5L\L\ + L\L\ -L\- 12L\L\ - 32L\L\L\

+ 1§L\L\ + ZL\L\ - 2Lf)/(18Lf)

= (L\-2L\Ll + L\-2L\Ll + 6LlLl + Li)/l2

91 .1.2 = {-L\ + 2L\Ll-L\-2L\Ll-2L%Ll + ZL\)ie,

91.1.3 = {-L\-2L\Ll + ZL\ + 2L\Ll-2LlLl-L\)ld

91 .2.2 = {L\-2L\Ll + L\ + e,L\Ll-2LlLl + L\)/l2

91.2.3 = {ZL\-2L\L\-L\-2L\L\ + 2L\L\-L\)IZ

91.3.3 = {L\ + SL\Ll + L\-2L\Ll-2LlLl + L\)l\2

The above coefficients reflect inherent symmetries with respect to interchanging the

indices 2 and 3. Some coefficients are invariant with respect to this transposition. Others

become the positive or negative of the coefficient whose subscripts have been interchanged.

The negative outcome occurs for the coefficients associated with mixed products CijQkh and

is due to the fact that the derivative quantities CZJ
switch signs as indices i and j are inter-

changed, whereas the derivative quantities Qki remain unchanged under index transposition.

The following transitions are generated by the interchange 2 *->• 3:

(7.2) <?lclcl +9lclch 9lclc2 —> +giclc3> 9lc2c2 +#lc3c3: <?1 c2c3
“

>

+<?1c2c3:

9lclql —9lclqli 9\c\q2 ~ 9lclqS, 9lc2ql ~9\c3ql j 9\c2q2 ~> ~ 9\c3q3i

9lqlql ~^~9lqlql i 9lqlq2 +9lqlq3: 9lq2q2 +9lq3q3i 9lq2q3 +9lq2q3

The remaining energy expressions E2 and E$ follow from the above one for E\ by cyclic

substitution. Adding those three yields the complete energy expression

E —
( 9C1C1C23C23 + 9cic2 C23C31 + 9C1C3C23C12

+ 9c\q\ C23Q23 + 9ciq2 E' 2̂ Qz\ + 9c xq3 C23Q12

+ 9c2 c2 C31C31 + 9c2C3C3lCl2 + Pc2 <7 i
(- 3lQ23

+ ^0292^31^31 + 9c2qz^3lQl2 + 9c3c3C12C12

+ 9c3qi Ci2Q23 + 9czq2CuQ3\ + 9c3q3CnQ 12
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+ 9qiqiQ2:iQn + 9qiqqQxiQ‘‘A + SqiqqQ'l'lQl’l

+ S9292Q 31Q3 I + 9q2 q3 Q3lQl2 + 9q3q3Ql2Q\2 ) /&ly ,

where

gcici = (2L\-llL\Ll + WL\L\ + $L\Ll + SLl-UL\Ll-2§L\LlLl-$L\L\Ll
- 18L6

2
Lj + 50L\L\ - 9L\L2

2Ll + 24L\L\ + 9L\L\ - 18L\L\ + 6Lf)/(12Z,?)

gClC2 = (3L{ + 4L\L\ + 98L\L\ + 4L\L\ + 3L\ - 24L\L\ - 40L\LlLl - 40L\L\L\

- 24L%L\ + 36L\L\ - 56L\L\L\ + 36L4
2L

4
3
- 12L\L\ - 12L\L% - 3L|),

/

(12L\L\)

gClC3 = (3L\ - 24L\L2
2 + 36Z?L| - 12L\L\ - 3L\ + 4L\L\ - 40L\L2

2Ll
- 56L\L\L\

- 12L\L\ + 98L\L\ - 40L\L%L\ + 36L\L\ + 4L\L\ - 24L\L\ + ZL\) / {12L\L\)

9cun = {L\L\-2L\L\ + L\-L\L\-ZL\L\ + 2L\L\ + %L\L\-L%)I(2L\)

3c„2 = {-L\ + 2L\Ll-Lt + 2L\Ll + 2LlLl-L\)/2

gciq3 = (L\-2L\Ll + L\-2L\Ll-2LlLl + L\)/2

gcm = {8L\ + 9L\L\ + h9L\L\~\lL\L\ + 2L\-\8L\L\-9L\L\L\-28L\L\L\
- 11L\L\ + 24L\L\ - 9L\L\L\ + 50La

2L\
- 18L\L\ + 9L\L% + 6L|)/(12L^)

5C2C3 = (-31? - 12L\L\ + 36L\L\ - 24L\L% + 3L\ - 12L?Lj? - 56L\L\L\ - 40L\L\L\

4- 4L\L\ + 36L\L\ - 40L\L\L\ + 98i^L£ - 24L\Ll + 4L\L% + 3Zj)/(12l|L£)

gcw = (L
4 - 2L\L\ + L\- 2L\L\ - 2L\L\ + L\)/2

3c2,2 = {-L\ + 2L\L\-L\L\ + ZL\L\ + L\L\-ZL\L\-2L\L\ + L%)I{2L\)

ffc293 = {-L\ + 2L\Ll-Ll + 2L\Ll + 2LlLl-Lt)/2

gC3C3 = (61? - 18L\L\ + 24L\L\ - 18L\L\ + 6L\ + 9L\L\ - 9L\L2
2L\

- 9L\L\L\

+ 9L\L\ + 50L\L\ - 26L\L 2

2 L\ + 50i|l£ - 11L\L\ - 11L\L% + 2I|)/(12L|)
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9czqi

9C3 <72

9c$qz

9q\q\

9qiq2

9q\qz

9qzqz

9<72 <73

= (6L\ - 18L?Z| + 24L\L\ - 18L\L\ + 6l| + 9L\L\ - 9L\L\L\ - 9L\L\L\

+ 9L\L\ + 50L\L\ - 26L\L%L\ + 50L\L\ - 11L\L\ - 11L%L% + 2L\)/{12L\)

= (L\ - 2L\L\ + L\- 2L\L\ - 2L\L\ + L\)/

2

= (L\ - 3L\L\ + 3L\L\ -I*- 2L\L\ + 2L\L\ + L\L\ - L\L\)I(2L\)

= (L? - 2L\L\ + L4 - 2L\L\ + + L\)j4

= (-L4 + 2i?I^ - L\- 2L\L\ - 2L\L\ + 3L|)/2

= (-Li - 2L\Ll + 3L\ + 2L\L\ - 2L\L\ - £4
)/2

= (if - 2L?L| + -^2 + 61?^ - 2L\L\ + L4

3 )/4

= (3Li - 2L\L\ -Li- 2L\Ll + 2L\L\ - L\)j2

9,3,3 = + f>L\L\ + L\ - 2L\L\ - 2L\L\ + 1*) /A

Again the symmetries of the problem are reflected in transformations of the above coeffi-

cients under permutations of the indices i = 1,2,3. The relationships (7.2) obtain here, too,

for the index interchange 2 3. In addition, the corresponding relationships are observed

for the other two transpositions 3 f> 1 and 1 <-» 2. Those transpositions can be combined

to generate all other permutations. Note that all coefficients of the form gcjqk, j 7^ are

symmetric functions in the squares and are equal up to their sign.
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